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CHAPTER 1 

 

PHYSIOLOGY INTRODUCTION 

 

Introductory Comments 

 This dissertation investigates the protein signaling chain in the dopamine-

mediated negative feedback pathway of pancreatic β cells. In the presence of 

dopamine, a reduction in the influx of calcium occurs, mediating the inhibition of glucose 

stimulated insulin secretion. The signaling cascade that occurs after stimulation of the 

dopamine receptor, causing calcium channels to close, is currently unknown; however, 

it can be hypothesized from other dopamine receptor pathways which signal through the 

Gβγ complex to activate G-protein coupled inwardly-rectifying potassium channels 

(GIRK). GIRK activation causes the membrane to become hyperpolarized which causes 

voltage gated calcium channels to close. I hypothesize that activation of GIRK, through 

the Gβγ complex, occurs after stimulation of the dopamine receptor in β cells. To test 

this hypothesis, I measured protein interactions with fluorescence fluctuation 

spectroscopy (FFS).  FFS is a single molecule imaging technique capable of detecting 

diffusion rates and heteromerization between proteins. This first chapter introduces the 

anatomical and physiological background essential to understanding the biological 

question.  
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Figure 1 Anatomy of pancreas and its relation to duodenum and arteries. (from (1)) 

 

Physiology of Endocrine Pancreas 

Pancreas Physiology 

 The pancreas is an organ located behind the stomach, with a portion touching 

the first part of the small intestine, or duodenum as illustrated in figure 1. It performs two 

main functions, aiding digestion and regulating blood glucose (2–5). While one organ, 

the pancreas is made up of two portions, an exocrine and an endocrine portion. The 

exocrine pancreas, 95% of the pancreas, produces enzymes which aid in digestion, 

such as proteases to digest proteins, amylase to digest sugars, and lipase to digest fat 

(6).  These digestive enzymes are released into ducts which join to form the pancreatic 

duct and then onto the ampulla of Vater which releases the digestive enzymes into the 

duodenum (2, 3). The endocrine pancreas is composed of small micro-organs called 
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islets of Langerhans. The cells composing the islets are responsible for the production 

and secretion of hormones by the pancreas, including insulin and glucagon. The islets 

of Langerhans, while dispersed throughout the pancreas, are highly vascularized 

allowing for efficient release of hormones into the arteries (7). 

Islets of Langerhans 

 The Islets of Langerhans, hereafter referred to as islets, are micro-organs 

consisting of α, β, δ, and pancreatic polypeptide (also labeled γ cells), and ε cells (8). 

These cells produce and secrete glucagon, insulin, somatostatin, pancreatic polypeptide 

hormone, and ghrelin, respectively, into the bloodstream. While their specific cell 

functions are conserved, the makeup and distribution of each cell type of murine and 

human islets differ. Murine islets, commonly used for lab studies, are composed of 

roughly 80% β, 15% α cells and less than 5% of δ, γ, and ε cells (9, 10). They are 

formed by a central cluster of β cells surrounded by a layer of α and δ cells (11). In 

comparison, human islets are composed of roughly 60% β cells, 30% α cells, and 10% 

of δ, γ, and ε cells (12, 13). Previously, it was thought that these cell types were 

distributed homogenously throughout the islet; however, the current structure, accepted 

by the community, is more complex. A human islet is now considered to be structured 

as a cluster of small cell groupings, each of which is composed of a collection of β, α, δ, 

γ, and ε cells. Thus, together these small clusters of islet cell groupings form the whole 

human islet (10, 14)The differing cell compositions are seen after staining an islet for 

glucagon (α cells), insulin (β cells), and somatostatin (δ cells) as shown in figure 2. In 

addition to composition, human and mouse islets differ also in their size; a human islet 

is 50 ± 29 µm in diameter versus a wild-type mouse islet which measures 116 ± 80 µm 
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(10). While murine and human islets do have differences, they are similar in how they 

regulate blood glucose homeostasis (10)  

 

Figure 2 Insulin, glucagon, and somatostatin staining of islet from mouse (A) and human (B). In 
the mouse islet, a β-cell core is surrounded by α and δ cells. In contrast, the human islet is 

composed of small clusters of cells grouped together to form the larger islet. (from (11)) 

 

 The importance of islet structure is further seen when cell to cell communication 

is disrupted, via gap junctions. Gap junctions are small channels between cells which 

allow the passing of small molecules and ions. Through gap junctions, cells are able to 

equilibrate membrane potential between neighboring cells.  Studies performed on 

intracellular calcium levels show islets have an oscillatory response pattern in response 

to high glucose. To achieve a complex response pattern like this requires high levels of 

coordination (15). The loss of connexin 36, a gap junction protein found in islets, 
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disrupts the oscillatory response (16–19). The importance of islet architecture is 

additionally shown when islet cells are dispersed changing the amount of insulin and 

glucagon secreted compared to whole islets (9, 20–22).  

 In the pancreas, islets are highly vascularized with separate capillaries for 

endocrine and exocrine functions (7). Endocrine capillaries have thin walls and over 

70% more fenestrae in the capillary walls than exocrine capillaries, facilitating rapid 

molecule exchange (7).  Additionally, islets are highly innervated by parasympathetic, 

sympathetic, and sensory nerves (9, 10, 23). Parasympathetic stimulation increases the 

secretion of insulin, glucagon, somatostatin, and pancreatic polypeptide from islet cells 

(23–28). For example, parasympathetic nerve stimulation is responsible for the steep 

increase in insulin at the start of a meal. Thus, insulin can be increased before an 

increase in blood glucose is detectable. Parasympathetic nerves have likewise been 

shown to control glucagon secretion during hypoglycemia (29–31).  In contrast to 

parasympathetic stimulation, sympathetic neurons also control islet function by inhibiting 

insulin secretion and stimulating glucagon secretion. For example, norepinephrine is 

known to block insulin secretion and activate glucagon secretion (23, 30, 32). 

Furthermore, the neuropeptides released from neurons can directly activate G-protein 

coupled receptors (GPCRs) on the membrane. Acetylcholine, for instance, stimulates β 

cells to secrete insulin by directly activating the muscarinic acetylcholine receptors (23). 

Neural stimulation provides a secondary regulation of islet secretion to tightly control 

islet functions beyond blood glucose levels.  
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Blood Glucose Regulation 

 After a meal, blood glucose increases stimulating pancreatic β cells to secrete 

insulin. The presence of insulin causes cell tissues including adipose, muscle, and liver 

to uptake glucose in order to lower blood glucose levels (33, 34). In periods of 

starvation, or low blood glucose, pancreatic α cells secrete glucagon into the 

bloodstream. Glucagon acts mainly on the liver to stimulate glycogenolysis, the 

breakdown of glycogen to glucose. Increased production of glucose returns blood 

glucose to normal levels (33–35). While other factors additionally help regulate insulin 

and glucagon secretion, blood glucose concentration is the central driver illustrated in 

figure 3. Blood glucose severely below normal, hypoglycemia, and severely above 

normal, hyperglycemia, are severe health concerns (34). Through the secretion of 

insulin and glucagon, the body is able to achieve a narrow range of glucose in the 

bloodstream.  

 

Figure 3 Diagram showing blood glucose regulation. Adapted from Pearson Education, Inc. 2004 
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 Insulin and glucagon do not work independently; but concurrently to achieve 

normal blood glucose levels. To achieve glucose homeostasis faster after a meal, 

insulin secretion is increased and glucagon secretion is decreased. Conversely, during 

starvation glucagon secretion is increased and insulin secretion is decreased. Figure 4 

shows the levels of insulin and glucagon in the plasma and their effect on blood glucose 

levels after a meal. As blood glucose rises the amount of insulin secreted also 

increases, followed shortly thereafter by a decrease in glucagon secretion. Both the 

increase in insulin and decrease in glucagon allow the body to finely regulate the 

amount of glucose taken into the tissue. Thus, too much glucose taken into the tissue, 

resulting in hypoglycemia, does not occur. As blood glucose begins to decrease, insulin 

and glucagon return to their resting levels (36).  

 

Figure 4 Plasma glucose, insulin, and glucagon levels after a meal. (from (36))  
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Diabetes Mellitus 

 Diabetes Mellitus is characterized by chronic hyperglycemia, or high blood 

glucose. The name diabetes mellitus comes from syphon and sweet, noting the large 

amount of urination and high concentration of sugar in the urine of those with 

uncontrolled diabetes (2). Traditionally, diabetes has been divided into two broad 

classes, which are often thought of as different diseases as they are the result of 

different causes (2, 37). 

Type 1 

 Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder where the 

body attacks β cells, destroying insulin production (37, 38). T1DM is most often 

diagnosed in children and young adults and is therefore often termed juvenile-onset 

diabetes although diagnosis can be at any age (37, 38). Since the body’s sensitivity to 

insulin is unchanged in T1DM, exogenous insulin is used to manage blood glucose 

levels (32).   

Type 2 

 In contrast to T1DM, type 2 diabetes mellitus (T2DM) is a chronic metabolic 

disorder characterized by insensitivity to insulin due to insulin resistance (39, 40). While 

not always the reason, increased caloric intake and decreased exercise, together, are 

the leading cause of insulin resistance. To compensate for the body becoming resistant 

to insulin, β cells begin to overproduce insulin to try to maintain normal blood glucose 

levels resulting in hyperinsulinemia. Continued stress on the β cells trying to produce 

large amounts of insulin leads to exhaustion and eventually β cell death (39, 41, 42). 
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The combination of decreased insulin sensitivity and insufficient production of insulin 

results in chronic hyperglycemia or T2DM.  

 Treating T2DM with insulin alone is sub-optimal as the body is insulin resistant. 

Therefore, one of the most effective therapies is weight loss and a reduced 

carbohydrate diet (40). Additionally, both oral and injectable pharmacological therapies 

have been developed to help manage T2DM. Meglitinides and sulfonylureas work by 

stimulating the release of insulin and are therefore often taken prior to meals  (43). 

Thiazolidinediones work by improving the body’s sensitivity to insulin in muscle and fat 

tissue and like biguanides (Metaformin) also decrease the amount of glucose produced 

by the liver (43, 44). Dipeptidyl-peptidase 4 (DPP-4) inhibitors work by inhibiting the 

breakdown of incretins which in turn stimulates the release of insulin and inhibits the 

release of glucose from the liver (45). Furthermore, alpha-glucosidase inhibitors reduce 

the breakdown of starches and sugars while sodium glucose transporter 2 (SGLT2) 

inhibitors block glucose from bring reabsorbed in the kidneys (46, 47). Last, amylin 

mimetics and incretin mimetics can be injected into the body to stimulate the release of 

insulin. While the list of treatments for T2DM is lengthy, each of these treatments is not 

without side effects and only serve to manage blood glucose levels, not treat the 

disease. Thus, further understanding of insulin regulation leading to better T2DM 

treatments is desirable. 
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G Protein Coupled Receptor Regulation of Insulin 

Introduction 

 G protein-coupled receptors (GPCR) are the largest family of membrane proteins 

with over 800 GPCR sequences being found in the human genome (48). Their function 

is to transmit signals outside the cell inwards so that the cell may respond appropriately 

(49).  Due to their ability to transmit signals into the cell, GPCRs are targeted for many 

therapeutics in a variety of ailments (50). It is estimated that fifty percent of current 

clinical drugs target a GPCR (51, 52). The ligands of GPCRs vary broadly, including 

ions, odorants, peptides and proteins, lipids, organic molecules (nucleotides, amines, 

fatty acids), and photons (48, 53). Just as varied as their ligands, the functions of 

GPCRs range from embryonic development, memory, vision, taste, and energy 

homeostasis to name a few (8, 54). Due to their diversity, two main classification 

systems exist. One methodology is the GRAFS system which groups receptors by a 

phylogenetic system: rhodopsin, adhesion, frizzled/taste, glutamate, and secretion (48). 

The second methodology is based on sequence homology and like-function forming 6 

classes, A-F: rhodopsin-like, secretion, metabotropic glutamate, fungal mating 

pheromone, cyclic AMP, and frizzled/smoothened (54). 
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Figure 5 Structure of GPCR (A) folded (B) (from (55)) 

 

G Protein-Coupled Receptor Structure 

 Characterized by their unique structure, GPCRs include seven hydrophobic 

transmembrane components structured in a counterclockwise arrangement to form a 

receptor. The transmembrane portions are between 20-28 amino acids and form α 

helices perpendicular to the membrane (56). The N terminus is located in the 

extracellular space, while the C terminus is intracellular (57). Three extracellular and 

three intracellular loops connect the seven transmembrane components as shown in 

figure 5. The extracellular loops and amino terminus are the most un-conserved 

sequence in GPCRs, contain glycosylation sites, and serve to control receptor actions 

(52, 56). A disulfide bond between the cysteines in the second and third extracellular 

loops promotes folding of the GPCR and regulates binding affinity (56). Conversely, the 

intracellular loops serve as binding sites for proteins including kinases and scaffolding 

proteins. The most conserved regions of GPCRs are the second and third intracellular 

loops which are known to be the binding sites of heterotrimeric G-proteins (58). Upon 



12 
 

the selected ligand binding, a conformational change of the receptor occurs, changing 

which amino acids can interact with proteins inside the cell (50, 57, 59). For efficient 

signal transduction, GPCRs exist in a dynamic equilibrium between inactive and active 

states (50, 59). Activation of the GPCR allows heterotrimeric G-proteins to disassociate 

where they in turn activate an intracellular signaling cascade.  

Heterotrimeric G-Proteins 

 Furthermore, GPCRs interact with heterotrimeric guanine nucleotide binding 

proteins, or G-proteins, to signal changes within the cell (48, 58). A heterotrimeric G-

protein is formed from three subunits: Gα, Gβ, and Gγ. In the inactivate state, the Gα 

subunit binds to both the GPCR and the Gβ subunit. The Gβ subunit is then bound to the 

Gγ subunit which is anchored to the membrane. The Gβγ functions to regulate Gα by 

increasing the affinity of Gα for GDP. The Gγ subunit additionally serves to enhance the 

interaction between the Gα subunit and the GPCR. When a ligand binds, a 

conformational change of the GPCR occurs and a guanosine diphosphate (GDP), 

bound to the Gα, is exchanged for a guanosine triphosphate (GTP).The bound GTP 

changes the conformation of the Gα causing it to disassociate from the GPCR and Gβ. 

The GTP-Gα initiates signaling of the cyclic AMP pathway while the Gβ and Gγ subunits 

stay attached as the Gβγ complex and signal to downstream targets, as shown in figure 

6 (60, 61). 
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Figure 6 GPCR activation diagram. When a ligand binds, the conformational state of the GPCR 
changes, causing the conversion of GDP -> GTP and releasing the Gα subunit from the GPCR and 
Gβγ complex. Gα then signals to downstream target proteins in the cyclic AMP pathway while the 

Gβγ complex activates a different set of target proteins. (from ((62)) 

 

 Compared to the large number of GPCRs, there are relatively few G-proteins; 21 

Gα subunits, 6 Gβ subunits, and 12 Gγ subunits exist in humans (63, 64). Heterotrimeric 

complexes are often categorized by the sequence of the Gα subunit: Gαs, Gαi, Gαq, and 

Gα12 (63). Post-translational modifications regulate membrane localization and protein-

protein interactions (65, 66). The Gβ subunit has a propeller structure formed by seven 

blades wrapped around a central axis as shown in figure 7. The N terminus of the Gβ 

has an alpha-helix which coils with the N terminus of the Gγ subunit. Additionally, the C 

terminus of the Gγ subunit binds to blades 5 and 6 of Gβ (67–69). This unique structure 

forms a bond between the Gβ and Gγ subunits so strong it is broken only by protein 

denaturing (60). Most of the Gβ and Gγ subunits have been shown to couple together 

and can interact with different Gα subunits (70). 
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Figure 7 Cartoon of crystalline structure of Gβ1γ1 complex (A). 7 blade propeller structure of Gβ in 
yellow with N terminus α helix attached to Gγ subunit (red). Gγ subunit also bound to blades 5 and 
6 of Gβ. The heterotrimer crystalline structure (B) where Gα (green) is bound to the Gβ1γ1 complex 

with the switch regions (blue) that allow conformational change and the release of the Gβ1γ1 
complex. (from (71)) 

 

GPCR in Islets (β-cell) 

 293 non-odorant GPCRs have been found to be expressed in human islets (53). 

Neurotransmitters, neuropeptides, and other ligands regulate islets by binding to cell 

surface receptors, oftentimes GPCRs, which then regulate islet functions (53, 72). The 

effect of many of these GPCRs are still unknown; GPCRs have been shown to have 

inhibitory and stimulatory effects on the secretion of insulin, glucagon, and somatostatin 

(53, 72). 

  

Dopamine 

Introduction 

 Dopamine is a neurotransmitter connected to emotional responses and rewards; 

however, it functions in a variety of signaling pathways (73). Dopamine plays a primary 
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role in the nigrostriatal (movement), mesolimbic (reward), mesocortical (cognitive 

control, emotional response), and tuberoinfundibular (lactation) systems of the brain 

(74–77). Due to its involvement in multiple brain pathways, many disorders have been 

linked to dopaminergic dysfunctions including schizophrenia, bipolar disorder, 

Parkinson’s disease, post-traumatic stress disorder, autism spectral disorder, alcohol 

dependency, nicotine dependency, impulsivity and violent behavior, attention deficit 

hyper disorder, and anxiety (78–90). As drugs to treat these disorders are developed, it 

is important to target specific receptor types and/or receptors in specific locations and 

pathways as to not disrupt other dopamine pathways.   

 The amino acid tyrosine is the precursor to catecholamines, figure 8, which 

include dopamine, norepinephrine, and epinephrine (91). Tyrosine hydroxylase adds an 

additional hydroxyl to tyrosine, creating L-Dopa, the predecessor to dopamine. Upon the 

removal of a carboxylic acid chain by L-Aromatic amino acid decarboxylase, dopamine 

is formed.  Dopamine β-hydroxylase removes a hydroxyl group from dopamine to then 

form norephinephrine which can then be methylated to form epinephrine by 

phenylethanolamine N-methyltransferase (91).  All three catecholamines are 

neurotransmitters which are released at axon terminals of nerve cells (2, 92).  
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Figure 8 The catecholamine biosynthetic pathway (from (91)) 

 

Dopamine Receptors 

 Dopamine receptors are G-protein coupled receptors separated into two groups, 

D1-like and D2-like. The D1-like receptors are part of the rhodopsin alpha family and the 

D2-like are beta-adrenergic receptors (48). The D1-like receptors, D1 and D5, work to 

regulate adenylyl cyclase activity by increasing cyclic AMP (73). In contrast, the D2-like 

family, composed of D2, D3, and D4, regulate adenylyl cyclase activity by decreasing 
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production of intracellular AMP (73). In contrast to the D1-like receptors, D2-like 

receptors contain introns which provide the ability for splice variants. Six introns are 

located in the gene encoding the D2 receptor, 5 in the D3 receptor gene, and 3 introns 

are in the D4 receptor gene (93). Two functional D2 receptors exist, a short (D2S) and a 

long (D2L) variant due to alternative splicing of the exon between the fourth and fifth 

introns. The D2 isoforms differ by the presence of an additional 29 amino acids in the 

third intracellular loop of the D2L (94). Multiple splice variants exist for the D3 dopamine 

receptor; however the physiological roles of the variants have yet to be studied (78, 93, 

95). Variants due to a 48 base-pair repeat in the third intracellular loop have been 

reported for the D4 receptor. These receptors are believed to be related to 

schizophrenia as changes in their affinity for the antipsychotic drug clozapine has been 

reported (96, 97). 

