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CHAPTER I  

 

INTRODUCTION 

 

Motivations and Goals 

In the search for more efficient, robust control laws it will be necessary to obtain 

increasing amounts of information about the system to be controlled and the nature of the 

control problems to be overcome.  Different control strategies tend to emphasize one of 

these approaches to the neglect of the other.  This research is concerned with the merging 

of these issues and is based on the Partitioned Error Control (PEC) system; a novel two-

degree-of-freedom control structure which separates servo and regulatory problems.  This 

important feature of PEC only accounts for a fraction of the potential of the PEC system, 

however.  For the purpose of separating servo and regulatory problems, PEC utilizes two 

controllers.  These controllers can be chosen to accentuate each other’s strengths and 

diminish each other’s weaknesses.  It is the exploration of this synergy that is the primary 

goal of the research purposed herein. 

The current state of industrial processing places very stringent demands on 

product quality, energy consumption, safety, and environmental accountability.  

Furthermore, these demands will only grow more stringent with time as economic and 

regulatory factors are tightened.  This has been and will continue to be the driving force 

behind process control development.  This development, however, has come from two 

distinct aspects of process control: understanding the process, and distinguishing between 

sources of error.   
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Historically, more attention has been concentrated on understanding the process.  

Methods such as linear feedback control, internal model control (IMC), and model 

predictive control (MPC) attempt to meet regulatory objectives by focusing on how the 

manipulated variable affects the process output.  For example, internal model control 

does not try to distinguish sources of error, but instead it focuses on predicting the affect 

of control moves to allow a more aggressive controller that is less susceptible to 

overshoot. These types of control structures have blossomed in recent years due to 

advancements in computer modeling. Now that large systems can be modeled with a high 

degree of detail and accuracy, these types of controllers are ceasing to be limited by our 

understanding of the process, but instead are being limited by the complexity and non-

linearity of the control laws needed for such systems. 

On the other hand, control structures, which try to distinguish between sources of 

error, tend to lead towards systems with multiple relatively simple control laws.  A feed 

forward/feedback control loop is a prime example of this type of architecture.  

Performance benefits are gained by applying specific control laws to specific error 

sources.  Other systems that take this approach include two-degree-of-freedom 

controllers and adaptive controllers.  Two-degree-of-freedom controllers seek to shape 

the reference signal, and thus a source of error, so that the primary feedback control law 

can sufficiently meet both regulatory and tracking objectives.  Adaptive controllers take a 

time variant approach to the problem. For example, self-tuning adaptive controllers 

attempt to distinguish process dynamics from disturbances, however, instead of 

implementing multiple control laws simultaneously, adaptive control increases 

performance by changing a single control law as the dynamics of the process change.  
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The difficulty with these types of systems is that key information needed to distinguish 

between sources of error is often unavailable, or in the case of conventional two-degree-

of-freedom controllers the controller form itself is not as flexible as would be desired. 

The ultimate goals of this research are to 1) develop an understanding of how 

partitioned error control functions in a SISO setting utilizing common design techniques, 

2) develop mixed sensitivity and loop-shaping H∞ controller design in a PEC setting, 

applying robust stability and robust performance criteria for said controllers in this new 

setting, and 3) develop a general design procedure for PEC, which will rely heavily on 

the design procedures for the individual controllers chosen to be placed in the PEC 

framework.   

The following approach outlines the presentation of the theory and 

implementation of Partitioned Error Control.  In chapter two the background and current 

implementations of two-degree-of-freedom control will be explained.  In chapter three 

the theory of Partitioned Error Control will be developed and compared to inverse model 

prefilters.  In chapter four H∞ controllers will be placed in the Partitioned Error Control 

structure.  This system will then be compared to two-degree-of-freedom H∞ control in a 

single input, single output environment.  Chapter five will implement Partitioned Error 

Control on an inverted pendulum on a cart.  The case study of the classic one input, two 

output problem includes a comparison to two-degree-of-freedom H∞ controller.  Chapter 

six will implement Partitioned Error Control on a binary distillation column.  The case 

study of the classic two input, two output problem includes a comparison to two-degree-

of-freedom H∞ Internal Model Control.  Chapter seven will summarize the results of this 

research.  Finally, Chapter eight will explore future research opportunities. 
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CHAPTER II  

 

THEORETICAL BACKGROUND OF TWO-DEGREE OF FREEDOM SYSTEMS 

 

Why Is Two-Degree-of-Freedom Control Needed? 

Where the operational objectives of a control system include both the suppression 

of disturbances, and optimal performance to set-point tracking, control is a compromise 

for any system that does not distinguish between regulatory and servo problems.  This 

compromise occurs because each imposed control objective reduces the degree of 

freedom of any control system by one.  Take for instance the following feedback control 

system, a one-degree-of-freedom (ODoF) controller. (Figure 1) 

 

 

K2

Controller 

Gpr 

Set 
Point 

y 

Output 

d

Disturbance Gd

 
Figure 1:   Single Input Single Output (SISO) feedback controller 

 

It can easily be shown that this feedback system becomes over specified if a 

disturbance rejection objective, y
d

, and a set-point tracking objective, y
r

, are both set. 

 d

2 P

y G
d (1 K G )

=
+

 ( 1) 
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 2 P

2 P

y K G
r (1 K G )

=
+

 ( 2) 

 

In this case, we have 2 equations with one arbitrarily specified variable, K2.  

Using classic loop-shaping design techniques for minimum phase systems, we want the 

set-point tracking controller to be of the form 1
P

1G
s

− .  This controller, however, has poor 

disturbance rejection characteristics.  The same controller tuned for disturbance rejection 

would preferably be of the form 1
P d

1G G
s

− .  It is obvious that no one controller can be 

designed to handle both a discontinuous setpoint change, and a continuous disturbance in 

an optimal fashion without distinguishing between sources of error.  To alleviate this 

problem, it is common to tune the controller for regulatory problems and impose a ramp 

function on the setpoint variable, in effect giving priority to regulatory objectives to the 

detriment of set-point tracking objectives.  The introduction of a ramp function, or 

prefilter, however, increases the degrees of freedom in our system by one.   

 

Horowitz1 first purposed the use of this prefilter or precompensator, as seen in 

Figure 2, to shape the response of the system to meet set-point control objectives.  There 

are many applications of this type of two-degrees-of-freedom (TDoF) controller in the 

literature, too many to list. A few examples from chemical engineering include Morari 

and Zafirou2 who extended two-degrees-of-freedom controllers into the internal model 

control (IMC) structure, and Lundstrom and Skogestad3, Limbeer et al. 4, Van Digglen 

and Glover5, and Skogestad et al.6 who have used two-degrees-of freedom controllers for 

distillation column control.  



6 

A typical block diagram of a TDoF controller is shown in Figure 2. The controller 

has two components, a feedback controller, K2, and prefilter, Kr.  The prefilter, Kr, shapes 

the reference signal to enhance performance, while the controller, K2, handles the shaped 

tracking error, disturbances, noise, and modeling error.  K2 and Kr can be designed 

simultaneously and are theoretically capable of achieving two distinct control objectives 

for minimum phase systems using inverse-based control.  However, in practice, the 

limitations associated with inverse-based design and modeling error lead to a lead-lag 

prefilter design.  Although this type of prefilter does allow some manipulation of the 

setpoint response, the dynamics are still mainly determined by the feedback loops 

characteristic equation.  Thus, the set-point response of a system with a prefilter is 

dynamically similar to the setpoint response of an equivalent one-degree of freedom 

system, as seen in Figure 3.  With limited control over set-point dynamics, and the fact 

that adjustments to the load controller will invariably affect set-point performance, 

precompensators provide a less than ideal method for meeting multiple control 

objectives. 

 

Kr 

Prefilter 

K2 

Controller

Gp r 
Set 

Point 

y 

Output

d

Disturbance Gd 

 

Figure 2:   Traditional TDoF control structure 
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Figure 3:   An example set-point response of the TDoF system in Figure 2, and the 
response of the same system without the use of the prefilter. 
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It is easily shown that the addition of a precompensator only adds roots to the 

characteristic equation and has no ability to modify the location of the existing roots. 

Examine the system in Figure 2, letting the lead-lag compensator, Kr, be written in its 

general form, Lead
r

Lag

s 1K
s 1

τ
τ

+
=

+
. The response of the TDoF system to a set point change is 

then as follows:  

 ( )
( ) ( )

Lead 2 P

Lag 2 P

s 1 K Gr
y s 1 1 K G

τ
τ

+
=

+ +
 ( 3) 

The same system will have a disturbance response as follows: 

 
2 P

d 1
y 1 K G

=
+

 ( 4) 

The limited ability of the precompensator to change the characteristic equation for 

set-point tracking becomes clear. Although it does increase the order of the characteristic 

equation by one, the root locations are still highly dependant on the feedback controller. 

Therefore the general dynamics of a setpoint response will be similar to the dynamics of 

a disturbance response. 

 

Inverse Model Prefilter Design 

Consider the SISO system where  

 
3.5s

sP
P d

k 4eG G e
s 1 7s 1

θ

τ

−
−= = =

+ +
 ( 5)  

Several tuning methods are available for first order plus dead time systems.  Table 1 

summarizes the controller tunings suggested by 3 such methods. 

Table 1.  Proportional + Integral Controller Tunings for SISO systems 
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Murrill   
KC/τI Ziegler-Nichols TLC 

Setpoint Load KC/τI KC/τI 
0.28/7.39 0.42/6.48 0.43/9.98 0.3/26.4 

 

A suitable controller for disturbance rejection of this system is given by using the 

proportional-integral (PI) settings according to the tuning rules of Lopez, Murrill et al. 7, 

and Rovira, Murrill et al. 8, which has the following form 

 C
2 C C I

I

KK K ; K 0.42; 6.48;
s

τ
τ

= + = =  ( 6) 

This controller, however, does not provide good set point tracking.  An inverse model 

prefilter can correct for this deficiency by increasing the degrees of freedom of the 

system by one.  Examining the closed loop response of the system in Figure 2 readily 

shows this increase. 

 2 nom
r

2 nom

K Gy K
r 1 K G

=
+

 ( 7) 

Where nomG  is the nominal process model assumed to be equal to the actual process PG , 

the designer may specify a reference trajectory, y
r

, and solve for the prefilter obtaining 

the control law shown in Equation ( 8). 

 
1

2 nom
r

Ref2 nom

K G yK
1 K G r

−
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

 ( 8) 

In general there are three limitations to this design.  First, the prefilter will be unstable if 

the process contains any right hand plane zeros.  Second, the controller may be improper 

if there are an excessive number of poles with respect to zeros in the process.  Third, a 
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process with a state space realization P

A B
G C D

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 will not be invertible for systems 

where D 0≠ .  These three constraints limit the family of systems to which inverse 

prefilter design can be applied.  It is also important to note that the order of the prefilter 

will be at least as large as the order of the process so that the prefilter is proper.  

A suitable choice of the reference trajectory for the process in Equation ( 5) would 

be as follows 

 rs

Ref

y 1 e
r s 1

θ

λ
−⎛ ⎞ =⎜ ⎟ +⎝ ⎠

 ( 9) 

λ can be chosen to obtain the desired response and θr is chosen to make sure Kr does not 

have a predictive element.  Finally, we can solve for the form of the prefilter using 

Equation ( 5), ( 6), ( 8), and ( 9). 

 r r

I

( )s sC P
r

I

s( s 1)
1k kK e e

( s 1)( s 1) ( s 1)
θ θ θ

τ τ

τ λ λ
− − −

+
= +

+ + +
 ( 10) 

 3.5s
r

6.48 s(7s 1)
1(0.42)(4)K e

(6.48s 1)( s 1) ( s 1)λ λ
−

+
= +

+ + +
 ( 11) 

The digital implementation of this prefilter would be feasible: however, it is a 

nonstandard controller form.  Furthermore, any changes in the feedback controller 

tunings would affect the prefilter design. 

Figure 4 shows the step response of this system for various values of λ.  

Decreasing λ does result in a more tightly tuned controller, which is more susceptible to 

modeling error. 
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Figure 4:   Step response for an inverse base prefilter design with λ=3.5 and λ=7 
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Lag-Lead Prefilters 

An alternative approach is to design the prefilter as a lag-lead element: 

 lead
r

lag

s 1K
s 1

τ
τ

+
=

+
 ( 12) 

Setting lead lagτ τ> will result in a quicker response, while setting lead lagτ τ< will result in a 

slower response.  The following example details a typical design procedure for the 

development of a lead-lag prefilter.  The procedure first seeks to find an adequate ODoF 

solution, however, when that attempt proves inadequate, a prefilter is designed to 

augment a ODoF controller with good disturbance rejection characteristics.  This 

example is worked out in detail so it may be used as a basis for comparing different 

TDoF techniques in later chapters. 

Consider the following disturbance process defined by Skogestad and 

Postlethwaite.9 

 
( ) d2

200 1 100G(s) , G (s)
10s 1 10s 10.05s 1

= =
+ ++

 ( 13) 

For this process, both tracking and disturbance rejection are important objectives and are 

defined by the following three criteria: 

1. Command Tracking:  The tracking response should have no greater than 

5% overshoot.  Furthermore, the response should reach 90% of the final 

value within 0.3 seconds. 

2. Disturbance Rejection:  The response of a system to a unit step change in 

the disturbance should not exceed unity.  [ ]y(t) 1,1∈ −  for all t. 

Furthermore, the response should be less than 0.1 after 3 seconds 
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3. Input constraints: u(t) should remain within the range of [-1,1]. 

Obviously, it would be desirable to find a ODoF controller, which meets these 

objectives.  Skogestad and Postlewaite9 investigated several ODoF designs.  These 

designs are summarized below.   

First, a design, which caters to setpoint tracking, was investigated.  For setpoint 

changes a typical plant-inverse controller would be 

 1CK(s) G
s

ω −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 ( 14) 

Since Gd(0)=100, the system response without feedback control to a unit step 

change in the disturbance, d=1, would be 100 times larger than is acceptable given the 

specifications for disturbance rejection. As the frequency of the disturbance, ωd, increases 

the gain will decrease until Gd(j ωd) =1 around ωd = 10 rad/s.  Hence feedback control 

will be needed for frequencies up to 10 rad/s to ensure disturbance rejection 

specifications are met, so we set ωC = 10rad/s.  With ωC set we change our focus to 

generating an acceptable inverted plant, G-1.  The inverse plant model has an excess of 

poles making 1C G
s

ω −⎛ ⎞
⎜ ⎟
⎝ ⎠

 improper.  To alleviate this condition the plant term (0.05s+1)2  

is approximated as (0.1s+1).  This approximation is then applied over a decade, i.e. we 

use (0.1s 1)
(0.01s 1)

+
+

 to give the realizable controller design 

 1
10 10s 1 0.1s 1K
s 200 0.01s 1

+ +
=

+
 ( 15) 

The tracking response of the inverse-based controller defined in Equation ( 15) is 

shown in Figure 5.  The controller exhibits no overshoot and a rise time of about 0.16s, 

providing excellent tracking.  The disturbance response of the inverse-based controller 



14 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 5:   Tracking response to a unit step input of the inverse-based controller, K1, 
defined in Equation ( 15). 
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defined in Equation ( 15) is shown in Figure 6.  The controller has sluggish disturbance 

rejection characteristics and fails to meet the disturbance rejection specifications, as the 

output is about 0.75 at a time of 3 seconds instead of the specified 0.1.   

The failure of the first controller to meet design specifications led to the design of 

a disturbance controller based on loop-shaping design methods.  Unlike the tracking 

example above where the desired form of K was specified in Equation ( 14), the desired 

form of a disturbance controller is of the form shown in Equation ( 16). 

 1I
d

sK G G
s
ω −+

=  ( 16) 

First we will approximate the |G-1Gd| term.  Neglecting high frequency dynamics |G-1Gd| 

is approximately 0.5.  Second, we will specify ωI.  The frequency up to which integration 

is effective is determined by ωI.  For low frequency performance we wish ωI to be large, 

yet to maintain an acceptable phase margin we want ωI < ωC.  It was deemed that ωI = 

0.2ωC = 2 rad/s would be appropriate.  This led to the following controller 

 2
s 2K 0.5

s
+

=  ( 17) 

Simulation showed this controller to be more oscillatory than desired, so derivative action 

was introduced to improve the systems phase margin and transient response.  This was 

achieved by multiplying the controller by a lead-lag term, which is effective over one 

decade and begins at 20 rad/s.  The final form of the controller is shown in Equation ( 18)

. 

 3
s 2 0.05s 1K 0.5

s 0.005s 1
+ +

=
+

 ( 18) 
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Figure 6:   Disturbance response to a unit step input of the inverse-based controller, 
K1, defined in Equation ( 15). 
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Figure 7 shows the controller K3 satisfies disturbance rejection criteria.  However, Figure 

8 shows the tracking performance of K3 is not satisfactory.  The tracking response has an 

overshoot of 24%, which is well outside the maximum allowed tolerance of 5%.  

Since neither controller is sufficient by its self, a TDoF controller was sought.  

Since the controller K3 exhibited the best disturbance response characteristics, it will be 

used as the feedback controller for the process, and a prefilter will be designed to enhance 

its tracking performance. Skogestad and Postlewaite9 decided to make a lag-lead prefilter, 

Kr for this particular problem.  The general principle behind lag-lead design is to find a 

low order approximation of an inverse model prefilter.  This is generally accomplished in 

one of two ways. 

1. Solving for an inverse model prefilter directly using Equation ( 8) and 

approximating it if possible with a lower order model 

2. Finding a low order approximation of 
1*

3 P
*

3 P

K G
1 K G

−
⎛ ⎞
⎜ ⎟+⎝ ⎠

directly then 

specifying a reference trajectory and solving for the prefilter.  

The later of these design techniques was chosen so the prefilter was designed around an 

approximation of the inverse model.  From a step response test, they approximated 

3 P 3 P(K G ) /(1 K G )+ by the sum of two transfer functions: 

  

 1.5 0.5 0.7s 1
0.1s 1 0.5s 1 (0.1s 1)(0.5s 1)

+
− =

+ + + +
 ( 19) 
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Figure 7:   Disturbance response to a unit step input of the inverse-based controller, 
K3, defined in Equation ( 18). 
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Figure 8:   Tracking response to a unit step input of the inverse-based controller, K3, 
defined in Equation ( 18). 

 

 

 

 

 

 



20 

A reference trajectory was then chosen, 
Ref

y 1
r 0.1s 1

⎛ ⎞ =⎜ ⎟ +⎝ ⎠
.  This provides a first-order 

response with no overshoot.  The resulting prefilter for the TDoF controller is 

 r
0.5s 1K
0.7s 1

+
=

+
 ( 20) 

This controller was then slightly modified to prevent the control signal from exceeding 1, 

such that the final form of the prefilter is given as 

 r
0.5s 1K

(0.65s 1)(0.03s 1)
+

=
+ +

 ( 21) 

Figure 9 details how the feedback controller K3 and the prefilter Kr are implemented. 

 

 
Figure 9:   Diagram specifying the implementation of the TDoF controller utilizing 

controller K3 from Equation ( 18) and the prefilter Kr from Equation ( 21). 
 
 

The nominal response for the TDoF controller to a unit step change in the setpoint 

is shown in Figure 10.  The response is not as desirable as the one obtained from the 

ODoF controller specifically designed for tracking responses (Equation ( 15)), but meets 
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all the design specifications nonetheless.  The response has a rise time of approximately 

0.25s and exhibits an overshoot slightly greater then 2%. 

The nominal response for the TDoF controller to a unit step change in the 

disturbance is shown in Figure 11.  As we would expect, this response is the same one 

generated from the ODoF controller specified in Equation ( 18), since disturbance 

responses are independent from prefilter dynamics.   

 

Summary 

The TDoF controller was able to satisfy all design criteria, yet the design 

expressed a heavy reliance on the inverse process model.  This dependence complicates 

prefilter design for non-minimum phase systems, which are systems that have time delays 

or Right Hand Plane zeros.  Additionally it should be noted that the tracking performance 

of the TDoF controller was less desirable than the response of the ODoF controller 

specifically designed for servo tracking.  This result stems directly from the fact that the 

prefilter is unable to change the location of poles in the characteristic Equation defined by 

the regulatory controller, but is only able to add additional poles to change process 

dynamics.  
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Figure 10:  Tracking response to a unit step input of the TDoF controller  
shown in Figure 9.    
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Figure 11:   Disturbance response to a unit step input of the TDoF controller shown in 
Figure 9 
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CHAPTER III  

 
 

THEORY OF PARTITIONED ERROR CONTROL 

 

Partitioned Error Control 

A TDoF control system in which the controllers can be independently designed 

would be desirable.  The controllers should be capable of distinguishing between set-

point changes and load disturbances. Debelak and Rutherford10 proposed the following 

control structure (see Figure 12) to meet these criteria.  This control structure includes the 

nominal process model, Gnom, and two controllers, K1 and K2, which can be 

independently tuned to handle both setpoint changes and load disturbances. This 

configuration is called Partitioned Error Control (PEC), because instead of using an error 

signal based on a measured output, m[r y ]− , as an input to a single controller, the PEC 

structure utilizes a process model to generate a nominal output, y’, which is used to 

separate tracking considerations based on the following equation: 

 [ ]1 2
m

r y '
u K K

y ' y
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 ( 22) 
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Figure 12:   Partitioned Error Control structure 
 
 

Partitioned error control belongs to the family of model-based controllers, which 

includes direct synthesis control, internal model control, and generic model control. It is 

also a two-degrees-of-freedom controller. The closed-loop transfer function for this 

system is given by  

 d2 P 1 2 P

2 P 2 P 1 nom 2 P

GK G (K K )Gy (r) (d)
1 K G (1 K G )(1 K G ) 1 K G

⎡ ⎤−
= + +⎢ ⎥+ + + +⎣ ⎦

 ( 23) 

For the nominal case, i.e., GP = Gnom, the closed-loop transfer function reduces to:  

 d1 P

1 P 2 P

GK Gy (r) (d)
1 K G 1 K G

= +
+ +

 ( 24) 

The characteristic equation for each response is only dependent on the controller 

designed specifically for that response.  This is one of the fundamental differences 

between PEC and traditional TDoF methods.  Thus, the two controllers can be tuned 

independently for set-point changes and load disturbances.  The tuning process is also 

made significantly easier, because both controllers can be designed using classic 

feedback design procedures, making PEC more intuitive than other TDoF controllers. 
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If K2 = K1, then the closed-loop transfer function reduces to 

 2 P d

2 P 2 P

K G Gy (r) (d)
1 K G 1 K G

= +
+ +

 ( 25) 

The system behaves like an ordinary feedback system regardless of the model used.   

Lets reconsider the system defined in Equation ( 5).  Table 1 gives the PI 

controller settings according to the tuning rules put forth by Lopez, Murrill et al. 7, and 

Rovira, Murrill et al. 8, the Zielger-Nichols (ZN) settings, and the TLC(“tender loving 

care”) settings of Tyreus and Luyben11 for this process.  The closed-loop setpoint and 

load responses of these controllers are given in Figure 13 and Figure 14.  Obviously, 

choosing the Murrill controllers to place in the PEC system would result in the best 

nominal response for both servo and regulatory problems.   

