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1 INTRODUCTION	  

	  
Indoor positioning systems (IPS) have become well-known and are a solution that use  

sensors, magnetic fields, or other signals, sensible by mobile devices, to locate objects 

inside buildings or specific regions. GPS technology is a mature and efficient positioning 

technology that has been widely used in mobile phones for outdoor localization and is 

based on the analysis of satellite signals to provide location information. However, 

indoors, GPS loses its ability to provide accurate navigation due to the inability to receive 

satellite signals. Indoor positioning systems are designed to overcome this drawback of 

the global positioning system (GPS) and provide precise indoor localization. Prior 

research on this topic has investigated several methods to provide indoor navigation, such 

as geomagnetic fingerprinting and inertial tracking.  

GPS has become a ubiquitous technology for identifying the location of mobile 

devices outdoors. However, as discussed earlier, GPS does not provide accurate 

positioning indoors. This thesis investigates alternative approaches for providing indoor 

localization on mobile devices. In particular, this thesis investigates the feasibility of 

using Bluetooth Low Energy signals and machine learning for indoor localization. 

One of the distinct challenges of indoor positioning on mobile devices is that many 

of the common positioning approaches are not possible to implement practically on a 

mobile device. In particular many indoor positioning technologies rely on radio 

frequency calculations that are not possible from a mobile app due to limitations placed 

by equipment manufacturers on what device hardware capabilities a mobile app is 

allowed access. For example, none of the major mobile platforms, such as android and 

iOS, allow apps access to the low-level interfaces of the underlying radios on the device, 

which prevent many common localization techniques from being used. 

First, we explore existing localization techniques and evaluate their potential for use 

on mobile devices. For each technique, we discuss key limitations with respect to 

implementation on a mobile device. We perform this analysis from the perspective of 

localization techniques that are possible purely from the app layer of a mobile device. 
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After analyzing a variety of localization approaches, we introduce fingerprinting of 

Bluetooth signals, which is the focus of this thesis. Finally, we discuss empirical results 

from experiments fingerprinting Bluetooth signals in a 1.2M sqft test facility and how 

machine learning parameters affect fingerprinting performance.	  

1.1 Common Location Tracking Systems 

There are four principal techniques that location tracking systems use for positioning, 

which are RF triangulation [1], RF/acoustic proximity [2], and fingerprinting [3]. 

Triangulation [4] uses the geometric properties of triangles to calculate object locations 

based on observed signals properties and is composed of angulation [5] and lateration [6]. 

RF angulation and lateration estimation are based on detecting the actual distance 

between a target location and a reference location based on signal analysis. In contrast to 

the “fine-grained” localization of RF triangulation, however, proximity detection 

provides a “coarse-grained” estimate of distance, but not position, from a fixed 

transmitter. Fingerprinting is a technique, which attempts to use machine learning to 

match a user’s location against a predefined set of locations based on one or more 

characteristics of sensor signals at each of the locations.  

1.1.1 Ranging	  Methods	  

A core component of many localization systems is ranging, which is the estimation of 

distance to known points. Two common methods are used to estimate range: monitoring 

signal characteristics from known RF transmitters or detecting signal reflection off of 

physical objects. RF transmitters can range from WiFi access points to detecting the 

closest tower in a cellular network. Reflection based approaches send out signals, such as 

ultrasound, that reflect off of physical objects. These reflections can then be used to 

estimate distance. These types of ranging approaches require clear lines of sight between 

the device and a known structure and can easily be interfered with by people in an area, 

making them unsuitable for mobile localization. 

RF techniques are less impacted by people and other objects in an environment. 

Angle of Arrival (AOA) measurement [7,8,9] is one approach that analyzes the angle 
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between the direction of propagation of an RF signal wave and a reference orientation 

and can be used to aid in positioning. AOA localization is susceptible to measurement 

noise and also requires low-level access to a mobile device’s radios that is not available 

to apps. Lateration techniques include time of arrival (TOA) [10,11,12] and time 

difference of arrival (TDOA).  TOA, sometimes also called time of flight (TOF) [13,14], 

is the duration of time required to send a signal from a transmitter to receiver. The 

distance is calculated by the light speed in a vacuum. In arbitrary environments, there can 

be significant inaccuracy when there are lots of obstacles between transmitters and 

receivers. An additional challenge of TOA is that it requires the transmitter and receiver 

to be time synchronized, which can be hard on 1,000s of mobile devices. Another 

Lateration technique is time difference of arrival (TDOA). TDOA is an improved version 

of TOA and can reduce the complexity of time synchronization and reduce lost signals. It 

is a method that relies on each transmitter sending two signals to receiver. These two 

signals propagate at different speeds and the receiver can calculate the difference of 

arrival time between the signals to compute the distance.  

