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CHAPTER I

INTRODUCTION

In classical mechanics, according to Newton’s law, the position and velocity specify the
state of a particle and the value of every observable (function) is completely determined
by the state. In quantum mechanics, for a given state, observables (operators) have only
probability distributions of values. Quantization problem is the problem of setting up a
correspondence between classical observables (functions) and quantum observables (opera-
tors) such that the properties of the classical observables are reflected as much as possible
in their quantum counterparts in a way consistent with the probabilistic interpretation of
quantum observables. Operator theory was developed to provide a mathematics foundation
for quantum mechanics.

Operator theory is about linear transformations between spaces. The realization of
operators depends on the properties of the underlying spaces. If the underlying spaces are
finite dimensional, then operators, under certain basis, are just matrices with finitely many
rows and finitely many columns. Solving a system of linear equations has to involve the
spectral theory of matrices. To solve certain differential or integral equations arising from
physics, one has to deal with the corresponding theory of operators between spaces with
infinitely many dimensions. Operators between infinite dimensional spaces can be viewed
as matrices with infinitely many rows and infinitely many columns. Then the theory of
matrices ( with finitely many rows and columns) becomes a special case of operator theory.

Operator theory on function spaces studies operators on various function spaces such
as Hardy spaces, Bergman spaces. The theory of Toeplitz operators originated in the
1910’s, which had a development parallel to the theory of Wiener-Hopf operators. Toeplitz
operators are of importance in applied mathematics such as system theory, and stationary
stochastic processes [29]. They are also of importance in Quantum Mechanics, such as Weyl
Quantization, Phase Operators [25]. They are, however, attractive to mathematicians as

fascinating examples of the fruitful interplay between operator theory, operator algebras,



function theory, harmonic analysis, and complex analysis [22] .

One basic problem (the so called invariant subspace problem) in operator theory con-
cerns the existence of a nontrivial invariant subspace for a given operator (bounded linear
transformation). That is, if 7" is an operator on a Hilbert space H, does there exist a sub-
space (closed linear manifold) M of H different from both 0 and H such that M is invariant
under T (That is, TM C M) [31]. For a linear transformation on a finite dimensional
Hilbert space with dimension at least two, the existence of an eigenvalue and corresponding
eigenvectors assures that there always exists a nontrivial invariant subspace. As pointed
out by Halmos [31], the existence of eigenvalues is a deep property, derived by techniques
far from the spirit of linear algebra. An eigenvalue, a geometric concept, is the same as a
zero of the characteristic polynomial, an algebraic concept, and the existence of such zeros
is guaranteed by the fundamental theorem of algebra, an analytic tool. For an operator on
a separable infinite dimensional Hilbert space, the invariant subspace problem is still open.
What can be achieved for Toeplitz operators?

The Bergman space L2 is the Hilbert space consisting of analytic functions on the unit
disk which are also square integrable with respect to the area measure. The Hardy space
is the Hilbert space consisting of analytic functions on the unit disk with square integrable
boundary values on the unit circle . If a Toeplitz operator is induced by a bounded analytic
function, called the symbol of the Toeplitz operator, then the Toeplitz operator is just a
multiplication operator (multiplication by the bounded analytic function). If the symbol
is the position function, z, then the corresponding Toeplitz operator is a (unilateral) shift
when the underlying space is the Hardy space. Whereas it is a (unilateral) weighted shift,
called the Bergman shift, when the underlying space is the Bergman space.

In the case of the Hardy space , the structure of the invariant subspaces of the shift
operator has been completely described by Beurling’s famous theorem [13][22] in terms of
inner functions. In the case of the Bergman space, although a Beurling-type theorem has
been obtained [2], the structure of invariant subspaces of the Bergman shift is still too
complicated to be understood completely. In fact, the existence of a nontrivial invariant
subspace of any given operator acting on any given separable infinite dimensional Hilbert

space is equivalent to the following: for any given two invariant subspaces of the Bergman



shift, one properly containing the other, there exists a third invariant subspace properly
between these given two [9] [34]. It is natural to ask what can be said about the structure
of reducing subspaces.

A reducing subspace of an operator is a subspace which is invariant under both the
operator and its adjoint. The set of all reducing subspaces is called the reducing lattice of
the operator. One way to characterize reducing subspaces of an operator is to determine
the projections in the set of commutants of the operator which is the set of all operators
commuting with the original operator. For the Hardy space, a lot of work has been done
to determine the lattice of reducing subspaces of an analytic multiplication operator. For
instance, Cowen proved that under some conditions the set of commutants of an analytic
multiplication operator is exactly the same as the set of commutants of a multiplication
operator induced by a finite Blaschke product [19]. A finite Blaschke product is a product
of finitely many Blaschke factors. A Blaschke factor is a linear fractional transform (a
conformal automorphism ) of the unit disk to itself. The number of Blaschke factors in a
finite Blaschke product is called the order of the Blaschke product. So both the shift and
the Bergman shift are multiplication operators induced by Blaschke products of order one
and it is not hard to prove that both of them have no nontrivial (other than 0 and the
whole space) reducing subspaces.

A reducing subspace M is called minimal if the only reducing subspaces contained in M
are M and 0. In the Hardy space, the multiplication operator induced by a finite Blaschke
product of order greater than one has infinitely many minimal reducing subspaces. However,
in the Bergman space, it was shown in [51], [58] that a multiplication operator induced by a
Blaschke product of order two has only two nontrivial reducing subspaces. Zhu conjectured
that, in the Bergman space, a multiplication operator induced by a finite Blaschke product
of order n has exactly n nontrivial minimal reducing subspaces [58].

In Chapter IT we study the structure of the reducing lattices of multiplication operators
induced by finite Blaschke products. We will give complete descriptions of the reducing
lattices of multiplication operators induced by Blaschke products of order three or order
four. Our results give a negative answer to Zhu’s conjecture.

The main idea here as in [32] and [53] is to realize (unitarily transform) the operator



M, as a Toeplitz type operator (a multiplication followed by a projection) acting on a nice
subspace of H?(T?), the Hardy space of the torus. On H?(T?), the realization of M, has
two extensions which are multiplication operators with finite Blaschke products as symbols
and are doubly commuting pure isometries. The properties of these two isometries tell us
the properties for M. It should be pointed out that this basic idea originated from Douglas
and Paulsen’s work [23] and was further developed in [53].

Another basic problem about operators on function spaces is how to characterize the
corresponding compact operators. Axler and Zheng gave a characterization about the com-
pactness of a Toeplitz operator on the Bergman space of the unit disk in terms of the
Berezin transform of the operator. In fact, they [5] proved that if an operator is a finite
sum of finite product of Toeplitz operators, then the operator is compact if and only if its
Berezin transform vanishes on the boundary of the unit disk. So their theorem raised an
open question: does the characterization hold for operators in the Toeplitz algebra?

By introducing m-Berezin transform of a function, Ahern, Flore, Rudin [1] was able to
prove that on the unit disk if the Berezin transform of a function is itself, then the function
is harmonic. Suarez [49] [50] studied the m-Berezin transform of operators on the Bergman
space of the unit disk, and proved that Axler-Zheng’s theorem holds for a special kind of
operators in the Toeplitz algebra, namely radial operators which commute with rotation
operators.

In Chapter III we study the m-Berezin transform of operators acting on the Bergman
spaces of the unit balls in higher complex spaces. We show that in the case of the unit ball

Axler-Zheng’s theorem still holds for radial operators in the Toeplitz algebra.

I.1 Main Results of Chapter II

Let D be the open unit disk in the complex plane C and T be the boundary of I, the unit
circle. Let dA denote the Lebesgue area measure on the unit disk D, normalized so that the
measure of D equals 1. The Bergman space L? is the Hilbert space consisting of the analytic
functions on D that are also in the space L?(ID,dA) of square integrable functions on D.

Since the nonnegative powers {z"}> ; span the Bergman space, {v/n + 12"}22, forms an



orthonormal basis for the Bergman space L2.
If ¢ is a bounded analytic function on ), the multiplication operator induced by ¢ and
denoted by M, is defined by
Myh = ph

for any h € L2. ¢ is also called the symbol of M,
The multiplication operator M, with symbol z, the coordinate function, is called the

Bergman shift. Indeed with respect to the standard orthonormal basis {e,, = v/n + 12" }2°

n=01
n+1
M.e, = men-i—l-

That is, M, is indeed a weighted shift with weights { Z—E}%":O.

A subspace (a subspace always means a closed subspace) M is called an invariant sub-
space for an operator T if TM C M. The set of all invariant subspaces of T is called the
lattice of T" and denoted by LatT. About the structure of LatM,, Aleman, Richter and

Sundberg proved the following Beurling-type theorem.

Aleman-Richter-Sundberg Theorem [2|. Let M be an invariant subspace of M,
acting on L2. Then M is generated by M © M, M.

On the other hand, Bercovici,Foias and Pearcy proved the following universal property

of M,.

Bercovici-Foias-Pearcy Theorem [9]. For any strict contraction S on a separable
Hilbert space H, there always exist a pair of invariant subspaces of M,, M and N, such
that S is unitarily equivalent to Ppyon M, |pon, where Pyon stands for the orthogonal

projection of L2 onto M & N.

Bercovici-Foias-Pearcy Theorem indicates that the structure of LatM, is very compli-
cated, and furthermore implies that the positive answer to the invariant subspace problem
for an operator acting on a separable Hilbert space is equivalent to whether LatM, is satu-
rated, i.e., for any M, N € LatM,, with M D N and dim(M © N)=o0, whether there exists
some ) € LatM, such that M contains properly €2 and 2 contains properly N. A natural

question is what can be said about reducing subspaces.



A reducing subspace M for an operator 1" acting on a Hilbert space H is a subspace M
of H such that TM C M and T*M C M where T™* stands for the adjoint of 7. The set of
all reducing subspaces of T is called the reducing lattice of T. A reducing subspace M of T’
is called minimal if M and 0 are the only reducing subspaces contained in M.

A Blaschke factor is a Mobius function, or a Mobius transform of the unit disk to itself:

Z—

goa(z) - 1—az

for some o € D. A finite Blaschke product is a product of finitely many Blaschke factors.
The number of Blaschke factors in a finite Blaschke product is called the order of the
Blaschke product. It was shown in [51] and [58] that for a Blaschke product ¢ of order two,
the multiplication operator M, has only two nontrivial minimal reducing subspaces. Then
it natural to ask about the reducing lattice of M., for a general finite Blaschke product and

Zhu formulated the following conjecture.

Zhu’s Conjeture [58]. For a finite Blaschke product ¢ of order N, the reducing lattice

of the operator M, acting on the Begman space is generated by N elements.

In other words, Zhu conjectured that M, has exactly N nontrivial minimal reducing
subspaces. However we will show that Zhu'’s conjecture is not true in general (see Section
I1.8).

For a finite Blaschke product ¢, after composed with a Mobius transform from the right
and a Mobius transform from the left, it can always has the following form ( see the proof

of Theorem 2 in Section I1.8 ):

ng+1
_ ynotl H AT %
1— a2z

with ng > 1.The above form of ¢ might be up to multiplication of a constant with modulus
one and in this chapter we always omit that constant since multiplying by a constant does
not change the involved reducing lattice. Moreover the structure of the reducing lattice
does not change after composition with a Mobius transform from the right or from the left

(see Section I1.8). So we can assume that ¢ have the above form without loss of generality.



Now we state our first main result as the following theorem.

Theorem 1. Let ¢ = z”0+1<,ogi+1 e goggﬂ be a Blaschke product of order N with ng > 1,

K >1and ap #0 fork=1,..., K. Then M, cannot have N nontrivial reducing subspaces
{Mi}ij\;l satisfying L2 = @i]\;l M; and M; L M; whenever i # j.

For a holomorphic function h, we say that c¢ is a critical point of h if its derivative
vanishes at c. A finite Blaschke product, ¢, of order N is an N to 1 conformal map of D
onto D. Bochner’s theorem [56], [57] says that ¢ has exactly N — 1 critical points in the
unit disk D and none on the unit circle. Let C denote the set of the critical points of ¢ in

D and
F=yplopC)

1

Then F is a finite set, and ¢~ o ¢ is an N-branched analytic function defined in /F and

can be analytically continued to every point in D/F. The Riemann surface for ¢! o ¢ over
D is an N-sheeted cover of D with at most V(N — 1) branch points, and it is not connected

1

if N > 2. In terms of the Riemann surface of =" o ¢ over D, we can state our another two

main results as follows.

Theorem 2. Let ¢ be a Blaschke product of order three. Then the number of nontriv-
ial minimal reducing subspaces of M, equals the number of connected components of the

1

Riemann surface of ¢~ o @ over D.

Theorem 3. Let ¢ be a Blaschke product of order four. Then the number of nontrivial min-
imal reducing subspaces of M, equals the number of connected components of the Riemann

1

surface of p~" o @ over D.

That we state the results in the above two theorems is because they need different
detailed treatments. In fact the proof of Theorem 3 is much longer than that of Theorem

2. We strongly believe that there should be some more general results along this line.

1.2 Main Results of Chapter 111

Let B denote the unit ball in n-dimensional complex space C" and dz be normalized

Lebesgue volume measure on B. For z = (z1,...,2,) € C", let (z,w) = > | z;w; and



|z|2 = (z, z). The Bergman space of the ball, L2(B), is the space of analytic functions h on
B which are square-integrable with respect to the normalized Lebesgue volume measure,
dz. For z € B, let P, be the orthogonal projection of C™ onto the subspace [z] generated
by z and let ), = I — P,. Then the map

2 = P(w) — (1 - [2*)/2Q (w)
1—(w,z)

Pz (w) =

is the automorphism of B that interchanges 0 and z. The pseudo-hyperbolic metric on B
is defined as p(z, w) = |p.(w)].

The reproducing kernel in L2(B) is given by

1

K. (w) = A= w2

for z,w € B and the normalized reproducing kernel k, is K.(w)/||K,(:)|[]2. That is,
(h,K.) = h(z), for every h € L2(B) and z € B. One fundamental property of the re-

producing kernel K, (w) is

Ko (w) = ka(2) Ky, () (0a(w) ) (w). (L1)

Given f € L*°(B,dz), the Toeplitz operator T is defined by Tyh = P(fh) where P
denotes the orthogonal projection of L?(B,dz) onto L2(B).

Let £(L2(B)) be the algebra of bounded operators on L2(B). The Toeplitz algebra
T(L>) is the closed subalgebra generated by {1 : f € L*(B)}.

For z € B, let U, be the unitary operator given by

Uf=(fop.) Jp.

where Jp, = (—1)"k,. For S € £(L?), set

S, =U,SU..



Observe that U, is a selfadjoint unitary operator on L*(B,dz) and L%(B,dz), U, T{U, =
Tfop, for every f € L>®(B,dz).
Let T denote the class of trace operators on L2(B). For T € T, we will denote the trace

of T by tr[T] and let ||T'||c, denote the C; norm of T" given by ([28])
ITllc, = tr[vT*T].
Suppose f and g are in L2(B). Consider the operator f ® g on L2(B) defined by

(f®g)h=(hg)f,

for h € L2(B). It is easy to prove that f ® g is in T and with norm equal to ||f ® g||c,

[ fll2lg]l2 and
trif @ gl =(f,9)

For a nonnegative integer m, the m-Berezin transform of an operator S € £(L2(B)) is

defined by

m

BnS(z) = Cpttr |S. [ Y Cong
|k|=0

nlk! uk uk

®
(n+ [ED ] [l

m
= O™ty | S, Zkauk@uk
k=0

where k = (ki,--- ,k,) € N", N is the set of nonnegative integers, |k| = Y. ki, uF =
ult ke R =k k),

|k|!
Tenl kel

n

C;n+n _ <m + n) and  Cpjo = Cﬁ;'(_l)\k\

Clearly, By, : £(L2(B)) — L*(B,dz) is a bounded linear operator. We will obtain its norm

in Section III.1 (see Theorem 59).



Given f € L>(B,dz), define

B (f)(2) = Bm(Ty)(2).

B (f)(2) equals the nice formula in [1]:

Bu(f)(2) = /B F 0 0 (w)dim(u),

for 2 € B where dvy,(u) = C™(1 — |u|?)™du.

The Berezin transform of an operator S which is By(S) by our notation was first in-
troduced by Berezin in [10]. Because the Berezin transform encodes operator-theoretic
information in function-theory in a striking but somewhat impenetrable way, the Berezin
transform By (.S) has found useful applications in studying operators of ”function-theoretic
significance” on function spaces ([4], [5], [8], [11], [12], [24], and [46]). Suarez [49] introduced
m-Berezin transforms of bounded operators on the Bergman space of the unit disk. We will
show that our m-Berezin transform coincides with the one defined in [49] on the unit disk D
by means of an integral representation of m-Berezin transform. The integral representation
shows that many useful properties of the m-Berezin transforms inherit from the identity
(I.1) of the reproducing kernel. On the unit ball, some useful properties of the m-Berezin
transforms of functions were obtained by Ahern, Flores and Rudin [1]. Recently, Coburn
[18] proved that By(.S) is Lipschitz with respect to the pseudo-hyperbolic distance p(z, w).
We will show that B,,S(z) is Lipschitz with respect to pseudo-hyperbolic distance p(z, w).

We will show that the m-Berezin transforms B, are invariant under the Md&bius transform,
Bin(52) = (BmS) © ¢z, (1.3)

and commuting with each other,
B,(BuuS)(2) = Bu(B;5)(2) (14)
for any nonnegative integers j and m. Properties (1.3) and (I.4) were obtained for S = T

10



in [1] and for operators S on the Bergman space of the unit disk [49].

On the unit disk, Axler and Zheng [4] showed that if the operator S equals the finite
sum of finite products of Toeplitz operators with bounded symbols then S is compact if
and only if By(5)(2) — 0 as z — 9D. Englis extended this result to the unit ball even the
bounded symmetric domains [24]. But the problem remains open whether the result is true
if S is in the Toeplitz algebra. Recently, Suarez [50] solved the problem for radial operator
S on the unit disk via the m-Berezin transform.

Using the m-Berezin transform, we will show that for a radial operator .S in the Toeplitz
algebra on the unit ball, S is compact if and only if ByS(z) — 0 as |z| — 1.

Let S € T(L*°) be a radial operator. Then S is compact if and only if BpS =0 on 0B.

11



CHAPTER II

MULTIPLICATION OPERATORS

II.1 Outlines

In this section we introduce the spaces where we do most of the calculations and give the
outlines of this chapter. We start with more notations.

Recall that T is the unit circle in the complex plane. The torus T? is the Cartesian
product T x T. Let do be the rotation invariant Lebesgue measure on T?, normalized so that
the measure of T? equals 1. The Hardy space H?(T?) is the subspace of L?(T2, do), each
function in H?(T?) can be identified with the boundary value of the function holomorphic
in the bidisk D? with the square summable Fourier coefficients. H?(T?) can also be viewed
as the tensor product of H?(T) with itself. We often use {z'w’ };’207]-:0 as a orthonormal
basis of H2(T?). Let P be the orthogonal projection from L?(T2,do) onto H?(T?). The

Toeplitz operator on H?(T?) with symbol f in L>°(T?, do) is defined by
Ty(h) = P(fh),

for h € H?(T?). Clearly, T, and T, are a pair of doubly commuting pure isometries on

H?(T?). For each integer n > 0, let

n

Pn = Pn(z,w) = Z PRI
i=0
Let H be the closed subspace of H?(T?) spanned by {p,}>2,. Then
H*(T?) = H @ c{(z — w)H*(T?)}.

Let Py be the orthogonal projection from L?(T?, do) onto H. It is easy to check that

Py Tl = PyToln.

12



We always use B to denote the operator above. It was shown explicitly in [53] and implicitly
in [23] that B is unitarily equivalent to the Bergman shift M, on the Bergman space L? via

the following unitary operator U : L2(D) — H,

Pn

vn+1

Ue, =

So the Bergman shift is lifted up as operators induced by the coordinate functions on a
nice subspace of H?(T?). Moreover for each Blaschke product ¢(z) of finite order, the
multiplication operator M, on the Bergman space is unitarily equivalent to ¢(B) on H. In
fact, in [53] B is said to be super-isometrically dilatable, and {7}, T,,, H?(T?)} is called its

super-isometric dilation. That is,

B = PR TIT Iy
for any non negative integers n and m, and

B' =T |y = Tyln

for the pair of doubly commuting pure isometries 7, and T, on the Hardy space H?(T?).
H?(T?) is where we do most of the calculations.

Our main idea as in [32] and [53] is to study the operator ¢(B) on the Hardy space of
the torus to get properties of the multiplication operator M. This method seems to be
effective since functions, especially inner functions, in the Hardy space of the torus behave
better than the functions in the Bergman space.

In Section I1.3, for a finite Blaschke product ¢ of order N, using the Wold decomposition

of the pair of doubly commuting isometries T;,,) and T, on the space

Ky = spany p>o{#' (2)¢" (w)H},

we obtain

Ky = SLpsop’ (2)¢" (W) Ly,

13



where L, = keTT;(Z) N kerT™

o(w) N Ky is the so called wandering space of T,y and T,

on C,. By means of the Fredholm theory introduced in [20], we are able to show that the
dimension of £, equals 2N — 1 which is a key fact we need in the proof of our first main
result.

For each e in the space k:erT;(Z) N k:erT;(w) N H which is finite dimensional and denoted
by Lo, we construct functions {d¥}2°, in Section I1.4.1, d in Section I1.4.2 and d? in Section

11.4.3 such that for each [ > 1,

and

pi(p(2), p(w))e + pi—1(p(2), p(w))dg € H.

We have a precise formula of d? but we only know that d* is orthogonal to kerT ;j(z) N
kerT o(w) N H.

In particular, for a given reducing subspace M of p(B), and e € M, we have that

-1
pi(p(2), p(w))e + > pilp(z), p(w))ds ™ € m.
k=0

In Section I1.5 we show that there is a unique reducing subspace denoted by My, called
the distinguished reducing subspace of ¢(B), such that ¢(B)| a4, is unitarily equivalent to
the Bergman shift B.

The relation between d' and d° is given in Section 11.4.3 and is used extensively in
proving our main results.

We discuss the relation between weighted shifts and multiplication operators in Section

I1.7.

The proofs of our main results are in Section I1.6 I1.8 I1.9 respectively.

14



I1.2 Function theory

Let H%(T) be the Hardy space of the unit circle which consists of functions in L?(T) whose
Fourier coefficients vanish for all the negative powers. H?(T) can also be viewed as the space
of all analytic functions in the unit disk D whose Taylor coefficients are square summable.

For a € D, let ko, = = be the reproducing kernel of the Hardy space H?(T) at a.

1—az

That is, for each function f in H*(T),

fla) = (f ka)-

For ¢ in H*>(T), let T¢ denote the analytic Toeplitz operator on H?(T), with symbol
p, given by
T,h = oh,

for any h € H*(T). Thus for each h € H?(T),

<h,if’;k:a> = (T,h, k)

= (ph, ka)
= p(a@)h(a)
= (h.p(a)ka)
So
Tika = @(a)ka. (IL.1)
For an integer s > 0, define
ka(2) = (1 _S!O—i)sﬂ'

Note that k) = kq.
Let ¢ be a finite Blaschke product of order N with zeros {a}& and each ay is a zero

of multiplicity ng + 1 . That is,




The order of ¢ is given by
K
N = Z(n, + 1).

