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CHAPTER I 

 

INTRODUCTION 

 

An Introduction to p120-catenin 

 p120-catenin (hereafter p120) was originally identified as a highly tyrosine-

phosphorylated protein in src-transformed chick embryo fibroblasts (Reynolds et al., 

1989). p120 is the prototypical member of a family of armadillo-repeat proteins that 

includes -catenin, ARVCF, p0071, and plakophilins (Anastasiadis and Reynolds, 2000). 

p120 was later identified as a catenin that interacts with and stabilizes classical cadherins 

such as E-cadherin and N-cadherin (Davis et al., 2003; Ireton et al., 2002; Reynolds et al., 

1994). Cadherins mediate cell-cell adhesion through homophilic interactions between 

adjacent cells (Takeichi, 1995). By regulating cadherin stability, p120 is an important 

regulator of cell-cell adhesion and tissue morphogenesis. p120 can also localize to the 

cytoplasm and nucleus, where its functions remain unclear. Recent studies, described 

below, have demonstrated that p120 also participates in a number of signaling pathways 

that are frequently altered in cancer including tyrosine kinase signaling, Rho GTPase 

signaling, transcriptional regulation, and Wnt signaling (Figure 1). Furthermore, 

downregulation and/or mis-localization of p120 has been detected  in a number of 

cancers and often correlates with poor prognosis (van Hengel and Van Roy, 2007). Thus, 

p120 may serve as a tumor suppressor. 
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Figure 1: Localization and functions of p120. In epithelial cells, p120 is primarily 

localized to the cell membrane, where it binds to and stabilizes E-cadherin. p120 is also 

found in the cytoplasm where it may regulate Rho GTPases, and in the nucleus where its 

function remains unknown. p120 has also been implicated in Wnt signaling, which also 

involves -catenin in a cadherin-independent signaling function. 
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Structure of p120-catenin 

Among the most prominent features of p120 is a central armadillo-repeat domain. 

p120 has 9 42 amino acid armadillo repeats, with arm repeats 1-7 required for the 

interaction with classical cadherins (Ireton et al., 2002). The armadillo domain is  

flanked by the N-terminal regulatory domain and the C-terminal tail (Figure 2). The 

regulatory domain is extensively phosphorylated on tyrosine, serine, and threonine 

residues and features a 100 amino acid coiled-coil domain on the extreme N-terminus. 

The N-terminal regulatory domain can regulate p120’s adhesive functions through a 

mechanism that may involve phosphorylation of the N-terminus (Aono et al., 1999). The 

C-terminal tail of p120 is relatively poorly understood, but does contain 3 known 

phosphorylation sites and has been implicated in cadherin trafficking (Liu et al., 2007).  

The N-terminus of p120 contains four in-frame start codons, resulting in four 

possible p120 isoforms, designated isoforms 1-4 (Figure 2) (Keirsebilck et al., 1998). 

Isoform 1 encodes the full-length p120 protein, while isoforms 2-4 produce progressively 

truncated proteins, with isoform 4 lacking the entire N-terminus. Isoform 1 is expressed 

primarily in mesenchymal and motile cells such as fibroblasts, whereas isoform 3 is the 

predominant p120 isoform in epithelial cells (Mo and Reynolds, 1996). Isoform one 

appears to preferentially interact with mesenchymal cadherins (e.g. N-cadherin) while 

isoform 3 preferentially binds E-cadherin (Seidel et al., 2004). Isoform 4 is rarely 

observed at the protein level, but has been detected at the mRNA level. Interestingly, 

when expressed exogenously, isoform 4 can stabilize E-cadherin more efficiently than 

other p120 isoforms presumably because it is not subject to regulation via the N-terminus 

(Aono et al., 1999; Ireton et al., 2002). 
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Figure 2: Structure of p120 isoforms. The schematic structure of full-length p120 

1ABC and isoforms 3 and 4 are shown. Alternatively spliced exons (A, B, C) are 

indicated by blue boxes. Serine/threonine and tyrosine phosphorylation sites are indicated 

black and red balloons, respectively.  
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In addition to alternative start codons, p120 features 3 alternatively spliced exons, 

designated as exons A, B, and C. The role of these alternatively spliced exons remain 

unclear; however, exon B does contain a functional nuclear export signal (NES) (van 

Hengel et al., 1999). Thus it appears that p120 isoforms and exons may determine the 

specific function of a given p120 molecule; however, current reagents and assays have 

been unable to precisely determine the functional significance of p120 isoforms. It is  

worth noting that in the vast majority of studies in which p120 is exogenously expressed, 

only exon A is included. Thus, any functions associated with exons B and C have been 

excluded from these studies.  

 

Phosphorylation of p120 

 The N-terminal regulatory domain and C-terminal tail of p120 contains ten 

tyrosine and eight serine/threonine phosphorylation sites that are regulated by a variety of 

signaling pathways (Figure 3). All of the tyrosine phosphorylation sites identified (Figure 

2) can be phosphorylated by oncogenic src (Luo et al., 2008; Mariner, 2001; Mariner et 

al., 2001); however, other kinases including EGFR (Mariner et al., 2004), Fyn (Castaño 

et al., 2007), and Fer (Lee, 2005) have also been implicated in tyrosine phosphorylation 

of p120. Tyrosine phosphorylation appears to affect the ability of p120 to bind to 

cadherins (Ozawa and Ohkubo, 2001), providing a potential mechanism by which 

tyrosine kinases can destabilize cell-cell adhesion. However, simultaneous mutation of 

eight tyrosines to phenylalanine revealed no defects with regards to cell-cell adhesion and 

the actin cytoskeleton (Mariner et al., 2001). This suggests that tyrosine phosphorylation 

is  
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Figure 3: Reported mechanisms of p120 phosphorylation. PKC  activation by PMA 

or other stimuli induces dephosphorylation of the N-terminus of p120, and 

phosphorylation of S879 on the C-terminus. CK1  can phosphorylate S268 and S279 in 

tandem. Src can phosphorylate each of the identified tyrosine phosphorylation sites. Fer, 

EGFR, and Fyn have also been implicated. 
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dispensable for the adhesive functions of p120, but may be involved in cadherin-

independent functions. 

The mechanisms governing serine/threonine phosphorylation of p120 remain 

unclear. Activation of PKC, specifically PKC , causes dephosphorylation of 

serine/threonine residues within the regulatory domain and promotes the phosphorylation 

of serine 879 on the C-terminal tail (Brown et al., 2009; Xia et al., 2006; Xia et al., 2003). 

However, the phosphatases and kinases that act on p120 downstream of PKC remain 

unknown. Recent evidence indicates that serines 268 and 288 can be phosphorylated by 

CK1  (Casagolda et al., 2010) and PAK5 (Wong et al., 2010), respectively. To date, few 

specific functions have been associated with p120 phosphorylation, and those that have 

been identified appear to depend on specific cellular contexts. As with the tyrosine 

residues, simultaneous mutation of all the serine/threonine phosphorylation sites to 

alanine did not induce any cell-cell adhesion or cytoskeletal defects in cells (Xia et al., 

2006). Thus, the mechanisms and functional significance of p120 phosphorylation 

remains an area of active investigation. 

 

 

An Introduction to the Cadherin Complex 

 

 

The structure and function of the cadherin complex 

Classical cadherins are single-pass transmembrane proteins that form homotypic 

interactions in trans with cadherins on adjacent cells to mediate cell-cell adhesion 

(Takeichi and Abe, 2005). Homophilic interactions are mediated by the extracellular 
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domain of cadherins in a calcium-dependant manner, adhesion is further strengthened by 

the lateral clustering of cadherin molecules, which is mediated in part by homophilic cis 

interactions between adjacent cadherins on the cell surface (Ozawa, 2002; Shan et al., 

2000) in addition to interactions with the underlying actin cytoskeleton. This lateral 

clustering of cadherins at cell surface combined with the formation of adhesive trans-

dimers between cadherins adjacent cells results in the formation of the adherens junction 

(AJ) (Figure 4). 

Cadherins feature a large extracellular domain and a small cytoplasmic tail that 

interacts with catenins. In this cytoplasmic tail, p120 binds to the highly conserved Juxta-

Membrane Domain (JMD) (Thoreson et al., 2000) while -catenin and Plakoglobin bind 

to the C-terminal Catenin Binding Domain (CBD) (Gumbiner, 2005; Stappert and 

Kemler, 1994). -catenin and/or Plakoglobin directly bind to -catenin, which 

physically/and or functionally links cadherins to the actin-cytoskeleton (Rimm et al., 

1995; Yamada and Nelson, 2007). E-cadherin (or another classical cadherin), p120, -

catenin, and -catenin represent the core components of the cadherin complex, although 

many other proteins are known to associate with the complex to regulate adhesive 

strength, cadherin turnover, and downstream signaling events. 

In addition to their structural role, cadherins participate in a number of cancer-

relevant cell signaling pathways including receptor and non-receptor tyrosine kinase 

signaling (Pece et al., 2000; Calautti et al., 1998; McLachlan et al., 2007), activation of 

Rho family GTPases (Calautti et al., 2002; Fukuyama et al., 2006; Pece and Gutkind, 

2000), and PI3K signaling (Woodfield et al., 2001). These mechanisms largely involve  
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Figure 4: Schematic of the adherens junction. The core components of the cadherin 

complex are shown on each cadherin molecule. To show the catenins, the cytoplasmic 

tail of E-cadherin is enlarged relative to the extracellular domain in this schematic. Each 

cadherin is functionally linked to the F-actin cytoskeleton by -catenin. 
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the recruitment of signaling molecules to the cadherin complex. For example, E-cadherin 

can physically interact with EGFR via the cadherin’s extracellular domain and/or the 

cytoplasmic adaptor protein Merlin (Curto et al., 2007), and this interaction can inhibit 

ligand-dependent RTK signaling in confluent cells (Qian et al., 2004). Conversely, 

cadherin clustering has can activate EGFR in a ligand-independent manner by co-

clustering of the receptor with cadherins. 

 

E-cadherin status and cancer progression 

 As a tumor transitions to malignancy, tumor cells escape from the primary tumor 

to secondary sites of metastasis (Hanahan and Weinberg, 2000). This often involves 

individual cells detaching from adjacent cells and migrating away from the tumor, a 

process that involves the loss of cell-cell adhesion (Yilmaz and Christofori, 2010). 

Consistent with this, loss of E-cadherin has been observed as tumors progress to 

malignancy (Birchmeier and Behrens, 1994). The transition of epithelial cells from a 

sessile phenotype associated with normal tissue to a motile phenotype associated with 

malignancy is known as Epithelial-to-Mesenchymal Transition (EMT) (Micalizzi et al., 

2010). EMT is characterized by a number of physical and genetic changes in cell 

adhesion and cellular signaling. One hallmark of EMT is the downregulation of E-

cadherin and upregulation of N-cadherin (or other mesenchymal cadherins) via the 

transcription factors Snail and Slug (Batlle et al., 2000; Cano et al., 2000). Interestingly, 

this tumor progression is accompanied by altered p120 localization and/or switching of 

p120 isoforms from 1 to 3 (Bellovin et al., 2005; Sarrió et al., 2004). E-cadherin can also 

suppress tumorigenesis via sequestration of -catenin at the membrane, thereby 
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suppressing Wnt signaling, which is frequently up-regulated in cancer (Gordon and 

Nusse, 2006).  

 

Regulation of Cadherin Stability by p120 

 

Physical Interaction between p120 and E-cadherin 

 p120 directly interacts with E-cadherin (and other classical cadherins) via the 

highly conserved Juxta-Membrane Domain (JMD) of the cadherin’s cytoplasmic tail 

(Thoreson et al., 2000). A triple-alanine mutation within the JMD can effectively 

uncouple p120 from E-cadherin without affecting -catenin binding and results in 

significantly weaker cell-cell adhesion. Conversely, p120 interacts with E-cadherin via its 

central armadillo-repeat domain, particularly arm repeats 1-5 (Ireton et al., 2002; 

Ishiyama et al., 2010). Deletion of any of these individual repeats produces a p120 that 

cannot stabilize cadherins.  

Recently the crystal structure of the JMD in complex with p120 4A has been 

resolved, revealing key molecular details of the p120-E-cadhering interaction (Ishiyama 

et al., 2010). p120 features a basic arm that binds to the JMD within an N-terminal acidic 

region via several salt bridges and a triple-glycine motif. Residues K401 and K444 of 

p120 form salt bridges with the acidic region of the JMD, while N478 interacts with the 

triple-glycine motif of the JMD. Mutation of any one of these 3 amino acids in p120 can 

uncouple p120 from E-cadherin. In addition to the basic arm, p120 also has a 

hydrophobic pocket in which a C-terminal “anchor region” of the JMD rests. 

Interestingly, these binding sites on the JMD all correspond precisely with the triple-
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alanine mutations of E-cadherin, which our lab had previously demonstrated to uncouple 

p120 and E-cadherin (Thoreson et al., 2000).  

 

Stabilization of E-cadherin by p120 

 Given the association of p120 with E-cadherin and the dramatic disruption of cell-

cell adhesion in src-transformed cells, it was hypothesized that p120 played an important 

role in regulating the cadherin complex. Using the p120-deficient SW48 cell line, it was 

demonstrated that p120 expression promoted E-cadherin stability. p120 expression did 

not upregulate E-cadherin mRNA levels, but did approximately double the half-life of E-

cadherin protein (Ireton et al., 2002). Depletion of endogenous p120 in multiple cell lines 

using shRNA further confirmed these results, and indicated that in the absence of p120, 

cell-surface E-cadherin is rapidly internalized and degraded (Davis et al., 2003). These 

data are supported by structural analysis of the p120-JMD interaction. When bound to E-

cadherins, p120 masks a dileucine motif within the JMD which, when unmasked, 

promotes internalization of E-cadherin (Ishiyama et al., 2010; Miranda et al., 2001; 

Miyashita and Ozawa, 2007). While p120-family members such as ARVCF can 

functionally substitute for p120, they are rarely expressed in most tissue, particularly in 

epithelial cells (Mariner et al., 2000). Thus, in most cell types, loss of p120 leads to loss 

of cadherins and cell-cell adhesion, a hallmark of metastatic cancer progression.  
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Rho GTPase signaling and p160 Rho Kinase 

 

Rho Family GTPases  

 Rho (Ras Homologous) Family GTPases are members of the Ras superfamily of 

small proteins that function as binary switches in response to stimuli. In addition to the 

Rho family, the Ras superfamily includes the Ras, Ran, Rab, and Arf families of 

GTPases. Rho family proteins are distinguished from other Ras-related proteins by the 

presence of a Rho insert domain within the GTPase domain, which is involved in the 

activation of downstream effectors (Valencia et al., 1991). The Rho family of GTPases is 

itself divided into several groups, including the Rho proteins (RhoA, RhoB, and RhoC), 

the Rac proteins (Rac1, Rac2, Rac3, and RhoG), the Cdc42-like proteins (cdc42, TC10, 

TCL, Wrch1, Chp), the Rnd proteins (Rnd1, Rnd2, and Rnd3/RhoE), the RhoBTB 

proteins (RhoBTB1, RhoBTB2, RhoBTB3), and the Miro proteins (Miro1, Miro2) (Grise 

et al., 2009). In particular RhoA and Rac1 have been functionally linked to p120 and 

cadherin function.  

Rho GTPases exist in either an active conformation with GTP bound or in an 

inactive conformation with GDP bound. In the active GTP-bound state, the GTPase can 

bind to effector proteins to initiate downstream signaling events (Jaffe and Hall, 2005) 

(Figure 5). Activation of GTPases is catalyzed by Guanine Exchange Factors (GEFs) that 

promote the release of bound GDP and subsequent GTP binding, inducing a 

conformational change that permits effector binding and downstream signaling (Schmidt 

and Hall, 2002). Inactivation occurs when the GTPase hydrolyzes GTP to GDP, 

catalyzed by GTPase Activating Proteins (GAPs), switching the GTPase back to the  
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Figure 5: Regulation of Rho GTPases. A schematic illustrating the mechanisms of 

RhoA regulation. RhoA is activated by GEFs (e.g. p115 RhoGEF), and activated RhoA 

can then activate downstream effector proteins. RhoA activity is suppressed by GAPs 

(e.g. p190 RhoGAP). GDP-bound Rho is maintained in the inactive state by GDIs (e.g. 

RhoGDI ) that sequester Rho in the cytoplasm and prevent membrane anchoring.  
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inactive state and causing dissociation of effector proteins (Bernards, 2003). GTPase 

signaling can also be suppressed by Guanine Dissociation Inhibitors (GDIs), which bind 

to GDP-bound GTPases and sequester them from GEFs and effector proteins (Olofsson, 

1999). Binding to a GDI also protects GTPases from proteosomal degradation (Boulter et 

al., 2010). Typically, active GTPases are localized to the cell membrane by a C-terminal 

CAAX motif while inactive GTPases are found in the cytoplasm. 

 

RhoA and Rac1 Signaling 

The RhoA and Rac1 GTPases are among the most well characterized members of 

the Rho family of GTPases. These GTPases play an important role in the regulation of 

the actin cytoskeleton downstream of adhesion and receptor-mediated signaling during 

diverse processes such as motility, adhesion, and cell growth (Burridge and Wennerberg, 

2004). RhoA promotes contractility through its effector proteins such as Rho Kinase, 

which activates Myosin, and LIMK, which inhibits cofilin to promote the assembly of 

actin stress fibers. Rac1 activation leads to pronounced cell spreading, membrane 

ruffling, and migration in part through activation of the PAK family of serine/threonine 

kinases (Hall, 2005). However, both RhoA and Rac1 are also involved in the formation 

of adhesion complexes (both focal adhesions and adherens junctions) (Braga et al., 1997; 

Hotchin and Hall, 1995), protein trafficking (Garnacho et al., 2008; Matas et al., 2005), 

transcriptional regulation, and proliferation (Hall, 2005).  

Balance between RhoA and Rac1 activities is maintained, in part, by the 

antagonistic relationship between the two GTPases. Specifically, activation of Rac1 leads 

to the generation of Reactive Oxygen Species and the downstream activation of p190 
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RhoGAP, a Rho-specific GAP, leading to the suppression of RhoA signaling (Nimnual et 

al., 2003). In epithelial cells, this antagonism is particularly important for the 

maintenance of proper cell morphology and is disrupted in transformed cells (Zondag et 

al., 2000). Previous work from our lab has demonstrated that p120 plays a role in this 

pathway of Rac-mediated  inhibition of RhoA by recruiting p190 RhoGAP to the 

cadherin complex (Wildenberg et al., 2006). On the other hand, RhoA can inhibit Rac1 

activity through Rho Kinase (Tsuji et al., 2002; Yamaguchi et al., 2001), although the 

precise mechanisms remain unclear. 