Now let us compare the PEC design utilizing the Murrill set-point tunings defined 

in Table 1 with the conventional inverse-model TDoF controller, which uses the prefilter 

defined in Equation ( 11) using a λ of 3.5.  Figure 15 shows the conventional inverse 

model based prefilter provides slightly improved performance for this simple system.  

Yet, PEC is capable of utilizing many design techniques; so in fact, the prefilter is being 

compared to the Murrill tunings for set point changes, not the PEC structure in general.  

This comparison to a specific design technique does not give full understanding of PEC.  

As such, it is helpful to examine how PEC utilizes other design techniques. 
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Figure 13: The set point step response of the Murrill set-point controller, the Zielger-
Nichols controller, and the TLC settings of Tyreus and Luyben11 in a one 
degree-of-freedom structure 
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Figure 14: The disturbance response of the Murrill load controller, the Zielger-
Nichols controller, and the TLC settings of Tyreus and Luyben11 in a one 
degree-of-freedom structure 
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Figure 15: Nominal step response comparison of PEC using Murrill tunings and an 
inverse based prefilter. 
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We will now reexamining the process defined in Equation ( 13).  A comparison 

will be made between the lead-lag prefilter design from chapter 2 and PEC.  Recall that 

the lead-lag prefilter design utilized the feedback controller from Equation ( 18) and the 

prefilter from Equation ( 21).  The block diagram of the implementation of the controller 

and prefilter can be seen in Figure 9.  The PEC system will also utilize the feedback 

controller in Equation ( 18).  Instead of using a prefilter, PEC will make use of the 

tracking controller from Equation ( 15) and a process model from Equation ( 13).  

Because we are using Equation ( 13) as our model, PEC will be operating with a perfect 

model nom PG G= .  The block diagram of the implementation of these controllers can be 

seen in Figure 12.  Since it has already been shown that the tracking controller meets the 

tracking objective, and the feedback controller meets regulatory objectives, Equation 

( 24) ensures that under nominal conditions the PEC system will meet both tracking and 

regulatory objectives. 

The nominal response to a unit step change in the reference of the prefilter and 

PEC systems is presented in Figure 16.  The Integral of the Time weighted Absolute 

value of the Error (ITAE) for the step response of the PEC system, 0.009, is much 

smaller than that for the prefilter design, 0.056. It reaches the setpoint more quickly and 

is less oscillatory. 
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Figure 16:   Tracking response to a unit step change of PEC and the prefilter for the 
system defined in Equation ( 13). 
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Figure 17:  Regulatory response to a unit step change of PEC and the prefilter for the 
system defined in Equation ( 13). 
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The nominal response to a unit step change in the disturbance of the prefilter and 

PEC systems is presented in Figure 17.  The load responses for the prefilter design and 

the PEC design are identical as expected since they both use the same controller to 

regulate disturbances.  Neither the prefilter, nor the partitioning loop in the PEC structure 

have any influence on the dynamics of the system when there is no change in the 

reference signal, as is the case when examining a disturbance response.  

Both controllers possess a second degree of freedom, yet this example shows that 

limitations imposed by design techniques can hinder the ability of a designer to take 

advantage of that second degree of freedom.  The prefilter design in this example had to 

make an approximation to obtain a proper design, due to an excessive number of poles 

with respect to zeros in the process model, which made the inverse process improper.  

This approximation had a direct, all be it small, impact on the performance of the system 

in two ways.  First, modeling error was generated in order to approximate an inverse 

process model.  All models have modeling error, but the more approximations we make 

the more this problem is exacerbated.  Second, the control laws, and thus the designers 

ability to manipulate the system, suffer from all approximations.  Examine the poles of 

the prefilter system under the perfect model assumption.  The poles of the regulatory 

response are located at (-201.09, -20.00, -8.24 ± 9.45i, -2.53).  The poles of the servo 

response for the prefilter system are (-201.09, -33.33, -20.00, -8.24 ± 9.45i, -2.53, -1.54).  

Without using a perfect inverse model the prefilter can not manipulate the location of the 

poles of the servo response.  It can only add additional poles.  This is in sharp contrast to 

PEC which has the same poles as the prefilter system for its regulatory response at (-

201.09, -20.00, -8.24 ± 9.45i, -2.53), but the poles of the servo response under nominal 
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conditions are located at (-105.01,-0.13.86 ± 18.22i, -7.27, -0.10).  The PEC servo 

response has a totally independent set of poles from the regulatory response.  This is the 

freedom that designers are able to take advantage of through the use of the PEC system, 

and this is the reason PEC can be used to achieve better tracking performance than 

inverse model based prefilters, even though both systems are two-degree-of-freedom 

systems an under ideal conditions both systems should be able to manipulate the second 

degree of freedom equally well. 

Not only has PEC provided a superior TDoF controller in this case, but it has also 

done so with less design effort.  In the original design procedure by Skogestad and 

Postlewaite9, ODoF controllers were pursued first.  Of the two controllers that were 

designed under this procedure only the design work done for the regulatory controller 

was used to design the TDoF prefilter system.  However, PEC did not require any 

additional design effort beyond that done for the ODoF controllers.  PEC was able to 

successfully incorporate both designs to give superior performance with reduced design 

effort in this case. 

PEC would also be more applicable to processes that exhibit an inverse response 

or a response with difficult dynamics.  For such processes it is either difficult to discern a 

good reference trajectory or system dynamics make process inversion impossible.  For 

such processes, it is easier to design a good controller, by following deterministic 

feedback loop design procedures, than it is to specify and implement a more arbitrary 

reference trajectory, thus giving PEC an advantage over prefilter designs. 
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Model Mismatch 

In all model-based systems the question of process model mismatch arises.  How 

does PEC handle plant model mismatch?  There are two parts to this answer; one is 

trivial, while the other is more complex.  First, the trivial answer explains how PEC 

handles modeling error in the presence of a disturbance.  The feedback controller, K2, 

solely handles modeling error propagated by disturbances.  Thus the analysis of modeling 

error can directly apply current feedback control theory, which includes determining 

stability margins by use of pole locations for a set of perturbed plants.  This is readily 

apparent, because the characteristic equation of the disturbance response involves only 

the load controller, K2, and the process transfer function, GP (eq 26). 

 d

2 P

Gy (d)
1 K G

=
+

 ( 26) 

This is true for both PEC and the conventional inverse model prefilter, thus we know for 

certain that PEC processes disturbances in the presence of modeling error in the exact 

same way prefilter systems do.  Therefore we can neglect the trivial case where modeling 

error is propagated by disturbance responses since we have a good understanding from 

existing theory of how the single feedback controller handles error.   

The second answer to how PEC handles modeling error is more complex, because 

control of setpoint changes involves both the partitioning and feedback loops, as 

indicated in Equation ( 23), when modeling error is present.  The stability of the PEC 

system for tracking problems is determined by the characteristic equation defined in 

Equation ( 27), which was obtained through simple rearrangement of Equation ( 23): 

 1 P 2 nom

2 P 1 nom

K G (1 K G )y r
(1 K G )(1 K G )

+
=

+ +
 ( 27) 
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The characteristic equation includes the tracking controller ( )1K , the load 

controller ( )2K , the actual process ( )PG , and the process model ( )nomG .  One way to 

estimate the effect of process model mismatch is to plot the closed-loop frequency 

diagram for the conventional control structure and for the PEC structure for different 

errors in the estimates of the process gain, time constant, and time delay.  As the process 

approaches its limit of stability, the maximum closed-loop log modulus will approach 

infinity.  Essentially, as the maximum closed-loop log modulus approaches infinity, the 

process is approaching the point (-1,0) of a Nyquist plot.  After the limit of stability is 

reached the system is unstable.  The maximum closed-loop modulus ceases to have 

significant meaning and can actually begin to decrease.  This occurs because the 

maximum log modulus is an indication of how close a system is to the point (-1,0) on the 

Nyquist plot, though it does not indicate which direction we are approaching it from.   

A ODoF feedback controller was constructed using the setpoint tunings suggested 

by Murrill from Table 1 for the process defined in Equation ( 5).  Figure 18 is a closed-

loop frequency plot of that system for errors in the process gain of 0%, 10%, 25%, and 

40%.  The Maximum closed loop modulus increases as the error in the process gain 

increases, characteristic of an increasingly oscillatory response.  The process does not 

reach its limit of stability until the error in the process gain reaches about 63%. 

Although simulations showed this controller provides satisfactory tracking for 

gain estimation error of up to at least 40% in the gain, we must remember that it does not 

provide satisfactory disturbance regulation even for the nominal process. 
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Figure 18: Frequency response for the process described by Equation ( 5) of a Murrill 
set-point controller in a ODoF setting for gain estimation errors of 0%, 
10%, 25%, and 40%. 

 
 

 

 

 



38 

Similarly Figure 19 shows the closed-loop frequency plot for the conventional 

ODoF control structure using the load settings suggested by Murrill from Table 1.  It is 

evident from this figure that the oscillations found in the nominal response are quickly 

magnified by moderate amounts of modeling error.  This is expected, because we are 

viewing the response of a controller we tuned specifically for a regulatory objective to a 

sinusoidal tracking input. 

Figure 20 shows the closed-loop frequency plot for the PEC structure with the 

same errors in the estimate of the process gain.  Murrill’s set point tunings are used for 

the controller in the partitioning loop, while Murrill’s load tunings are used for the 

controller in the feedback loop.  For no error in the estimate of the gain, the closed-loop 

frequency response of the Murrill set-point controller (Figure 18) is identical to the 

response of the PEC system (Figure 20) as expected.  However, as modeling error is 

introduced the response of the PEC system begins to look less like the response of the 

Murrill set-point controller, and more like the response of the Murrill load controller.  

This occurs because the load controller provides the only mechanism for handling 

modeling error in the PEC system.  The controller in the partitioning loop does not 

receive feedback from the process.  As such, when the relative amounts of modeling error 

compared to tracking error becomes significant, the load controller has a noticeable 

impact on process dynamics.   
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Figure 19: Frequency response for the process described by Equation ( 5) of a Murrill 
load controller in a ODoF setting for gain estimation errors of 0%, 10%, 
25%, and 40%. 
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Figure 20: Frequency response for the process described by Equation ( 5) of the PEC 
system utilizing a Murrill set-point controller in the partitioning loop and a 
Murrill load controller in the feedback loop for gain estimation errors of 
0%, 10%, 25%, and 40%. 
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For very poor models, where the modeling error exceeds tracking error, the 

response of the PEC system becomes dominated by the load controller.  In this particular 

case, the controller tunings chosen for the load controller, the Murrill load settings, have 

a significant oscillation for tracking even at the nominal level.  Better choices for the load 

controller can improve the response of the PEC significantly as will be shown in the 

following chapter.  Similar plots could be made for errors in the estimates of the time 

constant and dead time, showing similar results with varying degrees of severity.  Like all 

model based control systems modeling error is particularly sensitive to the inaccuracies in 

the estimation of dead times.  This sensitivity will be addressed in a case study of a 

binary distillation column in a later chapter. 

 

Activity from the feedback controller 

If you look at the outputs from both controllers in the PEC configuration for a 

setpoint change, you will find that when Gnom = GP, the output from controller K2 is zero.  

As the mismatch between Gnom and GP increases, the output from controller K2 increases.  

The control action becomes the sum of the outputs from controllers K1 and K2.  The 

transfer function from a reference signal, r, to the output of the controller K2, m, is given 

by the following equation: 

 1 2 nom P

2 P 1 nom

K K (G G )m
r (1 K G )(1 K G )

−
=

+ +
 ( 28) 

If Gnom = GP, then the output from controller K2 will be equal to zero, for any input r.  

The output from controller K2 can be monitored during setpoint changes.  If K2’s output 

deviates from zero, it is an indication of plant model mismatch, i.e., nom PG G≠ .  The 
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deviation of K2’s output from zero can be used as an indicator by an adaptive controller, 

e.g., Foxboro’s Exact and Control Soft’s Intune, of when to update the model. This 

feature of the PEC structure could be easily incorporated into an adaptive controller.  

Astrom and Wittenmark12 have established techniques for identifying models, which can 

be used by an adaptive controller.  Adjustments of the model parameters in Gnom can be 

made through a series of on-line setpoint tests until the output from controller K2 is zero. 

 

Noise effects 

Noise in process control can arise from the measuring devices, the surroundings, 

or the process.  How does PEC compare with a conventional controller in a noisy 

environment?  To compare the effect of noise on PEC and a conventional controller, 

band-limited white noise was included in the feedback signal to the controller.  The 

primary difference between band-limited white noise and white noise is that the band-

limited white noise produces output at a specific sample rate, which is related to the 

correlation time of the noise.  Theoretically, continuous white noise has a correlation time 

of 0, a flat power spectral density (PSD), and a covariance of infinity.  In practice, 

physical systems are never disturbed by white noise, although white noise is a useful 

theoretical approximation when the noise disturbance has a correlation time that is very 

small relative to the natural bandwidth of the system.   

Figure 21 thru Figure 23 compare setpoint changes for the process described by 

Equation ( 5) for PEC using the tracking and regulatory tunings of Murrill specified in 

Table 1, with a control system using an inverse prefilter from Equation ( 10) with λ=7 

and PI controller utilizing ZN tunings for different levels of error in the estimate of the 
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process gain.  The noise power and sampling time for the band-limited white noise are set 

at 0.005 and 0.1 minutes, respectively.  Nominal responses without noise are included in 

the plots. 

With 0% error in the estimate of the gain, i.e. GP=Gnom, PEC performs better than 

the prefilter with ZN tunings, both with respect to ITAE and rise time (Figure 21).  This 

is expected since the step response of the PEC system without noise has better 

performance characteristics then the prefilter system.   

With a 10% error in the estimate of the process gain, PEC still performs better 

than the prefilter with ZN tunings (Figure 22).  Again this is expected since PEC exhibits 

better performance characteristics then the prefilter with 10% error in the gain.   

However, as the error in the estimate of the gain increases to 40%, the 

performance of the PEC deteriorates below that of the prefilter with ZN tunings (Figure 

23).  Again this coincides with our expectations of the system.  PEC has a significantly 

more aggressive nominal tracking response, and we would expect aggressive control in 

the presents of modeling error to lead to aggressive overshoot with the perturbations we 

are simulating in the gain.  Similar results are also found when comparing the prefilter 

design with the PEC design for the process defined in Equation ( 13).   
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Figure 21:   Step response of PEC using Murrill tunings, and a prefilter design using 
Zielger-Nichols under the influence of white noise. 
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Figure 22:  Step response of PEC using Murrill tunings, and a prefilter design using 
Zielger-Nichols under the influence of white noise and 10% error in 
process gain estimation. 
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Figure 23:  Step response of PEC using Murrill tunings, and a prefilter design using 
Zielger-Nichols under the influence of white noise and 10% error in 
process gain estimation. 
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It should be noted that direct comparison of PEC and the prefilter design is 

affected by the differences in the nominal response of these systems.  Considering that, it 

is still apparent that the PEC system adjusted for the affects of noise in much the same 

fashion as the prefilter system.  This is because noise is a disturbance, which is solely 

regulated by the feedback controller of the TDoF system in question. 

 

Model Mismatch TDoF Comparison 

So far we have addressed the relationship between model uncertainty and the 

activity of the controller in the feedback loop.  We have also addressed the effects of 

noise on the PEC system.  This analysis gave us qualitative insights regarding PEC, but 

very little quantitative understanding of Equation ( 27) was achieved. Because of this, we 

are going to change our approach to understanding modeling error in the PEC system.  

We are not going to analyze modeling error in PEC as a stand-alone system.  Instead we 

will seek to understand how PEC handles modeling error RELATIVE to how prefilter 

designs handle modeling error.  For purposes of this comparison, the PEC system for the 

now familiar process defined in Equation ( 13) will be compared to the prefilter design 

for that same system in the presence of various gain estimation errors.  The PEC system 

will use the controller defined in Equation ( 15) for tracking, the controller defined in 

Equation ( 18) for disturbance rejection and a process model defined in Equation ( 13).  

The block diagram, which shows how these various elements fit into the PEC structure, 

can be seen in Figure 12.  The prefilter system will also use the controller defined in 

Equation ( 18) for feedback control, and will use the prefilter defined in Equation ( 21).  

Figure 9 shows the block diagram for the implementation of these various elements. 
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First we will examine the frequency responses of these systems in the presence of 

modeling error.  Figure 24 shows the closed-loop log modulus for the prefilter designed 

under loop-shaping techniques by Skogestad and Postlewaite9, which was summarized in 

chapter 2.  Plots are shown for errors in the process gain of 0%, 10%, 25%, and 40%.  

The peak in the closed-loop log modulus is minimal, even at an error of 40% in the 

process gain.  Figure 25 shows the peaks of the corresponding plot of the PEC system for 

the same errors in the estimate of the gain.  At a 10% error in the process gain, the 

difference between the two structures is minimal.  However, as the error increases, the 

PEC structure is more sensitive to errors in the gain, as indicated by the increasing size of 

the peak in the closed-loop log modulus curve. 
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Figure 24:   Frequency response for the process described by Equation ( 13) of a prefilter 
system using the controller found in Equation ( 18) and prefilter from 
Equation ( 21) for gain estimation errors or 0%, 10%, 25%, and 40%. 

 
 
 
 
 
 
 
 
 
 



50 

For this specific case, it is not unexpected that PEC is more sensitive to modeling 

error.  The tracking controller in the PEC structure is significantly more aggressive than 

the prefilter and yields superior nominal performance.  The highly aggressive nature of 

the partitioning controller, Equation ( 15), implies that any error in modeling will cause 

the system to aggressively deviate from the nominal response.  This phenomenon can be 

seen by comparing Figure 26 and Figure 27.  Figure 26 shows the tracking response of 

the prefilter system to various degrees of modeling error in the gain, while Figure 27 

shows the tracking response of PEC exposed to the same modeling error.  Upon first 

inspection it would appear that the PEC system, Figure 27, does not handle modeling 

error as efficiently as the prefilter design.  However, that analysis is ultimately inaccurate, 

because these two control systems have been designed to handle tracking error with 

significantly different levels of aggression.  The prefilter has a rise time of 0.184s, while 

the PEC system has a rise time of 0.123s.  This means the prefilter is taking 50% more 

time to reach 90% of the final value than the PEC system.  This significant dissimilarity 

serves as a strong indication that the difference between how these two particular systems 

handle modeling error is related to differing controller tunings, a difference that clouds 

our ability to perceive the role which the control structures, PEC and prefilter control, 

play in error propagation. 
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Figure 25:  Frequency response for the process described by Equation ( 13) of a PEC 
using the controllers found in Equation ( 15) and ( 18) for gain estimation 
errors or 0%, 10%, 25%, and 40%. 
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Figure 26:  Step response for the process described by Equation ( 13) of a prefilter 
system using the controllers found in Equation ( 17) and ( 18) for gain 
estimation errors or 0%, 10%, 25%, and 40%. 
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Figure 27:  Frequency response for the process described by Equation ( 13) of a PEC 
system using the controllers found in Equation ( 15) and ( 17) for gain 
estimation errors or 0%, 10%, 25%, and 40%. 
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Since it is difficult to discern what properties of the system are determined by the 

controllers and what properties are determined by the PEC framework in which they were 

implemented, a method of analysis is needed which does not rely on any specific 

controller tunings.  However, in order to achieve a meaningful result from this 

generalization, the analysis must occur as a comparison between PEC and a benchmark 

system, the inverse model prefilter.  Unfortunately, the response of a system with an 

arbitrarily set reference trajectory like the prefilter is almost always different from the 

closed-loop response of a system that has been designed using tuning guidelines.  This is 

simply a result of the different design procedures used in each case, and is the main 

reason analysis of specific systems tends to yield inconclusive data.  This can be 

compensated for by artificially setting the reference trajectory used in the prefilter design 

to be equal to the nominal closed-loop response of the PEC system.  With this assumption 

we can contrive a very simple proof to demonstrate how PEC is identical to inverse 

model based control with regards to how plant/model mismatch is processed.  Let us 

assume we want to control some process GP with model Gnom.  The design process for a 

PEC system would require us to find suitable tracking and load controllers.  Regardless 

of the process or the controllers chosen, the nominal closed loop tracking response of the 

PEC system can be generalized as: 

 
*

1 nom

PEC 1 nom

K Gy
r 1 K G

⎛ ⎞ =⎜ ⎟ +⎝ ⎠
 ( 29) 

The response in Equation ( 27) can be used as the reference trajectory needed to design a 

prefilter.  

 
*Ref PEC

y y
r r

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 ( 30) 
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This yields the following prefilter design 

 2 nom 2 nom 1 nom
r

Ref2 nom 2 nom 1 nom

1 K G 1 K G K GyK
K G r K G 1 K G
+ +⎛ ⎞= =⎜ ⎟ +⎝ ⎠

 ( 31) 

From the PEC design Equation, ( 23), the step response for the actual system will be 

 2 p 1 2 p

PEC 2 p 2 p 1 nom

K G (K K )Gy
r 1 K G (1 K G )(1 K G )

−⎛ ⎞ = +⎜ ⎟ + + +⎝ ⎠
 ( 32) 

Similarly the calculated response for the prefilter system as determined by Equation ( 7) 

will be as follows 

 2 nom 1 nom 2 P

Prefilter 2 nom 1 nom 2 P

1 K G K Gy K G
r K G 1 K G 1 K G

+⎛ ⎞ =⎜ ⎟ + +⎝ ⎠
 ( 33) 

Though these responses are in different forms it is simply a matter of algebra to show that 

they are identical regardless of the process or the controllers.  Unfortunately, the normal 

design methods for these two types of systems prevents a direct comparison like this for 

all but the most trivial systems, because controller design is often excessively 

complicated if the assumption in Equation ( 30) is maintained.   

There are several conclusions that can be drawn from this proof.  The lower 

degree of performance exhibited by the PEC systems in the presence of modeling error in 

this chapter was not due to the PEC structure itself, but the controllers which were placed 

in the structure.  Similarly, the high degree of nominal performance exhibited by the PEC 

system was determined by whether or not controller design for servo problems yielded a 

better trajectory than the reference trajectory used in prefilter design which is often 

arbitrarily chosen.  This means PEC may have a distinct performance advantage for 

systems where the best reference trajectory is not easily defined.  This issue will be 

covered in the following two chapters. 
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Conclusions 

The theoretical understanding of PEC laid out in this chapter has highlighted 

many desirable characteristics, which are currently unavailable to designers using 

existing two-degree of freedom techniques. 

• PEC allows for implementation of independently designed conventional 

controllers with little additional design effort 

• PEC can be applied to noninvertible systems making it a more flexible 

two-degree of freedom controller. 