1=0

We assume that og = 0, and so ¢(z) = zp(z) where ¢q is the following Blaschke product:

Kz —ay \™ !
vo(2) :z"OH <1_@kkz> :
Letting 9, denote the partial derivative with respect to z, we have
ka(2) = 0gka(2),
and (IL.1) gives that for h € H*(T),
(h,ks) = h)(a).
Then for a positive integer s, (II.1) gives that
Trki(2) = ski ' (2) + ok (2),

and

T2R(2) = GHO(2).
More general we have the following lemma.

Lemma 4. Let s > 0 be an integer. Then for each f € H>®(T),
. 5 P
*7.8 __ A 17 s—1

Proof. For any h € H*(T), we have
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(h,TikS) = (fh.kS)
= (fR)“)(@)
T @ e

So the desired result holds.

For

K ng+1
Z— Q
=TI (=)

k=0
by the theory of the Toeplitz operators on the Hardy space of the unit circle, Tg is Fredholm
with Kernel of dimension N and Cokernel 0. Lemma 4 tells us that the kernel of the Toeplitz

operator T;; on the Hardy space of the unit circle is spanned by

{{kek }si=0, iy, Yh=0, K-

Recall that H is the subspace of H2(T?) spanned by functions {p,}°°,. The following
lemma will be used from time to time to simplify the calculations involved elements in H

or Ht.

Lemma 5. Let f € H2(T?). If f(z,2) € H*(T), then for each e € H

<f(Z,U)),€(Z,’UJ)> = <f(Z’Z)’6(270)>
= (f(w,w),e(O,w)>.

Proof. Writing f(z,w) = >2%, i aijz'w’ and e = > i bjpj, we have

(f(z,w),e(z,w)) = > (agj + a1+ +ajo)b;.
§=0



On the other hand,

oo
f(z,2) =) (agj +aj—1+ - +aj)?’
=0

and
e(z,0) = ijzj,
j=0
SO
(f(z.2),e(,0)) = Y (aoj +arj—1+-+ajo)b;
j=0
and
(f(z,w), e(z,w)) = (f(2, 2), €(2,0)).

Similarly

(f(z,w), e(z,w)) = (f(w, w), e(0, w)).
The proof is complete.

Lemma 6. For h(z,w) € H2(T?), h € H* <= h(z,2) =0, for any z € D.

Proof. As pointed out before,
HE = c{(z — w)H*(T?)}.

Let z be in . For each function f(z,w) € (z —w)H?(T?), f(z,2) = 0. Thus h(z,z) = 0 for
each h € H* .

Conversely, assume that for a function h € H?(T?), h(z, z) = 0, for any z € D. Then by
writing

© . .
h(z,w) = Z a;jz'w’

i=0,j=0
we have that

[e.9]
h(z,z) = Z(a()j +ay_1+ -+ ag)z
§=0

Now h(z, z) = 0 implies ag; + a1j—1 + - - -+ a;o = 0 for all j which is the same as (h,p;) =0
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for all j. That is h L H. We are done.

Lemma 7. Suppose that e(z,w) is in H. If e(z,z) = 0 for each z in the unit disk, then

e(z,w) =0 for (z,w) on the torus.

Proof. Writing e(z,w) = Y o7 anpn, from e(z,z) = ag + > o napz" = 0 we have that
an, =0 for n=0,1,2,.... That is, e(z,w) = 0. This completes the proof.

The above lemma tells us that a function in H is completely determined by its value on
the diagonal. The following result implies that e(z,w) is symmetric with respect to z and

w.

Lemma 8. Ife(z,w) is in 'H, then
e(z,w) = e(w, z).

Proof. The conclusion follows from that p,(z,w) = p,(w, z) for all nonnegative integers n

and that Each function e(z,w) in ‘H can be written as

e(z,w) = Z anpn (2, w)
n=0

for some sequence a,,.

Lemma 9. Suppose f(z,w) is in H. Let F(z) = f(z,0). Then

for each A € D.

Proof. Let f(z,w) = Y 7 qanpn(z,w). Then direct comparison of the Taylor expansion

of f(\, A) and AF'(\) + F()\) gives the proof.

19



I1.3 Wold decomposition

For an operator T on a Hilbert space H, let kerT denote the kernel of T'. That is,

kerT'={f:Tf=0,f¢€ H}.

Then KerT* is the same as the orthogonal complement of the range of 7', T H. That is,

kerT* = (TH)* .

Given an isometry U on a Hilbert space H, the classical Wold decomposition theorem [34]

states that H is the direct sum of two reducing subspaces of U,

H=H,®H,

so that U is unitary on H, and U is pure on H,, i.e., unitarily equivalent to a unilateral
shift. In fact,
H, = ﬂnle "H ;

and

Hp = EBnZDUnE,

where E = H © UH is called the wandering subspace for U. For a function ¢ in H*(D),
we can view ¢(z) and p(w) as functions on the torus T2. While M, is not an isometry on
the Bergman space of the unit disk, the analytic Toeplitz operators T,y and Tj,, are a

pair of doubly commuting pure isometries on the Hardy space H?(T?) of torus. Since

Tz*pn = T:;pn

= Dn-1

20



for n >1 and

‘H is an invariant subspace for both 77 and T7;. So H is also an invariant subspace for both

T*

o(2) and T*

()" Let

K, = span{gol(z)gok(w)H; I,k >0}.

Then I, is a reducing subspace for both T,y and T,,), and so T,y and T,(,, are also
a pair of doubly commuting isometries on IC,.

We consider the Wold decompositions for the pair T,y and T, on both K, and
K; = H*(T?) © K,.
Let us first simplify the notation by denoting the wandering spaces
k:erT;f(z) N k‘erT;(w) NK,

and

* * 1
k’eTT@(Z) N keT’TQP(w) N ’CSO

by L, and L/Z; repectively.

The information about the dimension of the wandering space L, is crucial in the proof
of our first main result in this chapter. To get the dimension of £, we first deal with
the case when the zeros of ¢ are distinct and then use the Fredholm index theory for
n-tuples developed in [20] to handle the general case. We start with the dimension of

kerT; N kerT;‘(w).

(2)
Lemma 10. If ¢(2) is a Blaschke product with distinct zeros {c;} |, then the intersection
of the kernel of T;f(z) and T;(w) is spanned by {ka,(2)ka; (w) N

4,j=1"

Proof. Since ¢(z) is a Blaschke product with distinct zeros {a;}Y ;, as pointed out in the

21



previous section, the kernel of the Toeplitz operator T;‘(z) on the Hardy space of the unit

circle is spanned by N linearly independent functions {ka, ()} . This gives that
kerTy .y NkerTy O span{kq, (2)ka;(w) : 1 < i,j < N}.
To finish the proof, we need only to show
kerTy .y NkerTy,, C span{kq,(2)ka;(w) : 1 <1i,j < N}.

To do so, let h(z,w) be a function in kerT? O kerT7 . Write

h(z,w) = Z hy(2)w',
=0

where hy(z) € H?(T). Since T7)h = 0, we have

M8

Toph = D 1T hl(z)u!

I
=T
o

Thus [T;(Z)hl](z) =0 for [ > 0, and so hy(z) is in the kernel T;(Z). Hence there are constants

dj; such that

N
hy(z) = Z diika, (%),

to get

oo N
h(z,w) = szlikai(’z)wl

1=0 i=1
N oo
= > O dipwka,(2).
=0 [=0
Letting g;(w) = > 7, diyw!, we have
N
hzw) =Y gi(w)ka,(2)
=0
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On the other hand, h(z,w) is in the kernel of T7 () Thus

So

[Ty 9il(w) =0

as {kq,; }Y, are linearly independent. Hence there are constants c¢;; such that

N
gi =Y cijka; (w),
j=1

to get

N N
h(z’ fw) = Z Z Cijkoai(z)kozj (w)

i=1 j=1
We conclude that & is in the space spanned by {kq,(2)kq, (w) Z]-Yj:l, to finish the proof.
The following lemma is implicit in the proof of Theorem 3 in [53].

Lemma 11. Let ¢(z) be a finite Blaschke product with distinct zeros {c;}X.,. Then the

dimension of L, = kerT? O kerTy N [H%(T?) & Ky] equals (N — 1)2.

Proof. First we show

= 1
L, = kerT;(z) N k;erT; yNH™.

(w
Since H C ICy,

" * * 1
L, C kerT(p(Z) N k:erTw(w) NH.

Conversely, if f isin kerT;(z)ﬂkerT;(w)ﬂ’HL, then fisin kerT;(Z)ﬂk‘erT;(w) and orthogonal

to H. Thus for each g(z,w) =3~ ;5 o(2)lp(w)*hy, € K, where hy; € H, we have

<f7g> = Z <f7§0(z)l<p(w)khkl>
k,1>0

= (T (D)) f k)
k>
= 0.

[en]
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So f is also in ZZ;. Hence we have
" * * 1
L,= k‘erT(p(z) N k:erTw(w) NH—.

We are to prove that the dimension of L/',; is (N — 1)2. Without loss of generality, we
assume that a; = 0. By Lemma, 10, the N? dimensional space kerT;(z)ﬂkerT;(w) is spanned
by {ka, (2)ka, (w) ij:l- So it follows from Lemma 6 that Z; consists of the elements h in

kerT;(z) N kerT;(w) which satisfy h(z,z) = 0. That is,

N N N N
Lo={h=> " cijka,(2)ka,(w) : h(2,2) =D > cijka,(2)ka,(2) = 0}.
i=1 j=1 i=1 j=1
For any h € 2;, taking the limit at infinity and testing the multiplicity at its poles 1/c;
of the function h(z, z), we immediately have that h(z,z) = 0 implies ¢;; =0, j =1,2..., N.
That is,

. N N N N
L,={h= Z Zcijkai(z)kaj(w) th(z,2) = Z Zcijkai(z)kaj(z) = 0}.

i#j,i=1j=1 i#4i=1 j=1

Observe that ko, (2)ka, (2) = aijka; (2) +bijka, (2) where a;; = dﬁdj and b;; = %, and
kay(2), ..., kay(2) are linear independent. Write h(z, z) as linear combination of kq;(2),j =
2,...,N, then all the coefficients of k (z) must be zero. So we have a system of another

N —1 linear equations governing c;j,4 # j,4,j = 1,..., N. Writing {c;;}i2; as
(c12,¢€21,€13, €31, -+ ,CIN, CN1,C23,C32, "+ , C2N, CN2, " " - 7C(N—1)NacN(Nfl))

gives the coefficient matrix of the system as:

0 01 1 -+ 0 0 * % -+ % % -+ * %
0 0 0 0 -+ 1 1 % % -+« % % --- >
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where *’s are some numbers. Clearly, the rank of the above matrix is N — 1. Hence the
dimension of L/Z; (as the solution space of N> — N unknown variables governed by N — 1
linear independent equations) equals N2> — N — (N — 1). The proof is finished.

We are ready to prove our main result in the section.

Theorem 12. Let ¢ be a finite Blaschke product of order N . Then
Ky = Biizop (2)¢" (w) Ly,

and

—

H*(T?) © Ky = Spz09' (2)¢" (w) Ly
The dimension opr equals (N — 1)% and the dimension of L, equals 2N — 1.

Proof. Recall that T,,) and T, are a pair of doubly commuting isometries on both I,

and H?(T?) & Ky,. The Wold decomposition of T, o(z) on Ky, gives
Ky = @lZW(z)ZE
where E is the wandering space for T,,(;) given by

E = Ky o [Tk,

= ker[T;.,lxc,]

= k‘eT‘T;(z) N ’C@.

Since Ty, () and T, are doubly commuting, F is a reducing subspace of Tj,,. Thus

T pw)|E 1s still an isometry. The Wold decomposition theorem again gives

E = @r>o0p(w)" By
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where F is the wandering space for T,,(,,)|g given by

FT = Eo5 T@(w)E
= k@TT;(w) N E

= keTT;(Z) N T:;(w) N ’CQO'

This gives

Ky = @upsop' (2)¢" (W) L.

Considering the Wold decompositions of Tj,.y and T, on H 2(T?) © K, similarly we

obtain
H(T?) 6 ¢, = @1p209' (2)" (w) L.
Noting
kerT;f(z) N kerT;(w) =L, P Z;
we have

dim[kerT ) N kerTy )| = dim[Ly] 4 dim[L)].
By Lemma 10, the dimension of kerT;(z) N kzerT;(w) equals N2. Hence

o~

dim[L,] = N? — dim|[L,).
We are to show that the dimension of Z:, is (N — 1)2. To do so, we first interpret the
dimension as some kind of Fredholm index.
For any given finite Blaschke product ¢, let index(T;(z), T;‘(w)) be the Fredholm index

of the commuting pair (T;(Z),T;( ) acting on the Hilbert space H = H?(T?) & K. The

w)

Fredholm index of a commuting n-tuple was first introduced in [20].

Claim.

Proof of the claim. Let H = H%*(T?) & K. Define dy : H — H & H and ds :
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H® H — H by

dif = (_T;(w)fa T;(z)f)

and

d2(f,9) =TS + T g

respectively. Since T;(w) commutes with T’ ;(z), we have
dody = 0,
to get the following complex (it is called Koszul complex)
H—H®H — H —NO.

T*

@(w)) is Fredholm since

According to [20], the tuple (T;(Z)’

kerd; = Z;

is finite dimensional,

(kerdy) © diH = {0},

and

H o dy(H @ H) = {0}.

The first equality is obvious. The last equality follows from that T;j(w) is onto. To show the

second equality, let (f,g) € (kerdz) © diH. Then
Toe) f +Touw9 =0
and (f,g) is orthogonal to diH. So we have that for each x € H,

((f,9), (=T )2, Ty @) = 0.
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Thus

<_Tg0(w)f + Tgo(z)gv $> =0,

for each x € H, and so

T ] + To2)9 = 0-

This gives

0 =T T30/ + Touw]
= T Ty f + Ty Teo(2)9
= T Ty f + Ty Tow)

=TT+ f

Taking inner product of the above equation with f, we have
0 = 1T, FIR + 111
Hence f =0 and so g = 0. It follows from Corollaries 6.2 and 7.2 in [20] that

= —dimlkerd,] + dim[(kerds) © diH]| — dim[H & dy(H & H)]

= —dimz;.

So the claim is proved. Now by Lemma 11, for a finite Blaschke product ¢(z) with
distinct zeros, the dimension of Z:, equals (N — 1)2.
To finish the proof we need to show that this is also true for any finite Blaschke product

¢ of order N. To do so, recall that for a given A € D, y(2) is the M&bius transform:
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and @y o ¢(z) is still a finite Blaschke product with N zeros in the unit disk and

T,

oxop(z) = (Tp(z) = AD(I = NTp())

Thus Ky, 0p = K.
It was also shown in [20] that the index is a continuous map from the set of the Fredholm
tuples to the set of integers. Observe that

2[A|
1— [\

a0 w(z) = @(2)]leo <

Thus for a sufficiently small A,

index(T5, o2y Ty op(w)) = ndex(T5 ), Tow))-

If X is not in the critical value set {u € D: = ¢(z) and ¢'(z) =0 for some z € D} of
©, then vy o p(z) is a Blaschke product with N distinct zeros in D. In this case, by Lemma
11

)

. * * I TN~ 2
—index (T3 o), Loy opw)) = dimLe,op = (N —1)°.

Since by Bochner’s theorem [57] there are only finitely many points in the critical value set,
we conclude that

dimLy = —index (T ), T ) = (N = 1)%

I1.4 Basic constructions

In this section we will construct three functions d., d. and d? for each e € kerT;(z) N
k‘erT;(w) N ‘H, which have properties mentioned in Section II.1. We will obtain relations
among d., d. and d°. Those relations are very useful for us to derive information about the

reducing lattice of M.
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I1.4.1 First Construction

First we will show that for a given reducing subspace M for ¢(B), for each e € M N Ly

and each integer [ > 1, there are a family of functions {d*}!_, such that

-1
pi(p(2), p(w))e + > pilp(2), p(w))di ™ € M,
k=0

where

LO = k‘eTT:)(z) N ke'f'T;(w) NH.

These functions are very useful in studying the structure of the multiplication operator M,
on the Bergman space.
We start with the following lemma to show that for each reducing subspace M of ¢(B),

the intersection of M and L is nontrivial.

Lemma 13. If M is a nontrivial reducing subspace for p(B), then the intersection MM Ly

contains a monzero function.

Proof. Let M be a nontrivial reducing subspace for ¢(B). Suppose
MN Ly ={0}.

Since ¢(B) is unitarily equivalent to the multiplication operator M, on the Bergman space

L2, there is a unitary operator U : L2 — H such that U*M,U = ¢(B). Let
M =U*M,

and

Lo = U*Ly.

Thus M is a reducing subspace of My, and the kernel of M7 equals L. Moreover,

My = [Mp]| iy ® [Mo]| o
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ker[M,)| 5 = {0}

and

ker[Mglly;; = M Ly
= U*[MN Lo

= {o}.

Noting that M, is Fredholm on L2, we see that the restriction [M,]|; of M, on its reducing
subspace M is also Fredholm. Thus @M = M. So every function in M has ¢" as a factor
for each n > 1 and then it vanishes at each zero of ¢ with infinite order. Consequently, it

must be zero. This contradicts that M is a nontrivial reducing subspace for p(B).

Lemma 14. If M is a reducing subspace for o(B), then p(B)*M = M.

Proof. First note that for a Blaschke product ¢(z) with finite order, ¢(B) is Fredholm and

the kernel of ¢(B) contains only zero. Thus
©(B)"H = H.
Suppose that M is a reducing subspace for ¢(B). Let = M*. Then
p(B)" = o(B)*| p @ 0(B)* |
under the decomposition H = M @ N. Since ¢(B)* is surjective,
p(B)" | pM =M.

This completes the proof.
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In the proof of the following theorem we will use the following fact: for each f € H,

eB)f = T;,)f

= Tl

Theorem 15. Suppose that M is a reducing subspace for ¢(B). For a given e € M N Ly

there are a unique family of functions {d%} C L, S Ly such that

pile(2), p(w)e + Y pi((2), p(w))d " € M,

for each | > 1.

Proof. By Lemma 14, for a given e € M N Ly, there is a unique function ¢’ € M & L such

that

* I * /
Tow® = Tow®

= €.

For a given e € M N Ly, we will use mathematical induction to construct a family of

functions {d*}. To do this, for each e in Lo, noting that

T [(e(2) + p(w))e] = e,

and
To i l(0(2) + o(w))e] = e,

we have

Tole = (p(2) +p(w))e] = e—e
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and

Tow)le’ = (p(2) + pw))e] = e—e

Letting dl = ¢’ — ((2) + p(w))e, the above two equalities give
dl e kerTy ) NkerTy .
Because both ¢’ and e are in M, we have that d! is in K, and
(p(2) + o(w))e+dl =€ € M.
Thus d; is in K, and so it is in £,. For each f € Lo,

(di, f) = (e = (p(2) + p(w))e, f)
= (e, [) = ((¢(2) + p(w))e, f)
=0 (e, To0)f + T )

=0.

The third equality follows from that ¢/ € M © Lg. Hence d. is in L, L.

Assume that for n <[ there are a family of functions {d’g}ﬁzl C L, © Lo such that
n—1
pu(2(2), p(w))e+ > pr((2), p(w))de ™" € M.
k=0

Let E = pp(p(2), go(w))e—#ZZZé pe(0(2), o(w))d?~*. By Lemma 14 again, there is a unique

function £/ € M © Lg such that

* !/ * /
ToE = Towk

= L.
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Let F = ppi1(p(2), p(w))e + > p_; pe(¢(2), p(w))d? 1=k, Simple calculations give

TonF = TowF

= F.
Thus

o) (B = 1) = T, (B = F)

= FE—-F

Letting d?*t! = E' — F, d**! is in k:erT;(Z) N kerT;‘(w). Noting E’ is orthogonal to Lo, we

have that for each f € Lo,

<d?+17f> = <E/7f> - <F7f>
= —[(Pa+1(2(2), p(w))e, ) + Y (prlp(2)s p(w))dg ™7 , )]

k=1
= O,

to get that d?*! is in £, & Lo. Hence
n
Prr1(p(2), p(w))e + > pr(e(2), o(w)dpt=F 4+ dith = B e M.
k=1

By induction, we get a family of functions {d*} C £, © Ly as desired to complete the proof.
In the special case for H, as H is a reducing subspace for ¢(B), Theorem 15 immediately

gives the following theorem.

Theorem 16. For a given e € Lq there are a unique family of functions {d*} C L, O Lo

such that

for each I > 1.
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Theorem 17. If M C H is a reducing subspace p(B) and e € M N Ly, let d* be the

function in Theorem 15, then

Pypi(p(2), p(w))dE] € m

for each k > 1, and 1 > 0.

Proof. Suppose that M is a reducing subspace of p(B) and e € M. A simple calculation

gives

2p(B)e = Py (p1(p(2), p(w))e)
= Pry(p1(p(2), p(w))e + dg) — Pyy(de)

= p1(p(2), p(w))e + di — Ppy(dy).

This implies

Pyy(dl) = [p1(p(2), p(w))e + di] — 2¢0(B)e € M.

Noting that (df — Pyd}) is in H!, Lemma 6 gives
(@} — Ppydb)(z,2) = 0.
Thus

Pi-1((2), () (de — Prde)ll:=w = [Pi-1(0(2), 0(2)[(de — Ppyde) (2, 2)]

By Lemma 6 again, we have that

[pi-1((2), p(w))(dg — Pryde)] € M,

and so

Prylpi1(o(2). p(w) (d — Pyyl)] = 0.
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Hence

Pyy[pi1(¢(2), p(w))(dl)] = Prdpi—1(p(2), o(w))[Pdl]} € M.

Assume that Py [pi(¢(2), p(w))d¥] € M for k < n and any | > 0. To finish the proof

by induction we need only to show that

Pry[pi(p(2), p(w)dg ™)) € M

for any [ > 0.

A simple calculation gives

(n+2)p(B)"* e = Pylppi1(p(2) Je + Zpk w))di

—{Pyldgt] + Py [Z pr(p(2), p(w))de )
k=1

Thus

Py[d2 ™) = Ppylpnta (o Je + Zpk w))dp T -

{(n+2)p(B)" e+ Py [Z pr(p(2), p(w))dg 4]y,
k=1

Theorem 15 gives that the first term in the last equality is M, the induction hypothesis
gives that the last term is in M and the second term belongs to M since e € M and M

is a reducing subspace for ¢(B). So Py[d?] is in M. Therefore we conclude

Py [pi(p(2), p(w)de ™) = Prg[(pi(p(2), o(w)) (Ppdy ™)) € M,

to complete the proof.

Theorem 16 only gives the existence of the family of functions {dgk)} C L, O Lo. It
will be useful to know how those functions are constructed from e. Theorem 20 will give a
recursive formula of {d,(gk)}. First we need the following simple but useful lemma which is

implicit in [32].
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For two functions x, y in H2(T?), the symbol x ® y is the operator on H?(T?) defined
by
(z®y)g = (g, y) n2(r2) |2
for g € H?(T?).
Lemma 18. On the Hardy space H*(T?), the identity operator equals

I = T.T + ) w'eu
>0

= T,T, + Zzl ® 2.
>0

Proof. We will just verify the first equality in the lemma. The same argument will give
the second equality. To do so, let h € H%(T?). Write h(z,w) = >0 hj(w)z? for some

functions h;j(w) in H?(T). Thus

T.T:h = Y hj(w)T.Tr 2

and

(w'@uwhh = (h,w)w

= > (hi(w) wh)u!

j=0
= (ho(w),w)u'.