 

Rho Kinases 

 A major function of RhoA is to promote acto-myosin contractility, which is 

accomplished in part through activation of Rho Kinase (ROCK). Rho Kinase, the first 

identified effector of RhoA, is a serine/threonine kinase that is related to myotonic 

dystrophy kinase (DMPK), DMPK-related cdc42 binding kinase (MRCK), and citron 

kinase (Riento and Ridley, 2003). Two isoforms of ROCK exist; p160 Rho 

Kinase/ROCK1/ROK  and ROCK2/ROK . The two isoforms share 65% overall 

sequence identity, and 92% similarity within their kinase domains (Nakagawa et al., 

1996) (Figure 6a). Both isoforms are expressed ubiquitously, although the relative 

expression levels of ROCK1 and ROCK2 vary among different tissues. ROCK1 is the 

predominate isoform in the liver, spleen, and kidney, while ROCK2 is expression is 

highest in muscle and brain tissue. There are a number of redundant functions shared 

between ROCK1 and ROCK2, but a number of isoform-specific functions have been  
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Figure 6: Isoforms and regulation of p160 Rho Kinases. (a) A schematic of ROCK1 

and ROCK2. The region between the kinase domain and the Pleckstrin Homology (PH) 

domain, including the Rho Binding Domain (RBD) is predicted to form a coiled-coil. The 

PH domain also contains a Cysteine Rich Domain (CRD). (b) Schematic for activation of 

ROCK. In the inactive state, the C-terminus of ROCK is folded over to mask the kinase 

domain. Rho binding induces a conformational change that unmasks the kinase domain. 
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identified (Lock and Hotchin, 2009). In particular, ROCK2 plays a role in the 

disassembly of epithelial apical junctions (Samarin et al., 2007). Rho kinases are 

activated by RhoA binding, which induces a conformational change that unmasks the 

kinase domain of ROCK, allowing it to phosphorylate its substrates (Figure 6b). 

The major substrates of ROCK are proteins that regulate acto-myosin 

contractility. ROCK can promote myosin activity by directly phosphorylating the 

regulatory light chain of myosin II on serine 19 (Amano et al., 1996; Totsukawa et al., 

2000), which stimulates the ATPase activity of Myosin (Somlyo and Somlyo, 2000). 

Alternatively, ROCK1 can indirectly promote myosin activity by phosphorylating and 

thereby inhibiting Myosin Phosphatase. Myosin Phosphatase is responsible for 

dephosphorylating serine 19 of myosin light chain, thereby suppressing the motor activity 

(Kawano et al., 1999; Kimura et al., 1996). In addition to the myosin pathway, ROCK 

can phosphorylate LIM-Kinase (LIMK), which in-turn phosphorylates and inhibits the 

actin-severing protein cofilin (Maekawa et al., 1999). This results in the stabilization of 

actin cables, another requirement for contractility. Thus, cellular processes that require 

acto-myosin contractility such as motility, adhesion, and polarity, are all dependent on 

ROCK activity.  

 Rho Kinases phosphorylate a number of additional substrates besides Myosin and 

LIMK. ROCK can phosphorylate and activate Ezrin/Radixin/Moesin (ERM) proteins, a 

family of proteins that crosslink actin filaments and membrane proteins and are involved 

in epithelial polarity and migration (Matsui et al., 1998; McClatchey and Fehon, 2009). 

ROCK can also regulate the formation of intermediate filaments by phosphorylating 

vimentin, glial fibrillary acid protein (GFAP), and nuerofilament L protein (NF-L), 
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leading to disassembly of intermediate filaments (Goto et al., 1998; Hashimoto et al., 

1998; Kosako et al., 1997). ROCK1 can also phosphorylate the translation co-factor 

Elongation Factor 1  (EF-1 ), which also functions as an actin bundling protein (Izawa et 

al., 2000). 

 

RhoA and Rho Kinases in cancer 

 Given their importance in regulating the actin cytoskeleton, adhesion, and 

motility, it is not surprising that RhoA and ROCK have been implicated in cancer 

progression. RhoA is required for transformation by oncogenic Ras (Qiu et al., 1995), 

indicating that cross-talk between GTPases plays an important role in cancer progression. 

Furthermore, increased RhoA expression has been detected in a number of epithelial 

cancers (Ellenbroek and Collard, 2007). Unlike Ras, which is frequently mutated in 

cancer, no mutations in RhoA have been detected in human cancers. It appears that 

mutation of Rho proteins is not tolerated, however mutation of regulatory and effector 

proteins have been detected in cancers.  

Recently, 3 unique activating mutations in ROCK1 have been identified in 

malignant human cancers (Lochhead et al., 2010). In addition, elevated levels of ROCK1 

and ROCK2 have been detected in late-stage testicular cancer (Kamai et al., 2004). 

Furthermore, ROCK1 expression was found to be significantly higher in human 

mammary tumors, and both ROCK isoforms contributed to breast cancer cell invasion 

(Lane et al., 2008). Interestingly, ROCK activity is suppressed in Ras-transformed cells, 

and over-expression of ROCK can reverse morphological transformation (Izawa et al., 

1998), suggesting that inhibition of ROCK signaling is required for tumorigenicity. In our 
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own studies, p120 loss in v-src and Rac-transformed MDCK cells blocks growth in soft 

agar, and growth can be rescued ROCK inhibition using Y-27632 (Dohn et al., 2009). 

Thus p120 appears to be directly involved in the suppression of ROCK1 in transformed 

cells.  

 

Regulation of Rho GTPases by p120 

Over-expression of p120 using CMV-driven expression vectors led to dramatic 

alterations in cell morphology, suggesting that p120 regulates the actin cytoskeleton. 

Initial studies suggested that p120 behaved as a RhoGDI (Anastasiadis et al., 2000), 

directly binding and sequestering RhoA. In Drosophila melanogaster, a p120 homolog 

can directly bind Rho1 (Magie and Parkhurst, 2002), supporting a GDI-like function. 

However, further study revealed that the Drosophila p120 homolog might be distinct 

from mammalian p120 with respect to cell-cell adhesions and Rho function (Fox, 2005; 

Myster, 2003).  Recent studies in mammalian cells have identified potential binding sites 

for a direct p120-RhoA interaction, Y112 and amino acids 622-8 (Castaño et al., 2007; 

Yanagisawa et al., 2008). p120 can also suppress RhoA indirectly by recruiting p190-

RhoGAP to the cadherin complex (Wildenberg et al., 2006), suggesting that there are 

multiple mechanisms by which p120 can suppress RhoA activity.  

While the majority of work has focused on the relationship between p120 and 

RhoA, recent evidence points to an equally important relationship with Rac1. Early 

studies indicated p120 over-expression leads to activation of Rac1 by Vav2 (Noren et al., 

2000). In addition, cadherin-dependent activation of Rac1 requires the binding of p120 to 

E-cadherin (Goodwin et al., 2003). Similarly to its interaction with RhoA, p120 can 
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physically interact with Rac1b (Orlichenko et al., 2010), a constitutively active splice-

variant or Rac1 found in tumor cells (Matos, 2003). This interaction appears to involve 

the same residues of p120 that mediate the p120-RhoA interaction, suggesting that p120 

regulates Rac1b using a similar mechanism as RhoA. Furthermore, activation of Rac1 by 

p120 is essential for the growth and survival of tumor cells through a mechanism 

involving the Ras/Mek/ERK pathway (Soto et al., 2008). However in non-tumorigenic 

cells, p120 suppresses Rac1 signaling, thereby suppressing growth. These data indicate 

that p120 can affect Rac1 signaling differently depending on cellular context. In highly 

motile cells (e.g. fibroblasts and metastatic cancer cells), p120 promotes Rac1 activity 

and cell survival, possibly through stabilization of mesenchymal cadherins (Yanagisawa 

and Anastasiadis, 2006). On the other hand, in normal epithelial cells, p120 suppresses 

Rac1 signaling and cell growth, in part through stabilization of E-cadherin.  

 p120’s physical and functional interaction with both RhoA and Rac1 is 

particularly interesting because of the antagonistic relationship between the two small 

GTPases. In NIH-3T3 cells, Rac1-mediated inhibition of RhoA requires p120 to recruit 

p190 RhoGAP to the cadherin complex. This process appears to be required in contact 

inhibition of cell growth in NIH-3T3 cells. Presumably, this pathway is intact in Rac-

transformed MDCK cells grown in soft agar, since p120 is required to suppress RhoA 

and support anchorage independent growth (AIG) (Dohn et al., 2009). Thus p120 appears 

to be important for the cross-talk between Rac1 and RhoA, keeping the activities of each 

GTPase in check. 
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p120 Binding Partners 

 p120 primarily interacts with classical cadherins, but recent work has 

demonstrated that p120 can interact with a variety of proteins and complexes. However,  

by analogy to -catenin, a structurally and functionally similar protein, relatively few 

p120 binding partners have been characterized (Figure 7). Importantly, many of these -

catenin binding partners, identified through protein-protein interaction screens, mediate 

the cadherin-independent Wnt signaling functions of -catenin, which play an important 

role in cancer progression. A comprehensive list of binding partners is provided in Table 

1. In particular, p120 interacts with kinases and phosphatases, RhoA regulatory 

complexes, and with transcriptional regulators.  

 

Interactions with Kinases and Phosphatases 

 p120 can associate with a number of kinases and phosphatases. In particular, p120 

has been shown to interact with a number of tyrosine phosphatases including SHP-1 

(Keilhack et al., 2000), RPTPμ (Zondag et al., 2000), and DEP1 (Holsinger et al., 2002). 

p120 can also interact with the src-family kinase Fyn and the non-src family tyrosine 

kinase Fer (Piedra et al., 2003). Phosphorylation of p120 by Fyn appears to regulate 

binding of RhoA (Castano et al., 2007). However, no specific physiological function has 

been assigned to the other interactions between p120 and tyrosine kinases and 

phosphatases, although it has been proposed that modulation of p120 phosphorylation by 

kinases and phosphatases regulates p120’s association with cadherins (Ozawa et al., 

2001, Aono et al., 1999), and thereby regulates cadherin stability and cell-cell adhesion.  
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Figure 7: A schematic comparison of known -catenin and p120 partners. 
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Table 1: Reported binding partners of p120. When available, the reported binding site 

on p120 is provided for each protein. N/A indicates no binding site has been identified. 

Binding Partner Binding Site 

(p120) 

Proposed Function of the 

Interaction 

 

Reference 

Kaiso ARMs 1-6 Transcriptional Regulation Daniel and 

Reynolds, 1999 

MUC1 N/A Promotes p120 nuclear localization Li and Kufe, 2001 

Kinesin N-terminus Cadherin transport/recycling Chen et al., 2003 

p190 RhoGAP N/A Rho Inhibition and Contact 

Inhibition 

Wildenberg et al., 

2006 

RhoA N-terminus & 

622-628 

Rho Inhibition (GDI-like 

mechanism) 

Anastasiadis et al., 

2000 

Rac1b N-terminus 

& 622-628 

Directed cell migration Orlichenko et al., 

2010 

Cortactin N/A Lamellopdial dynamics Boguslavsky et al., 

2007 

Fer N/A Tyrosine phosphorylates p120, 

suppresses neurite branching 

Lee et al., 2005 

Fyn N/A Tyrosine phosphorylates p120 

(Y112), regulates RhoA binding 

Piedra et al., 2003 

DEP1 N/A Dephosphorylation of p120 Holsinger et al., 

2002 

SHP1 N/A Dephosphorylation of p120 Keilhack et al., 2000 

RPTPμ N-terminus Dephosphorylation of p120 Zondag et al., 2000 

Glis2 N/A Transcriptional Regulation Hosking et al., 2007 

-secretase N/A Receptor proteolysis Kiss et al., 2008 

Frodo N/A Stabilizes p120 in response to Wnt 

signaling 

Park et al., 2006 

Nanos-1 N/A Suppression of Rho inhibition Strumane et al., 2006 

Cdk2 N/A Cell cycle regulation Chartier et al., 2007 

Desmoglein 3 N/A Desmosome assembly Kanno et al., 2008 

CagA N/A Suppresses p120 phosphorylation 

and cell-invasive phenotype 

Oliviera et al., 2009 

PLEKHA7 N-terminus Anchorage of microtubules to the 

adherens junction 

Meng et al., 2008 

Pak5 N/A Phosphorylates p120 on S288 Wong et al., 2010 

Casein Kinase 1  

(CK1 ) 

N/A Phosphorylation Serine 268 and 

269, mediates a role in Wnt 

signaling 

Casagolda et al., 

2010 

GSK-3  N-terminus Mediates degradation of p120 by the 

APC destruction complex 

Hong et al., 2010 
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 Although p120 is extensively phosphorylated on serine and threonine, no 

phosphatases that bind and act on p120 have been identified. Recently, two 

serine/threonine kinases have been identified to interact with p120. Casein Kinase 1  

(CK1 ) binds and phosphorylates p120 on S268 following Wnt stimulation in SW480 

cells (Casagolda et al., 2010). In this system, p120 is required for the formation of the 

Wnt signalasome and subsequent -catenin activation. The Rac/cdc42 effector PAK5 can 

bind to p120 and phosphorylate it on S288 (Wong et al., 2010), suggesting that effector 

of Rho GTPases can signal to p120. p120 may also associate with GSK3  within the 

destruction complex to regulate p120 levels in a manner similar to -catenin (Hong et al., 

2010). Future studies using phospho-specific p120 antibodies could identify the kinases 

and phosphatases that directly bind and regulate p120, and elucidate the function of these 

phosphorylation events.  

 

Interactions with Rho Proteins 

 As discussed above, p120 plays an important role in the regulation of Rho 

GTPases through interactions with the Rho proteins themselves as well as with Rho 

regulatory proteins. p120 can directly bind to both RhoA (Castano et al., 2007) and 

Rac1b (Orlichenko et al., 2010), a constitutively active splice variant of Rac1. In both 

cases, this interaction is mediated by phosphorylation of Y112 on the N-terminus and 

amino acids 622-8. p120 also interacts with p190 RhoGAP to localize Rho suppression to 

the cadherin complex (Wildenberg et al., 2006). In addition, the zinc-finger protein 

Nanos1 regulates RhoA activity. Nanos1 interacts with and promotes p120 translocation 

to the cytoplasm, and suppress the Rho-inhibitory activity of p120 (Strumane et al., 
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2006). One intriguing hypothesis is that p120 is part of a Rho-regulatory complex, 

allowing for the rapid regulation of Rho activity at the cell membrane (e.g. the cadherin 

complex) or the cytoplasm.  

 

Interaction with Transcription Factors 

 The observed nuclear localization of p120 has led to speculation that p120 plays a 

role in gene regulation. This idea is supported by the interaction of p120 with two 

transcription factors; Kaiso (Daniel and Reynolds, 1999) and Glis2 (Hosking et al., 

2007). Kaiso was first identified in a Yeast-Two-Hybrid screen and was later identified as 

a transcriptional repressor that may link p120 to Wnt signaling (Kim et al., 2004). The 

nature of the Kaiso-p120 interaction remains unclear, but it has been proposed that p120 

can sequester Kaiso in the cytoplasm, relieving Kaiso’s transcriptional repression and 

thereby promoting gene transcription (Daniel, 2007). Glis2 is also a transcriptional 

repressor that is involved in neuronal differentiation. p120 promotes cleavage of Glis2, 

which can suppress transcriptional activity. p120 can therefore suppress the activity of 

two distinct transcriptional repressors, thereby promoting the transcription of their 

specific gene targets. 

 

Additional p120 Complexes 

 In addition to the binding partners already discussed, other p120 binding partners 

have been reported. In most cases, the precise functions of these interactions are poorly 

understood. p120 nuclear localization is promoted by an interaction with DF3/MUC1, a 

glycoprotein that is highly expressed in cancer cells (Li and Kufe, 2001). p120 may 
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regulate cell migration and adhesion via an interaction with another src-substrate, 

cortactin (Boguslavsky et al., 2007). p120 has been implicated in the processes of 

cytokinesis via its interactions with the cdk2/cyclin E complex (Chartier et al., 2007) as 

well as with microtubules (Franz and Ridley, 2004). At the cell membrane, p120 can 

interact with desmoglein 3 (Kanno et al., 2008) and the Gamma-Secretase complex (Kiss 

et al., 2008), facilitating crosstalk between cadherins and other adhesion receptors and/or 

membrane proteins. Thus, it appears there are a number of p120 functions mediated by 

protein-protein interactions that have yet to be understood.  

 

Hypothesis 

The Wnt signaling functions of -catenin were initially identified through protein 

interaction screens. By analogy, p120 binding partner studies have lagged behind, due in 

large part to the labile nature of p120 complexes. I hypothesize that novel p120-binding 

partners can be identified using in-cell crosslinking to stabilize otherwise-labile 

complexes followed by mass spectrometry analysis. Herein, I describe a novel approach 

(ReCLIP) to identify p120 binding partners, through which I have identified a novel 

physical and functional interaction between p120 and p160 Rho Kinase (ROCK1). 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Cell Lines and Cell Culture 

 

Cell lines and media 

Phoenix 293 cells were a kind gift from Dr. Linda Sealy. A431 and A431D 

epidermoid cervical carcinoma cell lines were obtained from Dr. Margaret Wheelock 

(University of Nebraska Medical Center). A431D cells expressing wild type (WT) or 

764AAA E-cadherin (Thoreson et al., 2000) were generated using the LZRS-MS-neo 

retroviral vector as described previously (Ireton et al., 2002), (Xia et al., 2006). A431, 

A431D, MCF-7, Caco-2, HCA-7 and MDCK II cells were cultured in DMEM 

(Gibco/Invitrogen) supplemented with 10% FBS (Hyclone) and 1% penicillin-

streptomycin (Gibco/Invitrogen). Phoenix 293 and 293T cells were cultured in DMEM 

supplemented with 10% Heat-Inactivated FBS and 1% penicillin-streptomycin.  

 

Drug treatments 

 Phorbol-12-Myrsitate-13-Acetate (PMA) (524400) and Y-27632 (688000) were 

purchased from EMD Biosciences. Prior to treatment, A431 or MCF-7 cells were washed 

twice with PBS and serum starved overnight with DMEM supplemented with 0.1% FBS. 