• PEC can utilize preliminary ODoF controller designs, often reducing the 

design load relative to other TDoF techniques 

• Modeling error propagation is identical to prefilter systems, meaning 

robust performance issues are results of controller tunings and not due to 

the PEC framework itself  

• One major distinction in performance between PEC and other TDoF 

controllers is how the desired reference trajectory is chosen.  In general 

TDoF controllers specify the reference trajectory, while the PEC step 

response is generally found by minimizing more general design criteria 

For simple SISO systems, inverse prefilter designs provide an adequate method for two-

degree of freedom control, but as systems become more complicated the design and 

implementation of those controllers becomes very cumbersome.  PEC provides an 

alternative two-degree of freedom method, which being based on feedback design 

techniques, is more intuitive and more flexible than inverse based methods. 
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CHAPTER IV  

 

THE USE OF H∞ CONTROLLERS IN A PARTITIONED ERROR CONTROL 
STRUCTURE  

 
 

Goals and Motivations 

Chapter three was able to demonstrate the capabilities of the novel two-degree-of-

freedom system, but not all of the nuances of PEC were brought forth in the original 

analysis. This Chapter will complete the development of PEC in a SISO setting, and will 

primarily be used to establish a design procedure for the use of H∞ controllers in the PEC 

system and demonstrate potential benefits from the use of different controller designs in 

the PEC structure. 

Chapter three correctly defines the closed loop response of the PEC system to be. 

 2 p 1 2 p d

2 p 2 p 1 nom 2 p

K G (K K )G Gy (r) (d)
1 K G (1 K G )(1 K G ) 1 K G

⎡ ⎤−
= + +⎢ ⎥

+ + + +⎢ ⎥⎣ ⎦
 ( 34) 

By simple inspection it is easily shown that the stability of the system is determined by 

two characteristic equations,  

 2 P1 K G 0+ =  ( 35) 

and 

 ( ) ( )2 P 1 nom1 K G 1 K G 0+ + =  ( 36) 

Due to the deterministic nature of the partitioning loop designers are free to establish and 

manipulate the location of the poles in the partitioning loop in a nominal setting, 

1 nom(1 K G )+ , by manipulating K1. Therefore, robust stability criteria are solely dependant 
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on the feedback controller parameters to stabilize the characteristic equation 

2 P1 K G 0+ = . This dependence on the feedback controller for robust stability is also 

paralleled in standard TDoF designs, yet the ability to take advantage of wider latitude in 

tracking control is not available.  There are several reasons for this.  First, two-degree-of-

freedom prefilters that use an inverse model often require approximations and are only 

available for systems that are invertible.  Every approximation made increases modeling 

error and thus increased the use of the regulatory controller for servo responses.  Second, 

prefilters that do not use an inverse model attempt to shape the feedback controllers servo 

response to look more like the desired reference trajectory.  This shaping is generally 

done with the step response of the system, and regardless of what tuning parameters are 

used, this process is not well formalized and is often complicated by attempting to shape 

the step response of the system as well as the actuator usage of the controller at the same 

time.  As this chapter unfolds, these characteristics will be demonstrated. 

The theoretical introduction of partitioned error control in chapter three 

demonstrates the adaptability of the PEC system to commonly used PID control 

techniques.  What this work failed to do was demonstrate the benefit of using different 

controller design techniques in the partitioning loop and the feedback loop, taking full 

advantage of the freedom in design that PEC has to offer in order to achieve enhanced 

performance.  The emphasis of that chapter was on the use of similar controllers tuned for 

either servo or regulatory concerns.  For example, a PI controller tuned under Murrill’s 

tracking rules was only paired with a PI controller tuned under Murrill’s regulatory rules.  

It needs to be made clear that a designer is free to mix performance controllers with 
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robust controllers regardless of how those controllers were derived, thus taking advantage 

of the best a particular design has to offer to enhance performance in the process. 

To demonstrate the flexibility of PEC in this chapter, two advanced controller 

types will be introduced. H∞ mixed sensitivity controllers and H∞ loop-shaping 

controllers.  These controllers have very distinct strengths and weaknesses that make 

them well suited for PEC.  Only a general introduction and explanation of key features of 

these controllers will be presented in this paper.  For a more comprehensive 

understanding of the vast field of H∞ control, the reader is directed to the works of 

Skogestad and Postlethwaite9.  The general principle of all H∞ designs is to minimize the 

maximum singular value of the transfer function of exogenous inputs to outputs as a 

function of frequency.  The distinction between the various types of H∞ control is based 

on what inputs and what outputs are used to determine the transfer function.  A brief 

overview of the H∞ norm will be defined, followed by a more detailed description of the 

general H∞ control algorithm, after which it will be shown how the favorable servo 

characteristics of the H∞ mixed sensitivity controller and the favorable regulatory 

characteristics of the H∞ loop-shaping controller can be combined for enhanced 

performance in the Partitioned Error Control structure. 

 

H∞ norm definition 

The H∞ norm of a systems singular value decomposition is defined as the 

maximum value of the frequency response, ( )G jω , of the system times the upper bound 

of the singular value, σ .  
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 ( )
1

G(s) max (G( j )) lim (G( j )) d
ω

σ ω σ ω ω
∞

∞ −∞→∞
= ∫

pp

p
 ( 37) 

The interpretation of this equation in the time domain yields a better understanding of the 

functionality of the norm.  The maximum value, the H∞ norm, corresponds to the worst-

case steady–state gain for a sinusoidal input at any frequency.  Therefore lowering the H∞ 

norm lowers the worst-case steady–state gain and increases system stability.  For SISO 

systems, the norm is simply the peak of the frequency response of a transfer function.  

The H∞ norm is well documented, having roots in Linear Quadratic Gaussian (LQR) and 

H2 control, and generalized for wide use in controller design by Glover and Doyel13. 

The H∞ norm can be used with any proper linearly stable system.  That is to say 

that in the state-space realization in the standard A,B,C,D notation, D does not have to 

equal 0, making this controller applicable to a wide variety of systems. 

 

H∞ norm general control algorithm 

There are three basic ways to design a controller using the H∞ norm.  They are 

mixed-sensitivity H∞ control, signal-based H∞ control, and H∞ loop-shaping control.  Of 

these, mixed-sensitivity H∞ control and H∞ loop-shaping control are of interest to this 

research.  The reason signal-based H∞ control is not suitable will be made clear below.  

All H∞ controller techniques discussed in this research are based on the general control 

configuration shown in Figure 28, where P is the generalized plant.  The signals of the 

general control configuration are: u the control variables, v the measured variables, w the 

exogenous signals such as disturbances d, commands r, and noise n such that 

[ ]T=w d r n , and z which contains outputs to be minimized for example the error 
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signal [ ]= −z y r .  The General plant P is normally composed of the process being 

controlled, a series or weights on the inputs and outputs, and algebraic manipulations on 

the various signals to obtain the desired outputs.  Equations ( 38) and ( 39) define the 

transfer functions for the general plant, P, and controller, K.  The generalized plant can be 

realized in many ways.  Two realizations that are often used are the 11 12

21 22

( ) ( )
( ) ( )

P s P s
P s P s

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

partitioned form and the two-port state space model form.  These forms are defined in 

Equations ( 40)-( 41). 

 

Figure 28:   General control configuration 
 
 

 ( )
z w

P s
v u

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 ( 38) 

 ( )u K s v=  ( 39) 

 11 12

21 22

( ) ( )
( )

( ) ( )
P s P sz w w

P s
P s P sv u u

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 ( 40) 

 
1 2

1 11 12

2 21 22

( )
A B B

z w w
P s C D D

v u u
C D D

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 ( 41) 

The closed loop transfer function from w to z is given by the linear fractional 

transformation 

P 

K 

w z 

u v 
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 ( )F ,= lz P K w  ( 42) 

where 

 ( ) ( ) 1
11 12 22 21, −+ −lF P K P P K I P K P  ( 43) 

The goal of H∞ optimization is to find all stabilizing controllers, K, which minimize γ. 

 min( , ) max ( ( , )( ))
ω

σ ω γ
∞

= =l lF P K F P K j  ( 44) 

For SISO systems we are seeking to minimize the peak of the frequency response of the 

transfer function from w to z, or the H∞ norm from w to z.  Note the lowest achievable H∞ 

norm is defined as γmin, however, it is often simpler both theoretically and 

computationally to find a sub optimal controller with minγ γ> .  The significance of γ 

varies depending on how the problem is framed, therefore explanations of its significance 

will be held off till the distinctions between various types of H∞ controllers are described.  

This sub optimal problem can be efficiently solved using the algorithm of Doyle et al.14 

by reducing γ iteratively assuming the following assumptions summarized by Skogestad 

and Postlethwaite9 are true. 
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List 1 System criteria for the application of H∞ control 

1. (A,B2,C2) is stabilizable and detectable 

2. D12 and D21 have full rank 

3. 2

1 12

ω−⎡ ⎤
⎢ ⎥
⎣ ⎦

A j I B
C D

has full column rank for all ω 

4. 1

2 21

ω−⎡ ⎤
⎢ ⎥
⎣ ⎦

A j I B
C D

has full row rank for all ω 

5. D11=0 and D22=0 

6. 12

0⎡ ⎤
= ⎢ ⎥

⎣ ⎦
D

I
and [ ]21 0=D I  

7. 12 1 0=TD C  and 1 21 0=TB D  

8. (A,B1) is stabilizable and (A,C1) is detectable 

The stabilizing controller may then be calculated given the three conditions below exist 

1. 0∞ ≥X  is a solution to the algebraic Riccati equation 

 2
1 1 1 1 2 2( ) 0γ −

∞ ∞ ∞ ∞+ + + − =T T T TA X X A C C X B B B B X  ( 45) 

such that Re 2
1 1 2 2( ) 0, ;andλ γ −

∞⎡ ⎤+ − < ∀⎣ ⎦
T T

i A B B B B X i  

2. 0∞ ≥Y is a solution to the algebraic Riccati equation 

 2
1 1 1 1 2 2( ) 0γ −

∞ ∞ ∞ ∞+ + + − =T T T TAY Y A B B Y C C C C Y  ( 46) 

such that Re 2
1 1 2 2( ) 0, ;andλ γ −

∞⎡ ⎤+ − < ∀⎣ ⎦
T T

i A Y C C C C i  

3. ( ) 2ρ γ∞ ∞ <X Y  

All such controllers are then given by ( , )= l CK F K Q where 
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2

2

( ) 0
0

∞ ∞ ∞ ∞

∞

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

s

C

A Z L Z B
K s F I

C I
 ( 47) 

 ( ) 12
2 2; ; γ

−−
∞ ∞ ∞ ∞ ∞ ∞ ∞= − = − = −T TF B X L Y C Z I Y X  ( 48) 

 2
1 1 2 2γ −

∞ ∞ ∞ ∞ ∞= + + +TA A B B X B F Z L C  ( 49) 

where Q(s) is any stable proper transfer function such that γ
∞

<Q .  For Q(s)=0, we get 

 ( ) ( ) ( ) 1s s s −
∞ ∞ ∞ ∞= = − −C11K K Z L I A F  ( 50) 

K(s) is referred to as the “central” controller.  One important characteristic of the central 

controller is that it has as many states as the generalized plant P(s).   

Most applications of H∞ control require an iterative procedure for solving the two 

Riccati equations (Equations ( 44) and ( 45)), because γmin cannot be solved for directly.  

There are a few exceptions to this rule, however, in practice the general control algorithm 

is performed by commercially available software such as MATLAB.  The Designer 

simply has to specify the general plant configuration P and call upon a routine which will 

solve for the controller K(s).  The vast majority of discussion involving H∞ design from 

this point on will focus on how the generalized plant, P, is chosen.  Since setting up the 

generalized plant appropriately is the major design element in H∞ controller design 

problems. 
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General Principles of Frequency Responses 

The general H∞ algorithms we will examine are best analyzed in the frequency 

domain.  This is in contrast to simpler controller designs like PID controllers, which tend 

to focus on the time response of a system.  Because of this it is helpful to refresh 

ourselves on some of the typical shapes seen in frequency responses, and the significance 

of those shapes in terms of time domain performance.  This review will provide some 

insight into possible performance objectives we may seek in H∞ design and help us better 

understand how choices in setting up the generalized plant, P, will determine controller 

characteristics.  

Recall for feedback control systems of a process G, under the influence of a 

controller K that the relationship between the systems output y, the controller output u, 

and process inputs such as references, disturbances, and noise (r, d, and n) is given as 

follows:  

 ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )1 1 1

T s S s T s

y s I GK GK r s I GK d s I GK GK n s− − −= + + + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  ( 51) 

 ( )
( )

( ) ( ) ( )1

KS s

u s K(I GK) [r s n s d s ]−= + − −  ( 52) 

Where S is the sensitivity function equal to (I+GK)-1, and T is the complementary 

sensitivity function equal to (I+GK)-1GK.  To facilitate the discussion, objectives will be 

framed in terms of the open loop transfer function L=GK.  It should be remembered, 

however, that any objective specified for L has a direct impact on the both the sensitivity 

function and the complimentary sensitivity function.  Equation ( 51) rewritten in terms of 

L can be seen in Equation ( 53). 
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 ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )1 1 1

T s S s T s

y s I L L r s I L d s I L L n s− − −= + + + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  ( 53) 

We can determine general values of L, and thus S, T, and KS, based on how we 

wish certain inputs, r, d, and n, to effect outputs y and u as per Equations ( 51) and ( 52).  

For instance, y = r would give us perfect tracking.  In order to approach perfect tracking 

we would need ( )( )L jσ ω  to be large for all ω, 
Ly *r 1*r

1 L
= ≈

+
.  This in turn requires 

σ (S) to be small, and σ (T) =1.  However, making ( )( )L jσ ω  large at all frequencies 

also means that noise will have a considerable effect on our system.  Thankfully, these 

contradicting objectives can be separated into distinct frequency bands.  For instance the 

specification of perfect tracking at all frequencies, requiring ( )( )L jσ ω  to be large for all 

ω, is not plausible.  A better objective is to make ( )( )L jσ ω  large or σ (S(jω)) small 

below the crossover frequency, ωC, for better control at lower frequencies where noise is 

not a significant problem.  In conjunction with this objective, it can also be specified that 

( )( )L jσ ω  should be small or σ (S(jω)) =1 for high frequencies to mitigate noise. 

We can view these specifications in more practical terms by looking at a plot of 

the sensitivity function, S, for a system under aggressive control, see Figure 29.  For good 

tracking we require σ (S) to be small at low frequencies, this is equivalent to requiring 

integral action to prevent steady state offset.  By inspection we see this system does meet 

that requirement.  For noise mitigation we require σ (S) to be 1 at high frequencies.  This 

desensitizes the system to the effects of high frequency inputs such as noise.  By 

inspection of Figure 29 we see that the system also meets this requirement.  
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Another important characteristic of this response is the bandwidth.  The 

bandwidth of a system, ωB, is defined as the frequency at which the system crosses 

1 2 3dB≈ −  from below.  A higher bandwidth signifies a more aggressive response and 

is associated with faster rise times in the time domain. 

The last characteristic we will discuss is the peak gain.  Through experience, rule 

of thumb has determined that peaks of up to about 2 6dB≈ for a systems sensitivity plot 

provide good tracking.  The controller in Figure 29 has a peak of 8.95 dB.  Since the 

system in Figure 29 exceeds this recommendation, it is expected that the time response of 

this system will be very oscillatory.  The actual time response of this system can be seen 

in Figure 30, and validates that expectation.  Another reason the peak gain in Figure 29 is 

significant is that it represents the S
∞

.  Therefore if we find a controller, which 

minimized S
∞

, we are finding a controller, which “pushes” this peak down.  By pushing 

this peek down, the system is actually becoming more stable.  To illustrate the “pushing” 

effect, Figure 31 shows the sensitivity response of the system in Figure 29 along with the 

sensitivity response of the same system when the controller gain has been reduced by a 

factor of 4.  The result of reducing the controller gain is that it will make the system less 

aggressive and more stable.  The peak response of the new system is 2.54 dB, well within 

the limits defined by the rule of thumb.  The reduction of the peak gain has another 

significant effect.  “Pushing” the peak of the response down has what is called a 

“waterbed” effect.  Just as pushing down on one spot of a waterbed will cause other areas 

to rise up, so will pushing down on one spot of the frequency response of a sensitivity 

function cause other areas of the function to rise up.  Lowering the peak of the response 

has pushed the bandwidth of the system to the left or decreased it, slowing down the 



68 

responses rise time.  Hence nothing is gained for free, but an acceptable balance between 

the systems overshoot and bandwidth has been achieved. 

Figure 32 shows the step response of the balanced controller relative to the 

aggressive controller.  It is obvious that by adjusting the S
∞

 to coincide with general 

guidelines more sensible control was achieved.   

This review has given a brief description of some of the characteristics and design 

objectives of frequency response based controller design.  The sensitivity function is just 

one of many functions which may be used in H∞ controller design, and these functions 

come in a variety of forms depending on process dynamics.  This does tend to require 

more understanding of the process from designers then simpler controllers, but can lead 

to higher performance controllers as well. 
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Figure 29:   Typical plot of sensitivity function under aggressive control 
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Figure 30:   Plot of Time response for the system under aggressive control presented in 
Figure 29. 
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Figure 31:  Frequency response of the sensitivity function under aggressive control 
(high controller gain) and under reasonable control (low controller gain) 
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Figure 32:   Step response of the same system under high gain control as well as low 
gain control 
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Mixed-Sensitivity H∞ Control 

The objective of mixed-sensitivity control is to shape the sensitivity function 

1S (I GK)−= +  and either KS or the complimentary function GKT I S
I GK

= − =
+

.  The 

minimization of the sensitivity function’s norm at low frequencies benefits disturbance 

rejection and tracking.  The minimization of the complimentary sensitivity functions 

norm benefits tracking and noise attenuation.  The minimizing a closed-loop transfer 

function like KS serves to limit controller effort.  In general it is not very effective to 

minimize just one of these functions. As such mixed sensitivity H∞ control tends to 

minimize them in pairs.  For example mixed sensitivity H∞ controller design could be set 

up to minimize the following function: 

 P R

U R

W SW
W KSW

γ
∞

<  ( 54) 

where WP, WU, and WR are weighting functions and γ > 0 is the parameter to be 

minimized.  WP, WU, and WR are chosen to weight the input signal over the desired 

frequencies, and not to directly shape S or KS.  For instance the weight WP in Equation 

( 54) could be selected to place more emphasis on the bandwidth frequency to emphasize 

the importance of higher bandwidth in the final design.  The corresponding generalized 

process for Equation ( 54) is shown in Figure 33. 
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Figure 33:  S/KS mixed sensitivity configuration 
 
 

More than two norms can be minimized using this technique, but the problem 

becomes very cumbersome, and the solution is not often worth the design effort.  For this 

reason mixed sensitivity is well suited for specific problems, but does not provide a 

comprehensive controller in and of its self.  It can be designed for servo problems or 

regulatory problems but not both.  This particular conclusion is pertinent to the 

Partitioned Error Control research objectives because the partitioning loop provides and 

environment where the limited breadth of mixed-sensitivity H∞ controllers are 

inconsequential as each controller in the PEC structure is exposed to isolated sources of 

error (tracking or disturbance rejection).  Therefore, a mixed sensitivity controller can be 

designed specifically for tracking or disturbance rejection, thus full advantage can be 

taken of what mixed-sensitivity H∞ control has to offer.  For instance in the examples 

presented later in this chapter, a mixed sensitivity controller will be used in the 

partitioning loop where it will be designed for setpoint tracking and controller action 

WP

WU

G

WR

K

w=[r] 

v u 

 z1  

+ _ 

 z2  

P in the general control configuration 



75 

minimization.  In this setting the controller will be isolated from disturbances, thus 

negating any deficiencies the controller may have to disturbance rejection. 

 

Weight Selection for Mixed Sensitivity H∞ Controllers 

In the previous section reference, performance, and controller weights (WR, WP, 

and WU) were introduces as part of the mixed-sensitivity H∞ controller.  These weights 

are used to express performance objectives for the controller.  In this section we will 

discuss some of the principles surrounding weight selection.  Choosing the appropriate 

weights is straight forward if performance objectives are defined in the frequency 

domain.  One performance objective that is often defined in terms of frequency is the 

desired bandwidth of the system.  Unfortunately, many objectives are specified in the 

time domain, such as maximum allowable overshoot.  We will need to evaluated these 

time domain objectives and determine their frequency response implications.  Once those 

implications are determined then the weights can be defined. 

Reference Weight, WR:  The purpose of the reference weight is to give designers 

the ability to determine the relative importance of input signals.  For instance let us 

examine a system containing an inverted pendulum on a horizontally moving cart.  When 

trying to simultaneously stabilize the attitude of the inverted pendulum and the horizontal 

position of the cart a reference signal can be supplied for both the position of the cart on 

which the pendulum rests, and for the pendulum.  However, as a matter of practical 

application, it is not necessary to have the pendulums attitude track a reference signal 

aggressively.  In fact, optimal control requires the pendulum to move away from the set 

point signal to accommodate lateral cart movement commands.  It is simply desired for 
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the pendulum to stay upright.  This goal can be achieved by de-emphasizing the reference 

signal for the pendulums attitude relative to the reference signal of the carts position.  An 

adequate choice of the reference weight for this particular problem might look like 

 cart

pendulum

r1 0
r0 0.01

WR

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 ( 55) 

For most applications the reference weight is generally not needed.  When this 

occurs a reference weight of WR=I is chosen effectively removing the reference weight 

from the problem.  An example of such a problem would be the multivariable control of a 

distillation column where distillate and bottoms outputs are both of equal concern. 

Performance Weight, WP:  As it’s name implies, the performance weight sets the 

performance standard on the sensitivity function in the form of upper bounds at both low 

and high frequencies, and for the bandwidth of the system.  The general idea behind 

weight selection in the context of an H∞ norm problem is illustrated by the following 

example.  Figure 34 shows the sensitivity function, S, of a process G, under the control 

law of K.  The upper bounds on S as specified by WP are also shown in Figure 34 by 

plotting |1/WP|.  If these bounds are met then P1 W S≥  for all frequencies.  The control 

law that is currently being applied to the system is unable to meet this condition at 

frequencies around 17.5 rad/s.  The inability of the current control law to meet this 

requirement causes |WPS| to have a peak at 17.5 rad/s as shown in Figure 35.  The H∞ 

optimization of PW S
∞

, assuming WR=I, seeks to find a new control law, which 

minimizes this peak, and thus tries to bring the system into compliance with the 

performance specifications set in WP. 
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A common choice for the form of the performance weight is { }P PiW =diag w   

where 

 
*

i Bi
Pi i*

Bi i

s / Mw , A 1
s A

ω
ω

+
=

+
 ( 56) 

and Mi >0, Ai>0, and ωB>0 

• Ai specifies the upper bound on S at *
i BAω ω≤ .  Selecting iA 1gives the 

system approximate integral action by setting the upper bound at low 

frequencies.   