 Within the D2-like family, the D2 and D3 receptors have 78% of their genetic 

code conserved, making it difficult to find a receptor specific agonist/antagonist (98, 99). 

Differences in the third intracellular loop cause the D3 receptor to have a higher affinity 

for some agonists compared to the D2 receptor (78, 100). However, due to their 

similarities, at times both receptors have similar pharmacological properties (78). This is 

not always the case as it has been shown that activation of the D3 receptor decreases 

locomotive activity whereas activation of the D2 receptor increases locomotive activity 

(78). Some currently prescribed drugs for schizophrenia, olanzapine, clozapine, and 

risperidone have been shown to block both the D2 and D3 receptors, at times causing 

major side effects (98, 101, 102). While there are newer drugs which block only the D3 

receptor in animal models, they haven’t been tested in clinical trials due to their toxicity 
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(98).  The crystalline structure of the D3 dopamine receptor is shown with an agonist in 

figure 9. 

 In humans, the D2, D4, and D5 dopamine receptors are expressed in islets (53, 

103, 104). Furthermore, the GPR143 receptor, which is activated by the dopamine 

precursor L-Dopa, has also been shown to be expressed in human islets (53).  

 

Figure 9 Dopamine D3 receptor crystalline structure with antagonist eticlopride (purple)(from 
(105), Protein Data Bank ID 3pbl) 

 

Dopamine Mediated Negative Feedback Pathway 

Glucose Stimulated Insulin Secretion 

 In the presence of high glucose, pancreatic β cells secrete insulin into the 

bloodstream, signaling to tissues to uptake glucose and to the liver to increase glycogen 
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formation. At the cellular level of the β cell, shown in figure 10, glucose is taken up by 

glucose transporters (106) and then metabolized by the cell, resulting in an increase in 

the ATP to ADP ratio. One glucose molecule results in the net production of 36 ATP 

molecules. ATP sensitive potassium channels (KATP) close due to the change in the 

ATP/ADP ratio, depolarizing the membrane (8, 106). The depolarized membrane leads 

to the opening of L-type voltage gated calcium channels, triggering an increased influx 

of calcium. The increased intracellular calcium ([Ca2+]i) leads to the fusion of insulin 

granules to the plasma membrane for exocytosis (8, 106). The amount of glucose taken 

up by glucose transporters scales to the amount of insulin exocytosed by the β cell 

(106).  

 

Figure 10 Glucose stimulated insulin secretion (GSIS) pathway. 

 

Dopamine in Islets 

 In 1963, Falck and Hellman discovered catecholamines in the islets through 

formaldehyde-induced fluorescence (107). Subsequent studies investigated dopamine 
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and the actions of other cathecholamines upon islets and insulin secretion; however the 

results were inconclusive as certain studies showed insulin inhibition while others report 

increased insulin secretion in the presence of dopamine (108–112). In 1979, Zern et. al, 

showed that the effect of L-dopa to inhibit insulin secretion was due to the conversion of 

L-dopa to dopamine (113). Conflicting experiments reported L-dopa itself inhibited 

insulin secretion while dopamine was contained in secretory granules (114, 115). The 

origination of the dopamine, if not from the conversion of L-dopa, was not reported No 

dopaminergic neurons have been shown to innervate islets (4, 23, 24, 31, 116) and 

dopamine from the brain cannot cross the blood-brain barrier, therefore it was not clear 

from where this dopamine originated (117). Dopamine circulates in the blood stream, 

but the concentrations are too low to activate receptors in the islets (117–119). Two 

recent papers report the inhibition of GSIS in the presence of dopamine, one in mouse 

and one in human islets, and show that islets convert L-dopa to dopamine (120, 121). 

Furthermore, both papers report the co-secretion of dopamine and insulin (120, 121). In 

the human islet study, the authors show the presence of the D2 receptor in β cells and 

relate the inhibition of GSIS to its stimulation (121). However, in the murine islets 

studied, it was shown that the D3 dopamine receptor is the modulator of GSIS inhibition 

and not the D2 receptor, even though the D2 subtype is also present in murine β cells 

(120). It was further shown that reduced intracellular calcium ([Ca2+]i) oscillations 

following dopamine stimulation leads to decreased insulin secretion. These combined 

results support the proposed dopamine mediated negative feedback pathway to 

regulate insulin secretion which is further studied in this work. 
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Proposed Dopamine Mediated Negative Feedback Pathway 

 The published data shows that decreased frequency and amplitude of [Ca2+]i 

oscillations  inhibits insulin secretion.  Thus, we are interested in understanding the 

molecular signals that connect D3 dopamine receptor activation to the changes in 

[Ca2+]i. Unpublished work from our lab by Dr. Jacobson and Dr. Ustione, has shown that 

hyperpolarization after dopamine stimulation results from activation of a potassium 

channel other than the KATP channel. We hypothesize dopamine stimulation causes 

activation of G-protein inwardly rectifying potassium channels (GIRK) by signaling 

through the Gβγ complex of the G-proteins. In this model, movement of potassium out of 

the cell would result in plasma membrane hyperpolarization, causing voltage gated 

calcium channels to close. [Ca2+]i would thus be reduced in the cell and insulin secretion 

inhibited. A cartoon representation of GSIS and the proposed dopamine hypothesis is 

shown in figure 11. Because the islet can synthesize dopamine from L-dopa, dopamine 

can act as a method of regulating insulin secretion when both are secreted together 

(120, 121). In this work, I investigated this hypothesis by experiments focused on the 

heteromerization of the dopamine receptors and Gβγ complex before and after 

dopamine stimulation. Additionally, I studied the relationship between the Gβγ complex 

and hypothesized downstream target, GIRK.  
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Figure 11 Proposed Dopamine Mediated Negative Feedback Pathway 

 

 This dissertation is organized as follows: Theory and current applications of 

fluorescence fluctuations spectroscopy are presented in the second chapter. In the third 

chapter, I present the methodologies used in this work. I present experimental results of 

interactions between the dopamine receptors and G-proteins in the fourth chapter and 

interactions between G-proteins and the proposed target channel, GIRKs in the fifth 

chapter. This dissertation is concluded with the relation of this work to current literature 

and future directions.  
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CHAPTER 2 

 

FLUORESCENCE FLUCTUATION SPECTROSCOPY 

 

Tools for Understanding Protein–protein Interactions 

 There are many techniques to measure protein-protein interactions, some of the 

most popular are protein affinity chromatography, co-immunoprecipitation, and yeast 

two-hybrid screening. Protein affinity chromatography uses a column containing 

immobilized proteins. Cell extract proteins are then passed through the column. 

Proteins that do not interact with the immobilized proteins immediately flow through 

while those proteins that do interact are retained. Multiple ligands can be tested with a 

single receptor in protein affinity chromatography; however, proteins are out of their 

native cell environment and by using cell extracts, cells must be destroyed to perform 

protein affinity chromatography (122, 123). Similar to chromatography, 

immunoprecipitation can determine protein interactions by incubating cell extracts and 

an antibody. The antigen is then precipitated and the proteins eluted so they can be 

analyzed. Immunoprecipitations are often used as they are easy to perform and allow 

the testing of a whole cell extract at once (122). Both protein affinity chromatography 

and immunoprecipitation do not discriminate between two proteins interacting directly 

versus indirectly and require the cell to be lysed (122). In yeast two-hybrid screening, a 

bait and fish method is used to determine if two proteins are interacting. The protein of 

interest (the bait) is attached to the DNA binding domain of a transcription factor for the 

host, typically yeast. The proposed receptor (the fish) is bound to the activation domain 
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of the transcription factor. If the two bind together, a HIS reporter gene will be 

transcribed. If the two do not bind together the HIS reporter gene will not be transcribed 

and a new receptor (fish) is tried. Yeast two-hybrids are easy to perform, but they result 

in a high rate of false positives. Lastly, the reaction must be able to happen in yeast, 

often a non-native environment for the proteins of interest (124, 125).  

 

Figure 12 Three conditions must be met for FRET to occur. A. The donor fluorophore’s emission 
spectrum must overlap with the acceptor fluorophores excitation spectrum. B. The fluorophores 

must be in close proximity of each other, 10 nm apart, for the energy transfer between the two 
fluorophores to occur. Last, the two fluorophores must be oriented for dipole-dipole coupling to 

occur.  (from (126)) 

 

 In vivo and in situ methods, while more difficult to implement, have been 

developed to overcome the difficulties of in vitro protein interaction approaches. Unlike 

the in vitro methods, screening protein interactions are not easily performed within the 

cell and therefore these methods are not used to test many protein interactions at once. 
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Förster resonance energy transfer (FRET) measures the transfer of energy from one 

donor fluorophore in its excited state to an acceptor fluorophore through dipole-dipole 

coupling. FRET is commonly used in situ to measure protein interactions and 

biochemical reactions. Due to its popularity, many FRET sensors have been developed 

for easier application of the technique (127–129). However, FRET is not without 

drawbacks as it is often limited by low signal to noise ratios. Furthermore, both 

fluorophores must be properly aligned and within close proximity (<10 nm apart) to each 

other, shown in figure 12, resulting in high frequency of false negatives, even between 

two proteins which are known to interact (130). Like FRET, FFS detects weak and 

transient protein interactions in situ; however, FFS does not depend on the fluorophore 

proximity or orientation of the two fluorophores. Furthermore, the signal to noise ratio 

depends on the quantum efficiency of the fluorophores and the sensitivity of the 

detector. Current laser-scanning microscopes allow FFS measurements without 

specialized equipment which was previously required. Although artifacts from bleaching 

and intersystem crossing to the triplet state must be avoided, robust analysis 

procedures have been developed and are easy to implement on FFS data sets which 

are discussed below (131–135). 

 

Historical Background 

 In 1972, Magde, Elson, and Webb published the first papers on fluorescence 

fluctuation spectroscopy (FFS) (136–138), where they presented the technique that they 

called Fluorescence Correlation Spectroscopy (FCS) which was derived from dynamic 

light scattering. FCS was preferential to dynamic light scattering to measure particle 
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motion because fluorescent moieties could easily be attached to the molecules of 

interest and fluorescence is more chemically selective than light scattering (135). The 

optical setup from these early experiments is shown in figure 13. In 1976, Hirschfeld 

published the first application of fluorescence microscopy to detect single molecules; 

while not directly related to the FCS experiments, his work would lead to the 

development of modern FCS.  Without the development of detectors with higher 

quantum efficiency and stable lasers, FCS was not immediately applied  until the early 

1990s when Rigler’s group showed a confocal microscope could excite and measure 

fluorescence fluctuations (135). Confocal microscopy reduced the excitation volume; 

which in turn reduced the quantity of backscattered light which hindered early FCS 

experiments. The decreased noise from backscattered light additionally reduced 

integration times needed to quantify the fluctuations in a sample. Last, with the use of 

confocal microscopy based FCS, single photon counting methods could be for 

autocorrelation measurements. Due to the advancements made by Rigler’s group, FCS 

developments and applications greatly increased thereafter (139, 140).  

 

Figure 13 Schematic of optical setup from first FCS experiments. Excitation light from the laser 
passes through a colored filter (F), two spatial filters (SF) and through a lens (L) before exciting 

the sample. A laser intensity monitor (MON) measures the intensity at the sample. Emitted 
fluorescence is collected from a parabolic fluorescence-collecting mirror, passed through a filter 

and collected by a photomultiplier. (from ((137)) 
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 The next significant advancement in FCS was the development of two-color 

fluorescence cross-correlation spectroscopy (2cFCCS). Single color FCS can only 

detect binding between two molecules if the change in molecular size is increased or 

decreased by 10 times or more. Translational diffusion, D, is related to the size of a 

molecule as shown in equation 1 where k is Boltzmann’s constant, η is the viscosity of 

the solution, T is the temperature, and r is the hydrodynamic radius of the molecule.  

𝐷 =
𝑘𝑇

6𝜋𝜂𝑟
 

Equation 1 

The radius of the molecule, r, is related to its molecular weight, MW, by equations 2 and 

3 where 𝜐̅ is the specific gravity and V is the volume. 

𝑉 = (𝑀𝑊)𝜐̅ =
4

3
𝜋𝑟3 

Equation 2 

𝑟 =  (
3𝑀𝑊𝜐̅

4𝜋
)

1
3⁄

 

Equation 3 

A tenfold increase in the molecular weight results in only a 2.15-fold change in the 

diffusion coefficient. Thus, without large changes in molecular size when two molecules 

bind together, no detectable change in diffusion is measured by FCS. 2cFCCS tracks 

both molecules when they are bound and unbound and therefore can detect the 

presence of lack of interactions between both molecules independent of changes in 

molecular weight. 2cFCCS can be performed with one excitation beam; however, many 

of the original experiments performed with single photon excitation used two lasers to 

excite the two different fluorescent molecules (131, 141–144). When two beams are 
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used, both beams are overlapped to create the excitation volume. Each beam excites a 

different fluorophore, traditionally one green and one red (131, 141–144). Emission is 

collected and the two bandwidths are separated and detected independently. The 

intensity fluctuations in the two bandwidths are then cross-correlated and the probed 

interactions then analyzed. In this procedure, the cross-correlation curve is only a 

function of the fluctuations of both channels, not those of each channel independently. 

Because FCS measurements can be used to quantify the number of molecules in an 

excitation volume, 2cFCCS measurements quantify the number of bound molecules in 

relation to the unbound molecules of each channel (131, 141–144). While still 

implemented, one drawback of this technique is the need for two lasers with two 

imperfectly overlapping excitation volumes. Two-photon excitation provides the ability to 

excite two fluorophores of different emission wavelengths with one laser and therefore 

one excitation volume (145, 146).  

 Brightness analysis methods provided an additional technique to analyze 

fluorescence fluctuations. Fluorescence intensity distribution analysis (FIDA) and the 

photon counting histogram (PCH) were the first methods used to analyze the brightness 

of the fluctuating fluorophores (147, 148). Both methods, developed independently, 

analyze the moments of the fluorescence intensity distributions to determine the 

molecular brightness. With two component PCH, a heteromerization brightness 

component can be determined, relating to the extent to which two fluorophores are 

interacting with each other. A newer brightness analysis technique developed by Müller 

was a time-integrated fluorescent cumulant analysis (TIFCA) which uses the factorial 
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cumulants of the moments of fluorescence intensity distributions to resolve the 

compositions of heterogeneous mixtures (149–151).  

 To better probe samples, specifically biological samples, FFS has been 

combined with other microscopy imaging techniques. For example, image correlation 

spectroscopy (ICS) and Raster image correlation spectroscopy (RICS) measure particle 

movements by detecting fluorescence changes in successive images so that multiple 

spatial points can be tested in parallel (152, 153). ICS and RICS have been used to 

probe slow moving molecules in cells where single particle movement would be difficult 

and time consuming (152–156). Another recent application is scanning FCS (sFCS) 

where the excitation volume moves at a set rate on a predefined path during 

integrations. sFCS has been frequently applied to membrane measurements where 

localization of the membrane can be difficult. Because protein diffusion is slower at the 

membrane than cytoplasm the slowest diffusion rate coincides to the scanning of 

membrane bound proteins (157–160). These three techniques, while not an exhaustive 

list of the recent developments, highlight the improvements allowing better FFS 

measurements of biological samples.  

 

FFS Theory 

 In FFS, a small excitation volume of ~1 femtoliter excites fluorophores to a 

excited state. As molecules move into the excitation volume, fluorescence increases, 

and as they move out, fluorescence decreases. The fluctuations in the fluorescence is 

then collected, figure 14.  
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Figure 14 Schematic of FFS measurement. As molecules move in and out of the excitation 
volume, fluorescence will increase or decrease, respectively (A). Emitted fluorescent light is 

collected and a detector measure the intensity over time (B). C Intensity counts over time have 
small fluctuations, due to the movement of molecules in and out of the excitation volume, but a 

stable average count rate. 

 

The probability of a population of, n, being present in the excitation volume with the 

average number of molecules, N, is described by a Poisson distribution (161, 162). 

𝑃(𝑛, 𝑁) =  
𝑁𝑛

𝑛!
𝑒−𝑁 

Equation 4 

If molecules are diffusing at a high speed, the number of molecules within the excitation 

volume will also change rapidly. Molecules moving at a slow speed will enter and leave 

the excitation volume at a slower speed as shown in figure 15.  
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Figure 15 Schematic showing the differences between a slow diffusing molecule and a fast 
diffusing molecule. In the slow diffusing molecule, for a set lag time (τ) one count change has 

happened over the time frame. However, for the fast diffusing molecule, over the same lag time 3 
count changes have occurred. The autocorrelation function for the slow diffusion data would 
result in a wider curve indicating slower diffusion time whereas the faster fluctuations would 

result in a narrower autocorrelation curve indicating faster diffusion. (from (161)) 

 

FCS Theory 

 In FCS, two time points are denoted as t and t+τ to indicate the time difference, 

or lag time, between the two points. As τ approaches 0, fewer molecular diffusions 

occur and therefore the two time points should be strongly correlated. As τ increases, 

more molecules have entered and exited the excitation volume and therefore the two 

time points are expected to be less correlated. This is the central theory of 

autocorrelation, explained mathematically in Equation 5 (163). 
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〈𝑏(𝑡)𝑏(𝑡)〉 ≤ 〈𝑏(𝑡)𝑏(𝑡 + 𝜏)〉 

Equation 5 

  Two variables which are correlated will change together whereas two 

uncorrelated variables will change independently of each other. In FFS, one is 

interested in the changes in fluorescent signals from a sample containing fluorescent 

fluorophores. FFS fluctuations can be from chemical reactions, enzymatic reactions, 

translational diffusion, rotational diffusion, and photophysical transactions (135, 161, 

164, 165). The fluorescence fluctuations occurring from a sample over time relate to the 

reaction happening in the excitation volume. At short lag times, less changes in the 

excitation volume have happened so fluctuations are dependent on each other. At long 

lag times, more fluctuations have occurred and we expect fluorescent counts to be 

independent of each other. Equation 5 can be normalized to obtain a value relating the 

amount of correlation between the time points (163). 