The next day, cells were treated with DMSO vehicle or 200 nM PMA for 30 minutes 
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unless otherwise indicated. For Y-27632 treatments, cells were treated with inhibitor or 

DMSO vehicle alone for 24 hours unless otherwise indicated.   

 

Calcium switch assay 

 A431 cells were plated onto glass coverslips (for immunofluorescence analysis) in 

standard DMEM growth media. Approximately 24 hours after plating, cells were serum 

starved overnight. The next day, starvation media was removed and replaced with Low 

Calcium Media (LCM) (Calcium-Free DMEM supplemented with 5.0 μM CaCl2). Cells 

were incubated in LCM for 2 hours, and 1.8 mM CaCl2 was added directly to cells for the 

indicated time intervals prior to processing. For control cells, 1.8 mM CaCl2 was added 

immediately to LCM to prevent calcium depletion. For cadherin-blocking experiments, 

cells were incubated with 5 μg/mL HECD1 (anti-E-cadherin mAb) and 2 μg/mL 6A9 

(anti-P-cadherin mAb) for 30 minutes prior to calcium restoration. 

  

Retroviral and Lentiviral Transduction 

 

Retrovirus and lentivirus production and infection 

 To generate retrovirus particles, the Phoenix 293 cells were transfected using the 

calcium phosphate method as described previously (Davis et al., 2003). Retrovirus 

constructs used were based on the LZRS-MS-neo and pRetro-Super (pRS) shRNA 

vectors described previously (Ireton et al., 2002, Davis et al., 2003). Virus was harvested 

48 hours post-transfection by passing the cell-culture media through a 0.45 μm filter. 

Target cells were transduced by incubation with retrovirus-containing media containing 4 
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μg/mL Polybrene. Approximately 48 hours post-infection, infected cells were selected 

using either G418 (for LZRS-neo transductions) or Puromycin (for pRS transductions).  

 To generate lentiviral particles, 293T cells were co-transfected with the pLKO.1 

shRNA plasmid of interest, pCMV-dR7.74psPAX2 packaging plasmid, and pMD2.G 

envelope plasmid using the calcium phosphate method as described previously (Brown et 

al., 2009). Lentivirus was harvested 48 hours post-transfection and target cells were 

transduced as described above. Approximately 48 hours post-infection, infected cells 

were selected using Puromycin.  

 

Plasmids 

 The LZRS-MS-neo (LZRS-neo) vector was used for exogenous expression of 

p120, E-cadherin, and ROCK1. p120 and E-cadherin constructs used are as follows: 

LZRS-neo mp120 1A, LZRS-neo mp120 3A, LZRS-neo mp120 4A, LZRS-neo mp120 

3A arm1 (Ireton et al., 2002), LZRS-neo mp120 3A arm1 CAAX (Xia et al., 2006), 

LZRS-neo mp120 1A 622-8 (Anastasiadis et al., 2000), LZRS-neo E-cadherin, and 

LZRS-neo 764AAA E-cadherin. p120 cDNAs were first cloned into the pMS shuttle 

vector prior to ligation into LZRS-neo. All point mutations were generated by site-

directed mutagenesis as described previously (Xia et al., 2003). 

 ROCK1 cDNA was obtained from Dr. Shuh Narumiya (Kyoto University) in the 

pCMX expression vector. To generate LZRS-neo ROCK1-GFP, the ROCK1 ORF was 

PCR amplified with the stop codon removed and subsequently ligated in pENTR 3C to 

generate pENTR-ROCK1 stop. pENTR-ROCK1 stop was recombined with LZRS-neo 
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GW-GFP using the Gateway Cloning system (Invitrogen) to generate LZRS-neo 

ROCK1-GFP.  

 For shRNA mediated knockdown of p120, pRS-hp120 was employed as 

described previously (Davis et al., 2003). For ROCK1 knockdown, Non-Target or 

ROCK1 shRNA constructs in the pLKO.1 lentivirus vector were purchased from Sigma. 

For all ROCK1-knockdown experiments described herein, cells transduced with ROCK1 

shRNA TRCN0000121094 are shown. Similar results were obtained using ROCK1 

shRNA TRCN0000002160. 

 

Antibodies 

The generation of monoclonal and polyclonal antibodies for p120 (pp120, 15D2, 

8D11, F1aSH) has been described (Wu et al., 1998). Of note, mAb 15D2 was used for all 

p120 immunoprecipitations unless otherwise noted, while mAb 8D11 is used as a control 

IgG because it does not recognize human p120. The generation of anti-phospho-S268, 

phosho-S288, phosho-T310, and phospho-T916, and phospho-S879 monoclonal 

antibodies has been previously described (Xia et al., 2004; Vaughan et al., 2007). Other 

antibodies used include anti-E-cadherin monoclonal antibody (BD Transduction), anti- -

catenin rabbit polyclonal antibody (C-2081, Sigma), anti- -catenin rabbit polyclonal 

antibody (C-2206 Sigma), anti-p42/44 MAPK (ERK1/2) rabbit polyclonal antibody (Cell 

Signaling), and anti-Focal Adhesion Kinase (FAK) rabbit polyclonal antibody (C-20, 

Santa Cruz), anti-ROCK1 rabbit polyclonal antibody (Chemicon), Ezrin monoclonal 

antibody (BD Transduction), anti-GFP monoclonal antibodies (Roche), and anti-tubulin 

monoclonal antibody (clone DM1A, Sigma). Anti-cd98 monoclonal antibody 4F2 was a 
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kind gift from Dr. Roy Zent (Haynes et al., 1981),
 
(Zent et al., 2000). Anti-E-cadherin 

and anti-P-cadherin monoclonal antibodies HECD1 and 6A9, respectively, were kind 

gifts from Dr. Margaret Wheelock. Secondary antibodies for western blot analysis 

include anti-mouse AlexaFluor 680 (Molecular Probes) and anti-rabbit IRdye 800 

(Rockland Immunochemicals). Secondary antibodies used for immunofluorescence 

analysis include anti-mouse IgG, anti-mouse IgG2a and anti-rabbit IgG or conjugated to 

AlexaFluor 488 or 594 (Molecular Probes). 

 

Crosslinking and Immunoprecipitation 

 

In-cell crosslinking 

 In-cell cross-linking was performed using Dithiobis[succinimidyl propionate] 

(DSP) and Dithio-bismaleimidoethane (DTME) (Pierce/Thermo Scientific). For each 

experiment, cross-linkers were freshly prepared as a 20 mM solution in Dimethyl 

Sulfoxide (DMSO) and diluted to the indicated final working concentrations in 

Phosphate-buffered saline, pH 7.4 (PBS, Fisher Scientific). Cells were washed twice with 

PBS at room temperature to remove all traces of media and incubated with the cross-

linker solution for 30 minutes at room temperature. After removal of the cross-linker 

solution, cells were incubated at room temperature for 10 minutes with quenching 

solution (20 mM Tris-Cl pH 7.4, 5 mM L-Cysteine). Quenching solution was then 

removed and cell lysates were prepared as described below. 
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Bead preparation 

  To prepare magnetic beads for immunoprecipitation, Protein G Dynabeads 

(Dynal/Invitrogen) were washed with Citrate Phosphate buffer pH 5.0 (25 mM citric acid, 

50 mM dibasic sodium phosphate) and incubated with either 15D2 or 8D11 monoclonal 

antibodies for 2 hours at room temperature with end-over-end rotation. Bead-antibody 

complexes were washed with citrate phosphate buffer, followed by two washes with 0.2 

M Triethanolamine (TEA) pH 8.2. Antibodies were covalently bound to Protein G beads 

by incubation 20 mM Dimethyl Pimelimidate (Sigma) in TEA for 30 minutes at room 

temperature with end-over-end rotation, followed by incubation for 15 minutes with 50 

mM Tris-Cl pH 7.5 to quench the crosslinking reaction. Subsequently, beads were 

washed three times with PBS-Tween. After washing with 0.1 M Glycine, pH 2.5 to 

remove non-covalently bound antibodies, beads where washed again with PBS-Tween 

and stored at 4
o
C.  

 

Lysate preparation, conventional immunoprecipitation, and western blot analysis 

 Lysis, immunoprecipitation, and western blot methods have been described 

previously (Xia et al., 2006). Briefly, cells were lysed in Radioimmunoprecipitation 

Assay (RIPA) buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% deoxycholic 

acid, 0.1% SDS) or Digitonin buffer (20 mM Tris pH 7.5, 150mM NaCl, 1% Digitonin) 

supplemented with protease and phosphatase inhibitors (1 mM PMSF, 5 mg/mL 

Leupeptin, 2 mg/mL Aprotinin, 1 mM EDTA, 50 mM NaF, and 1 mM NaVO4). Lysates 

were cleared by centrifugation and total protein concentrations were determined by BCA 

assay (Pierce/Thermo Scientific). For immunoprecipitation, the specified antibody was 
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added to the clarified lysate for 2 hours at 4
o
C with end-over-end rotation, followed by 

incubation with Protein G sepharose (GE Healthcare) for an additional hour at 4
o
C. Beads 

were washed with lysis buffer, resuspended in 2x Laemmli Sample Buffer (LSB), and 

boiled for 5 minutes. Lysates were prepared in LSB or non-reducing sample buffer (50 

mM Tris pH 6.8, 4% Glycerol, 1% SDS, 0.004% Bromophenol Blue) as indicated. Cross-

linked lysates were incubated with 50 mM DTT for 15 minutes prior to boiling to ensure 

cleavage of disulfide bonds within the cross-linkers. 

 Immunoprecipitations and whole cell lysates were separated by SDS-PAGE and 

transferred to nitrocellulose membranes (Whatman) for western blotting. Non-specific 

binding to membranes was blocked with 3% nonfat milk or 5% BSA (phospho-antibodies 

only) in TBS (10 mM Tris pH 7.4, 150 mM NaCl), and membranes were incubated with 

primary antibody in milk overnight at 4
o
C. Membranes were incubated with secondary 

antibody in Odyssey blocking buffer (Li-Cor) for 1 hour at room temperature. Antibodies 

were detected using the Odyssey infrared imaging system (Li-Cor). 

 

Reversible Cross-Link ImmunoPrecipitation (ReCLIP) procedure 

 Four 15 cm dishes of 90% confluent A431, MCF-7, MCF-10A, Caco-2, or HCA-

7 cells (approximately 1x10
8
 cells) were used for each experiment. RIPA lysis buffer was 

prepared fresh and filter-sterilized the day before cells were lysed. Cells were washed 

twice with freshly-prepared PBS pH 7.4 to remove all traces of media. Following 

removal of PBS, 10 mL of a 0.5 mM crosslinker solution in PBS (as described above) 

was added to the each plate. Cells were incubated with crosslinkers for 30 minutes at 

room temperature, with occasional agitation. Crosslinker solution was then removed, and 
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10 mL quenching solution was added to each plate for an additional 10 minutes. 

Following quenching, plates were placed on an ice-water bath and washed once more 

with chilled PBS, and lysed with freshly-prepared RIPA buffer plus protease and 

phosphatase inhibitors (1 mL RIPA buffer per dish). Lysates were homogenized using a 

23-gauge needle and cleared by centrifugation. Equal volumes of clarified lysate were 

incubated with either 15D2 (p120) or 8D11 (control) bound Protein G Dynabeads for 3 

hours at 4
o
C with end-over-end rotation. The beads were then washed 5 times with 1 mL 

RIPA buffer supplemented with protease and phosphatase inhibitors. p120 binding 

partners were eluted by incubating the beads with RIPA buffer supplemented with 50 

mM DTT in for 30 minutes at 37
o
C with end-over-end rotation. 

 For mass spectrometry analysis, eluates were boiled in freshly prepared LSB, 

separated by SDS-PAGE on Nu-PAGE 4-12% Bis-Tris gels (Novex/Invitrogen) and 

stained with “Blue Silver” colloidal coomassie stain (Candiano et al., 2004). The entire 

lane was excised and processed for shotgun analysis using single-dimension liquid-

chromatography tandem-mass spectrometry (LC-MS/MS) by the Vanderbilt University 

Medical Center Proteomics Laboratory (according to procedures described below). For 

silver stain analysis, 10% of the eluate was separated by SDS-PAGE and protein was 

visualized using Silver Stain Plus (Bio-Rad), according to the manufacturer’s protocols. 

Following staining, gels were imaged using the FluorChem-8900 Gel Documentation 

System (Alpha Innotech). 
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Mass spectrometry and protein identification 

Proteins were resolved by SDS-PAGE, visualized with colloidal coomassie stain, 

and protein bands of interest were excised and cut into 1 mm cubes and equilibrated in 50 

mM NH4HCO3.  Proteins were then reduced within the gel pieces with DTT (3 mM in 

100 mM NH4HCO3, 37°C for 15 min) followed by alkylation with iodoacetamide (6 mM 

in 50 mM NH4HCO3 for 15 min).  The gel pieces were then dehydrated with acetonitrile 

and rehydrated with 15 mL 12.5 mM NH4HCO3 containing 0.01 mg/mL trypsin (Trypsin 

Gold, Promega), and trypsin digestion was carried out for >2 h at 37°C.  Peptides were 

extracted with 60% acetonitrile, 0.1% formic acid, dried by vacuum centrifugation and 

reconstituted in 15 μL 0.1% formic acid. 5 μL of peptide hydrosylate were analyzed by 

C18 reverse-phase LC-MS/MS using a Thermo LTQ ion trap mass spectrometer 

equipped with a Thermo MicroAS autosampler and Thermo Surveyor HPLC pump, 

nanospray source, and Xcalibur 2.0 instrument control using standard triple-play 

methods.  Tandem MS data were analyzed with the Sequest algorithm to search a human 

subset of the UniRef100 database (Jan 23 2007, 223514 entries) using Xcorr cutoffs of 

1.8 for [M+2H]2+/2  ions and 2.5 for [M+3H]3+/3  ions .  In addition, the database 

contained a concatenated reverse decoy database to estimate false-discovery rates, which 

were at 5% or below 

 

Immunofluorescence Microscopy 

Cells were plated on glass coverslips 2 days before treatment and processing for 

immunofluorescence staining. Briefly, cells were fixed in 3% Paraformaldehyde for 30 

minutes, and permeabilized in PBS/0.2% Triton X-100 for 5 minutes. Cells were blocked 
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with PBS containing 5% BSA for 10 minutes. Cells were incubated with the indicated 

primary antibodies diluted in 5% BSA for 30 minutes, followed by secondary antibodies 

for another 30 minutes. To stain actin, AlexaFluor 488-conjugated Phalloidin was used in 

place of secondary antibody. Cells were stained with 0.5 μg/mL Hoechst dye for one 

minute to stain nuclei. Coverslips with stained cells were mounted onto glass slides using 

Prolong Gold anti-fade reagent (Invitrogen) and imaged using a Zeiss Axiovert 

fluorescence microscope with a 63x objective. Images were acquired and processed using 

Metamorph software (Molecular Devices). To quantify cell-cell contact localization of 

ROCK1, four distinct regions of the coverslip were imaged using a 20x objective. Total 

cells were quantified using Hoechst-dye nuclei staining, and cells with ROCK1 localized 

to junctions were manually counted using ImageJ. The percent of cells with ROCK1 

localized to cell-cell contacts in each field was calculated and averaged. Statistical 

analysis was performed using a 2-tailed t-test. 

 

In-vitro ROCK1 Kinase Assay 

 A431 cells were grown to 90% confluence and serum-starved overnight with 

DMEM supplemented with 0.1% FBS. The next day, cells were lysed in RIPA buffer and 

clarified lysates were incubated with anti-p120 mAb 15D2 for 1 hour, followed by 

incubation with Protein-G Sepharose beads for an additional hour. Beads were washed 

three times with RIPA buffer, followed by an additional 2 washes with ROCK1 Kinase 

Buffer (10 mM MOPS, 0.2 mM EDTA, 10 mM MgAc) without ATP. Following washing 

beads were incubated with 200 ng constitutively active ROCK1 (amino acids 17-535) 

(Millipore) in ROCK1 kinase buffer with 0.1 mM ATP for 15 minutes. Kinase reactions 
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were stopped by addition of 2x LSB and boiling samples for 5 minutes. p120 

phosphorylation was assessed by western blot using phospho-specific p120 monoclonal 

antibodies and anti-p120 pAb F1 SH to detect total p120.  



39 

CHAPTER III 

 

RECLIP (REVERSIBLE CROSS-LINK IMMUNO-PRECIPITATION): AN 

EFFICIENT METHOD FOR INTERROGATION OF LABILE PROTEIN 

COMPLEXES 

 

Introduction 

Identifying functionally relevant protein-protein interactions remains a significant 

problem in discovery-based research. Affinity purification coupled with Mass 

Spectrometry (MS) analysis is a rapid, sensitive, and unbiased method for identifying 

novel protein-protein interactions. While ongoing technical advances have dramatically 

improved the sensitivity and efficiency of mass spectrometry instruments and methods, 

most experiments are limited by the quality of the sample itself. Current methods 

represent a compromise where recovery is sacrificed for specificity or vise versa. 

Conventional co-immunoprecipitation by itself is invariably accompanied by 

unacceptable background. A common solution is to add a second affinity purification 

step.  This Tandem-Affinity-Purification (TAP-tag) approach, however, minimizes 

background at the expense of transient and/or weak interactions that are lost because of 

the additional processing (Rigaut et al., 1999), (Puig et al., 2001).  

Here, I have used p120-catenin (hereafter p120) and the E-cadherin complex as a 

model to develop an approach that captures labile interactions without sacrificing 

specificity. Whereas - and -catenins bind cadherins with high affinity under a variety of 

conditions, the p120 interaction is relatively labile. In RIPA buffer, for example, p120 is 
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almost undetectable in cadherin immunoprecipitates, whereas the other catenins are 

efficiently recovered. Gentler detergents (i.e. NP-40) improve recovery, but are 

nonetheless relatively inefficient (Reynolds et al., 1994). Digitonin can effectively 

preserve p120 binding in some cell types, but appears to act selectively on soluble (as 

opposed to cytoskeleton tethered) complexes (Reynolds et al., 1994), (Kiss et al., 2008) 

and previous attempts using TAP methods have been unsuccessful due to extremely low 

recovery of p120 complexes (unpublished observations).  