1.2 Fingerprint-based Indoor Positioning Systems  

Non-RF technologies of Indoor Positioning System (IPS) provide users with accurate 

indoor location by using ultrasound [15, 16, 17], inertial sensors [18], magnetic fields 

[19], etc. to estimate position through techniques, such as particle filtering. Some of these 

techniques are widely employed in non-mobile domains, such as sonic positioning in 

underwater vehicles and inertial navigation in autonomous ground vehicles. However, 

significant accuracy problems in the typical inertial and other sensor on mobile devices 

have limited their use in mobile apps.  

  Another type of indoor navigation approach that has been widely deployed in mobile is 

based on triangulation of WiFi signals [20, 21, 22, 23], which takes advantage of the 

wireless infrastructure in a building to localize a device. Wi-Fi-based positioning uses 

RSSI to estimate the distance to known WiFi access points. The primary drawback of 

WiFi triangulation is that its accuracy is dependent on the number of WiFi access points 

visible to the device. Due to cost, there are normally insufficient WiFi access points in a 

building to provide accurate positioning. Further, on iOS, apps cannot access the 
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lower-level information about WiFi signals needed to perform positioning. 

 Another approach that has been studied is the use of Bluetooth to estimate distances to 

pre-deployed Bluetooth transmitters. Previously, although these approaches showed 

promise, Bluetooth required too much power to be packaged into a low-cost long-lived 

device that could be cheaply deployed around a building for localization. However, the 

recent development of the Bluetooth Low Energy (BT LE) standard and Apple’s iBeacon 

standard have allowed for the creation of small low-cost Bluetooth transmitters that can 

be deployed in a building for Bluetooth-based localization. These new Bluetooth 

transmitters, called beacons, have generated significant interest in the use of 

Bluetooth-based fingerprinting for localization. However, significant open questions 

about the best approaches for localizing device using Bluetooth signals have still not been 

answered. In particular, RF fingerprinting has been shown to be one of the most effective 

techniques for localization with beacons, but little research has looked at the fundamental 

questions related to how beacon signals should be fingerprinted and how machine 

learning parameters, which underlie these techniques, impact localization. This thesis 

investigates these critical research questions and provides concrete empirical data from a 

1.2 million square-foot test facility. 

1.2.1 RF	  Fingerprinting	   	  

RF Fingerprinting is an indoor navigation technology based on the collection of RSSI 

values and comparison of the values to a database of location fingerprints. To determine a 

device’s location, the device records a sample of the signals currently visible to it and 

calculates RSSI values. These RSSI samples are then compared to previously recorded 

RSSI samples throughout the building in order to find the location that best matches the 

unique pattern of the sample that the mobile device currently sees. Many approaches have 

been used to perform this matching, with machine learning techniques, such as Random 

Forest, providing the best performance. 

An advantage of this technology is that it does not suffer from many of the 

drawbacks of other localization approaches, such as requiring high-accuracy 

measurements, and is easily deployable at the app-layer on a mobile device. For example, 

RF triangulation requires accurate distance estimates to three known transmitters. 
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However, when a mobile device is in a user’s pocket, the human body is mainly water 

and the resonance frequency of water is in the nearly of 2400 Hz, which can produce 

inaccurate distance measurements to transmitters, which adversely impacts triangulation. 

Fingerprinting can account for these types of inaccuracies in the database of location 

fingerprints. This ability for fingerprinting to account for many signaling, sensing, and 

other inaccuracies on mobile devices makes it a very attractive approach for indoor 

positioning. 

Deployment of a fingerprinting system has two main steps: an offline phase to collect 

the initial samples to populate the fingerprint database and an online phase to predict a 

device’s location. During the offline phase, beacons are deployed throughout the building 

and then sample data is collected at each location in the building. A model for estimating 

location based on a signal sample is built by running a machine learning algorithm on the 

data to learn the characteristics of the signals at each location. The sample data at each 

location includes the estimated distances to the deployed beacons, RSSI values to 

beacons, and location where the sample was taken. The collected data is stored in the 

database and is trained into a model by machine learning algorithms. During the online 

phase, the model is used by the device for localization. The device collects reference data, 

sends data to the server to make a location prediction using the model, and then receives 

the predicted location. Figure 1 depicts the fingerprinting approach. 

 

Figure 1: An overview of fingerprinting. 
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1.3 Received	  Signal	  Strength	  Indicator	  (RSSI)	  &	  Distance	  Estimation	  

 RSSI is a radio receiver metric, which is described as a measurement of the power of 

the received signal at a receiver. It is a measurement of the power level being received by 

the device and produces higher RSSI values for more powerful transmitters. When the 

distance between the transmitter and receiver becomes larger, the signal power drops off 

and the RSSI value falls.  

