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Ⅰ. Introduction

Currently, millions of web applications are connected to the Internet and open for

cyber-attack. Governments, militaries, corporations, financial institutions, hospitals and other

entities collect, are processing and storing a larger and larger amount of confidential

information on computers and transmitting that data across networks to other computers. At

the same time, important data is vulnerable to growing and continual cyber-attacks, including

denial-of-service attacks, SQL injection attacks, and many others.

In order to improve the security this critical data, researches have come up with a variety of

different defenses, including newer hardware with built-in security features, higher-security

network protocols, and expensive malware detection software. However, despite these

advances, critical data still can be acquired through the Internet by attackers, especially when

web applications are deployed in a cloud computing environment. Stopping these types of

attacks and information capture is vital. Improper access to a database can cause the loss of

control over thousands of patient records or critical intellectual property secrets. As

companies store larger and larger amounts of data in the cloud, security will become even

more important.

No organization is immune to these attacks – regardless of its size or sophistication. For

example, the Cloud Security Alliance (CSA) reports that Amazon's retail website experienced

a cross-site scripting attack in April 2010 that allowed the attackers to hijack customer

credentials as they came into the site. In 2009, it reported, "numerous Amazon systems were

hijacked to run Zeus botnet nodes."[1] And these are only two examples among hundreds of

attacks that have been reported by CSA (cloud security alliance).

An emerging trend is to deploy web application cloud clusters, such as MongoDB, Hadoop,

and Redis clusters. A key research question that we asked is if we cloud use the redundancy

and connectivity in these clusters to devise a new defense mechanism? In particular, similar

to a space-time tradeoff, can we sacrifice performance to get higher security by dynamically

changing the cluster composition? Further, can we perform this type of tradeoff without
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impacting the overall functionality of the cluster?

One possible approach to trade performance in a cluster for increased security is a moving

target or hopping defense. A hopping defense is based on periodically moving application

instances from one host to another, which may have different IP addresses or ports, so that

attackers that gain access to a particular host can not hold onto control of the host for long

periods of time. The approach gains security by limiting the time that any particular host can

be compromised and under an attacker’s control – thus reducing the damage that can be done.

However, there is a key concern with this method: we do not know how hopping will impact

application performance and overall quality of service. A high hopping frequency may have

an enormous adverse impact on performance, causing an unacceptable impact on quality of

service. Further, we also do not know whether the method is feasible or will compromise the

integrity of a clustered application and lead to the crash of the whole cluster.

In this paper, we set out to test the feasibility and performance of moving target defenses for

clustered applications. One of the concerns with a hopping defense is the long startup times

of virtual machines. In order to improve application instance startup time, we used

container-based applications, which use Linux container mechanisms rather than virtual

machines to isolate application instances. These container-based applications, such as Docker,

can be started and stopped orders of magnitude faster than virtual machines. As part of the

paper, we contrast the features of traditional virtual machine technology and the Docker

container and show its advantages when deploying portable and light-weight application

instances in a cloud cluster environment.

The remainder of this paper is organized as follow: Section Ⅱ describes our research

motivation and background material, including the container technology we will analyze for a

hopping defense in this paper; Section Ⅲ and Ⅳ cover how we built our test environment

and how we chose web applications for our hopping experiments; Section Ⅴ discusses the
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challenges we met in our experiments, and gives our solution to these challenges; Section Ⅵ

presents empirical results from experiments with hopping defenses, and section Ⅷ presents

concluding remarks and lessons learned.

Ⅱ. Background

Cyber-security is a top concern in nearly every major industry. Companies spend millions of

dollars to build secure environments for their services. Unfortunately, despite the huge

amounts of investment, they are still vulnerable to attack and routinely compromised.

Hacking today is a very big issue and also a very big business. Hackers spend long, hard

hours for payoffs and results that can easily reach into the millions. What are the security

flaws that hackers exploit to attack? In a recent survey commissioned by Sungard Availability

Services, the top 5 cyber-security threats to information systems were identified as [2]:

 No 1. vulnerable web applications (noted by 55% of respondents)

 No 2. being overall security “aware” (51%)

 No 3. out-of-date security patches (50%)

 No 4. failure to encrypt PCs and sensitive data (47%) No 5. obvious or missing

passwords (44%)

This paper focuses on the No. 1 security threat, vulnerable web application, since defending

web applications is a complex topic and less straightforward than the other flaws that are

exploited. Designing a security awareness program, establishing a patch management

schedule, encrypting PCs and sensitive data, and enforcing strong passwords are all relatively

straightforward activities that do not need deep research. Securing vulnerable web

applications, however, is a much more complex endeavor.