Chemical crosslinkers have been employed to stabilize protein-protein 

interactions for structural studies (Studdert and Parkinson, 2007), or to demonstrate 

interaction between already suspected binding partners (Vretou et al., 2008). For 

example, it has been used successfully to capture transient dimerization of the Epidermal 

Growth Factor Receptor in response to ligand (Zhou et al., 1993). In particular, the cell-

permeable, lysine-reactive crosslinker Dithiobis[succinimidyl propionate] (DSP, also 

called Lamont’s Reagent) has been successfully used to facilitate co-immunoprecipitation 

of weakly interacting binding partners (Zhang et al., 2007). Recently, DSP-crosslinking 

has been combined with affinity-purification and mass spectrometry to identify novel 

binding partners (Salazar et al., 2009), (Humphries et al., 2009), suggesting that in-cell 

crosslinking can be used to characterize weak and transient complexes by mass 

spectrometry.  

 Here, using p120 and the cadherin complex as a model system, we describe an 

efficient approach that employs cell-permeable, thiol-cleavable crosslinkers to stabilize 

normally labile interactions (i.e. the p120 - E-cadherin interaction) in vivo prior to cell 

lysis and affinity purification. In our model, p120 was directly immunoprecipitated under 
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stringent conditions and binding partners were selectively eluted from the p120 “bait” by 

chemical cleavage of the crosslinker. Unlike other approaches, this elution scheme 

removes the target protein along with the beads and antibody from the final sample, 

resulting in very low background. Western blot and MS analyses revealed that all core 

components of the cadherin complex were efficiently recovered along with several novel 

candidates for direct or indirect p120 binding partners. This approach, which we have 

termed ReCLIP (Reversible Cross-Link Immuno-Precipitation) is simple and produced 

remarkably clean preparations of p120 binding partners for proteomic analyses.  These 

results suggest that ReCLIP provides high sensitivity without sacrificing specificity, and 

therefore provides a robust alternative to other affinity-purification methods. 

 

Results 

 

Determination of optimal crosslinker concentrations 

 We initially identified candidate crosslinkers and evaluated conditions for use. 

Two specific crosslinkers, Dithiobis[succinimidyl propionate] (DSP) and Dithio-

bismaleimidoethane (DTME), were chosen based on their distinct chemical properties. 

DSP reacts with primary amines and has a spacer-arm of 12 Å (Figure 8a), forming 

crosslinks between lysine residues of interacting proteins. DSP has been commonly used 

in a variety protein-interaction studies (Appenzeller et al., 1999), (Studdert and 

Parkinson, 2007) due in part to the high abundance of lysine residues in proteins. DTME 

reacts with sulfhydryl groups and has a spacer arm of 13.3 Å (Figure 8b), forming 

crosslinks between cysteine residues of interacting proteins. DTME would be expected to 

produce fewer crosslinks, however it may capture interactions that DSP cannot. While 
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Figure 8: Chemical structures of ReCLIP crosslinkers DSP and DTME. The 

chemical structures of DSP (a) and DTME (b) are shown, images were constructed with 

the DrawIt application in KnowItAll Informatics System v. 4.1 (Bio-Rad). DSP features 

NHS-ester reactive groups at both ends (a) while DTME features meleimide reactive 

groups (b). Note the central disulfide bond in each molecule, allowing for cleavage by 

reducing agents.  
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not commonly used, DTME has been successfully applied to protein-protein interactions 

studies (Casula et al., 2009). Importantly, both compounds are cell-permeable, allowing 

for in-cell crosslinking of endogenous complexes prior to cell-lysis. Additionally, both 

compounds are thiol-cleavable, allowing for “reversal” of the crosslinks via chemical 

cleavage by a reducing agent (i.e. DTT). 

Optimal crosslinker conditions were determined using A431 epidermoid 

carcinoma cells, a human epithelial cell line that has been used for a number of cell-cell 

adhesion studies (Norvell and Green, 1998), (Davis et al., 2003). A431 cells were washed 

with PBS and exposed for 30 minutes to increasing concentrations of DSP or DTME in 

PBS, pH 7.4.  Cells were then lysed at 4˚C in RIPA and the lysates treated for 15 min 

with DTT (reducing, panels b and d) or not (nonreducing, panels a and c), as indicated.  

Samples were then analyzed by SDS-PAGE, followed by Western blotting for E-cadherin 

(top panels) or p120 (bottom panels). 

Figure 9a shows a dose-dependent reduction in monomeric E-cadherin (top panel, 

arrowhead) and the simultaneous appearance of crosslinked complexes across the top of 

the gel that are too large to resolve (arrow). Note that the monomeric E-cadherin (and 

p120, lower panel) is decreased at 0.5 mM DSP and almost absent at 1.0 mM, indicating 

that the vast majority of E-cadherin and p120 is crosslinked into high molecular 

complexes at these concentrations. Figure 9b shows that monomeric protein is efficiently 

recovered by addition of DTT.  Note that at 0.5 mM DSP, virtually all of the monomeric 

E-cadherin and over half of the monomeric p120 are recovered (compare lanes 6 in a and 

b, upper and lower panels respectively), and that the high molecular weight bands are no 

longer present. It is not entirely clear why the recovery of p120 in whole cell lysates is  
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Figure 9: Titration of intracellular cross-linking of p120 and E-cadherin. Western 

blot analysis of E-cadherin (top panels) and p120 (bottom panels) in whole cell lysates of 

A431 cells treated with the indicated concentrations of DSP (a, b) or DTME (c, d) 

between 0.01 mM and 1.0 mM. Samples were prepared under non-reducing (a, c) and 

reducing conditions (b, d) as indicated. Arrowheads indicate monomeric E-cadherin and 

p120, large cross-linked species are indicated with arrows, smaller crosslinked E-

cadherin species are indicated with a diamond (u), and a possible cysteine-induced E-

cadherin dimer is indicated with an asterisk (*). 

 



45 

less efficient than that for E-cadherin.  The difference, however, is not generally observed 

in immunoprecipitates, suggesting that the phenomenon may reflect competition for 

reducing agent among the large number of crosslinked proteins present in the whole cell 

lysate. 

Crosslinking with DTME was less efficient, as evidenced by the relatively high 

levels of monomeric E-cadherin remaining at the 1.0 mM dose (panel c, compare lanes 1 

and 6).  This is consistent with the lower abundance of cysteine residues relative to 

lysine. Nonetheless, the appearance of progressively larger E-cadherin-containing 

complexes with increasing DTME indicates the presence of crosslinked species. The 

faster migrating band (Figure 9c, diamond) probably represents a partial complex.  The 

exact content is not known, but p120 is clearly absent.  Further crosslinking generates 

p120-containing higher order complexes, which are too large to resolve by SDS-PAGE 

(arrow). In these non-reduced samples, an additional E-cadherin band is present even in 

the absence of cross-linker (asterisk). The precise identity of this E-cadherin complex is 

unclear, but it may represent cadherin dimers caused by the addition of cysteine to 

quench the DTME crosslinking reaction, as dimerization is induced, in part, by cysteine 

mediated disulfide bonds within the extracellular domain (Boggon et al., 2002), 

(Troyanovsky et al., 2003). Interestingly, for reasons not entirely clear, DTME appears to 

crosslink p120 more efficiently than E-cadherin, as evidenced by significant loss of 

monomeric p120 (panel c, compare lanes 1 through 6).  

Based on these data, we chose 0.5 mM DSP and 0.5 mM DTME as optimal 

concentrations for subsequent experiments.  In the case of DSP, 1.0 mM was more 

effective than 0.5 mM, but I chose the lesser of the two to limit nonspecific capture. For 
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DTME, there was no apparent difference between 1.0 and 0.5 mM so the lesser amount 

was used. 

 

Efficacy, efficiency, and specificity of crosslinking with DSP and DTME 

 Next, I used the E-cadherin – p120 interaction as a model to assess the efficacy of 

DSP and DTME under the above conditions.  The amount of E-cadherin co-

immunoprecipitating with p120 was determined after in-cell crosslinking with DSP or 

DTME (Figure 10a).  Cell lysis in a digitonin-containing buffer (without crosslinking) 

was used as a reference (Figure 10a, lane 1), because it is relatively effective in A431 

cells at preserving the p120 – E-cadherin interaction (Kiss et al., 2008). In contrast, the 

remaining samples were treated with DSP, DTME, or vehicle alone (DMSO), as above, 

and lysed in RIPA buffer.  p120 was then immunoprecipitated from all samples, eluted in 

reducing LSB, and analyzed by SDS-PAGE and Western blotting.  

 Figure 10a shows that E-cadherin recovery from p120 immunoprecipitates after 

DSP crosslinking was as good, if not better, than that obtained from the digitonin lysate 

(compare lanes 1 and 3).  DTME was less efficient (lane 4), whereas no E-cadherin was 

recovered in the absence of crosslinker (i.e. DMSO, lane 2). Thus, E-cadherin was not 

recovered in RIPA alone, but crosslinking with DSP preserved the interaction.  

Moreover, irrelevant cytoplasmic (i.e. ERK1/2) and membrane-associated (i.e. Focal 

Adhesion Kinase) proteins were absent from the p120 immunoprecipitates but clearly 

present in whole cell lysates. Thus, DSP and DTME crosslinking appears to be quite  

specific under these conditions.  
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Figure 10: In-cell cross-linking preserves the interaction of p120 and E-cadherin 

and is specific for interacting proteins. (a) Western blot analysis of p120, E-cadherin, 

FAK, and p42/44 MAPK in p120 immunoprecipitates and lysates from A431 cells lysed 

in 1% digitonin or RIPA buffer following treatment with DMSO vehicle or 0.5 mM 

cross-linker as indicated. (b) Cadherin-negative A431-D cells, and A431-D cells stably 

expressing wild type (WT E-cad) or p120-uncoupled (764 E-cad) E-cadherin were 

prepared and analyzed as in A. (c) Western blot analysis of p120, E-cadherin, -catenin, 

and -catenin in p120, control IgG immunoprecipitates, and lysates from A431 cells 

treated as in panel a. 



48 

To further assess specificity, I asked whether E-cadherin and p120 could be crosslinked 

under conditions where physical interaction is selectively uncoupled (Figure 2b).   Our 

lab has previously described a minimal E-cadherin mutant (E-cad 764AAA) that is 

physically uncoupled from p120 but nonetheless forms cell-cell junctions and interacts 

normally with -catenin (Thoreson et al., 2000).  In Figure 10b, I introduced WT E-

cadherins (lanes 5-8) or 764AAA E-cadherin (lanes 9-12) into the A431D cell line, a 

cadherin-negative A431 variant. The absence of E-cad 764AAA in p120 

immunoprecipitations (lanes 9-12, top panel) shows clearly that this mutant is not 

crosslinked to p120, implying that direct physical interaction is indeed essential.  In 

contrast, WT E-cadherin is efficiently crosslinked (lanes 5-8, top panel). 

 To further test the efficacy of crosslinking, I extended the analysis to - and -

catenins, which form a tertiary (indirect) complex with p120 via E-cadherin (Figure 10c).  

Interestingly, the entire complex is efficiently crosslinked by DSP (lane 4).  -catenin, in 

particular, was easily recovered relative to the DTME or digitonin methods. The middle 

panels (lanes 5-8) show that negative-control immunoprecipitation with a p120 

monoclonal antibody that does not recognize human p120 (control IgG, mAb 8D11) 

under conditions identical to the first panel (lanes 1-4) does not bring down members of 

the cadherin complex.  

 

Reversible Cross-Linking Immuno-Precipitation (ReCLIP) for Mass Spectrometry 

 Figure 11 illustrates the procedure I have developed for rapid and clean isolation 

of binding partners for MS analysis. The schematic (panel a) shows immunoprecipitation 

of a crosslinked p120 complex followed by selective elution of the 
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Figure 11: Elution of binding partners from p120. (a) A schematic of the elution 

strategy. Following immunoprecipitation and washing of cross-linked complexes on p120 

mAb beads, binding partners are released by incubation with DTT in RIPA buffer, 

cleaving the cross-links and releasing interacting proteins from p120. (b) A representative 

western blot demonstrating depletion of p120 from A431 cell lysates following 

immunoprecipitation with p120 mAb beads of control IgG beads. Tubulin is shown as a 

loading control. (c) Elution of known binding partners, but not p120, from p120 mAb 

beads. Whole cell lysate is shown as a control, and 10% of the DTT eluate was analyzed 

for E-cadherin, -catenin, -catenin, and p120 by Western blot. 
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individual components. Binding partners are efficiently recovered by breaking the 

crosslinks with reducing agent, essentially reversing the procedure. With the antibody 

covalently bound to the bead (see Bead preparation in chapter two), DTT releases 

crosslinked binding partners only. The most abundant protein  ‘contaminants’, mAb 

15D2 and mAb-bound p120 itself (the bait) are discarded along with the beads, resulting 

in a highly purified mixture of eluted binding partners.  Panel b illustrates the efficiency 

of the immunoprecipitation, as evidenced by depletion of p120 from the supernatant 

(panel b, compare lanes 1 and 2).  Panel c shows that the coimmunoprecipitated E-

cadherin is efficiently recovered by DTT elution (panel c, top panel, compare lanes 1 and 

2) while p120 is essentially absent, having been discarded with the beads (panel c, bottom 

panel, lane 2). Furthermore, immunoprecipitation using control IgG (mAb 8D11) does 

not deplete p120 from the lysate (panel b, lane 3) and E-cadherin and associated catenins 

are not detected in the DTT eluate (panel c, lane 3). 

 

Efficacy of ReCLIP 

 To test the efficacy of ReCLIP, p120 and control elutions from A431 cells 

crosslinked with DSP were subjected to shotgun analysis by single-dimension liquid 

chromatography tandem mass spectrometry (LC-MS/MS). Relative protein abundance 

was measured using the total number of peptides detected for each protein (spectral 

counts). Core p120 binding partners were easily identified, as evidenced by high spectral 

counts for E-cadherin and the catenins (Table 2).  Note, however, that spectral counts are 

only partly indicative of protein abundance. For example, E-cadherin is consistently 

under-represented relative to its size, which is similar to the catenins. Importantly, 
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cadherin proteins are not detected control pull downs (i.e. zero peptides), as shown in 

Table 2. Nonspecific background (i.e., proteins detected in both experimental and control 

samples) was remarkably low, consisting primarily of common artifacts such as 

chaperones, metabolic proteins, and highly abundant cytoskeletal proteins, as illustrated 

in Table 3.  

Table 2: Recovery and identification of core p120 binding partners using ReCLIP. 

Average spectral totals for E-cadherin, -catenin, -catenin, and Plakoglobin from 3 

independent ReCLIP experiments from A431 cells treated with DSP. No peptides for 

these proteins were identified in the corresponding control samples. 

 
Protein UniProt 

Accession 

Average spectral 

count in p120 IP 

Standard 

Error 

Average spectral 

count in control IP 

E-cadherin IPI00000513.1 9 2.11 0 

-catenin IPI00215948.4 38 9.17 0 

-catenin IPI00017292.1 24 6.07 0 

Plakoglobin IPI00554711.2 12 5.08 0 

 

 

Effects of simultaneous DSP and DTME crosslinking  

 Next, I asked whether use of DSP and DTME together is more efficient than 

either one alone. Figure 12a shows the number of distinct peptides (per protein) of 

cadherin complex proteins detected using individual or combined crosslinkers. For E-

cadherin and -catenin, combining DSP and DTME was clearly more efficient than 

individual usage, whereas no little or no improvement was observed for -catenin and 

Plakoglobin. The same result is illustrated by Western blotting (Figure 12b) using E-

cadherin as the readout. In the experiment shown, the DSP + DTME combination was 

highly effective (compare lanes 7 and 8), whereas each compound by itself was less 

efficient (compare lane 1 and 2, and lane 4 and 5).  

 The efficacy of ReCLIP under three crosslinking conditions was further evaluated 

by SDS-PAGE and silver staining (figure 12c). The data indicate an excellent signal to  
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Table 3: Common background proteins detected by ReCLIP in A431 cells. Proteins 

detected in both p120 and control eluates are listed. The highest single spectral count 

detected for each in p120 and control eluates across all experiments in figures 11 and 12 

are shown. 

 

Protein 

UniProt 

Accession p120 Control 

Alpha-actinin-4 IPI00013808.1 8 78 

D-3-phosphoglycerate dehydrogenase IPI00219018.7 3 6 

Elongation Factor 1 alpha 2 IPI00014424.1 6 4 

Elongation Factor 2 IPI00186290.6 6 3 

TUBA1C  IPI00166768.2 4 6 

heat shock protein 90kDa alpha (cytosolic), class A 

member IPI00382470.3 6 5 

14-3-3 protein epsilon IPI00000816.1 9 3 

61 kDa protein IPI00472102.3 3 5 

Fatty acid synthase IPI00026781.2 11 9 

Isoform 1 of L-lactate dehydrogenase A chain IPI00217966.7 2 3 

Isoform 1 of Protein-L-isoaspartate(D-aspartate) O-

methyltransferase IPI00411680.8 7 2 

Protein disulfide-isomerase A3 IPI00025252.1 3 6 

Isoform M1 of Pyruvate kinase isozymes M1/M2 IPI00220644.8 8 9 

Isoform alpha-enolase of Alpha-enolase IPI00465248.5 4 2 

Peroxiredoxin-1 IPI00000874.1 6 8 

Phosphoglycerate kinase 1 IPI00169383.3 3 5 

Src substrate cortactin IPI00029601.4 2 15 

Heat shock 70 kDa protein 1L IPI00301277.1 3 3 

Isoform 1 of LIM and SH3 domain protein 1 IPI00000861.1 2 5 

Isoform Short of RNA-binding protein FUS IPI00221354.1 2 6 

Transketolase IPI00643920.2 6 8 
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Figure 12: Cross-linkers can be combined to enhance complex recovery. (a) Average 

number of distinct peptides identified in 2 LC-MS/MS runs for E-cadherin, -catenin, -

catenin, and plakoglobin from A431 cells treated with DSP, DTME, or both compounds 

simultaneously (DSP + DTME). Error bars represent standard error of the mean. 