Thus

O - w'euwhh = > (ho(w),w'u!

>0 >0
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Consider

T.T; + ) wowh = Zhj )27 + ho(w)
>0

This completes the proof.

Lemma 19. Suppose that ¢(z) = zpg(2) for some finite Blaschke product po(z). If f is a

function in H?(T?), then for each | > 1,

7 (oi(e(2), p(w) f) = pile(2), p(w) T, f
+p0(2)pi-1(p(2), p(w)) £ (0, w)

—po(w)pi—1(p(2), p(w)) f(2,0).

Proof. Let f € H?>(T?). By Lemma 18, we have

T (pi((2), p(w)) f)
= Tpile(2), p(w)(TTF + ) w' @ w') f]

- TJ[PZ(SO(Z%@(w))(TzTS‘f)]iOT* (e Z;“’ & '
= pu(e(2), ()T f) + T pi(e ;w l®w
Noting
pi(p(2), p(w)) = gw(@ks@(w)l‘k
= p(w)' +¢(2) ; ()" p(w)'
= p(w)' + 2p0(2) kzlzl ()" Ho(w)'
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and

O w'ew)f = f(0,w),

i>0
we obtain
T [pi( w)) () w' @ w')
>0
= Tl[pie(2), o(w)) (0, w)]
1
= T[p(w)' £(0,w)] + T: [z00(2) Y @(2)F o(w)'~* £(0,w)]
k=1
- Zsa V() M0, w)
= po(z )pz 1(@( ), p(w)) f(0,w).
This gives

T (pip(2), p(w)) f) = pi((2), (W) (TZ f) + w0(2)pi-1(p(2), p(w)) f (0, w).  (11.2)

Similarly, we also have

T (pi(e(2), o(w)) f) = pulp(2), p(w) (T f) + o(w)pr-1((2), p(w)) f(2,0).  (IL3)

Combining (II.2) and (IL.3) yields

T (pi(p(2), p(w)) f) = pi((2), (W) T, f

+po(2)pi-1(9(2), p(w)) f(0,w) = po(w)pr-1(p(2), p(w)) f(2,0)

as desired.

The following theorem gives a recursive formula for those functions {d*}.

Theorem 20. Suppose that e is in Ly and {d*} are a family of functions in H*(T?). Then
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for a given integer n > 1,

-1
pi(e(2), p(w))e + ) pe(e(2), p(w))di " € M,
k=0

for each 1 <1 <n, if and only if the following recursive formula holds
po(2)e(0,w) — po(w)e(z,0) + Ti_,de(z,w) = 0;

and

0o (2)df (0, w) — po(w)dE(z,0) + T5_,(dE+) (2, w) = 0,
for1<k<n-1.

Proof. For a given e € Lo and a family of functions {d%} ¢ H?(T?), for each integer [ > 1,

let

-1
B = pi(e(2), p(w))e + > pr(e(2), o(w))ds ",
k=0

E;isin M for each 1 <[ <n, iff

T  E =0

for each 1 <1 < n. We need only show that for each 1 < < n,
T ,E=0

is equivalent to the recursive formula in the theorem.
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By Lemma 19, we have

Tz*—wEl
-1
T () e+ 3T k() o))
k=0

= pile(2), p(w)T_ e + wo(2)pi-1(p(2), p(w))e(0, w)
-1

—go(w)pi-1(p(2), p(w))e(z,0) + Y _[pr(p(2), p(w)) i, di "
k=

+p0(2)pr-1(p(2), p(w)de (0, w) — po(w)pr—1(p(2), p(w))de " (2, 0)]

—~

—

= pa(p(z), o)) o(2)e0,w) — po(w)e(z.0) + T2yl

-2
PP )Tyl + o(2)d (0, 0) = o) (2, 0))]
k=0

since e is in Lg. Thus T, ,E; = 0 for each 1 <[ < n iff
po(2)e(0,w) — po(w)e(z,0) + T%_,de =0,
and
Tz*fwdleik + (pU(Z)dleikil(()? w) - (po(w)dleilik(% O)) =0,

for 1 < k <1 < n. This completes the proof.

I1.4.2 Second Construction

Next for a given e € Lo, we will show that there is a function d. € £, such that

pi(p(2), p(w))e + pi-1(p(2), p(w))de € H

for each [ > 1.
Recall that ¢ is a Blaschke product with zeros {ak}é( and oy, repeats ng + 1 times, and
©(2) = zpo(z) where @q is a Blaschke product with N — 1 zeros.

Given a point a € D and integer s > 0, recall

slz®

ki(z) = A =g T
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For each a € D and integer ¢ > 0, let

ch(zvw) = Y- otk () (1L4)
s=0

The Mittag-Leffler expansion of the finite Blaschke product g is

K n;
ZZCtl{?t

=0 t=0

for some constants {c!}. Define

Clearly,

t! slz® (t—s)lat=s
‘ sl(t —s)! (1 — az)stt (1 — az)t—st!

This completes the proof.

Lemma 22. For each F(z,w) € H?*(T?),

<F7 62) = [(82 + 8w)tF(z7w)”z:w:a-
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Proof. Let F(z,w) € H*(T?). We have

d s! s t—s
(F’eq) ZSZ:;M(F,%(Z)’CQ (w))

_ s! i
— SZ:; m[azaw F(z,w)]|s—w—a

t

) D 2 LR [
s=0

= [(0; + 0u)'F(z,w)]|:=w=a-

This completes the proof.
Noting that the dimension of Lo is N and {eli (z,w) : 0 < i < K, 0 <t; < n;} are

linearly independent, we immediately have the following lemma.

Lemma 23.

Lo = spanfel (z,w) : 0 <i < K, 0<t; <n;}

Proof. By Lemma 4, those functions {€} (z,w) : 0 < i < K, 0 < t; < n;} are in the
intersection kerT ;(Z) N kerT;(w). They are linearly independent since they are rational
functions with different poles with multiplicity. So it suffices to show that they are in H.

To do so we need to show that

A simple calculation gives

I
|
N
Qw
—
N
~—
o
=T
«
—~
S
~
_I._
i
—~
VA
|
—
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The fourth equality follows from the substitution [ = s — 1. Similarly, we also have
Trel = ael, +tel !

Hence we conclude that Tre!, = Ti*e!,, to complete the proof.

Consequently, the above lemma gives the following lemma.
Lemma 24. For each function F(z,w) € kerTy  NkerTZ ., there is a function E(z,w) €

Lo such that
F(z,0) = E(z,0).

Proof. Suppose that F(z,w) is in kerT;(z) N kerT;(w). Lemma 10 implies that there are

constants cfjl such that
ng,n;

Z Stk (2K, (w).

4,j=0 s=0,1=0

Since klaj(()) =0 for [ > 0 and k:gj(O) = 1, we have

F(z,0) = Z Zcfjok;

4,j=0 s=0
K n;
=0 s= Uj 0
Let
K n; K
E(z,w) = Z [Z cfjo]ei (z,w
i=0 s=0 j=0
Noting

624('27 0) - k};(z),

we conclude

F(z,0) = E(z,0),

to complete the proof.

Lemma 25. If for a function f € H, pi(p(2),p(w))f € H, for each | > 0, then f(z,0) =
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Apo(2), for constant .

Proof. Suppose that p;(¢(2), p(w))f € H, for each I > 0. Let d;ﬁ = 0. Then

-1
P(e(2), 0w f + 3 pr(e(z), o(w))d ™ € A,
k=0

for each [ > 1. By Theorem 20, we have

©0(2) f(0,w) — ¢o(w) f(z,0) = 0.

This gives
f(z,0) _ f(O,w)

wo(z)  po(w)

holds for all (z,w) € D x D except for a finite vertical or horizontal lines. Thus the equality
holds for an open subset of D2, and so there is a constant A such that f(z,0) = Apg(2) on

the unit disk. This completes the proof.

Theorem 26. For a given e € Lo, there is a unique function d. € L, © eq such that

pi(p(2), p(w))e + pi-1(p(2), p(w))de € H

for each I > 1. If e is linearly independent of ey, then d. # 0. Moreover, the mapping

e —d,

is a linear operator from Lg into L, © €.

Proof. First we show the existence of d.. For the given e, by Theorem 16, there is a function

dl € L, such that

pile(2), p(w))e +d} € H.

By Theorem 20 we have

©o(2)e(0,w) — po(w)e(z,0) + T, di(z,w) = 0. (I1.5)
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Since e(z,w) is in H, by Lemma 8, dl(z,w) is symmetric with respect to z and w. In

addition, p1(p(2), ¢(w)) is also symmetric with respect to z and w. This gives

dl(z,w) = d(w, 2).

Thus
dg(2,0) = dg(0, 2).

By Lemma 24, choose a function é(z,w) € Ly such that

dl(z,0) = é(z,0).

Hence

d(0,2) = €(0, 2),
because é(z,w) is also symmetric with respect to z and w. Let d. = d} — é. Clearly,

p1(p(2), p(w))e + de € H,

and

de(2,0) = de(0,2)
= di(z,0) —é(2,0)

e

= 0.
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Letting d! = d, and d* = 0, for k > 1, by (IL.5), we have following equations:

o(2)e(0,w) — po(w)e(z,0) + T2, de (2, w)
= wo(2)e(0,w) — po(w)e(z,0) + T2 [de (2, w) — &(z,w)]
= 0,

o (2)de (0,w) = o(w)de (2,0) + T2, (dg ™) (2, w)
- 0-0-0

= 0

for 1 <k <[ —1. The last equality in the first equation follows from that 77_, é(z,w) = 0.

By Theorem 20, we conclude that

pi(p(2), p(w))e + pi-1((2), p(w))de € H,

as desired.

Next we show that if there is another function b, € L, such that

pi(p(2), p(w))e + pi-1(p(2), p(w))be € H,

for each [ > 1, then d. — b, = uey for some constant .

Since

pr-1(p(2), p(w))[de = be] = pi(p(2), p(w))e + pr-1(2(2), o(w))de

—(pi(e(2), p(w))e + pro1(p(2), p(w))be) € H,

letting f = de — be, we have that f € H and

pi(e(z), p(w))f € H.
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By Theorem 31, we obtain that f = Aeg to conclude
de = be + Neg.
Ifd. =0, i.e.,

pi(p(2), p(w))e € H,

then Theorem 31 again implies that e = Aeg. This gives that if e is linearly independent of
eg, then d. # 0.

As showed above, we know that the mapping e — d. is well-defined from L into £, Seq.
To finish the proof we need to show that the mapping is linear. To do so, let e; and es be

in Lg. For given constants c¢; and ¢y, we have

pi(p(2), p(w))er + pr-1(p(2), p(w))de, € H
pi(p(2), p(w))e2 + pr-1(p(2), p(w))de, € H

pi(p(2), p(w))[erer + caea] + pro1(#(2), p(w))dererteser € M.

Thus

pl—l(‘/)(z% So(w))[cldel + C2d62 - d0181+62€2] €n,

for each [ > 1. By Theorem 31,

Cld61 + CQdeg - dcle1+6262 = €360,

for some constant c3. But de,, de,, and dc,e;+cpe, are orthogonal to eg. We conclude

Cldel + CQdeQ - d01€1+0262 — 07

to complete the proof.

By Theorem 20, the function d. can be constructed from e by a formula.
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Corollary 27. Let e be in Lg. For a function d. € H?(T?),

pi(p(2), p(w))e + pi-1(p(2), p(w))de € H

for each 1 > 1, iff

©vo(2)e(0,w) — po(w)e(z,0) + T, de(z,w) =0,

and

©0(2)de (0, w) — po(w)de(z,0) = 0.

I1.4.3 Third Construction

In this section, for a given element e(z,w) in Lo, we will obtain a simple formula of another

function, denoted by d?, such that

pilp(2), p(w))e + proi(p(2), p(w))d, € H,

for [ > 1. Again, we first consider the example where the zeros of ¢ are distinct.

Example. Let {ai}?:_f be nonzero distinct points in ID. Let ¢ be the Blaschke product

210 2224 and o = H?;ll Z—2i The Mittag-Leffler expansion of ¢ is

=1 l—alz’ 1—&12
n—1
po(2) =co+ Y cika,(2)
i=1
for some constants ¢; and hence
n—1
eo(z,w) = co+ Y _ cika, (2)kq, (w).
i=1
For each e € Ly, we will find a function d? such that

pilp(2), p(w))e + proi(p(2), p(w))d, € H,

for [ > 1.
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To do so, write

n—1
6(27 w) = Z uikaz‘ (Z)kai (w)7
=0

for some constants u;. We shall solve the following equation
wo(2)e(0, w) — po(w)e(z, 0) + T3, de(2,w) = 0
for de(z,w) in the form

cZe(z, w) = Z'Yij (ko (2)ka; (W) + ko, (2)ka; (w)]
1<j
where v;; are constants. Since

n—1
e(z,0) = Z Uik, (2)
=0

and

n—1
900(2) =co + Z Cikai(z)’
=1

(I1.6) gives
> (it = ¢tk (2) ko (w) + Ty de (2, w) = 0.

1,J

Grouping the first sum and noting that
T;—wkai (Z)kaj (w) = (O_éi - dj)kai (z)ka]‘ (w)>
we obtain

> (e — cjui)lka, (2)ka, (w) = ko, (2)ka, (w)] +

i<j

> i (6 — @) ko, (2)ka, (w) = ka, (2)ka, (w)] = 0.

1<j

(I1.6)

Because {kq,(2)ka;(w) — ko, (2)ka;(w)}i<; are linearly independent, the above equation

implies
C; Uj — Cj U;

Yij = ———C —
Oéi—Oéj
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This gives

o (67
i<j v
Let
0 __ ciuj — cjui
de - E I — ]/Bij(sz)v
oy o — Q
1<)
where

ﬁij (Z’ w) = kai(z)kaj (w) + kOéj (Z)k@i (w) - kai(’z)kai (w) - kaj (Z)kaj (w)

Since ke, (2)ka, (w) is in H, d, —d? is in H. Thus d? is also a solution of (IL6). If let d = d°

and d’; = 0 for k > 1, then those functions satisfy the equations in Theorem 20 and

pilp(2), p(w))e + proi(p(2), p(w))de € H,

for I > 1.

The above example suggests the following result.

Theorem 28. Let e(z,w) be in Ly. Then

d°(z,w) = we(0, w)eg(z, w) — weo(w)e(z, w)

s a function such that

pilp(2), p(w))e +proi(p(2), p(w))d, € H,

forl>1.

Proof. Note that d2(z,0) = d2(0,w) = 0. In order to show that p;(¢(2), ¢(w))e+pi_1(0(2), o(w))d

H, for [ > 1, by Corollary 27 we need only to show that

po(2)e(0,w) — po(w)e(z,0) + [T% — T;]d¢ = 0.
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By Lemma 18, simple calculations give

Tode = Thlweo(w)(TuTy +) 7' ® 2)e(z,w)]
>0

—e(0,w)(Tw Ty + Z 2 @ 2eo(z,w)
1>0

= wpo(w)(Tye) (2 w)
+po(w)e(z,0) — we(0,w)(Tyeo)(z,w) — e(0,w)ep(z,0),

and

T340 = wipo(w) (T e) (2, w) — we(0, w)(T2eo) (2, w).

Noting that T7e = T, e, and T eg = T} eo, by the above two equations we have

[T; - T{;]d(e] = 6(07 w)€0(za 0) - (PO(w)e(Zv 0)

= ¢p(2)e(0,w) — po(w)e(z,0).

The last equality follows from that ¢o(z) = eg(z,0). This gives the desired result.

In [32], it was shown that distinguished reducing subspace equals

Mo = spani>o{pi(¢(2), p(w))eo}.

We will give more details about My in the next section.

Theorem 29. If M C 'H is a reducing subspace of p(B) orthogonal to My, fore € MN Ly,

let de be the function in Theorem 26, then
pi(p(2), p(w))e + pr-1((2), p(w))de € M
for each | > 1, and there is € € M N Lgy such that

d1:d3+é.

e
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Proof. Since M is orthogonal to My, we have

H  =My®d My

= My® MO MG N M.

Thus
Lo = Ceg ® [MN Lol © [Mg N M1 L.

So e is orthogonal to ey, and

LoSey=[MnN(LySey)|® [Mé‘ nmMin (Lo © ep)].

By Theorem 16, there is a function d¥ € £, © Ly such that

for each { > 1. Thus

de — dt = p1(p(2), p(w))e + de — (p1((2), p(w))e + db) € H.

So de — d? is in Lo © eg. Write

do—dl =¢ +¢'

for ¢/ € M N (Lo S eg) and €’ € ML N (Ly © eg). Thus

p2(p(2), p(w))e + p1(p(2), p(w))de

= [p2(p(2), p(w)e + pi(p(2), p(w))de + dZ] + [pr(p(2), p(w))e

+di] + [p1(p(2), p(w))e" + din] — (d2 + di + din).

Since

p2(p(2), p(w))e + pi(p(2), p(w))de + d € M,
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pi(p(2), p(w))e' +dy € M,

and
(=), p(w))e” + dby € M*,
we have
dg + dg + dgw € H O kerT ) N T, = Lo.
Noting
d? +dY +dl € Ly © Ly,
we have
dZ + dg + dgr = 0,
to get

Pydl, = —(Pydl + Pyd?).

But Theorem 17 gives that

Py dl + Ppd? € M,

and
PHdé// E ML.
Thus
PHdé// == 0,
and so

121 = (d, din)
= (d;//,pl(ap(z), o(w))e” + déu>
= (dbn, P [p1(p(2), p(w))e” + d}n])

= (P (den), p1((2), p(w))e" + dgu) = 0.

This gives that dl, = 0. We have that pi(¢(2),p(w))e” € H. Theorem 31 gives that
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e = Aeg, for some constant \. Since ¢’ € M+ N (Ly S eg) we conclude that e’ = 0. Hence

de = d! + ¢'. Letting € = —¢’ we obtain d! = d. + ¢, as desired. Now we write

Pul(2), p(w))e + pa_1(p(2), p(w))d.
= palp(2), p(w ))e+pn 1(s0() o(w))d} + pn-1(e(2), p(w))e’

= [pn(e( €+Zpk ))de ]
+[pn—1(¢( Je —Zpk ))de ™.

Because p,,(¢(2), p(w))e + pn—1(¢(2), p(w))d. is in H, the above equality becomes

Pl (2), p(w))e + pn1(p(2), p(w))de

= [pn(p(2), p(w))e + ;:tpk(SO(Z)#P(w))d?k]
+Pp[pn1(p( )e —Zpk )]
= [Pnlp(2), p(w))e + :Z;l)pk(so(zr), p(w)de "] + Ppylpa—i1(o(2), p(w))e]
— ZPH Prlp(2), p(w))de ™).

Theorem 15 gives

Pn( e—i—Zpk w))dF e M

and Theorem 17 gives

ZP’H pr(p (w)dp ™) e M.

Since M is a reducing subspace of ¢(B) and €’ is in M, we have

Pylpn-1(p(2), p(w))e'] € M,
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to conclude

P(p(2), p(w))e + pn-1(£(2), p(w))de € M

for each n > 0. This completes the proof.
Combining Theorem 26 with Theorems 28 and 29 gives the following important relation

between d! and d°.

Theorem 30. If M is a reducing subspace of ¢(B) orthogonal to the distinguished reducing
subspace My, then for each e € M N Ly, there is an element € € M N Ly and a number A
such that

dé=d2+é+)\eo.

II.5 The distinguished reducing subspace

Theorems 16 and 20 are useful in studying reducing subspaces of ¢(B). In this section we
will use them to show that there always exists a unique reducing subspace My for ¢(B)
such that the restriction of ¢(B) on My is unitarily equivalent to the Bergman shift. The
existence of such a M is the main result in [32]. Furthermore, we will show that such kind

of reducing subspace is unique. We call My the distinguished reducing subspace for ¢(B).

Theorem 31. If for a function f € H, pi(¢(z),p(w))f € H, for each | > 0, then there

exists a constant A such that f = leg.

Proof. Suppose that p;(p(2), p(w))f € H, for each | > 0. By Lemma 25, then f(z,0) =
Apo(2), for constant A. Thus f(z,0) = Xeg(z,0). Since f — e is in H, Lemma 9 implies

that f(z,2) — Aeg(z,2) = 0. By Lemma 7, we conclude that f = Aeo.

Lemma 32. Let f be a function in H?(T?). Then

_n+1

Prlp(2)pn((2), p(w))f] = =5 Prlpnr(¢(2), o (w)) f].
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Proof. Write

P(2)pa(p(2), p(w)) = 9(2)" + @(2)"p(w) + - + p(2)p(w)"

= 2 (o)™ 4 ) () + - + (2D p(w)" + p(w) )

n+2
P[0 = o)™ ) + (ol () — ()™
et (o))" — ow)™ )]
— O pan (). plw)) + Iz,
where
Te,w) = — {0z = (@)™ + (=)o) — o)) +

Observe J(z,z) = 0. Thus [J(z,w) f (2, w)]|w=- = 0. By Lemma 6 we have that J(z,w) f(z, w)

is in Ht, to get Pyy(J(2,w)f(2z,w)) = 0. Hence we conclude

Prle(m(e(2) o@D = Prlapu(p(), p@)f + I 0)1)
n+1

= 1 Prylpasa((2), ()]

to complete the proof.

Now we are ready to prove the main result in this section.

Theorem 33. There is a unique reducing subspace Mg for o(B) such that o(B)|a is

unitarily equivalent to the Bergman shift. In fact,

Mo = spanizo{pi(¢(2), p(w))eo},

and {%}8" form an orthonormal basis of M.

Proof. First we show that there exists a reducing subspace Mg of ¢(B) such that ¢(B)|um,
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is unitarily equivalent to the Bergman shift. Let

K n;

eo(z,w) = Z Z cgegi (z,w).

1=0 t=0

Then eg(z,w) is a nonzero function in Ly and eg(z,0) = ¢o(2). Letting d% = 0 for each

k > 1, we obtain that {d% } satisfy the following recursive formula:
wo(2)eo(0, w) — po(w)eo(z,0) + T2y de, (2,w) = 0

and

wo(2)de, (0,w) — po(w)de, (2,0) + T2, (dé ) (2,w) = 0,

for 1 < k < n — 1. Theorem 20 gives that p;(¢(z),(w))ey € H. Note that T;(Z)eo =

T*

o(w) €0 = 0. A simple calculation gives

I (2(2), p(w))eoll3 = (L + 1)lleoll3,

and

(pi(p(2), p(w))eo, pn(p(2), p(w))eg) = 0,

for n # 1. Let E,, = %%, and Mo = span,>o{pn(¢(2), p(w))eo}. Thus {E,} are

an orthonormal basis of M. Noting

= Palp(2) p(w)en) = T (Pali(2), o(w))en)

= pu-1((2), p(w))eo,

we see that My is a reducing subspace of ¢(M). By Lemma 32 we have

@(B)[pn(p(2), p(w))eo] = Prlp(2)pn(p(2), p(w))eo]
n+1

- PH[n +2

_n+ 1

Cn+2

Prr1(p(2), p(w))eo]

Prt1((2), p(w))eo,
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to obtain

@(B)[pn(p(2), p(w))eo]
V(n+1)lleoll2
_ 14+ 1pni(e(2), o(w))eo
n+2 \/(n+1)eoll2

n+1

- n+2En+l'

Clearly, p(B)*Ep = 0. This implies that p(B)| a4, is unitarily equivalent to the Bergman
shift.
Suppose that M; is a reducing subspace of ¢(B) and ¢(M)|y, is unitarily equivalent to

the Bergman shift, i.e., there is an orthonormal basis {F,,} of M; such that

In+1
(P(B)En = n+ 2En+1'

Next we will show that M; = M. Observe

Pyl(p(2) + o(w))Eo] = 2¢(B)Eo
- \%El.
Thus
1P3[(p(2) + p(w) Eo|I* = 2.
Since

T;(Z)EO = »(B)"Ep
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a simple calculation gives

I(p(2) + (W) Eoll* = {((2) + p(w)) Eo, (#(2) + ¢(w))Eo)
= (p(2)Eo, ¢(2) Eo) + (p(w) Eo, p(w)Eo)
+(e(2) Eo, p(w) Eo) + (p(w)Eo, p(2) Eo)
= 2(Ey, Eo)

=2.