 The advantage of RSSI ranging is that it is a low-cost ranging technology. In addition 

it can provide rough localization under the effects of multipath [24, 25] noise due to 

signal reflections in the surrounding environment. However, there exist some technical 

challenges of RSSI. First, When RSSI is used in an indoor environment; the signal 

strength is not linear and signal loss can sometimes happen due to multipath and 

shadowing [27, 28]. The structure of the rooms, walls, people, antenna orientation of 

device and doors will make the signal experience multipath effects. Human bodies are 

also comprised of water and affect the accuracy of RSSI. In addition, antenna gain has an 

impact on RSSI and this parameter is also influenced by the orientation of antenna. 

Further, as a room becomes smaller, non-linear signal loss can be serious and accuracy 

decreases. All of these effects make RSSI a challenging metric to work with when precise 

estimates are needed, such as for triangulation.  

1.4 IBeacons	  

iBeacon is a new technology, developed by Apple, to provide location services in iOS 

apps. iBeacon is built on Bluetooth Low Energy and iOS devices can detect iBeacons, 

which are simple Bluetooth Low Energy transmitters that adhere to a specific 

transmission format, and estimate distance to them using RSSI values. iOS includes 

mechanisms for notifying apps when specific beacons are seen based on the identifiers of 

the beacons. In the iOS operation system, the core location framework has methods to 

register for notifications when a user enters or exits specific regions defined by the 

presence of an iBeacon [44]. Beacon region monitoring is in charge of detecting beacon 

signals to notify the listening app but each app is limited to listening to 20 regions or 

UUIDs (universally unique identifiers). iBeacon has two main configurations that can be 
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leveraged for indoor proximity detection, which are: region monitoring and ranging. 

Beacon region monitoring notifies an app when it enters an area defined by the device’s 

proximity to Bluetooth low-energy beacons with a specific UUID. Ranging notifies an 

app continuously as its distance to beacons with a specific UUID changes. The distance is 

discretized into three different buckets: immediate (within centimeters), near (within few 

meters) and far (greater than 10 meters). The maximum distance of an iBeacon 

transmission is dependent on the placement of beacons and obstructions around the 

environment. In addition to a UUID, each beacon has a major value and minor value that 

are used for application-specific purposes.    

 

1.5 Research	  Questions	  

Previous literature on fingerprinting of Bluetooth signals has not focused heavily or at all 

on Bluetooth low-energy signals. In particular, little analysis has been done on how 

deployment of eye beacons at scale and various properties of mobile devices impact 

localization performance in a fingerprinting based indoor positioning system. Finally, 

little research has answered key questions about how different machine learning 

techniques and parameters impacts the accuracy of the models used for fingerprint 

matching and localization. This thesis investigates the following key unanswered 

questions within this research space: 

 

• Research Question 1: How does beacon placement impact localization 
performance? In many real-world scenarios, beacons cannot be easily placed in 

the building at arbitrary locations due to aesthetic, structural, or other issues. An 

important issue to analyze is understanding how variations in placement impact 

the performance of the localization system. For example, the angle between a 

beacon's antenna and a mobile devices antenna can impact the range and signal 

strength of our SSI measurements which can impact localization performance. 

 

• Research Question 2: How many beacons are needed to reach high accuracy 
localization in a real-world environment? Without concrete data on exactly 
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how many beacons are needed and metrics for measuring Beacon coverage, it's 

difficult to deploy a beacons at scale in a real building. Concrete metrics for 

analyzing how Beacon deployment density impacts localization accuracy are 

critical for cost effective and high accuracy indoor localization. 

 

• Research Question 3: How do different machine learning algorithms perform 

for fingerprint matching and localization? The few papers that exist on this 

topic analyze a single machine learning algorithm and report results on 

localization performance. However, to further the scientific understanding of 

indoor positioning, comparative analysis of different machine learning algorithms 

as needed. 

 

• Research Question 4: How do machine learning parameters impact indoor 

navigation performance? Machine learning out rhythms can have widely 

varying accuracy based on parameter values that are provided to the machine 

learning algorithm. In order to produce a high accuracy indoor navigation system, 

understanding how these parameters impact fingerprinting performance is critical. 
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2 EMPIRICAL	  RESLUTS	  

 

To answer these key research questions, we conducted a number of experiments to 

determine how fingerprinting performs in real world environments and how beacon 

placement and other parameters impact localization performance. The experiments were 

conducted in a unique environment, the Nashville Music City Center, which is a 

convention center in downtown Nashville. As part of a research collaboration with 

Vanderbilt University, 63 beacons were deployed throughout the building to provide 

signaling for an indoor navigation system covering 1.2 million sqft. 