Today, more and more corporate services and business are built on cloud environments due to

their elastic pricing and ease of management. In the remainder of this paper, we explore a

new method to help increase security for these cloud-hosted web applications.
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Cloud environments are highly dependent on virtualization. Virtualization technology

separates a physical computing device into one or more “virtual” devices, each of which can

be easily used and managed to perform computing tasks. However traditional virtual machine

technology has some disadvantages when used for web applications. With traditional virtual

machine technology, each VM includes not only the application, which is typically at most a

few 100MBs in size, but also the entire virtualized operating system, which may be 10s of

GB or more in size. Due to the large file sizes and limitations on network and disk bandwidth,

it can be time and resource intensive to deploy a cluster based on virtual machine

infrastructure. In order to solve this issue, a lightweight isolation technology - Docker - was

developed.

Fig 1. VMs vs Docker

Docker is an open source project that automates the deployment of applications inside

software containers, which is a lightweight isolation mechanism for dividing up a single

physical host into multiple virtual environments. By providing an additional layer of

abstraction and automation of operating-system-level virtualization, the Docker Engine, on



5

Linux, it is possible to build much smaller application distribution units. Docker uses

resource isolation features of the Linux kernel, such as cgroups and kernel namespaces to

ensure the independence of each container, while avoiding the overhead of starting virtual

machine.

The name Docker comes from the domain of ocean shipping. Just like containers on a cargo

ship, a Docker container is an isolated packaging unit that can be easily moved. These

standard isolation features are based on the isolation of different namespaces within the

Linux kernel. The Linux kernel's support for namespaces completely isolates an application's

view of the operating environment, including process trees, network, and user IDs. The

kernel's cgroups also provide resource isolation that limits the usage of CPU, memory, block

I/O, and network communication. At the same time, Linux chroot provides support for file

system isolation. Docker also takes advantages of many other isolation tools with different

tradeoffs, such as OpenVZ, systemd-nspawn, libvirt-lxc, libvirt-sandbox, qemu/kvm, to talk

with Linux kernel. Docker has built its own driver API, libcontainer, to handle isolation

issues [3]. These technologies, along with Docker’s APIs, allow applications to be packaged

with only their dependent libraries and not an entire OS image, yielding much more space

efficient distribution packages and faster startup times. Docker’s higher startup performance

and small package size as opposed to traditional VMs, are the main reasons we chose Docker

to do experiments in our paper. Both of these properties, startup time and package size,

impact how quickly an application instance can be moved to a new host as part of a hopping

defense.
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Fig 2. Docker API

Ⅲ. Research Questions

The fundamental assumption of this work is that, by hopping containers across hosts, we can

improve security for web applications. A simple example will help to explain the idea.

Assume that we have a database cluster with n containers, and a load balancer to distribute

requests to a database across the containers. If a hacker gets access to container No. 1, he

could steal data from this database instance as long as he has access to the container. By

periodically hopping containers to another host, we can cut off this unauthorized access so

that attackers only have limited time periods to exploit a compromised host. We can also

change a subset of the configuration parameters during each move so that we can improve

security by avoiding the reuse of a homogeneous environment configuration.

However, despite its potential, there are some key concerns with this method related to how

periodic hopping will impact performance. To be more specific, there are two key research

questions that need to be answered:
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Research Question 1: How will increasing hopping frequencies impact performance?

Research Question 2: How will increasing the percentage of the total containers that are

simultaneously hopped impact performance?

When we hop a container, we need to shut it down, and restart it again on another host. This

process has the potential to produce significant disruption on the server-side, especially when

we move multiple containers, because some application instances will be unavailable until

they finish restarting. The research questions are focused on the two key parameters that will

impact performance, how often each individual container is hopped and what percentage of

the overall containers are simultaneously being hopped at any given instance in time. To

answer these key research questions, we performed a number of empirical benchmarks.

IV. Experimental Setup

In order to accurately assess the impact of hopping on a real-world application, we built a

web application with several database containers. Our hopping experiments were conducted

using a MongoDB database cluster built from Docker container instances. The MongoDB

database was sharded, meaning that its data was distributed and striped across the container

isntances. In order to provide a single interface to the database, the cluster needs a load

balancer to handle distribution and mapping of data to hosts. Our MongoDB Docker cluster

was based on the best practices described in the article “Docker and MongoDB Sharded

Cluster”, which provides a detailed roadmap to produce a sharded Mongo cluster [4].
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Fig 3. Mongo cluster using Docker containers

Figure 3 shows the structure of our 6 MongoDB container cluster. Although the primary

database is sharded across 6 containers, we used 10 containers in total, including a Mongo

router and 3 configuration server containers. We used this cluster setup to move the primary

database containers at varying frequencies to see how performance was impacted.