𝑔 =  
〈𝑏(𝑡)𝑏(𝑡 + 𝜏)〉

〈𝑏(𝑡)𝑏(𝑡)〉
 

Equation 6 

If g is a measure of the correlation between the two time points, g will be greater than 1 

when variables are correlated, equal to 1 when uncorrelated, and 0 when anti-correlated 

(163). This is extended to fluorescence fluctuation counts as shown in Equation 7 (161, 

163). 

𝐺(𝜏) =  
〈𝐹(𝑡 + 𝜏)𝐹(𝑡)〉

〈𝐹(𝑡 + 𝜏)〉〈𝐹(𝑡)〉
=

〈𝐹(𝑡 + 𝜏)𝐹(𝑡)〉

〈𝐹(𝑡)〉2
 

Equation 7 

It is assumed that there are no changes over time to the statistical process occurring so 

that the average counts at both lag times are equal. 
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〈𝐹(𝑡 + 𝜏)〉 = 〈𝐹(𝑡)〉 

Equation 8 

Oftentimes, the autocorrelation function is written as the difference or change in 

fluctuations from the mean (161, 163). 

𝛿𝐹(𝑡) = 𝐹(𝑡) − 〈𝐹〉 

𝐺(𝜏) =
〈𝐹(𝑡 + 𝜏)𝐹(𝑡)〉

〈𝐹(𝑡)〉2
=  

〈(𝛿𝐹(𝑡 + 𝜏) + 〈𝐹〉)(𝛿𝐹(𝑡) + 〈𝐹〉)〉

〈(𝛿𝐹(𝑡) + 〈𝐹〉)〉2
=  

〈𝛿𝐹(𝑡 + 𝜏)𝛿𝐹(𝑡)〉 + 〈𝐹〉2

〈𝐹〉2

=  
〈𝛿𝐹(𝑡 + 𝜏)𝛿𝐹(𝑡)〉

〈𝐹(𝑡)〉2
+ 1 

Equation 9 

As shown above, there is only the additive difference of one between the two equations. 

The difference in fluorescent counts from the mean can be equated to the focal volume 

times the changes in concentration of the fluorescent probe within the volume (164). 

𝛿𝐹(𝑟, 𝑡) = 𝜙(ѓ)𝛿𝐶(𝑟, 𝑡) 

Equation 10 

Integrating over the focal volume defines the fluorescence signal itself (163, 164). 

𝐹(𝑡) = ∫ 𝜙(𝑟)𝛿𝐶(𝑟, 𝑡)𝑑3𝑟 

Equation 11 

The average fluorescence signal can then be derived to be (162) 

〈𝐹(𝑡)〉 = 〈𝐶(𝑡)〉 ∫ 𝜙(𝑟)𝑑3𝑟 

Equation 12 

Inserting Equation 10 and Equation 12 into Equation 9 results in the autocorrelation 

function written as (161, 162, 164) 
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𝐺(𝜏) =
∬ 𝜙(ѓ)𝜙(𝑟′)〈𝛿𝐶(𝑟, 𝑡)𝛿𝐶(𝑟′, 𝑡 + 𝜏)〉𝑑3𝑟𝑑3𝑟′

[〈𝐶(𝑡)〉𝜙(ѓ)𝑑3𝑟]2
 

Equation 13 

where 〈𝛿𝐶(𝑟, 𝑡)𝛿𝐶(𝑟′, 𝑡 + 𝜏)〉 is the correlation function of a concentration fluctuation at 

point ѓ at time t and a concentration fluctuation at point 𝑟′ and time t+τ (164). As 𝜏 → 0, 

Equation 13 reduces to the shape function (𝛾 = √2
2

 for 2-photon excitation) divided by 

the number of molecules in the excitation volume (161, 162). 

𝐺(0) = 𝛾
〈𝛿𝐶(𝑡)2〉

〈𝐶(𝑡)〉2
= 𝛾

1

𝑁
 

Equation 14 

For a data set, the autocorrelation function is computed in Fourier space as follows 

(162) 

𝐶𝑜𝑟𝑟{𝐼(𝑡), 𝐼(𝑡 + 𝜏)} ↔ 𝐼(𝑓)𝐼∗(𝑓) 

Equation 15 

 

 

Figure 16 Fluorescence fluctuations can be used to calculate the autocorrelation curve. The 
higher the concentration of fluorescent molecules, the lower the y-intercept (G(0)). Additionally, 

the width of the autocorrelation function relates to the diffusion rate of the fluorophore. The faster 
the diffusion, the narrower the autocorrelation curve will be. The slower the diffusion of the 

molecule, the wider the autocorrelation curve will be. (from (166)) 
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 From the autocorrelation curve, diffusion rate and fluorophore concentration can 

be calculated from fitting the curve.  Equation 14 relates the inverse of the y-intercept of 

the autocorrelation function (G(0)) to the number of fluorescent molecules. In the 

autocorrelation curve, a higher concentration of fluorophores results in a lower y-

intercept. The autocorrelation function also holds valuable information about the 

diffusion rate of the fluorescent molecule. A fast diffusing molecule that undergoes 

many changes for long lag times, as shown in figure 16, results in a narrower 

autocorrelation curve. Conversely, molecules diffusing slower in the excitation volume 

result in a wider autocorrelation curve. 

PCH Theory 

 Photon counting histogram (PCH) analysis and fluorescence intensity distribution 

analysis (FIDA) both examine the fluctuations of fluorescence as molecules diffuse in 

and out of the small excitation volume (147). They differ only in the model used to 

describe the excitation volume, but both perform essentially the same analysis and 

therefore arrive to the same conclusions. PCH has become the more popular of the two 

methods and is the methodology used in this dissertation. In Equation 4, I related the 

probability of a population of fluorophores, n, being in the excitation volume to a Poisson 

distribution. By definition, in a Poisson distribution the variance is equal to the mean.  

〈∆𝑛2〉 = 〈𝑛〉 

Equation 16 

This is the case for a stable excitation source; however, any fluctuations in intensity 

causes the variance to grow larger than the mean. Fluorescence intensity at a detector 

is therefore equal to the point spread function of the excitation volume, 𝑃𝑆𝐹̅̅ ̅̅ ̅(𝑟), the 
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intensity at the origin, 𝐼𝑜, and a coefficient relating to quantum yield and efficiency of the 

detector and microscope, 𝛽 (148). 

𝐼𝐷 = 𝐼𝑜𝛽𝑃𝑆𝐹̅̅ ̅̅ ̅(𝑟) 

Equation 17 

The Poisson distribution can thus be written with 𝑁 = 𝜂𝐼𝐼𝐷 where 𝜂𝐼 is proportional to 

detection efficiency (148, 162). 

𝑃(𝑛) =  ∫
𝜂𝐼𝐼𝐷

𝑛𝑒−𝜂𝐼𝐼𝐷

𝑛!

∞

0

𝑝(𝐼𝐷)𝑑𝐼𝐷 = ∫ 𝑃𝑜𝑖(𝑛,
∞

0

𝜂𝐼𝐼𝐷)𝑝(𝐼𝐷)𝑑𝐼𝐷 

Equation 18 

For the case of a single particle where 𝜀 = 𝛽𝜂𝐼𝐼𝑜 (molecular brightness), Equation 18 

can be written as Equation 19 (148). 

𝑝(1)(𝑘; 𝑉𝑜, 𝜀) =  ∫ 𝑃𝑜𝑖(𝑛, 𝜀𝑃𝑆𝐹̅̅ ̅̅ ̅̅ ̅(𝑟) 
∞

0

)𝑝(𝑟)𝑑𝑟 

Equation 19 

Because the particle must be confined within the volume 𝑉𝑜 to be detected, Equation 19 

can be rewritten as Equation 20 (148). 

𝑝(1)(𝑘; 𝑉𝑜, 𝜀) =  
1

𝑉𝑜
∫ 𝑃𝑜𝑖(𝑛, 𝜀𝑃𝑆𝐹̅̅ ̅̅ ̅̅ ̅(𝑟)) 

𝑉𝑜

𝑑𝑟 

Equation 20 

Extending this case for multiple independent particles as shown in Equation 21 (148). 

𝑝(𝑁)(𝑘; 𝑉𝑜, 𝜀) =  ∫ … ∫ 𝑃𝑜𝑖(𝑛, ∑ 𝜀𝑖𝑃𝑆𝐹̅̅ ̅̅ ̅(𝑟𝑖⃗⃗⃗ )

𝑁

𝑖=1

𝑝(𝑟1⃗⃗⃗ ⃗) … 𝑝(𝑟𝑁⃗⃗⃗⃗⃗) 𝑑𝑟1 … 𝑑𝑟𝑁 

Equation 21 

While this equation looks difficult to evaluate, it is simplified by the fact that the 

probability distribution for a sum of statistically independent variables is the convolution 
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of the probability distribution of those variables (148, 167). Equation 21 can therefore be 

simplified to Equation 22. Thus, PCH is the convolution of the average number of single 

particles within the volume (148). 

 

𝑝(𝑁)(𝑘; 𝑉𝑜, 𝜀) =  
{𝑝(1)(𝑘; 𝑉𝑜, 𝜀) ⊗ … ⊗ 𝑝(1)(𝑘; 𝑉𝑜, 𝜀)}

𝑁 − 𝑡𝑖𝑚𝑒𝑠
=  〈𝑝(𝑁)(𝑘; 𝑉𝑜, 𝜀)〉𝑁 

Equation 22 

 

FFS Measurements 

Instrumentation 

 Modern FFS setups are based on the confocal instrumentation introduced by 

Rigler (139, 140, 163, 165), shown in figure 17. The main requirements for FFS 

measurements are an excitation source, excitation mode, and a detection mode (137, 

163). The excitation source is a low power laser with low beam divergence and 

Gaussian spatial mode. It is important to have low laser power in FFS studies so that 

the fluorophore emission is in its linear range in proportion to excitation power. While 

single photon excitation (SPE) is still popular for FFS studies, many researchers are 

moving towards two photon excitation (TPE). TPE uses a pulsed infrared laser which is 

more costly than SPE lasers; however, TPE allows deeper penetration and causes less 

bleaching in the sample (143, 168, 169).  
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Figure 17 Optical setup based on the confocal instrumentation introduced by Rigler. Single 
photon excitation (left) and two photon excitation (right) S indicates the sample, OB objective 

lens; L lens; DM dichroic mirror; NF notch filter; T tube lens; PH pinhole; BS beamsplitter; APD 
avalanche photodiode; CORR correlator. (from (165)) 

 

 To excite a sample, laser light is focused into a high magnification microscope 

objective. High numerical apertures are necessary for FFS experiments to obtain a 

diffraction limited focal volume and high fluorescence emission collection (165). Oil 

immersion objectives with a high NA can be used; however, with deep aqueous 

solutions, optical aberrations occur (165). Therefore, water immersion objectives are 

generally preferred. The same objective lens is also used to collect fluorescence. For 

SPE, a pinhole is placed at the confocal plane to remove fluorescence due to out-of-

focus light. Photomultiplier tubes (PMT), avalanche photodiodes (APD), complementary 

metal-oxide-semiconductor (CMOS) and electron multiplying charge-coupled device 
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cameras (EMCCD) have all been used to detect fluorescent counts in FFS experiments. 

When selecting a detector, the detection rate must be higher than the expected diffusion 

rate of the molecule. Thus, it is necessary that detectors have high quantum efficiency 

to optimize signal-to-noise at high detection rates. Historically, APDs have been the 

preferred detector; however, new GaAsP PMT detectors are recently becoming the 

common FFS detector, figure 18 (165).  

 

Figure 18 Detector setup for Zeiss LSM 780. Emission beam paths is spectrally separated with a 
diffraction grating and detected by PMT detectors or an array of GaAsP detectors (from (170)) 

 

 In this dissertation, a Ti:Sapphire laser was chosen to excite samples at 1000nm 

which excites both the green and red fluorophores. Light was focused the sample with a 

40X, 1.2NA, water immersion objective. Emitted fluorescence was collected with the 

same objective and spectrally separated. 34 GaAsP detectors collected the light in 10 

nm bins (171).  
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 To optimize the FFS signal, the following properties of the selected fluorescent 

tag, dye or protein, are of greatest significance: high quantum yield, high photostability, 

and low singlet-to-triplet state quantum yield. The signal for FFS depends on the 

brightness of a few excited fluorophores, therefore it is important to choose fluorophores 

with high emission per molecule. Photobleaching can cause molecules to appear that 

they are diffusing faster than they are; thus fluorophores with high photostability are 

preferred in FFS experiments (172). Last, fluorophores with low singlet-to-triplet 

quantum yield is desirable as triplet state emission can distort the correlation function.  

Single Component Measurements 

 In single component FFS measurements, one fluorescent probe is used to 

monitor fluctuations in the system. Even with a single fluorescent marker, a significant 

quantity of information can be gained about the system, in addition to fluorophore 

concentration and diffusion rate (135, 161, 164). Boukari studied the formation of tubulin 

aggregation with FFS. When cryptophycin, a protein that promotes tubulin aggregation, 

was added to the sample, the diffusion rate decreased 250%, indicating homerization of 

tubulin particles (173).  

 FFS can also be used to study protein binding through changes in the diffusion 

rate of the labeled molecule. However, to adequately detect changes in solution due to 

the interaction of molecules, the molecular weight must increase ~10 times for the 

change in diffusion to be seen. Pack and colleagues studied the interactions between a 

partially denatured protein α-Lactalbumin with a chaperonin protein GroEL which 

promotes protein folding (174). The denatured α-Lactalbumin has a molecular weight of 

14,000 whereas the GroEL’s molecular weight is 840,000. Therefore, the binding of α-
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Lactalbumin to the GroEL will result in molecular weight increase larger than ten times. 

Pack showed the binding of GroEL altered the diffusion rate of α-Lactalbumin, which 

indicates the GroEL was promoting proper folding of α-Lactalbumin (174). Most single 

component FFS studies measure changes in diffusion or homerization; however, with 

the development of unique sensors other applications have been performed. For 

example, Webb’s lab developed a pH sensor with FFS. At low pH levels EGFP 

becomes quenched due to an ionized hydroxyl group and thus a portion of EGFP 

molecules become quenched faster than they diffuse in and out of the volume. These 

molecules therefore look to be diffusing faster than they really are. Webb’s lab showed 

the portion of molecules diffusing at a perceived faster rate is proportional to the pH 

level (146).  

 FCS is most commonly used to probe translational diffusion of molecules. 

Correlation in three dimensions with two-photon excitation is calculated by (161) 

〈𝛿𝐶(𝑟, 𝑡)𝛿𝐶(𝑟′, 𝑡 + 𝜏)〉 =  𝐶̅(8𝜋𝐷𝑡)
3

2⁄ exp [−|𝑟 − 𝑟′|2/8𝐷𝑡] 

Equation 23 

Inserting into Equation 13 results in Equation 24 which can easily be fitted to the 

autocorrelation points of the experimental data (164, 165, 175).  

𝐺(𝜏) = 𝐺(0) (1 +
8𝐷𝑡

𝑤𝑥
2

)
−1

(1 +
8𝐷𝑡

𝑤𝑧
2

)
−1

2⁄

 

Equation 24 

In the special case where two diffusion rates exist for a single probe (bound and 

unbound protein for example), the autocorrelation function is additive of each 

constituent (165, 175). 
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𝐺(𝜏) =  
1

𝑁2
[𝑁1𝐷1(𝜏) + 𝑁2𝐷2(𝜏)] 

Equation 25 

The last important fitting model is for lateral diffusion, for example, protein diffusion 

upon a membrane. In this case, only the 2D component is necessary from Equation 24 

(175–178).  

𝐺(𝜏) = 𝐺(0) (1 +
8𝐷𝑡

𝑤𝑥
2

)
−1

 

Equation 26 

Through the combinations of Equations 24-26, many autocorrelation curves can be 

adequately fitted to determine diffusion rates and molecular concentration.  

 

Figure 19 Schematic showing emission counts from both the green and red channel are 
independent from each other as molecules are independently labeled with the fluorophores. 

Molecules diffusing together however, will change the counts simultaneously. The cross-
correlation is the co-diffusion of green and red labeled molecules diffusing together. (adapted 

from (161)) 
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Two-Color Cross-Correlation Measurements 

 In two-color FFS, two fluorescent probes label two separate fluorescent labels. 

Due to the weak relation between molecular weight and diffusion, many 

heteromerization processes cannot be detected by probing a system with a single 

fluorophore. However, with the invention of two-color FFS, heteromerizations that are 

not caused by a large change in molecular weight can be detected (179, 180). 

Traditionally, 2cFFS is performed with a green and red fluorophore, relating to the green 

and red channels, respectively (131, 181). Fluctuations of each channel are measured 

independently and therefore, two autocorrelation curves are formed. Because the green 

and red labeled proteins are independent of each other, different time-dependent 

fluctuations will occur in each channel independently of each other (figure 19). Changes 

that occur simultaneously relate to the co-dependence of both labeled molecules (131, 

181). Thus, the measured cross-correlation is dependent upon the relation between 

fluctuations in the green and red channel upon each other. The cross-correlation 

function can therefore be defined as Equation 27, where G represents the green 

channel and R represents the red channel (131, 146). 

𝐺𝐶𝐶(𝜏) =  
〈𝐹𝐺(𝑡 + 𝜏)𝐹𝑅(𝑡)〉

〈𝐹𝐺(𝑡)〉〈𝐹𝑅(𝑡)〉
 

Equation 27 

In figure 20, two autocorrelation curves and their cross-correlation curve are shown. As 

with the y-intercept of autocorrelation curves, G(0) of the cross-correlation curve also 

relates to the number of molecules present in the system. A change in the amount of 

interacting particles can therefore be determined by the ratio of cross-correlated 

particles to the independent species (131, 141, 182, 183).   
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Figure 20 Autocorrelation curves (green, red) and their cross-correlation curve showing the 
interaction of green and red molecules diffusing together. 

 

 Historically, many 2cFFS measurements have been performed with two different 

excitation lasers, one to excite the green channel and one to excite the red channel 

(131). The introduction of two lasers causes two point spread functions that do not 

perfectly overlap, leading to increased calibrations and analysis to determine cross-

correlation parameters (131, 183). The use of a single, two-photon excitation path 

removes these difficulties as a single laser is able to excite both channels at the same 

time.  

 

Photon Counting Histogram 

Single Component PCH 

 PCH analysis uses the same fluorescent fluctuation data which is gathered to 

derive an autocorrelation curve. A histogram is made by plotting the occurrence against 

the number of photon counts in each time bin, as show in figure 21. Oftentimes, as 
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shown in the insert, the PCH is plotted on a semi-logarithmic scale to see the 

differences in the super-Poisson distribution formed by PCH as compared to a Poisson 

distribution. The histogram is then fit to the model (Equation 22) to determine the 

molecular brightness and sample concentration.  