Thus we obtain

Py [((2) + o(w)) Eo] = 0
because
1(p(2) + (w)) Eol* = [ Pr[(#(2) + @(w)) Eol |* + [ Py [(9(2) + o(w)) Eol ||,

So (¢(2) + ¢(w))Ey is in ‘H. By Theorem 20, we have

©0(2)Eo(0,w) — @o(w)Ey(z,0) = 0.

Let d%o = 0 for each k > 1. The family {d%o} satisfy the recursive formula in Theorem 20.

Hence pi(p(2), p(w))Ep is in ‘H. By Theorem 31, we obtain that
EO(Zaw) - )\60(2,’(/)) =0,

for some constant A\. Thus My C M; and so My is a reducing subspace of ¢(B)|as,, which
is unitarily equivalent to the Bergman shift. Since the Bergman shift is irreducible, we

conclude that M; = M.

I1.6 Structure of reducing subspaces

In this section, we first derive some information about the minimal reducing subspaces, then

we prove our first main result about the structure of reducing lattice for any multiplication
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operator induced by a finite Blaschke product.

I1.6.1 Minimal reducing subspaces

We start with a theorem which will be used in the proof of our second and third main
result. The theorem says that every nontrivial minimal reducing subspace of ¢(B) is either
M or orthogonal to M. Then we prove our main theorem of this subsection, Theorem
40, which gives a picture of how three minimal reducing subspaces are related. Theorem 40
will be used in a key step to completely determine the structure of reducing lattice involved

Blaschke product of order four.

Theorem 34. Suppose that Q is a nontrivial minimal reducing subspace for o(B). If

does not equal My then §2 is a subspace of Mé‘.

Proof. By Lemma 13, there is a function e in 2 N Ly such that e = Aeg + e; for some

constant A and a function e; in Mg N Lo. By Theorem 15

p1(p(2), p(w))e + d € Q.

Here d! is the function constructed in Theorem 15. Let

E = ¢(B)" [p(B)e] — e.

Since p1(¢(2), p(w))eg is in H, we obtain
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Hence

E = o(B)[o(B)eo +ea] - g heo + ]

= Me(B) [p(B)eo] — peo} + 0B [p(Bler] ~ Jen

= (B) [Prp(2)er)] — e

= LB [Pr(pi((2), p(w))er)] — e

= 108 [Pr(p(o(2), olw)er +dl, —dl)] — e
1

= S{e(B) [p1(p(2), p(w))er + de,] — ¢(B) Pyyde, —e1}

2
= SPRER() p(w))er + PG| - 9(B) Ppedl, —er)
_ %{el — o(B)* Pyyd! — 1}
= P(B) Pyl

The sixth equality holds because that pi(¢(2),p(w))er + d, € H. The eighth equality

follows from that dél is in £L,. We claim that £ # 0. If this is not true, we would have
1 * 1
5%0(3) P’}_tdel =0.

This gives that Ppyd? is in Ly. And hence

0 = (Ppd. .d.)

e’ el

= <PHd;1,p1((p(Z), @(w))el + dé1>

= (de,, p1(0(2), p(w))er + dg,)

= |1de, II*-
This gives that df = 0. Thus we obtain that p1(¢(2), ¢(w))er € H. By Theorem 20,
pi(p(2), p(w))er € H,
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for I > 0. Hence by Theorem 31, we get that e; is linearly dependent on eg. This contradicts
that e; € Mg . By Theorem 17, Pﬂdél isin Mandsois E = —%@(B)*Pﬂdil. This implies
that £ is in QN Mé‘. We conclude that QN ./\/10l = () since 2 is minimal to complete the
proof.

The structure of reducing subspaces of a Blaschke product of order 2 was completely
described in [51] and in [58] by different methods. We state their main result as the following

Corollary and give another proof based on the methods we have developed so far.

Corollary 35. Let ¢ be a Blaschke product of order 2. Then M, has exactly two minimal

reducing subspaces My and Mol.

Proof. By Theorem 34, we only need to show that Mé‘ is minimal. That M& is minimal is
obvious since the dimension of Ly is two and by Lemma 13 Mé‘ cannot split furthermore.

For a given reducing subspace M of ¢(B), define

M= span{gp(z)l<p(w)kM, l,kE>0}.

Since M is a reducing subspace of ¢(B) and Mis a reducing subspace of both the pair
of doubly commuting isometries T,y and T, by the Wold decomposition of the pair of
isometries on ./\A//l, we have

M= @l,k20¢(z>l‘P(w)ij\v4>

where L]\vxl is the wandering space

L.m = keTT;(z) n keTT;’(w) nMmM.

Lemma 36. If M and N are two mutually orthogonal reducing subspaces of p(B), then M

is also orthogonal to N.

Proof. Let f =359 o(2) p(w)*my, and g = 2 Lk>0 o(2) p(w)Fny, for finite numbers of

elements my, € M and ny, € N. Then
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(fg) = e e(w)mu, Y () o(w) nu)

1,k>0 1,E>0

= > @) ew) M mu, g,

1,k>011,k1>0

Since M is orthogonal to A and both M and N are invariant subspaces of T;(z) and T;(w),
the above inner product (f, g) must be zero. Thus we conclude that M is orthogonal to N

to complete the proof.

Theorem 37. Suppose that M is a reducing subspace of ¢(B) which is orthogonal to M.
If {egM), e ,eg%)} is a basis of M N Ly, then

L/’q = Span{egM)’ t veé%)%di<lM)a T ,dig%)}a
and
alz'mLJ\N/1 = 2qpm-
Proof. Suppose that {egM), e ,eg\é)} form a basis of M N Ly. First we show

(M) M), 41 1
span{e; ', ,e((]M),degM),--' ,deg%)} CLJ\NA.
Note that {egM), e ,ec(,]\]j); dl(M>, e ,d1<M)} are contained in L. It suffices to show
61 Eq]\/[
M —
{eg ),,.. 76‘(1%);@%1\4)7... ’diéﬁ)}CM'

Since M N Ly contains {egM), . ,eg‘j)}, for each I,k > 0, go(z)lcpk(w)ez(M) is in M for

(M)

1 <4< qu. Thus pi(p(2), p(w))e; is in M. By Theorem 15, we have

P1((2), p(w))el™ +dlu, € M.
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So we have that dl(M) € M, to obtain
€;

M
Spa/n{eg )’... ’egi\f);di(M)’...
1
Next we will show that {egM), e ,eg%); dl(M), e
€1

pose that for some constants A; and p;,

d* C L—+;.
gl)é)} M

,dt o ) ) are linearly independent. Sup-
q]\4

q q
S et 43 pidl o, = 0.
i=1 i=1 ‘

Thus

Z)\ e(M Z,uzd ()

The right hand side of the above equality is in Ly but the left hand side of the equality is

orthogonal to Ly. So we have

q
Z )\,LGZ(M) = O,
=1

and

q
Z Midi(_M) =0
i=1 ¢

The first equality gives that A; = 0 and the second equality gives

1
d oy =

Zg 1 Mi€;

Because M is orthogonal to My, by Theorem 31, we have

q
Z ,uieEM) =0
i=1

(M) dl

This gives that p; = 0. Hence {egM), ey s d
1

So far, we have obtained

dimL—+—; > 2qM.

M
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To finish the proof, we need only to show that

dimL'AN/l < 2qpm-

To do so, we consider the decomposition of H,

H=Myd M [My N M,

and
Lo = [MoN L] ® [MN Ly ® {[Mg "M N Lo}
Then
dim{{Mg "M N Ly} = dimLo — dim[Mq N Lo] — dim[M N Ly
=N-1-qug.

Letting N = [Mg N M|, Lemma 36 gives

and

LSO:LMOEBLM@LN.

Replacing M by N in the above argument gives
d’imL]\'/Z 2(N —1—qu).
By Theorem 12, so we have

2N — 1 =1+ dim[L ] + dim[L ).
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Hence

dim|

Ly  =2N-2—dim[Lg]
<IN —2-2(N—1—qy)

= 2qm.

This completes the proof.

Lemma 38. Suppose that M, N, and §) are three distinct nontrivial minimal reducing
subspaces of p(B) such that
QCMON.

If M, N, and Q are orthogonal to My, then
MNQ=NNQ={0}.

Proof. Since the intersection M N Q is also a reducing subspace of the pair of isometries

T,y and T;(w), the Wold decomposition of the pair of isometries on MNQ gives

MNQ = @uizop(2) o(w) L

My’
where L./T/tmfz is the wandering space given by
LMQ@ = ke’/"Tw(z) N TQD(’U)) N M M Q
= LM N Lﬁ.

To prove that M N Q = {0}, it suffices to show

Lj\/vl N LQ = {0}

To do this, let ¢ € L./\N/l N Lg. By Theorem 37, there are functions eps, €y € M N Lo and
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eq, eq € Q2N Lo such that

1
eM

q =ey+d

=eqn + déﬂ.

The above two equalities give

g1
€M — Q= déM—éQ'

On the other hand, d}

e —EQ

is orthogonal to Lg. Thus

1 —
déM*éQ = epn — €eq
= 0.
This gives
en = eq

But eps is in M and eq is in 2 and hence both ej; and eq are zero. Since déM—éQ

= (),
Theorem 31 implies that €7 —€q linearly depends on eg. Since both M and 2 are orthogonal
to Mg, we have that €3 = €. Thus we obtain €3y = 0 to conclude that g = 0, as desired.
So
MNQ={0}.
Similarly we obtain

NNQ={o}.

Lemma 39. Suppose that M, N, and Q are three distinct nontrivial minimal reducing
subspaces of p(B) such that
QCMN.

If M, N, and Q are orthogonal to My, then

P L

mla=1

M
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and

PirLg = Ly,

where P]\Z denotes the orthogonal projection from H?(T?) onto M.

Proof. Since M is orthogonal to N, Lemma 36 gives that M is orthogonal to A and

QCMOPN.

We will show that Pj\v/lLﬁ = LM'

Since Q@ C M @ N, we have
QNLyC[MN Ly & [NN L)

For each e € QN Ly, there are two functions e™) € M N Ly and e) € AN Ly such that

Q) M) N)

eV = (M) 1 ¢l

1 _ 11 1
dyoy) = dyony + dgw)-

By Theorem 37, d1<M) is in M and d1<N) is in M. Since M, N, and Q are orthogonal to
e e

My, the above decompositions are unique. Thus

Pye® = ),

and
Pigdie) = dyn.

So for each f = e 4+ dém) € Lg, where e and ¢, we have

is in L]\v/t to obtain

P Ly CL

M M
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To prove that PJ\NALQ = L, it suffices to show that

P Ly — L

M M

is surjective. If this is not so, by Theorem 37, there are two functions e,é € M N Ly such

that 0 # e + d! is orthogonal to P./\NALQ'

Assume that {eq, -, ey, } are a basis of QN Lg. Then
— (M) M). g1
PMLQ_Span{el ) ae((lg )ade(lM)7"

If e # 0, then (e,eEM)> =0, for 1 <14 < gg. Thus

0 = {e, e(»M))

)

= <€7 ez('M)

+ eEN)>

= (6, ei)a

and

(e,d})) =0,

for each 1 <@ < gq. So e is orthogonal to Ly = span{ey, - - -

1
i
aQ

.1
76q$2’de17”

: ,dém}. Noting e

is in Lo, we see that e is orthogonal to ¢(2)'(w)*Lg, for each I > 0 or k > 0. This gives

that e is orthogonal to Q and hence orthogonal to ). Since e is in M, e must be orthogonal

to the closure of PyqQ C M, which is also a reducing subspace of ¢(B). Therefore e is

orthogonal to M, which is a contradiction.

If e = 0, then d} # 0 and

0 = (dédiwﬁ
_ /gl p_ g1
= (d}, Pyd?,)

= (dg. dy,),

€’ 'e;
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and

<dév ei> =0,

for each 1 < < go. This gives that d? is orthogonal to Lg. But dl is also in L,. We have

that for any f € Lg,

(dz, p(2) ()" f) = 0,

for I > 0 or £ > 0. We have that dé is orthogonal to € and hence orthogonal to § to obtain
that PHdé is orthogonal to 2. On the other hand, by Theorem 17, Pﬂdé is in M. Thus
PHdé is orthogonal to the closure of Py, and so PHdé must be zero because the closure

of Paq§2 equals M. Therefore,

0 = (Pyde,p1(o(2), p(w))é + dg)
= (dg, pr(p(2), p(w))é + dg)

= (dg, dg) = ||dg|*.

er) e

The second equality follows from that pi(p(2), ¢(w))é + di is in ‘H and the third equal-
ity follows that d is orthogonal to pi(¢p(2),(w))é. This gives that di = 0, which is a

contradiction. We have obtained that P./\N/t : Ly — L M is surjective and hence

P./TALQ = L,ANA’
Similarly we obtain
PNLQ = LJV'

This completes the proof.

Theorem 40. Suppose that Q, M and N are three distinct nontrivial minimal reducing
subspaces for ¢(B) and
NCMBN.

If they are all contained in M(J)-, then there is a unitary operator U : M — N such that U

commutes with ¢(B) and p(B)*.
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Proof. First we will show
Py = PHPKZ'

Let N7 denote the orthogonal complementary of M @& N in H. Write
H=MDONDN.

Lemma 36 gives
H=MONDN.

For each function in H?(T?), write

f =g okh
=Im @ fe iy @ h;
where f, is orthogonal to H, fﬁ € H, fﬂ € M, f]v € N, and fﬁl € M. Since M

contains M, we write

T =Im® I3

for two functions faq € M and f3 € M © M. Thus f3 is orthogonal to both A and N

and hence orthogonal to both A and N7. So f3 is orthogonal to
H=MDONDN.

This gives that Py f3 = 0. We have

PHPANAf = Pr;.‘f./\w/l
= P'HfM + PHf3
=Py fm

:fMa
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and

Py f = fm

to get

Ppg = Py Py

Next we will show that Pp, is surjective from €2 onto M. For each ¢ € M, by Lemma

39, there are functions ¢, € Lg such that

= 3 w2 (w)rmy,

1,k>0

and

gl = > llmull* < o,

1,k>0
where my, = Pﬂ(ﬂk. Since Lg and Ly; are finite dimension spaces, there are two positive

constants ¢; and ¢y such that

cillawll < lmukll < collakl|-

Define

q= Z 0 (2) o(w) g
Lk>0

Thus

lal* = > llawl?®

Lk>0
< @ Z s
1,k>0
< Q.
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So we obtain that § is in , and

q = Z o (2) o (w) qn

1,k>0

= > 02 o(w) [P ryan + Pyl
1,k>0

= 3 @) o)+ 3 o) o) Pra]

1,k>0 1,k>0
=q+4qn,

where gv =~ 159 go(z)’“cp(w)l[PK/qlk] is in N. Hence Piid=q. We have

PyPiyd = Pua

= g

to obtain

Since M is a subspace of H, Pyq = Paq Py Thus

PmPrq = Ppma

Writing ¢, = e,(fl)) + d}(n) for functions e,(fl)), é,(fl)) € QN Ly, we have
€kl

Pnq = Z Pyy(p(2) o(w) au)
1,k>0
— P l k (Q) dl
- Z 'H‘P(Z) p(w) (ekl =+ é(sz))
1,k>0 kl

= 3 (Prp(@) o) e’ + 3 (Pro() o(w) dim))
1,k>0 1,k>0

= 3 (Prp(@) o) e’ + 3 [Pro(=) o) (Prydiio))
1,k>0 1,k>0
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The last equality follows from that ¢(z)'(w)*(1 — Ppy)dl g, is orthogonal to H. The the
€kl
first sum in the last equality is in ) and Theorem 17 gives that the second sum in the

equality is in Q also. Letting w = Pyyq, we have proved that Pyqw = ¢ to get that
P00 =M.

On the other hand, ker[Paqla] C Q is a reducing subspace of ¢(B). Since 2 is a
nontrivial minimal reducing spaces of ¢(B), we see that ker[Paq|o] = {0}. This implies
that Pygq : 8 — M is bijective and bounded. By the closed graph theorem we conclude
that Pyg|q is invertible.

Similarly we can show that that Pp/q is invertible. Define

= [Pardal[Pagla)™

Then S is an invertible operator from M onto N. Both S and S* commute with ¢(B)
because €2, M and N are three distinct nontrivial minimal reducing subspaces for ¢(B).

Thus S*S commutes with ¢(B). Making the polar decomposition of S, we write
S ="U|S|,

for some unitary operator U from M onto N, where |S| = [S*S]'/2. So U commutes with
both ¢(B) and ¢(B)*. This completes the proof.
11.6.2 Structure of reducing subspaces

For a finite Blaschke product ¢, by Bochner’s theorem [56], ¢(z) always has a critical point,
denoted by —c, in the unit disk. Let A = ¢(—c). Then

Z — ay, nk+1
Pr 0o pe(z _Zn0+1H<1—akZ>

with ng > 1. Moreover the structure of the reducing lattice of M, is the same as that of

M

eropope(z)- S0 we can always assume that ¢ has the form as in the following Theorem 41
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as long as the structures of reducing lattices are concerned.

Theorem 41. Let p = "0t it .. onk+l be g Blaschke product of order N with ng > 1,

a1

K > 1 and o, # 0. Then ¢(B) cannot have N nontrivial reducing subspaces {M; f\;_ol

satisfying H = G}f\:()l M; and M; L M; whenever i # j.

Proof. Write

_ _ +1
@ =zpo = 2"y,

where
__ _no, ni+1 n+1
0o =2"Pa " Pak
and
_ o n+1 n+1
P1=Pa, " Pap -
Then
Lo = 1 0 ni 0 nK
0 = SPan{1,P1, s Pngs €ays s Cats -+ Cages s Cor J -

Assume that ¢(B) has N nontrivial reducing subspaces {M;}Y ;! such that

N-1
H = M;
i=0
and
M; 1 M;

whenever ¢ # j.

By Lemma 13, for each i, there is an e; # 0 such that e; € M; N Lg. Thus

Ly = span{eg,e1,...,en—1}.

By Theorem 15 in the first construction, there are functions {d¢ } C £, © Lo such that

Pi(p(2), p(w))ei + de, € M.
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For ¢ # j, by M; L M;, we have

(p1(p(2), p(w))ei + de,, pr(9(2), p(w))ej +dg;) =0

On the other hand, a simple calculation gives

(p1(2(2), p(w))ei + de,, pr((2), p(w))ej + de,) = (de,, de, )

So
(dl,dly=o0

€7 7e;

for any i # j.

If each déi # 0,i = 0,..., N — 1, then the linear independence of {déZ i]i?)l will imply
that the dimension of L, is at least 2N. But we know from the Theorem 12 in Section II.3
that the dimension of £, is 2N — 1. Hence at least one déi is zero. On the other hand if
déi = 0, then the corresponding subspace M; is the distinguished reducing subspace. But
we have only one such distinguished reducing subspace. Hence we have one and only one
d}ai = 0. By Theorems 26 and 29, without loss of generality, we may assume that M is
the distinguished reducing subspace My of ¢(B) and eq is exactly the element ey in the
distinguished reducing subspace M.

So each déi #0fori=1,..., N —1 and
{déi f\Sl C Ly © Lo

are linearly independent.

By Theorem 30, there are numbers 3;, A; such that

di, = d2 + Bie; + Nieg,i =1,- -+, N — 1. (IL.7)
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Observe that for 0 < k < ng,

—(dg, pr) = (p(w)e; — we;(0,w)en, pr)
= (p(w)ei(w, w), p(0,w)) — (wei(0, w)eo(w, w), p(0, w))
= (p(w)e;(w, w), w*) — (we; (0, w) (weh(w) + po(w)), w*)
= ("o (w)es(w, w), 1)
—(w" ™t lwl (w) + (no + 1)1 (w)]ei (0,w), 1)

=0.

The second equality follows from Lemma 5 and the third equality follows from Lemma 9.

Since et is in the kernel of T;(w), go(s)(oaj) = 0 for 0 < s < n; gives that for 0 <t <

Q;

nj—l,j: 1,...,K,

(d2 et

€;) oy

and

These give that

) = (wei(0,w)eo(w, w) — p(w)e;, eg,)

= (we; (0, w)ep(w, w), eij(O,w)} (by Lemma 5)
= (wei (0, w)[wyp(w) + wo(w)], 4, (0,w))  (by Lemma 9)
= (wei(0,w)¢', ki) (by (I14))

= (wei(0,w)9)u—a,

:(]7
(0 eal) = [wei(0,w)g (w)]")]q,
= ajei(0,a;)0" D (ay).
dgi 1 {1,p1, ...,pno_l,egl, ...,ezrl, ...,egK,...,egﬁfl . (11.8)
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We also have that for 0 < k <ng—1

<€Oapk> = <€0(wvw)7pk(0aw)>
= (¢ (w),w")
-0
and
(cospus) = 7™ V(0)
£ 0

A simple calculation gives that for j =1,...,K,0<t <n; —1

<60>etaj> = [eo(w,w)](t)]aj
go(t“)(ou)
=0
and
(eoeat) = ¢t (ay)
< 0
These give
eo L {1,p1, ...,pno_l,egl, ...,egrl, ...,egK, ...,eZ’;*I}.

If B;, does not equal 0 for some ig, (I1.7) yields

1

= ﬁ [dl —do_ —)\ioeo].
20

610 €ig €ig
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Noting that df, L Lo, by (IL.8) and (I.9) we have

0 n1—1 0 nig—1
o L AL, D1, s Pno—1,€ays 5 oy s oes Cager s Cas }-
Thus
0 n1—1 0 ng—1
€io L {1, D1, s Prg—1,€ays - €an 5 oos Caper oos Ca €0} (I1.10)

Hence there are at most K nonzero (3;’s.