• Mi specifies the upper bound on S at *
i BMω ω≥ .  As per the rule of thumb 

discussed in the section on general principles of loop shaping, Mi=2 sets 

this upper bound at approximately 6dB.  For this reason Mi=2 is a standard 

initial choice and is used to set the upper bound at high frequencies. 

• *
Bω  specifies the upper bound on S at * *

i B i BA Mω ω ω≤ ≤ .  *
Bω  is the 

frequency where the performance weight crosses –1 dB, and is 

approximately the bandwidth requirement of the system. 

With this general understanding of the significance of performance weight parameters, a 

designer can translate time domain performance objectives into the frequency domain 

fairly easily. 
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Figure 34: Frequency response of a sensitivity function, S, and the inverse of its 
performance weight, 1/WP. 
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Figure 35: Frequency response of a system in which P1 W S≥  is not met for all 
frequencies. 
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Controller Weight, WU:  The controller weight seeks to place upper bounds on 

control energy.  Typically WU is chosen to be the identity matrix, such that WU=I.  

Choices of WU where the diagonal elements are less than 1 encourage controller usage, 

while values of the diagonal elements greater than 1 tend to discourage controller usage.  

The controller weight is used by designers who seek to limit the bandwidth of |KS|.  A 

typical form of WU for SISO systems is given in Equation ( 57). 

 U U
U

UU

U

s M1W
A s

A

ω
ω

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥+
⎢ ⎥⎣ ⎦

 ( 57) 

where ωU>0, MU>0, and AU>0.  With typical parameter values of U U0 A M 1< < .  

Small values of AU encourage controller usage at low frequencies were noise is less of a 

problem, while values near one for MU tend to discourage the effects of noise on 

controller usage at high frequencies.  ωU is the frequency at which the controller weight 

crosses –1dB and is approximately equal to the bandwidth requirement on |KS|.  A 

typical plot of |KS| and |1/WU| can be seen in Figure 36  
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Figure 36:    Frequency response of controller action, KS, and the inverse of the 
controller weight, 1/WU.  
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Depending on the physical limitation of the system and the severity of the 

requirements placed on it by WP, the H∞ optimization can meet with various levels of 

success.  For mixed sensitivity H∞ control the cost function, γ, which is minimized, is a 

direct measure of that success.  

• γ=1:  This indicates that all of the weight specifications have been met, 

such that P R

U R

W SW
1

W KSW
γ

∞

< = .  This implies for WR=I that |S|<|1/WP| and 

that |KS|<|1/WU| at all frequencies.   

• γ>1:  This indicates that all of the weight specifications have NOT been 

met.  This signifies that |S|<γ|1/WP| and |KS|<γ|1/WU|.  Therefore as γ 

increases in value the designed controller is failing to meet the weight 

specifications more and more.  γ quantifies the maximum peak of the 

infinity norm of the system after minimization.  This allows designers to 

adjust the weight specifications by using the value of γ in specific 

situations. 

• γ<1:  This indicates that the H∞ optimization problem was able to meet all 

weight specifications easily.  Generally when small values of γ are 

achieved, it is a signal for the designer to adjust weights by making them 

more demanding. 

A design procedure for a mixed-sensitivity H∞ (S/KS) control has been developed 

by Skogestad and Postlethwaite9.  The five step procedure included both disturbance and 

tracking problems, yet since the intention is to use the mixed-sensitivity H∞ controller in 
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the partitioning loop where only tracking is a consideration, a simplified procedure is 

adequate for our needs.  With this in mind the three relevant design steps are paraphrased: 

1. Specify WU and WR: for a well scaled system, a reasonable initial choice 

for these weights are WU=I and WR=I. 

2. Specify WP: A common choice for the performance weight is 

{ }P PiW =diag w  Selecting iA 1  ensures approximate integral action 

with ( )S 0 0≅ .  Often we select Mi, the maximum peak magnitude of Si, to 

be about 2 for all outputs , whereas ωBi may be different for each output.  

A large value of ωBi yields a faster response for output i.  

 
*

i Bi
Pi i*

Bi i

s / Mw , A 1
s A

ω
ω

+
=

+
 ( 58) 

3. To find a reasonable initial choice for the weight WP, one can first obtain a 

controller with some other design method, plot the magnitude of the 

resulting diagonal elements of S as a function of frequency, and select 

wPi(s) as a rational approximation of ii1 S . 

The problem is then placed in the generalized configuration, Figure 33, and a controller is 

synthesized which minimizes the H∞ norm of the outputs. 

The reliance of the weight selection, WP, on a controller obtained with “some 

other design method” is a distinct drawback for mixed-sensitivity H∞ control, requiring 

the development of an additional controller or a high degree of intuition about the 

process.  Once this initial guess is achieved, an iterative procedure is used to fine-tune the 

weight until the desired performance is achieved.  Though there are some drawbacks to 
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the design procedure, the performance of this controller is often significantly better than 

lower order methods. 

 

H∞ Loop-Shaping Control 

Classical loop-shaping design procedures combined with H∞ robust stabilization 

led to the proposal of H∞ loop-shaping design by McFarlane and Glover15.  H∞ loop-

shaping control introduces uncertainty into the general control configuration and attempts 

to stabilize various transfer functions in the face of that uncertainty.  Due to the 

limitations of classical phase and gain margins as indicators of robustness for 

multivariable loops, uncertainty is modeled by norm-bounded dynamic matrix 

perturbations.  Using such perturbations allows robustness to be quantified by the 

maximum singular value of the various closed loop transfer functions9.  The objective of 

H∞ loop shaping control is to then minimize the maximum singular value.  Unfortunately 

the introduction of a single perturbation requires that the perturbation is stable.  A more 

general uncertainty model uses two perturbations which are comprised of the coprime 

factorization of the plant.  This uncertainty model has been shown to be very general and 

useful to H∞ loop shaping problems even if it less intuitive than other models. 

The idea of coprime uncertainty is to describe a family of processes based on 

uncertainty in the location of zeros and poles in the nominal plant.  To get a better 

understanding of how this works, it is helpful to recall the details of the left coprime 

factorization of a process, which is defined as: 

 1
l lG(s) M (s)N (s)−=  ( 59) 
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lN (s)  should contain all the RHP zeros of the process G(s), while 1
lM (s)−  should 

contain all the RHP poles of the process G(s).  Since lM (s)  is inverted, these poles are 

described as zeros in the transfer function.  The simplified left coprime factorization for 

processes where D=0 in the standard state space realization is: 

 [ ] 0
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A HC B H
N M C I  ( 60) 

where = − tH YC  and where 0= ≥tY Y  is the stabilizing solution to the algebraic Riccati 

equation 

 0+ − + =t t tAY YA YC CY BB  ( 61) 

which can be solved in conjunction with the second Riccati equation  

 T T TA X XA XBB X C C 0+ − + =  ( 62) 

by finding γmin 

 { } ( )
1 12 21 2

min max H
1 N M 1 (XY))γ ε ρ

−
−= = = = +  ( 63) 

Figure 37 shows how uncertainty can be expressed in terms of coprime factorization, 

defining the family of processes 1
P l M l NG (M ) (N )−= + ∆ + ∆ .  The benefit of H∞ loop 

shaping controller is the ease in which robust stability can be ensured for this broad 

family of processes.  The H∞ closed solution finds a stabilizing controller, K, for the 

specified γ according to the following function. 

 1 1K
(I GK) M

I
γ − −

∞

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 ( 64) 
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Stability is then guaranteed for all processes provided 

 N 1

M

γ −

∞

∆⎡ ⎤
<⎢ ⎥∆⎣ ⎦

 ( 65) 

Hence the minimization of γ allows for the widest latitude in process uncertainty. 
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Figure 37:   Block diagram describing coprime uncertainty 

 

However, before coprime factorization of the plant can begin, the plant must be 

“shaped”, thus H∞ controller design is a two step process.  The first step is to shape the 

plant, and the second step is to find a stabilizing controller in the face of coprime 

uncertainty.  “Shaping” the plant consists of augmenting it by pre and post compensators, 

2 1Gs W GW= .  The main objective of compensator selection is to stabilize the nominal 

process.  The selection of the weights W1 and W2 requires some skill, but there are 

general guidelines, which can help the design process.  For instance, 2W I=  is a good 

initial choice for the post compensator, W2.  If a particular output is deemed more 

important, then W2 can be used to express the relative importance of the outputs.  The 

selection of the preweight, W1, is a little more complicated.  W1 should be chosen such 
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that the shaped plant, Gs, has desirable characteristics.  For example, the shaped plant 

should have high gains at low frequencies, a roll off rate of approximately 20dB/decade 

at the desired bandwidth, and integral action to enhance low frequency performance.  

These guidelines may require some trial and error, but have been applied successfully to 

a wide variety of systems from the robust control of VSTOL (vertical and/or short take-

off and landing) aircraft by Hyde16, to the control of high performance helicopters by 

Walker and Postlethwaite18.  The pre weight often takes the shape of a PI controller and 

as such design can be aided by using tuning rules for PI controllers.   

Once the plant is shaped, the second step is to robustly stabilize it via H∞ 

optimization in the presents of coprime uncertainty resulting in a controller K∞.  The 

actual controller is then derived by cascading K∞ with the weights, 1 2K W K W∞= .  

Walker19 clearly stated the advantages offered by this design procedure as: 

1. Relative simplicity owing to similarities with classical SISO loop-shaping 

methods; 

2. Existence of closed formulation for H∞ optimal cost opt max( 1/ )γ ε=  [where 

maxε is the optimum stability margin]; 

3. Existence of controllers with an observer/state-feedback structure; 

4. Absence of pole-zero cancellation between plant and controller; 

What was not stated was that this method is ill suited for solving tracking problems 

without modification.  Since H∞ loop-shaping controllers are not explicitly designed to 

handle reference tracking, implementing an H∞ controller without modification often 

results in derivative kick.  In order to reduce this effect the reference signal is fed directly 
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into the pre weight W1 as seen in Figure 38.  The addition of a constant to the reference 

signal insures there will be no steady state offset. 

 

 

Figure 38:   Block diagram describing the implementation of one-degree of freedom 
H∞ loop-shaping control.  In this implementation the control signal is 
scaled to prevent steady state offset and fed directly into the pre weight 
W1 to prevent derivative kick. 

 

 

Adaptations have been made expanding H∞ loop-shaping into two-degree-of-freedom 

techniques so that tracking considerations can be addressed, but the one degree of 

freedom design does not consider these tracking issues.  Having a controller designed for 

robust disturbances, however, is not a problem in the PEC architecture where the stability 

benefits of an H∞ loop-shaping controller can be fully utilized in the feedback loop while 

tracking concerns can be handled by a separate controller.   

Now the beginnings of design approach for PEC are becoming visible.  We will 

use a Mixed sensitivity controller in the partitioning loop were it is shielded from 

disturbances, and we will use an H∞ loop-shaping controller in the feedback loop where it 
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is shielded from tracking issues.  In this way we are using the strengths of each controller 

and mitigating their respective weaknesses.  A full direct comparison between the two-

degree of freedom extension of H∞ loop-shaping control and partitioned error control will 

be touched upon later in this chapter.  

 

Signal Based H∞ Control 

Signal based H∞ control attempts to design a single controller capable of handling 

multiple design objectives by taking advantage of the distinct frequencies in which these 

design criteria exist.  The selection of weights, which separates out these frequencies, 

requires a high degree of intuition about the process, while the performance benefits of 

the design are marginal.  Since we desire to find simple controllers, which deal with 

specific problems, Signal based H∞ control is not suitable to our needs and will not be 

considered in PEC design.  

 

PEC H∞ Loop Shaping/Mixed Sensitivity Design Procedure 

Now that it has been established that H∞ loop shaping has qualities that are 

beneficial to disturbance control and H∞ mixed sensitivity has qualities that are beneficial 

to tracking controller, we can formulate a design procedure for the two controllers in the 

PEC system and see if any benefits arise from the use of these controllers jointly. 

The Procedure for the design of PEC using H∞ loop-shaping/Mixed Sensitivity Control 

from a modeled plant is as follows:  
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1. Scale the inputs and outputs of the plant.  Scaling helps better formulate 

control problems and is generally the first step in any controller design.  

Inputs should be scaled to reflect relative actuator capabilities.  For 

instance, all actuators could be scaled to 10% of their expected ranges, 

making relative actuator usage comparisons straightforward.  Outputs are 

scaled so that cross-coupling between outputs is equally undesirable.  

Then the process should be ordered such that it is as diagonal as possible. 

2. Decouple the process if necessary 

3. Shape the process by defining pre and post weights, W1 and W2 

4. Synthesize the H∞ loop-shaping feedback controller 

5. Validate controller meets performance and robustness objectives for 

disturbance problems.  Repeat steps 3 and 4 until satisfied  

6. Determine if two-degree of freedom control is necessary. 

7. Find the frequency response of the sensitivity function, Sii, of the feedback 

controller, and select the performance weights WPii.  Initially ii
Pii

1 S
W

≅  

8. Select the actuator weights, WU 

9. Synthesize the partition loop controller 

10. Validate controller performance and stability for nominal tracking 

problems.  Repeat steps 7-10 until satisfied. 

11. Validate PEC system as a whole for robust performance. 

12. Use model reduction techniques on the total PEC controller if desired 

Recall that one of the drawbacks to H∞ Mixed sensitivity control was in the selection of 

the performance weight, Wp.  It is helpful to have a preexisting controller in order to 
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generate |Sii| and thus an initial Wp.  By designing the feedback controller first, we are 

giving ourselves that preexisting controller, and a simple and effective way of deriving 

|Sii|.  Of course the sensitivity function of the feedback controller will not meet 

performance objectives, hence the need for two degree of freedom control in the first 

place, but it still provides a starting point for an iterative weight selection process. 

 

The Application of the PEC H∞ Design Procedure 

The PEC H∞ loop shaping/mixed sensitivity controller design procedure will be 

applied to the now familiar process of Skogestad and Postlewaite9, Equation ( 66).  A 

variety of controllers were designed for this process by Skogestad and Postlewaite9.  

Since these controllers were developed for SISO use and were never indented to be used 

in conjunction with each other, they provide a bias free means of testing the interaction 

between tracking and regulatory controls in the PEC system.   

The process under consideration is defined as follows: 

 
( ) d2

200 1 100G(s) , G (s)
10s 1 10s 10.05s 1

= =
+ ++

 ( 66) 
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For this process, both tracking and disturbance rejection are important objectives and are 

defined by the following three criteria. 

1. Command Tracking:  The tracking response should have no greater than 

5% overshoot.  Furthermore, the response should reach 90% of the final 

value within 0.3 seconds. 

2. Disturbance Rejection:  The response of a system to a unit step change in 

the disturbance should not exceed unity.  [ ]y(t) 1,1∈ −  for all t. 

Furthermore, the response should be less than 0.1 after 3 seconds. 

3. Input constraints: u(t) should remain within the range of [-1,1]. 

An additional optimization criteria will be added to showcase some of the differences 

between different two-degree-of-freedom techniques. 

4. Optimize the controller to obtain the lowest Integral of the Time-weighted 

Absolute value of the Error (ITAE) possible while meeting the first three 

criteria. 

Three controllers will be compared by the end of this study, One-Degree-of-

Freedom H∞ Loop-Shaping control, PEC using H∞ Mixed Sensitivity and H∞ Loop-

Shaping Control, and Two-Degree-of-Freedom H∞ Loop-Shaping control.  A One-

Degree-of-Freedom solution will be sought first.  It is expected from previous experience 

with the system that the one-degree-of-freedom controller will provide an adequate 

solution to this problem.  The minimum phase system that is being used as an example is 

not the best candidate to challenge two-degree-of-freedom design.  However, the 

simplicity of this system does benefit in the analysis of the tuning procedures used to 

optimize the process.  Once the ODoF design has reached the limits of its capabilities, a 
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Partitioned Error Controller will be developed.  Finally, a Two-Degree-of-Freedom H∞ 

Loop-Shaping controller will be developed to highlight the differences in obtaining an 

optimal solution using alternative techniques.  While reviewing the different designs keep 

in mind that both Two-Degree-of-Freedom controllers will end up with almost identical 

performance characteristics.  The difference between the controllers will be found in the 

relative subjectiveness or objectiveness of their respective tuning procedures.  The system 

responses to a ±40% error in the gain will be shown to not only demonstrate nominal 

similarities in performance but to demonstrate robust similarities as well.   

From previous experience with this system we know it is well scaled and 

balanced, we also know that there are no loop interactions in a SISO system.  This 

satisfies steps 1 and 2 of the design procedure.    

For step 3 of the procedure we begin to design a ODoF H∞ loop-shaping 

controller by selecting pre and post weights to shape the plant.  Skogestad and 

Postlewaite9 argued that the shaped plant would have the following form: 

s 1 dG GW G= ≈ .  This argument is by no means trivial.  The design is specifically 

attempting to give the shaped system characteristics of the disturbance so that the system 

will respond better to regulatory problems.  This standard technique in H∞ loop-shaping 

designs helps disturbance rejection to the detriment of setpoint tracking.  Neglecting high 

frequency dynamics, s 0→ , they started with  W1=0.5 to match the desired form.  They 

then added integral action for better low frequency performance giving 1
0.5W
s

= .  A 

phase advance term, s+2, was then added to reduce the slope to about –1 at the crossover 

frequency.  Then to increase the response time the gain was then multiplied by a factor of 

2, resulting in the following pre weight. 
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 1
s 2W

s
+

=  ( 67) 

A post weight, W2, could be selected to weight the relative importance of disturbance 

rejection over actuator usage, but at this time there is no need for such a weight so a value 

of W2=1 will be used 

In step 4 of the procedure the shaped plant Gs was sub optimally “robustified” to 

tolerate maximum coprime uncertainty.  The resulting 5 state controller has a gamma of 

2.34.   

 
4 3 2

2 5 4 3 2

-1.258e004 s  - 5.707e005 s  - 7.599e006 s - 2.231e007 s - 1.859e007K
      s  + 6011 s  + 3.965e005 s  + 1.061e007 s  + 1.967e007 s

=  ( 68) 

Figure 39 shows the robust disturbance rejection plots of the controller in Equation ( 68).  

It is readily apparent from that figure that the controller meets all disturbance rejection 

design criteria satisfactorily, satisfying step 5 of the design procedure. 
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Figure 39:  Initial regulatory response of the ODoF H∞ loop-shaping controller for the 
process defined in Equation ( 66) for gain estimation error of 0% (with 
actuator usage), -40%, and 40%.  Performance objectives are defined by 
solid lines. 
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Step 6 in the design procedure we determine if two-degree of freedom control is 

necessary.  To do this, we can subject the controller, Equation ( 68), to a step test under 

nominal conditions, or we can test the performance of the controller under robust 

conditions.  Since an algorithm was developed for testing the disturbance response for a 

perturbed process, it is a fairly simple matter to subject the tracking response to the same 

perturbations in the process gain.  Figure 40 shows a plot of this test.  The response was 

not only able to meet performance criteria under nominal conditions, but nearly meets 

those same criteria under robust conditions.  At this point we have found a one-degree of 

freedom controller which passes the first 3 acceptance criteria.  The actuator usage of the 

servo and regulatory response is well within the allowed limits.  This indicates that we 

can optimize the controller to achieve better performance.  This optimization will be the 

next step in the design. 

Recall that ODoF H∞ loop shaping controller design seeks to minimize the H∞ 

norm of 2 functions, one disturbance rejection function and one actuator usage function.  

In order to optimize the controller design we will shift the relative weighting of these two 

functions to emphasize the importance of disturbance rejection and allow more actuator 

usage.  This is very simply done by increasing the value of the post weight of the shaped 

plant, W2.  The value of W2 was increased iteratively to a value of 2.1 which gives us a 

peak actuator usage for disturbance rejection of -1.  The regulatory and servo responses 

of this new controller can be seen in Figure 41 and Figure 42 respectively.  The ITAE of 

both responses have been enhanced, there are however some characteristics of the 

responses that leave room for improvement.  The actuator usage of the regulatory 

response is oscillatory.  This is a characteristic of excessive integral action.  Ideally this 
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integral action could be reduced.  Additionally, the actuator usage of the servo response 

has not been maximized, yet overshoot on the servo response is approaching our 

acceptance criteria boundary. 

The next step in the optimization will be to add derivative action to the preweight 

W1 in order to reduce the oscillation in actuator usage.  This modification is in line with 

the loop shaping technique used to define the control law presented in Equation ( 18).  

The new value of W1 can be seen in Equation ( 69).   

 1
s 2 0.05s 1W

s 0.005s 1
+ +

=
+

 ( 69) 

The preweight W1 was used and the post weight was once again iteratively increased to a 

value of 2.7 until the maximum actuator usage was obtained resulting in the final ODoF 

design with regulatory and tracking responses found in Figure 43 and Figure 44 

respectively.  The ITAE regulatory response of the ODoF H∞ controller was reduced 

from an initial value of 0.297 to 0.177 during the optimization process.  The ITAE 

tracking response of the controller was reduced from an initial value of 0.025 to 0.015 

during the optimization process.  Unfortunately, the initial control action exceeds the 

limits imposed by criteria #3, u(t) should remain within the range of [-1,1].  Obviously 

this could be adjusted by the use of a lead-lag prefilter with the following side effects. 

• Lower Performance:  Slowing down the initial response will increase the ITAE of 

the response. 

• Larger Size.  The current ODoF controller has 7 states, adding a prefilter will 

increase the total number of states of the controller to 8. 
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• Better Scalability:  The addition of a prefilter may be an acceptable technique for 

SISO systems, but for MIMO processes it would be preferable to find a technique 

that looked at the total system response. 

This solution would work, but there is a better alternative.  Using PEC a systematic 

procedure can be followed to find an easy to obtain solution that will increase the systems 

performance without increasing the number of states of the controller, and provide better 

scaling. 
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Figure 40:   Initial tracking response of the ODoF H∞ loop-shaping controller for the 
process defined in Equation ( 66) for gain estimation error of 0% (with 
actuator usage), -40%, and 40%.  Performance objectives are defined by 
solid lines. 
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Figure 41:  Intermediate regulatory response of the ODoF H∞ loop-shaping controller 
for the process defined in Equation ( 66) for gain estimation error of 0% 
(with actuator usage), -40%, and 40%.  Performance objectives are 
defined by solid lines. 
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Figure 42:  Intermediate tracking response of the ODoF H∞ loop-shaping controller 
for the process defined in Equation ( 66) for gain estimation error of 0% 
(with actuator usage), -40%, and 40%.  Performance objectives are 
defined by solid lines. 
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Figure 43:  Final regulatory response of the ODoF H∞ loop-shaping controller for the 
process defined in Equation ( 66) for gain estimation error of 0% (with 
actuator usage), -40%, and 40%.  Performance objectives are defined by 
solid lines. 
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Figure 44:  Final tracking response of the ODoF H∞ loop-shaping controller for the 
process defined in Equation ( 66) for gain estimation error of 0% (with 
actuator usage), -40%, and 40%.  Performance objectives are defined by 
solid lines. 
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In Step 7 of the PEC design procedure we will begin the design of a H∞ Mixed 

Sensitivity tracking controller.  The first step of which is to determine performance 

weights by using a preexisting controller, in this case the we will use the ODoF H∞ loop-

shaping controller described in Equation ( 68).  This was the initial ODoF controller and 

has the worst tracking response of all the controllers that were examined.  It represents 

the worst choice that is available.  This controller may be used to aid in the initial 

selection of the three parameters in the performance weight, A, M, and ωb, in Equation 

( 58).  The bode magnitude diagram of the sensitivity function, S, of the ODoF controller 

is shown in Figure 45 along with inverse of the performance weight |1/WP| with A=1e-4, 

M=2, and ωb=15.  Of these 3 parameters, A was chosen to be small to approximate 

integral action at low frequencies, M was chosen as the default initial value of 2, and only 

ωb was adjusted to match the bandwidth characteristics of the sensitivity function. 