 

Figure 21 Photon Counting Histogram 

 

 An advantage of PCH analysis over FCS is the ability to resolve two species with 

similar diffusion coefficients from differences in their molecular brightness. For example, 

Kask and colleagues were able to separate Rhodamine 6G and tetramethylrhodamine 

(TMR) and their proportions in a mixture through brightness analysis (147). Since both 

are rhodamine derivatives, their diffusion rates are similar and therefore are inseparable 

as a mixture by FCS. TMR is much dimmer than Rhodamine 6G (37kcpsm vs 

107kcpsm) which allows the ability to distinguish and quantify both constituents by 

brightness analysis.  

 Current studies using PCH analysis have examined homerization of proteins in 

cells.  A current hypothesis for some GPCR proteins is their diffusion on the membrane 

together. Herrick-Davis used PCH analysis to examine the homerization of  the 



46 
 

Serotonin 5-Hydroxytryptamine 2C receptor and determined the protein diffuses in 

dimers on the membrane (184).  Another report show the use of PCH to determine how 

the ABCG2 subunits combine into tetramers to form a functional transporter (185). 

While single component PCH analysis continues to be used to analyze homerization, a 

derivation of the technique developed by Paul Wiseman’s group called spatial intensity 

distribution analysis (SpIDA) has simplified histogram analysis. SpIDA resolves protein 

oligomerization from single fluorescence microscopy images through histogram analysis 

(186–188). The technique is innovative as it can be applied to measure protein 

interactions from confocal images without the additional need of FFS equipment. 

Additionally, it is open source code and given as a Matlab graphical user interface for 

easy application. With the advent of this technique, histogram analysis has become 

more accessible to labs without FFS equipment. 

Two Component PCH 

 Two-component PCH allows for the detection of heteromerization between two 

different fluorescently labeled molecules (132, 134, 189). As shown in figure 22, a 3 

dimensional histogram is created to show the photon counts from the red and green 

channel. The heteromerization of the two channels is determined by their interaction, 

shown by high counts in the diagonal of the 3 dimensional histogram. The 

heteromerization brightness component can be calculated (independently of sampling 

time) by Equation 28. 

⟨𝜀𝑔𝑟⟩ =
𝜎2

𝑔𝑟

𝛾√𝐼𝑔𝐼𝑟

 

Equation 28 
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 The most common application of dual-color histogram analysis is for the probing 

of protein oligomerizaton. For example, the Giese lab uses 2d-FIDA to examine 

aggregation of the protein a-synuclein with lipid vesicles in the pathogenesis of 

Parkinson’s disease. Both, the a-synuclein and lipid particles, form homo-oligomers 

before combining together, making the heteromerization difficult to study with other 

protein-protein interaction detection methods (190, 191).  

 

Figure 22 Two component histograms showing the counts from the red channel on the vertical 
access and counts from the green channel on the horizontal axis. In single component 

measurements, counts are distinctly shown to be from that channel only. For non-interacting 
species, the heat map shows counts from both channels, but independent of each other. For two 
interacting species (doubled labeled) the histogram is centered in the diagonal, between the two 

channels. (from (192)) 
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 In this dissertation FFS is used to study the signaling between a GPCR, G-

proteins, and a downstream target channel. Using two-photon excitation, one excitation 

volume can be used to excite two channels simultaneously. The autocorrelation curves 

from FFS measurements are used to calculate protein diffusion rates. Additionally, the 

cross-correlation curve formed provides information on the heteromerization between 

the two proteins being studied. Two proteins diffusing together on the membrane should 

have a higher cross-correlation component than two proteins diffusing apart. As a 

secondary analysis method, the heteromerization brightness component from dual-color 

PCH analysis is also calculated.  To our knowledge, this is the first time FCCS and PCH 

have been used together to quantify protein oligomerization.  
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CHAPTER 3 

 

METHODOLOGY 

 

Introduction 

 In this chapter, I detail my procedures for taking FFS measurements. Proper cell 

preparation and instrument alignment are necessary each time measurements are 

taken. With FFS, the fewer molecules you can excite, the easier changes in fluctuations 

can be determined (175, 193). For example, it is easier to notice a change of 1 from 10 

than 1 from 100. When looking for changes in fluctuations, it is easier to detect small 

changes in fluorescence with small average counts than small changes in fluorescence 

with large average counts. In solution studies, dilutions are easy to perform so that 

fewer molecules are within the excitation volume. For cells, one cannot easily dilute the 

amount of proteins expressed. Therefore, it is oftentimes the dimmest cells which FFS 

measurements can be performed on. In addition to expression levels, calibration of the 

microscope and proper alignment are essential to obtaining good measurements. If the 

beam does not properly fill the back aperture of the objective, the actual excitation 

volume will differ from the expected beam shape used to calculate diffusion rates. Each 

time FFS measurements are performed, alignment should be checked. With proper cell 

expression and instrument alignment, FFS measurements can be performed. 

 In this chapter, I first describe the chosen cell line, culture protocols, and 

transfection procedures. Next, I describe the instrument experiments were performed on 

and alignment methods followed by explanations of the modifications I made to plasmid 
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constructs which I used in this dissertation. Following, I detail the first experiments 

which I performed measuring protein diffusion in solution and in the cell. Last in this 

chapter, I present diffusion measurements of membrane proteins taken by FFS in 

comparison to those previously reported by fluorescence recovery after photobleaching 

(FRAP) (194). 

 

Cell Preparation 

MIN6 Cell Line 

 Primary cells are often a preferred method to study biological processes in vitro 

as the only significant modification made to the cell is removing them from the 

organism. In comparison to immortalized cell lines which are often additionally modified 

genetically or virally, the behavior of primary cells is expected to be closer to that of in 

vivo. However, primary cells are more difficult to maintain than an immortalized cell line. 

For the purpose of this dissertation, the MIN6 cell line was selected for all experiments 

due to its retained response to secrete insulin under high glucose conditions and not 

during low glucose (195, 196). From previous research, we know that under glucose 

stimulated insulin secretion (GSIS) the treatment dopamine inhibits insulin secretion 

(120). Since the inhibition of insulin secretion by dopamine is further studied in this 

dissertation, it is essential that the β cell line chosen retains its response to secrete 

insulin under high glucose conditions.  
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Cell Media and Culturing 

 Cells were maintained in a sodium bicarbonate Dulbecco’s modified Eagle’s 

medium (DMEM) with 25mM glucose, 1mM sodium pyruvate, and 4mM L-glutamine. 

Additionally, Penicillin (100 units/ml), streptomycin (100µg/ml), 50µM of β-

mercaptoethanol, and a final dilution of 10% heat-activated fetal bovine serum were 

added to the media.   

 Media was exchanged at a minimum of every three days for healthy growth and 

proper pH ranges. Cells were split at 60-80% confluency with 0.25% Trypsin. After 

media neutralization, cells were pipetted up and down vigorously to break up clustering. 

Cells were plated at a minimum of 30% confluency.  Cells were cultured at 37° Celsius 

with 5% CO2. Low passages of cells are preferred as they retain better response to 

glucose stimulated insulin secretion; therefore, cells were only passaged up to 40 times 

(197). 

Cell Transfection Background 

 A chemical transfection method with effectene was initially used to transfect 

MIN6 cells. Chemical transfections are often preferred to other transfection methods 

because they produce high efficiency transfections, are easily reproducible, and require 

small amounts of nucleic acids (198, 199). Effectene forms non-liposomal, cationic lipids 

which deliver the nucleic acid plasmids to cells, shown in figure 1. The lipids formed by 

effectene are not disrupted by serum making it less toxic to cells than many other 

chemical transfections (199, 200). A typical transfection requires 1µL of DNA to 10µL of 

effectene and transfects one 10mm diameter imaging dish. However, by increasing the 

ratio of effectene to DNA, larger (and/or multiple) plasmids can be transfected in one 
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reaction. As I increased effectene to introduce the large dopamine receptor plasmids, I 

began to notice my cells exhibited cell rounding and were not as well attached to the 

imaging dish after transfection. Cell imaging dishes were coated with α-poly-l-lysine to 

increase cell adherence (201); however, this disrupted the effectene transfections and 

resulted in cells with high adhesion to the imaging dish, but with little to no transfected 

cells (201).  

 To combat the difficulties with chemical transfections, I chose the physical 

method of electroporation to transfect MIN6 cells. Electroporation uses an electric field 

to momentarily disrupt the membrane, as pictorially shown in figure 23. DNA in the 

surrounding solution can then enter the cell during these disruptions. I used a square 

wave electroporator which gave multiple, short electrical pulses to the cells. In contrast 

to chemical transfections, electroporation transfections can be difficult to implement as 

there are many variables which must be determined for an efficient transfection. These 

include pulse width, number of pulses, rest interval time, DNA concentration, cell 

density, and DNA to cell ratio. Additionally, electroporation requires a larger amount of 

DNA in comparison to the number of cells transfected than chemical transfections. 

However, transfecting multiple plasmids into the cells does not require additional 

alterations to a previously determined electroporation protocol.  Furthermore, 

electroporation transfections result in cells expressing the plasmids at a range of 

expression levels which is beneficial for FFS studies which require cells with low levels 

of expression  (198, 202). Furthermore I found the cells which survived the 

electroporation were adherent to the glass bottom of imaging dishes without the 



53 
 

requirement of secondary treatments. For these reasons, electroporation was chosen 

as the method of transient transfections in this dissertation. 

 

 

Figure 23 In an effectene reaction, an enhancer molecule is first mixed with DNA to condense the 
DNA. Condensed DNA is then mixed with the effectene reagent to form effectene-DNA complexes 
that the cell can endocytose. Conversely, in an electroporation reaction the electric field created 

from the applied voltage causes membrane pores to form. DNA can enter the cell through the 
pores formed during pulses. After the pulses, the cell membrane is healed and DNA that entered 

the cell during the pulses is inside the membrane. Cartoons adapted from Qiagen and BTX 
websites. 

 

Cell Electroporation Transfection 

 One day prior to imaging, cells were detached from culturing flasks with trypsin. 

Once cells were detached, cell media was used to inhibit further trypsin activity. The cell 

suspension was placed in a 15mL conical centrifuge tube and transported on ice to a 

centrifuge. Cells were pelleted at 300 RPM (the lowest centrifuge speed) at 4°C for two 

to three minutes. Pelleted cells were removed from centrifuge and placed on ice. 

Media/Trypsin mixture was carefully removed and cells were re-suspended in PBS + 
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1mM CaCl2 at 108 cells/ml. Forty microliters of the CaCl2 cell suspension was 

transferred to a 2mm-gap cuvette.  Ten micrograms of each plasmid, diluted in water to 

concentrations between 1,000-10,000 ng/ml, were placed in the cuvette. The 

cell/plasmid suspension was mixed by gently pipetting up and down prior to a 10 minute 

incubation period on ice. Cells were electroporated with a square wave electroporation 

system (BTX, Holliston, MA ) for 10 pulses lasting 50 µs at 300 V (1500 V/cm) with 

500ms intervals between each pulse. After electroporation, cells were diluted with warm 

media and plated on glass bottom dishes at a concentration of 1.5∙105 cells/cm2. Cells 

were incubated overnight and media was refreshed in the morning. Cells expressed 

plasmids properly for FFS measurements 24-48 hours after transfection.   

Cell Imaging Buffer 

 Cell media was replaced with a Krebs-Ringer Bicarbonate Buffer (KRBH) with 

.1% bovine serum albumin (BSA) and 12 mM glucose for imaging. Cells were washed 

twice with KRBH buffer before imaging to remove phenol red. For cells treated with 

dopamine, dopamine hydrochloride was diluted to 100 µM with warm KRBH buffer. Due 

to the rapid degradation of dopamine in solution, new dopamine solution was every 4 

hours. 

 

Instrumentation and Calibration 

General Overview 

 Cells were imaged on a LSM 780 confocal microscope (Zeiss). A tunable, mode-

locked Ti:Sapphire laser was used to excite fluorescence. Excitation light was guided 

into the microscope and passed through a 760 nm long-pass dichroic beam splitter 
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before entering a 40X 1.2NA water immersion objective used to focus the beam at the 

excitation point. Fluorescence excited at the focal point of the objective was collected 

with the same objective. Collected fluorescence is again passed through the 760 beam 

splitter to separate excitation and emitted light. The emitted light is spectrally separated 

and 31 detectors collecting in wavelength bins of 10 nm collect the light. Detectors are 

GaAsP Quasar detectors which have almost double the quantum efficiency of PMT 

detectors in the visible range (Zeiss, Jena, Germany). The multiple detectors allows two 

channel detection, green and red, without the use of filters. Additionally, accepted 

wavelengths for each channel can be determined within 10nm ranges. Figure 24 shows 

the emission spectra for EGFP and mApple. Between 550 nm and 600 nm the spectral 

emissions for EGFP and mApple overlap and cannot be separated. To avoid EGFP 

emission bleeding into the mApple channel, mApple emission collected between 600-

700 nm and EGFP emission was collected between 500-540 nm, shown in figure 24.   

  

 

Figure 24 Normalized emission intensity of EGFP and mApple with the emission collection 
regions highlighted. To avoid cross-talk between the green and red channels fluorescence 

emission was only collected at wavelengths where EGFP and mApple emission did not overlap. 
EGFP emission was collected between 500 – 540 nm and mApple emission between 600 – 700 nm.  
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Alignment 

 Proper alignment of the microscope was verified from measurements of the point 

spread function (PSF) using images of submicron fluorescent beads of 100 nm 

diameter. Z-stacks of X-Y plane images show the point spread function in 3 dimensions. 

Non-ellipsoidal PSF images indicated the instrument was misaligned. X-Y planar 

images from the submicron beads were used to determine the beam width through 

ImageJ Java Script Point Spread Function Estimation Tool (MOSAIC Lab) (203).  

Data Acquisition 

 FFS measurements require low average fluorescence count rates so that small 

changes in fluctuations can be determined. Preferred count rates are between 5-30 

thousand counts per second. This expression level, while low, is ten times greater than 

that autofluorescence. Figure 25 shows the fluorescent counts of two cells used for FFS 

measurements with a count rate of 6 kcps and 6.2 kcps. Also shown is scattering (.2 

kcps) and the autofluorescent counts from a cell not expressing the FP (.5 kcps).   

 

Figure 25 DIC and raster fluorescence image overlay of a cell properly expressing EGFP for FFS 
measurements (A) with contrast enhanced (B). At points 1 and 2, the count rate is within the range 
of 5-30 thousand counts per second. Also shown is the count rate for a cell not expressing EGFP 

(.5 kcps) and the count rate for the imaging buffer (.2 kcps). 
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 Measurement times for FFS experiments vary from 10 seconds to 120 seconds 

depending on the diffusion rate of the sample. Molecules in solution are typically 

diffusing at a fast rate where slower measurement times are adequate to fully describe 

the fluctuations (193). Slow moving membrane bound molecules require longer 

measurement times to fully define the fluctuations occurring. Long cell measurement 

times can be difficult to obtain due to cell movement and mechanical/optical drift in the 

system. To compromise for the long measurement times needed to fully describe 

fluctuations of molecules at the membrane and cell movement and instrument drift, 

measurements were taken for 45 seconds. This timeframe provided enough time for 

well resolved correlation curves while being fast enough to obtain measurements 

without average fluorescence count changes.  

 Previous literature has shown at temperatures below 37 °C, protein diffusion 

rates decrease (194, 204). Microscope incubators, which are often used to keep cells 

warm while imaging, are not able to be used for FFS studies of cells because they 

cause small vibrations which moves the excitation volume causing inaccurate 

measurements of specific cellular locations. To keep the cells warm without vibrations, I 

used an objective heater which was kept at 37 °C. Additionally, each cell dish was 

imaged for no longer than one and a half hours. If cells exhibited rounding or 

detachment, the dish was immediately discarded. 

 Diffusion rates of membrane proteins are under 1 µm2/s (193, 194, 205–208). 

During the long measurement times used in my cell experiments, FPs that do not move 

in and out of the excitation volume are bleached. Bleaching reduces the average 

fluorescent counts at a slower rate than fluctuations occurring due to diffusion. The slow 
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change in counts produces an autocorrelation curve that emphasizes the slow change 

bleaching over the fast fluctuations of diffusing molecules. An example of bleaching and 

the autocorrelation curve produced is shown in Figure 26.  To remove the artifact 

created by bleaching, an initial bleaching period is performed at the membrane before 

FFS measurements begin (175, 193). Once the slowly diffusing FPs are bleached, the 

average count rate is stable and fluctuations, occurring due to protein diffusion, can be 

measured.   

 

Figure 26 Average count rates during bleaching measurement (A) and the resulting FFS curve (B) 
which emphasizes the slow change in fluctuations due to bleaching instead of fluctuations due to 

protein diffusion.  

 
Data Analysis 

 Raw fluctuation data was saved after measurement for each channel 

independently. Included in the hexadecimal code is the file identifier, measurement 
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identifier, position, kinetic index, repetition number, detector frequency, and the first 

pulse distance between detector clocks prior to measurement counts (209). From the 

raw data files, fluctuations were binned (50 µs) and the autocorrelation curve computed 

in Matlab as described in Equation 29.  

𝐺(𝜏) =  
〈𝛿𝐼(𝑡)𝛿𝐼(𝑡 + 𝜏)〉

〈𝐼(𝑡)〉2
=

〈𝐼(𝑡)𝐼(𝑡 + 𝜏)〉

〈𝐼(𝑡)〉2
− 1 

Equation 29 

The autocorrelation curve is then fit to determine the diffusion coefficient. Fluorescence 

fluctuation measurements in solution and the cytoplasm were fitted applying a standard 

3D diffusion model.  

𝐺(𝜏) = 𝐺(0)
1

(1 + (𝜏
𝜏𝐷⁄ )) (1 + (

𝜔𝑧
𝜔𝑥𝑦

⁄ )
−2

(𝜏
𝜏𝐷⁄ ))

1
2⁄

+ 𝐺(∞) 

Equation 30 

where ω denotes the beam dimensions. From the diffusion coefficient, τD, the diffusion 

rate can be determined.  

𝜏𝐷 =
𝜔2

8𝐷
 

Equation 31 

For membrane measurements, a two component 2D model was used to fit the data as 

detailed by Equation 32.  The slow diffusion component describes the membrane 

molecules diffusing on a 2 dimensional plane formed by the membrane. The fast 

diffusion component is due to the excitation of fluorescent molecules in the cytoplasm 
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underneath the membrane. This component, while presented, was removed for further 

analysis since it does not describe membrane proteins. 

𝐺(𝜏) =  
𝐴𝑓

1 + 𝜏
𝜏𝐷1⁄

+
𝐴(1 − 𝑓)

1 + (𝜏
𝜏𝐷2⁄ )

 

Equation 32 

To fit the measured autocorrelation curve, the least square curve fitting algorithm in 

Matlab was used. To determine protein interaction, the fluorescence cross-correlation 

component was determined, equation 33. 