On the other hand if §; = 0, then (I1.7) gives
de, = d? + Nieg.
Since py, is in Ly and déi 1 Ly, we have that dgi L pny, and

<607pn0> 7é 07

to obtain that A\; = 0 and dgi = dii is orthogonal to Lo. By Theorem 43, there is at least
one nonzero ;.
Without loss of generality, assume that for some m, By_; #0for 1 <j <mand 3; =0

for 1 <j <N —m—1. (II.10) gives

en—; L {1,p1, ...,pno,l,egl, ...,egi_l, ...,egK, ...,egg_l,eo}
for 1 < j < 'm. Now we extend
{1,p1,...,pno_l,egl,...,egrl,...,egK,...,eg’gfl,eo,e]v_l,...,eN_m}
to a basis of Ly:
{1, p1, ...,pno,l,egl, ...,egi_l, ...,egK, ...,egflg_l,eg,eN,l, cees €N—mms f1y ooy fK—m }
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by adding some elements f1, ..., fk_m in Lg. Let {gj}é-v:_lm_l denote

0 ni—1 0 ng—1
{17p17"'7pn07176a17"'7€a1 a'"aeaKa"'aeag afla"'?fom}-

Since for 1 < j < N —m —1, ¢; is in Lo and
ej 1 {eo,eN_l,...,eN_m}

we have that e; is in the subspace span{1, g2, ..., gn—m—1} of Lo. This implies that there

are numbers {le};\fl;rln—l such that for 1 <j < N—-m—1

€j =¢j1 +¢jeg2+ -+ CiN—m—19N-m—1- (I1.11)

On the other hand, because g; = 0 for 1 < j < N —m — 1, we have that dgj = d}zj is

orthogonal to Ly, and

(i ear) = aiej(0,a1)p™ D (ar)

€57 o1

= 0.
This implies that e;(0, 1) = 0. Hence (IL.11) gives

ej(0,01) = ¢l +¢joga(0,00) + -+ iN—m—-19N-—m—1(0, 1)

= 0

for 1 < j < N —m— 1. Thus the determinant det|c;;| of the coefficient matrix of the above

system must be zero. So There is a nonzero vector (z1,- -+ ,ZN—m—1) such that
cury + e + -+ CNem—UTN-m—1 =0
for 1 <1< N —m — 1. This implies

xrie1 +x2e2 + -+ TN—m—16N—m—1 = 0.
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We obtain a contradiction that eq,...,eny_,,—1 are linearly independent to complete the

proof.

I1.7 Weighted shifts

In this section we will characterize multiplication operators on the Bergman space which
is unitarily equivalent to a weighted shift of finite multiplicity. In fact, a weighted shift of
finite multiplicity is unitarily equivalent to a direct sum of finitely many weighted shifts.

A weighted shift T" of finite multiplicity n on Hilbert space H is an operator that maps
each vector in an orthonormal basis {e;}3>, of H into a scaler multiple of the next nth
vector,

Ter = Wektn,

for all k. The sequence {wy} is called the weight of the weighted shift 7. In fact, T is
unitarily equivalent to the multiplication operator by z" on some Hilbert space of analytic

functions on the unit disk ( see [39] and [40]).

Theorem 42. Suppose that ¢ is a Blaschke product of order N. If there are N mutually
orthogonal reducing subspaces {M;}X | of ¢(B) such that o(B)|n;, is unitarily equivalent to
a weighted shift, then for each e; € M;N Lg, those dlei obtained in Theorem 16 satisfy déi =0

forl>1.

Proof. By Theorem 33 we may assume that ¢(B)|z, is unitarily equivalent to the Bergman
shift. Let e; be a nonzero vector in M;NLgy. By Theorem 16, there are functions dlei € L,OLg

such that

pi(e(z) eﬁZpk w))de* € M;.

Theorem 33 implies that d., = 0 for { > 1 and di, #0, for i > 1. Let

Eqy = pi(p(2), p(w))e; + Zpk w))dg, ",
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Then FE;; is in M;, and

o(B)'Ey = T:;(Z)Ei

-1
= Plo(2)(pi(e(2), p(w))ei + > prle(2), p(w))ds )]
k=0

-2
= p-1(p(2), p(w))ei + ) pr(e(2), p(w))de
k=0

= E;j_y).

The last equality follows from that P(p(2)e;) = 0, and P(¢(z)dL ) = 0. Thus {Ej}; are
orthogonal to {Ej}; for i # j and so {d. }; are orthogonal to {dlej }i. Since dim[L, © L]
equals N —1 and df, does not equal zero for i > 1, {d¢ } form an orthogonal basis of £, 6 Lo.

This gives that there are constants (3;; such that
d.. = Bydy,.

Because ¢(B)|n, is a weighted shift, there are an orthonormal basis {F}} of M; such
that

©(B)F; = ajF1

where {a;} are weights of ¢(B) on M;. Thus Fpy is in the kernel of [p(B)|a]*, and so

Fy = M\oe; for some constant \g. Since p(B)*Fy = agFp, we have
@(B)*[Fl — ao)\oEﬂ] =0.

Thus

Fy = aphoEn + pae;.

But both F; and Fj;; are orthogonal to e;. So u; = 0. Hence there is a constant A; such
that

Fi =ME;.
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By induction, we obtain that there are constants )A; such that
Fy = NEj.

This implies that {Ej;} are an orthogonal set. Note

-1
Eq = pi(p(2), p(w))es + D pi(p(2), o(w)) B de, -
k=0
We conclude that §;; = 0 for [ > 1. This gives

Ey = p1(p(2), o(w))e; + pi—1((2), p(w))dg, € M;

and dlei =0forl> 1.

Theorem 43. Suppose that ¢ is a finite Blaschke product and ¢(0) = 0. If ¢ has a nonzero

root o, then there is a function e € Lo such that d° is not orthogonal to Ly.

Proof. Assume that for each e € Lg, d° is orthogonal to Lg. We will derive a contradiction.
Since {{eZ }s,=0, ny, fk=0, & form a basis for Lo, for each e € Ly there is a vector

(U87"‘ ,USO,'-- ,ugK,--- ,ugg) e CV such that

K n;
e(z,w) = Z Z up, € (2, w).

=0 t=0

Noting that dimLy = N, we see that
€_>(u8,...7u807... uo unK)

» Yag » Yag

is a linear invertible mapping from Lo onto C'V.

Let o be a nonzero root of ¢ with multiplicity n; 4+ 1. Then

(o) = (p, kL) =0
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for 0 <t < n; and

et (a;) = (p, kai ™) # 0.

Because dY is orthogonal to Lo and {etaj H_, is in Lo, we have

_ 0 t
0 = <de7 ozj>

= ([wgpo(w)e(z, w) - we(ov ’LU)EO(Z, w)]7 63]_)

= (wgoo(w)e(z,w),eta) — <we(0,w)eo(2,w),ef1j>.

By Lemma 22,
(weo(w)e(z,w),eh,) = {[0: + Oul p(w)e(z, W) }Hmw=a,
= 2 i 0){[0= + 0]~ "e(2, ) }H=w=a,
s=0 "
Thus

(we(0,w)eg(z,w), e, ) =0

a;

for 0 <t < n;. By Lemma 22 again, we have

0 = (we(0,w)eq(z, w), etaj)

={[0. + &w]twe(o w)eo(z, w)}’z=w=aj

> o N0 (we(0,w)) ) (@;){[0: + Bu]'*eo(2,w) }omwea, (I1.12)

s=0
for 0 <t < n;. When t = 0, the above equation gives

aje(0, aj)eo(aj, o) = 0.

Noting that o;e(0, ;) = 0 is equivalent to

ZZU Ooz] =0,

i=0 t=0
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we see that there is a function e in Ly such that
aje(0, ;) # 0.
Hence eg(aj, aj) = 0. Letting t = 1, (I1.12) gives
a;e(0, a;){[0: + Ouleo(2, w) }H=w=a; + (we(0, w))(l)\w:ajeg(aj, aj) =0,

Thus

{10z + Ouleo(z, w)}H:=w=a,; = 0.

By induction we obtain

{[0: + 9w]'eo(z, W) }Hz=w=a; =0,

for 0 <t < n;. In particular,
0 = {[0: + 0uw]"eo(2, W) }|:=w=a, -
A simple calculation gives

{[az + aw]nj 60(2, w)}’z:w:aj = <607 €Z§>
= <£€0(sz)) 1>

= (Pplea) (2, w)en(z, w)], 1).
Because ey is in H*(T?) and eg(z,w) is in H, we have

Pyylea; (2, w)eo(z, w)] = Pyylea; (2, 2)eo(z, w)].
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Thus

{[0: + 0u]™eo(2, W)} emwma, = (Pplea)(2,2)eo(z,w)],1)

= <m€0(27w)7 1)
= (eo(z,w),eq’ (2, 2))

= (eo(2,0),ea’(2,2))

n; + 1)1z"
= <900(Z)7(§i%z))nj+2-

On the other hand, we also have

0 = @5 (ay)

= <9007 ka;>

_ n;lz"i
= {¥o (1 _ @jz)nj+1 ’

Combining the above two equalities gives

Hence

This contradicts that «; is a nonzero root of o with multiplicity n; + 1.

Now we can prove our main result in this section.

Theorem 44. If ¢ is a bounded analytic function in D and the multiplication operator M,

is unitarily equivalent to a direct sum of N weighted shifts, then p = cgpﬁ\v, for a constant c
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and some Mdbius transform py(z) = 12:5\);’

Proof. After multiplying ¢ by a constant if necessary, we may assume that [|[M,| = 1.
Suppose that M, is unitarily equivalent to the direct sum @film where W; is a weighted
shift. Then
dimker Mg = Z dimkerW;
i

and the essential spectrum of M, is
_ N W

Noting that W; is subnormal, we see that the essential spectrum of W; is a circle with
center 0. So Uf\ilae(Wi) is a union of circles with the same center 0. On the other hand, by
Corollary 20 [47], the essential spectrum of M, is connected. Thus UY_,o.(W;) is the unit
circle and |¢(z)| =1 on T. So ¢ is an inner function.

We claim that ¢ is continuous on D, therefore a Blaschke product. If ¢ is not so, there
is a singularity zp € T of ¢(z) where (z) does not extend analytically, by Theorem 6.6 in
[27], the cluster set of p(z) is the closed unit disk. Note that a point 7 in the cluster set of
©(z) at zp iff there are points z, in D tending to zo such that ¢(z,) converges to n. This
implies that the cluster set of ¢(z) at every point zp on the unit circle is contained in the
essential spectrum of M,,, which is a contradiction.

Now ¢ is a finite Blaschke product, after composing with ¢ a Mobius transform from
the right if necessary, we may assume that ¢(0) = 0 as in the Theorem 43.

By Theorem 42, there are N linear independent functions {e;} of Lo such that {d,,} are

orthogonal to Ly and

pi(p(2), p(w))e; + pio1(p(2), p(w))de, € H.

Also we have

pi(e(2), p(w))e; + pro1(p(2), p(w))dl, € H.

88



Thus

pi(p(2), p(w))(de, — dP,) € H.

So there are constants \; such that

de, = d2 + Nieg.

0

Since e;,° is in Ly and d., is orthogonal to Lo, we have

0 = <d€i7 ego>

= <d(e)¢7 680> + )‘i<€07 6610>.
On the other hand, Lemma 22 gives

(eo ) = {eolz,w), e§2(z, 2))
— (e0(2,0), €52 (2, 2))
= (no + 1)¢o(2),2")
= (no+ 1)1 (0) # 0,
(2, ep0) = {wpo(w)es(z,w) — wei (0, w)eo(z,w), €42 (=, w))

= (p(w)ei(z,w), €4° (2, w)) — (wei(0, weo(z, w), €5° (2, w)).
The Leibniz rule and Lemma 22 give

(p(w)ei(z, w), 630 (z,w)) = [(0: + 9uw)™ (p(w)e;i(z, w))]|z=w=0
- Z y(nzois)lgo(ﬁ(o)[(az + aw)no—sei] (0, 0)
s=0 :

=0.

The last equality follows from that 0 is a root of ¢ with multiplicity ng 4+ 1. Similarly, we
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have

(we; (0, w)ep(z, w), e(° (2, w))
= [(0; + Ow)"° (wei(0,w)ep(2, w))]| z=w=0

no

- z_% s!(nzois)!(wei(o’ W) (0)[(8s + Bw)™0e0](0, 0).

Lemmas 22 and 21 give

(0= + 0u)"™%€0](0,0) = (eo(2z,w), 5" " (z,w))
= (eo(zw), 5" (2, 2))
= (eo(2,0), 5" (2, 2))
= (po(2),(ng — s+ 1)1z"07%)

= 0

for 0 < s < ng. The second equality follows from

Py~ (2, w)eo(z, w)] = Prylep® (2, 2)eo(z,w)].
Thus
> Sl(nfjfs)!m(o, W) (0)[(8: + D)™ *e0)(0,0) = 0,
s=0
and so

(we;(0,w)eg(z, w), ey°(z,w)) = 0.

Hence we have that the constant A\; = 0. Therefore dgi is orthogonal to Lg for each i.
Noting that {ei}fi1 forms a basis for Ly we see that dg is orthogonal to Ly for each e € L.
By Theorem 43, we must have that ¢ = 2~. That is, ¢ = c<p§\v , for a constant ¢ and some

Mobius transform ¢y. The proof is complete.
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I1.8 Blaschke products of order three

Now we can prove the second main result of this chapter (Theorem 2) which is about the
structure of reducing subspaces of a multiplication operator on the Bergman space induced
by a Blaschke product of order three.

Suppose that ¢ is a Blaschke product of order three. As pointed out in section II.1, the
multiplication operator, M, on the Bergman space is unitarily equivalent to the operator,
©(B), on H. So we will only need to consider ¢(B).

First, observe that for A € D and a subspace M of H, M is a reducing subspace of ¢(B)
if and only if M is a reducing subspace of ) o p(B).

Then, observe that for u € D, ¢(B) is unitarily equivalent to ¢ o ¢, (B).

Therefore, for any two numbers A, p € D, the structures of reducing lattices of ¢(B)
and @) o ¢ o ¢, (B) are the same.

It follows from Bochner’s theorem [56], [57] that ¢ has 2 critical numbers (counting
multiplicity) in the unit disk I and has no critical numbers on the unit circle.

If ¢(2z) has a multiple critical number in the unit disk, then

@:@AOZBOS&M

for two numbers A\, p € D. Thus without loss of generality, we may assume that

In this case, it follows from the main result in [44] that ¢(B) has exactly three minimal
reducing subspaces [44]. It is obvious that for ¢ = 23, the Riemann surface of ¢! o
o over D has exactly three connected components corresponding to the three branches,
Z, ze%ﬁ‘/jl, ze3VT respectively.

If ¢ have two distinct critical numbers in the unit disk, let —c be one of them and let

A = ¢(—c), then
2 ZzZ—a

©r0 PO p(2) =2 —,
Z — az
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for some nonzero point a € D. So without loss of generality, we may assume that

In this case, by the example in [41], except for the trivial branch z, nontrivial branches

1 1

of ¢~ oy are all continuations of one another. Thus the Riemann surface of ¢~ o ¢ over
D has exactly two connected components.

To finish the proof, we only need to show that if ¢ = z2%, a € D and a # 0, then p(B)
has exactly two minimal reducing subspaces. To show this, by our Theorem 34 we only need
to show that MOL, the orthogonal complement of the distinguished reducing subspace My,
is minimal. If Mé- is not minimal, then we assume that M is a nontrivial reducing subspace
properly contained in Mé and have a third nontrivial reducing subspace, My = ./\/10L o My,
such that H = My @ M; @ M,. However, this contradicts Theorem 41, and the proof is

finished.

I1.9 Blaschke products of order four

In this section we will prove our third main result of this chapter, Theorem 3, which is about
the structure of reducing subspaces of a multiplication operator, M, on the Bergman space,

where ¢ a Blaschke product of order four. The proof consists of two parts. One part is

1

about the Riemann surface for ¢~ o over D which will be dealt with in the first subsection.

Another part is about the minimal reducing subspaces of M, which will be addressed in

the remaining three subsections.

I1.9.1 Riemann surfaces

1

In this subsection, we study Riemann surfaces for ¢=" o ¢ over . The main result is

Theorem 48.

1

We start with the Riemann surface of ¢~ o ¢ over D for any finite Blaschke product

of order N. Write ¢ = %, where P(z) and Q(z) are two polynomials. The degree of
P(z) is N and the degree of Q(2) is less than or equal to N. Observe that the multi-valued

function w = ¢t op(2) for z € D is the same as the one that is determined by the equation
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1

p(w) — p(z) =0 for z € D. Since we are only concerned with ¢~ o ¢ over D, the function

is also determined by the following equation

Q(2)P(w) = P(2)Q(w) =0

with z € D,w € D.

Denote Q(z)P(w) — P(2)Q(w) by f(z,w). Note that f(z,w) is a polynomial of z,w.
The degree of f(z,w) with respect to w is N and its degree is less than or equal to N with
respect to z. So we will only need to study the Riemann surface over I, denoted by S, for

the function determined by the equation

f(z,w) =0.

We will first describe the construction of S, by cut and paste (For general case, see [3],
[14], [26]).

Let C denote the set of the critical points of ¢ in D and F' denote the set

9071 o SO(C) - {Z17 T 72771}

with m < (N — 1)N. Then F is the set of all possible branch points and ¢~! o ¢ is an

N-branched analytic function defined and can be analytically continued to D/F. Not all

1

of the branches of ™" o ¢ can be continued to a different branch, for example z is a single

1 1

valued branch of ¢ ™" 0. The Riemann surface S, for ¢~ "o over D is an N-sheeted cover
of D with at most N (/N — 1) branch points, and is not connected.

We begin with N copies of the unit disk D, called sheets. The sheets are labeled
Dq,---,Dy and stacked up over D. Cut each D; along a piecewise smooth curve passing
through all zq,--- , 2y, and a fixed point zg on the unit circle, in such a way that ;/P is
simply connected. We may assume that P consists of smooth arcs [; connecting z;_1 to z;

for i =1,2,..., N — 1. Each [; has two edges. By Theorem 12.3 [14], N distinct solutions

93



pr(z), k=1,--- N of the algebraic equation

f(z,w) =

are holomorphic functions in D/P. Each sheet is associated with a branch. One sheet
is glued to another one along the edges of I;, i = 1,2,...,m according to the analytic
continuation from one branch to the another one, maybe the same branch. With the point
in the k-th sheet over a value z in D/ P we associate the pair of values (z, px(2)). In this way
a one-to-one correspondence is set up between the points in S, over /P and the pair of
points on the N sheets over D/ P. In order to make the correspondence continuous along the
cuts exclusive of their ends, let two regions R; and Rs be defined in a neighborhood of each
cut, for example, [;. In the region formed by R;, R2 and the cut [; between them exclusive
of its ends, the values of the algebraic function w = g(z) form again N distinct holomorphic
functions pg(z) (k = 1,---,N), and these can be so numbered that g;(z) = p;(z) in R;.
In the region Ry the functions gi(z) are the functions of the set {pg(z)} but possibly in
a different order. We joint the edge of cut bounding R; in the k-th sheet to the edge
bounding Ry in the [-th sheet, where [ is so determined that gi(z) = pi(z) in Ra. The
continuous Riemann surface so formed has the property that points in the Riemann surface
S, over non-branch points D/{z1, - ,2n} are in one-to-one continuous correspondence
with the nonsingular points (z,w) which satisfies the equation f(z,w) = 0.

We are interested in the number of connected components of the Riemann surface S,.
The following theorem implies that the number of connected components equals the number
of irreducible factors of f(z,w). This result holds for Riemann surfaces over the complex
plane (see page 78 [14] and page 374 [26]).

P(z)

Theorem 45. Let ¢ = 216 be a finite Blaschke product. Suppose that p(z,w) is a factor

of f(z,w) = Q(2)P(w) — P(2)Q(w). Then the Riemann surface S, over D for the function

defined by p(z,w) = 0 is connected if and only if p(z,w) is irreducible.

Proof. Let {z; };”:1 be the branch points of the function determined by the equation p(z,w) =

0 in D. Bochner’s Theorem [57] says that those points {z;}]2; is contained in a compact
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subset of . Cut D along a piecewise smooth curve joining all z;,j = 1,2,...m and a fixed
point on the circle. If the Riemann surface .S, is not connected, let {pi(2)}}_, be n distinct

branches of p(z,w) = 0 over D/P. Then {p;(2)}}_, are also roots of the equation

p(w) —¢(z) =0.

So they are analytic in a neighborhood of the unit circle and map the unit circle into the

unit circle.

Suppose a connected component of S}, is made up of the sheets corresponding to {p1,-- - , pn, }
(n1 < n). Let os(z1,- - ,2pn,) be elementary symmetric functions of variables xi,-- -, zp,
with degree s. Then every o4(z) = 0s(p1(2), -, pn,(2)) is a holomorphic function well-

defined on D/{z;}72; although p;(2) is defined only on D/P.
Note that p;(z) is in D. Thus o5(p1(2), -+ , pns(2)) is bounded on D/{z;}7" ;. By the
Riemann removable theorem, os(p1(2),- -, pn,(2)) extends analytic on sD for some s > 1.

Now we extend os(p1(2),- -, pn, (%)) to the complex plane C. For each z € C/D, define

1 1
fSZ =0s P .
== pm(%))

By Theorem 11.1 on page 25 [14], near an ordinary point z = a, each function p;(z) has a
power series of z — a. By Lemma 13.1 on page 29 [14], each function p;(z) has a Laurent
series of a fraction power of (z — a) but the number of terms with negative exponents must
be finite. Thus fs(z) is a meromorphic function in C'/D. Note that p;(z) is analytic and
does not vanish in a neighborhood of the unit circle and so fs(z) is analytic in ¢tD/rD for

0 <r <1<t If zis on the unit circle,

for each 7. Thus
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for z on the unit circle. So

0'5(,01(2), T Py (z)) = fs(z)'

in a neighborhood of the unit circle. Define

FS(Z) :{ 0'5([)1(2),"- ,pnl(z)) 'Lf 2eD

fs(2) if z€ C/D.
Thus Fs(z) is a rational function of z and so is os(p1(2), -, pn,(2)) in D.
Now consider the polynomial
n1
filz,w) = w™ = o1(2)w™ T e (<1) Mo, (2) = [ (w = p5(2))
j=1

whose coefficients are rational functions of z. Thus

p(Z,w) = fl(z)w)fQ(sz)

for another polynomial fa(z,w). This implies that p(z,w) is reducible.

If P(z,w) = Pi(z,w) - - Py(z,w) is reducible, the continuations of the roots, p1(z), - -+ ,
Py (2), of Pi(z,w) are always roots of Pj(z,w). Hence the set of roots permutes into itself
across the cuts, and the Riemann surface S, has k connected components, one for each of
the factors Py, --- , P,. This completes the proof.

The above theorem and its proof give the following corollary.

P(z
Q(z

—

Corollary 46. Let ¢ =

be a finite Blaschke product and

~—

f(z,w) = Q(2) P(w) — P(2)Q(w).

If

)

f(z,w) = pr(z,w)" pa(z,w)" - p (2, w

for some irreducible polynomials p, ..., pm, then the number of connected components of S,
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the Riemann surface over D for the function (¢)~1 o @, is m.

We say that two Blaschke products ¢1 and @9 are equivalent if there are two points A

and c in D such that

P1 = $X O P20 Pe.

By the same reason as in the proof of our first main result (see section I1.8), M,, and
M., share the same structure of reducing lattice.

For each A\ € D, it is easy to see that

(prop) toprop=plop

So for any finite Blaschke product ¢, the Riemann surface S, is the same as the Riemann
surface S,,0,. Hence the Riemann surface Sy, is isomorphic to the Riemann surface Sy, opog.
for any ¢ € D.

Now suppose ¢ is a Blaschke product of order four. Let A = ¢(—c) be a critical value of
© in the unit disk for some critical point —c in the unit disk. Then there are two numbers

« and 3 in the unit disk such that

pr 0 P o pe(z) = 22pa(2)pp(2).
Therefore, without loss of generality, from now on in this chapter we always assume that
p(2) = 2°pa(2)ps(2)
for some fixed «, 5 € D. The corresponding f(z,w) as in the above Corollary is denoted by
fap(z,w) = w?(w — a)(w - B)(1 — az)(1 - fz) — 2*(z — a)(z = f)(1 — aw)(1 — fw).