Background levels were similar across all conditions. (b) Western blot analysis of E-

cadherin levels in lysates (Lysate), p120 eluates (p120), and control IgG eluates (Control) 

from A431 cells treated with the indicated cross-linkers. (c) Silver stain analysis of total 

protein recovery from p120 and control IgG eluates from each condition (DSP, DTME, 

or DSP + DTME). (d-f) Average distinct peptide recovery of 15 additional putative p120 

binding partners under each cross-linking condition. Proteins were grouped based on 

whether more peptides were detected using the combination of DSP and DTME (d), DSP 

alone (e) or DTME alone (f). 
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noise ratio across all three conditions, with very few bands detectable in control IgG 

lanes (lanes 2, 4, and 6).  For each condition, some of the bands were unique, as 

expected.  Notably, combining DSP and DTME captured most of the individual bands 

observed with either crosslinker alone (compare lane 5 with lanes 1 and 3) while 

background remained remarkably low (compare lanes 5 and 6). These data indicate that 

regardless of the crosslinker used, ReCLIP provides robust recovery with very low 

background. 

 In addition to the core components of the cadherin complex, I identified at least 

15 unique candidate p120 binding partners in MS analysis, and grouped them according 

to the condition that resulted in the highest number of peptide hits (Figure 12 d-f). For 

example, figure 12d contains the candidates for which DSP and DTME together yielded 

more hits than DSP (e) or DTME (f) alone. The cutoff for inclusion was a minimum of 

two hits against a background of zero, although the majority exceeded these criteria. As 

expected, the highest number of peptide hits for most of the candidates was obtained 

when DSP and DTME were combined (panel d). However, for five of the candidates, the 

highest number of hits was obtained using DSP alone (e), whereas DTME was optimal 

for only one protein (f). Interestingly, five of the candidates were captured only when 

DSP and DTME were used together. On the other hand, combining DSP and DTME 

prevented capture of three candidates (MSH2, GOLGA4, and AIFM1). In general, the 

use of both DSP and DTME together was most effective in that the majority of 

candidates (12/15) were detected and only three were missed.  With DSP or DTME 

alone, just over half of the candidates (8/15) were missed. Overall, these data suggest that 

the most effective approach is to combine DSP and DTME, but this approach may not be  
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ideal for all proteins. Thus, it is recommended that investigators test each crosslinker 

individually and in combination in order to determine the appropriate ReCLIP condition 

for a given target protein. 

 

p120 interacts with cd98 indirectly through E-cadherin 

 Mass spectrometry analysis identified cd98 in p120 eluates, consistent with an 

earlier report that cd98 could be recruited to cell-cell junctions by E-cadherin (Nakamura 

et al. 1999). To study the relationship between p120, cd98, and E-cadherin, cd98 

localization was analyzed by immunofluorescence in A431 and cadherin-negative A431-

D cells expressing wild type or p120-uncoupled E-cadherin. In A431 cells, cd98 localizes 

prominently at cell-cell junctions along with p120 (figure 13a). In the absence of E-

cadherin, cd98 is diffusely localized throughout the cell, with no detectable co-

localization with p120 (figure 13b, top row). In the presence of wild-type E-cadherin, 

both cd98 and p120 are efficiently recruited to cell-cell junctions (b, middle row, arrows). 

Expression of the p120-uncoupled 764AAA E-cadherin also recruits cd98 to cell-cell 

junctions (c, lower row, arrows), while p120 remains diffusely localized in the cytoplasm. 

This result indicates that p120 is not necessary to recruit cd98 to the cadherin complex. 

These data suggests that cd98 binds to E-cadherin (or another component of the 

complex), but not p120. 

 

Discussion 

Here, I have used reversible in-cell crosslinking to develop an extremely efficient 

method (ReCLIP) for studying protein complexes by mass spectrometry. The component  
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Figure 13: Indirect association of p120 and cd98. (a) Immunofluorescence analysis of 

endogenous p120 (green) and cd98 (red) in paraformaldehyde fixed A431 cells. Co-

localization and nuclei (blue) is shown in the merged images. (b) Immunofluorescence 

analysis of endogenous p120 (green) and cd98 (red) in paraformaldehyde fixed parental 

A431D cells and A431D cells expressing wild type (Wild Type E-cadherin) or p120-

uncoupled (764 AAA E-cadherin) E-cadherin. Arrows indicate junction-localized cd98. 
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techniques by themselves are not necessarily novel, but they are uniquely combined and 

optimized to generate a powerful method for studying labile complexes. The single 

immunoprecipitation approach minimizes sample loss, a common problem in TAP 

methods. Furthermore, covalent crosslinking preserves relevant interactions despite 

stringent lysis and washing conditions that reduce background. Thus ReCLIP appears to 

be particularly powerful for studying labile protein interactions that in principle could be 

lost using TAP approaches. 

Among the several optimized parameters of the ReCLIP method, two in particular 

turn out to be critical.  First, in-cell crosslinking covalently stabilizes endogenous 

interactions (as they occur in vivo). Thus, weak or transient interactions are captured in 

situ and retained, regardless of subsequent lysis and washing conditions, until the very 

end of the procedure when the product is eluted. Second, the elution method itself is both 

gentle and highly selective. A major difference between ReCLIP and other methods is 

that only putative binding partners are eluted when the crosslinks are cleaved (see Figure 

11a). Thus, beads, antibody, and other components of the solid phase, including the bait 

itself (in this case, p120) are completely absent from final sample. The removal of bait 

and immunoprecipitating antibodies from the sample is important because these are by 

far the most abundant protein contaminants present in most methods.  

A potential consideration when using ReCLIP in conjunction with MS is that 

some of the recovered peptides are covalently bound by a cleaved crosslinker. After 

cleavage by reducing agent, half of each crosslinker remains attached to a target residue 

in the crosslinked protein. In addition, bound crosslinker may alter proteolytic cleavage 

patterns, as has been demonstrated for other lysine modifications (Cameron et al., 1985). 
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In addition The cleaved crosslinker alters peptide mass and can prevent recognition by 

standard MS algorithms (Baldwin, 2004). Both events (mass-shift and reduced cleavage) 

can reduce the number of peptides generated and/or detected. Such complications are not 

likely to affect the data significantly because crosslinked peptides represent only a small 

fraction of the total number generated following digestion of the sample with trypsin. The 

effect is further limited by using the minimal effective concentration of the crosslinker, as 

determined by preliminary titration experiments. It is also possible to identify modified 

peptides by re-analyzing the spectra using a subset database that allows for the extra mass 

(105.16 Da per Lysine for DSP and 159.21 Da per Cysteine for DTME) produced by the 

cleaved crosslinker (Nesvizhskii et al., 2006). 

One potential drawback to ReCLIP is that very low molecular weight proteins 

might be missed because there are fewer available sites for crosslinking, and fewer tryptic 

peptides to detect.  For example, if a protein is crosslinked and contains only two tryptic 

peptides, one will be missed due to the crosslink modification.  Such proteins would be 

overlooked because the score (one peptide against zero background) is below the cutoff 

for positive identification. Thus, small proteins (e.g. small GTPases such as RhoA) may 

be overlooked, because few unmodified peptides are available. Thus, it is important to 

consider protein size and peptide coverage when assessing proteins with relatively low 

peptide scores (e.g. two peptides against zero background). 

ReCLIP has been optimized to study endogenous complexes using a monoclonal 

antibody. By design, this allows physiologically relevant complexes to be recovered with 

a relatively high degree of specificity. However, ReCLIP can still be used in conjunction 

with epitope-tags (e.g., Flag, Myc, HA epitope tags) in cases where specific antibodies 
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are not available.  Protein over-expression, however, may increase nonspecific 

interactions.  For example, we have noticed that components of the proteosome are 

selectively identified under such conditions. Presumably, the cell is targeting the excess 

protein for degradation and we are then crosslinking it to components of the proteosome. 

It is possible that we missed certain previously identified p120 binding partners (e.g. 

Kinesin Heavy Chain (Chen et al., 2003), (Yanagisawa et al., 2004)) for this reason, as 

the interaction between p120 and Kinesin Heavy Chain is more efficiently detected under 

conditions of p120 over-expression. Alternatively, the interaction may be different or 

absent in A431 cells.  

Surprisingly, Kaiso was not identified as a p120 binding partner by ReCLIP.  

However, Kaiso is a relatively low abundance transcriptional repressor found primarily in 

the nucleus in cultured cells (Daniel and Reynolds, 1999).  Thus, it is possible that spatial 

separation, low Kaiso expression, low interaction stoichiometry, or any combination 

thereof ultimately limits the sensitivity of ReCLIP.  Of note, p120 and Kaiso can be 

detected by conventional co-immunoprecipitation in gentle detergent buffers (Daniel and 

Reynolds, 1999), suggesting that low abundance of Kaiso is not by itself the limiting 

factor.  Instead, cell lysis without prior crosslinking may actually facilitate such 

interactions by permitting the mixing of proteins from otherwise spatially separate pools 

(e.g. nuclear Kaiso and cytoplasmic p120). With ReCLIP, protein complexes are 

crosslinked in situ and then lysed in RIPA, a stringent buffer designed expressly to be 

compatible with antibody-antigen interactions while preventing nonspecific and/or weak 

interactions. Thus, some events that occur post-lysis (e.g. the p120-Kaiso interaction) will 

undoubtedly be prevented by the ReCLIP lysis and washing conditions.  On the other 
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hand, this feature of ReCLIP may allow one to selectively capture physiological 

complexes under a defined condition and time interval, potentially identifying 

interactions that occur transiently in response to a stimulus. 

In addition to the cadherin complex, I identified several candidate p120 binding 

partners (Figure 4 c-e) including p160 Rho Kinase (ROCK1). ROCK1 is a prominent 

effector of RhoA that regulates the acto-myosin machinery and other signaling pathways 

(Riento and Ridley, 2003). This novel interaction, which will be described in chapter 

five, is consistent with other known roles of p120.  For example, p120 regulates the 

activity of RhoA (Anastasiadis et al., 2000) and can associate with p190 RhoGAP at the 

adherens junction (Wildenberg et al., 2006).  ROCK1 has not been linked to p120 by 

other methods (e.g. conventional immunoprecipitation and TAP-Tag), consistent with the 

apparent increased sensitivity of ReCLIP. Interestingly, no Rho-family GTPases were 

detected using ReCLIP, including RhoA, which has been reported to directly interact 

with p120 (Magie et al., 2002), (Castaño et al., 2007). A potential explanation for this 

result is the inherent bias of mass-spectrometry against small proteins. Nonetheless, the 

recovery of ROCK1 along with its substrate Villin-2/Ezrin suggests that a functional Rho 

complex associates with p120.  

Another candidate binding partner, cd98 (also known as 4F2 Heavy Chain), 

appears to reflect capture of a tertiary interaction.  In general, tertiary (as apposed to 

direct) interactions are considerably more difficult to capture by conventional methods, 

but in principle could be significantly stabilized by limited crosslinking. cd98 is an 

integral membrane protein that forms a heterodimer with the LAT-2 amino-acid 

transporter (also known as 4F2 Light Chain) (Nakamura et al., 1999). cd98 also regulates 
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1-integrin clustering (Henderson et al., 2004), (Cai, 2005), (Kim and Hahn, 2008) and 

heterotypic cell-cell interactions (Nguyen et al., 2008). Interestingly, a previous study 

suggested the recruitment of cd98 to cadherin-based cell-cell junctions (Nakamura et al., 

1999). Consistent with this report, I find that cd98 co-localizes precisely with E-cadherin 

and p120 in A431 cells (see Figure 13a).  However, in E-cadherin reconstitution 

experiments in A431D cells, cd98 is also recruited to both wild type and p120 uncoupled 

E-cadherin complexes, indicating that the direct interaction is not with p120 itself, but 

instead to some other member of the E-cadherin complex (see Figure 13b). As with 

ROCK1, I have not detected cd98 by other methods.  Importantly, the indirect association 

of p120 with cd98 provides additional evidence that ReCLIP can routinely capture 

tertiary interactions that would otherwise be lost, making it attractive for interactome 

mapping studies.    

In summary, I have developed ReCLIP (Reversible Cross-Link Immuno-

Precipitation), an approach designed expressly to retain weak interactions without 

sacrificing specificity and/or sensitivity. The procedure is relatively simple and yet 

generates excellent signal-to-noise ratios in MS analyses. Although I have focused on the 

cadherin complex as a model system, the method should be broadly applicable, provided 

users optimize crosslinkers and immunoprecipitation conditions for their own targets. 

Overall, ReCLIP offers a potentially powerful alternative to previously described 

affinity-purification approaches and appears to be particularly suitable for interrogating 

labile protein complexes. 
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CHAPTER IV 

 

ROCK1 PHYSICALLY ASSOCIATES WITH THE CADHERIN COMPLEX IN A 

P120-DEPENDENT MANNER 

 

Introduction 

 Establishment and maintenance of cell-cell adhesion requires the coordination of 

a wide array of signaling events. Modulation of the actin cytoskeleton is particularly 

important to maintain strong cell-cell adhesion. As discussed in Chapter one, the cadherin 

complex is functionally linked to the actin-cytoskeleton via -catenin, and disruption of 

the actin cytoskeleton dramatically reduces cell-cell adhesion (Fischer and Quinlan, 

1998). Coordination of the actin-cytoskeleton and cell-cell adhesion is important for the 

integrity of epithelial sheets with a network of apical stress fibers connected across 

multiple adjacent cells via adherens junctions (Vaezi et al., 2002). The precise physical 

interactions between cadherins and the acto-myosin network remain unclear. Although -

catenin physically interacts with both actin and the cadherin complex, recent work has 

suggested that -catenin cannot interact with both actin and cadherins simultaneously 

(Yamada et al., 2005).  

While the physical links between the acto-myosin network and the cadherin 

complex remain poorly understood, the functional links between them are more apparent. 

One of the major signaling pathways involved is the RhoA pathway. Early studies using 

dominant-active and dominant-negative RhoA mutants demonstrated that both excess 

activation and inhibition of Rho signaling can ablate cell-cell adhesion, presumably by 
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disrupting normal cytoskeletal organization (Braga et al., 1997), and junction maturation 

and cell-type can influence the precise effects of these GTPases (Braga et al., 1999). 

Furthermore, cadherins themselves can regulate the activity of Rho GTPases (Betson et 

al., 2002; Fukuyama et al., 2006). 

 Rho kinase, a major effector of RhoA, can regulate cadherin function in both a 

positive and negative manner. For example, ROCK promotes vascular permeability by 

disrupting VE-cadherin based junctions (Wójciak-Stothard et al., 2001). In epithelial 

cells, ROCK activity disrupts adherens junctions downstream of RhoA, while another 

RhoA effector, mDia, promotes adherens junction assembly (Sahai and Marshall, 2002). 

Furthermore, ROCK activity is required for the loss of E-cadherin during TFG-  induced 

Epithelial-to-Mesenchymal Transition (Bhowmick et al., 2001). In contrast, inhibition of 

ROCK leads to a failure of epithelial polarization and blocks the formation of new tight 

junctions and adherens junctions in a calcium switch assay (Walsh et al., 2001). Recently, 

studies in human embryonic stem cells have demonstrated that ROCK activity is required 

for tight cell-cell adhesion (Harb et al., 2008). Similarly, suppression of RhoA and 

ROCK can reduce cellular aggregation and N-cadherin expression in differentiating 

neurons (Laplante et al., 2004). Furthermore, recent work has demonstrated that Myosin 

II, a direct target of ROCK, is essential for cell-cell adhesion and cadherin clustering (Li 

et al., 2010; Shewan et al., 2005; Smutny et al., 2011). 

 As discussed above, several lines of evidence point to a functional relationship 

between cadherins in ROCK signaling. Given its role in regulating both Rho GTPases 

and the cadherin complex, p120 is an attractive candidate to mediate this functional 

interaction. In chapter three, I identified p160 Rho Kinase (ROCK1) as a candidate p120 
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binding partner using ReCLIP. This result suggests that ROCK1 may physically associate 

with p120 and the cadherin complex in order to regulate cell-cell adhesion.  

 

Results 

 

Identification of p160 Rho Kinase as a p120 binding partner 

 In p120 ReCLIP samples from A431 cells, 15 distinct peptides of ROCK1 were 

recovered, covering 12.8% of the total amino-acid sequence. No ROCK1 peptides were 

detected in the control pulldowns with an irrelevant IgG. Sequence alignment analysis 

revealed that all but two peptides (mapped to the highly conserved kinase domain) were 

specific to ROCK1 rather than ROCK2 (Table 4). As Figure 14a illustrates, Peptides 

from multiple distinct regions of ROCK1 were detected, with the majority (11/15) 

representing the predicted coiled-coil domain. Additionally, ROCK1 was detected in 

immunoprecipitations from Caco-2 colorectal adenocarcinoma, MCF-7 mammary 

adenocarcinoma, and MCF-10A mammary epithelial cells (Table 5, Appendix A), 

suggesting this interaction is relevant in other epithelial cell types. 

 

ROCK1 physically associates with p120 at cell-cell junctions 

The identification of ROCK1 as a p120 binding partner was confirmed in A431 

cells by crosslink immunoprecipitation experiments. As figure 14b illustrates, ROCK1 

can be co-immunoprecipitated with p120 from DSP-crosslinked A431 cells using 2 

separate p120 antibodies (pp120 and 15D2, lanes 2 and 3), but not with an antibody that 

does not recognize human p120 (IgG, lane 4)). This interaction appears to have relatively 
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Figure 14: Identification of p160 Rho Kinase (ROCK1) as a p120 binding partner. 

(a) A schematic of ROCK1, with the distribution of unique peptides for each region of 

the protein. (b) Western blot analysis of ROCK1 and p120 in a whole cell lysate, p120, 

and control immunoprecipitates from DSP-crosslinked A431 cells. ROCK1 is pulled 

down with 2 separate p120 monoclonal antibodies (15D2 and pp120) but not a control 

IgG. 
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Table 4: ROCK1 peptides detected in p120 ReCLIP samples. The identified sequence 

and specific location ROCK1 peptides identified by mass spectrometry in p120 ReCLIP 

samples. Identified sequences were compared to the full sequence of ROCK1 and 

ROCK2. 