2.1 Device	  And	  Platform	  

To conduct the experiments, we employed us a variety of iPhone smartphones for 

experimentation. All iPhones ran iOS 7 or later and had a Bluetooth 4.0 radio, which is 

required for detecting beacons. All applications were developed in Objective-C using 

Apple’s XCode development environment.  

2.2 Beacon	  Placement	  Experiments	  

Beacons broadcast signals in a cone shape and for the best performance of detecting a 

signal, it is better to attach the beacon to the walls mounted on a metal wedge to aim the 

cone at the specific area. There is a major factor, which affects the accuracy of distance 

measurements: the orientation of the beacon’s antenna. Based on the normal posture that 

users take when holding a phone (i.e., phone in hand held out in front of the body), we 

did experiments to find the relationship between relative angle of beacon mount 

orientation to the wall and RSSI values observed on the device.  

Our experiments to measure the impact of beacon placement orientation on RSSI 

value were performed in a hallway of the Music City Center. In the hallway, we placed a 

beacon at varying linear distances of 0.3m, 0.5m, 1m, 2m, 3m, 4m, 5m, 6m, 10m and 
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measured the RSSI value recorded on the phone while at orientations relative to the wall 

of 0 degrees, 30 degrees, 45 degrees, 60 degrees, and 90 degrees to the beacon with 4 

different smartphones respectively. In each test, the device was moved slowly back and 

forth on a 30 cm line, maintaining orientation, remaining equidistant from the measuring 

device, and this operation was repeated for one minute [44]. After this phase, we gathered 

the RSSI values from the device and make an average of the collected RSSI values to 

obtain the measured power value for the orientation [44]. In each measured distance with 

the same angle the beacon was attached to metal bracket [46]. During the experiment, we 

measured the performance of RSSI on several different cellphones, such as the Nexus 5, 

iPhone 4S, iPhone5, and iPhone 6 Plus. The hardware and Bluetooth parameters of the 

different smartphones are shown in Table 1. 

 

Table	  1	  Hardware Configuration of Test Devices.	  

Phone Processor RAM Bluetooth 

IPhone4s 

1 GHz (under-clocked to 800 MHz) 

dual-core ARM Cortex-A9 Apple A5 

(SoC) 

512 MB LPDDR2 

Bluetooth 2.1 + 

EDR 

(Broadcom 

4325) 

IPhone5 
1.3 GHz dual-core Apple-designed 

ARMv7s Apple A6 
1 GB LPDDR2 Bluetooth 4.0 

IPhone5s 

1.3 GHz dual-core Apple-designed 

ARMv8-A 64-bit Apple A7 with M7 

motion coprocessor 

1GB LPDDR3 Bluetooth 4.0 

IPhone6plus 

1.4 GHz dual-core Apple-designed 

ARMv8-A 64-bit Apple A8 with M8 

motion coprocessor 

1GB LPDDR3 Bluetooth 4.0 

Nexus 4 1.5GHzquad-core Krait Adreno 320 

2GB of LPDDR2 

RAM, clocked at 

533MHz 

Bluetooth 4.0 

with A2DP 
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Figure 2 Correlation between RSSI and orientation angle at an intermediate distance (less 
than 1 meter). 

 
Figure 3 Correlation between RSSI and angles at the near distance (less than 8 meters). 

	   	   	   	   	   	   	   	  
(a) Correlation between RSSI and orientation     (b) Correlation between RSSI and orientation 	  
	   angle at a distance of 1 m.               angle at a distance of 2 m. 

	   	   	   	   	   	   	  
(c) Correlation between RSSI and orientation     (d) Correlation between RSSI and orientation 	  
	   angle at a distance of 3 m.           angle at a distance of 4 m.	  

	   	   	   	   	   	   	   	  
(e) Correlation between RSSI and orientation      (f) Correlation between RSSI and orientation 	  
	   angle at a distance of 5 m.            angle at a distance of 6 m.	  
	  

	   	   	   	  
	   (a) Correlation between RSSI and orientation     (b) Correlation between RSSI and orientation 
 angle at a distance of 0.3 m.                      angel at a distance of 0.5 m. 
 in the distance of 0.3 m.             in the distance of 0.5m. 



	  12	  

Figure 4 Correlation between RSSI and angle to the beacon at the far distance (more than 
8 meters). 

 

Figure 2, 3 and 4 show the correlation between orientation angle of the beacon and RSSI 

value with different devices. The distances are in the ascending order, and were measured 

at 0.3 meters, 0.5 meters, 1 meters, 2 meters, 3 meters, 4 meters, 5 meters, 6 meters, and 

10 meters. 