Theorem 47. Let o and B be in D.
(1) If both o and (B are zero, then

fap(z,w) = (w — 2)(w+ 2)(w —iz)(w + iz).
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(2) If both o and (B are nonzero, and o = 3 or o = —[3, then

fa,ﬁ(sz) = (w - Z)p(27w)Q(va)

for two distinct irreducible polynomials p(z,w) and q(z,w).

(3) If only one of a and (3 is zero, say B =0 and o # 0, then

fa,ﬂ('sz) = (w - z)p(z,w)

for some irreducible polynomial p(z, w).

(4) If both o and [ are nonzero, and o does not equal either 3 or —[3, then

fap(z,w) = (w — 2)p(z, w)

for some irreducible polynomial p(z,w).

Proof. We observe first that (w — z) is a factor of the polynomial f, 3(z,w). A long division

gives

fa,ﬂ(zaw) = (w_z)ga,ﬁ(sz)v

where

gos(zw) = (1—az)(1-B2)w® + (2 — (a+ B))(1 — az)(1 — Fz)u?

+(z = a)(z = B)(1 — (a+ P)2)w + 2(z — a)(z — ).

Clearly, (1) holds.

To prove (2), we note that if & = 3, then

gap(z,w) = [(1—az)w+ (z—a)]ww—a)(l —az)+z2(z — a)(1 — aw)].

It is routine to check that w(w — a)(1 — az) + 2(z — a)(1 — aw) is irreducible if a # 0.
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If « = =0 # 0, we also have

Japlzw) = (w+2)[(1-a")w? + (z* - a?)],

and that (1 — a?22)w? + (2% — o?) is irreducible.

To prove (3), We only need to show that g, g(2, w) is irreducible. Note that in this case

Gap(z,w) = (1—a2)w®+(z—a)(l —az)w?

+2(z — a)(1 — az)w + 22(z — ).

If we can factor g, 3(z,w) as the product of two polynomials p(z,w) and ¢(z,w) of

degree one and two respectively. We may assume that

p(z,w) = a(z)w +ao(2)

q(z,w) = ba(2)w? + bi(2)w + by(2)

where a;(z) and b;(z) are polynomials of z. Comparing coefficients of w* for k = 2,1,0 in

both sides of the equation

ga,ﬂ('Z? w) = p(Z, w)Q(Zv w)

gives

a1(2)ba(z) = (1-az), (IL.13)
a1(2)b(2) + ap(2)ba(2) = (2 —a)(1—az), (IL.14)
a1(2)bo(2) + ao(2)b1(2) = 2(z —a)(1 — az), (I1.15)
ap(2)bo(z) = 2%z — ). (I1.16)

Equation (II.13) gives that (up to a non zero constant) either

ai(z) = (1—az) or

a(z) = 1L
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If a1(z) = 1 — @z, then by(z) = 1 and equation (II.14) gives that 1 — &z is a factor of

ap(z). But equation (II.16) says it is impossible for 1 — @z to be a factor of agp(2) .

If a1(z) = 1, then ba(z) = 1 — az and equation (II.14) gives that 1 — az is a factor of

b1(z). So it follows from equation (II.15) that 1 — az is also a factor of by(z). But equation

(I1.16) says this is impossible.

To prove (4), we will show that g, g(z, w) is irreducible.

If we can factor g, g(z,w) as the product of two polynomials p(z,w) and ¢(z,w) of

degree one and two with respect to w. We may assume that

p(z,w) = a1(z)w+ ap(2)

q(z,w) = ba(2)w? 4+ bi(2)w + by(2)

where a;(z) and b;(z) are polynomials of z. Since

9o,8(z,w) = p(z,w)q(z, w),

comparing coefficients of w* in both sides of the above equation gives

a1(2)ba(z) = (1 —az)(1—p2),
ar(2)b1(z) + ao(2)b2(2) = (2 — (a4 B))(1 —az)(1 - B2),
ai(2)bo(2) + ao(2)bi(2) = (2 —a)(z—B)(1 - (a+ f)2),

ap(2)bo(z) = z(z—a)(z—p).

Equation (II.17) gives that (up to some nonzero constant) either

ai(z) = (1—az) or

a1(z) = (1—az)(1—-p3z) or

ai(z)

1.
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If a1(z) = (1 — @z), then by(z) = (1 — B2). Thus by Equation (II.18), we have

ag(2)(1 = Bz) = (1 — az)[(z — (e + B)(1 — Bz) — bu(2)].

So (1 — az) is a factor of ag(z) and hence a factor of z(z — a)(z — ) by equation (I1.20).
This is impossible.

If a1(2) = (1—az)(1—fz), then ba(z) = 1. Thus either the degree of by(2) or the degree
of by(z) must be one while the degrees of by(z) and by(z) are at most one. So the degree of

ap(z) is at most two. Also ag(z) does not equal zero. Equation (I1.18) gives

(1 —az)(1 - B2)bi(2) +ao(z) = (z — (a+ B))(1 — az)(1 — Bz).

Thus

ao(z) = c1(1 — az)(1 — B2)
for constant ¢;. But Equation (I1.20) gives
c1(1—az)(1 — B2)bo(z) = 2(z — a)(z — B).

Either ¢; = 0 or (1 — az)(1 — (2) is a factor of 2(z — a)(z — 3). This is impossible.
If a1 (2) = 1, then by(2) = (1—az)(1—Bz). Since the root w of f,, g(w, z) is a nonconstant
function of z, the degree of ap(z) must be 1. Thus the degrees of bi(z) and by(z) are at

most 2. Equation (II.18) gives

(1= az)(1 = Bz)ao(2) +bi(2) = (= — (a+ B))(1 — @z)(1 - Bz).

This implies
bi(z) = (1 - az)(1 - B2)[(z — (a + B)) — ao(2)].
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Since the degree of bi(z) is at most 2, we have

ao(2) = (2~ (a+B)) — co;

bi(z) = co(l —az)(1—pz).

Equation (I1.20) gives

[(z = (a+ B)) = colbo(2) = 2(z — a)(z = ).

Equation (I1.19) gives

b1(2)[(z — (a + B)) — co] + bo(2)

= (z—a)(z=B)(1—(a+B)2).
Multiplying the both sides of the above equality by [(z — (a + ()) — co] gives

bi(2)[(z = (a+ B)) = col® + 2(z — ) (z = B)
= [(z=(a+9)) —al(z—a)(z = B)(1 - (a + B)2).

Hence

co(l —az)(1 = B2)[(z — (a+P)) — col” + 2(2 — a)(z — B)
= [z (@+0) —al(z—a)(z = B)1 - (a+B)2).

If cg # 0, then (z — a)(z — 3) is a factor of [(z — (o + 3)) — co]?. This is also impossible.

If ¢ = 0, then

2z —a)(z = B) =[(z = (a+ B)](z — a)(z = B)(1 — (& + B)2).

This forces that & + 3 = 0 and hence a = —3. This is impossible

This completes the proof.
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Combining Corollary 46 with Theorem 47 leads to the main theorem in this section.

Theorem 48. Let o and 8 be in D, and ¢ = z290acpg. Then

(1) If both o and (3 are zero, then the Riemann surface S, has four connected compo-
nents.

(2) If both a and B are nonzero, and o = 3 or a = —[3, then the Riemann surface S,
has three connected components.

(3) If only one of a and B is zero, say B =0 and a # 0, then the Riemann surface S,
has two connected components.

(4) If both  and 3 are nonzero, and o does not equal either 3 or —f3, then the Riemann

surface S, has two connected components.

11.9.2 Reducing subspaces

Now we turn to the part about reducing subspaces. Let us state our main result in this

part as the following theorem.

Theorem 49. Let o and 8 be in D, and ¢ = 22goa<pg. Then

(1) If both o and B are zero, then M, has exactly four nontrivial minimal reducing
subspaces.

2) If both o and B are nonzero, and o« = 3 or a = —(3, then M, has exactly three

( ® Y
nontrivial minimal reducing subspaces.

3) If only one of o and 3 is zero, say 0 = 0 and o # 0, then M, has exactly two

( Y Y © Y
nontrivial minimal reducing subspaces.

(4) If both o and 3 are nonzero, and o does not equal either 3 or —f3, then M, has

exactly two nontrivial minimal reducing subspaces.

The proof of Theorem 49 is long and will be finished in Section 11.9.3 and 11.9.4 . Before
starting the proof, we make two remarks.
The first remark is that combining Theorem 48 and Theorem 49 yields our third main

result in this chapter which we restate as the following theorem.
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Theorem 50. Let ¢ be a Blaschke product of order four. Then the number of nontriv-
ial minimal reducing subspaces of M, equals the number of connected components of the

1

Riemann surface of ¢~ o @ over D.

For a Blaschke product ¢ we say that ¢ is decomposable if there are two Blaschke

products n and ¢ with degrees greater than 1 such that

o(2) =noy(z).

Recall that two Blaschke products ¢1 and @y are equivalent if there are two points A and ¢

in D such that

$1=PAO P20 Pe.

Let My(p) be the distinguished reducing subspace of M, on which the restriction of M,
is unitarily equivalent to the Bergman shift.
Our second remark is that we can say a little bit more about the reducing subspaces of

M, in terms of decomposability as stated in the following theorem.

Theorem 51. Let ¢ be a Blaschke product of order four. One of the following holds.

(1) If ¢ is equivalent to z*, then M., has only four nontrivial minimal reducing subspaces.

(2) If ¢ is not equivalent to z*, but is decomposable, i.e, ¢ = n o for two Blaschke
products n and 1 of order 2, then M, has only three nontrivial minimal reducing subspaces
Mo (), Mo (1) © Mo(p) and Mo(e)*.

(3) If ¢ is not decomposable, then M, has only two nontrivial minimal reducing sub-

spaces My(p) and Mo(p)*.

Proof of Theorem 51 by Theorem 49. As commented before, we may assume that
©(2) = 2%paps for two points «, 3 in D.

Given Theorem 49, we only need to show that, if o = no for two Blaschke products
and 1) of order 2, then « equals either 5 or —f3. To show this we may suppose that 1(0) = 0,
¥(0) = 0. Then taking derivative at 0 gives that 0 = ¢ (0) = 1 (0)¢)'(0). So either 1’ (0) = 0
or ¢ (0) = 0. n'(0) = 0 implies that o = . ¢’ (0) = 0 implies that o = —3. We are done.

Proof of Theorem 49.
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(1) If ¢ = 2*, then it follows from Theorem B in [44] that M., has exactly four nontrivial

minimal reducing subspaces My, M1, Ms, M3 such that
H=My® M; & My ® M;
and each reducing subspace is a direct sum of some M;’s. In fact,
M; = span{z*"37 .k =0,1,2,--- ,},j =0,1,2,3.

(2) If a = B # 0, then ¢ = 2202 = (2¢4)? = no with n = 22 and ¥ = zp,
which are Blaschke products of order 2, and ¢(B) = n(¢)(B)). It follows from Corollary 35
(also see the main theorem in [51] or in [58]) that ¢(B) has exactly two nontrivial minimal
reducing subspaces My and M; = Md‘. Of course, My and M; are also reducing subspaces
for ¢(B). By Theorem 33 we may assume that the restriction of (B) to it, ¥(B)|a,
is unitarily equivalent to the Bergman shift B. So the restriction of ¢(B) = n(¢(B)) to
My, n(¥(B))|r,, is unitarily equivalent to n(B). Hence by Lemma 35 again ¢(B)|as, has
two nontrivial minimal reducing subspaces Myy and My, with My = Myg & Mp; such that
©(B)| a0 is unitarily equivalent to the Bergman shift. Therefore ¢(B) has three nontrivial
reducing subspaces Mg, Mo1, and M7 such that H = Myg ® My @ M7 and the restriction
of p(B) to My is a Bergman shift. That is, My is the distinguished reducing subspace
for ¢(B). Now it follows from Theorem 41 that the each of the three nontrivial reducing
subspaces is minimal.

To prove that they are the only nontrivial minimal reducing subspaces for ¢(B), we
assume that there is another one and derive a contradiction. Observe that Lo = MyyN Lo ®
Moy N Lo ® M7 N Lo and the dimension of L is four and the dimension of My N Ly is one .
So we may assume that the dimension of My; N Lg is one and the dimension of M; N Lg is
two. If there were another minimal reducing subspace {2 other than the known three, then
first by the Theorem 34

O C My @ M;
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and then by the Theorem 40 there is a unitary operator

UZM01—>M1

such that U commutes with both ¢(B) and ¢(B)*. Therefore we would have the dimension
of My1 N Ly is the same as the dimension of M7 N Ly, a contradiction.

If a = -3 #0, then p = 22,0 _o = notp. Here n = zp,2 and 1) = 2% are also two
Blaschke product of order 2. By the same argument as above we know that in this case
¢(B) also has exactly three nontrivial minimal reducing subspaces. The proof is finished.

The proofs of (3) and (4) are long and we put them in Section I1.9.3 and 11.9.4 respec-
tively. By Theorems 52 in Section I1.9.3 and Theorem 53 in Section 11.9.4 , M, has only

two nontrivial minimal reducing subspaces.

I1.9.3 Reducing subspaces of M3,

In this section we restate item (3) of Theorem 49 as Theorem 52 and prove it. Recall that

M, is the distinguished reducing subspace of p(B) as in Theorem 33.

Theorem 52. Let ¢ = 23, for a nonzero point o € D. Then p(B) has only two nontrivial

reducing subspaces Mg and MOL.

Proof. By Theorem 34, every minimal reducing subspace other than M, is contained
in Mg . So we only need to show that Mg is a minimal reducing subspace for ((B).
Assume that Mg is not a minimal reducing subspace for ¢(B). Then by the same

argument as in Section I1.8 we may assume

such that each M; is a nontrivial reducing subspace for ¢(B), My = M, is the distinguished
reducing subspace for ¢(B) and
Mg = M; @ M.
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Recall that

¢(2) = z2¢0(2),
vo(2) = 22pa(2),
Lo = span{1, p1,p2, ka(2)ka(w)},

and

Lo = (LO N Mg) D (LO N Ml) D (L() N Mg)

We further assume that

dim(Ml N Lo) =1

and

d’im(MQ N Lo) = 2.

Take 0 # ey € My N Lo, e2, e3 € Mo N Lo such that {eq, e3} are a basis for Ma N L, then
Lo = span{eg, e1, €2, €3}
By Theorem 28 in section 11.4.3, we have

dgj = we;(0,w)eg — @(w)e;.

Direct computations show that

(0 k) = {wej(0,w)eo — p(w)e;, pr)
= (we;(0,w)eo,pr)  (by TP = 0)
= (we;(0,w)eg(w, w), pr(0, w))
= (we;(0,w)¢ (w), w®)
= (w’e;(0,w)(wpy(w) + 3pa(w)), w")
= (e (0, w)(wel, (w) + 3pa(w)), 1)

=0
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for 0 <k <2, and

<d2j, ko(2)ka(w)) = aej(0,a)ep(a, @)

ad

Oéej(o, Q)W

This implies that those functions dgj are orthogonal to {1,p1,p2}.

Simple calculations give

<607pk> =0
for 0 <k <1,
<€07p2> = <€0(07w)ap2(w’w)>
3 12
= 5@0(0)
= —3a#0
and

(€0, ka(2)ka(w)) = eo(e,a)

3

«
= 20
T—Jal2 7

By Theorem 30, there are numbers f, A; such that
dél = dgl + per + Aieg

déz = dgz + € + A2ep
dl _ dO ~
es = dey + €3+ A3€0

where €9, €3 € Mo N L.
Now we consider two cases. In each case we will derive a contradiction.

Case 1. p # 0. In this case, we get that e; is orthogonal to {1,p;}. So {1,p1,e0,€1}
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form an orthogonal basis for L.
First we show that €5 = 0. If €3 # 0, then we get that {1,p1,ep, €2} are also an
orthogonal basis for Ly. Thus

€y = ceq

for some nonzero number c. However, €, is orthogonal to e; since €2 € My and e; € M;.
This is a contradiction. Thus

di, = d2, + Aseo.

Since both d;, and d2, are orthogonal to ps and

<607p2> = —3a ;é 07

we have that Ao = 0 to get that d22 = déQ is orthogonal to Ly. On the other hand,

o

(0 ko (2)ka(w)) = aeg(O,a)W.

€2 (07

Thus

62(0, a) =0.

Similarly we get that

e3(0,a) = 0.

Moreover, since ey and eg are orthogonal to {eg, e1}, write

es = c11 + C12p1,

e3 = €21 + C22p1-

Thus

e2(0,a) = 11 + c12a = 0,

e3(0,a) = co1 + cooa = 0.
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This gives that es and e3 are linearly dependent. So we get a contradiction in this case.

Case 2. p = 0. In this case we have
di =d2 + Aieo.
Similarly to the proof in Case 1 we get that Ay = 0,
di=d L Ly (I1.21)

and

e1(0,a) = 0.

Theorem 43 in Section I1.7 gives that at least one €;, say €x # 0. Assume that é; # 0, write
€ = di, — d2, — Maeo.
Note that we have shown above that both d22 and eg are orthogonal to both 1 and p;. Thus
és L {1,p1}

and

Lo = span{1,p1, eo, €2}.

Since e; is orthogonal to {ep, €2} we have
e1 = c1 + cop1.
Noting that e1(0,a) = ¢1 + coax = 0 we get

e1 = co(—a + p1).
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Without loss of generality we assume that

e1 = —a+p. (11.22)

Letting e be in My N Lg such that e is a nonzero function orthogonal to €2, we have that
e is orthogonal to {eg, é2}. Thus e must be in the subspace span{l,p;}. So there are two

constants b; and by such that

e=1"b + bgpl.
Noting
0 = (ee1)
= —bia+ 2by
we have

b
e=5(2+ap).

Hence we may assume that

e=2+ap;. (I1.23)

By Theorem 30 we have

di = d2 + & + Aeg

for some number A and € € My N Ly . Thus

1 1
0 = <d617 de>

= (d},,dl+ &+ Xeo)

— <d1 dO

[ 8)

= (d ,d%) (by (I1.21)).

e e
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However, a simple computation gives

(d°,d = (d°,we(0,w)ey — p(w)e)

ey Ye ey

= <dg1,we(0,w)eo> (by T;(w)d(e)l:O)

= (we1(0,w)eg — p(w)er,we(0,w)eq)

= (we1(0,w)eq, we(0,w)ey) — (p(w)er, we(0,w)ep).

We need to calculate the two terms in the right hand of the above equality. By (I1.22) and

(I1.23), the first term becomes

(we1 (0, w)eq, we(0, w)eg)

= (w(—a+w)eg, w(2+ aw)eo)

= ((—a+w)eg, (24 aw)ey)

= (—aeq,2eg) + (weg, 2e0) + (—aeg, qweg) + (weg, Qweq)

= —aleg, o) + 2(weg, eg) — a?(eq, weg).
The first term in right hand of the last equality is

(eo,e0) = (eo(w,w),ep(0,w))
= <w90;] + @0, ¢0)
= (w(2wps +wp,), W pa) + (0, Po)-

= 2+ (wp,, o) + 1

= 4.
The last equality follows from

1 é -«

Po = —TZ =
a 1—aw
1 1

= ——+4+ (= —a)K

= (- ) Ka(w)
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Similarly, we have

(weg,eg) = (wep(w,w), en(0,w))
= (w(wpy + #0), po)

= a.
This gives

(weq(0,w)ep, we(0,w)eg) = (e1(0,w)eq, e(0,w)eg)
= ((—a+w)eg, (24 aw)ey)
= —2aleg, eg) — a*(eq, weg)
+2(weg, eg) + a(weq, weg)
= —8a—alal]® + 2o + 4«

= —2a—alal?
A simple calculation gives that the second term becomes

{p(w)er, we(0, w)eg)
= (po(w)er, (2 + aw)eo)
= (po(w)e1,2e0) + (po(w)er, Aweo)
= 2(po(w)er(w, w), e0(0,w)) + alpo(w)er (w, w), weo (0, w))
= 2ei(w,w),1) + afer(w, w), w)

= 2(—a+2w,1) + a(—a+2w,w) = —2a + 2a = 0.

Thus we conclude

<d21,d2> = (we1(0,w)ep, we(0,w)eq) — (p(w)er,we(0,w)eq)
= —2a-alal?
= a2+ o) £0
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to get a contradiction in this case. The proof is finished.

I1.9.4 Reducing subspaces of M., ,,
In this section we prove item (4) of Theorem 49 as Theorem 53.

Theorem 53. Let ¢ be a Blaschke product of the form ZQLpago@ for two nonzero points «
and B in D, a # B. If a does not equal —[3, then ¢(B) has only two nontrivial reducing

subspaces My and M(J)'.

Proof. By Theorem 34, we only need to show that M& is a minimal reducing subspace for
©(B) unless a = —f.
Assume that Mé‘ is not a minimal reducing subspace for ¢(B). Then by the same

reason as in Section 1.8 we may assume

such that each M; is a nontrivial reducing subspace for ¢(B), My = M, is the distinguished

reducing subspace for ¢(B) and

Ml@MQZMé'.

Recall that

Yo = 2Pa¥s,
Lo = span{1,p1, ea, s},

with eq = ka(2)ka(w), eg = kg(2)kg(w) and

Lo = (LO N Mg) D (LO N Ml) D (Lo N Mg)

So we further assume that the dimension of M; N Ly is one and the dimension of My N Ly is

two. Take a nonzero element e; in My N Ly, then by Theorem 30, there are numbers p1, A\
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such that
dil = d(e)l + pier + Areg. (1124)

We only need to consider two possibilities, p; is zero or nonzero.

If 43 = 0, then (I1.24) becomes
e, = dJ, + Aieo. (11.25)
In this case, simple calculations give

(de,.p1) = (wer(0,w)eq(z,w) —wpo(w)er(z,w), pi(z,w))
= (we1(0,w)eo(w, w) — wipo(w)er(w, w), p1(z, w))
= (wer(0,w)eo(w, w) — wipo(w)er(w, w), p1 (0, w))
= (wer(0,w)eo(w, w) — wipo(w)er(w, w), w)
= (e1(0,w)eo(w, w) — po(w)er(w, w), 1)

= € (07 0)60(0, O) - 300(0)61 (O> O) =0,
and

(eo,p1) = {eo(z,w), pr(z,w))
= (eo(z,w), p1(w,w))
= {e0(0, w), 2w)
= ({po(w),2w)
= 2wpa(w)ps(w), w)

= 2¢a(0)pp(0) = 208 # 0.
Noting that d}, is orthogonal to Lo, by (I1.25) we have that A\; = 0, and hence
0 1
de, = dg, L Lo.
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So
(dgl,eo) =0= (d,o eg).

e1?

On the other hand,

<d21,ea> = ae(0,a)ep(a, ) — agp(a)er(a, a)

= we1(0,a)ep(a, o)

and

(d2,,eq) = Pei(0,B)eo(B, B) — Beo(Ber(B, B)
= Be1(0, B)eo(B, B).

Consequently
e1(0,a) =€1(0,8) = 0. (I1.26)

Observe that eg, e; and 1 are linearly independent. If this is not so, then 1 = aeg + bey
for some numbers a,b. But e;(0,«) = 0 and eo(0, @) = 0. This forces that 1 = 0 and leads
to a contradiction.