 

Peptide Location 

ROCK 

Domain ROCK1 ROCK2 

Detection in 

control 

AESEQLAR  899 - 906 Coiled-coil + - - 

GAFGEVQLVR  85 -  94 Kinase + + - 

IEGWLSVPNR  1121 -30 PH + - - 

LLEFELAQLTK  820 - 830 Coiled-coil + - - 

NIDNFLSR  51 -  58 N-terminus + - - 

SLQESLQK  423 - 430 Coiled-coil + - - 

YLSSANPNDNR  405 – 415 Coiled-coil + - - 

INEYQR  495 - 500 Coiled-coil + - - 

ITSLQEEVK  631 - 639 Coiled-coil + - - 

LLLQNELK  784 - 791 Coiled-coil + - - 

GLLEEQYFELTQESK  907 - 921 Coiled-coil + - - 

NLESTVSQIEKEK  476 - 488 Coiled-coil + - - 

NVENEVSTLKDQLEDLKK  511 - 528 Coiled-coil + - - 

SDSAFFWEER  116 – 125 Kinase + + - 

YLSSANPNDNR  405 – 415 Coiled-coil + - - 

 

low stoichiometry, with only a low level of ROCK1 co-immunoprecipitating with a 

relatively large amount of p120 (lane 2 and 3). Nonetheless, coupled with the mass 

spectrometry-based identification of ROCK1, these data suggest that ROCK1 physically 

associates with p120. 

The localization of endogenous ROCK1 was analyzed by immunofluorescence 

microscopy in A431 and MCF-7 epithelial cells (Figure 15a, upper row). Cells were 

plated on glass coverslips and stained with an anti-ROCK1 polyclonal antibody and anti-

p120 monoclonal antibody. In A431 cells ROCK1 co-localized precisely with p120 at 

cell-cell junctions and in cytoplasmic vesicle structures (arrows). In MCF-7 mammary  
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Figure 15: ROCK1 co-localizes with p120 at cell-cell junctions. (a) 

Immunofluorescence analysis of endogenous p120 and ROCK1 in A431 (upper panels) 

and MCF7 cells (lower panels). Arrowheads indicate co-localization of ROCK1 (red) 

with p120 (green) at cell-cell junctions. Arrows indicate co-localization of ROCK1 and 

p120 in cytoplasmic vesicles. (b) Immunofluorescence analysis of GFP alone or ROCK1-

GFP (green) and p120 (red) in A431 cells. Arrowheads indicate co-localization of GFP 

and p120 at cell-cell junctions. 
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adenocarcinoma cells (Figure 15a, lower row), ROCK1 also co-localized with p120 at 

cell-cell junctions. Interestingly, ROCK1 is primarily diffuse with limited cell-cell 

junction staining (arrow heads) in MCF-7 cells, making the association difficult to detect. 

Nonetheless, using ReCLIP and mass spectrometry I was able to detect an interaction 

between p120 and ROCK1 in MCF-7 cells (as reported in Appendix A). Thus, although 

the p120-ROCK1 association in MCF-7 cells is difficult to discern by traditional 

approaches (i.e. immunoprecipitation and immunofluorescence), it is readily detectable 

using ReCLIP. 

ROCK1 localization was further assessed using exogenous ROCK1 fused to GFP 

(ROCK1-GFP) (Figure 15b). A431 cells were transduced with GFP alone (LZRS neo 

GFP) or ROCK1-GFP (LZRS neo ROCK1-GFP) and analyzed by immunofluorescence 

for GFP and p120. ROCK1-GFP was primarily localized in the cytoplasm, however a 

distinct pool of ROCK1-GFP was localized to cell-cell junctions (arrow heads). In some 

cells, ROCK1-GFP co-localized with p120 in cytoplasmic vesicles (arrows), similar to 

endogenous ROCK1. In cells expressing GFP alone, GFP was localized diffusely 

throughout the cytoplasm and nucleus, but was not detectable cell-cell junctions. These 

data suggest that ROCK1 associates with p120 as part of the cadherin complex. 

  

ROCK1 is recruited to the cadherin complex 

A calcium switch assay was preformed to confirm that ROCK is associated with 

the cadherin complex. A431 cells were incubated in low calcium media (LCM) to deplete 

extracellular calcium levels and CaCl2 was added directly to the media to restore  



69 

  

 

Figure 16: ROCK1 is recruited to cell-cell junctions by cadherins. 

Immunofluorescence analysis of E-cadherin (green) and ROCK1 (red) A431 cells during 

a calcium switch assay. Cells were fixed and stained for the following conditions: (a) no 

calcium depletion (control), (b) depletion of calcium using low calcium media, (c) 10 

minutes post-calcium addback, (d) 30 minutes post calcium addback (white arrows 

indicate low levels of ROCK1 at cell junctions), (e) 60 minutes post-calcium addback, (f) 

60 minutes post calcium addback with incubation with E-cadherin and P-cadherin 

blocking antibodies (HECD-1 and 6A9). 
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physiological calcium levels (1.8 mM CaCl2) prior to immunofluorescence analysis for 

E-cadherin and ROCK1. As Figure 16 illustrates, depletion of extracellular calcium 

destabilized the adherens junction (b) and eliminated the pronounced cell-junction 

localization of ROCK1 observed under normal calcium levels (a). When cadherin 

contacts were initially established (i.e. the 10 minute time point, c), little to no ROCK1 

was localized to the nascent adherens junction. By 30 minutes post-calcium addback, 

ROCK1 began to concentrate at the maturing junction (d, arrows). By 60 minutes post-

calcium addback, ROCK1 was highly concentrated at cell junctions (e), similar to cells 

under normal calcium concentrations. ROCK1 recruitment correlated with the increased 

clustering of E-cadherin at cell-cell junctions (as assessed by E-cadherin staining). Thus 

it appears that ROCK1 recruitment does not occur during the initial stages of cell-cell 

adhesion, but rather during the clustering of cadherins following initial cell-cell contact 

as cadherins are engaged. Furthermore, inhibition of cadherin function using blocking 

antibodies against E-cadherin and P-cadherin prevented ROCK1 concentration at cell-cell 

contacts (f), confirming that this a cadherin-dependent event.  

 

ROCK1 physically interacts with E-cadherin in a p120-dependent manner 

To determine if ROCK1 is physically associated with the cadherin complex, 

crosslink-immunoprecipitation experiments were preformed in cadherin-negative A431D 

cells and A431D cells expressing either wild type or p120-uncoupled 764AAA E 

cadherin (Thoreson et al., 2000). Cells were pretreated with crosslinkers, lysed in RIPA 

buffer, and immunoprecipitations for p120 (Figure 17a lanes 2, 6, 10) , E-cadherin (lanes 

3, 7, 11) an irrelevant control antibody (IgG lanes 4, 8, 12) were carried out. Recovery  
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Figure 17: ROCK1 physically associates with the cadherin complex in a p120-

dependent manner. (a) Western blot analysis of lysates and p120, E-cadherin, or control 

immunoprecipitations from DSP-crosslinked A431D cells and A431D cells expressing 

wild type or 764AAA E-cadherin. (b) A model depicting p120-dependent association of 

ROCK1 with the cadherin complex, as detected by immunoprecipitation in (a).  
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of ROCK1, p120, and E-cadherin was assessed by western blot. ROCK1 co-

immunoprecipitated with wild-type E-cadherin (Figure 17a, top panel, lane 7), indicating  

that ROCK1 physically associates with the cadherin complex. However, ROCK1 did not 

co-immunoprecipitate with p120 uncoupled 764AAA E-cadherin (Figure 17a, top panel, 

lane 11), suggesting that p120 is required for ROCK1 to associate with the cadherin 

complex. Furthermore, ROCK1 was co-immunoprecipitated with p120 in the presence of 

wild-type E-cadherin, but not in the presence of 764AAA E-cadherin or in the total 

absence of cadherins (Figure 17a, top panel, compare lane 6 to lanes 2 and 10). This 

result is illustrated schematically in figure 17b.  

Immunofluorescence analysis of E-cadherin and ROCK in the A431D cells 

demonstrated that ROCK1 localized efficiently to adherens junctions in the presence of 

wild-type cadherin (Figure 18a, arrows). However, In the presence of 764AAA E-

cadherin, ROCK1 was significantly less abundant at cell junctions, relative to cells 

expressing wild-type E-cadherin (Figure 18a, b). These data suggest the presence of a 

complex consisting of E-cadherin, p120, and ROCK1 as part of the adherens junction. 

Importantly, ROCK1 is only physically associated with p120-bound E-cadherin.  

 

p120 associates with ROCK1 at the plasma membrane 

A p120 knockdown-reconstitution system (Davis et al., 2003) was used to assess 

the functional relationship between p120 and ROCK1 (Figure 19). Briefly, endogenous 

p120 was stably depleted using human-specific shRNA, and p120 was then reconstituted 

by expressing murine p120, which is unaffected by the shRNA. Endogenous ROCK1  
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Figure 18: ROCK1 localization in E-cadherin-reconstituted A431D cells. (a) 

Immunofluorescence analysis of E-cadherin (green) and ROCK1 (red) in A431D cells 

expressing wild type or 764AAA E-cadherin. White arrows indicate cell-cell contact 

localized ROCK1. (b) Quantification of cell-cell junction localization of ROCK1 

junction localization in A431D cells. Bars represent the average percentage of cells in 4 

20x fields with ROCK1 localized to cell-cell contacts. Error bars represent standard error 

of the mean.  
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Figure 19: p120 can regulate ROCK1 localization at cell-cell junctions. 

Immunofluorescence analysis of endogenous ROCK1 in wild type A431 cells (a), p120-

depleted A431 cells (hp120i) (b), or hp120i cells expressing (c) mp120 1A, (d) mp120 

3A, (e) mp120 4A, (f) mp120 3A arm1, (g) mp120 3A arm1 CAAX, or (h) mp120 1A 

622-8. (i) Quantification of ROCK1 localization at cell-cell contacts in the analyzed 

A431 cells lines. Bars represent the average percentage of cells in 4 20x fields with 

ROCK1 localized to cell-cell contacts. Error bars represent standard error of the mean.  
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localization was assessed by immunofluorescence in wild type A431 cells and p120-

depleted cells, and p120-reconstituted cells. Depletion of p120 leads to degradation of the  

cadherin complex and destabilization of cell-cell junctions. Consistent with this, ROCK1 

was lost from cell-cell contacts following p120 depletion (Figure 19b). p120 status did 

not affect ROCK1 protein expression levels as assessed by western blot (data not shown). 

Reconstitution of wild-type p120 efficiently restored cell-cell junctions and ROCK1 

localization at the cell junction (Figure 19c-e), regardless of the isoform (mp120 1A, 3A, 

or 4A) used for reconstitution. In contrast, addback of a mutant that does not bind to 

cadherins (mp120 3A arm1 Figure 19f) did not restore ROCK1 cell-junction 

localization. However, membrane targeting of the arm1 mutant using a C-terminal 

CAAX motif (Xia et al., 2006; Wildenberg et al., 2006) restored co-localization of p120 

and ROCK1 (Figure 19g), suggesting that these two proteins can interact in the absence 

of the cadherin complex. These data indicate that p120 can regulate ROCK1 localization 

to cell-cell contacts when it p120 is membrane associated (e.g. cadherin-bound). A Rho-

uncoupled p120 mutant (mp120 1A 622-8) (Anastasiadis et al., 2000) (Figure 19h) also 

co-localized with ROCK1 at cell-cell contacts. These data suggest that the association of 

ROCK1 with p120 is involved in the function and/or stabilization of the cadherin 

complex, rather than direct regulation of RhoA activity by p120.  

 

ROCK1 depletion affects the cadherin complex 

The functional relationship between ROCK1 and p120 was further assessed by 

shRNA-mediated depletion of ROCK1 in A431 cells (Figure 20). I was able to  
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Figure 20: Knockdown of ROCK1 affects cell-cell adhesion. (a) Western blot analysis 

of wild type A431 cells and A431 cells expressing Non-target or ROCK1 shRNA. (b) 

Quantification of ROCK1 levels as detected by western blot. Bars represent the relative 

ROCK1 levels normalized to tubulin, averaged from 3 experiments. Error bars represent 

standard error of the mean. (c-f) Immunofluorescence analysis of ROCK1 (red) and p120 

(c), E-cadherin (d), Ezrin (e), and F-actin (f) in wild type A431 cells and A431 cells 

expressing ROCK1 shRNA. Where applicable, ROCK1-knockdown cells are outlined in 

white. 
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achieve approximately 65% depletion of endogenous ROCK1 in A431 cells, with no 

change in ROCK2 levels as assessed by western blot (Figure 20a-b). Stable knockdown 

of ROCK1 did not affect the protein levels of p120 and E-cadherin. Immunofluorescence 

analysis indicated that knockdown of ROCK1 was mosaic, with a small population of 

cells expressing little to no ROCK1 (ROCK1-knockdown cells), and a larger population 

of cells expressing wild-type ROCK1 levels. ROCK1-knockdown cells were larger, 

suggesting reduced contractility in the absence of ROCK1. Strikingly, distribution of 

p120 and E-cadherin was dramatically altered in the ROCK1-knockdown cells, 

particularly at cell-cell junctions (Figure 20c and d, respectively). Based on p120 and E-

cadherin staining, cell-cell junctions were disorganized and weaker relative to cells with 

normal ROCK1 levels. The same effect was observed for -catenin, -catenin, 

Plakoglobin, and P-cadherin (Figure 21), suggesting that ROCK1 depletion affects the 

integrity of the entire cadherin complex. Membrane localization of Ezrin was also 

disrupted (Figure 20e), indicating that ROCK activity was deficient in ROCK1-

knockdown cells. Analysis of the actin cytoskeleton using phalloidin revealed that the 

junctional actin network of ROCK1i cells was disrupted (Figure 20f), which could 

account for the disruption of the cadherin complex. Similar results were observed in 

ROCK1 depleted MCF-7 cells depleted of ROCK1 (Figure 22).  

 To determine if the effects of ROCK1 depletion on the cadherin complex are the 

result of disruption of the acto-myosin pathway, I used chemical inhibitors to ablate 

ROCK and myosin II activity in wild type A431 cells and analyzed the cells by 

immunofluorescence (Figure 23). Wild-type A431 cells were serum starved and treated  
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Figure 21: ROCK1 depletion affects the entire cadherin complex. 

Immunofluorescence analysis of ROCK1 (red) and -catenin (a), -catenin (b), 

Plakoglobin (c), and P-cadherin (d) in wild type A431 cells and A431 cells expressing 

ROCK1 shRNA.



79 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: ROCK1 depletion in MCF-7 cells affects p120 distribution. 

Immunofluorescence analysis of ROCK1 (red) and p120 (green) in MCF-7 cells 

expressing Non-Target shRNA or ROCK1 shRNA 
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Figure 23: Inhibition of ROCK and Myosin II activity mimic the effects of ROCK1 

depletion. Immunofluorescence analysis p120 (green) and ROCK1 (red) of vehicle 
treated wild-type A431 cells (a), A431 cells expressing ROCK1 shRNA (b), and wild  
type A431 cells treated with 10 μM Y-27632 (c) or 10 μM Blebbistatin (d) for 24 hours. 



81 

with DMSO vehicle alone (a), 10 μM Y-27632 (c), or 10 μM Blebbistatin (d) for 24 

hours, then processed for immunofluorescence analysis to detect p120 and ROCK1. For 

comparison, ROCK1 knockdown cells were serum starved and analyzed in parallel (b). 

Similar to ROCK1 depletion, Y-27632 and Blebbistatin resulted in large cells with 

disorganized adherens junctions, as assessed by p120 staining. Thus the effects of 

ROCK1 depletion are comparable to the effects of global ROCK inhibition. Furthermore, 

inhibition of myosin II produces the same phenotype of ROCK1 depletion. These results 

suggest that ROCK1’s role in the cadherin complex is to maintain the local acto-myosin 

network, thereby stabilizing cell-cell adhesion. 

 

ROCK1 phosphorylates p120 

 p120 has several serine/threonine phosphorylation sites, but few direct kinases 

that phosphorylate p120 are known. The ability of ROCK1 to phosphorylate p120 was 

tested using an in vitro kinase assay using immunoprecipitated p120 from A431 cells as a 

substrate for constitutively active ROCK1. p120 was immunoprecipitated from A431 

cells, and subsequently incubated with purified active ROCK1 (amino acids 17-535) in 

the presence of absence of 10 μM Y-27632. As Figure 24a shows, p120 is highly 

phosphorylated on Serine 268 (S268) and weakly phosphorylated on Threonine 916 

(T916), but not on any other residue assayed (serines 288 and 879, and threonine 310, b-

d). Phosphorylation of S268 does not occur in the presence of Y-27632 or in the absence 

of ATP (data not shown), indicating this is a ROCK-specific phosphorylation event.  
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Figure 24: ROCK1 can phosphorylate p120 in vitro. Western blot analysis of ROCK1 

kinase assays using immunoprecipitated p120 from A431 as a substrate for constitutively 

active ROCK1 in the presence or absence of Y-27632. Reactions were analyzed for total 

p120 (lower panels) and (a) pS268, (b) pS288, (c) pT310, (d) pS879, and (e) pT916. 
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Interestingly, p120 S268 does not match the reported ROCK consensus sequence 

of R/K-X-X-S/T, where “X” represents any amino acid (Riento and Ridley, 2003).  

Upstream sequence analysis reveals that S268 is within a highly conserved motif of R-V-

G-G-S, which resembles the classical ROCK consensus sequence with V265 representing 

an extra residue upstream of the two variable residues. This suggests that there may be 

more variability of ROCK1 substrates than originally described. 

 

Discussion 

 Modulation of the actin cytoskeleton by Rho GTPases plays an important role in 

cell-cell adhesion, however precise mechanisms remain unclear. In particular, the ROCK-

Myosin pathway has been implicated in this process (Shewan et al., 2005). While most 

reports discuss Rho kinases as a cytoplasmic proteins, ROCK1 has previously been 

detected at the cell membrane and at cell-cell contacts (Walsh et al., 2001; Nishimura and 

Takeichi, 2008), however the function of this pool of ROCK1, and how it associates with 

components of cell-cell junctions, have remained unclear. Here, I have demonstrated for 

the first time that p160 Rho Kinase, a major RhoA effector, physically associates with the 

cadherin complex through p120. 

Using a calcium switch assay, I have found that ROCK1 is recruited to nascent 

adherens junctions in a cadherin-dependent manner. ROCK1 recruitment occurs after the 

initial cadherin contacts are made, thus ROCK1 is not involved in the initial formation of 

the adherens junctions. Instead, ROCK1 is recruited at later time points, suggesting that 

ROCK1 is involved in the maintenance and/or maturation of the cadherin complex. The 

time-course of ROCK1 recruitment to the cadherin complex is consistent with 
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establishment of a junctional actin network (Zhang et al., 2005). This pool of junctional 

actin is not necessary for the establishment of cell-cell contacts, but is involved in the 

stabilization of clustered cadherins. Consistent with this, ROCK1 knockdown does not 

ablate cell-cell adhesion but does disrupt the normal organization of p120, E-cadherin, 

and F-actin at cell-cell junctions. These data suggest that ROCK1 is required for the 

maintenance of strong cell-cell adhesion in part through the modulation of a junction-

localized pool of F-actin. It is likely that additional ROCK1 targets are recruited to the 

cadherin complex at this later stage and contribute to cell-cell adhesion. ReCLIP analysis 

of E-cadherin complexes following initial cadherin engagement (i.e. 5 minutes post-

calcium addback) and during maturation of junctions (i.e. 30 minutes post-calcium 

addback) could identify proteins that participate in the ROCK1 cell-cell adhesion 

function.  