𝐺𝐶𝐶 =  
𝐺𝑅𝐺

𝐺𝐺 + 𝐺𝑅
 

Equation 33 

 In addition to the cross-correlation, two component PCH was used to measure 

the heteromerization brightness component. Histograms of the fluctuations were formed 

by plotting the occurrence against the number of photon counts in each time bin. For a 

single particle excited by two-photon excitation, the PSF can be approximated by the 

square of a Gaussian-Lorentzian beam profile as define in equation 34 (148, 210) 

where 𝐼 is the light intensity, 𝐼𝑜 is the light intensity at the origin, and 𝜔 and 𝑧 are the 

beam waist in the horizontal and axial directions, respectively. 

𝑃𝑆𝐹̅̅ ̅̅
2̅𝐺𝐿(𝑟, 𝑧) =  

𝐼2(𝑟, 𝑧)

𝐼𝑜
2

=
4𝑤𝑜

2

𝜋2𝜔4(𝑧)
exp [−

4𝑟2

𝜔2(𝑧)
]   

Equation 34 
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In Chapter 2, I showed the PCH for a single particle can be written as equation 35. 

𝑝(1)(𝑘; 𝑉𝑜, 𝜀) =  
1

𝑉𝑜
∫ 𝑃𝑜𝑖(𝑛, 𝜀𝑃𝑆𝐹̅̅ ̅̅ ̅̅ ̅(𝑟)) 

𝑉𝑜

𝑑𝑟 

Equation 35 

Inserting equation 34 into 35, the PCH for a single particle in two-photon excitation can 

be determined (148) where 𝛾 is the incomplete gamma function. 

𝑝2𝐺𝐿
(1) (𝑘; 𝑉𝑜, 𝜀) =  

1

𝑉𝑜

𝜋24𝑤𝑜
2

2𝜆𝑘!
∫ (1 + 𝑥2)𝛾 (𝑘,

4𝜀

𝜋2(1 + 𝑥2)2
)

∞

0

𝑑𝑥 

Equation 36 

The experimental PCH is then fit to the convolution of the average number of single 

particles within the volume to determine the molecular brightness. The heteromerization 

brightness, two-color brightness, is determined by equation 37 (132). 

〈𝜀𝑔𝑟〉 =
𝜎𝑔𝑟

2

𝛾√〈𝐼𝑔〉〈𝐼𝑟〉
 

Equation 37 

 

Constructs 

 Many of the constructs used in this work were combinations of plasmids. Below, I 

will detail the changes I have made to the major plasmids used to transfect cells in this 

study. There were multiple constructs which did not produce a functional linkage of the 

protein of interest and fluorescent protein; these constructs are not discussed.  
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EGFP and mApple Bacterial Expression Plasmids 

 For measurements in solution, both EGFP and mApple pQe-9 bacterial 

expression plasmids were used to obtain purified fluorescent protein. The Qe9 vector 

has an N-terminus His6-tag used for protein purification and a selected resistance for 

Ampicillin through the β-lactamase (bla) gene.  Plasmids were transformed into BL21 

(DE3) competent Escherichia coli (E.coli) and plated on luria broth (LB) + ampicillin agar 

plates for overnight incubation at 37 °C. A single colony was picked and grown 

overnight at 37 °C while shaking in 5mL of LB with 5 mg/ml carbenicillin, an ampicillin 

analog with higher stability. A glycerol stock was made and frozen at -80 °C to remove 

the need for transformation and plating for each growth. One milliliter of overnight 

culture is grown in 50mL LB for 2-4 hours at 37 °C while shaking until an OD600 is 

reached. The colonies were then induced with Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) and grown for 12-15 hours at 37°C while shaking. Many protocols instruct this 

last overnight growth to be at room temperature; however, I found no change in the 

amount of EGFP obtained and a reduction in the amount of mApple obtained when this 

last growth period was at room temperature compared to 37°C. After incubation cells 

were pelleted and frozen overnight before a His-tagged purification with Ni-NTA beads 

was performed to obtain purified proteins. 

EGFP and mApple Mammalian Expression Plasmids 

 EGFP and mApple mammalian expression plasmids were from Clontech N1 and 

C1 vectors which are resistant to kanamycin. Plasmids were transformed into DH5α E. 

coli for plasmid production. Colonies were selected and grown in 5mL volumes as done 

for the bacterial expression vectors described above. One milliliter of overnight culture 
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was placed into 50mL of LB with kanamycin and grown overnight at 37°C while shaking. 

The culture was then pelleted and a midi-prep kit protocol (Qiagen, Hilden, Germany) 

was used to obtain plasmid DNA. DNA was concentrated using ethanol precipitation 

and then re-suspended in distilled water to concentrations between 1,000-10,000 

ng/mL, the required DNA concentration for electroporation. The protocol explained 

above for plasmid production was reproduced for all mammalian expression cultures for 

transfections.  

EGFP DRD3 

 The dopamine receptor D3 (DRD3) labeled with EGFP on its N terminus was 

purchased from Addgene (Product Number 24098). The receptor is of human species 

and properly traffics to the membrane through the use of a nicotinic receptor α7 subunit 

signaling peptide (211, 212). The plasmid is of pCEP4 and is encoded for ampicillin 

resistance.  

EGFP DRD2 

 The D2 dopamine receptor (DRD2) labeled with EGFP on its N terminus was 

purchased from Addgene (Product Number 24099). Like the D3 receptor, the D2 is of 

human species and is properly trafficked to the membrane with the use of a nicotinic 

receptor α7 subunit signaling peptide (211, 212). The plasmid is in a pcDNA3.1+/Hygro 

backbone and is encoded for ampicillin resistance. 

mApple Gγ2 Subunit 

 The guanine nucleotide binding protein gamma-2 (Gγ2 or GNG2) was purchased 

as cDNA of mammalian origin from GE Life Sciences (product number MMM1013-
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7513168) and placed into a mApple C1 vector from Clontech between the restriction 

sites NheI (592) and BsrGI (1323). This GNG2 sequence has been used in many 

previous studies and has been shown to pair with the Gβ1 subunit to form a Gβγ complex 

(213–215). The plasmid encodes for kanamycin resistance.  

mApple Linked to EGFP construct 

 

Figure 27 mApple-EGFP plasmid from mApple C1 inserted into an EGFP N1 vector. The resulting 
construct has 18 amino acids separating the two fluorescent proteins.  

 

 As a positive control for FFS studies of interacting proteins, I constructed a 

mApple-18aa-EGFP construct where mApple and EGFP formed linked together by 18 

amino acids. PCR was used to amplify a mApple C1 insert between HindIII (623) and a 

KpnI restriction site added in the antisense primer (1361 added placement). EGFP N1 

and the mApple insert were digested at the indicated restriction sites and then ligated 

with T4 DNA Ligase.  A final plasmid map is shown in figure 27. 
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mCerulean Gβ1 Subunit 

 The guanine nucleotide binding protein beta-1 (Gβ1) subunit labeled with 

mCerulean at the N terminus was purchased from Addgene (product number 27810). 

This subunit is of human origination and has been well characterized to form functioning 

Gβγ complexes with Gγ2 (213–215).   

EGFP G-protein Inwardly Rectifying Potassium Channel 3 

 The G-protein Inwardly Rectifying Potassium Channel subunit 3 (KCNJ9, Kir3.3, 

GIRK3) was purchased from OriGene (product number 004983) labeled with turbo 

green fluorescent protein (tGFP) on its C terminus. The vector is a pCMV6-AC-GFP 

with the GIRK3 subunit inserted between SgfI and MluI and encodes for ampicillin 

resistance.  

mApple G-protein Inwardly Rectifying Potassium Channel 3 

 

Figure 28 GIRK3-mApple plasmid map formed by performing an in-fusion HD cloning kit to insert 
the GIRK3 subunit into the mApple N1 vector linearized at the AgeI restriction site. 
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 To measure interactions between the dopamine receptors and GIRK subunit, I 

used an in-fusion HD cloning kit to insert the GIRK subunit 3 sequence into a Clontech 

mApple N1 vector. For the reaction, the GIRK subunit was amplified by PCR and the 

mApple N1 vector linearized at the AgeI restriction site in the multiple cloning site. The 

final product formed was sequenced and its phenotype confirmed with a lambda scan, 

shown in Figure 28 with the full plasmid map.  

 

Protein Characterization 

 As an initial experiment, FFS measurements of EGFP and mApple in solution 

were performed and their diffusion rates compared to those previously reported by FFS 

experiments. mApple measurements also characterized the diffusion rate and 

brightness of mApple which has not previously been used in two-photon FFS studies. 

The diffusion rates for EGFP and mApple in solution were determined to be 71.2 ± 7.7 

µm2/s and 85.8 ± 15.8 µm2/s, respectively. Results are shown in figure 29 along with the 

results from previous FFS studies of green and red fluorescent proteins in solution 

(216–218). The measured diffusion rates are in agreement with the expected values of 

proteins diffusing in solution.  
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Figure 29 Comparison of diffusion rates determined for EGFP and mApple FPs versus those 
previously published (216–218). 2PE and SPE symbolize two-photon and single-photon excitation.  

 

 EGFP and mApple N1 plasmids were also expressed in MIN6 cells as a control 

experiment to confirm the diffusion rate of FPs within the cytoplasm could be correctly 

measured. Diffusion rates for EGFP and mApple were determined to be 22.4 ± 3.9 

µm2/s and 21.2 ± 4.8 µm2/s, respectively. The results can be compared to previous 

reported diffusion rates from FFS in figure 30. Both the EGFP and mApple FPs diffuse 

within the expected diffusion rate of FPs in the cytoplasm.  
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Figure 30 Diffusion rates of EGFP and mApple expressed within a cell versus previously 
published results of green and red FP diffusion rates in the cell. 

 

 As a control experiment to confirm the measurement of membrane proteins, two 

membrane proteins labeled with EGFP were measured in MIN6 cells and compared to 

previously reported diffusion rates of FRAP studies (194). The first of those proteins, 

transforming protein 21, or HRas, is an inner lipid protein used in signaling of the 

mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) 

pathways (219, 220). HRas is similar to the Gγ subunit in that both are small, inner lipid 

proteins. The second control protein is VSVG3, a non-raft, transmembrane protein. FFS 

studies resulted in a diffusion rate of 0.90 ± 0.30 µm2/s for HRas and 0.34 ± 0.13 µm2/s  

for VSVG3, comparable to those found by FRAP (1.1 ± 0.40 µm2/s and 0.2 ± 0.10 

µm2/s, respectively) as shown in figure 31 (194). Thus, the diffusion rates of membrane 

bound and transmembrane proteins were properly measured by FFS.  
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Figure 31 Raster fluorescence image of HRas (A) and VSVG3 (B) tagged with EGFP; scale bar 5 
µm. Diffusion rates determined by FFS are 0.90 ± 0.30 µm2/s for HRas and 0.34 ± 0.13 µm2/s for 
VSVG3 compared to 1.2 ± 0.35 µm2/s and 0.2 ± 0.10 µm2/s for HRas and VSVG3 diffusion rates 

determined by FRAP (194) (C).  

 

Summary 

 Detailed in this chapter are the methodologies used for this dissertation and 

background studies required before performing the experiments later detailed. As 

described above, it is essential the instrument is set up and aligned properly in order to 

correctly measure fluctuations for the determination of diffusion rates and 

heteromerization of proteins. All constructs used in the experiments of this dissertation 

have also been described in full detail and plasmid maps provided for altered plasmids. 

Thus far, I have shown the ability to measure the diffusion rates of EGFP and mApple 

with two-photon excitation in solution and within the cell. Due to the slow diffusion rate 

of membrane proteins, I used FFS measurements to determine the diffusion rates of an 

inner-leaflet and transmembrane protein. Results were comparable to those determined 

by fluorescence recovery after photobleaching (FRAP).    
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CHAPTER 4 

 

DOPAMINE RECEPTOR SIGNALING THROUGH Gβγ COMPLEX 

 

Introduction 

 This chapter summarizes my studies of the signaling response by the dopamine 

receptor to the Gβγ complex, after stimulation. It has been shown that circulating L-dopa 

is taken up by the β-cells, converted into dopamine, and co-secreted with insulin (120, 

121).  In the presence of dopamine, [Ca2+]i is reduced, leading to decreased insulin 

secretion (120). This dopamine mediated negative feedback pathway regulates glucose 

stimulated insulin secretion (GSIS). Previous papers report the inhibition of GSIS by 

dopamine due to the D2 dopamine receptor subtype (120, 121, 221). However, in the 

presence of a D3 selective antagonist, insulin secretion is uninhibited while in the 

presence of a D2 selective antagonist, insulin secretion is predominantly inhibited (120). 

I hypothesize that the secreted dopamine is detected primarily by the dopamine 

receptor D3 subtype (DRD3), even though both the DRD2 and DRD3 subtypes are 

expressed in β-cells (120). Activation of the dopamine receptor leads to decreased 

[Ca2+]i, but the signaling pathway(s) from the receptor(s) to calcium activity remains 

unknown.  It was shown that adenylyl cyclase activity in β-cells is largely unchanged by 

dopamine stimulation (221), so I expect DRD3 to signal through release of the Gβγ 

complex.  To explore this pathway and determine which receptor is involved in the 

dopamine mediated negative feedback pathway, I want to examine the interaction 

dynamics of the D3 and D2 dopamine receptors and the Gβγ complex. 
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 Recent FFS studies have investigated membrane proteins to measure signaling, 

disassociation constants, and clustering (222–226). I have used two-color FFS to 

examine the specific activation of dopamine receptor sub-types in a pancreatic β-cell 

model.  Both cross-correlation and 2 component photon counting histogram analyses 

are applied to determine the dynamics of interactions between the DRD2 and DRD3 

receptors with their heterotrimeric G-proteins.  I show that both analysis methods yield 

the same results, which gives an internally consistent cross-check to the results.   

 

Materials and Methods 

Constructs and Cells  

 Enhanced green fluorescent protein (EGFP) and monomeric apple fluorescent 

protein (mApple) were expressed in MIN6 cells using Clontech N1 and C1 vectors 

(Clontech, Mountain View, CA).  For control experiments, mApple C1 was inserted into 

the EGFP N1 vector to form a linked mApple –EGFP construct with 18 amino acids 

separating the two proteins, as described in chapter 3.  EGFP-DRD3(211), EGFP-

DRD2 (211), and Gβ1-mCerulean(227) were obtained from Addgene (Cambridge, MA).  

The guanine nucleotide-binding protein subunit gamma-2 (Gγ2) cDNA was obtained 

from GE Lifesciences (Pittsburgh, PA) and inserted into the multiple cloning site of a 

mApple C1 vector (Clontech, Mountainview, CA) as further described in chapter 3. 

 Transient transfections were performed on MIN6 β-cells (196) by electroporation 

using an Electro Square Porator ECM 830 (BTX, Holliston, MA) as detailed in Chapter 

3.  For FFS data acquisition, the cell media was replace with Krebs-Ringer Bicarbonate 

buffer containing 1% BSA and 12 mM glucose.  Cells were warmed with an objective 
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heater maintained at 37 ºC.  For some measurements, 100 µM of dopamine 

hydrochloride (Sigma-Aldrich, St. Louis, Missouri) was dissolved in the imaging buffer. 

Instrumentation 

 Images and fluctuation measurements were performed on a LSM 780 using a 

40X NA 1.2 C-Apochromat water immersion objective lens (Carl Zeiss, Jena, Germany).  

Fluorescence was excited with a Chameleon Ultra Ti:Sapphire laser (Cohernet, Santa 

Clara, CA) running at 1000nm to provide a single excitation volume for both green and 

red channels.  Emission from GFP was collected between 500-540 nm and from 

mApple between 600-700 nm. The waist, ωo, of the excitation volume was determined 

to be 270±10 nm by measuring 100 nm fluorescent beads.  To determine the 

expression of cerulean, fluorescence was collected using an excitation wavelength of 

850 nm.  

 Signal levels below one thousand counts per second were determined to be the 

baseline of autofluorescence.  Typical FFS measurement of FP expression was 

between 10 to 50 thousand counts per second.  A Z-scan of 0.1 µm steps was used to 

center the excitation volume at the cell membrane.  FFS measurements were taken for 

45 seconds, and the first measurement at each position was removed to exclude initial 

bleaching of immobile labeled proteins (175). 

Theory and Data Analysis 

 Fluorescence fluctuation measurements in the cytosol were fit to a standard 3D 

diffusion model.  For membrane measurements, a two component 2D model was used 

to fit the data.  The results of the fast diffusion rate are shown, but these rates are not 
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consistent with the diffusion of membrane-bound constituents.  Thus, the slow 

component was used for further analysis as this represents the membrane bound 

proteins.  To determine protein interactions, the fluorescence cross-correlation 

component was determined (131, 228).  In a parallel analysis of the raw FFS data, two-

component photon counting histogram (PCH) analysis was used to evaluate the 

hetermoerized brightness component (132, 134).  An un-paired t-test was used to 

determine significant differences (GraphPad Prism, La Jolla, CA), and p-values less 

than .05 were considered significant. 

 Cell images were acquired using the ZEN software (Carl Zeiss, Jena, Germany).  

Fitting and cross-correlation data analysis was performed using in-house written 

MATLAB programs (Mathworks, Natick, MA).  Two-component PCH analysis was 

performed in ImageJ (NIH, Bethesda, MD) using a java script code modified for two-

photon excitation volumes from Jay Unruh’s source code (Stowers Institute, Kansas 

City, MO).  All graphs and data reported show mean ± standard error of the mean. 

 

Two-color FFS of Separate and Linked Fluorescent Proteins 

 To validate my measurements and analysis of the fluorescent protein labels used 

in these experiments, I first expressed each fluorescent protein label alone into MIN6 

cells and measured the fluorescence fluctuations in the cytosol of cells within the 

sufficiently low expression level required for fluorescence correlation measurements.  

For the enhanced green fluorescent protein (EGFP), a single species fit resulted in a 

measured diffusion rate of 22.4 ± 3.9 µm2/s, comparable with previous reported studies 

(216).  mApple has not previously been used for two-photon excitation FFS studies, but 
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its diffusion rate is expected to be equivalent to those of EGFP and other fluorescent 

proteins.  For mApple, the single species fits yields a diffusion rate of 21.2 ± 4.8 µm2/s, 

in agreement with other fluorescent proteins (216, 217).   

 

Figure 32 a. Autocorrelation curves from cells expressing separate EGFP (green) and mApple 
(red), and their cross-correlation (blue). b. Autocorrelation curves from cells expressing a linked 
EGFP (green)/mApple (red), with their cross-correlation (blue). Cross-correlation analysis (c) and 
two-component photon counting histogram analysis (d) quantifies the interaction of the unlinked 

and linked fluorescent proteins. 