By Theorem 43, we can take an element e € My N Ly such that
di = d2 + es + peg

with eg # 0 and e; € Ms N Lg. Thus we have that ey is orthogonal to 1 and so e is in

{1,e9,e1}* and {1,ep, e1, e2} form a basis for Ly. Moreover for any f € My N Lo,
df = d} + g+ Aeg

for some number A and g € My N Lg. If g does not equal 0 then g is orthogonal to 1. Thus
g is in {1,eg, e1}* and hence

g = cez
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for some number c. Therefore taking a nonzero element es € My N Ly which is orthogonal
to eg, we have

déQ = d22 + p2es + Aaeg,
dy, = do, + A
es — Yes H3€2 + 3€0,

and {ep, e1, ea,e3} is an orthogonal basis for L.

If po = 0, then by the same reason as before we get

A2 = 0,

4, = di, L Lo

e2(0,) = e2(0,5)

= 0.

So using

p1 € Lo = span{l,ep,e1,e2}

we have

o :pl(()?a) :pl(oaﬂ) = 67

which contradicts our assumption that o # . Hence us # 0.

Observe that 1 is in Ly = span{eg, e1, e2, e3} and orthogonal to both ey and ey. Thus
1 =cie1 +cges
for some numbers ¢; and ¢3. So

1 = 6161(0,06) +0363(0,0J)

= c1€1(0, 3) + c3e3(0, B).

By (I1.26), we have

1 = c3e3(0, ) = c3e3(0, 5),
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to obtain that c3 # 0 and

e3(0,a) = e3(0,8) = 1/c3.

If ug = 0, then by the same reason as before we get e3(0,a) = e3(0,3) = 0. Hence

w3 # 0.
0

Now by the linearality of d%.) and d(.) we have
dllt3e2—,u263 = d2382—,u263 + ('u3>‘2 - 'UJQ)‘?’)eO‘
By the same reason as before we get

p3A2 — p2Az =0

and
0 _ g1
du362—ﬂ2€3 - d,u3€2—,u263 = LO
and therefore
psea(0, ) — poes(0,a) = pgea(0,5) — puges(0, B)
= 0.

So we get

e2(0, ) = pa/pzcs = e2(0, B).

Hence

p1 € Lo = span{l,eg,e1,ea}.

This implies that

a=pi(0,a) =p1(0,8) =

which again contradicts our assumption that o # .

118



Another possibility is that g # 0. In this case, (I1.24) can be rewritten as

1

e dgl and eg are orthogonal to 1. Thus 1 is

and we have that e; is orthogonal to 1 since d
in My N Ly.

By Theorem 30, there is an element e € Ms N Ly and a number Ay such that
di = d} + e + Aoeo. (I1.27)
If e = 0 then \g = 0, and hence d) | Ly and
1=1(0,a) = 1(0,8) = 0.

So e # 0.

Since d} is in LOL , d} is orthogonal to 1. Noting that d{ and eq are orthogonal to 1, we
have that e L 1. Hence we get an orthogonal basis {eg, e1,1, e} of L.

Claim.

e(0,a) — e(0,8) = 0.

Proof of the claim. Using Theorem 30 again, we have that
di=d+ g+ e

for some g € Lo N Ma. If g # 0, we have that g L 1 since d., d?, and eq are orthogonal to

1. Thus we have that g = pe for some number p to obtain
di = d + pe + Xep.
Furthermore by the linearality of d%,) and d(()_) we have that

diﬁul = d(e)f,ul + ()‘ - /1)‘0)60'
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By the same reason (namely déful 1 Lo, d_,; L1and (eg,1) # 0) we have that

e—pl
A— /L)\o = 0,

dg—ul = di—,u L Ly

and

(e = p1)(0,a) = (e — pu1)(0, 8) = 0.

Hence we have

e(0,a) —e(0,8) = p—p=0,

to complete the proof of the claim.
Let us find the value of \g in (I1.27) which will be used to make the coefficients symmetric
with respect to o and 3. To do this, we first state a technical lemma which will be used in

several other places in the sequel.

Lemma 54. If g = g(w) € H*(T), then

(wgeo, po) = 9(0) + g(a) + g(B).

Proof. Since g = zpq43, simple calculations give

(wgpg, o) = (wg(weaps) , Wpaps)
= {g(wpapp) , Laps)
= {9(Patps + WPaPs + WPaPR), Paipp)
= {9, 1) + (wgpn, va) + (WgLs, 03)

= g(0) + (wgpy, va) + (Wgpy, ©a)
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Writing ¢, as

1 1 _q
Yo = ——+ e
a 1—aow
1 1—|af?
= —— k
&+ a a( )a
we have
/ 1— a2 ’
(WgPy, Pa) = Ol‘(wg%)(a)

= g(a)

The first equality follows from (wge,,,1) = 0 and the second equality follows from ¢, (a) =

_1
1—faf?"

By the symmetry of v and 3, similar computations lead to

(waes, s) = 9()

and the proof is finished.

We state the values of \g and (eq, €g) as a lemma.

Lemma 55.

Ao = — (11.28)

(eg,e0) =4 (I1.29)

Proof. Since d} is orthogonal to Ly, g is in Lo, and e is orthogonal to eg, (I1.27) gives

0 = <d%760>
= <d(1]+6+/\060,60>

= (d},e0) + Noleo, €o).
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We need to compute (dY, eg) and (eq, eg) respectively.

(d,c0) = (—p(w) +weo, eo)
= (weg, €g)
= (weo(w,w),en(0,w))
= (w(wpy + Po), o)
= (w2pqy, po) + (weo, o)
= (w’py, po)

= a+p.
The last equality follows from Lemma 54 with g = w.

(eo,e0) = (ep(w,w),ep(0,w))
= (wpg + Yo, Po)
= (wpy, o) + {0, o)
= (wgp, o) +1

where the last equality follows from Lemma 54 with ¢ = 1. Hence

a+B+4X =0
and
a+
Ao = — 4ﬂ

Let P, denote the projection of H%(T?) onto Lg. The element P (kq(w) — kg(w)) has

the property that for any g € Ly,

(9, Pro(ka(w) = kp(w))) = (g, ka(w) = kg(w))

= 9(0,a) = g(0, ).
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Thus Pr,(ko(w) — kg(w)) is orthogonal to g for g € Ly with

9(0,a) = g(0, ).

So Pry(ka(w) — kg(w)) is orthogonal to eg, 1,e. On the other hand,

(p1, Pro(ka(w) = kg(w))) = a=p

£ 0.

This gives that the element Pr (kq(w)—kg(w)) is a nonzero element. Therefore there exists

a nonzero number b such that
Pro (ka(w) — ks(w)) = ber.
Without loss of generality we assume that
e1 = Pr,(ka(w) — kp(w)).
Observe that

pi(p(2), p(w))er +de, € My,
pilp(2), p(w)) +di € M,

My 1 My,

to get

(P1(p(2), p(w))er + di, p1(p(2), p(w)) + d) = 0.

Thus we have

0 = (pp(z),pw))er +di  pi(p(2), p(w)) + di)

= ((p(2) + p(w))er, p(2) + p(w)) + (de, , di)

= (d

e’

db).
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The second equality follows from

dl

er?

di € kerTy .y NkerTy ).

The last equality follows from
€1 11

and

e1,1 € k‘erT;(Z) N k:erT;(z).

Substituting (II.27) into Equation (I1.30), we have

0 = <dé1,dg + e+ /\0€0>

= (d

€1

dy)
= (d¢,, —¢p(w) + weo)

= (d

er’ w60>

= (dJ, + paer + Aeo, weg)

= (d2, weq) + p1er, weg) + Ai{en, weo).

The second equation comes from that d} , 1s orthogonal to Ly and both e and ¢g are in Lo.
The third equation follows from the definition of d(l) and the forth equation follows from

e, > Weq), (e1,wep), and (ep, weo)

that df, is in kerT;(Z) N k:eTT;(w). We need to calculate (d?
separately.

To get (d2,, wep), by the definition of dY , we have

<d217we0> = (—p(w)er +wei(0,w)eg, wep)

= (—p(w)er, weo) + (wei (0, w)eo, weo)
Thus we need to compute (—p(w)e;, wep) and (we; (0, w)eq, weg) one by one. The equality
<_80(w)€17we0> =0
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follows from the following computations.

(—p(w)er,weg) = (—wpo(w)er, weo)
= —({po(w)ei, eg)
= —{po(w)er (w, w), €9 (0, w))
= —{po(w)er(w,w), po(w))
= —(ei(w,w),1)
= —(ey,1)

= 0.
To get (we; (0, w)eq, wep), we continue as follows.

(we1 (0, w)eo, weg) = (e1(0,w)eo, eo)
= (e1(0, w)eo(w, w), e0(0, w))
= ({e1(0, w)eo(w, w), po(w))
= (e1(0,w)(iwo(w) + wipg(w)), o (w))
= {e1(0,w)po(w), o(w)) + {e1(0, w)wipg (w), o (w))
= (e1(0,w), 1) + {e1 (0, w)wigy (w), po(w))
= €1(0,0) + {e1 (0, w)wig (w), po(w))
= {e1,1) + (ex(0, w)wipy(w), po(w))
= (e1(0, w)wipy(w), po(w))

= 61(07 Oé) + el(oaﬂ)'
The last equality follows from Lemma 54 and

€1(0,0) = {e1,1) = 0.
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Hence
<dgl ) ’U)€0> = 61(07 Oé) + 61(0, ﬁ)

Recall that

d%:d?—i-e—'—/\oeo

is orthogonal to Ly and e; is orthogonal to both e, and ey. Thus

0 = <61, dcl) +e+ )\060)
= (e1, —p(w) + weo)

= (e1,wep).
From the computation of (d,eg) in the proof of Lemma 55 we have showed that
(weg, e0) = a+ .
Therefore we have that
e1(0,a) + e1(0,8) + M (a+ 3) = 0. (I1.31)
On the other hand,

0 = (di1760>
= (d9, + pe1 + Areo, €o)

= (2, eq) + 4N\
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and

(e e0) = (—p(w)er +wei (0, w)eo, eo)
= (we1(0, w)eo, eo)
= (wer(0,w)eo(w, w), e9(0, w))
= (we1(0,w)(o(w) + wep), po(w))
= (w’e1(0,w)py, po(w))

= aei(0,) + Bei(0, 8).
The last equality follows from Lemma 54 with g = we; (0, w). Thus
aei(0,a) + Per(0,5) +4X = 0.
So

e1(0,a) — —e1(0, B). (I1.32)

1= MO 0,00+ 10 - 2O D0, < 0
Recall that
>\0 = _a 1_ ﬁa
to get
(14 Aoa)er (0, @) + (1 + AoB)er (0, 5) = 0. (I1.33)

We are going to draw another equation about e;(0, ) and e;(0,3) from the property
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that dél is orthogonal to Lg. To do this, recall that

e = PLO(k‘a(’w) — k‘ﬁ(w)) € M; N Lg,
dél = dgl + prer + Aeg L Lo,
LO - Span{lvpheoneﬁ}?

ca = ka(2)ka(w),ep = kg(2)kg(w).

Thus d}jl is orthogonal to p1, e, and eg.

Since dél is orthogonal to p; we have

<d21>p1> + pifer, p1) + Ai{eo, p1) = 0.

Noting

(d,p1) = (—p(w)er +wei(0,w)eq,pr)
= (we1(0,w)eq, p1)
= (we1(0,w)ep(w, w), w)

= (e1(0,w)ep(w,w), 1)

= 0,

(e1,p1) = (Pro(Ka(w) — Kg(w)), p1)
= <Ko¢(w) - K/@(ﬂ)),pﬁ
= a-p,
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and

(eo,p1) = (eo(0,w), pr(w,w))
= ({po(w), 2w)
= (wpaypg,2w)
= 2(papp, 1)
= 2¢a(0)pp(0)

= 2af,

we have

(@— B)p +2a8M =0,

to obtain

a-p

Al =— . I1.34
1= g (I1.34)

Since di, L eq, we have

<d21? €a> + p1 <61> ea) +A\1 <607 ea) = 07
to get
0 a—p

(de,»€a) + p1(e1, ea) — “1W<60’ eq) = 0. (I1.35)

We need to calculate (d2, eq), (€1,€q) and (eq, €5). Simple calculations show that

(dgl,ea> = (—p(w)er +we1(0,w)ep, €q)
= (we1(0,w)eq, €q)

= ael(0> Q)GO(aa Oé),
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(e1,60) = ei1(a,a)
= (Pro(ka(w) — kg(w)), €a)

= (ka(w) — kpg(w), ea)

1 1
- 1-a2 1-ap
a(a—p)
_ _ (I1.36)
(1= le?)(1 = ap)
and
(0, €a) = eo(, ) = apy(a) + po()
1 _
= o2 a=b (IL.37)
1—|af?1-aB
Thus (I1.36) and (I1.37) give
er(a,a)  a— Jé]
eo(a, )  ala—p)
Substituting the above equality in Equation (I1.35) leads to
(0, cea(ar ) + prer(a, ) — i = Leg(a,0) =
ae\Y, a)egla, & mie(a, o H1 203 e\, ) =
Dividing the both sides of the above equality by eg(a, ) gives
e1(a, @) a—f
0 — = 0.
Hence we have
a—p a—p
0 — =0,
to obtain
o (5 — 5
aer(0,0) + (B4 2g) 2O =P) (I1.38)

af(a—p)
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Similarly, since dél is orthogonal to eg, we have

to obtain

{

We need to calculate (

Combining (I1.40) with (I1.41) gives

(d2,,eg) + p{er, eg) + Mileo, eg) =0,

dO

€1

dO

€1

{

a— 3
7€B> + Ml(el,e@ - mﬁ(@o,%) =0.

(I1.39)

,eg), (e1,eg) and (eg, eg). Simple calculations as above show that

d(e]l Y eﬂ)

<61765>

(—p(w)er + wer (0, w)eo, €5)
(we1 (0, w)eo, ep)

Be1(0, B)eo(B, ),

e1(8, )

(Pro(ka(w) = kg(w)), es)

(ka(w) — kg(w), es)
1 1
1-aB 1-|p?
B(a - B)
(1—aB)(1—18?)

(eoreq) = eo(B,8) = Beo(B) + wo(B)

B s B—« 1
a Bl—@ﬁl—lﬁIQ
61/876):_ O_C_B
eo(8, B) Bla—p)
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Substituting the above equality in (I1.39) gives

a—p
2a8

561(055)60(576)+/‘Llel(ﬂaﬁ)7:“’1 eo(ﬁvﬁ) =0.

Dividing both sides of the above equality by eo(3, 3) gives

(7) d_B

el(B,p .y _0
eo(8,8) "' 208

Be1(0, B) + p1

Hence we have

to get

2um (e — )

ﬁel(oaﬁ> - (a+ A0) Oéﬁ(Oé — /3)

= 0. (I1.42)

Eliminating 25 61((5__5)) from (I1.38) and (I1.42) gives

ala+ Ao)e1(0,a) + B(B + No)er(0,3) = 0. (I1.43)

Now combining (I1.33) and (I1.43), we have the following linear system of equations

about e1(0, ) and e1(0, 3)

(14 Xoa)e1(0, ) + (14 AgB)e1(0,3) =0

ala+ Ao)e1(0,a) + B(B + No)er(0,3) = 0. (I1.44)

If

e1(0,a) = €1(0,5) =0,

then py is in Ly = span{ey, e1,1, e}. But noting

e0(0, ) = e0(0, B)
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and

e(0, @) = (0, )

we have

pl(ov a) - p1<07ﬁ)7

which contradicts the assumption that o # 5. So at least one of e;(0,«) and e1(0,3) is
nonzero. Then the determinant of the coefficient matrix of System (I1.44) has to be zero.

This implies

1+ 5\00[ 1+ S\Oﬁ
ala+ X)) BB+ )

Making elementary row reductions on the above determinant, we get

(a—B)Ao 14 Xof3
(a=B)a+ B+ ) B(B+ )

Since
a+pB=—-4X
and
a — B # 07
we have
Ao 14 Xof3

—3X0 B(B+ Xo)
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Expanding this determinant we have

0 = Xo(B%4 BAo) +3Xo(1 + M)
= Xo(B%+ 8o+ 38X) +3Xo
= Xo(B%+46X0) + 3Xo

= 5\0(_06/8) + 3A0

Taking absolute value on both sides of the above equation, we have

0 = |(—afB)+ 3
Z [dol(3 —laBl)
> 2|,
to get
Ao = 0.
This implies
a+f=0,

to complete the proof.
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CHAPTER III

M-BEREZIN TRANSFORMS

III.1 m-Berezin transforms

In this section we obtain some useful properties of the m-Berezin transform. First we give

an integral representation of the m-Berezin transform B,,(S). For z € B and a nonnegative

integer m, let
1
(1 = (u, z))ym+nt1’

K" (u) = u € B.

For u, A\ € B, we can easily see that

Z Con gt = (1 = (u, \))™.
|k|=0

Proposition 56. Let S € £(L2), m >0 and z € B. Then

ByuS(2) = Cn(1 = |t x

//(1—(u, AN KT (u) K7 (M) S* Ky (u)dud.
BJB

Proof. For A € B, the definition of B,, implies
BuS(z) = S Cru <SzAk,Ak>
|k|=0

=P Y o [ SRR
|k|=0 B

=yt 3 k U * u)du
—cr WZ:OOm,k /B /B () () FE O (N 5 Rox (@) dud

(I11.1)

(I11.2)

where the last equality holds by S(p%k.)(A) = (S(¥k.), K)) = (¢%k., S*K)) . Using (I11.1)
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and (I.1), (II1.2) equals

cptn /B /B<1 — {p2(u), 02 (N) ™k (u) o (A S* Ky () dud A

m/(n+1)
_om+ //( o > F (NS o () dud)

— OMHn(] — |o|2)mtnt / AR () K () S*F » (u) dud\
BJB

as desired.

The next proposition gives another form of B,,.

Proposition 57. Let S € £(L2(B)), m >0 and z € B. Then

BuS(z) = C (1 — 2™ S G <S(ukK?),ukK?>. (IIL.3)
|k|=0

Proof. Since

[ [ 0= ) R RE S R (i dudy
BJB

— Z cmk// N K™ (1) K (X)S* Ky (u) dud\

Ik’l 0

— Z cmk/ SWF K™ (W)ARKT(N)d,
k=0

Now (IIL.3) follows from Proposition 56.

For n = 1, the right hand side of (III.3) was used by Suarez in [49] to define the
m-Berezin transforms on the unit disk.

Recall that given f € L>, By,(f)(2) is defined as By,(T)(z). The following proposition
gives a nice formula of B, (f)(2). Let dvp,(u) = CT (1 — |ul?)™du.

Proposition 58. Let z € B and f € L*°. Then

- /B £ 0 o (u)dvm ().
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Proof. By the change of variables, Theorem 2.2.2 in [38] and (III.3), we have

/B f 0 0. (u)dvin(u)

e o (S ()

= o1 |o)? m+“+120mk / £ ) 2 K () Pl

\k\ 0

= O (L= Y O (T KDY AR) = Ba(T5)(2)
Ik|=0
The proof is complete.
The formula in the above proposition was used in [1] to define the m-Berezin transform
of functions f.
Clearly, (1.2) gives ||BpnS|lee < C(m,n)||S:|| = C(m,n)|S|| for S € £(L2%). Thus,
By, : £(L%) — L™ is a bounded linear operator. The following theorem gives the norm of

By,.

Theorem 59. Let m > 0. Then || By = Cm+"z|k| —01Cm k] n’i%

Proof. From [15], we have the duality result £(L2) = T*. So, the definition of By, gives the

norm of B,,. In fact,

- nlk! uF uF
1Bmll = ||Ca™ > Cok ®
Z_: (n = RN [u®]| [l
|k|=0 o
nlk!
Cm-{—n Z | mlc|
2 1O Gy
as desired.
The M&bius map ¢, (w) has the following property ([38]):
£L(0) = —(1 = |2) P — (1 = |2])'/?Q.. (IT1.4)

To show that m-Berezin transforms are Lipschitz with respect to the pseudo-hyperbolic

distance we need the following lemmas.
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For z,w € C", z&w on C" is defined by (z@w)\ = (A, w)z.

Lemma 60. Let z,w € B and A = p,(w). Then

Pl(w) = (1= (X, 2))(I = A&2)[L(0)] .

Proof. Suppose that P, and @, have the matrix representations as ((P;)i;) and ((Q:)ij)

under the standard base of C", respectively. In fact,

if z#0.

Noting that
2 — (Paw); — (1= [2])*(Q.w)s

fi(w) = T (w.2) :
we have
aii(w) = (z; — (Pyw); — (1 — |Z|2)1/2(sz)i)2j B (Py)ij + (1 — ’z‘2)1/2(QZ)U
! (1= (w,2))? 1 (w,2)
_ _fitwz (P + (= ) 2(Q0)y
1—<w,z> 1—<w,z> )

Let A = ¢.(w). The above equality becomes

Xizj — (Po)ij + (1= |2)Y2(Q2)i))

aij(w) =

1 —(w,z)
Thus
A&z — (P + (1 — |z]H)Y2Q,
o) = A2 (P (1= P)Q)
1—(w,z)
From Theorem 2.2.5 in [38], we have
1 1—(\2)

1—{(w,z) 1—|z2°
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Thus (II1.4) implies

—(1— [2P)A®z + (1 — [P + (1 — |2*)Q-
1—(w,z)
(1 —|z2) (= &z + 1)
1 —(w,z)

=(1-(\2){I - A\®2)

@. (W)@, (0) =

where the first equality follows from P,Q), = Q.P, =0, P,z = z, and ),z = 0. The proof

is complete.

Lemma 61. Suppose |z| > 1/2 and |w| > 1/2. If |p,(w)| < € < 1/2, then
[P, — Pyl| < 50e(1 — |2[})'/2.

Proof. First we will get the estimate of the distance between z and w. Since |p,(w)| < e <

1/2, w is in the ellipsoid:

P a2 2
|P.w — | +|sz‘ <1)

2,2 2

B) = B :
¢.(eB) ={w e 2p Zp

with center ¢ = % and p = % Noting that |z| > 1/2 and ¢ < 1/2, we have

p < 2(1—]z/%). Thus
Q:w’ < €p<22(1—|2°),  |Paw—c| <ep<2e(1—|2]%)

and

So, we have

|Pow — 2| < |Pow —¢| + |z — ¢ < 3e(1 —|2)?).

Because I = P, + @), and P,Q, = 0, writing

(z_w):Pz(Z_w)+Qz(Z_w)v
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we have

|z —w|> = |P.(z — w)[ + 1Q=(z — w)
= ‘Pzw - 2‘2 + ‘sz’2

< 11641 — |2%).

Noting that

we have

~z o w . (z—w) 1 1 .
& + = ® + (g — g | w| Sw,
1T A 1 N 1 EIR
to obtain

z—wl | 20z —w| [l = w]?

1P = Pl <
ol 2] E |22

< 2|z —w| + 4|z — w| + 8|z — w|
< 14V11e(1 — |22)/?

< 50e(1 — |z|?)1/?

where the last inequality holds by (IIL.5).

For given z,w € B, set A(z,w) = —(1 — |2|*) Py — (1 — |2|2)/2Qu.

Lemma 62. Suppose |z| > 1/2 and |w| > 1/2. If |p,(w)| < € < 1/2, then
l92(0) = A(z, w)|| < 150€(1 - |2[*).

Proof. Using (I11.4), we have
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l92(0) = A(z W) = [I(L = [2*) (P — P.) + (1 = [2[)/2(P. = Pu)|
< 3(1— |21 2P, — Pull

< 150€(1 — |2]?)

where the last inequality follows from Lemma 61.

Let 4(n) be the group of n x n complex unitary matrices.