Importantly, the association of ROCK1 with the cadherin complex is dependent 

on p120, as a p120-uncoupled E-cadherin does not co-immunoprecipitate ROCK1. 

Immunofluorescence analysis of A431D cells illustrates a low level of ROCK1 can still 

localize to the cell membrane in the absence of cadherins or in the presence of the 

764AAA E-cadherin, which does not bind p120. However, although this pool of ROCK1 

is still membrane-bound, it can’t physically interact with cadherins without p120. p120-

dependent recruitment of ROCK1 to the cadherin complex may explain the altered 

cytoskeletal organization of cells expressing 764AAA E-cadherin (Thoreson et al., 2000). 

The mechanism that recruits ROCK1 to the membrane in these cells is unclear, 

but may be attributed to the C-terminal Pleckstrin Homology (PH) domain of ROCK1, 

which binds to lipids and targets proteins to cell membranes (Lemmon and Ferguson, 
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2000). Alternatively, ROCK1 may be recruited to the membrane by Shroom3 (Nishimura 

and Takeichi, 2008), which can recruit Rho Kinases to apical junctions. Additionally, it 

appears that p120 does not interact with ROCK1 unless it is recruited to the membrane by 

E-cadherin or another mechanism (i.e. use of a CAAX box). Taken together, these data 

indicate that p120 can recruit membrane-associated ROCK1 to the cadherin complex.  

 While this is the first report of a physical link interaction between ROCK1 and the 

cadherin complex, a functional relationship has been suggested in a number of studies. In 

some cases, ROCK1 can negatively regulate cell-cell adhesion, due largely to excess 

acto-myosin contractility (Wójciak-Stothard et al., 2001). While apparently contradictory 

to our results in A431 cells, these studies clearly support an important functional 

relationship between ROCK and the cadherin complex. It is likely that this relationship 

varies depending on cellular context. Importantly, most of these studies have relied on the 

expression of dominant-active/negative mutants and over-expression approaches, 

whereas I have found a physical interaction between p120 and ROCK1 under 

endogenous, physiological conditions. Excessive activation/inhibition of ROCK signaling 

in past studies may account for the differences between previous reports and our own 

results in A431 cells. 

 Our studies support several lines of evidence indicating a requirement for ROCK 

activity in cadherin function. Recent studies have indicated that acto-myosin contractility, 

downstream of ROCK1, is necessary for the establishment and maturation of adherens 

junctions (Shewan et al., 2005; Smutny et al., 2010). In these studies the ROCK appeared 

to be acting through a pool of junction-localized myosin IIA. Similarly, I observe that 

global inhibition of either ROCK with Y-27632 or of Myosin II with blebbistatin mimics 
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the effects of ROCK1 knockdown, leading to disorganized adherens junctions. By 

binding to p120, ROCK1 could act directly on the cadherin complex and/or the pool of 

myosin IIA localized at cell-cell junctions. Furthermore, a physical interaction with the 

cadherin complex would allow rapid, localized induction of contractility without 

affecting other cellular compartments. Additionally, ROCK1 can phosphorylate p120 in 

vitro, suggesting that ROCK1 may be acting directly on p120 in addition to activating 

myosin IIA at the adherens junction.  

 ROCK1 knockdown and inhibition of ROCK dramatically effects p120 

distribution in A431 and MCF-7 cells. Similarly, inhibition of Myosin IIA using either 

the myosin inhibitor blebbistatin or shRNA led to dramatic loss of E-cadherin in human 

embryonic stem cells due to downregulation of p120 (Li et al., 2010). A similar effect has 

been observed using the ROCK inhibitor Y-27632 (Harb et al., 2008). Interestingly, 

inhibition of ROCK activity promoted self-renewal of stem cells in the absence of cell-

cell adhesion and feeder fibroblasts. These data are consistent with our own work in 

A431 cells, as loss of ROCK1, which acts directly on Myosin II, also disrupts p120, 

although to a much lesser degree. Protein levels of p120 and E-cadherin are not affected 

by ROCK1 depletion, suggesting that the interaction of p120 and E-cadherin remains 

intact in these cells. In A431 cells, it appears p120 and the rest of the cadherin complex is 

mislocalized or modified rather than degraded. This may be due to differences in the 

model systems used in these studies. Li et al. used human embryonic stem cells, while 

our studies employed the A431 epidermoid carcinoma cell line. It is possible that p120 

and the cadherin complex may be more dependent on acto-myosin contractility in 
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pluripotent stem cells, as opposed to an immortalized cell line derived from fully 

differentiated tissue.  

 A functional relationship between p120 and RhoA, upstream of ROCK1, has been 

suggested by several earlier studies. In particular, it has been suggested that p120 can 

directly bind to RhoA and act as a Guanine Dissociation Inhibitor (GDI), thereby 

preventing RhoA activation (Anastasiadis et al., 2000; Castano et al., 2007; Yanagisawa 

et al., 2008). Our lab has previously demonstrated that p120 can associate with p190 

RhoGAP and recruit it to the cadherin complex, (Wildenberg et al., 2006), making p120 

and the cadherin complex an important point of regulation for RhoA. Here, I report that 

ROCK1, a major RhoA effector, associates with p120 at the adherens junction. Thus, in 

addition to suppressing RhoA through p190 RhoGAP and/or a GDI function, p120 can 

also recruit a major effector of RhoA, which would allow p120 to promote downstream 

signaling. Taken together, these data point to a dynamic RhoA complex within the 

adherens junction, with Rho effectors (ROCK1) and Rho suppressors (p190 RhoGAP and 

p120 itself) forming a functional unit. In this scenario, when contractility is needed at the 

adherens junction, ROCK1 is readily available to initiate signaling to Myosin II. Once the 

optimal levels of contractility are achieved, RhoA can be rapidly suppressed by p190 

RhoGAP and/or p120’s GDI function. Thus allowing rapid cycling of RhoA activity and 

downstream signaling at the cadherin complex.  

 In an in vitro kinase assay, I have found that ROCK1 can specifically 

phosphorylate p120 on serine 268. Modulation of p120 serine/threonine phosphorylation 

appears to be quite complex. Activation of PKC induces dephosphorylation of all known 

serine/threonine phosphorylation sites on the N-terminus of p120 (Xia et al., 2003) while 
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also inducing dramatic phosphorylation of S879 on the C-terminus (Brown et al., 2009). 

To date very few specific kinases and phosphatases that act directly on p120 have been 

identified. Identifying in vivo kinases has been difficult in part because S268, along with 

the majority of other serine/threonine sites, are basally phosphorylated. Further 

complicating our analysis, S268, along with the rest of the N-terminal serine/threonine 

phosphorylation sites appear to be dephosphorylated in response to Dominant Active 

RhoA expression (Xia et al., 2006). Thus under some conditions, Rho signaling may 

actually suppress S268 phosphorylation even through ROCK1 can directly phosphorylate 

this site. It should be noted however, that expression of dominant active Rho constructs 

has been known to introduce a number of artifacts in experimental systems (Boulter et al., 

2010). 

Recent work has shown that in SW480 cells, S268 and S269 can be 

phosphorylated by CK1  following Wnt stimulation (Casagolda et al., 2010). In A431 

cells, Wnt 3a and Wnt 5a cultured media did not modify S268 phosphorylation status 

(unpublished observations), suggesting that S268 is differentially modulated depending 

on cellular context. ROCK activation downstream of Wnt signaling is an attractive 

hypothesis, but other possibilities such as cadherin-based signaling must also be 

considered. Interestingly, S268 is highly phosphorylated in the presence of wild-type, but 

not p120-uncoupled 764AAA E-cadherin (Xia et al., 2006), and ROCK1 is physically 

associated with wild-type but not 764AAA E-cadherin. Thus cadherin binding and/or 

membrane association appears to play some role in S268 phosphorylation. The 

significance of S268 phosphorylation by ROCK1 remains unclear. A431 cells expressing 

S268 and S268/9 phospho-deficient and phospho-mimetic mutants are indistinguishable 
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from wild-type controls with respect to cell-cell adhesion (unpublished observations). 

Additional functional assays are necessary to determine if these mutants induce a 

measurable phenotype. Future experiments aimed at identifying the conditions under 

which ROCK1 phosphorylates p120 in cells should help clarify the function of this 

phosphorylation event.  

I have illustrated a novel physical and functional relationship between p120-

catenin and ROCK1. Importantly, p120 physically links ROCK1 to the cadherin 

complex. p120-dependent recruitment of ROCK1 to the cadherin complex may explain 

many recent findings regarding the role of acto-myosin contractility in cadherin function 

(Harb et al., 2008; Li et al., 2010; Smutny et al, 2010) and collective migration (Hidalgo-

Carcedo et al., 2011). Furthermore, p120 can be phosphorylated by ROCK1 on S268, 

suggesting that ROCK1 function at the cadherin complex involves phosphorylation of 

p120. I was unable to map the interaction between p120 and ROCK1 using a Yeast-2-

Hybrid approach, possibly due to an unknown phosphorylation event mediating the 

interaction. Future work focused on mapping this interaction and the generation of 

minimal uncoupling mutants will be necessary to determine more precisely how p120 and 

ROCK1 work together to co-ordinate acto-myosin contractility and cell-cell adhesion. 
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CHAPTER V 

 

FUTURE DIRECTIONS 

 

Introduction 

 In ReCLIP, I have developed a powerful tool to study labile protein complexes. 

Using this approach, I have identified several novel putative p120 binding partners. 

Among these, I have found that cd98 associates with p120 through E-cadherin, and 

ROCK1 associates with E-cadherin in a p120-dependent manner. Furthermore, I have 

demonstrated that p120 can be directly phosphorylated by ROCK1 on S268 in vitro, 

suggesting that this interaction may control p120 phosphorylation. While these findings 

have provided new insights into the function of p120 and the cadherin complex, a number 

of questions remain. Furthermore, the full potential of ReCLIP has yet to be explored. 

 

Generation of a p120 interactome  

 A particularly exciting application of ReCLIP is the development of a 

comprehensive p120 interactome. A functional interaction network could be generated by 

first determining the binding partners of p120 and then reiterating the process on p120’s 

direct binding partners. Proteins that are commonly detected across all the samples could 

be included the functional network. For example, E-cadherin and -catenin ReCLIP 

eluates could be analyzed along side p120 eluates, common proteins in each sample could 

be incorporated into a protein interaction network for the cadherin complex. The cadherin 

interaction network could then be expanded by performing ReCLIP using some of these 
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common proteins as bait. Similarly, p120 eluates could be compared to eluates from 

Kaiso pull-downs to provide further insight into the functional significance of the p120-

Kaiso interaction. The generation of such extensive interaction maps would require 

considerable effort and optimization, but would provide a large number of new functional 

insights into the function and regulation p120 and it’s associated complexes. 

Furthermore, such studies were not feasible using prior to the development of ReCLIP.  

 

Identification of cytoplasmic and nuclear p120 binding partners 

 To date, p120 ReCLIP studies have been preformed exclusively in epithelial cell 

lines. In epithelial cells, it has been suggested that the vast majority of the total cellular 

p120 is present at the membrane, bound to E-cadherin (Kiss et al., 2008). Thus the 

binding partners detected in these experiments most likely represent cadherin-based 

functions of p120, as appears to be the case with ROCK1. Furthermore, the large 

abundance of cadherin-bound p120 may mask any cadherin-independent p120 binding 

partners in mass spectrometry analysis. As a result, the currently reported ReCLIP 

experiments do not provide a complete picture of p120 binding partners. Cytoplasmic 

p120 complexes are under-represented in MS analysis relative to the highly abundant 

cadherin-based complexes and nuclear complexes are lost due to inefficient recovery of 

nuclear proteins using standard lysis methods.  

 Determining the binding partners of cytoplasmic p120 is particularly interesting 

because the transition to metastasis is often associated with increased cytoplasmic 

localization of p120 (Sarrio et al., 2004). One approach to study cytoplasmic p120 is to 

perform ReCLIP using a cell line that lacks classical cadherins, such as the A431D or 
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MDA-MD-231 cell lines. In these cells, endogenous p120 is mostly cytoplasmic due to 

the lack of cadherins. In this context, any proteins identified would represent candidate 

binding partners for cytoplasmic p120. Furthermore, wild-type E-cadherin can be 

exogenously expressed in these cells to recruit p120 to the membrane, away from 

cytoplasmic binding partners. This could provide a useful experimental control, as real 

cytoplasmic p120 binding partners would not be detected in ReCLIP samples from cells 

expressing exogenous E-cadherin. A potential drawback of this approach is that the 

abnormally high levels of cytoplasmic p120 in these cells may lead to non-physiological 

interactions. Nonetheless, cadherin-negative cell lines should provide a good starting 

point, since the established experimental procedures should require little alteration in 

these systems. 

 Most standard lysis conditions do not efficiently recover nuclear proteins, thus 

nuclear p120 binding partners would likely be lost even in cadherin-negative cells. To 

overcome this issue, subcellular fractionation could be carried out following crosslinking, 

so the cytosolic and nuclear p120 complexes can be purified in isolation from each other. 

Furthermore, subcellular fractionation could be carried out using epithelial cell lines such 

as A431 or MCF-7 cells rather than cadherin-negative cell lines. Regardless of the cell 

line used, the starting material will likely have to be scaled up considerably to account for 

the low abundance of nuclear p120, and crosslinking conditions may need to be further 

optimized to ensure nuclear protein complexes are efficiently crosslinked.  

 

Structure-Function Analysis of the p120-ROCK1 Interaction 

 Although I have shown that ROCK1 and p120 co-immunoprecipitate, and that 
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ROCK1 associates with E-cadherin in a p120-dependent manner, I have been unable to 

determine if p120 and ROCK1 directly interact with each other. Future experiments are 

aimed at determining this as well as mapping the reciprocal binding sites between p120 

and ROCK1.  A potential approach is to use purified protein fragments fused to either 

Maltose Binding Protein (MBP) and Glutathione-S-Transferase (GST) for in vitro 

binding assays. Distinct binding sites can then be mapped using site-directed mutagenesis 

to determine the specific amino acids required for the interaction.  

 If a direct interaction between p120 and ROCK1 can be identified and mapped, 

then minimal uncoupling mutants can be generated. Such mutants would uncouple p120 

from ROCK1 without affecting its other binding partners, and vice-versa. Expression of 

these mutants in cells could help identify the specific function of the p120-ROCK1 

interaction. For example, do the cell-cell adhesion functions of ROCK1 require the 

interaction with p120? Does expression of p120-uncoupled ROCK1 rescue the effects of 

ROCK1 knockdown or ROCK inhibition? Furthermore, does expression of a ROCK1-

uncoupled p120 mimic ROCK inhibition with respect to the cell-cell adhesion? 

Generation of minimal uncoupling mutants should allow these questions to be answered 

in vivo.  

 

Physiological mechanisms of ROCK1-dependent p120 phosphorylation 

 Using an in vitro kinase assay with a constitutively active ROCK1 fragment, I have 

demonstrated that ROCK1 can phosphorylate p120 on serine 268. However, the 

physiological mechanism by which ROCK1 phosphorylates p120 remains unknown. A 

recent report indicates that Wnt stimulation can induce S268 phosphorylation and this is 
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required for Wnt signaling (Casagolda et al., 2010). In A431 cells, Wnt 3a and 5a 

cultured media does not affect S268 phosphorylation, suggesting that this pathway may 

not be intact in all cell-types. 

 One approach to identify stimuli that phosphorylate p120 in a ROCK-dependant 

manner is to use an In-Cell Western (ICW) assay to simultaneously screen multiple 

agonists in the presence and absence of the ROCK inhibitor Y-27632. This assay has 

previously been used to evaluate phosphorylation of p120 on S879. The 96-well format 

of the ICW assay should significantly accelerate the process of screening agonists. One 

appealing hypothesis is that S268 is phosphorylated by ROCK1 in response to cadherin 

engagement and clustering. Our calcium switch experiments indicate that ROCK1 is 

recruited to the newly established adherens junctions, and A431-D and p120-addback 

experiments suggest p120 only associates with ROCK1 when it is localized to the 

cadherin complex or the cell membrane. Furthermore, serine 268 is highly 

phosphorylated when it is cadherin or membrane-associated (Xia et al., 2006). 

Preliminary experiments using calcium switch and antibody-mediated cadherin clustering 

assays (Betson et al., 2002) should provide important clues as to whether cadherin 

clustering involves ROCK1-mediated phosphorylation of p120.  

 

Functional Significance of S268 Phosphorylation 

 Although I have found that ROCK1 depletion or inhibition effects p120 and the 

cadherin complex, I have not been able to identify a specific function for S268 

phosphorylation. Previous studies indicate that S268 phosphorylation is not required for 

cadherin stability (Xia et al., 2006). Furthermore, mutation of all serine/threonine 
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phosphorylation sites to alanine appears to have no effect on cadherin stability. Thus, it is 

unlikely that p120 phosphorylation is essential to cadherin engagement and clustering. 

 If S268 phosphorylation is ROCK1-dependent, then assays based on ROCK1 

function rather than p120 function may prove more fruitful. For example, is S268 

phosphorylation involved in the ability of ROCK to regulate cell migration (Worthylake 

et al., 2001)? Additionally, the pS268 mAb and ReCLIP could be used to identify binding 

partners that are specific to serine-268 phosphorylated p120. Novel binding partners or 

complexes identified in these experiments could provide insight into the function of S268 

phosphorylation, and help direct future functional experiments.  
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CHAPTER VI 

 

CONCLUDING REMARKS 

 

 This work has generated an important new tool to facilitate the study of p120 and 

the cadherin complex. ReCLIP has been optimized for the cadherin complex and has 

proven highly effective for these studies, but the method is also applicable to other 

targets, provided the necessary optimizations (i.e. crosslinker concentrations and 

treatment times, antibody concentrations) are carried out prior to large scale experiments. 