In Figures 2, 3 and 4, the vertical axis represents the RSSI value measured on the 

device and the horizontal axis is the angle of orientation that the beacon was mounted on 

the wall. When the orientation angle is close to zero; the average measured RSSI value on 

the devices is higher. Based on the results shown in these figures, we can draw some 

conclusions that when the distance between the beacon and the phone is less than 1 meter, 

it is better to mount the beacon at 0 degree; For expected distances to the device of 1-6m, 

a mount orientation of 90 degrees is most appropriate. Beyond 6m, no single mount 

orientation provides a consistently stronger signal. The iPhone 6 Plus has best overall 

performance of detecting the RSSI value based on this test.  

This data on beacon orientation for deployment can be used to supplement beacon 

placement optimization algorithms, such as the G1 algorithm [45]. The G1 algorithm is a 

simply greedy algorithm that optimizes beacon placement location by selecting a minimal 

set of hyperplanes that cover an entire indoor space and assigning beacons to the 

hyperplanes [45]. Adding orientation data to the algorithm could help to improve its 

positioning decisions and simultaneously optimize beacon installation orientation.  

 

 

	  
Correlation between RSSI and orientation angle at a distance of 10 m.	  
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3 FINGERPRINTING	  EXPERIMENTS	  

 

For the fingerprinting experiments with machine learning, we collected data from the 

beacons in the Music City Center, including RSSI value, distance, major value, and 

minor value of beacons. Table 2 shows the different configurations of devices we used to 

collect data and Table 2 illustrates the format of the collected data. In the process of 

collecting data, the experimenters walked with an average speed of 1.0m in random 

directions within specific region to try to collect a random sample of data. The recording 

application sampled the beacon signal data twice per second. In the Music City Center, 

we used 126 locations and collected 9756 samples for the dataset. 

 

Table	  2Format of data in the dataset 

Beaco

n1 

Major 

value 

Beaco

n1 

Minor 

Value 

Beaco

n1 

Distan

ce 

Beaco

n1 

RSSI 

… 

Beaco

nN 

Major 

value 

Beaco

nN 

Minor 

Value 

Beaco

nN 

Distan

ce 

Beaco

nN 

RSSI 

Regio

n 

name 

0 1 3.23 -69 … 0 78 11.32 -73 
Room

A 

…
 

…
 

…
 

…
. 

…
. 

…
 

…
 

…
 

…
 

…
 

0 5 1.34 -59 … 0 76 12.98 -70 
Room 

N 
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The key question we wanted answer in this research was how different machine learning 

algorithms and their parameters impact localization accuracy. We used the data set that 

we collected in the Music City Center to train very machine learning algorithms and then 

measure their performance when localizing a mobile device using data sampled within 

the Music City Center. The Music City Center provided a large-scale testbed -- the larger 

than any testbed that has been presented in published literature -- to investigate these 

critical questions. In the remainder of this chapter, we explore varying machine learning 

algorithms and the impact of their parameters on localization accuracy. In the 

experiments, we compared the C4.5 [29, 30, 31, 32], Random Forest [33, 34, 35], and 

Bayesian Networks [36, 37, 38] algorithms. 

In this chapter there are two main experiments: the first one is aimed to find best 

parameter configuration of machine algorithms and the other one is aimed to check how 

many neighboring beacons are needed for a given level of accuracy. The dataset, which is 

used in the experiments includes 576 random samples from within the Music City Center 

and is analyzed against models produced from a training dataset containing 9756 data 

points from the Music City Center. 

 

Figure 5 Correlation between minor value of beacon and location id.  
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Figure 5 shows a visualization of the test dataset that correlates location with beacon 

identity. The top left of the Figure is the correlation between minor values of the third 

nearest beacon and location where the sample was observed. The top right figure shows 

the correlation between the minor values of the second nearest beacon and the location 

where the sample was obtained. The bottom left shows the correlation between minor 

values of the nearest beacon and the location where the sample was obtained. The x-axis 

indicates the minor value of beacons and y-axis is the location. A negative minor value 

indicates that the device did not find a beacon for that scan.  

3.1 Results	  Of	  Experiments	  With	  The	  C4.5	  Algorithm	   	  

The first set of experiments that we ran were with the C4.5 algorithm [29, 30, 31, 32]. 

These experiments tested the performance of this algorithm on localization using 

randomly sampled locations from within the Music City Center. The decision trees 

produced by the algorithm were based on the entire training data set from the Music City 

Center. Various experiments were performed to understand how parameters and other 

aspects of the algorithm impacted localization accuracy. 

3.1.1 Confidence	  Factor	  Impact	  On	  Accuracy	  

The first experiment with this algorithm investigated how the algorithm’s confidence 

parameter [39], which controls how aggressively the tree is pruned, impacted its location 

prediction accuracy. We wanted to understand how tree pruning due to the confidence 

parameter influenced the real-world accuracy of the algorithm. 
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Figure 6 Correlation between correct localizaton rate and confidence factor in the C4.5 
algorithm. 