 

 To establish the baseline cross-correlation between non-interacting proteins, 

separate EGFP and mApple plasmids were co-transfected into MIN6 cells.  Two-color 

FFS measurements were acquired from the cytosol and the cross-correlation curve was 

calculated (Figure 32a).  After fitting of the autocorrelation and cross-correlation curves, 

the interaction value, Gcc, was calculated.  This interaction was verified by a parallel 
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two-component photon counting histogram analysis of the same original FFS data to 

determine a heteromerization brightness component, <εcc> (Figure 32c,d).  

 To determine the maximal correlation between two fully interacting proteins, a 

plasmid was developed linking the two fluorescent proteins, EGFP and mApple, 

together with an 18 amino acid linker.  The plasmid was transfected into MIN6 cells and 

two-color FFS measurements were made from the cytosol (Figure 32b).  A cross-

correlation curve was computed and the interaction values, Gcc and <εcc>, were 

determined (Figure 32c,d), both giving a ~2.5 fold difference in correlation between the 

unlinked and linked constructs.  

 

Two-color FFS of Integral Membrane and Membrane Associated Proteins 

Single Component Diffusion of Dopamine D3 Receptor and Gγ Subunit 

To verify that the labeled proteins exhibit proper expression patterns and plasma 

membrane diffusion rates, I analyzed the FFS data to produce autocorrelation curves 

for labeled DRD3 and the Gγ subunit (GNG2).  As detailed below, the plasma 

membrane component diffusion rate was determined by fitting each curve.  The 

calculated diffusion rates for both of these constructs are comparable to other trans-

membrane and inner leaflet proteins analyzed by FRAP and/or FFS (194, 205–208).   
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Figure 33 a. Fluorescence image of MIN6 cells expressing EGFP labeled DRD3 – both plasma 
membrane and intracellular labeling are visible.  b. Experimental autocorrelation (dots) and two-

component fit (solid line). Scale bar is 5 µm. 

 

 Two-photon fluorescence images of DRD3-EGFP were acquired to determine the 

expression patterns of the labeled protein (Figure 33a).  The images show labeling both 

on the plasma membrane, and within the cytosol, putatively receptors located on 

intracellular membranes and recycling vesicles.  FFS measurements were taken from a 

diffraction limited spot centered on the plasma membrane.  A representative 

autocorrelation curve for DRD3-EGFP is presented in Figure 33b.  Multiple algorithms 

were explored to fit the autocorrelation curve, including single component diffusion, two 

component diffusion, and single component diffusion with an anomalous component.  

The two-component model resulted in the lowest residual sum of squares, suggesting a 

faster moving intracellular component and a slower moving fraction on the plasma 

membrane.  The slower diffusion rate of the plasma membrane, 0.120 ± 0.010 µm2/s 

component is in agreement with expected values (Figure 34).  Upon stimulation with 

100µM dopamine, I observed no protein expression changes in DRD3-EGFP, nor are 
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there any statistically significant differences in either its slow (0.108 ± 0.011 µm2/s) or 

fast diffusion rates between before and after dopamine exposure (p-value of 0.4208).   

 

Figure 34 Calculated diffusion rates for EGFP-DRD3 before and after treatment with 100 µM 
dopamine (p = 0.4208). 

  

 The Gγ subunit is one part of the heterotrimeric G-protein complex, which is 

known to signal as a dimer with a Gβ subunit (229).  There is great promiscuity among 

the different Gβ and Gγ subunits in the formation of dimers, and which complexes then 

form heterotrimeric G-proteins with different G-protein receptors.  I chose to use the Gγ2 

subunit due to its previous characterization and use in similar studies (230, 231).  The 

expressed Gγ subunit is expected to pair with intrinsic plasma membrane proteins in 

addition to the expressed DRD3.   
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Figure 35 a. Fluorescence image of MIN6 cells expressing the mApple labeled Gγ subunit – 
predominantly plasma membrane labeling is seen.  b. Experimental autocorrelation (dots) and 

two-component fit (solid line). Scale bar is 5 µm. 

 

 A representative fluorescence image of Gγ-mApple shows that the labeled 

subunits are largely membrane anchored, although a minor intracellular component is 

also observed (Figure 35a).  Figure 35b shows an autocorrelation curve obtained from a 

membrane FFS point measurement of the Gγ subunit.  A two-component fitting model 

was used to determine the diffusion rates.  The slower diffusion rate determined for Gγ-

mApple was 0.125 ± 0.016 µm2/s, which as for DRD3-EGFP, is in agreement with 

previous studies of plasma membrane proteins.  Since I expect the Gγ-mApple to be 

anchored to the plasma membrane, I did not expect to see significant changes in its 

diffusion upon dopamine stimulation, even if the G-proteins dissociate from the 

receptors.  This was confirmed in the data as the slow diffusion component was 

determined to be 0.091 ± 0.014 µm2/s after dopamine stimulation (Figure 36).  A t-test 

confirmed no statistical difference between the diffusion rates before and after treatment 

(p-value of 0.1195). 
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Figure 36 Calculated diffusion rates for mApple-Gγ subunit before and after treatment with 100 µM 
dopamine (p = 0.1195).   

 

Two-color Fluorescent Fluctuation Measurements of DRD3 and Gγ   

 To examine the potential signaling consequences of dynamic interactions 

between DRD3 and Gβγ complex, I co-expressed the fluorescently-tagged DRD3 and Gγ 

subunit.  Interactions between the dopamine receptor and the Gγ subunit were assayed 

by acquiring simultaneous two-color FFS measurements from a diffraction limited spot 

centered on the plasma membrane.  Two-photon fluorescence images of the two co-

expressed proteins (Figure 37a-c) show similar expression patterns to what is seen with 

each component expressed separately (Figure 33a, 35a).   
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Figure 37 Fluorescence images of MIN6 cells expressing EGFP-DRD3 (a), mApple-Gγ (b), and their 
overlay (c). 

 

 Representative cross-correlation curves reveal minimal interaction between the 

DRD3-EGFP and Gγ-mApple both before and after dopamine treatment (Figure 38a,b).  

The cross-correlation was determined to be 0.069 ± 0.011 without dopamine and 0.074 

± 0.007 with 100 µM dopamine treatment (Figure 38c).  A t-test revealed no statistical 

difference between the means of the cross-correlation component before and after 

treatment (p-value of 0.7287).  Using the parallel heteromerization brightness analysis, 

the interacting component was found to be 0.043 ± 0.006 before, and 0.032 ± 0.003 

after, 100 µM dopamine treatment (Figure 38d).  Similar as for the cross-correlation 

component, a t-test found no statistical difference between the two means of the 

brightness component before and after treatment (p-value of 0.0522).  This data was 

not consistent with the hypothesis that dissociation of the Gβγ subunit from the DRD3 

plays an important role in dopamine inhibition of insulin secretion. 
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Figure 38 Autocorrelation curves of EGFP-DRD3 (green), mApple-Gγ (red), and their cross-
correlation component (blue) before (a) and after (b) treatment with 100 µm dopamine.  FFS cross-
correlation (c) and heteromerization brightness analysis (d) before and after dopamine stimulation 

(p = 0.7287 and 0.0522, respectively).  Scale bar is 5 µm. 

 

Two-color Fluorescent Fluctuation Measurements of DRD3 and Gγ 

in the presence of Gβ  

 Since we know that dopamine activates DRD3 in β cells, I suspected that the 

lack of a measured change in the interactions between DRD3-EGFP and Gγ-mApple 

might result from a lack of sufficient numbers of Gβ subunits to form Gβγ complexes with 

the overexpressed Gγ subunits.  To investigate this possibility, I co-expressed a 

mCerulean labeled G-protein β subunit (Gβ1) with the labeled DRD3 and Gγ subunit.  

Previous studies have shown proper pairing of the Gγ2 and Gβ1 subunits (213–215).  The 

mCerulean fluorescent protein is not excited by two-photon excitation at 1000 nm 

(Figure 39a,b), which permits the two-color FFS experiments with DRD3-EGFP and Gγ-
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mApple to be performed without interference from the mCerulean fluorescence.  

Expression of Gβ1-cerulean was detected by fluorescence imaging with two-photon 

excitation at 850 nm (Figure 39c,d).  The resulting fluorescence spectrum (232) of a 

region of interest along the plasma membrane (Figure 8e) reveals the mCerulean 

emission as a shoulder around 470 nm that is not present with EGFP alone (Figure 

39e).  No changes in localization of the DRD3-EGFP or Gγ-mApple proteins are 

observed after addition of the third transfected protein (Figure 39a-d).   

 

 

Figure 39 Fluorescence images of MIN6 cells expressing EGFP-DRD3 (a), mApple-Gγ (b), 
mCerulean-Gβ (c), and the overlay of EGFP-DRD3 and mApple-Gγ (d).  e. Emission spectra (850 

nm excitation) of the plasma membrane region of a triply-transfected cell confirms expression of 
mCerulean-Gβ (fluorescence in the 450-490 nm range).  The emission spectrum of EGFP is shown 

for reference.  Scale bar is 5 µm. 
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        FFS measurements were taken from diffraction limited spots centered along the 

plasma membrane.  The autocorrelation and cross-correlation curves were calculated 

(Figure 40a,b), and interactions between DRD3 and the Gγ subunit were analyzed with 

two-color fluorescence cross-correlation analysis (Figure 40c).  Cross-correlation values 

were found to be 0.118 ± 0.016 before treatment and 0.065 ± 0.005 after treatment with 

100µM of dopamine (p-value of 0.0026).  Similarly, the heteromerization brightness 

component was calculated to be 0.043 ± 0.006 before and 0.026 ± 0.003 after the 

dopamine treatment (Figure 40d; p-value of 0.0054).  Both analyses are consistent with 

a significant reduction in the spatial association between the DRD3 and the Gγ subunit 

upon dopamine treatment.  

 

Figure 40 Autocorrelation curves of EGFP-DRD3 (green), mApple-Gγ (red), and their cross-
correlation component (blue) in the presence of mCerulean-Gβ before (a) and after (b) treatment 
with 100 µM dopamine.  FFS cross-correlation (c) and heteromerization brightness analysis (d) 

before and after dopamine stimulation (p = 0.0026 and 0.0054, respectively).  
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 The data shows a low correlation and no significant dopamine-associated 

changes between DRD3 and the Gβγ complex when I overexpress the fluorescently-

labeled DRD3 and Gγ subunit (Figure 38).  In this case, any Gβγ complexes formed with 

the labeled Gγ subunit would have to be paired with the native Gβ subunits.  My data 

suggest that this does not permit sufficient incorporation of the labeled Gγ subunit into 

active Gβγ complexes, as shown by relatively poor localization to the plasma membrane 

(Figure 37b) and low measured cross correlations (Figure 38c,d).  This is consistent 

with previous findings that overexpression of only the Gβ or Gγ subunit did not activate 

GIRK2 after stimulating the adenylyl cyclase receptor on oocytes (233).  Upon the 

additional expression of the Gβ1 subunit, which is known to pair with the Gγ2 subunit 

being used (213–215), I detected improved plasma membrane localization of the 

labeled Gγ subunit (Figure 39b), as well as higher heteromerization between labeled 

DRD3 and the Gβγ complex (Figure 40c,d).  The results suggest that it is important to 

overexpress all constituents of a functional complex for the extrinsic proteins to 

participate properly in the signal transduction pathway.   

 More than 40 different G-protein coupled receptors (GPCR) have been identified 

in the pancreatic β-cell, and it is expected that many of these receptors play important 

roles in the control of insulin secretion.  Thus, Gβγ complexes can associate and interact 

dynamically with a wide range of GPCRs, not only dopamine receptors.  Additionally, 

the overexpressed Gβ1 and Gγ2 can form complexes with other subunits native to the 

cell.  This is consistent with my analysis, which yields cross-correlation amplitudes that 

are small compared to the autocorrelation values.  This suggests that only a small 

number of the labeled proteins being within the interacting complexes, and is consistent 
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with the possibility that the labeled Gβγ subunits are interacting with multiple GPCRs.  

Despite these potential obstacles, I still measured the coupling between labeled DRD3 

and Gβγ complexes (Figure 40).  At baseline, there was a significant amount of 

heteromerization between DRD3 and the Gβγ complex, and this interaction was reduced 

after stimulation by dopamine.  This data is consistent with the hypothesis that DRD3 

signaling depends on release of the Gβγ subunit from the receptor following dopamine 

stimulation.  

Two-color Fluorescent Fluctuation Measurements of DRD2 and Gγ 

  Previous evidence suggests that dopamine signals preferentially through DRD3 

in β-cells, even though both DRD2 and DRD3 subtypes are present in the cells.  Thus, I 

examined whether dopamine-stimulated changes between DRD2 and the Gγ subunit 

are different than those measured for DRD3.  I performed FFS measurements between 

the DRD2 receptor and Gβγ complex using an EGFP labeled DRD2, with the same Gγ-

mApple and Gβ-mCerulean.  The localization of DRD2, Gγ subunit, and Gβ subunit 

expression was predominantly on the plasma membrane with some intracellular signal, 

similar to the results for DRD3 (Figure 41a-d).   



86 
 

 

Figure 41 Fluorescence images of MIN6 cells expressing EGFP-DRD2 (a), mApple-Gγ (b), 
mCerulean-Gβ (c), and the overlay of EGFP-DRD2 and mApple-Gγ (d).  Scale bar is 5 µm. 

 

 FFS measurements were performed at the membrane of cells properly 

expressing all three labeled proteins.  Autocorrelation and cross-correlation curves were 

computed from the measured fluctuations (Figure 42a,b).  Cross-correlation values 

were determined to be 0.075 ± 0.008 before treatment and 0.058 ± 0.005 after 
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treatment with 100µM dopamine (Figure 42c; p-value of 0.0702).  The heteromerization 

brightness components were determined to be 0.028 ± 0.003 before and 0.030 ± 0.002 

after the dopamine treatment (Figure 42d; p-value of 0.6289).  Unlike the results for 

DRD3 association, the FFS correlation between DRD2 and the Gγ subunit appears to 

be much less at baseline, and shows no statistically significant change upon dopamine 

stimulation. 

 

Figure 42 Autocorrelation curves of EGFP-DRD2 (green), mApple-Gγ (red), and their cross-
correlation component (blue) before (e) and after (f) treatment with 100 µm dopamine.  FFS cross-
correlation (g) and heteromerization brightness analysis (h) before and after dopamine stimulation 

(p= 0.0702 and 0.6289, respectively).   

 

 Previous work showed that dopamine inhibits the amplitude and frequency of 

[Ca2+]i oscillations in islet β-cells, leading to reduced insulin secretion (120).  That work 

also showed that dopamine signaling in β-cells is primarily mediated by DRD3, even 
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though both DRD2 and DRD3 are known to be present (120).  The results presented 

here suggest a possible solution to this dichotomy.  The data shows significant 

heteromerization between DRD3 and the Gβγ complex, and that this heteromerization is 

reduced in the presence of added dopamine (Figure 40).  However, I did not find 

significant changes in the heteromerization between DRD2 receptor and the Gβγ 

complex after dopamine treatment (Figure 42).  Taken together, these data strongly 

support the hypothesis that the dopamine feedback loop inhibits insulin secretion 

primarily by stimulation of DRD3.  The lack of dopamine-mediated changes in 

DRD2/Gβγ complex interactions could be due to initially low levels of G-protein coupling 

to the DRD2.  This would be consistent with the low cross-correlation and 

heteromerization brightness component values measured in my experiments.  Another 

possibility could be that the DRD2 receptors are mainly sequestered away from the 

plasma membrane, and therefore would not be accessible to extrinsically added 

dopamine.  This would be consistent with the findings of a previous paper that indicated 

the DRD2 expression was primarily within secretory granules (221).  Further work would 

be needed to distinguish between these two possibilities, but the results presented here 

provide a framework for these and other future studies. 

 

Summary 

 This chapter presents my study of interactions between the dopamine receptors 

and Gβγ subunits using two-color FFS.  Previous studies have used two photon 

excitation FFS cross-correlation to assay interactions between proteins labeled with 

EGFP and mCherry and monomeric red fluorescent protein (mRFP) (134, 217).  
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Because of its increased brightness over mCherry and mRFP, mApple is superior for 

FFS measurements (234).  I showed signals from EGFP and mApple can be separated 

and used to measure dynamic heteromerization changes by FFS.  

 I next tested the hypothesis that the D3 receptor is activated by dopamine 

stimulation by measuring interactions between the D3 dopamine receptor and Gγ 

subunit. No changes were observed after dopamine stimulation which was inconsistent 

with the proposed hypothesis. To determine if overexpression of both the Gβ and Gγ 

subunit was required to measure signaling, I additionally overexpressed the Gβ subunit 

labeled with mCerulean which is not excited at 1000 nm, the excitation wavelength I 

used for FFS measurements. Upon the co-expression of Gβ and Gγ subunits, I showed 

a reduction in heteromerization after dopamine treatment, confirming signaling through 

the D3 dopamine receptor. Next, I measured interactions between the D2 dopamine 

receptor and the Gβγ complex after dopamine stimulation and showed no 

heteromerization changes. Thus, my results confirm the preferential signaling through 

the D3 dopamine receptor over the D2 dopamine receptor in the feedback pathway 

(120, 221).   

 In these studies, I utilized both fluorescence cross-correlation spectroscopy 

(FCCS) (141, 235) and two-component photon counting histogram (PCH) analysis (132, 

236) methods to measure the interactions between dopamine receptors and their G-

proteins.  Previous biological studies of FFS have used only one analysis method or the 

other to examine the fluorescence fluctuations.  Here I showed both analysis methods 

yield similar results, both in terms of baseline interactions and changes in 

heteromerization of the labeled proteins.  Use of both analysis methods provides an 
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internally self-consistent check on the validity of the data and each separate analysis 

algorithm. 
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CHAPTER 5 

 

GIRK INTERACTIONS WITH Gβγ COMPLEX 

 

Introduction 

 The material in this chapter focuses on the experiments I performed investigating 

interactions between the G-protein inwardly rectifying potassium channel (GIRK) and 

the Gβγ complex. Once the D3 dopamine receptor is activated, [Ca2+]i is reduced (120). 

Unpublished work by Dr. Jacobson and Dr. Ustione shows that hyperpolarization of the 

membrane after dopamine stimulation results from potassium channel activation other 

than the KATP channel. We hypothesize dopamine stimulation causes activation of GIRK 

by signaling through the Gβγ complex of the G-proteins. In this model, movement of 

potassium out of the cell would result in plasma membrane hyperpolarization, causing 

voltage gated calcium channels to close. [Ca2+]i would thus be reduced in the cell and 

insulin secretion inhibited. The proposed dopamine mediated negative feedback 

pathway is shown in figure 43. I hypothesized after dopamine stimulation, activation of 

GIRK channels by the Gβγ complex would increase and therefore heteromerization 

would increase.  
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Figure 43 Proposed pathway for leading to decreased intracellular calcium and therefore 
decreased insulin secretion after stimulation with dopamine. Upon activation of the dopamine D3 
receptor, the Gβγ subunit activates G-protein inwardly rectifying potassium channels. The influx of 
potassium into the cell causes hyperpolarization of the membrane causing voltage gated calcium 

channels to close. The decreased calcium flux leads to a reduction in intracellular calcium, 
blocking insulin secretion. 