Using the initial performance weight as shown in Figure 45 and WU=1 the default 

initial guess for the actuator weight, a H∞ mixed sensitivity controller is synthesized.  The 

tracking performance of this controller is shown under nominal conditions in Figure 46.  

The controller gives a slight overshoot, and meets the performance specifications with 

ITAE=0.009, lower then the final ODoF controller (ITAE=0.015).  The increased 

performance of the H∞ mixed sensitivity controller demonstrates that the use of the H∞ 

loop shaping controllers’ sensitivity function for the design of a tracking controller 

provides an acceptable initial guess, and significantly reduces the design effort for the 

performance controller.  This figure also shows that the actuator usage exceeds the design 

criteria, however, we now have a very specific tool for controlling our actuator usage, the 

actuator weight WU.  With this tool, we can specify the desired performance 
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characteristics of the tracking response and the desired characteristics for actuator usage, 

and find the best solution which balances these considerations.  In this case the 

performance weight is acceptable and we merely need to increase the value of the 

actuator weight until the design criteria is met.  The final value of WU=1.8 was found 

from this iterative procedure.  The final tracking controller can be seen in Figure 47.  

With an ITAE of 0.012 the performance of this controller exceeds the ODoF controller.  

In the end very little effort was exerted to achieve this response, we were able to leverage 

the work done on the regulatory controller, and we were able to use a tracking controller 

with tunable parameters that had clear significance to the problem at hand.  The finalized 

H∞ Mix Sensitivity controller completes steps 8, 9 and 10 of the PEC design procedure.   

Since this H∞ mixed sensitivity controller will function in the partitioning loop 

where no modeling error exists, there is no need to examine the robustness of this 

controller.  The feedback controller solely determines the robustness of the PEC system.  

Therefore, the next logical step is to determine the robust performance characteristics for 

the integrated PEC system. 
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Figure 45:   Initial guess of the inverse of the performance weight |1/WP| as an 
approximation of the sensitivity function for the process defined in 
Equation ( 66) under feedback control defined by Equation ( 68). 
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Figure 46:   The initial tracking response of the H∞ Mixed Sensitivity controller for the 
process defined in Equation ( 66) for gain estimation error of 0% (with 
actuator usage), -40%, and 40%.  Performance objectives are defined by 
solid lines. 
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Figure 47:  The final tracking response of the H∞ Mixed Sensitivity controller for the 
process defined in Equation ( 66) for gain estimation error of 0% (with 
actuator usage), -40%, and 40%.  Performance objectives are defined by 
solid lines. 
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In order to examine the robust performance of PEC, we first need to assemble the 

two controllers and the model.  Since the H∞ loop-shaping controller uses positive 

feedback, there is a slight modification needed to the assembly of the final PEC 

controller.  Figure Figure 48 shows the proper way to incorporate a positive feedback 

controller.  The significant point to remember is that the controller in the feedback loop 

should receive a signal that is the difference between the process and the process model.  

In the case where positive feedback is used in the feedback loop a sign change is required 

where the process/model difference is calculated.  

 

 

Figure 48:   The proper implementation of positive feedback control in the PEC 
structure 

 
 

The assembled controller was subjected to modeling error resulting in the tracking 

and regulatory performance shown in Figure 49 and Figure 50 respectively.  As we 

expected, the nominal performance and nominal actuator usage of the PEC controllers is 
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identical to the nominal performance and nominal actuator usage of the two controllers 

which it is comprised of.  Upon comparison of Figure 47 and Figure 49 there is a 

difference in the tracking response in the presence of modeling error between the H∞ 

mixed sensitivity controller and the response of the PEC controller.  The mixed 

sensitivity tracking controller has traded performance for robustness, but by placing that 

controller inside the partitioning loop, we have placed it in a nominal environment, free 

of robust considerations.  All modeling error is compensated for by the feedback 

controller, resulting in the slower but more robust response of the system in the presence 

of modeling error. 

The resulting PEC controller has 13 states, 2 inputs, and 1 output, including the 

internal model, which is excessive for a process with only 3 states.  The size of the 

controller is not totally unexpected, since both the H∞ loop-shaping and H∞ mixed 

sensitivity techniques tend to synthesize controllers greater than or equal to the order of 

the process model.  Add the process model to the two fairly large controllers and it can be 

expected that the overall partitioned error controller with have greater than 3 times the 

number of states as the process model, and would be cumbersome to implement for large 

systems.  This is a common problem with all H∞ controllers which is exacerbated by the 

inclusion of two such controllers it the PEC structure.  There are several model reduction 

techniques available that can be used to alleviate this problem, however. 

 

 

 

 



111 

 

 

 

 

 

 

Figure 49:  The final tracking response of the PEC controller for the process defined 
in Equation ( 66) for gain estimation error of 0% (with actuator usage), -
40%, and 40%.  Performance objectives are defined by solid lines. 

 
 
 
 
 

 

0 0.5 1 1.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

A
m

pl
itu

de

0% error                   ITAE=0.012
Nominal Actuator Usage u(s)
-40% error in gain   ITAE=0.028
40% error in gain    ITAE=0.024



112 

 

 

 

 
 
 
 
 

Figure 50:  The final regualtory response of the PEC controller for the process defined 
in Equation ( 66) for gain estimation error of 0% (with actuator usage), -
40%, and 40%.  Performance objectives are defined by solid lines. 
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Model Reduction Techniques and PEC 

H∞ controllers with large numbers of states can generally benefit from the 

application of model reduction techniques.  This also holds true for the H∞ controllers 

nested in the PEC structure.  Model reduction techniques are applied in three ways.  They 

can be applied to the model before controller design, or after controller design they can 

be applied to each component separately or to the system as a whole.  Each of these 

techniques provides a slightly different benefit to the system.   

First, the system model can be reduced before controller design.  For controllers 

that have a predefined form such as PID controllers, this technique does not have a 

benefit, but for H∞ controllers which are generally slightly larger then the process model, 

any reduction in the order of the process model before the controllers are designed will 

directly impact the order of the controllers.   

Second, all components to the system can be designed and then reduced 

separately.  This would be the recommended procedure if the designer wanted access to 

the individual outputs of the controllers and model, say for purposes of online model 

validation.  For a SISO system this would result in the reduction of three separate 1 input, 

1 output transfer functions, the model output, the partitioning loop controller output, and 

the feedback controller output.  Since, we would be trying to retain the integrity of three 

output signals we would not expect a significant reduction in the number of states in the 

controller to occur.  This type of reduction is beneficial in the analysis of the system, but 

a more practical approach would be to preserve only critical information which in the 

case of PEC is only the total controller output. 
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The third alternative is to find a less computationally intensive controller by 

reducing PEC as a whole.  For a SISO system we would be reducing the model and both 

controllers to a single 2 input, 1 output controller, see Figure 48.  By only preserving 

critical information, the controller will be reduced to the lowest order.  Since this 

alternative provides the least computationally intensive controller, it will be the one used 

in this study. 

Now that the type of reduction has been determined, a technique must be chosen.  

There are a variety of techniques available including truncation, residualization, and 

Hankel norm approximation.  Of these techniques we will be using balanced 

residualization.  The objective of balanced residualization is to first balance the Hankel 

norm of the process so that it is as controllable as it is observable, Q=P. 

 ( )H
K PQρ=  ( 70) 

Where ρ is the spectral radius, P is the controllability Gramian and can be obtained from 

the solution of the Lyapunov equation T TAP PA BB+ = − , and Q is the observability 

Gramian and can be obtained from the solution of T TA Q QA C C+ = − .  Next the system 

is ordered by Hankel singular values and the derivatives of the least controllable and 

observable states are set to zero.  Figure 51 displays the Hankel singular values for the 

unreduced system.  The reduction of the partition error controller produced the following 

7 state controller: 

7 6 5 4 3 2

7 6 5 4 3 2

PEC 7 6

6.7810e-5s +1.8585e4s +1.6459e8s +4.3218e10s +2.5068e12s +5.8533e13s +5.7864e14s+9.1671e14

1.3115e-5s -2.0480e5s -3.6089e9s -2.6479e11s -7.7220e12s -1.0982e14s -6.9561e14s-9.1689e14

s +2.6485e4s +1
K = 5 4 3 2

.5923e8s +4.3564e10s +3.0259e12s +6.6371e13s +5.9549e14s+7845.1
 ( 71) 
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A frequency plot of singular values for Kpec was compared to the original 13 state 

controller and was found to have a negligible residual over all operable frequencies, 

Figure 52.  To further verify the reduction technique the step response of the system was 

analyzed and found to be indistinguishable from the original controller. 
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Figure 51:  A graphical representation of the Hankel Singular Values of the 13 state 
PEC controller. 
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Figure 52:   The singular values as a function of frequency for the original 13 state 
PEC controller and the reduced 7 state PEC controller.  Input 1 shows the 
tracking response, while input 2 shows the disturbance response. 
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Alternative Two Degree-of-Freedom H∞ Techniques 

Partitioned error control is not the only two-degree of freedom (TDOF) technique, 

which integrates H∞ control.  H∞ loop-shaping TDOF control was developed by Hoyle et 

al.17 as an adaptation for H∞ loop-shaping techniques which introduces a tracking element 

into the controller design through use of a prefilter and a reference trajectory.  The 

general formulation of the H∞ TDOF controller is shown in Figure 53. 

 

 

Figure 53:  Block diagram describing the H∞ TDOF problem formulation 
 

 

This figure directly leads to the following equations: 

 

1 1 1
s 2 s 1 2 s 2 s

1 1 1
s 2 s 1 s 2 s

2 1 1 1
s 2 s 1 ref s 2 s

u (I K G ) K K (I G K ) M
r

y (I G K ) G K (I G K ) M
e [(I G K ) G K T ] (I G K ) M

ρ
ρ

φ
ρ ρ

− − −

− − −

− − −

⎡ ⎤− −⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ = − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦

 ( 72) 

 

In the optimization, the H∞ norm of the block matrix transfer function in Equation 

( 72) is minimized.  Hence, the final solution to the problem will be a compromise 
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between all of these objectives.  This is in contrast to mixed sensitivity H∞ control which 

only sought to minimize the H∞ norm two functions, one tracking function and one 

actuator usage function as seen in Equation ( 54), and the H∞ one-degree-of-freedom 

controller which sought to minimize the H∞ norm of two functions, one disturbance 

rejection function and one actuator usage function as seen in Equation ( 64). 

The inclusion of the constant ρ as a gain on the reference signal allows the 

designer to emphasize the tracking function 2 1
s 2 s 1 ref[(I G K ) G K T ]ρ −− −  over the other 

functions in the matrix providing a method for emphasizing controller tracking during the 

H∞ optimization.  Better tracking can be achieved by increasing the weighting, ρ, 

however, using a ρ>1 also deemphasizes controller usage in favor of error tracking.  This 

trade off may be favorable for some categories of problems but in practice large values of 

ρ tend to cause undesirable effects on multivariable systems.  For this reason values of ρ 

between 1 and 3 are recommended.   

At this time it is beneficial to examining the effects of ρ on the block matrix 

transfer function in Equation ( 72) in greater detail.  By examining the transfer functions 

from φ to us and y (Equation ( 73)), we see that these are the same transfer functions 

who’s H∞ norm is minimized in the one-degree-of-freedom H∞ loop-shaping controller 

(Equation ( 64)), and that increasing values of ρ have no effect on these transfer 

functions.  

 [ ]
1 1

s 2 s 2 s
1 1

s 2 s

u K (I G K ) M
y (I G K ) M

− −

− −

⎡ ⎤−⎡ ⎤
= ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

φ  ( 73) 

 [ ] [ ]1 1
s 2 se (I G K ) M− −⎡ ⎤= ρ −⎣ ⎦ φ  ( 74) 
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The transfer function from φ to e does contain the weight ρ, however, as seen in 

Equation( 74).  The transfer function from φ to y is identical to the transfer function from 

φ to e, so by increasing the value of ρ the minimization problem is being shifted towards 

disturbance rejection (φ to e and thus φ to y), and away from actuator usage (φ to us).  The 

result is that as values of ρ increase more aggressive control will be taken to mitigate the 

effects of disturbances on the system.  Demands on actuator performance can quickly 

become unrealistic for large values of ρ.   

In order to examine the specific effects of the tuning parameter ρ a H∞ TDOF 

controller was synthesized for the process defined in Equation ( 66).  The same 

preweight, 1
s 2W

s
+

= , was used to shape the process as was used in the one degree of 

freedom H∞ loop-shaping design utilized by the PEC system earlier in this chapter.  The 

reference trajectory, 
Ref

y 1
r 0.1s 1

⎛ ⎞ =⎜ ⎟ +⎝ ⎠
, was taken from the work done by Skogestad and 

Postlethwaite9 from their lead/lag prefilter design used as an example in chapter 2, and 

the tracking performance weight, ρ, was set to unity.  The resulting controller has 6 

states.  The nominal ITAE value of 0.265 represents a 10% reduction from the ODOF 

nominal ITAE of 0.297.  These values indicate that the H∞ Tdof loop-shaping controller 

is a minor improvement to the ODOF controller stability wise, but roughly equivalent as 

we would expect.  Figure 54 shows the disturbance response of the ρ=1 controller in the 

presents of modeling gain error. 
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Figure 54:  Disturbance rejection of a H∞ two-degree of freedom controller, ρ=1, for 
the process defined in Equation ( 66) for gain estimation error of 0% (with 
actuator usage), -40%, and 40%.  Performance objectives are defined by 
solid lines. 
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The system was redesigned by changing the tuning parameter to ρ=4, so the 

effects of the change could be studied.  We have speculated that an increase in ρ will give 

us better disturbance rejection by loosening restrictions on actuator usage.  Figure 55 

shows the disturbance response of the ρ=4 controller in the presents of modeling gain 

error.  The nominal ITAE value of 0.212 represents a 29% reduction from the ODoF 

nominal ITAE of 0.297.  Figure 56 shows a plot of the actuator usage of the H∞ ODOF 

controller and the H∞ TDOF controller with ρ=1 and ρ=4 in the nominal setting.  This 

plot clearly confirms the effect of the ρ on disturbance rejection in the design process.  

This emphasis on disturbance rejection over actuator usage could have been achieved in 

the ODoF controller by the use of a constant post weight, W2.  The distinction comes 

from the fact that any change in a tuning parameter of an H∞ TDoF controller has an 

impact on multiple characteristics of the process.   

Tuning ρ not only has an impact on disturbance rejection, but servo tracking as 

well.  As ρ increases, more emphasis is shifted to the transfer function from r to e, and 

less is weight is given to actuator usage.  Therefore, as ρ increases more aggressive 

control will be used make the actual system response look like the reference trajectory.  It 

is important to note that as the actual controller tracking approaches the reference 

trajectory, ( )1
s 2 s 1 refI G K ) G K T 0−⎡ ⎤− − →⎣ ⎦ , larger and larger values of ρ are required to 

continue to make this term significant in the norm minimization problem relative to the 

other transfer functions that are being minimized. 
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Figure 55:  Disturbance rejection of a H∞ two-degree of freedom controller, ρ=4, for 
the process defined in Equation ( 66) for gain estimation error of 0% (with 
actuator usage), -40%, and 40%.  Performance objectives are defined by 
solid lines. 
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Figure 56:  Nominal actuator usage for the ODOF H∞ controller, TDOF H∞ controller 
with ρ=1, and the TDOF H∞ controller with ρ=4 
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Figure 57shows the reference trajectory specified in the design of a controller and 

the actual response of that controller to a set point change for two values of ρ.  The 

difference between the defined reference trajectory and the actual process response is 

significant.  Even with ρ=4 the process response has an ITAE=0.015.  A common 

technique to cope with this difference is to set ρ=1 and artificially inflate the reference 

trajectory so the compromised controller has the desired tracking performance.  An 

example of this type of inflation would be when a simple first order reference is used for 

a system with a dead time.  Obviously a system with a dead time will not be able to react 

like a reference trajectory that does not have a dead time, but by using an unrealistically 

aggressive reference trajectory the designer is attempting to compensate for the known 

reference tracking deficiency in H∞ TDOF design.  The use of the reference trajectory as 

a tunable parameter in TDOF design is less than desirable, but has become a common 

practice in TDOF H∞ problems.   

A picture of the tuning process is coming into focus for both PEC using H∞ 

control and H∞ TDoF control.  In order to further optimize the H∞ TDoF controller we 

have four tunable parameters, the pre weight and post weight (W1 and W2), ρ, and the 

reference trajectory.  Significant enhancements have been made by using ρ.  The 

regulatory response is noticeably less oscillatory then the intermediate ODoF design for 

errors in the gain of 40%.  At this point it is not necessary to modify the pre weight W1.  

What we would like to do is loosen up on restrictions to actuator usage until we reach the 

maximum allowable usage.   
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Figure 57:  Step response plot of a TDOF H∞ controller designed with a ρ=1 and ρ=4 
plotted against the reference trajectory used in their design. 
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Up to this point we have increased the value of ρ to shift this balance between 

performance and actuator usage, but further increases will not continue to enhance the 

regulatory response because the ρ2 term used for reference tracking becomes dominant.  

To manipulate the system further the post weight will be utilized.  By iteratively 

increasing W2 till it equals 1.43 we arrive at the regulatory response shown in Figure 58 

and the tracking response shown in Figure 59.  With a nominal ITAE of 0.149 this 

response is marginally better than the ODoF solution used in the PEC controller 

(ITAE=0.177).  The responses of both systems could be made nearly identical with 

enough effort, but the small improvement in performance does not warrant the effort.   

Instead we will turn our attention to the tracking response.  Since increasing ρ 

beyond its current value of 4 will not achieve our tracking goals we will have to use the 

reference trajectory as a tunable parameter to continue to shape our tracking response.  

Currently we are using a first order reference trajectory.  As can be seen in Figure 59 this 

trajectory is sluggish yet still causes our initial actuator usage to exceed unity.  Our first 

option of modifying the reference trajectory would be to lower the time constant of the 

reference trajectory to make the reference faster, but this action would only aggravate the 

problem with actuator usage.  In fact the designer does not have a good tool for 

controlling actuator usage.  The only way to get the desired result is to use a second order 

reference trajectory.  A critically damped Trajectory was initially chosen, and iteratively 

modified so that the actuator response was within limits, then the amount of dampening 

was lowered until the best process response was achieved, 2

1Tref
0.005s 0.1879s+1

=
+

.  

The controls response is displayed in Figure 60 and produces almost an identical 

response to the PEC controller. 
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Figure 58:  Disturbance rejection of a H∞ two-degree of freedom controller, ρ=4, 
W2=1.43, for the process defined in Equation ( 66) for gain estimation 
error of 0% (with actuator usage), -40%, and 40%.  Performance 
objectives are defined by solid lines. 
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Figure 59:  Tracking response of a H∞ two-degree of freedom controller, first order 

reference trajectory, for the process defined in Equation ( 66) for gain 
estimation error of 0% (with actuator usage), -40%, and 40%.  
Performance objectives are defined by solid lines. 
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Figure 60:  Tracking response of a H∞ two-degree of freedom controller, second order 

reference trajectory, for the process defined in Equation ( 66) for gain 
estimation error of 0% (with actuator usage), -40%, and 40%.  
Performance objectives are defined by solid lines. 
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A summary of the initial and final tunable parameters for the PEC and H∞ TDoF 

systems is displayed in Table 2.  The corresponding initial and final performances for 

regulatory and servo responses can be seen in Table 3 and Table 4 respectively.  

 

Table 2.   Final tuning values for the control parameters. 

Controller W1 W2 WP Wu ρ Tref 
PEC 
Disturbance 
(initial) 

s 2
s
+  1.0 N/A N/A N/A N/A 

PEC 
Disturbance 
(final) 

0.5s 1 0.05s 1
s 0.005s 1

+ +
+

2.7 N/A N/A N/A N/A 

PEC Servo 
(initial) N/A N/A 

M=2 
ωb=15 
A=1e-4 

1 N/A N/A 

PEC Servo 
(final) N/A N/A 

M=2 
ωb=15 
A=1e-4 

1,8 N/A N/A 

H∞ TDoF 
(initial) 

s 2
s
+  1 N/A N/A 1 

1
0.1s 1+

 

H∞ TDoF 
(final) 

s 2
s
+  1.43 N/A N/A 4 2

1
0.005s 0.1188s 1+ +

 

 

Table 3.   Summary of disturbance control performance 

Load Rejection ITAE 
for error Controller ρ 

0% -40% 40% 
PEC (initial) N/A 0.297 0.419 0.177 
PEC (final) N/A 0.177 0.249 0.106 
Tdof H∞ (initial) 1 0.265 0.373 0.158 
Tdof H∞ (final) 4 0.149 0.209 0.089 
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Table 4.   Summary of tracking control performance 

Load Rejection ITAE 
for error Controller ρ Order 

0% -40% 40% 
PEC (initial) N/A 13 0.009 N/A N/A 
PEC (final) N/A 13 0.012 0.028 0.024 
PEC reduced N/A 7 0.012 0.028 0.024 
Tdof H∞ (initial) 1 7 0.024 N/A N/A 
Tdof H∞ (final) 4 7 0.012 0.027 0.024 

 

 

There are several clear observations that can be drawn from this information.  The 

distinction between different two-degree of freedom controllers is best understood by 

looking at three different aspects of their design. 

1. How easily does the design procedure allow designers to take advantage 

of the second degree of freedom (How easy is it to tune?) 

2. What systems can the technique be applied to (When can it be used?) 

3. How cumbersome is it to implement the technique (What are the 

disadvantages of implementation?) 

 

How easy is it to tune? 

Given enough time, and the inclination, a designer can achieve nearly identical 

nominal tracking trajectories with any two-degree of freedom techniques.  This is 

particularly apparent when working with a minimum phase SISO system, as we have 

been doing in this chapter.  How these different systems reach their final design, and the 

requirements that are placed on the designer are unique to each system, however. 
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Inverse based prefilters require a reference trajectory to be specified.  Under 

nominal conditions that trajectory will be followed exactly.  Alternatively, a lead-lag 

prefilter can be used to speed up or slow down a response in a simple fashion.  Both of 

these solutions are adequate.  As the complexity of a response increases, however, their 

short comings become more apparent.  The value of specifying a reference trajectory 

diminishes quickly when the optimum response isn’t known.  The designer must either 

rely on previous experience with the system to set the proper reference trajectory or gain 

that experience through trial and error.  Likewise, a lead-lag prefilter provides a means of 

gross correction that is particularly useful in shaping the initial speed of a response, but is 

not precise enough for fine tuning. 