Ⅴ. Experimentation Challenges

Experimentation Challenge 1: How to measure the impact of hopping on the

performance of MongoDB. A key question was how to build a baseline for comparing

performance and what performance metrics to emphasize. For example, we can test response

time, latency, and many other parameters to look for deviations from the baseline, but we still

need to choose which of these parameters are the best indicators of performance. Further,

should the metrics be measured at the entire cluster-level or on individual application

instances as they hopped?

There are additional considerations as well for our test environment because a database

may have different kinds of requests, such as read and write requests that vary in complexity
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and response time. For the experiments, we measured the throughput (requests/second) of

write requests as the key performance metric, however we also recorded response time and

other information to look for unexpected trends.

Experimentation Challenge 2: How to automate the hopping and performance analysis

of the MongoDB cluster. Due to the consistency needed in hopping frequency and large

loads required to accurately assess performance, manual experimentation methods were not

feasible. We selected the four most popular open-source load testing tools: Grinder, Gatling,

Tsung, and Apache JMeter for initial consideration as our experimentation automation

infrastructure. All of the frameworks provided the key features that we needed, including

automated statistical analysis of the results. However, one of the interesting discoveries that

we made is that the overhead imposed by these tools was not consistent and that some of the

tools were able to generate higher throughput and lower response times when tested against

the same cluster. Figures 4 and 5 show comparative results for these four tools from a load

test on the same cluster.

Fig 4. Loading test tools comparison of response & testing time
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Fig 5. Loading test tools comparison of throughput achieved

As can be seen in the figures, Jmeter provided the best performance of the four tools. Further,

Jmeter has a well-developed GUI, so we decided to use Jmeter for our experiments.

All of our experiments were performed on Amazon hosts with 64bit Ubuntu 14.04,

1024MB of RAM, and 2 CPU cores. We used the well-developed Mongodb Java API and

Jmeter Java API to script our tests. We developed two Java functions for Jmeter to test the

write and count throughput of MongoDB. The script for the write request generation for

Apache JMeter is shown in Figure 6.

Fig 6. Jmeter test script
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Ⅵ. Empirical Results

A. Experiment 1: Establishing a Baseline for MongoDB Containerized Cluster

Performance

The first experiment that we ran tested the performance of our MongoDB cluster built with

Docker containers when no containers were being hopped. This initial experiment was

performed in order to establish a baseline for performance. The results are shown in Figure 7.

Fig 7. Jmeter baseline throughput analysis of the cluster

In this experiment part, we used 300 threads to generate requests and ramp up time of 2

seconds to start up the threads, which generates the initial upward curve in the graph. After

the ramp up period, we can see the throughput stabilizes at roughly 175 transactions/second.

B. Experiment 2: Measuring the Impact of Hopping Frequency on Performance

This experiment was subdivided into five sub experiments. In each experiment, we hopped

containers at varying frequencies to assess their impact on performance. For each experiment,

we performed five trials and averaged the results. In each of the figures presenting the results,

the x-axis represents the hopping interval in seconds, and y-axis is the throughput in

transactions/second.

The first sub experiment moved a single container at varying hopping frequencies. Figure
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8 show the results of hopping a single container at varying frequencies.

Fig 8. Single container hopping at varying frequencies

A surprising result shown in Figure 8 is that hopping a single container, even as fast as 1 hop

per second, has little impact on the overall cluster performance. However, this result is due to

the replica sets in MongoDB, which are a master-slave property to ensure that when one

instance is down, another instance will take its place immediately, so that the throughput is

not impacted significantly by hopping. It is therefore important to push our cluster further and

continue testing to see the effect when we move more than one container at varying

frequencies.

Figure 9 shows the performance when we moved two containers at different hopping

frequencies.
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Fig 9. Two containers hopping at varying frequencies

Fig 10. Three containers hopping at varying frequencies

In this diagram, we can clearly see that throughput goes down when we move more than one

container at increasing frequencies. Figure 10 shows the performance of hopping three

containers, or 50% of the entire cluster, at different hopping frequencies. There is almost the
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same trend as when we move 2 containers, however, the throughput is more negatively

impacted. As shown in Figures 10 and 11, hopping more than half of the containers in the

cluster has a significant impact on performance, more than halving the peak performance

achieved by the baseline cluster.