  

 GIRK channels, also known as Kir3, are members of the inwardly rectifying 

potassium channel family which includes Kir1-Kir7 (237). There are four GIRK subunits, 

GIRK1-4, also known as either Kir3.1-3.4 or KCNJ3, KCNJ6, KCNJ9, and KCNJ5, 

respectively. As identified by their name, GIRK channels are activated by G-proteins, 

specifically the Gβγ complex. Functioning GIRK channels are tetramers of four GIRK 

subunits. ). GIRK2 is the only subunit to form homotetramers (238, 239); however, all 

subunits form functional heterotetrameric channels in pairs (239–242). For example, two 

GIRK1 and two GIRK3 subunits form a functional GIRK channel. It has not yet been 

determined if functional channels are formed from three or four different type subunits 

(243). For the purposes in this work, GIRK3 was primarily studied due to its ability to 

form heterotetramers with all four other channels and the lack of splice variants found 

for it (240, 244, 245). By measuring GIRK3, a large number of GIRK channels can be 

examined with one overexpressed subunit. Most GIRK research to date has focused on 
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GIRK function in neural and cardiac pathways (246–248). In these pathways, multiple 

neurotransmitters including acetylcholine, adenosine, dopamine, serotonin,  and 

somatostatin have been shown to activate GIRK channels through stimulation of their 

G-protein coupled receptors (249–252). Expression of GIRK subunits has also been 

shown in the pancreas and pancreatic cell lines (253–258). Iwanir determined the co-

localization of all four GIRK subunits with insulin in pancreatic islets through 

immunolabeling and additionally, the presence of all four subunits in the insulinoma β 

cell line INS-1E (253).  

 

Materials and Methods 

Constructs and Cells 

 The turbo green fluorescent protein (tGFP) N terminus labeled GIRK3 subunit 

was purchased from Origene (MG205842, Rockville, MD). Multiple GIRK constructs 

were received from Tooraj Mirshahi at Geisinger Health System (Wilkes-Barre, PA) 

which are listed in Table 1 (259–261). The origination of the different subunits are 

varied; however, the proteins sequences are highly conserved. 

Table 1 GIRK subunits with their tagged labels and origination of each sequence used in the 
experiments described in this chapter. 

Subunit Label Terminus Origination 

GIRK1 Yellow Fluorescent Protein (YFP) C Human 
GIRK2 Green Fluorescent Protein (GFP) C Mouse 
GIRK4 Green Fluorescent Protein (GFP) C Rat 
GIRK4 Cerulean Fluorescent Protein (CFP) C Rat 
GIRK2 Human influenza hemagglutinin (HA) C Mouse 

GIRK3 *Origene EGFP N Mouse 
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 In order to perform two-color FFS measurements between the EGFP labeled 

dopamine receptor D3 and the tGFP labeled GIRK3 subunits, a new construct of GIRK3 

labeled with mApple was made with an in fusion HD kit (Clontech, Mountainview, CA). A 

further detailed description of the GIRK3-mApple is in Chapter 3.  

 Chemical transfections were performed with Effectene Transfection Reagent 

(Qiagen, Hilden, Germany). MIN6 cells were plated on glass bottom imaging dishes 

(Life Technologies, Carlsbad, CA) and incubated overnight to allow for recovery. Half a 

microgram of DNA was used for each plasmid and the effectene to DNA ratio was kept 

at 1:8. The amount of enhancer changed for the type of reaction and size of proteins 

involved. For EGFP-GIRK alone, 10µL, for EGFP-GIRK with the mApple labeled Gγ 

subunit, 20µL, and for mApple-GIRK and EGFP-DRD3, 30µL. Each 1mL effectene 

reaction was used to transfect one imaging dish. Typical expression incubation times 

were between 18-24 hours. After 48 hours, the expression levels were too high for FFS 

studies and cells were discarded. Electroporation transfections, used for two color 

measurements only, were performed using an Electro Square Porator ECM 830 (BTX, 

Holliston, MA) as detailed in Chapter 3.  

 For FFS data acquisition, the cell media was replace with Krebs-Ringer 

Bicarbonate buffer containing 1% BSA and 12 mM glucose.  Cells were warmed with an 

objective heater maintained at 37 ºC.  For some measurements, 100 µM of dopamine 

hydrochloride (Sigma-Aldrich, St. Louis, Missouri) was dissolved in the imaging buffer. 

Instrumentation 

 Raster fluorescence images and fluctuation measurements were taken on a LSM 

780 using a 40X NA 1.2 C-Aprochromat water immersion objective lens (Carl Zeiss, 
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Jena, Germany). Fluorescence was excited with a Chameleon Ultra Ti:Sapphire laser 

(Coherent, Santa Clara, CA) running at 1000nm to provide a single excitation volume 

for both green and red channels. Emission from GFP was collected between 500-540 

nm and from mApple between 600-700 nm.  

Data Analysis 

 Correlation curves were processed and fitted with MatLab programs and 

brightness analysis was performed with Java Script code in ImageJ, both described in 

Chapter 3.  

 

Expression of GIRK Subunits 

 To verify expression, a raster fluorescence image was taken of a MIN6 cell 

expressing tGFP-GIRK3 (Figure 44). Two components are detectible, an intracellular 

component and a plasma membrane component. One hypothesis for the large 

intracellular component is that only a single subunit, GIRK3, was expressed. This 

subunit alone cannot form functional GIRK channels. Overexpressed GIRK3 can only 

form functional channels with native GIRK subunits in the cell. The transient transfection 

introduced considerably more GIRK3 subunits than the cell needs to form the necessary 

GIRK channels for signal transduction. When performing Z-scans, membrane location 

could be determined, but with increased difficulty due to the large intracellular 

component of the GIRK subunits. 
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Figure 44 Two-photon excitation (1000 nm) raster fluorescence image of MIN6 cell expressing the 
turboGFP labeled GIRK3 subunit; A large intracellular component with a faint membrane outline 

can be seen to the upper right side of the cell; scale bar 5 µM 

  

 While all four GIRK subunit have been determined present in β cells, no 

consensus has been reached to the amounts of each subunit inherently in the cell, nor 

which GIRK channels are most often formed (253–258). Therefore, I decided to test the 

expression of each subunit transfected alone in MIN6 cells. The expression phenotypes 

for GIRK1, 2, and 4 are shown in figure 45. Both GIRK1 and GIRK2 have a high 

proportion of bright spots due to protein clustering, potentially due to endosomal 

compartments. However, only GIRK3 has a strong plasma membrane component that 

is easily distinguishable from the intracellular.  
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Figure 45  Representative raster fluorescence images of MIN6 cells expressing GIRK1-YFP (A), 
GIRK2-EGFP (B), tGFP-GIRK3 (C), and GIRK4-CFP.  Both GIRK1 and GIRK 2 both exhibit 

clustering throughout the cytosol and no plasma membrane bound component.(A, B); tGFP-
GIRK3 has small portions of membrane expression, but with a large intracellular component 

throughout the cell (C). GIRK4-CFP is distributed evenly throughout the cytosol with no plasma 
membrane component visible; scale bar 5 µM 

  

 Previous studies have shown that GIRK2 and GIRK3 form functional GIRK 

channels (241, 242). To increase the amount of GIRK2 in the cell for GIRK3 to pair with, 

I co-transfected GIRK2 labeled with an HA tag and GIRK3 labeled with a tGFP tag. 

Without a fluorescent label on the GIRK2 or the use of an anti-HA tag antibody, I was 

not able to determine which cells specifically expressed both subunits. A representative 

image of the co-transfection is shown in Error! Reference source not found.46; no 

cells exhibited a strong membrane component and cell rounding was present 

immediately when imaging started. In addition to the pairing of GIRK3 with GIRK2, I 

also tested the pairing of GIRK3 and GIRK4 to from functional channels at the 
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membrane. GIRK4 has been shown to be a critical subunit in the activation of GIRK 

channels in cardiac signaling (262, 263). Additionally, GIRK4 has been shown to be 

membrane localized when expressed alone and to support the transportation of other 

GIRK subunits to the membrane of oocytes (264). The co-expression of tGFP-GIRK3 

and GIRK4-CFP however resulted in a large intracellular component and no clearly 

defined membrane region. Experiments characterizing GIRK3 at the membrane were 

performed as detailed in the next section. Due to the insufficient signal of GIRK3 at the 

membrane, only initial measurements between GIRK3 and Gγ were performed.  

 

Figure 46 Representative raster fluorescence images of MIN6 cells expressing GIRK2-HA and 
tGFP-GIRK3 (A) and tGFP-GIRK3 and GIRK4-CFP (B); Co-expression of GIRK2-HA and tGFP-

GIRK3 cells exhibit a membrane component, a large intracellular component, protein clustering, 
and cell rounding indicating unhealthy cells. Cells co-transfected with tGFP-GIRK3 and GIRK4-

CFP result in expression throughout the cytosol with some clustering, but no plasma membrane 
bound component; scale bar 5 µM 

 

Two-color FFS of Integral Membrane and Membrane Associated Proteins 

Fluorescence Fluctuation Measurements of GIRK 

 Single color FFS measurements were taken at the membrane before and after 

treatment with 100µM of dopamine. As found for the dopamine receptor and Gβγ 

complex, a two component model resulted in the lowest residual sum of squares, 

signifying it as the best fit to the data. The slow diffusion rate, representing the 
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membrane bound component, was determined to be 0.38 ± 0.09 µm2/s before and 0.21 

± 0.03 µm2/s after dopamine treatment. The fast intracellular component is 13.09 ± 1.51 

µm2/s without dopamine and 11.46 ± 1.10 µm2/s with dopamine. A student t-test was 

performed and no statistical significance was determined between diffusion rates before 

and after dopamine treatment for either the slow or fast component as expected (p-

value of 0.0752 and 0.3932, respectively).  

 

Figure 47 Calculated diffusion rates from two component fitting of tGFP-GIRK3 before and after 
treatment with 100µM dopamine.  The slow diffusion rate represents the membrane bound 

component whereas the fast diffusion rate is due to the intracellular component. Unpaired t-test, 
p-value of 0.0752 and 0.3932 for the slow and fast diffusion rates, respectively. 

 

Two-color FFS measurements between GIRK3 and Gγ subunit 

 To test the relationship between a GIRK channel including the GIRK3 subunit 

and the Gβγ complex, tGFP-GIRK3 and mApple-Gγ were co-transfected into MIN6 cells. 

A representative raster fluorescence image is shown in figure 48. The mApple-Gγ is 

membrane bound while the tGFP-GIRK3 shows both a membrane and intracellular 

component. Two color FFS measurements were taken at the cell membrane and the 

autocorrelations and cross-correlation curves calculated. In my hypothesis, the Gβγ 
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complex activates GIRK channels so that an influx of K+ enters the cell. If correct, 

heteromerization between the GIRK and Gβγ complex would increase after dopamine 

treatment.  

 

Figure 48 Representative raster fluorescence images of MIN6 cells co-transfected with tGFP-
GIRK3 (A) and mApple-Gγ (B); merged (C). The expression of both labeled proteins is not altered 

by the co-transfection; scale bar 5 µM 

 

 Figure 49 shows two representative autocorrelation and cross-correlation curves 

between the labeled proteins for before (A) and after (B) dopamine. The horizontal 

slope and zero y-intercept show no correlation before or after treatment. Quantification 

of the cross-correlation (C) before and after dopamine treatment resulted in a Gcc of 

0.046 ± 0.010 and 0.052 ± 0.013, respectively. An unpaired t-test resulted in a p-value 

of 0.7110 indicating no statistical significance between the means of the cross-

correlation values. The heteromerization brightness component (D) results were in 

agreement with the cross-correlation results with a brightness component of 0.035 ± 

0.007 and 0.031 ± 0.009, for no treatment and with 100µM dopamine treatment 

respectively. An unpaired t-test again resulted in no measurable statistical difference 

between the two means with a p-value of 0.7518.  
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 These interaction analyses show no interaction between the GIRK3 and Gγ 

subunit. My data measuring interactions between the D3 dopamine receptor and Gβγ 

complexes, in Chapter 4, suggest the Gγ subunit is not sufficiently incorporated with the 

Gβ subunit unless both are overexpressed. To measure interaction between the Gβγ 

complex and GIRK channel, both the Gγ subunit and Gβ subunit may need to be 

transfected into the cell. 

 I selected GIRK3 for FFS measurements because it can form tetramers with all 

three other GIRK subunits to form functional channels allowing me to measure 

interactions between the Gβγ complex and multiple GIRK channels in one experiment 

(240, 244, 245). If the Gβγ complex signals to a GIRK channel not comprised of a GIRK3 

subunit, no interaction will be measured before or after dopamine treatment. 

Furthermore, based on previous dopamine receptor studies, I hypothesize the 

dopamine receptor signals to a GIRK channel through the Gβγ complex (250, 265, 266). 

If a different potassium channel (or calcium channel) is activated by the Gβγ complex no 

heteromerization between any GIRK subunit and the Gβγ complex would be measured. 



102 
 

 

Figure 49 Autocorrelation curves of tGFP-GIRK3 (green), mApple-Gγ (red), and their cross-

correlation component (blue) before (a) and after (b) treatment with 100 µM dopamine.  FFS cross-

correlation (c) and heteromerization brightness analysis (d) before and after dopamine stimulation 

(p = 0.7110 and 0.7518, respectively). 

 

Two-color FFS measurements between GIRK3 and Dopamine Receptor D3 

 Recent literature has shown the co-localization of GPCRs with their target 

proteins to allow for quick and efficient signal transduction (267, 268). Relationships 

between the receptor and target protein can be difficult to detect with many standard 

protein interaction techniques since the proteins are not strongly bound to each other. 

FFS provides a method to study in situ the relationship between the D3 dopamine 

receptor and GIRK channels. To test the proximity of the D3 receptor and GIRK3 

subunit, the EGFP labeled D3 dopamine receptor and mApple-GIRK3 were co-

transfected into MIN6 cells. The goal of this experiment was to take FFS measurements 

to determine if the two proteins diffused together on the membrane for rapid signal 

transduction from the D3 receptor to the GIRK channel. If the two proteins diffuse 
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together, an increase in the correlation and brightness component between the two 

proteins would be observed, compared to that seen for two non-interacting membrane 

proteins. Figure 50 shows raster fluorescence images of MIN6 cells transfected with 

both labeled proteins. Cells with both expressed proteins show unhealthy vesicles and 

exhibited cell rounding. Changes in the amount of DNA used to transfect the cells, 

electroporation versus chemical transfections, and shorter incubation times after 

transfection before imaging did not increase the number of healthy cells. Cells that 

expressed only one plasmid had varying expression levels and proper attachment to the 

bottom of the glass dishes. Experiments between the D3 receptor and GIRK channel 

were not taken due to the inability to obtain properly expressing and healthy cells. 

 

Figure 50 Representative raster fluorescence images of MIN6 cells co-transfected with EGFP-
DRD3 (A) and mApple-GIRK3 (B); merged (C). The expression of both labeled proteins is altered 

by co-transfection. Cells exhibited cell rounding and protein clustering not present when 
expressed independently; scale bar 5 µM 

 

Conclusion and Future Directions 

GIRK Channel Membrane Trafficking Difficulties 

 Without clear expression of the tGFP-GIRK3 at the membrane, it is likely that 

improper trafficking of the channel is occurring. An intracellular component is expected 

to be present since GIRK3 is only a subunit of GIRK channels and cannot form 
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functional channels alone; the large amount of intracellular component was 

unanticipated. The intrinsic GIRK subunits within the cell have not been knocked down 

for these measurements and therefore the introduced tGFP-GIRK3 subunit was 

expected to form functional channels with the intrinsic subunits. In the oocyte model, 

Mirshahi et al. showed GIRK1 did not traffic to the membrane on its own, but needed 

the additional expression of GIRK4 to form functional GIRK channels at the membrane 

(264). The co-transfection of GIRK3 and GIRK4 however resulted in intracellular 

components of the two proteins, no large plasma membrane component. Co-

transfections of GIRK2 and GIRK3, two subunits well studied to form functional tetramer 

channels, also showed no increased membrane localization of the channel subunits 

compared to GIRK3 alone (241, 242).  To properly measure the interactions of GIRK at 

the membrane, it is essential for proper membrane localization to occur. Future 

experiments should begin with determining which GIRK subunits are properly trafficked 

to the membrane alone and with other subunit pairings. Reverse transcriptase 

polymerase chain reaction (RT-PCR) can be used to detect RNA expression of the 

GIRK subunits in MIN6 cells (253).  Western and coimmunoprecipitation assays can 

then be used to detect pairings between subunits as previously performed for neural 

GIRK channels (241, 242). While GIRK1 and GIRK2 are known to pair with GIRK3 in 

the cell to form functional GIRK channels, there is reported variability with the current 

levels when the proteins are overexpressed into cells (241, 242, 269–271). The 

knowledge that splice variants exist for GIRK2 could be the result of this variability and 

therefore should be looked into when testing the co-expression with GIRK3 (240, 244, 

245).  Last, the GIRK1, GIRK2, and GIRK4 subunits obtained from Geisinger Health 



105 
 

System have all been co-expressed together in previously reported studies, but not with 

the GIRK3 subunit used here which was obtained separately. GIRK3 subunits from 

different originations should be tested to determine if the GIRK3 obtained does not 

properly couple with other GIRK subunits to form functioning channels. 

Lack of Activation Measured between GIRK Channel and D3 Receptor 

 In measurements between the dopamine receptor and Gβγ complex, it was 

necessary to express the Gβ and Gγ subunits to obtain a signal. Thus, it is probable that 

to measure interaction between the GIRK channels and Gβγ complex, both subunits in 

the Gβγ complex must be expressed.  

 When measuring the heteromerization between GIRK3 and Gγ subunit, it was 

expected to find an increased cross-correlation and heteromerization brightness 

component after dopamine treatment, indicating that the Gβγ complex activates the 

GIRK channel. The GIRK channel is G-protein gated and previous studies have shown 

activation of GIRK channels by the dopamine receptors (250, 265, 266). The lack of 

measured signaling could be the result of GIRKs not comprised of the GIRK3 subunit 

being activated by the dopamine receptor. GIRK3 was selected as it can form functional 

subunits with many different combinations of GIRKS, thus by selecting it a broad variety 

of channels could be sampled. GIRK1, GIRK2, and GIRK4 are all present in the β cell 

and comprise a minimum of four GIRK channels, not including splice variants, which are 

not sampled by labeling GIRK3 and thus should be studied further.  