Two-degree of freedom H∞ controllers specify a trajectory that the design will try 

to match, but in effect the trajectory specified is approached but not met, and can cause 

an less intuitive tuning procedure where the designer can try to adjust the speed or 

amount of overshoot in the reference trajectory so that the final Tdof system exhibits the 

response that is actually desired.  Since the reference trajectory is over specified, it does 

not have a direct physical correlation to the desired reference trajectory.  This makes the 

tuning process interpretive and less direct.  An example of this type of adjustment will be 

seen in the following chapter.  Another alternative is for the designer to increase the 

tracking weight, ρ.  This can have a beneficial effect on disturbance rejection and 

tracking performance, but when used in conjunction with an overly aggressive reference 

trajectory can cause undesirable tracking characteristics.  It may also have an undesired 

effect on actuator usage.  In a variety of cases, such as the ones explored in chapters 5 

and 6 the designer left the weight at unity.   
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PEC is a flexible two-degree of freedom structure, which is capable of utilizing 

many different types of controllers.  In this chapter we explored the combination of H∞ 

loop-shaping and H∞ mixed sensitivity.  This particular combination of controllers does 

not require a reference trajectory to design the PEC system.  Instead it uses the feedback 

controller, when designed first, to generate a performance weight, WP.  The inverse of 

this weight approximates the sensitivity function of the feedback loop in the frequency 

domain.  The design of the partitioning controller then reframes the problem in terms of 

tracking performance to find a partitioning controller, which minimizes P

U

W S
W KS

∞

.  This 

initial step generally provides improved tracking performance.  In cases where this 

improvement is not sufficient, the overall response can be sped up by increasing the 

bandwidth specification, ωb, in the performance weight.  Furthermore, to increase or 

decrease the amount of overshoot in a response the value of M in the performance weight 

can be raised or lowered.  The tunable parameters that define the PEC controller have a 

direct link with the properties of the system they are trying to control, providing a level of 

intuition to the tuning process that is not available in the H∞ TDoF controller.  

Additionally, buy using Mix Sensitivity control in the partitioning loop the designer is 

able to specify design criteria for actuator usage directly be use of the actuator weight 

WU, thus providing a level of control to the tuning process that is not available in the H∞ 

TDoF controller. 
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Applicable systems 

Of the Three TDOF systems discussed, inverse based prefilters have the most 

limited scope.  Difficulties are encountered in prefilter design when dealing with non-

minimum phase systems, or systems with a significantly larger number of poles then 

zeros.  RHP-zeros, time delays, and high order systems all have different design 

modifications, which often lead to the use of approximations to the detriment of 

performance.  These complications are often compounded in MIMO systems, limiting 

inverse based prefilter design significantly. 

The application of Tdof H∞ loop-shaping control or H∞ loop-shaping and mixed 

sensitivity under the PEC system are restricted to systems which satisfy the assumptions 

found in List 1 of this chapter.  Glover et al. 1991 has developed a γ-dependent loop 

shifting transformation, which relaxes these restrictions further, such that for well-posed 

problems these assumptions are generally not difficult to satisfy.   

The PEC structure, however, does not have inherent limitations.  It is instead 

limited only by the controllers, which it utilizes.  True independence of design means the 

limitations imposed by Partitioned Error Control in the feedback loop are the same as 

those imposed by feedback control.  That provides an unprecedented amount of latitude 

in two-degree-of-freedom design.  The partitioning loop is even less restrictive.  By 

eliminating noise and disturbances in the partitioning loop, there is no longer a need for 

feedback.  The need for feedback in the partitioning loop becomes a choice designers can 

make to suit the type of controller they wish to use.  The vast majority of control 

techniques have designs based on feedback.  In order to utilize those designs it is 

beneficial to use feedback in the partitioning loop, but a designer is capable of using an 
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open loop controller in the partitioning loop, or even a non-causal controller if the 

situation calls for it.  That is a degree of flexibility that is unmatched by existing two-

degree-of-freedom techniques. 

 

Implementation Issues 

All two-degree-of-freedom controllers are larger than their one-degree-of-

freedom counterparts.  It is one of the trade offs for the increased functionality of the 

control law.  PEC is no exception.  The implementation of two controllers and process 

model can seem excessive, however, it has been demonstrated that through model 

reduction techniques the size of PEC controllers can be brought in line with conventional 

two-degree-of-freedom systems. 
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CHAPTER V  

  

CASE STUDY: CONTROL OF AN INVERTED PENDULUM 

 

Introduction 

This case study is used to illustrate the design procedures of Tdof H∞ loop-

shaping control and H∞ loop-shaping/mixed sensitivity PEC, and demonstrate the effects 

the different procedures can have on controller performance.  These controllers will be 

applied to stabilize and control a classical inverted pendulum, Figure 61.  This case study 

is an extension of work done by Walker19 who presented a case study, which designed 

and analyzed the two-degree of freedom H∞ controller for this particular system.  First, a 

description and explanation of the problem will be given.  Second, a one-degree-of-

freedom controller will be developed.  Third, the benchmark two-degree-of-freedom H∞ 

controller designed by Walker19 will be developed.  This will be followed by the 

development of a PEC controller.  Finally, a comparison of techniques will be made. 

 

Problem Description 

The objective of this problem is two fold.  First, stabilize the inverted pendulum, 

which may freely pivot at its base and is attached to a small cart.  Second, control the 

lateral position of the cart, which is on a horizontal track, while maintaining the stability 

of the inverted pendulum. 
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Figure 61: Diagram of an inverted pendulum on a cart 
 
 

The controller measures the horizontal position of the cart x(t) and the pendulums 

attitude θ(t), and makes adjustments to the horizontal position of the cart via a DC servo 

motor acting through 2 pulleys, a timing belt and an N:1 reduction gear (not shown in 

Figure 61).   

 

The Inverted Pendulum model 

The following differential Equations describe the nominal plant. 

 ( )( )
22 2

eff m d2 2

d d dcos sin
d d d

θ θθ θ⎛ ⎞+ = + −⎜ ⎟
⎝ ⎠

xM ml ml N r K i T
t t t

 ( 75) 

 
2 2

0 2 2

d d cos sin
d d

θ θ θ+ =
xI ml mgl

t t
 ( 76) 

 ( )m in
d d
d d

+ = − +
i xL Ri K N r V
t t

 ( 77) 
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The variables, descriptions, nominal, and (perturbed) values are listed in Table 5. 

 

Table 5. Variable descriptions with nominal and perturbed values 

Variable Description Nominal value Perturbed 
Value 

Vin voltage input to the motor (V) controller output 
limited to ±15 V 

 

x(t) cart position (m)   
θ(t) pendulum attitude (rad)   
I motor current (A)   
I0 the moment of inertia of the 

pendulum about its pivotal axis 
4/3 ml2 kg m2 

=0.0036 kg m2 
 

M  small cart mass 0.283 kg 0.354 kg 
N ratio of the reduction gear on 

motor 
40  

l half of pendulum length 0.30 m 0.28 m 
m pendulum mass; ()  0.030 kg 0.0375 kg 
Meff M+m(N/r)²Ieff   
Ieff effective moment of inertia of 

rotating parts relative to motor 
shaft 

3.5e-7 kg m2 7.0e-7 kg m2 

Km motor constant 0.01NmA-1 0.005 NmA-1 
L induction 0.001 H  
R resistance 4 ohms  
r effective radius of motor shaft 0.0285 m 0.03 m 
g gravitational constant 9.81 m s-2  
 

The 5 state model, , , , ,θ θ⎧ ⎫= ⎨ ⎬
⎩ ⎭

d dxX x i
dt dt

, was linearized around the unstable equilibrium 

point { }0, 0θ= =x , and led to the following 5th order state-space model with outputs 

{x,θ} 
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1 2

1 1

4 3

0 2.6420 0 0 1.2055 0
1 0 0 0 0 0
0 7.5829 0 0 4.8221 0
0 0 1 0 0 0
0 0 1.4035 0 6.0000 1000
0 0 0 1 0 0
0 1 0 0 0 0

−

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

e e

e e

e e
 ( 78) 

Open loop poles of the system are located at 0, -115, ±4.95, -5885 

The first two poles are associated with the cart position.  It can be readily shown 

that the poles at ±4.95 are associated with the transfer function from cart acceleration to 

pendulum attitude.  The last pole at –5885 is associated with the electrical dynamics of 

the motor. 

Since H∞ optimization leads to a controller at least the same size as the shaped 

plant, it is beneficial to work with a model that has been reduced as much as possible 

before beginning controller design, especially since the electrical dynamics of the motor 

clearly do not contribute significantly to the overall process.  The 5th order linear model 

was reduced using balanced residualization of coprime factors (McFarlane and Glover15).  

A fourth order approximate was achieved, which retained all the poles of the original 

system except, as we predicted, the –5885 pole associated with electrical motor 

dynamics.  Figure 62 shows the frequency response of the linear 5th order and 4th order 

models.  No appreciable difference is present over the 5 decades around the crossover 

frequency. 
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Figure 62: The frequency response of the process model vs. the reduced process 
model of the inverted pendulum on a cart 
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Performance specifications 

The lateral position of the cart should respond to demands of ±0.3m on a track 1m 

in length.  Furthermore a restriction on the maximum cart velocity of ±0.7m/s should be 

maintained for the nominal system.  

 

One degree of freedom H∞ control 

It is common in most design problems is to see whether or not a one-degree of 

freedom controller will successfully meet controller objectives.  As such this case study 

will begin with the design of a one-degree of freedom H∞ controller.  The first step in the 

design process is to select the weighting functions W2 and W1 to form the shaped plant.  

W2 is selected to be a constant weighting function, which reflects the importance of 

pendulum stability over cart position.  Hence W2 is chosen as 

 { }2W diag 1, 2=  ( 79) 

For the selection of W1 we must recognize that the system already contains an 

integrator, so a good choice of W1 would be a constant 1x2 matrix, which aligned the 

singular values of the open plant at the desired bandwidth of the system.  To determine 

the bandwidth of the system we will use the maximum distance of a response, 0.6m, and 

the maximum velocity of the cart, 0.7m/s and Equation ( 80) 

 rad 2V 2*0.7 radF 2.3
s D 0.6 s

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 ( 80) 
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Hence W1 is chosen to align the singular values of the open plant at 2.3 rad/s.  We are in 

effect converting the system from a one input two output system into a two input two 

output system and adjusting each input by a constant so that the cross over frequency of 

each response is roughly 2.3 rads/sec.  This alignment is done so that we have effective 

control over both outputs up to the desired frequency.  It would do us no good to have 

control over the position of the cart at frequencies up to 2.3 rads/sec if we could not also 

control the pendulum attitude at those frequencies.  With this in mind, W1 was chosen as 

follows: 

 [ ]1W 18.0685 16.0288= −  ( 81) 

H∞ synthesis produced a 4 state controller with a sub optimal gamma of 4.0963.  Under 

the implementation of Figure 63, where reference signals are scaled and fed directly in to 

the preweight W1, KAodof is given as 

  

 

4 3 2

3 2

Aodof 3 2

4 3 2

17.59s 6.7801e3s +6.5863e5s -4.2108e6s-6.6837e6
3.3682e3s +4.4590e5s +7.0718e6s+6.6837e6

K
4.7834e4s 5.8293e6s 3.8156e7s+5.1019e7

1s +385.4523s +3.7444e4s -2.3938e5s-3.7997e5

⎡ ⎤+
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ( 82) 
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Figure 63: Implementation of one-degree-of-freedom H∞ control to an inverted 

pendulum on a cart.  This configuration prevents derivative kick for 
reference changes. 
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Figure 64shows the cart, pendulum attitude, and cart velocity of this controller for 

a step response of 0.6m.  The controller does not give the desired inverse response 

because the method chosen to implement the controller sends a scaled reference signal 

directly into the process.  This configuration was chosen to prevent derivative kick not to 

provide the desired initial inverse response.  This suggests that the controller might 

perform better under the nonstandard implementation shown in Figure 65.  The form of 

this controller is given as KBodof 

 

3 2

3 2
Bodof

4 3 2

3.3682e3s +4.4590e5s +7.0718e6s+6.6837e6
K 4.7834e4s 5.8293e6s 3.8156e7s+5.1019e7

1s +385.4523s +3.7444e4s -2.3938e5s-3.7997e5

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 ( 83) 

 

 

 
 
 
 
 



145 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 64:   Cart position, velocity, and pendulum attitude for a step response of 0.6 
for controller KAodof on the nominal system 

 
 
 
 
 
 
 
 



146 

The response of this controller can be seen in Figure 66.    This controller has a 

better initial response then controller KAodof.  A 5% overshoot was observed, which 

corresponds to a damping factor of 0.69.  Comparing our initial requirement for 

overshoot with the performance of the one-degree of freedom controller, it would seem 

that the initial requirement was excessive considering H∞ controllers are of a high order 

and their objective is to minimize the peak amplitudes of the frequency response, which 

roughly translates into the time domain as a minimization of overshoot. 
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Figure 65:  Implementation of H∞ one-degree of freedom controller where reference is 
directly compared to the system output 

 

The one-degree-of-freedom design in the non standard implementation provides adequate 

control over the cart and the pendulum, however, there is no ability to modify the 

tracking response of the system.  We will continue to seek a two-degree-of-freedom 

controller with better tracking performance. 
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Figure 66:   Implementation of H∞ ODoF controller where reference is directly 
compared to measured variable 
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Benchmark control TDoF H∞ loop-shaping control 

The benchmark controller for this study is a two-degree-of-freedom H∞ controller.  

The design procedure for this controller was originally developed and published by 

Walker19, and is represented here to maintain an unbiased representation of practical two-

degree-of-freedom design. 

 

Reference trajectory 

Walker’s19 design procedure starts out with the selection of the reference 

trajectory.  The reference trajectory will be designed to incorporate the maximum cart 

velocity restriction over the maximum step change.  From experience with this system it 

is expected that the controller will have a degree of overshoot, so a second order 

reference trajectory is chosen of the form 

 ( )
2
n

2 2
n n

M s
s 2 s

ω
ζω ω

=
+ +

 ( 84) 

where ωn represents the bandwidth of the system and ζ is the dampening factor which 

determines the amount of overshoot.  The inverse response of the system is not accounted 

for in this reference trajectory, Walker19 suggests a better trajectory might have included 

a RHP-zero, but did not investigate this possibility. 

The following calculations show how to determine the bandwidth requirement for 

a system with an overshoot given by x1 (<1) assuming a maximum velocity of 0.7 m/s 

over the maximum possible step change of 0.6 m.  The maximum overshoot calculation is 

solved as: 
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 ( )( )1 22
1x exp / 1πζ ζ= − −  ( 85) 

solving Equation ( 85) for the damping factor leads to: 

 ( )
( )( )

1
1 222

1

ln x

ln x
ζ

π

−
=

+
 ( 86) 

The velocity of the system with respect to time is found by noting that the impulse 

response is identical to the velocity of the step response such that the inverse Laplace 

transform gives us 

 
( )

( ) ( )( )1 22n
n n1 22

v(t) exp t sin 1 t
1

ω ζω ζ ω
ζ

= − −
−

 ( 87) 

it can be easily shown through differentiation that the maximum velocity of a unit step 

change is 

 
( )

( )1 22
max n 1 22

v exp arcsin 1
1

ζω ζ
ζ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟−⎝ ⎠

 ( 88) 

Since the maximum step change of the system is 0.6m there needs to be an adjustment to 

the maximum velocity, 0.7m/s = vmax*0.6.  Therefore vmax=1.167.  Rearranging Equation 

( 88) then gives us the bandwidth requirement for the system. 

 
( )

( )1 22
n 1 22

1.167 exp arcsin 1
1

ζω ζ
ζ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟−⎝ ⎠

 ( 89) 

With Equation ( 89) the designer can determine the approximate bandwidth of the system 

by specifying a desired overshoot. 
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Tuning the H∞ two-degree-of-freedom controller 

Walker19 deemed an overshoot of 0.1 to be appropriate for the process response, 

though this decision was made without justification.  This initial guess works out very 

favorably for Tdof H∞ control, which suggests it may have been obtained through an 

iterative procedure.  Regardless, it will be used as a starting point for the controller to 

further demonstrate the differences in two-degree of freedom H∞ design and mixed 

sensitivity/loop shaping H∞ PEC.  For an overshoot of 0.1, the natural frequency of the 

system is 2.3 rad/s.  It is a coincidence that this is the same frequency as was found in the 

ODoF design.  However, this is a coincidence that will help in the analysis of the various 

systems, since the regulatory response of the controllers should be very similar.  Because 

the desired bandwidth of the systems are identical we will use the pre and post weights 

(W1 and W2) as they were defined in Equations ( 79) and ( 81) for the same reasons. 

With the shaped process defined as well as the reference trajectory, Tref, very little 

additional effort is required by the designer.  The only parameter that needs to be 

specified is the weighting function, ρ.  It is common practice to use an initial guess of the 

weighting function of ρ=1, Walker19 chose to do just this in his controller design.  H∞ 

synthesis was conducted using commercially available software and a sub optimal two-

degree of freedom controller was designed with a gamma of 4.9172.  
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The 6 state controller KTdof is given as 

 

( )( )( )( )
( )( )( )( )
( )( )( )( )

( )( )( )
Tdof

-6.6238e4 s+1.1468e2 s+1.0984e1 s+3.1334 s+1.8578 6.3379e-1i
9.0949e4 s+1.1425e2 s+1.6027e1 s+1.1435 s+1.3570 1.8570i

K
1.0476e6 s+1.1501e2 s+5.0741 s+1.9032 s+1.3570 1.8570i

s+4.6738e3 s+1.5276e2 s-1.0350e1 s+1

±
±

=
±

( )( ).4167 s+1.3570 1.8570i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

±⎢ ⎥⎣ ⎦

( 90) 

The corresponding response of this controller for a step change of 0.6 can be seen in 

Figure 67.  

The peak value of the carts position is 6.36 corresponding to an overshoot of 6%.  

If in fact a 10% overshoot was appropriate this controller would not be able to match the 

specified trajectory.  In this case, however, it is more likely that the designer over inflated 

the desired overshoot for the process so that the actual response of the plant had the 

desired tracking.  If this is in fact the case, then an iterative procedure was almost 

certainly used to arrive at the decision to use 10% overshoot in the reference signal.  This 

is a typical example of the over inflation of the reference trajectory to aid in tracking 

responses in tdof H∞ control and the iterative adjustments designers make to obtain the 

desired tracking.  
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Figure 67:  Cart position, velocity, and pendulum attitude for a step response of 0.6 
for controller KTdof on the nominal system 
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PEC the partitioning controller 

The one-degree of freedom controller designed above will be used in the feedback 

loop of the partitioned error control system.  The design of that feedback controller 

satisfies the first 7 steps in the design procedure to generate a Partitioned error controller 

outlined in chapter 4.  All that remains is to design the mixed sensitivity partitioning 

controller, validate it for the nominal system, form the partitioned error controller, and 

possibly use a reduction technique to obtain a lower order final controller.  In order to 

determine the weighting functions required in the mixed sensitivity design of the form 

shown in Figure 68 that will be used in the partitioning loop it is helpful to plot the 

frequency response of the sensitivity function of an existing controller and determine the 

parameters for WP such that 
P

1 S
W

≥ .  The one-degree of freedom H∞ controller will be 

used to generate those sensitivity functions.  Figure 69 shows the sensitivity function of 

the cart, while Figure 70 shows the sensitivity function of the pendulum attitude.  These 

figures also include the corresponding plots of |1/WP|.   
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Figure 68:  H∞ mixed sensitivity formulation.  The generalized plant is boxed with 
dashed lines. 
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Figure 69:  The sensitivity function of the cart position for the ODoF controller 
plotted against the inverse performance weight.  
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Figure 70:  The sensitivity function of the pendulum attitude for the ODoF controller 
plotted against the inverse performance weight.  
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The parameterization of the performance weight in Figure 69 is straightforward.  

We have a system with a bandwidth requirement of ωB1=2.3 rad/s.  If the bandwidth 

requirement was not known or calculated as part of the design of the ODoF H∞ controller 

a lower bandwidth that would correspond to output sensitivity of the ODoF controller 

more closely could have been selected.  The upper bound on the bandwidth is set to the 

default value of M1=2.    To ensure steady state tracking at low frequencies A1<<1 is 

chosen.  The parameterization of the performance weight in Figure 70 is trivial since the 

process is self-integrating, as such; WP2 is chosen to be a constant equal to unity. 

The initial choice of the control sensitivity weight of WU=I is usually sufficient 

for most problems.  However, since we have an existing controller and a specific 

maximum velocity we would like to achieve, we could only benefit from examining the 

frequency response of KS from the one-degree of freedom controller, see Figure 71.  The 

peak of the frequency response of KS for the ODoF system is 27.5(dB) at a frequency of 

3.07 rad/s.  Neglecting motor dynamics this peak corresponds to the maximum velocity 

achieved by the ODoF controller, 0.677 m/s.  Since this peak is located above 0 dB we 

know that if Wu=I was chosen the H∞ optimization would try to reduce this peak.  This 

would result in a very sluggish response with vmax<0.677m/s.  Similarly, if Wu was 

chosen to be a sufficiently small constant such that UW KS γ
∞

< , where γ is assumed to 

be equal to 1 for a well posed problem, the H∞ optimization would relax restrictions on 

actuator usage at all frequencies.  For a process with an inverse response this could result 

in an excessive initial jerk of the cart for a step response.  Clearly a frequency dependant 

weight is needed.  Noting that |WUKS|<γ for all frequencies, it follows that |KS|<γ|WU
-1|.  

Ideally, assuming γ=1, we would Choose WU such that |WU
-1|=|KS|.  Unfortunately the 
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shape of KS is slightly irregular due to the inverse response and would be hard to 

approximate with a low order weight.  

A better choice for WU would be a high pass filter, which would flatten the peak 

of KS and shift it to higher frequencies.  Flattening the peak in terms of H∞ optimization 

is equivalent to saying we care about suppressing actuator energy over the frequency 

range of the plateau equally.  Choosing a high pass filter, which shifts the peak of the 

response further to the right, will limit the initial jerk of the cart in the opposite direction.  

This is because at high frequencies the initial response is the only reaction the system can 

have. 

This high pass filter will be of the form shown in Equation ( 91). 

 bu u
U

bu

s M1W
s

ω
ωε
ε

⎡ ⎤
⎢ ⎥+

= ⎢ ⎥
⎢ ⎥+
⎣ ⎦

 ( 91) 

where Mu>0,wbu>0, and ε>0. 