	  

 
Figure 7 Correlation between kappa statistic and confidence factor in the C4.5 algorithm. 

	  
Figure 6 above shows the relationship between correct localization rate and the 

confidence factor provided to the C4.5 algorithm when varying numbers of beacons were 

visible. The horizontal axis indicates the confidence factor provided to the algorithm and 

the vertical axis indicates the correct localization rate. From the data shown in the figure, 

we can draw some conclusions: 

1. The common feature of these three different datasets is that there is an 

increase in accuracy as the confidence factor increases from 0.1 to 1.0. 

Beyond a confidence value of 1.0, the accuracy rate does not change. 

2. When the dataset includes more neighboring beacons, the localization rate is 

higher. There is an obvious reduction in accuracy from the two beacon 

dataset to the one beacon dataset. This is an interesting note because many 
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commercial approaches attempt to rely on a single visible beacon for 

localization, which is not optimal. However, the difference between having 

two and three beacons visible is less than 1%. 

 

Figure 7 shows how the kappa statistic [40] changes based on the confidence factor 

provided to the C4.5 algorithm with different number of beacons present. The horizontal 

axis indicates the confidence factor and the vertical axis is the Kappa statistic value. The 

closer to the one Kappa statistic is; the more accurate the model is. From the figure, we 

could draw some conclusions: 

1. As with the prior dataset, the Kappa statistic value does not improve when the 

confidence value is greater than 1.0. Beyond a confidence value of 1.0, the Kappa 

statistic keeps the same value.  

2. When more beacons are visible, the Kappa statistic value is higher. However, the 

difference in Kappa value between the two beacon and three beacon datasets is 

less than 0.008.  

 

Figure 8 Correlation between correct instances rate and kappa statistic from one beacon 
dataset, two beacons dataset and three beacons dataset in C4.5 algorithm. 
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The above Figure 8 shows the correlation between correct localization rate and kappa 

statistic for the one beacon, two beacon, and three beacon datasets respectively. All of the 

figures show that the kappa statistic is relatively positive. The correlation between correct 

localization rate and Kappa Statistic is more positive as the number of neighboring 

beacons increases. 

 

 
Figure 9 Correlation between time taken to make model and confidence factor in C4.5 
algorithm. 

	  
Figure 9 shows how the confidence factor impacts model building time for the various 

datasets.  The time required to build the model is less than 1 second when the 

confidence factor is from 0.1 to 0.5. When the confidence factor is within the interval 

from 1 to 2.5 and after 4, the time spent building the model does not change much. In the 

confidence factor interval between 2.5 and 4, the time to build the model increases 

dramatically. An interesting result is that the algorithm can build a model much more 

quickly for the three beacon dataset, regardless of the confidence factor. 
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Figure 10 Correlation between relative absolute error and confidence factor in C4.5 
algorithm. 

	  
Figure 10 shows the relationship between absolute error and the confidence factor. The 

x-axis represents the confidence factor provided to the algorithm and the y-axis indicates 

the relative absolute error. As was expected given the prior results, the relative absolute 

error remains roughly constant above a confidence factor of 1.0. Furthermore, increasing 

the number of neighboring beacons reduces relative absolute error.   

 

 
Figure 11 Different correlations of training data and test data between correct instances 
rate and confidence factor in C4.5 algorithm. 
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Figure 11 shows an unexpected result. Although the overall accuracy of the trained model 

has an improvement in accuracy when validated against the training data, increases in 

confidence factor have little impact on the localization accuracy of the model with the 

real world sample data. The result shows that the biggest difference between correct 

locatization rate for the randomly captured test data samples is less than 0.1% regardless 

of the confidence factor value. This result indicates that the model will not break down 

with unknown data, or when future data is applied to it. 

Combined with prior conclusions, to ensure perfect agreement, correct instances rate, 

relative absolute error and time cost, the best choice is to ensure that a minimum of three 

beacons are visible at every location within a building. Further, a confidence factor of 1.0 

is a reasonable value to produce high accuracy and lower model creation times.  

3.1.2 Test	  Of	  Number	  Of	  Folds	  

The following results show the impact the algorithms parameter that determines the 

number of folds [42] and the accuracy of the trained model. 

Figure 12 Correlation between number of folds and other main evaluation standards in 
C4.5 algorithm. 
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In Figure 12, we can see that the number of folds does not influence the accuracy of the 

model, kappa statistic, or relative absolute error. Further, regardless of the number of 

folds, the 3 beacons dataset produces the highest accuracy.  

 

 
Figure 13 Correlation between time and number of folds in C4.5 algorithm. 