Every protein and complex is different, thus different conditions may be required for 

different targets. In order to fully exploit the potential of ReCLIP, more in depth studies 

will be necessary to determine the limitations of the method. In particular, the efficiency 

of ReCLIP to study over-expressed proteins has yet to be determined. Nonetheless, we 

anticipate that ReCLIP could become a widely used approach for mass spectrometry-

based protein interaction studies. Indeed, it has already been used by a number of 

researchers throughout Vanderbilt University. 

 Using ReCLIP, we have overcome a significant problem in the p120 field, 

specifically the labile nature of p120 interactions. Our initial attempts using a TAP-tag 

method proved unsuccessful, with efficient recovery of p120 itself but few binding 

partners detected, including the cadherin complex. With ReCLIP, however, I not only 

dramatically improved cadherin complex recovery over previous attempts, but also 

identified several putative p120 binding partners in a clean single affinity-purification 

approach.  Future experiments aimed at studying p120 interactions under a variety of 
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conditions should provide even further insight into p120 function. Thus ReCLIP will 

facilitate more sophisticated and comprehensive p120 studies than we have been able to 

do in the past. 

 With the identification of ROCK1 as a p120 binding partner, I have shed new 

light onto the function and regulation of the actin cytoskeleton at the cadherin complex. It 

is clear that that the cadherin complex is far more than a structural module, and plays an 

active role in coordinating adhesion, motility, and cell growth. ROCK1 almost certainly 

fits into this role, given the variety of its substrates and the diversity of its own cellular 

functions. Importantly, the p120-dependent recruitment of ROCK1 to the cadherin 

complex suggests that p120 can play a role in potentiating Rho signaling, as well as 

suppressing Rho signaling as has been previously reported. This adds a new layer of 

complexity to the functions of p120 with regards to both cadherin stabilization and Rho 

regulation. The full significance of this work remains to be determined, but we are in a 

good position to elucidate both broad p120 functions and the evolving relationship 

between p120 and the Rho/ROCK/acto-myosin pathway. 

 



98 

APPENDIX A 

 

ADDITIONAL APPLICATIONS OF RECLIP TO IDENTIFY  

P120 BINDING PARTNERS  

 

Introduction 

 As illustrated in chapter three, I have developed a highly efficient method for 

isolating and identifying p120 binding partners. Using ReCLIP, I identified several novel 

candidate p120 binding partners in A431 cells under standard growth conditions. Because 

ReCLIP uses a monoclonal antibody to recover target complexes, this approach affords a 

great deal of versatility. For example, it is possible to efficiently compare endogenous 

binding partners across multiple cell types (i.e. breast, colon, fibroblast cells) to identify 

tissue-specific binding partners and potential functions. In addition, complexes can be 

studied in the presence and absence of specific stimuli that induce p120 phosphorylation. 

Signaling through p120 likely involves the transient recruitment of protein to p120 in 

response to phosphorylation.  Utilizing ReCLIP, phospho-specific complexes can be 

immunoprecipitated with phospho-specific mAb beads and analyzed by mass 

spectroscopy. This approach could not only identify the kinases and phosphatases that 

directly modify p120, but also identify downstream functional interactions that may be 

too weak or transient to detect without cross-linking. 

 The preliminary studies described here represent an initial attempt to exploit 

ReCLIP in the above manner. While the results are not conclusive, they do provide a 

good starting point for future comprehensive studies of p120 binding partners across 
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multiple cell lines and conditions that could yield more valuable results. Furthermore, 

these preliminary studies highlight important considerations that should be included in 

the planning of future ReCLIP experiments. 

 

Results 

 

Comparison of ReCLIP results across epithelial cell lines 

 To determine if variability between cell lines affects ReCLIP efficacy, I 

performed ReCLIP in A431 epidermoid carcinoma cells, MCF-7 mammary 

adenocarcinoma cells, MCF-10A non-transformed mammary epithelial cells, Caco-2 

colorectal adenocarcinoma cells, and HCA-7 colonic adenocarcinoma cells. Crosslinking 

in all cell lines was carried out using the DSP and DTME combination. p120 was 

immunoprecipitated with mAb 15D2, while mAb 8D11 was used as a negative control. 

Western blot analysis of 10% of each eluate confirmed that ReCLIP successfully 

recovered E-cadherin in all cell lines using mAb 15D2, but not 8D11 (Figure 25). HCA-7 

cells express very low levels of p120 and E-cadherin, thus the recovery of E-cadherin 

was not detectable in the fraction of eluate analyzed by western blot. However, 

subsequent MS analysis shows that a small amount of E-cadherin and associated catenins 

were recovered (Table 5). 

Following western blot analysis, the remaining ReCLIP eluates were analyzed by 

single dimension LC-MS/MS. Background was comparable across all cell lines, and only 

proteins with 0 spectral counts detected in control eluates were considered valid  
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Figure 25: E-cadherin recovery in ReCLIP eluates from epithelial cell lines. Western 

blot analysis of E-cadherin in whole cell lysates, p120, and control IgG ReCLIP eluates 

from A431, MCF-7, MCF-10A, Caco-2, and HCA-7 cells. Due to the number of samples, 

two separate blots were used. 
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candidates. Proteins identified across 2 or more cell lines are listed in table 5. As Table 5 

shows, the core components of the cadherin complex were recovered across all cell lines, 

with particularly robust recovery from MCF-7 cells. A comparison of proteins detected in 

2 or more cell lines showed that several candidate binding partners previously recovered 

from A431 cells were also recovered from the other cell lines tested including ROCK1, 

cd98, VDP, and vinculin. In this particular preliminary experiment, ROCK1 and vinculin 

were not detected in A431 cells, but were detected in other cell lines. Furthermore, the 

polarity protein scribble was recovered exclusively in the breast epithelial cell lines 

(MCF-7 and MCF-10A). These preliminary results indicate that the efficacy of ReCLIP 

is consistent across multiple epithelial cell lines. Furthermore, these results show some  

Table 5: Common proteins detected across multiple cell lines by ReCLIP. Total 

spectral counts detected for each indicated protein from p120 ReCLIP eluates. For all 

proteins listed, zero peptides were detected in control samples.  

 

Protein 

UniProt 

Accession A431 MCF7 

MCF 

10A Caco-2 HCA-7 

cd98 (4F2 Heavy Chain) IPI00027493.1 6 4 0 7 0 

E-cadherin IPI00000513.1 6 12 12 10 4 

alpha1-catenin IPI00215948.4 15 30 22 18 8 

beta1-catenin IPI00017292.1 16 22 20 17 3 

Junction Plakoglobin IPI00554711.2 14 20 9 19 4 

TAP/VDP/p115  IPI00031583.4 5 2 7 4 4 

ROCK1  IPI00022542.1 0 10 12 4 0 

Isoform 1 of L-lactate 

dehydrogenase A chain 

IPI00217966.7 

0 2 0 2 3 

Scribble (Isoform 3 of 

Protein LAP4) 

IPI00410666.1 

0 3 2 0 0 

Na/K-transporting ATPase 

subunit -1 

IPI00006482.1 

4 3 0 5 0 

Na/K-transporting ATPase 

subunit a-2 

IPI00003021.1 

3 3 0 3 0 

Isoform 1 of Vinculin IPI00291175.7 0 0 5 5 3 

EpCAM (Tumor-

associated calcium signal 

transducer 1) 

IPI00296215.1 

0 3 2 2 0 

Transferrin receptor 

protein 1 

IPI00022462.2 

0 2 2 0 0 
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complexes may associate with p120 more prevalently in some cell types (i.e. scribble in 

mammary epithelial cells), underscoring the importance of testing multiple cell lines in 

binding partner studies.  

 

Identification of binding partners in PMA stimulated cells 

 Prior to ReCLIP analysis of phosphorylated p120, it was necessary to determine if 

in-cell crosslinking could affect p120 phosphorylation status. A431 cells were serum 

starved and treated with vehicle or PMA for 30 minutes to activate PKC signaling and 

induce phosphorylation on p120 S879. Following PMA treatment, in-cell crosslinking 

was carried out using DMSO vehicle or the DSP and DTME combination as described 

previously. Whole cell lysates were then analyzed by western blot to assess p120 S879 

phosphorylation. As Figure 26a illustrates, PMA treatment induces robust 

phosphorylation of S879 in both the presence and absence of crosslinker. These data 

suggest that p120 phosphorylation is not affected by the crosslinking process.  

 The MCF-7 cell line was selected for large-scale ReCLIP analysis of p120 

binding partners in PMA-stimulated cells, due to the improved binding partner recovery I 

observed in previous experiments. I confirmed that similar to A431 cells, p120 

phosphorylation status in MCF-7 cells was unaffected by crosslinking (data not shown). 

MCF-7 cells were serum starved overnight, and treated with either vehicle alone or PMA 

for 30 minutes, then processed for ReCLIP analysis the DSP and DTME combination 

crosslinking condition. Immunoprecipitations were carried out using mAb 15D2 for total 

p120, anti-phospho-S879 mAb for phosphorylated p120 alone, or mAb 8D11 as a 

negative control. Western blot analysis of ReCLIP eluates demonstrates that E-cadherin  
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Figure 26: Application of ReCLIP to study p120 phosphorylation. (a) Western blot 

analysis of phospho-S879 (pS879) and total p120 in A431 cells in the presence of 

absence of PMA and crosslinkers (DSP and DTME combined). (b) Western blot analysis 

of E-cadherin whole cell lysates and p120, pS879, and control IgG ReCLIP eluates from 

serum starved and PMA-treated MCF-7 cells. 
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is efficiently recovered in 15D2 immunoprecipitations from both serum starved and PMA 

treated cells (Figure 26b). Using the S879 mAb, E-cadherin was only recovered from 

PMA-treated cells, consistent with phosphorylation of S879 in response to PMA. ReCLIP 

samples were analyzed by single dimension LC-MS/MS to identify putative binding 

partners. As expected, the core components of the cadherin complex were recovered 

efficiently using mAb 15D2 under both serum starvation and PMA conditions (Table 6). 

In addition, multiple binding partners previously identified in other cell lines were 

detected including cd98, VDP, GOLGA4, ROCK1, and Scribble. In addition, p190 

RhoGAP was identified in 15D2 ReCLIP eluates, consistent with our earlier studies 

(Wildenberg et al., 2006). Using the anti-pS879 mAb, the cadherin complex was 

recovered under both serum starvation, consistent with the low level of basal S879 

phosphorylation observed in western blot analysis. Under PMA treated conditions, 

recovery of E-cadherin was more efficient in PMA treated cells as assessed by spectral 

counts.  

In addition to the cadherin complex, pS879 ReCLIP also captured Kinesin Heavy 

Chain (KHC), which has been previously identified as a p120 binding partner (Chen et 

al., 2003). Surprisingly, these eluates also contained snd1, a component of the RNA-

Induced Silencing Complex (RISC) that is up-regulated in colon carcinogenesis and may 

regulate E-cadherin and APC (Tsuchiya et al., 2007). Recovery of both KHC and snd1 

were equivalent between serum starved and PMA treated cells, as assessed by spectral 

counts, unlike the cadherin complex. Furthermore neither protein was detected in 15D2 

eluates It is possible that KHC and snd1 are basally associated with p120, but cannot be 

recovered by 15D2 due to epitope masking.  
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Table 6: Proteins identified in serum starved and PMA-treated MCF-7 cells. Total 

spectral counts for the identified proteins identified in 15D2 and pS879 ReCLIP samples 

from serum starved of PMA-stimulated cells. No peptides of the indicated proteins were 

detected in control samples. 

 
               Serum Starved            PMA  

Protein 

UniProt 

Accession 15D2 pS879 15D2 pS879 

cd98 (4F2 heavy chain) IPI00027493.1 7 3 5 13 

E-cadherin IPI00000513.1 16 5 10 21 

alpha1-catenin IPI00215948.4 38 18 26 56 

beta1-catenin IPI00017292.1 23 18 15 36 

Junction Plakoglobin IPI00554711.2 22 11 21 32 

52 kDa Ro protein (TRIM21) IPI00018971.7 20 29 13 28 

TAP/VDP/p115  IPI00031583.4 10 0 11 0 

ROCK1  IPI00022542.1 46 0 32 0 

GOLGA4 (Isoform 1 of Golgin 

Subfamily A member 4) 

IPI00013272.1 

54 0 34 0 

Epiplakin IPI00010951.2 5 0 3 0 

Scribble (Isoform 3 of Protein LAP4) IPI00410666.1 4 0 0 4 

Isoform 3 of Septin-9 IPI00455033.5 2 4 3 5 

Septin-2 IPI00014177 2 3 0 5 

Septin-11 IPI00019376.6 0 5 0 4 

Isoform 1 of Rho GEF 7 IPI00449906.3 3 0 2 0 

Rab GDP dissociation inhibitor beta IPI00031461.1 2 0 0 3 

Ras-related protein Rab-11B IPI00020436.4 0 0 0 2 

p190 RhoGAP (Isoform 1 of 

Glucocorticoid receptor DNA-binding 

factor 1) 

IPI00334715.3 

6 0 9 0 

Kinesin heavy chain IPI00012837.1 0 3 0 2 

Snd1 (staphylococcal nuclease and tudor 

domain containing 1) 

IPI00140420.4 

0 18 0 12 

adaptor-related protein complex 2, beta 

1 subunit 

IPI00784156 

3 2 2 0 

adaptor-related protein complex 1, 

gamma 1 subunit isoform 

IPI00293396.5 

3 0 2 0 

Coatomer subunit alpha IPI00295857.6 5 0 3 0 

Isoform 2 of Coiled-coil domain-

containing protein C6orf97 

IPI00216412.8 

0 9 0 3 

Sodium/potassium-transporting ATPase 

subunit -2  

IPI00003021.1 

0 0 0 2 

Sodium/potassium-transporting ATPase 

subunit -1 

IPI00006482.1 

0 0 2 4 

Myosin-9 IPI00019502.3 0 0 0 2 

Myosin-Ic IPI00010418.4 0 0 0 3 
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Discussion 

Chapter three described the extensive optimization and validation of ReCLIP in 

A431 cells under standard growth conditions. To exploit the potential of ReCLIP, I 

sought to characterize p120 binding partners in a wider range of cell types and 

conditions. The experiments described here are only preliminary, but do provide evidence 

of the efficacy of ReCLIP across multiple cell-types and conditions and highlight 

important considerations for future applications of ReCLIP. The methodology described 

here should facilitate more comprehensive studies to identify binding partners via 

ReCLIP.  

 ReCLIP results across multiple human epithelial cell lines were remarkably 

consistent with respect to the cadherin complex. The core components of the cadherin 

complex (E-cadherin and -catenin, -catenin, and Plakoglobin) were all efficiently 

recovered with similar spectral counts across four of the five cell lines tested. Recovery 

was less robust in HCA-7 cells, as this cell line expresses less p120 and E-cadherin as 

indicated in western blot experiments. The recovery of candidate binding partners such as 

cd98 and ROCK1 in other cell lines besides A431 cells provides further support for the 

significance of these interactions. Interestingly, the polarity protein scribble was 

detectable in mammary epithelial cell lines (MCF-7 and MCF-10A), but not in other cell 

lines. This suggests that the components of p120 complexes may vary between different 

tissue types, and highlights the value of screening multiple cell lines in binding partner 

studies. If only one cell line is studied, it is likely that a number of important interactions 

would be missed because they may not be prevalent in the specific cell line used. A 
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comprehensive ReCLIP screen of cell lines covering multiple tissue types would be 

extremely informative and provide a broader view of p120 complexes and functions. 

 Because ReCLIP has been optimized for use with monoclonal antibodies, 

phospho-specific antibodies can be used with ReCLIP to specifically study binding 

partners associated with the phosphorylated form of a target protein. To that end, I 

performed ReCLIP in PMA-stimulated or unstimulated (serum starved) cells using both a 

total p120 (15D2) and a phospho-S879 mAb for immunoprecipitation. The physiological 

significance of PKC-mediated phosphorylation of S879, and dephosphorylation of the N-

terminus remains unknown, despite extensive study (Xia et al., 2006, Brown et al., 2009). 

Unfortunately, aside from the cadherin complex no change in binding partner recovery 

with the pS879 mAb was observed following PMA treatment. It is possible that any 

phospho-specific transient binding partners had already dissociated from p120 by the 30 

minute treatment time-point at which crosslinking was initiated, as this represents the 

peak of p120 phosphorylation following PMA treatment. Crosslinking at earlier time-

points may capture transient interactions before they dissociate. Thus, preliminary time-

course experiments should be carried out to determine the shortest treatment time at 

which crosslinking can be initiated to minimize the loss of transient binding partners. 

Interestingly, some binding partners that were recovered abundantly using mAb 

15D2, such as ROCK1 and GOLGA4, were not recovered at all using the pS879 mAb, 

suggesting that these proteins may not associate with p120 when S879 is phosphorylated. 

It is possible that differential localization of phosphorylated versus unphosphorylated 

p120 may explain this (e.g. p120 may not be phosphorylated when associated with 

GOLGA4 in the Golgi Apparatus). Alternatively, these protein complexes may mask the 
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pS879 epitope, such that only p120 that is not associated with these complexes is 

recovered by the pS879 mAb. Similarly, KHC and snd1 were detected in pS879 but not 

15D2 eluates. Thus it is clear that different monoclonal antibodies can recover unique 

sets of binding partners. It would be particularly interesting to compare ReCLIP results 

using multiple p120 monoclonal antibodies, as this experiment could reveal novel 

binding partners that are not detectable using 15D2 alone.  

 Taken together, these experiments indicate that ReCLIP is effective across 

multiple cell types and conditions. However, the differences between recovered proteins 

across the different cell lines highlights the importance of evaluating multiple cell lines 

prior to more complex ReCLIP experiments. While PMA-treatment did not yield any 

phospho-specific novel binding partners in our experiments, further optimization of 

treatment times and crosslinking conditions may yield novel phospho-specific transient 

binding partners that could not be captured at the 30 minute time-point used here. Similar 

experiments could be carried out using different combinations of stimuli and phospho-

specific p120 mAbs. Alternatively, total p120 could be isolated from a cell line treated 

with a panel of stimulants (EGF, PMA, LPA, Wnt 3a, etc) to identify changes in p120 

complexes under each condition. However, each condition will require optimization to 

determine the minimal treatment time prior to carrying out large-scale ReCLIP 

experiments.  
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