Lets take a minute to relate the step response characteristics of our system to the 

frequency response characteristics.  The frequency response of a system at any given 

frequency is simply the amplitude of the response of a system to a sinusoidal input at that 

frequency.  Therefore, the frequency response of systems at high frequencies loosely 

corresponds to the magnitude of a step response at low times.  For a system with an 

inverse response the peak of the inverse response would occur at some frequency above 

the bandwidth of the system.  With that in mind we will design an actuator weight. 

Figure 71 shows the frequency response of the initial weight chosen to produce 

the effects described above.  The actuator weight with initial values is 
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U
s 0.001W *0.1

s 10
ρ +⎛ ⎞= ⎜ ⎟+⎝ ⎠

, with ρ=1 is initially chosen.  This weight contains a high pass 

filter, and a scaling factor of 0.1.  The parameter ρ serves two purposes.  First, the form 

of the high pass filter was designed assuming γ=1 (this corresponds to the controller 

meeting all performance and actuator weights) according to |KS|<γ|WU
-1|.  We are 

satisfied with the controller usage in the ODoF problem, and by choosing Wu such that 

UW KS
∞

 is one at frequencies above the bandwidth means we are not attempting to 

change the initial response of the system from the ODoF design. Should gamma not equal 

one due to difficulty in lowering UW KS
∞

then we can scale the weight by a factor of γ to 

get the desired result, such that an appropriate second guess would be ρ=γ.  By doing this 

we are saying that the ODoF design was sufficient.  In particular we do not wish to 

change the characteristics of the inverse response.  This process of setting ρ=γ could be 

continued until an acceptable design was reached.  If we did wish to change the 

characteristics of the initial response we could choose Wu to push the UW KS
∞

 further 

to the right, however, since Walker19 did not investigate this possibility in his Tdof H∞ 

design (he declined to examine a RHP zero in the reference trajectory), we shall not 

pursue it either. 
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Figure 71:  A frequency plot of the KS for the ODoF H∞ loop shaping controller, the 
initial choice of the actuator weight Wu, and the function WuKS which is 
being minimized in the H∞ mixed sensitivity design.  The objective of the 
performance weight is to push the peak of WuKS above the bandwidth of 
the system, thus controlling the initial dynamics of the time response of 
the system, however since the value of the peak is near one, we are 
specifying that the actuator usage of the ODoF design is acceptable. 
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A third weight, Wa, is added to the mixed sensitivity problem to emphasize that 

the pendulums attitude is a regulatory problem, and that tracking of the pendulum to 

reference commands is significantly less important than cart tracking.  Hence, 

1 0
Wa

0 0.01
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

is chosen to signify the pendulum attitude is to be regulated, not tracked. 

The final forms and values of the weights used in the mixed sensitivity design are 

listed in Table 4.2.  

Table 6. Mixed sensitivity weight parameter values for inverted pendulum on a cart 
tracking 

 
Weight Form Parameter values 
WP 

1 B1

P B1 1

s / M 0
w s A

0 1

ω
ω

⎡ ⎤+
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

 

M1=2 
ωB1=2.3 
A=1e-6 

WU 
U

s 0.001W *0.1
s 10

ρ +⎛ ⎞= ⎜ ⎟+⎝ ⎠
 

ρinitial=1 
ρfinal=1.8 

Wa 
1

2

a

a

w 0
Wa

0 w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
1 0

Wa
0 0.01

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

 

The step response of the initial design of the mixed sensitivity controller can be 

seen in Figure 72.  This design had a γ value of 1.8 signifying that all performance 

specifications were not met.  From this information we would expect that actuator usage 

would exceed our maximum tolerance, which figure Figure 72 clearly shows.  The 

parameter, ρ, was then set to 1.8 and the controller was designed again.  The controller 

synthesis returned γ = 2.0.  Again we would expect that our controller was more 

aggressive then the one-degree of freedom H∞ controller, yet as the step response of this 

new system in Figure 73 indicates this yielded an acceptable design probably because the 

one-degree of freedom controller had a max velocity slightly under vmax to begin with. 
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Figure 72:  Initial H∞ mixed sensitivity design.  
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Figure 73:  Final H∞ mixed sensitivity design. 
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Ensuring there are no RHP poles in the closed partitioning loop establishes 

nominal stability, satisfying step 10 in the PEC design procedure.  The location of the 

poles are listed:  

(s+6.7578e+2)(s+1.1495e+2)(s+1.1501e+2)(s+2.0564 ±1.7288i) 

(s+5.0061 ±8.3508e-1i)(s+2.0000e-5)(s+4.9603)(s+4.9434)      

The mixed sensitivity controller has 6 states is shown in Equation ( 92). 

 

( )( )( )( )( )
( )( )( )( )( )

( )( )( )( )( )( )
PL

s+1.1501e+2 s+1.0e+1 s+4.9603 s+4.9434 s+2.0003e-5
K s+1.1501e+2 s+1.0e+1 s+4.9434 s+2.3e-4 s+2.0002e-5

s+6.6888e+2 s+1.4672e+2 s-1.1713e+1 s+9.7705 s+1.1171 s+2.3e-4

  

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

( 92) 

 

PEC Assembly and Controller order 

The three elements that are used to form the partitioned error controller are the 

feedback controller (4 states), the process model (4 states), and the partitioning controller 

(6 states).  Simply assembling these parts would result in a controller with 14 states.  This 

is not unexpected.  The work done in chapter 3 showed that partitioned error controller 

would have at least 3 times as many states as the process model used in the design 

procedure.  Hence the final stage in the PEC design is to explore controller minimization.   

Balanced residualization of coprime factors was employed for the unstable system since 

the feedback controller contains a RHP pole.  The principle behind balanced 

residualization of coprime factors is to split the process up into stable and unstable parts 

using coprime factors, then to apply the now familiar technique of balanced 

residualization to the stable portion of the process.  This technique resulted in a 6th order 

approximate controller with three inputs and one output.  Verification that the 6th order 
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approximate controller was satisfactory was obtained by plotting the bode magnitudes of 

the 14 state controller and its 6 state approximate.  These results are shown in Figure 74.  

As we can see the reduced controller has a slight residual around frequencies of 100 

rad/s.  This is well above the bandwidth of the system.  A step response of the reduced 

controller was generated and found to be indistinguishable from the original controller. 

 

System stability 

The robustness of the controller designs to unstructured perturbations was analyzed by 

breaking the feedback loop at point A and B shown in Figure 75.  The Guaranteed 

stability margins were then calculated using the following equation 

 1 1 T guaranteed G.M. 1 1 T
∞ ∞

− ≤ ≤ +  ( 93) 

 ( )1Guaranteed P.M. sin 1 2 T−
∞

= ±  ( 94) 

The results are summarized in Table 7 through Table 9. 
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Figure 74:  Bode magnitude diagram of the original 14 state PEC controller vs. the 7 
state reduced PEC controller. 
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Figure 75:  Points at which the loop is broken for stability analysis. 
 
 

Table 7.   Stability margins of 14 state Partitioned Error Controller/ H∞ ODoF 
controller (identical) 

 
Loop 
broken at  

T
∞

 Guaranteed 
G.M. 

Guaranteed 
P.M. (deg) 

B ( ) 1
2I GK −

∞
−  1.1299  to  0.8701 ±7.4476 

B ( ) 1
2 2GK I GK −

∞
−  1.1299  to  0.8701 ±7.4476 

A ( ) 1
2I K G −

∞
−  1.7649  to  0.2351 ±44.9718 

A ( ) 1
2 2K G I K G −

∞
−  1.4673  to  0.5327 ±27.0244 

 
 
Table 8.   Stability margins of H∞ Tdof controller 
 
Loop 
broken at  

T
∞

 Guaranteed 
G.M. 

Guaranteed 
P.M. (deg) 

B ( ) 1
2I GK −

∞
−  1.1615  to  0.8385 ±9.2633 

B ( ) 1
2 2GK I GK −

∞
−  1.1615  to  0.8385 ±9.2633 

A ( ) 1
2I K G −

∞
−  1.7931  to  0.2069 ±46.7239 

A ( ) 1
2 2K G I K G −

∞
−  1.4542  to  0.5458 ±26.2503 

 
 

A

B

r
G[K1 K2]
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Table 9.   Stability margins of 6th order reduced partitioned error controller. 
 
Loop 
broken at  

T
∞

 Guaranteed 
G.M. 

Guaranteed 
P.M. (deg) 

B ( ) 1
2I GK −

∞
−  1.1299  to  0.8701 ± 7.4476 

B ( ) 1
2 2GK I GK −

∞
−  1.1299  to  0.8701 ± 7.4476 

A ( ) 1
2I K G −

∞
−  1.7427  to  0.2573 ± 43.5952 

A ( ) 1
2 2K G I K G −

∞
−  1.4707  to  0.5293 ± 27.2229 

 
 

Comparison of designs 

The nominal linear step response of the two-degree of freedom controllers 

designed in this study are compared in Figure 76.  Table 10 lists the percent overshoot of 

these responses as well as the maximum velocity obtained, maximum pendulum attitude, 

and ITAE for cart tracking.   

The advantage of H∞ two-degree of freedom control is in its simplicity.  It 

requires little additional effort to specify a simple reference trajectory, especially when 

that trajectory can be unrealistically aggressive.  The cost of this simplicity is flexibility, 

however.  In the end Walker shied away from introducing RHP zero into his reference 

trajectory simply because it increases the complexity of the problem to a point where it 

becomes a deterrent to designers.  This makes precision tuning of tracking performance 

very difficult.  By specifying a reference trajectory the designer is asked to make 

arbitrary choices without any tools for analysis.  It is no surprise that a technique like this 

would result in designers simplifying their selection and accepting the resulting 

suboptimal results.This is the reason H∞ tdof control provided inferior tracking 

performance in this case study.   
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On the other hand, PEC was able to use a very powerful controller design, mixed 

sensitivity, for a very specific problem, nominal tracking.  The design procedure of the 

partitioning controller also greatly benefited from the use of the feedback controller to 

generate initial values for the weight parameters, making the mixed sensitivity design 

significantly easier then it may have been.  The result of which was superior use of the 

second degree of freedom to meet tracking specifications, and overall better tracking 

performance.  Granted this tracking performance gain required a higher degree of 

analysis and interpretation, but with the proper tools and an initial starting point in the 

design procedure, the designer is able to interpret and affect the process with surgical 

precision.  One example of this is the use of the actuator weight.  If the actuator usage is 

unacceptable for some reason then the mixed sensitivity controller gives the designer a 

specific tool for modifying this aspect of the design, the actuator weight Wu.  In the 

inverted pendulum problem it would be a simple matter to address the initial jerk of the 

cart with the weight currently used.  In fact, all it would require is the multiplication of 

the weight by a scalar.  The introduction of a RHP zero to the reference trajectory of the 

TDoF H∞ controller would have several undesired affects.  First it would lower the 

bandwidth of the reference trajectory, bringing it more in line with the actual process 

response.  This has a direct impact on the driving force behind reference tracking.  This 

impact could be countered by increasing the value of the tracking weight ρ, but that 

would have unforeseen effects on the disturbance response, particularly in a multivariable 

problem. 
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Figure 76:  Tracking Performance of the Cart for both the PEC controller and the 
benchmark H∞ TDoF controller. 
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The PEC design procedure returned a controller with superior tracking abilities 

over the H∞ TDoF design and the  H∞ ODoF design.  By minimizing the overshoot of the 

process and by operating at the boundaries of the design criteria with a max velocity of 

0.696 m/s PEC returned an ITAE that was 16% lower then the benchmark system.  The 

ITAE of the deflection of the pendulum was also significantly less then that of the 

benchmark system. 

 

Table 10. Response characteristics of the Cart and Pendulum for various controllers. 
 

Controller % overshoot Max Velocity 
m/s ITAE ITAE θ 

Odof H∞ 5.13 0.677 0.407 0.109 
Tdof H∞ 6.00 0.645 0.355 0.124 
PEC 1.32 0.696 0.296 0.106 

 

Simulation results 

A step change of 0.6 meters was simulated for the perturbed nonlinear pendulum 

under control of both PEC and the H∞ tdof controller.  The results of this simulation can 

be seen in Figure 77 plotted next to the same step change for the nominal nonlinear 

pendulum.  Both controllers exhibited degraded performance under the perturbed 

conditions, yet remained stable.  The PEC controller displays better robust performance 

mainly because its nominal response does not exhibit as much overshoot as the TDoF H∞ 

controllers. 
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Figure 77:  Nominal and perturbed responses of the reduced PEC controller and the 
H∞ TDoF controller. 
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Conclusions 

This case study demonstrated the PEC design procedure and led to favorable 

performance over Tdof H∞ controller design, even though both of these controllers are 

two-degree-of-freedom systems.  The PEC design did require more effort but also 

provided help in the design procedure by using the feedback controller to generate initial 

conditions for the tracking controller.   

One of the concerns with the implementation of PEC is the overall controller size.  

This concern was successfully mitigated by the use of model reduction techniques.  The 

final PEC controller had an equivalent number of states as the benchmark system. 

Through this case study, it has been demonstrated that PEC is a flexible, 

powerful, and viable two-degree-of-freedom design technique. 
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CHAPTER VI  

 

CASE STUDY:  TWO-DEGREE OF FREEDOM CONTROL OF A BINARY 
DISTILLATION COLUMN 

 

Introduction 

This case study is used to illustrate the design procedures for a discrete 

implementation of an H∞ loop-shaping/mixed sensitivity PEC controller.  The controllers 

will be applied to stabilize and control the classic Wood and Berry binary distillation 

column, Figure 78.  A review of the performance of the PEC controller will be given 

relative to a two-degree of freedom H∞ internal model controller (IMC) developed by 

Murad et al.20  

 

Problem Description 

Wood and Berry noted in their original publication that most industrial columns 

are operated under SISO control where only one composition is automatically regulated, 

and that this form of control is wasteful of both product and energy.  Attempts to control 

both overhead and bottoms compositions with reflux and steam flow are complicated by 

the inherent coupling in high purity processes.  These strong interactions make the system 

very sensitive to inaccuracies in the manipulated variables.  This requires a rigorous 

method for dealing with process uncertainties.  This high demand of robust 

considerations leaves little room for tracking issues to be addressed with a one-degree of 
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freedom controller.  As such we seek to design a two-degree of freedom controller, which 

provides both the required disturbance rejection and a degree of tracking performance. 

Notable attempts to improve upon the original work of Wood and Berry were 

made by Garcia and Morari21, who designed a one-degree of freedom IMC controller, 

Zhou el al.22, who designed a modified one-degree of freedom LQG/LTR (linear 

quadratic Gaussian/loop transfer recovery) controller, Rouhani and Mehra23, who 

designed a model predictive controller, and Murad et al. 20, who designed a two degree of 

freedom H∞ IMC controller.  Of these attempts Murad’s two-degree of freedom design 

performed similarly to if not better than the other designs, and will be used as the 

benchmark in this study. 

 

The Distillation Column Model 

An evaluation of the effectiveness of mixed sensitivity/loop-shaping PEC will be 

achieved through the simulation of the Wood and Berry Distillation column.  The system 

is a typical MIMO plant with strong loop interactions and significant time delays.  The 

process is described in Equation ( 95). 

 
( )
( )

( )
( ) ( )

s 3s 8s

1 1
7s 3s 3s

2 2

12.8e 18.9e 3.5e
y s u s16.7s 1 21.0s 1 14.9s 1 d s
y s u s6.60e 19.4e 4.9e

10.9s 1 14.4s 1 13.2s 1

− − −

− − −

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤+ + +⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦

 ( 95) 

The time constants of the system are in minutes.  The significance of the variables is 

given in Table 11 along with the nominal operating conditions of the process. 
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Table 11. Input and Output descriptions and associated steady-state values. 
 
Variable Description Steady-state value 
y1 Overhead MeOH composition 96.00 mol% 
y2 Bottoms MeOH composition 0.50 mol% 
u1 Reflux Rate 1.95 lb/min 
u2 Reboiler steam rate 1.71 lb/min 
d Column feed rate 2.45 lb/min 
 
 

Uncertainty in the process will be modeled as perturbations in the time delays (θPs) as 

suggested by Zhou et al.22, such that: 

 [ ]
[ ] [ ]

[ ]

P ij s
P ij

P ij
P ij

K e
G

s 1

θ

τ

−

=
+

 ( 96) 

 
Uncertainty limits associated with the plant time delays are listed in table 5.2 

 

Table 12. Perturbation values of the time delays of the distillation column. 
 
Parametric 
Uncertainty 

i,j Max Normal Min 

1,1 2 1 1 
1,2 4 3 2 
2,1 10 7 4 

[ ]P ij
θ  

2,2 4 3 2 
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Figure 78:  Diagram of the Wood and Berry binary distillation column. 
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Performance specifications 

The design specifications suggested by Murad20 will be used for this process 

1. The final steady-state values of all variables should be at their desired 

value 

2. Robust stability within the model uncertainty limits defined in Table 12 

3. For overhead composition, where a change is demanded, the composition 

should be within 10% of the desired final value in less than 30 minutes. 

4. Disturbances of 14% in the feed rate should be rejected to the desired 

steady-state value within 30 minutes. 

5. All control signals should be sensible and smooth 

 

Benchmark Controller 

The benchmark controller for this study will be a two-degree-of-freedom H∞ loop-

shaping internal model controller based on the work originally presented by Murad et al. 

20.  The original motivation for the work of Murad et al. 20 was to demonstrate the direct 

synthesis of an H∞ two-degree-of-freedom internal model controller.  The advantage of 

such a controller would come from the fact that IMC designs such as the one shown in 

Figure 79 are based on an inverse process.  This type of design is not well suited for ill 

conditioned processes.  H∞ two-degree-of-freedom internal model controllers (TDoF H∞ 

IMC) are based on minimization of the H∞ norm and do not utilize an inverse model in 

their design procedures.  It then follows that TDoF H∞ IMC design could be applied to a 

class of problems that other IMC schemes would not be suited for.   
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There are a couple of benefits to IMC.  The first benefit was summed up nicely by 

Garcia and Morari21 who concluded that, “the IMC structure allows a rational controller 

design procedure where controller quality and robustness can be influenced in a direct 

manner”, sighting a high level of transparency and intuitive appeal, making IMC an 

attractive alternative to classic feedback approaches.  Under the perfect model 

assumption IMC controllers are open loop controllers.  The intuitiveness and directness 

springs directly from the relation of the controller to the inverse process.  TDoF H∞ IMC 

severs this relationship.  The form of an H∞ controller is a state space model where the 

parameters have no interpretable meaning.  This is the direct opposite of classic IMC 

controllers.  Take for instance the gain of an open loop controller.  It is known that the 

overall gain of the response should equal unity, therefore it follows that the gain of the 

controller must be the inverse of the gain of the process.  The second benefit of IMC 

control is that it can be used to determine the present dynamic state of the process, states 

that may be otherwise unobservable.  Control based on the present dynamic state of a 

process (not just observable states) falls into a category called full information control.  

This ability is not limited to IMC control, however; it is simply that this additional 

information can be accessed fairly readily through use of the internal model.  The access 

of this additional information requires that the current disturbance input is known.  A 

similar technique could be applied to the PEC structure in the partitioning loop.  The 

benefit would be that the disturbance would not need to be measured, because there is no 

disturbance in the partitioning loop.  This would open up the application of full 

information control to a much wider category of systems.  The down side to this 

implementation is that the full information controller would only be responsible for 
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nominal servo performance.  Disturbances would be handled without the benefit of full 

information.  This application may be more beneficial for ill-conditioned processes, but 

that has not been investigated yet. 

These nuances of TDoF H∞ IMC are interesting, but the performance of this 

controller as it was applied to the Wood and Berry distillation column by Murad et al. 20 

is almost identical to the performance of a standard TDoF H∞ controller; so much so that 

the differences are not worth quantifying. 

 

ym

uk

d`

1
y

Gms

GpGc

2
d

1
r

 
Figure 79:  The general implementation of Internal Model Control. 

 

 

The design configuration for TDOF H∞ IMC is presented in Figure 80.  This 

configuration is similar to that of the TDOF H∞ controller discussed in previous chapters.  

Equation ( 97) is the algebraic representation of this configuration.  When compared to 

the configuration of a TDoF H∞ controller shown in Equation ( 98) we see that the IMC 

controllers Q1 and Q2 are expressed as open loop controllers instead of feedback 

controllers like K1 and K2, but other than this distinction, the block matrices of these two 
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systems possess the same functionality.  It is interesting to note that Murad et al. 20 left 

out the tuning parameter ρ in their formulation of the design configuration.  This tuning 

parameter could be used if desired, but its absence suggests that the parameter is not 

commonly used in controller design. 

 

 
Figure 80:  TDOF H∞ IMC design configuration 
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Modification to the design procedure and simulation of the benchmark system 

Upon examining the work done by Murad et al. 20 it was noted that the 

performance of the TDoF H∞ IMC controller was exceptional.  In fact the system 

response was so good it was given extra scrutiny.  Upon further examination it was noted 

that the systems bottoms composition was instantly responding (if ever so slightly) to set 

point changes in the overhead.  According to our process model there should be a 

minimum delay of three minutes (due to process delays) before any change in the 

bottoms composition is observed.  Eventually the design was reproduced and the root 

cause of this discrepancy was determined to be modeling error brought about by using 

approximations of approximations to represent time delays in the system.  First order 

pade approximations were made of the time delays in the model, and then discrete 

approximations were made of the pade approximations.  The discrete model was then 

used to synthesize the controller AND to run simulations to test that controller.  The 

impact of discretizing the first order pade approximation can be seen in Figure 81.  This 

figure displays the discretization of a first order response with a dead time.  The final 

approximation has an all pass element; at time zero the gain of the response is slightly 

negative.  This dynamic is negligible for a P+I controller because the control law is too 

simple to take advantage of this dynamic, an H∞ controller with 28 states like the one 

developed by Murad et al. 20 is a different story, however.  These seemingly negligible 

dynamics coupled with the complexity of the controller and the questionable use of the 

approximation of the model in simulations form the reason the TDoF H∞ IMC controller 

functions almost as if the system was under a full frequency decoupler.   

Two corrective actions were made to method used in this study.   
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First, controllers will be designed in the Laplace domain, then after the controller 

designs are complete they will be discretized.  Murad et al. 20 defined the frequency 

decoupler, the shaped plant, and the reference trajectory in the Laplace domain, then 

discretized them, and then designed the controller.  This splits the design procedure up 

between two domains (s and z), and adds error into the design that is inherent when 

approximating systems from one domain to the other.  By designing the controllers 

entirely in the Laplace domain this source of error will be mitigated.   

Second, the nominal model defined in Equation ( 95) will be used without 

approximation during simulations.  Any approximations that need to be made to design 

controllers should not affect the process model.  When Wood and Berry first modeled the 

binary distillation column simulation techniques often required the use of pade 

approximations of time delays, however, modern software packages can easily simulate 

time delays without using approximations.  As a result, first order pade approximations 

will be used for controller design, but during simulation runs process time delays will not 

be approximated.  This will introduce process/model mismatch into the design.  Higher 

order approximations can be used, but it is more beneficial to this study to examine worst 

case scenarios. 