	  
Figure 13 shows the time to construct the model as a function of the number of folds. The 

x-axis is number of folds and the y-axis is the time consumed to build the model. In this 

Figure, we find the number of folds does influence the time consumed to build the model 

and its overall size. Therefore, when the number of folds is 2, 3 or 4, the time and space 

size are relatively balanced. To build a model of the 3 beacons dataset, choosing 4 folds 

for the C4.5 algorithm produces fast build times with high accuracy. For the model with 2 

beacons, choosing 5 folds produces the best balance of accuracy and modeling building 

time. 

3.2 Results	  Of	  Experiments	  With	  Random	  Forest	  Algorithm	  

We next investigate the Random Forest algorithm, which is another high-performance 

tree-based classification approach. We focus on the influence of one key parameters: the 

number of sub-trees. Typical values for the number of sub-trees are 10, 30, 50 and 100. 

We did tests to compare their performances. 
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Figure 14 Correlation between correct instances rate and number of sub trees in Random 
Forest. 

	  
Figure 14 shows the impact of the number of sub trees on accuracy. The x-axis is the 

correct localization rate (%) and the y-axis indicates the number of sub trees. As the 

number of sub trees increases, accuracy of both the 3 beacon and 2 beacon datasets 

increases and stays relatively constant. The correct localization rate of the model of the 

two beacon dataset drops a little and at 30 sub trees. In this case, performance of the 

model of the 3 beacons dataset does the best when the number of sub trees was equal or 

beyond 30 sub trees. The accuracy of model of the 2 beacons dataset was highest when 

the number of sub trees was equal to 10. 

 

 
Figure 15 Correlation between kappa statistic and number of sub trees in Random Forest. 
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Figure 15 shows the impact of the number of sub trees on the Kappa Statistic. The x-axis 

indicates the kappa statistic and the y-axis is number of sub trees. The results mirror what 

was seen for the impact of sub trees on localization accuracy. 

 

 
Figure 16 Correlation between relative absolute error and number of sub trees in Random 
Forest. 

 

In Figure 16, the vertical axis is the relative absolute error and the horizontal axis is the 

number of sub trees. In this Figure, we can see that when the number of sub trees is equal 

to 30, the relative absolute error of the model of the 3 beacons dataset is minimized as 

expected. Furthermore, the relative absolute error of both the model of the 2 beacon 

dataset and one beacon datasets stays relatively constant as the number of sub trees 

increases. Overall, the most accurate predictions are achieved with the 3 beacon dataset 

and 30 sub trees. 
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Figure 17 Correlation between time and number of sub trees in Random Forest. 

 

Figure 17, shows the correlation between the time to build the model and the number of 

sub trees. The time to construct a model with the 3 beacon dataset and the one beacon 

dataset increases as the number of sub trees increases. The model of the 2 beacons dataset 

is unique because the time consumed decreases when the number of sub trees is less than 

30, reaches the minimum at 30 sub trees, and increases when the number of sub trees is 

more than 30.  

We used the same test dataset with 478 instances to test the model accuracy with 

different number of sub trees. The result shows that the accuracy of all models 

approaches 100%. The maximum difference between correct localization rate for the 

training data and that of test data is not beyond 2%. This result indicates that the model of 

will not break down with unknown data, or when future data is applied to it. 

Based on the results, we can draw the following conclusions: 

l The overall accuracy of all datasets is above 97.5%. 

l The kappa statistic is very high and all reach beyond 0.97. 

l When the number of sub trees reaches 30, all models take relatively less time to get 

relative higher accuracy and an improved kappa statistic. 

l For the model of the 3 beacon data, it is better to choose 30 sub trees in Random 

Forest to get the best performance. 

l For the model of the two beacons data, choosing 30 sub trees in Random Forest 
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maybe the best choice. Although accuracy and kappa statistic is not best, time 

consumed in 30 trees could save about 2 seconds computation time and the 

difference with best accuracy is not beyond 0.2%. 

l For the model of the three beacon data, choosing 10 sub trees in Random Forest 

maybe the best choice. Though accuracy and kappa statistic is not best, time 

consumed in 10 trees could save about 2.5 seconds computation time and the 

difference with best accuracy is not beyond 2%. 

l In the Random Forest method, both the three beacon dataset and the one beacon 

dataset are a good choice to make an accurate model. 

3.3 Results	  Of	  Experiments	  With	  Bayesian	  Networks	  

The experiment with Bayesian Networks [36, 37, 38] focus on the values for the alpha 

parameter [42, 43]. The alpha is an important parameter in the estimator of the Bayesian 

Networks and used for estimating the probability tables that the algorithm relies on. We 

conducted tests to see how different alpha values affected the localization accuracy. 