Fig 11. Four containers hopping at varying frequencies

According to the results shown in the figures, we find that throughput does go down linearly

when we move containers more frequently. However, an important note is that we still

achieve 50% of the performance of the baseline cluster even though up to 80% of the cluster

nodes are being hopped at 1s intervals.
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Fig 12. Five containers hopping at varying frequencies

C. Experiment 3: Measuring the Impact of Percentage of Containers Hopped on

Performance

In this experiment, we fixed the hopping frequency and gathered data to analyze how the

percentage of the overall cluster’s containers that were hopped impacted performance. The

results from the experiments are shown in Figures 13 and 14. From the two graphs, we find

that, as expected, throughput goes down when we hop more containers but begins to level off

when we move 50% or more of the containers.
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Fig 13. Impact of hopping varying numbers of containers at a 9s interval

Fig 14. Impact of hopping varying numbers of containers at a 7s interval

D. Analysis of results

A key conclusion that we can draw from the results is that container hopping is a feasible

cyber-security defense mechanism. However, as shown in the results:
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1) The throughput will decrease with increases in hopping frequency

2) The throughput will decrease as larger percentages of the cluster’s containers are

simultaneously hopped

A shortcoming of the experiments is that our sample size is still not large enough to draw

strong conclusions and more research is still needed. However, the initial results for container

hopping are promising. In future work, we need to automate and generate much larger test

cases.

E. Future work and additional experiment for some other application cluster.

The primary area for improvement is more robust experimentation and expansion of the

sample data. In future work, not only do we need to do more experiments for MongoDB

clusters with different hopping frequencies, but also with different CPU and memory

resources, which can impact container startup time and change the results. With enough data,

we also believe it is possible to build a linear model to predict how container hopping

parameters impact performance metrics, of the form:

where T is throughput, f is hopping frequency, p is the hopping container percentage, C is the

CPU parameter, and M is memory. With this type of model, it will be more possible to design

accurate hopping strategies according to meet specific performance requirements.

Another area for improvement is to test this model on other web applications. Success on

MongoDB clusters does not ensure success on other applications. We tried to build a Redis

cluster using Docker containers, however Jmeter can not log into the Redis container to

execute read and write operations, so the experiment failed. In future work, we need to find a

solution to fix this issue.



18

Ⅶ. Related work

Cyber security is a subject, which can be investigated from many different angles, and

researchers have produced a variety of interesting ideas in this space. A number of prior

works have looked at hopping as both an attack and defense mechanism for electronic signals.

The most well-known attack research in this area is the Virtual Lan hopping attack, Steve A.

Rouiller’s work [5] describes this attack scenario. In addition to hopping attacks, some

research has also used hopping as a defense. Sharma et al. investigated senser security

using hopping in 2010 [6]. Lee et al. have also investigated port hopping to build resilient

networks [7].

Large-scale clusters are increasingly being used to build enterprise services and have

consequently received significant research attention. Yurcik et al. describe clustering

techniques and challenges in enterprise environments [8]. Pourzandi et al. have also

specifically investigated cluster security [9]. Hwang et al. have looked at approaches for

improving cluster security specifically in cloud environments [10]. We chose Docker as the

experimental platform because of its improvements to application deployment and instance

startup. However, since Docker is new, its overall security is still being investigated. Walsh et

al. have specifically found a number of potential Docker security issues [11].
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Ⅷ. Concluding remarks and lessons learned

In this thesis, we investigated a new security mechanism for cluster-based applications:

container hopping. In order to assess the viability of this defense mechanism, we used a new

virtual machine technology, Docker, to build a MongoDB database cluster and assess the

impact of container hopping on overall performance. One initial hope of the research was to

perform a linear regression to build a model of the relationship between throughput and

hopping frequency, and throughput and hopping container percentage. However, we found

that the small sample size in our experiments generated models that poorly fit the data.

Despite the inability to create a model of these relationships, we still learned some important

lessons:

1) When we move just one container, even at frequencies as high as one hop per second,

there was little impact on the throughput of the cluster.

2) Even when we moved half of the containers, the throughput was still up to 70% of the

original cluster with only a 30% increase in response time.

3) When we moved almost all of the containers (5 containers out of 6 in our test), the

throughput was still around 50% of the original cluster, but the response time had a huge

increase, which in some cases doubled.

4) When the hopping interval was very large, more than 20 minutes, the performance had

little to no change. The reason for this is the fast start up and tear down of Docker

containers, which is just 1 or 3 seconds for each container, allows the cluster to return to

its original state very quickly after a hop.

5) If your server is under frequent attack, you can easily hop 10% of your Docker

containers at a 10s frequency with 5% or less in performance loss.

Overall, the results warrant future research into container hopping and its effectiveness as a

cyber-security defense mechanism.
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