Lemma 63. Let z,w € B. Then U,U,, = ViyU

ow(z) Where

Vo f(u) = f(Uu)detU
for f € L2 and U = @, (,) © ©uw © . satisfying
a ‘Pw( )
[T+ U < Cn)p(z,w).

Proof. The map ¢, (2) © pw © - is an automorphism of B that fixes 0, hence it is unitary
by the Cartan theorem in [38]. Thus ¢y, 0 v, = ¢, (») o U for some U € U(n). Since ¢y, is

an involution, we have

U.Uwf(u) = (fopwop:)(u)Jpw(p:(u)Jp:(u)
= (fovu,)(Uu)Jouw(Pw 0 @y, (z) (Un))
Jouw (P, () (U1) J @y, (2) (Uu)detU
= (f 0 @pu () (Uu)J @y, () (Uu)detU

= WU, w(z)f(u)

Now we will show that

11+ Ul < C(n)p(z, w).
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Noting that U is continuous for |z| < 1/2 and |w| < 1/2, we need only to prove
I+ Ul < 20000p(z, w),

for |z| > 1/2, |w| > 1/2 and |pu(2)] < 1/2. Let A = ¢u(z). Then || = p(z,w) and
z = pw(A). Since

w0 pz(u) = pA(Uu),

taking derivatives both sides of the above equations and using the chain rule give

Pl (9=(1)) % (1) = QA (Unu)U.

Set u = 0, the above equality becomes

U = [A(0)] " ey, (2)2(0).
By Lemma 60, write

U+1=[p5(0)] 7 (1 = (A w)(I = A&w)[,(0)] 1 (0) + 1
= [2A0)] 711 = (X w))(I = A&w) [, (0)] 7' (0) — A(z, w)]
+ (LA 0] 1 = A w)) (I = A&w)[¢l, (0)] 7' Az, w) + 1)

=11 + I.
By Lemma 62, we have

Il < 1@ ()] = (A w) I = A&wll [, (0] 112 (0) — Az, w)l]

<4x2x2x 150|A|(1 — [2)] -

T |
(1= |wl?)
Theorem 2.2.2 in [38] leads to

L I Sl
L—fwl? 1= (A w)*
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Thus
I11]] <4 x2x2x3x2x 150/\| = 14400]|A|.

Also, we have

(1 22112 1o
1——7 | <|1- < 32|\].
A=) <P T | <32
Hence, we get
Lol (- e
I — — < 32| \|.
T Tl ™~ (T )z Qe < 32

On the other hand, clearly,
A+ I < 4IAL 11— (Aw)) = 1] < A

and

I = A&w) — || < [Al.

These give
1+ [P35 (0] 7L = (X w)) (I = Adw)]| < 16]A].

Hence, we have

2] < llph ()] 711 = (A, w) (I = A&w)[¢l, (0)] T Az, w)
— [P 1 = (A w) (I = A&w)|
A7 = (A w) (I = A&w) + 1]

1 — |22 _[]2)1/2
O e P T T
TP T w )

< IO @ = (L w))(I - Adw)|

+ 16|

<4 x 2 x2x 32|\ + 16]|A| < 600|A|.

Combining the above estimates we conclude that

|U + I|| < 14400|A| + 600|A| < 20000]A|.
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Theorem 64. Let S € £(L2(B)), m >0 and z € B. Then B,,S, = (BnS) 0 ¢..

Proof. Proposition 57 and (1.2) give

BuS.(0) = Cpt 3 G (St ) = BuS(2) = (Bn) 0 0:(0).
|k|=0

For any w € B, Proposition 56 and Lemma 63 imply

(BmSz) © ¢uw(0) = Bim((S2)w)(0)

=y / / (1 — (u, \))™ U U, S*U, Uy K\ (u)dud\
BJB

=Cpr /B /B (1= (u, \))"™VoUs. (1) S* Uy, (1) Vi K x (w) dud A

= By, (w)(0)

where V7 is in Lemma 63. Thus, B,,S.(w) = (B;,S) o ¢.(w).

Lemma 65. Let S € £(L2(B)), m > 1 and z € B. Then

Bn,S(z) =

m+n =
— B (s > TMST(%)Z) (2)
1=1

where (¢,); 1s i-th variable of ¢,.

Proof. By Theorem 64, we just need to show that

B, S(0) = m;: " B (S - ZTWSTM> (0).

=1
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Using Proposition 56 and (III.1), we get

BnS(0) = Cmtn /B /B (1 — (u, \))™S* Ky () dud

n m-—1

S0 =S Y O / / u b NES R (@) dud
m i=1 |k|=0 BB
n m-—1
- m; " Bine150) = € ST ST Cri / S (k) (N M
i=1 |k|=0 B
n m-—1
_ Mg 5(0)— > Cori <STui (uF), T, (uk)>
m
i=1 [k|=0

as desired.

For m = 0, the following result was obtained in [18].

Theorem 66. Let S € £(L2(B)) and m > 0. Then there exists a constant C(m,n) > 0
such that

[BnS(2) = BmS(w)| < C(m,n)|[S]p(z, w).

Proof. We will prove this theorem by induction on m. If m = 0, (1.2) gives

|BoS(2) — BoS(w)| = [tr[S.(1 ® 1)] — tr[Sw(1 ® 1)]|
= |tr[S.(1® 1) — SU,(1 ® 1)U,]|

= |tr[S.(1® 1) — SU,(U,U,1 @ U,U,1)U,]|
From Lemma 63, the last term equals

[tr[S:(1® 1 = Uy, 1 @ Uu, DIl S IS:I1 @1 = Uy 1 ® Uy, ()11
< V2|IS.01(2 = 2(1, Ey, ()]
=2[|S|I[1 = (1 — |puw(z)|?)"T1]/2

< C()[Sllpw(2)|

where the second equality holds by ||T||c1 < VI(tr[T*T])"/? where [ is the rank of 7.
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Suppose |By,—15(z) — Bp—1S(w)| < C(m,n)||S||p(z, w). By Lemma 65, we have

[BmS(2) = BmS(w)|

m-+n

< |Bin-15(2) — Bin—1S(w)|

m +n Z ‘Bm ) ( ST(«pz)l) (2) — Byt (T@STW’“W) (w)‘ )

Since the term in the summation is less than or equals

Bt (T35, ) (2) = Bt (TyiSTivn), ) (2)

| Bt (TmiTip, ) () = Bt (ToyST(e, ) (2)]

it is sufficient to show that

Bt (T35, ) (2) = Bt (TiyiSTio0), ) ()] < Clmym) S p(zw).

Lemma 63 gives

Bt (T STl ) )

-1 nlk! uF u®
=Gt fr {( ST, l;ﬁ e R T o]
< gmn-1 (ITL6)
Uk uk
: Z |Cn— 1k| |k|) <SZT(50z)ZO<Pz|| Tk (@z)'—(@w) )O¢z||uk||>’
[K1=0
k
u
< Olm, MIS | Tieori—ownon: o (LIL7)
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Let A = ¢y (z). Then

/ (02 0 92)i(u) — (0 © 2)i () P

= [ 1w = @)

< 2/3 ‘(UU)Z + uz| + |u; + (QD)\(U))Z“Qdu

HT«%) ~(pw))op: |uk||

where ¢, 0 @, = ) o U for some U € (n).

Noting that

A= (u, Nu+[1 = (1= [AP)7*]Qx(u)
- <u7 )‘> ’

oa(u) +u=
we have that for |\ < 1/2,
o) +ul < 2071+ A + A1) < 61Al
By Lemma 63 we also have
100+ wPau= [ (U + Du)Pau < €U + 11 < O,
Thus (II1.6) is less than or equal to
C(m,n)||S:|[B6|AI” + CIAP]Y2 < C(m, ) |IS]| A

The proof is complete.

Lemma 67. Let S € £(L%(B)) and m,j > 0. If |S*K\(2)| < C for any z € B then
(BmBj)(S) = (BjBm)(S5)-

Proof. By Theorem 64, it is enough to show that (B,,B;)S(0) = (B;Bp,)S(0). From Propo-
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sition 58, Proposition 56 and Fubini’s Theorem, we have

Bm(B]S) (0) = Bm(TBjS)(O)

— on / B;S(2)(1 — |#[?)"d=

Cm+ncj+n/ // m+]+n+1( — (u, /\>)j><

K9 (u)KL(\)S* Ky (u)dud\dz

Cm-l—noj—l-n// 1_ u )\ /( _|Z|2)m-i-j—i-n—|—1><

K (u)KL(\)dzS* Ky (u)dud.

Let

Finj(u, A) = (1= (u, AW/ (L= [2*)™ 9 i () KL (V) dz.
B
Then F, j(u,\) = S\, H;(u)G;(\) where H; and G; are holomorphic functions and for
some [ > 0. Thus, from Lemma 9 in [17], we just need to show F, j(A, A) = F} (A, A) for
A € B. The change of variables implies
Fn (A A) = (1= \/\\Q)j/B(l — |2 R (2) P
=1~ |/\|2)j/B(1 — A=) P) K (0a(2)) PR (2) Pz
=(1- |>\|2)m/ (1= [y KR (2)Pde
B

= Fjm(\A)

as desired.

Lemma 68. For any S € £(L2(B)), there exists sequences {S,} satisfying
[Se K (u)] < Cla)

such that By, (Sa) converges to By, (S) pointwisely.

Proof. Since H* is dense in L2 and the set of finite rank operators is dense in the ideal K
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of compact operators on L?, the set {22:1 fi®gi: fi, gi € H>®} is dense in the ideal K
in the norm topology. Since K is dense in the space of bounded operators on L2 in strong
operator topology, (IIL.3) gives that for any S € £(L2), there exists a finite rank operator
sequences S, = 22:1 fi ® g; such that B,,(S,) converges to B,,(S) pointwisely for some
fi, gi in H®. Also, for [ > 0, for such S, = Zi‘:l fi ® gi, we have

l

Z(Qi ®@ fi)Kx(u)
I

> (Ka(w), fi(w)) gi(w)

=1

l
< 1A lgiw)
=1

[Se N (u)] =

!
<3 fillsollgillee < C.

i=1
The proof is complete.

Proposition 69. Let S € £(L2(B)) and m,j > 0. Then
(BmBj)(S) = (Bij)(S)'

Proof. Let S € £(L?). Then Lemma 68 implies that there exists a sequence {S,} satisfying
|SEKy(u)| < C(a), hence By, (BjSa)(z) = Bj(BmSa)(z) by Lemma 67. From Proposition
58, we know

Bun(B;Sa)(2) = /B (B;Sa) o (u)dvin(u)

and [|(B;jSa) 0 ¢:llee < C(4,n)||S]|. Also, (BjSa)o¢.(u) converges to (B;jS) o, (u). There-
fore B,,(B;jSa)(%) converges to B,,(B;S)(z). By the uniqueness of the limit, we have
(BmBj)(S) = (Bij)(S)'

Proposition 70. Let S € £(L2) and m > 0. If ByS(z) — 0 as z — OB then B;,,S(z) — 0
as z — 0B.

Proof. Suppose ByS(z) — 0 as z — dB. Then we will prove that S, — 0 in the T*-norm

as z — OB. Suppose it is not true. Then for some net {w,} € B and an operator V # 0
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in £(L2), there exists a sequence {9, } such that S,, — V in the T*-norm as w, — 0B,
hence tr[S,, T] — tr[VT] for any T € T. Let T = k) ® k), for fixed A € B. Then Theorem

64 implies

tT‘[SwaT} = tT[Swa(k)\ ® k)\)]
= (Swakr, kx)

= (BoS) © pw,(A) = 0

as wo — 0B. Since tr[VT] = BoV(\) and By is one-to-one mapping, V' = 0. This is the
contradiction. Thus S, — 0 as z — 0B in the T"-norm. (I.2) finishes the proof of this

proposition.

IT1.2 Approximation by Toeplitz operators

In this section we will give a criterion for operators approximated by Toeplitz operators with
symbol equal to their m-Berezin transforms. The main result in this section is Theorem
77. It extends and improves Theorem 2.4 in [50]. Even on the unit disk, we will show an
example that the result in the theorem is sharp on the unit disk.

From Proposition 1.4.10 in [38], we have the following lemma

Lemma 71. Suppose a <1 and a+b<n+ 1. Then

sup

/ dX e
cesJp (L=PAP) = (A2

This lemma gives the following lemma which extends Lemma 4.2 in [33].
Let 1 < ¢ < oo and p be the conjugate exponent of ¢. If we take p > n + 2, then

g<(n+2)/(n+1).

Lemma 72. Let S € £(L2(B)) and p > n + 2. Then there exists C(n,p) > 0 such that
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h(z) = (1 —|z|*)~® where a = (n +1)/(n + 2) satisfies

/B [(SK2)(w)|h(w)dw < C(n, p)||S:1]ph(2) (ITL.8)

for all z € B and

/B [(SK:)(w)[h(2)dz < C(n, p)|[Sy1lph(w) (IL.9)

for allw e B.

Proof. Fix z € B. Since
U1l = (_1)n(1 o |Z’2)(n+1)/2Kz,

we have
SK, = (—1)"(1 — |z>)~("*V/250,1

= (1" (1~ |2) "YU, 5.1

= (1 - |2[*)~"D2(S.10 p.)k..

Thus, letting A = ¢, (w), the change of variables implies

[(SK.)(w)| (521 0 2) (w)| |k (w)]
d
/ 1—|w| dw = <1—|z\ ) D)/2 (1— [wP)e v

[S:1(V)]
T - IZ\ ) /B(l—w 2)e[1 — (A, z)[nF1-2a

1

1S:1]lp (/ 1 a

< dr | .
> (1 — ’2‘2)(1 B (1 _ ’A|2)aq’1 _ <)\7 Z)’(n—l—l—Qa)q

The last inequality comes from Holder’s inequality. Since ag < 1 and ag+ (n + 1 —2a)q <

dA

n+ 1, Lemma 71 implies (II1.8).
To prove (II1.9), replace S by S* in (II1.8), interchange w and z in (II1.8) and then use

the equation

(S*Kw)(z) = <S*Kw7Kz> = <Kwa SKZ> = Sil(z(w) (HI.lO)
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to obtain the desired result.

Lemma 73. Let S € £(L2(B)) and p > n +2. Then

1/2 1/2
15 < Clnp) (sup \|5z1|p> <sup ||s;u|p)
z€B ze€B

where C'(n,p) is the constant of Lemma 72.

Proof. (II1.10) implies

(SF)(w) = (Sf, Kuw)

= [ f(2)(5*Ku)(2)dz
B

— [ s@sK Wiz
B

for f € L2 and w € B. Thus, Lemma 72 and the classical Schur’s theorem finish the proof.

Lemma 74. Let S,, be a bounded sequence in £(L2(B)) such that |BoSm|le — 0 as

m — o0o. Then

sup [((Sm):1, f)| — 0 (I11.11)
z€B

as m — oo for any f € L2(B) and

sup |(Sm)z1] — 0 (II1.12)
z€B

uniformly on compact subsets of B as m — oo.

Proof. To prove (II1.11), we only need to have

ilelg ‘<(Sm)zl,wk>) —0 (III.13)

as m — oo for any multi-index k.
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Since

|
K(w)=Y" ntlalla e, (IT1.14)
we have

BOSm( z()\)) = BO(Sm)z()‘)

! s
ey Y Ul ”;,Lf')«sm)zwa,w% %

la|=08]=0

where «, 3 are multi-indices.

Then for any fixed k and 0 < r < 1,

BoSm (02 (M)A

rB (1_’)" n+1

- Z Z ”*‘O‘j" ”Tzﬁ!ﬁ‘)! ((Sm)zw,w) /TBAaJrk)\ﬁd)\

dX

laf=08|=0
= 2+ 20k (<( >+|§|:1 n:‘(‘;ﬂ < m)zwa,wa+k> 7“20‘) :
Since S, is bounded sequence, we have
(5001
BoSm(p=(A)A"

dA| +

v (1= AR

o0
n + |al)! o o o
i TR TR TSR

] nla!
ol=

MF| >
< -2k / | A\ 2al
A H OSmHoo B (1 — ’)\|2)n+l +C Z L

laf=1

hence, by assumption

lim sup sup | <(Sm)zl,wk> | <C i e,

m—oo z€B la|=1
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Letting r» — 0, we have (III.13).

Now we prove (II1.12). From (II.14), we get

|(Sm) LA = [((Sm) =1, K |

e n + |al)!
< >0 O 1w
|a|=0 o
— (n+a])! n+|a|
< Y NS )L ) \+Z 1S [0 | |A]
|a|=0 o la|=l

for z € B, A€ rB and [ > 1. Since the second summation is less than or equals to

1/2

X ()N N J e
S (U)X (5) wre | S e
J=l la|=j Jj=l la|=3
(n+7)! 5
nlj!

"&8

for any € > 0, we can find sufficiently large [ such that the second summation is less than e.

Thus, (II1.13) imply sup,cp [(Sm)-1| — 0 uniformly on compact subsets of B as m — occ.

Lemma 75. Let {S,,} be a sequence in £(L2(B)) such that for some p > n+2, || BoSm|loo —
0 as m — oo,

sup [[(Sm)-1ll, <€ and  sup||(5;,):1ll, < C
zeB zeEB

where C' > 0 is independent of m, then S,, — 0 as m — oo in operator norm.

Proof. Lemma 73 implies
1/2 1/2
1500 < Clonp) (sup I(Sw:ly) - (supl(S50.10,) < Clonp)
z€B z€EB
hence, Lemma 74 gives
sup [(Sm):1] — 0 (I11.15)
z€B

uniformly on compact subsets of B as m — oo.
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Here, for n + 2 < s < p, Holder’s inequality gives

sup [[(Sm):1[[5 < Sup/ |(Sm)z1(w)|sdw+8up/ [(Sm)1(w)[*dw
2€B B\rB r

z€B 2€B JrB

< Csup |(Sin):1l(1 =)' =*/7 + Sup/ |(Sm)z1(w)[*dw

2€B 2€BJrB

and (II1.15) implies the second term tends to 0 as m — oo. Also, the first term is less than
or equals to C*(1— r)l_s/ P which can be small by taking r close to 1. Consequently, Lemma
73 gives

1/2 1/2
18]l < C(n,s) <sup ||<sm>21||s> (sup H(szlns) .
z€B z2€B

1/2
< C(n,s) <sup ||(Sm)zl||s> — 0
z2€B
Corollary 76. Let S € £(L2(B)) such that for some p > n + 2,

sup [|S.1 — (Tg,.s):1|l, < C and sup [|S71 — (T, (s%))=1llp < C, (I1I.16)
zeB zeB

where C' > 0 is independent of m. Then Tp, s — S as m — oo in operator norm.

Proof. Let S;,, =S —Tp,,s. Then Proposition 69 and Theorem 66 imply

Bo(Sw) = BoS — Bo(Ts, s)
= ByS — Bo(BpS)

= ByS — Bpn(ByS)

which tends uniformly to 0 as m — oo, hence ||By(Sm)|lcc — 0. Consequently, by Lemma

75 we complete the proof.

Theorem 77. Let S € £(L2(B)). If there is p > n + 2 such that
sup | 1(p,,8)o0p. Lllp <€ and  sup | T(g, g0, 1llp <C (I11.17)
z€B 2€B

where C' > 0 is independent of m, then T, — S as m — oo in operator norm.
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Proof. By Corollary 76, we only need to show that (II1.17) implies (II1.16). Since T(p,,5)op. =

(TBmS)z and

T(*BmS)mpz =15, 5. = IBu(s5) = L(Bm(57))0p:>

it is sufficient to show that

sup ||S:1||, < oo.
2€B

By Lemma 73, we get

1/2 1/2
IT5,.5]l < C(n.p) (sup HTBmswlep) (sup ||Tgmswz1up)
2€B z2eB

<C

where C' is independent of m, hence writing S,, = S — Tp,,s, we have ||S,|| < C where C

is independent of m. Also, the proof of Corollary 76 implies
[BoSmllec — 0

as 1m — OQ.

Let f be a polynomial with ||f|l; = 1. Then Lemma 74 implies

sup [((Sm)-1, f)| — 0
zeB

as m — oo. Thus, for any ¢ > 0 and 2y € B, we have

(8201, 1) [ < 80D [((Sm)=1 FY |+ [{(TBs)eo 1, N [ S €4 C
zE€
for sufficiently large m, where C' is independent of m. Since € is arbitrary, we get

sup ||S:1||, < o0
z€EB

as desired.
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ITI.3 Compact operators

Given U € U(n), define Vi f(w) = f(Uw)detU for f € L2(B). Then Vy is a unitary
operator on L2(B). We say that S € £(L2(B)) is a radial operator if SV;; = V7S for any
U € U(n).

If S € £(L2(B)), the radialization of S is defined by

ﬁ_/wmww
b3

where dU is the Haar measure on the compact group #(n) and the integral is taken in the
weak sense. Then S* = S if S is radial and U-invariance of dU shows that S* is indeed a

radial operator.

If f € L* and g,h € L? then

(Vu™TfVug, h) Z/Bf(w)VUg(w)VUh(w)dw

Thus VU*TfVU = TfoU* and
Vu'Ty - TpVo = Thov- -+ - Thou

for fi1,..., fie L*, 1 >0.

Lemma 78. Let S € £(L2(B)) be a radial operator. Then

TBm(S):/BSdem(U)).
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Proof. Let z € B. By (II1.3) and Lemma 63, we obtain

o ([ Sutrntw)) 2= (( [ Swdum(w)>z1,1>

_ / (U U SUQU1, 1) dinm ()
B

_/;<U@z(w)VU*SVUU¢Z(w)1,1>de(w)

where V7 is in Lemma 63. Since S is a radial operator, Theorem 64, Proposition 58 and

Proposition 69 imply that the last integral equals

/B <U¢Z(w)SU¢z(w)l, 1> dl/m(’w) = /BBos o goz(w)dum(w)
= BmB()S(Z)
= BoBmS(Z)

= Bo(Tg,,(s))(2)-

Since By is one-to-one mapping, the proof is complete.

Theorem 79. Let S € T(L>®) be a radial operator. Then S is compact if and only if

ByS =0 on 0B.

Proof. Tt is obvious that if S is compact then ByS(z) — 0 as z — 9B. So we only need

to show the if part.
Suppose ByS = 0 on 0B. Then B,,S = 0 on 0B by Proposition 70, hence T _ g is

compact for all m > 0.

Let
@= /quloU* o Thou+dU

with f1,..., f; € L for some [ > 0. Then Q € £(L2?). By Lemma 78, for any z € B, we
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have

(b (@)op: = /B (@)= )wdm ()

= / / TfloU*OLPzOSaw U TfloU*OQOzOSDw dUde (w)
B JuU

Consequently,

HT(Bm osozH SCONfioUop.opullo - 1fioU" 0ws0pulo
=CD| filloo -+~ I filloo-

Similarly, we have

1B, (@))0p- I < CDIf1lloo -+ [1f2lloo-

Thus, Theorem 77 gives that

T, — @

in £(L2)-norm.

(111.18)

Since S € T(L*°), there exists a sequence {Si} such that Sy — S in the operator norm

where each S}, is a finite sum of finite products of Toeplitz operators. Since the radialization

is continuous and S is radial, Sﬁ — 8% = S. From Lemma 78, we have

1 T,.51| = H [ Sudvntu H [ USuldsn) = 5.

Thus

IS = Th,.sll < IS = U+ 115E = T, 52| + 1T, 5y — Tons|

<2||S - Sill + IS} - B(Su)n

and (IIL18) imply Tg,,(5) — S as m — oo in £(L7)-norm, hence S is compact.
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