 

 
Figure 18 Correlation between correct instances rate and alpha value in Bayesian 
Networks. 

In Figure 18, the vertical axis is the correct localization rate and the horizontal axis is 

the alpha value of the estimator [42, 43]. We can see in this figure that as the value of 

alpha increases, the correct localization rate decreases. This reduction in accuracy is 
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particularly apparent when the value of alpha is beyond 2. In addition, both the 3 beacon 

and 2 beacon datasets have relatively good performance when the value of alpha is near 2. 

The accuracy of the model produced with the one beacon dataset is poor. 

 

 
Figure 19 Correlation between kappa statistic and alpha value in Bayesian Networks. 

	  
The vertical axis in Figure 19 is the kappa statistic and the horizontal axis in this Figure is 

the value of alpha. The kappa statistic of all the models decreases when the value of alpha 

increases. The models built with the 3 beacon and 2 beacon datasets have a relatively 

better kappa statistic than the model built from the one beacon dataset.   

 

 
Figure 20 Correlation between relative absolute error and alpha value in Bayesian 
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Networks. 

Figure 20 shows the correlation between relative absolute error and value of alpha. The 

vertical axis is the percentage of relative absolute error and the horizontal axis is the 

value of alpha. We can learn from the Figure that as the value of alpha increases, the 

percentage of relative absolute error increases. When the value of alpha is lower than 0.5, 

the relative absolute error of the model lower. The models from the 3 beacon and 2 

beacon datasets have the lowest relative absolute error when the value of alpha is less 

than 0.5. 

 
 

 
Figure 21 Correlation between time and alpha value in Bayesian Networks. 

 

Figure 21 shows the correlation between the time to build the model and the value of 

alpha. The horizontal axis is the value of alpha in increasing order and the vertical axis is 

the time to build the model. The models of the 3 beacons dataset and the 1 beacon dataset 

take less time to produce when the value of alpha increases.  

We used the same test dataset with 478 instances to test the model accuracy with 

different values of alpha. The results show that the accuracy of the model is 95.6597%. 

The maximum difference between correct localization rate for the training data and that 

of test data is not beyond 0.1%.  

Due to the results above, we can draw the following conclusions. 

l Both of the models of the 3 beacon and 2 beacon datasets have over 93% accuracy. 

l The overall performance of the 1 beacon dataset model is not ideal and the accuracy 
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is less than 82%. 

3.4 Discussion	  

Finally, we compare the accuracy of each of the models from the machine learning 

techniques to each other. The figures below show the localization accuracy of the models. 

 

Figure 22 Performances of different machine learning algorithm. 

	  
The top left of Figure 22 compares the localization accuracy, the chart on the right top is 

the kappa statistic, the chart on the bottom left is relative absolute error, and the chart on 

the right bottom is time to build the models. The numbers on the horizontal axis from left 

to right indicate the model constructed using the 3 beacons dataset and the C4.5 

algorithm, with confidence factor is 2 and number of folds equal to 4, the model with the 

2 beacon dataset in C4.5 algorithm, of which confidence factor is 2 and number of folds 

is 5, the model with 3 beacons dataset in Random Forest algorithm, of which number of 

sub trees is 30, the model with 2 beacons dataset in Random Forest algorithm, of which 

number of sub trees is 30, the model with one beacons dataset in Random Forest 

algorithm, of which number of sub trees is 10, the model with 3 beacons dataset in 

Bayesian Networks algorithm, of which alpha is 0.2 and the model with two beacons 
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dataset in Bayesian Networks algorithm, of which alpha is 0.1, respectively. 

The following conclusions can be drawn from the comparison: 

l The overall accuracy and kappa statistic performance of the models built using 

Random Forest are best and Random Forest produces the highest real-world 

accuracy. 

l C4.5 algorithm has the advantage of relative absolute error and it has the best 

classification on the training data but not the real-world test data. 

l Bayesian Networks takes the least time to build the models and runs well in the 

larger datasets.  

l In the case of limited beacons in a very large space to cover, Random Forest is the 

best choice because its model of one neighboring beacon provides high localization 

accuracy.  

l Overall, having at least three neighboring beacons at each location is best. 
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4 CONCLUSION	  

 
In this paper, we first introduce some basic indoor positioning concepts and then focus on 

one method that relies on fingerprinting Bluetooth iBeacon signals using machine 

learning. In addition, we study the influence of beacon mounting positions on the 

received signal strength indicator and find it has some correlation between received 

signal strength and the mounting angle of the beacons. In further experiments with the 

machine learning algorithms, we found that both Random Forest and C4.5 provide high 

real-world localization accuracy. When fewer beacons are required to cover a very large 

space, the Random Forest is the best choice because its localization accuracy with a 

single beacon is still high. 
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