As a side note the original data published by Wood and Berry suggests that 

approximated time delays may describe the process better than true time delays.  Based 

on this information, running simulations against approximated models was considered, 

but in the end it was determined to be of greater interest to see how controller designs 

performed in systems with unapproximated time delays.   
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Figure 81:  The step response of a first order system with the pade approximation of a 
3 minute delay, and the discretization of that response. 
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Design Procedures:  Shaping the Process 

As we learned in the previous chapters, we would like the shaped plant, Gs, to 

exhibit high gains at low frequencies, a roll off rate of approximately 20dB/decade at the 

desired bandwidth, and integral action to enhance low frequency performance.  Generally 

this requires a preweight in the shape of a P+I controller.  This makes it very tempting to 

use the P+I controller designed by Wood and Berry as our preweight, but due to stability 

conditions of an IMC scheme integral action must be approximated.  In deference to this 

restriction the initial weighting function, Ŵ, that was chosen can be seen in Equation 

( 99).  To keep the various controllers used in this study similar, approximate integral 

action will be used for both the TDoF H∞ IMC controller and the ODoF H∞ controller 

that will be used in the PEC controller.  This approximation adds an additional state to 

the overall PEC controller which is not needed, but will be removed with the application 

of model reduction techniques after the controller is designed. 

 
( )( )

^

26

1W I
s 10 s 30−

=
+ +

 ( 99) 

The final step in determining the preweight is to align GmŴ at the desired closed 

loop bandwidth of the system, where Gm is the process model.  This will be done by 

approximating the real inverse of the system at a specified frequency, the closed loop 

bandwidth of the system.  The alignment term Ka is in effect a constant decoupler.  The 

concept is similar to that of a steady state decoupler.  The decoupling frequency was 

chosen to be 0.3 rad/sec after examining the singular values of the original process.  The 

final preweight is then chosen to be W1=ŴKa.  The singular values of the original and 



186 

shaped plant are displayed in   Figure 82.  By examination we note that all the desired 

characteristics of the shaped process were achieved. 

 

Decoupling and TDoF Processes 

The use of a constant decoupler to define the shaped process brings up the as of 

yet unexplored question of how decoupling could work in the PEC structure.  There 

currently is not way to implement decoupling in a two-degree-of-freedom fashion using 

standard two-degree-of freedom techniques.  Any decoupler that is used for feedback 

must also be used for tracking and vice versa.  The independence of design that is 

allowed by partition error control also allows a designer the option of using different 

decoupling techniques for feedback and tracking control.  The question then becomes 

under what circumstances would a designer desire to implement different decouplers for 

tracking and regulatory control?  The obvious answer to that question is when the 

implementation of full decoupling is restricted by the uncertainty found in all real 

systems.  Take for instance the following three common restrictions.  The theoretical 

application of full decouplers relies on the exact cancellation of system dynamics.  This 

cancellation translates RHP zeros into RHP poles resulting in unstable decouplers.  

Similarly systems with erroneous models can lead to similar stability issues.  The last 

restriction may come from the realizability of system dynamics, for instance the designs 

for some systems result in a decoupler with a predictive element.  
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  Figure 82:  Singular values of the original and shaped process. 
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All of these restrictions are mathematical in nature, and all of the restrictions 

come from the implementation of these theories on real systems.  The partitioning loop is 

not a real system, it is a mathematical abstraction of the process.  The partitioning loop 

may allow a relaxing of the restrictions placed on decouplers, so that tracking responses 

can benefit from reduced loop interactions.  A detailed study of this topic will be left for 

future research.  However, before we continue the design of the controllers for the binary 

distillation column, I would like to suggest a specific application to prod the imagination 

of the reader.  

The system defined in Equation ( 100) only contains time delays.  It is impossible 

to fully decouple this system because the theoretical decoupling design relies on the 

ratios of G12/G11 and G21/G22.  In this case the G21/G22 would be predictive and 

unrealizable.  Inside the partitioning loop a time delay could be used to add a 2 minute 

delay to the U1 control signal.  In effect this would shape the process, slowing down the 

tracking response of the y1 process variable by 2 minutes.  For the shaped process, 

G21/G22 would no longer be predictive and a full decoupler could be implemented for 

tracking.  This would result in a slower yet smoother tracking response.  Such a response 

may be desirable in continuous chemical processing where set point changes are not 

frequent and are often planned well in advance.  The regulatory response of this system 

would not be decoupled because it would be undesirable to add a delay to a disturbance 

rejection response. 
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Benchmark control:  TDoF H∞ loop-shaping Internal Model Control (IMC) 

With the shaped process determined, the final design element for the TDoF H∞ 

IMC controller is the choice of a reference trajectory, Tref.  Murad et al. 20 selected the 

trajectory shown in Equation ( 101).  No justification for this selection was given.   

 ref 2
1T I

1.43s 1
=

+
 ( 101) 

There are some note-worthy characteristics.  First, Tref is specifying that there should be 

no interactions between process outputs.  Second, there is no accounting for the time 

delays in the system.  We know there will be at least a 1 minute delay on the overhead 

tracking response, and a 3 minute delay on the bottoms tracking response.  The ability to 

set unrealistic and arbitrary reference trajectories in TDoF H∞ control is something that 

we have seen in the other applications that have been explored.  With simpler systems 

this was a minor inconvenience; however, with the addition of non-minimum phase 

dynamics the design choices for shaping the tracking responses are becoming limited.  It 

would be possible to specify time delays in these trajectories, but in order to synthesis the 

controller those trajectories would have to be approximated.  Low order approximations 

could introduce an inverse response in the reference trajectory, while higher order 

responses can have a significant impact on the size of the controller.  Couple these 

drawbacks with an inability to directly specify actuator usage and it becomes apparent 

that the ability to utilize the second degree of freedom is limited.   

Ignoring a one minute delay on a response that will take 10 to 15 minutes is not a 

bad assumption.  Leaving it out of the reference trajectory for the overheads increases the 

driving force on overhead tracking during the H∞ minimization, in that same vain, leaving 

the time delay out of the reference trajectory for the bottoms increases the driving force 
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on the bottoms during the H∞ minimization process.  With this understanding, it can be 

predicted that the response to setpoint changes in the bottoms composition will be more 

aggressive than corresponding overhead changes, because the reference trajectory of the 

bottoms is much more unrealistic than the overheads. 

The sub-optimal controller was designed through gamma iteration.  The controller 

along with the internal model was discritized, then a balanced residualization was then 

performed on the discrete controller reducing the overall number of states in the 

controller from 25 to 15.  Negligible residuals were found when the frequency responses 

of the original and reduced controllers were compared over four decades around the cross 

over frequency of the system. 
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PEC Control Design 

With the shaped process determined, the ODoF H∞ loop shaping controller was 

designed through gamma iteration.  The sensitivity response was plotted for the ODoF 

controller to help with weight selection for the design of the mixed sensitivity controller 

in the partitioning loop as shown in Figure 83.  The form of the performance weight and 

the tuning parameters chosen are displayed in Equation ( 102).  The default values of 2 

and 1e-4 were applied to the weighting parameters Mi and Ai respectively.  The crossover 

frequency of the process, 0.3 rad/sec, was used as the bandwidth requirement ωb1.  ωb2 

was chosen as 0.1 rad/sec to match the ODoF sensitivity response. 
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The form of the actuator weight and the tuning parameters chosen are displayed in 

Equation ( 103).  The default values of 2 and 1e-4 were applied to the weighting 

parameters Mui and Aui respectively.  The crossover frequency of the process, 0.3 rad/sec, 

was used as the bandwidth requirement ωui.  The use of an actuator weight of this form 

will limit high frequency actuator use in the system. 
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The H∞ mixed sensitivity controller was designed by gamma iteration.  

Performance evaluations were then conducted on the loop shaping and mixed sensitivity 

controller to assure adequate performance before assembling the final PEC controller.  

During these evaluations it was determined that the loop shaping controller used for 

feedback was taking aggressive control action, a desirable trait for nominal disturbance 

rejection, but not for robust disturbance rejection.  To correct this characteristic a post 

weight W2 was introduced to the shaped plant.  Recalling from our previous experience 

that post weight values greater than one emphasize disturbance rejection by loosening 

restrictions on actuator usage, we select a post weight less than one to tighten up 

restrictions on actuator usage.  A post weight of 0.5*I2 was added to the shaped plant and 

the loop shaping controller was resynthesized.  Performance evaluations of the new 

controller were adequate.   

The final PEC controller, which contained the H∞ loop shaping controller for 

feedback control and the H∞ mixed sensitivity controller with an internal model for 

tracking control, was assembled and discritized resulting in a 24 state controller.  A 

balanced residualization was then performed on the discrete controller reducing the 

overall number of states in the controller from 24 to 12.  Negligible residuals were found 

when the frequency responses of the original and reduced controllers were compared over 

four decades around the cross over frequency of the system. 
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Figure 83:  Frequency response of the sensitivity function of the ODoF H∞ controller 
plotted with the inverse performance weight WP. 

 

 

 

10-2 100

From: In(2)

10-2 100
-70

-60

-50

-40

-30

-20

-10

0

10
From: In(1)

S Response, Overhead
1/Wp1

S Response, Bottoms
1/Wp2

Bode Diagram

Frequency  (rad/sec)

M
ag

ni
tu

de
 (d

B
)



194 

Simulation Results and Controller Comparison 

The nominal performance of the TDoF IMC and PEC controllers in response to a 

0.75% increase in the setpoint of the overhead can be seen in Figure 84.  Actuator usage 

for the responses can be seen in Figure 85.  Several observations can be drawn from these 

figures.  First, the TDoF IMC controller has a more aggressive tracking response.  The 

overhead response of the TDoF IMC controller has a rise time of 8 minutes, while the 

PEC controller has a rise time of 11 minutes.  This is not surprising seeing as the 

reference trajectory used in the TDoF IMC design has a rise time of 4 minutes.  Second, 

the bottoms response is also aggressive.  The oscillatory shape of the bottoms response 

and the roughness seen in the overhead response are the results of having aggressive 

control with modeling error.  Recall the controllers were designed with a first order Pade 

approximation, while the simulated process used true time delays.  The approximated 

dynamics brought about during controller synthesis are now reemerging as modeling 

error in the performance analysis, and as with all systems, performance and robustness 

are conflicting objectives.  Very aggressive control will make very aggressive mistakes 

when modeling error is present.  The PEC response set performance objectives based on 

the bandwidth of the system.  This approach has resulted in a slower more stable response 

with a settling time to a nominal setpoint change in the overheads of 30 minutes.  
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Figure 84:  The step response to a 0.75% change in overhead composition for PEC 
and TDoF IMC control 
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Figure 85:  The actuator response to a 0.75% change in overhead composition for 
PEC and TDoF IMC control. 
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The nominal performance of the TDoF IMC and PEC controllers in response to a 

0.75% increase in the setpoint of the bottoms can be seen in Figure 86.  The TDoF IMC 

controller response contains some overshoot, but on the whole both, the IMC and PEC 

controllers were able to track the bottoms set point with minimal impact on the overheads 

composition.  Both controllers were found to have an acceptable response to bottoms 

changes. 

Figure 87 displays the system response to a 0.34 lb/min increase in the feed flow 

rate to the column.  The TDoF IMC controller exhibits a faster recovery time than the 

PEC controller for both the overhead and bottoms composition.  The PEC response is, 

however, smoother.  Since the regulatory response of these controllers were both based 

on the same loop shaping techniques, it is safe to conclude that the enhanced performance 

of the TDoF IMC controller is a direct result of the interaction between tracking and 

regulatory considerations during the H∞ optimization.  In this case the interaction 

between the degrees-of-freedom during the optimization process has enhanced this 

particular portion of the response. 

All three nominal responses have similar results.  Both controllers were able to 

meet the nominal design criteria with responses that approach steady state within 30 

minutes.  The TDoF controller exhibits a faster response with more controller action, 

while the PEC response is smoother.  Figure 88, Figure 89, and Figure 90 detail the 

robust performance of the controllers for the perturbed process.  Two robust responses 

were generated.  Using the parametric uncertainty outlined in Table 12 the first response 

utilized the maximum time delays for each transfer function, while the second response 

utilized the minimum time delays for each transfer function.  Both controllers have a 
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stable response, satisfying the robust stability requirement.  The aggressive nature of the 

TDoF IMC controller is producing a highly oscillatory response under the maximum time 

delay conditions. 

With additional tuning the responses of both of these two-degree-of-freedom 

controllers could be modified to obtain nearly identical results for both the nominal and 

perturbed system.  The fine tuning procedures for these controllers would vary 

significantly, however.  The PEC system provides the designer with independently 

tunable parameters for the performance of the system, (Wp, W1) as well as the actuator 

usage of the system, (Wu, W2).  TDoF H∞ IMC control provides a conceptually simpler, 

but less intuitive tuning process.  The use of the reference trajectory as a tunable 

parameter has the potential to provide the desired response, the designer is forced to use 

one tunable parameter to meet tracking and actuator goals. 
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Figure 86:  The step response to a 0.75% change in bottoms composition for PEC and 
TDoF IMC control 
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Figure 87:  The regulatory response to a 0.34 lb/min change in the column feed rate 
for PEC and TDoF IMC control. 
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Figure 88:  The step response of the perturbed process to a 0.75% change in overhead 
composition for PEC and TDoF IMC control.  The solid line represents 
the process with the minimum time delays.  The dotted line represents the 
process with the maximum time delays. 
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Figure 89:  The step response of the perturbed process to a 0.75% change in bottoms 
composition for PEC and TDoF IMC control.  The solid line represents 
the process with the minimum time delays.  The dotted line represents the 
process with the maximum time delays. 
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Figure 90:  The regulatory response of the perturbed process to a 0.34 lb/min change 
in the column feed rate for PEC and TDoF IMC control.  The solid line 
represents the process with the minimum time delays.  The dotted line 
represents the process with the maximum time delays. 
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Conclusions  

Both PEC and H∞ IMC control were able to utilize a second degree-of-freedom to 

meet the design criteria for the process.  The PEC design procedure, though more 

complex then its TDof H∞ IMC counterpart, was able to leverage the feedback design and 

default values for tunable parameters to achieve a good initial performance with little 

design effort.  TDof H∞ IMC controller, on the other hand, demonstrated a favorable 

interaction during the H∞ optimization which enhanced the disturbance rejection response 

of the system, and a more arbitrary yet simpler tracking design procedure.  In the end 

both controllers were able to use model reduction techniques to obtain reasonably sized 

controllers for the problem. 
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CHAPTER VII  

 

CONCLUSIONS:  A SUMMARY OF RESULTS 

 
 

This research developed the theory of Partition Error Control.  An extensive 

literature and patent search was conducted to verify the novelty of the PEC system and to 

find comparable control structures.  During this search the novelty of PEC was confirmed 

and two competitive two-degree-of-freedom designs were identified: Inverse model 

prefilters, and H∞ two-degree-of-freedom control.  The designs of both of these systems 

use a prefilter and are based on shaping the reference signal so the feedback controller 

exhibits the desired tracking response.  Inverse model prefilters utilize an inverse model 

to achieve this result, while H∞ two-degree-of-freedom control parameterized the prefilter 

based on the solution to an H∞ norm minimization problem.  Partitioned Error Control 

was compared to these techniques in a SISO setting to help provide insight into the 

workings of these various controllers in simplified control problems.  Once the benefits 

and limitations of the various systems were understood, the research was expanded into a 

MIMO setting; first by examining controller design for an inverted pendulum on a cart, 

then by examining controller design for a binary distillation problem in the discrete 

domain.  These classic systems were chosen because they provided a cross section of 

process dynamics and because competitive two-degree-of-freedom designs were already 

explored by other researchers for these systems.  The inverted pendulum represents a 

single input, multiple output system.  The challenges presented by controlling two 

outputs with one manipulated variable make the inverted pendulum a standard system for 
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the study of two-degree-of-freedom control.  The binary distillation column was chosen 

because it included time delays (non minimum phase dynamics), and required a discrete 

domain controller. 

Partitioned Error Control uses a process model to partition the error signal from 

the process into that which is caused by reference changes and that which is from other 

sources.  Once the error signal is partitioned, two independent controllers can be designed 

to address regulatory and servo problems separately.  Several advantages were found to 

this technique when compared to other two-degree-of-freedom controllers.  First, it was 

demonstrated that PEC systems share the same respond to modeling error as other two-

degree-of-freedom controllers when they are designed on the same basis.  Second, the 

Approach was found to be more intuitive and flexible.  Third, information about the 

response of the feedback controller can be used to reduce the design effort of the 

partitioning controller.  Fourth, PEC can be applied to a wider variety of systems then 

inverted model prefilters.  The main disadvantage of PEC was found to be the inherent 

size of the controller.  By using an internal model and two independent controllers, PEC 

controllers have a larger number of states then competitive systems.  This disadvantage 

was countered through the successful use of model reduction techniques. 

The effect of modeling error on the PEC system was studied in detail.  It was 

shown that the response of the system to error was governed by the feedback control law.  

However, performance and robustness objectives are always at odds.  Therefore as the 

aggressiveness of the nominal tracking response increased, the robust stability of the 

tracking response decreased.  This relationship is the same for all two-degree-of-freedom 
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controllers.  As such PEC has neither superior nor inferior robustness when compared to 

other systems. 

PEC allows for the independent design of servo and regulatory controllers.  All 

other two degree of freedom techniques shape the reference trajectory so that the 

feedback controller exhibits the desired tracking response.  This inextricably links their 

servo response to their regulatory response.  Since PEC controllers are independent they 

can be chosen for their performance or robustness as well as for desirable tuning 

parameters.  As a result, PEC designs are more intuitive and more flexible then both 

inverted model prefilters and H∞ two-degree-of-freedom control.  This is particularly 

evident when it is realized that standard feedback techniques can be applied directly to 

the controller within the partitioning loop.  In comparison the use of a reference trajectory 

as a tunable parameter by H∞ two-degree-of-freedom controllers was found to be a simple 

but limiting means of obtaining two degree of freedom control.  Designers must over-

specify the reference trajectory, and often neglect significant dynamics because fine 

tuning procedures can be bogged down with additional complexity. 

During the design of H∞ Mixed Sensitiviy/H∞ loop shaping PEC systems, it was 

demonstrated that information about the response of the feedback controller could be 

used to assist in the design of the partitioning controller, significantly reducing the overall 

design effort.  This design synergy generated superior initial nominal tracking responses 

for both the inverted pendulum and the binary distillation column when compared to the 

initial H∞ two-degree-of-freedom design. 

PEC control is applicable to a wider variety of systems than other two-degree-of-

freedom techniques.  Prefilter design relies on inverse models; however, not all systems 



208 

are invertible.  This limitation discourages the use of inverse model prefilters on non 

minimum phase or even multivariable problems.  Likewise, two-degree-of-freedom H∞ 

controllers are limiting in that they dictate the use of H∞ control.  It has been 

demonstrated that PEC uses simple feedback structures and can accommodate any 

controller type. 

Along with the flexibility to use many different types of controller, PEC also 

inherits the shortcomings of controllers it uses.  One particular shortcoming of H∞ control 

is that the controllers often contain more states then the process model.  This problem 

was exacerbated by using two H∞ controllers simultaneously in the PEC structure, one for 

servo and the other for regulatory control.  Model reduction techniques were successfully 

applied to the overall PEC controller in both multivariable systems examined.  The size 

of the reduced controller was roughly equivalent to the size of the H∞ two-degree-of-

freedom controllers examined. 

PEC provides a viable alternative to current two-degree-of-freedom techniques, 

which has greater breadth of application and flexibility. 
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CHAPTER VIII  

 

FUTURE RESEARCH 

 
 

The tremendous adaptability of Partitioned Error Control opens the system up to a 

wide variety of research possibilities.  Of particular interest is that designers can now 

implement control strategies for tracking in a nominal, environment with full access to 

model outputs.  Three ideas that scratch the surface of this new environment will now be 

presented. 

 

Decoupling 

There currently is not way to implement decoupling in a two-degree-of-freedom 

fashion using standard two-degree-of freedom techniques.  Any decoupler that is used for 

feedback must also be used for tracking and vice versa.  The independence of design that 

is allowed by partition error control also allows a designer the option of using different 

decoupling techniques for feedback and tracking control.  The question then becomes 

under what circumstances would a designer desire to implement different decouplers for 

tracking and regulatory control?  The obvious answer to that question is when the 

implementation of full decoupling is restricted by the uncertainty found in all real 

systems.  Take for instance the following three common restrictions.  The theoretical 

application of full decouplers relies on the exact cancellation of system dynamics.  This 

cancellation translates RHP zeros into RHP poles resulting in unstable decouplers.  

Similarly systems with erroneous models can lead to similar stability issues.  The last 
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restriction may come from the realizability of system dynamics, for instance the designs 

for some systems result in a decoupler with a predictive element. 

All of these restrictions are mathematical in nature, and all of the restrictions 

come from the implementation of these theories on real systems.  The partitioning loop is 

not a real system, it is a mathematical abstraction of the process.  The partitioning loop 

may allow a relaxing of the restrictions placed on decouplers, so that tracking responses 

can benefit from reduced loop interactions. 

 

Full Information Control 

The second benefit of IMC control is that it can be used to determine the present 

dynamic state of the process, states that may be otherwise unobservable.   

Control based on the present dynamic state of a process (not just observable 

states) falls into a category called full information control.  This additional information 

can be accessed readily in the internal model used inside the partitioning loop.  The 

benefit would be that in the nominal environment of the partitioning loop any 

disturbances would not need to be measured in order to estimate the states of the process.  

This would open up the application of full information control to a much wider category 

of systems.  The down side to this implementation is that the full information controller 

would only be responsible for nominal servo performance.  Disturbances would be 

handled without the benefit of full information.  This application may be more beneficial 

for ill-conditioned processes, but that is a matter for future investigation. 
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Smith Predictor Adaptation for Batch Processing 

Batch processes present a difficult set of dynamics for control problems.  In 

addition to all the dynamics present in continuous systems, batch systems are 

continuously moving away from the setpoint.  Inversion techniques are often unavailable 

due to these dynamics.  Large batch systems often have significant time delays as well, 

complicating the issue further.  One solution to this problem would be to use a smith 

predictor to separate out the dynamics of the system model from the time delays.  This 

would allow the controller to take swifter action.  However, any error in the estimate of 

the time delay would cause a slight phase shift in the process models response that would 

also be handled swiftly.  In this case it may be advantageous use a slower response to 

feedback error so as not to over react to small phase differences in the process and model 

outputs.  We have just identified a performance benefit from a swift servo response and a 

slower regulatory response for a class of systems that current two-degree-of-freedom 

controllers can not be readily applied to.  The internal model in the partitioning loop can 

be split into a dynamic portion and a time delay portion with ease.  The dynamic portion 

would provide a feedback signal for the partition loop controller while the output of the 

time delay portion of the model would be used to compare against the actual process 

output to generate an error signal for the feedback controller. 
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