Expression Difficulties between GIRK Channel and D3 Receptor 

 Co-transfections of the mApple labeled GIRK3 and EGFP labeled D3 dopamine 

receptor did not produce healthy cells for which to take FFS measurements. Varying the 
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amount of DNA used in electroporations and reducing the time after transfections for the 

protein to be produced in the cell did not alter the expression levels. As explained in 

chapter 3, electroporation transfections are preferred to chemical transfections for a 

variety of reasons helpful in FFS experiments. To further test for proper expression of 

both plasmids in healthy cells, chemical transfections were also performed with 

unsatisfactory results. I expect proper membrane localization of the labeled GIRK 

subunits after the proper GIRK subunit pairings are known, from western and 

coimmunoprecipitation assays. However, if proper membrane localization does not 

occur when co-expressing subunits that form functional GIRK channels on MIN6 cells, 

subunits originating from the same animal should be tested. Once proper membrane 

trafficking of the GIRK subunits is achieved, co-expression of the D3 receptor and GIRK 

subunit(s) should be performed. If cells are healthy and expression is plasma 

membrane localized, measurements between the D3 dopamine receptor and GIRK 

channel should be performed to determine if the GPCR and proposed target channel 

are in close proximity on the membrane. 
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CHAPTER 6  

 

CONCLUSION AND FUTURE DIRECTIONS 

 

Conclusion 

 The goal of this work was to use fluorescence fluctuation spectroscopy (FFS) to 

identify the signaling mechanism of the dopamine mediated negative feedback pathway 

in pancreatic β cells.  Previous studies have shown that islets can convert L-dopa to 

dopamine and then co-secrete dopamine with insulin (120, 121, 221). During glucose 

stimulated insulin secretion (GSIS), dopamine decreases intracellular calcium 

fluctuations in islets , which inhibits insulin secretion (120, 121, 221). The D2 dopamine 

receptor has been reported to be the receptor initiating the dopamine mediated negative 

feedback pathway (121, 221). However, both the D2 and D3 dopamine receptors have 

been found in β cells. Under a DRD3 selective inhibitor, the effect of dopamine on GSIS 

was ameliorated (120). but  islets treated with a DRD2 selective inhibitor still showed 

dopamine modulation of GSIS (120).  Thus, we hypothesized the dopamine mediated 

negative feedback pathway is initiated by the D3 receptor and not the D2 receptor.  

 To determine the mechanism of the different signaling by the D3 and D2 

dopamine receptors and their heterotrimeric G-proteins, I used fluorescence fluctuation 

spectroscopy (FFS) to study protein interactions. To label the receptors and 

heterotrimeric G-proteins, I used EGFP and mApple fluorescent protein. mCherry and 

mRFP had previously been used alongside EGFP in two-color, two-photon FFS studies; 

however, mApple had not. In my initial work, I characterized the mApple fluorescent 
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protein to confirm its utility for FFS studies. Due to the relation between fluorophore 

brightness and the signal-to-noise ratio in FFS, I hypothesized that mApple would be a 

superior choice for FFS studies. I showed the diffusion rates of mApple in solution and 

in the cell were comparable to previously reported fluorescent protein diffusion rates 

(134, 216–218). Furthermore, I showed a 2.5 fold increase in measured 

heteromerization between unlinked and linked EGFP and mApple control constructs. 

These experiments confirmed that mApple could be used to label proteins for single 

component FFS studies and be paired effectively with EGFP for two component studies. 

 Having established the utility of mApple in FFS experiments, I next measured the 

diffusion rates of the D3 dopamine receptor and Gγ subunit by FFS to establish both 

membrane proteins followed previously measured behavior for diffusion. I fit the 

measured autocorrelation curve with multiple diffusion models including single-

component, single-component with triplet fraction, and two-component. A two-

component model fit to the data yielded the smallest sum of least squares of the 

residuals.  Based on comparison with previous studies, I attributed the slower diffusion 

component represents the plasma membrane bound portion of the protein and the 

faster component represents the intracellular portion (176, 190, 193, 272).  I measured 

the diffusion rates before and after treatment with 100 µM of dopamine and found no 

statistically significant difference in diffusion rates before and after treatment. This 

finding is expected since the proteins are not internalized after treatment, but stay on 

the plasma membrane. Furthermore, the determined diffusion rates are in agreement 

with other reports for transmembrane and inner-leaflet proteins (194, 205–208). 
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 To test the hypothesis that the D3 dopamine receptor is activated after dopamine 

treatment, I measured the heteromerization between the D3 receptor and Gγ subunit in 

MIN6 cells. The Gβγ complex is a dimer of the Gβ and Gγ subunits, therefore I initially 

only labeled the Gγ subunit. I hypothesized I would measure a decrease 

heteromerization between the D3 receptor and Gγ subunit after dopamine treatment, 

indicating a ligand was bound to the D3 receptor and the heterotrimeric G-proteins were 

activated. However, my results showed very little heteromerization between the two 

proteins either before or after dopamine treatment.  

 We suspected that maybe both the Gγ and Gβ subunits needed to be 

overexpressed in order to detect signaling changes, so I simultaneously transfected a 

Gβ subunit labeled with mCerulean. mCerulean is not excited at the FFS excitation 

wavelength of 1000nm and therefore its presence does not interfere with two-color 

measurements with EGFP and mApple. I confirmed the presence and location of all 

three fluorescent proteins by spectral imaging.  Using this data, I could verify the 

localization of the Gβ and Gγ subunits and D3 dopamine receptor on the plasma 

membrane prior to FFS measurements. After overexpressing all three proteins, I 

measured a reduction in heteromerization between the D3 dopamine receptor and Gγ 

subunit indicating the D3 receptor was activated by dopamine. This result not only 

confirms the D3 receptor is activated after dopamine treatment, but also shows the 

requirement to express both subunits of the Gβγ complex to properly measure signaling 

by a G-protein coupled receptor (GPCR). 

 To determine whether the D2 receptor is similarly activated by dopamine, I 

overexpressed both the Gβ and Gγ subunits and D2 dopamine receptor in MIN6 cells. 
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Similar to the D3 receptor, I expected to observe a decrease in heteromerization 

between the D2 receptor and Gγ complex after dopamine treatment if the D2 receptor is 

activated. I found low heteromerization before and after treatment, indicating the D2 

receptor is not activated by dopamine during GSIS. This result agrees with a previous 

study which determined preferential signaling of D3 dopamine receptor over D2 

receptor to inhibit GSIS (120).  This result also agrees with previous studies which 

suggest the D2 receptor is localized to insulin granules (121, 221).  

 To investigate the proposed activation of GIRK in the dopamine mediated 

negative feedback pathway, I measured heteromerization interactions between GIRK3 

and the Gγ subunit. Because the GIRK channel is formed from the tetramerization of 

GIRK subunits, I chose to first measure interactions with the GIRK3 subunit due to its 

ability to form functional channels with all other subunits and thus testing a broad range 

of GIRK channels by labeling a single subunit (240, 244, 245).  Overexpressing the 

protein resulted in a large intracellular component. This was expected as the GIRK3 

subunit cannot form functional channels on its own. By overexpressing the protein, it 

appears that more GIRK3 subunits are formed than the cell can use in the production of 

GIRK channels. Single component measurements at the plasma membrane were 

performed to determine the plasma membrane diffusion rate. A two-component diffusion 

model gave the best fit, with the expected diffusion rates for membrane proteins, for the 

autocorrelation curves of GIRK3 (194, 205–208). Similar to what was found with the D3 

receptor and Gγ subunit measurements, no statistical difference was found in the 

diffusion rate of GIRK3 before and after dopamine treatment.  
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 To investigate whether D3 activation causes increased heteromerization between 

the Gβγ complex and GIRK channels, I performed FFS measurements between the Gγ 

subunit and GIRK3. I hypothesized that if a GIRK channel composed of the GIRK3 

subunit was activated by the Gβγ complex, I would measure an increase in 

heteromerization after dopamine stimulation between the Gγ subunit and GIRK3. FFS 

measurements showed no heteromerization between the two proteins either before or 

after dopamine stimulation. Measurements with both the Gβ and Gγ subunits present 

were not tested and are discussed further below in future experiments.  

 One explanation of the fast reaction of GPCR signaling is the close proximity of 

GPCRs and their downstream targets (267, 268). To test this theory with the dopamine 

receptor and GIRK channels, I sought to perform two-color FFS measurements 

between GIRK3 and the D3 dopamine receptor. If the two proteins are in a complex, I 

hypothesize they will have a heteromerization constant higher than two unlinked 

proteins. However, transfected cells that expressed both proteins exhibited cell rounding 

and improper membrane protein localization of the labeled proteins, suggesting that the 

cells are unhealthy. Therefore, no FFS measurements were performed between the D3 

dopamine receptor and GIRK channel.  

 Concurrent to taking two-color FFS measurements between the D3 dopamine 

receptor and the GIRK3 subunit, we hypothesized that improper trafficking of the GIRK3 

receptor might be occurring. Thus, I expressed the other 3 GIRK components with 

fluorescent tags into MIN6 cells independently. All GIRK subunits had large intracellular 

components, including the GIRK2 subunit which is able to form homotetramer GIRK 

channels (238, 239). Additionally, I co-expressed GIRK3 with GIRK2 and GIRK4 which 
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are both known to form functional GIRK channels with GIRK3. Unfortunately, none of 

these other transfections improved the plasma membrane localization. 

 

Future Directions 

Studying Interactions between DRD3 and GIRK Channel 

 I hypothesized activation of the dopamine receptor initiates the heterotrimeric G-

proteins to activate a GIRK channel which hyperpolarizes the membrane causing 

voltage gated calcium channels to close. This hypothesis was developed following 

results from unpublished patch-clamp studies by Dr. Jacobson and Dr. Ustione which 

showed that hyperpolarization of the membrane after dopamine stimulation results from 

potassium channel activation other than the KATP channel. Additionally, previous neural 

studies have shown activation of dopamine receptors signals to GIRK channels to open 

(265, 266, 273). However, the change in intracellular calcium could be due to direct 

inactivation of calcium channels by the Gβγ complex (274). If the Gβγ complex does 

inactivate calcium channels, no increase in heteromerization between labeled GIRK 

subunits and Gβγ complex would be observed after dopamine stimulation. The following 

proposed future studies which include the GIRK channel in this dissertation are based 

on the hypothesis that the Gβγ complex activates GIRK channels directly. 

 Above, I described the difficulties in measuring interactions between the GIRK 

channel and the DRD3 and Gβγ complex. To examine the potential interactions between 

the D3 receptor and GIRK channels, proper plasma membrane localization of GIRK 

subunits must first be achieved. First, I would determine which GIRK subunits 

tetramerize to form channels inherently in MIN6 β cells. I propose using western and 
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coimmunoprecipitation assays to detect interactions between subunits. These methods 

have been previously used to determine pairings of GIRK channels in neurons (241, 

242). After identifying which GIRK channels are formed in MIN6 β cells, specific pairs of 

GIRK subunits can be co-expressed in the cell to facilitate incorporation of these 

subunits in GIRK channels localized to the plasma membrane. For example, if GIRK1 

and GIRK2 channels are discovered to be most prominent in β cells, then GIRK1 and 

GIRK2 should be co-expressed for future experiments.  

 One possible explanation for improper plasma membrane trafficking of the GIRK 

subunits is the lack of conserved regions between the subunits due to the multiple 

species of origin: mouse, rat, and human. In oocytes, expression of subunits from 

different species has not inhibited the formation of functional channels at the plasma 

membrane, thus it was originally assumed this would also be the case for expression in 

MIN6 cells (259–261). Furthermore, the GIRK3 subunit tested here has not been 

previously paired to form functional channels with the other GIRK subunits tested (259–

261). The GIRK3 described in this dissertation could be improperly folding and therefore 

not interacting with other GIRK subunits properly, be they inherent to the cell or also 

transfected. Furthermore, the spacing between the turboGFP (tGFP) label and GIRK3 

could be interfering with the folding and trafficking of the GIRK3 subunit. To determine if 

this is the case, the mApple-GIRK3, which I constructed for measurements between the 

GIRK3 and D3 dopamine receptor, could be co-expressed with the other GIRK subunits 

previously shown to localize to the plasma membrane  (259–261). 

 To measure activation of the D3 receptor through the decreased 

heteromerizaiton of the receptor and heterotrimeric G-proteins, I had to overexpress 
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both the Gβ and Gγ subunits. In measuring interactions between the proposed 

downstream target, GIRK, and the Gβγ complex, which I hypothesize activates the GIRK 

channels, I only overexpressed GIRK3 and the Gγ subunit. It is reasonable to assume 

that expression of both the Gβ and Gγ subunits are necessary to properly measure 

signaling by the Gβγ complex to a downstream target.  

 Assuming GIRK is the downstream target signaled to by the Gβγ complex, 

activation of GIRK channels would result in hyperpolarization of the membrane which 

causes voltage gated calcium channels to close. For efficient signal transduction, all 

three proteins might be in close proximity on the membrane. It would be interesting to 

determine if voltage gated calcium channels and GIRK channels are located in close 

proximity to dopamine receptors. If all three proteins are determined to be in close 

proximity to each other, they could also be located with other GPCRs which control 

potassium and calcium channels in response to other stimuli in the β cell too (53, 72, 

103, 104). Alternatively, none of the three could be located in close proximity to each 

other since other stimuli control ion channel opening and closing also. A third potential 

outcome could be the close proximity of the downstream target protein, GIRK, and the 

D3 receptor, not proteins like the calcium channel involved in further downstream 

signaling. The relationship of all three proteins: D3 dopamine receptor, GIRK channel, 

and voltage gated calcium channel, can be measured between two proteins at a time 

through FFS.  I would begin measuring the heteromerization between the D3 receptor 

and GIRK channel. If the two are in close proximity to each other, I would then measure 

the heteromerization between the GIRK channel and voltage gated calcium channel. 
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Studying Interactions in Primary Cells 

 Many animal models have been used to study diabetes, for example, the D3 

receptor knock out mouse line. As a control experiment, signaling of receptor activation 

should be performed in primary β cells and the results compared to those reported in 

MIN6 cells. Primary cells from different animals can behave differently and therefore a 

broader range of results may occur in comparison to studies using cell lines. I 

performed initial primary cell studies by isolating islets from murine models, dispersing 

the cells, and then electroporating MIN6 cells with the D3 dopamine receptor and Gγ 

subunit constructs. Due to the fragility of primary cells, they cannot be electroporated 

with the same protocol as primary islets. I found reducing the voltage to 180V, for a 

single 5ms pulse resulted in the highest percentage of transfected cells. Also, 

harvesting islets is laborious and results in small amounts of cells. For efficient 

electroporations, a minimum cell mixture volume of 40µL at 108 cells/ml is required, 

usually requiring two murine pancreases for one electroporation cuvette. Thus, 

obtaining enough cells for efficient transfections will be difficult. Additionally, islets are 

composed of multiple cell types including α and δ cells which may exhibit different 

responses to dopamine. For murine primary cells, the majority of the islet is composed 

of β cells and thus statistically most measurements should be from β cells. Post study 

staining for insulin is one way to confirm measurements are only from β cells. However, 

this requires precise knowledge of exactly which cell each FFS measurement was taken 

from. 

 Having established the preference of signaling through the D3 receptor, it would 

be interesting to study the protein signaling pathway in the D3 knock out mouse line. 
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Unpublished data from Dr. Ustione shows islets lacking the D3 receptor secrete more 

insulin, but are still sensitive to dopamine. To further understand this occurrence, a two-

color FFS study between the D2 receptor and Gβγ complex in dispersed β cells from the 

D3 knock out mouse line could be performed. Additionally, this occurrence could be 

studied through the use of CRISPR or RNAi to knock-down the D3 receptor. It may be 

that the D2 receptor compensates for the long-term absolute lack of the D3 receptor. If 

this is the case, I would expect to observe a decrease in heteromerization between the 

D2 receptor and Gβγ complex after dopamine stimulation.  

Two Color SpIDA 

 Spatial intensity distribution analysis (SpIDA) allows protein interaction to be 

determined from raster images of cells by using spatial correlations between multiple 

pixels rather that temporal fluctuations from a single point measurement. The analysis 

measures changes in the fluorescent signal between pixels to determine a quantal 

brightness value of the fluorescent tag. A dimer would have twice the quantal brightness 

of a monomer. Two-color SpIDA is currently being developed and will determine protein 

heteromerization from cell images. It will be interesting to see if the same results from 

FFS are obtained from two-color SpIDA measurements. FFS requires a stable average 

fluorescence count to perform measurements and therefore slow moving proteins must 

be bleached before measurements. These proteins could be involved in signaling that is 

undetectable by FFS. For SpIDA measurements however, no bleaching occurs as 

differences in fluctuations are determined from changes in pixels. Furthermore, 

signaling by the Gβγ complex is difficult to measure by FFS due to its promiscuity with 

other GPCRs. Heteromerization between the Gβγ complex and the receptor or target 
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protein must be great enough to overcome the noise of other Gβγ complexes 

fluorescently labeled, but signaling in other pathways. SpIDA measures 

heteromerization only through histogram analysis of raster images and could measure 

interactions by the Gβγ complex graphically rather than over time as with FFS.  

 An advantage of SpIDA is that it can be performed on images taken of fixed cells. 

This is especially helpful in primary cells which are not as robust as cell lines and 

require staining for confirmation that measurements are performed on β cells and no 

other cell types in the islet. Thus, staining of βcells for insulin could be performed prior 

to heteromerization measurements so that β cells were easily distinguishable. While 

care must be taken to not alter protein localization or structure during fixation and 

staining, staining of endogenous protein would eliminate the potential toxicity of 

transfections which can alter cell functions.  

 Because it can be used on intrinsic proteins, two color SpIDA could be very 

advantageous to studying interactions with the GIRK channel. When overexpressing the 

GIRK plasmids, I showed lower plasma membrane localization than found when I 

overexpressed other membrane proteins. With SpIDA, dyes can be used to label the 

endogenous proteins of interest within the cell. Thus, endogenous GIRK channels could 

be fluorescently tagged by staining and their interactions with other proteins measured 

by two color SpIDA.  
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Significance 

 In this dissertation, I applied fluorescence fluctuation spectroscopy to study 

protein signaling at the cell membrane. Through changes in measured heteromerization 

between the D3 receptor and Gβγ complex, which were not found between the D2 

receptor and Gβγ complex, I confirmed the preferential signaling of the D3 receptor in 

the dopamine mediated feedback pathway. I showed the changes in heteromerization 

between a GPCR and heterotrimeric G-proteins during activation. Currently, 293 non-

odorant GPCRs have been found in islets, all of them signaling through heterotrimeric 

G-proteins (53). The G-proteins I overexpressed in the cell formed Gβγ complexes used 

in signaling other pathways. Thus, my data is significant because I was able to measure 

the changes in heteromerization between the D3 dopamine receptor over other 

signaling by Gβγ complexes occurring in the cell. Additionally, I used two fluctuation 

analysis methods, cross-correlation and brightness analysis, to confirm my results. This 

is the first time both methods have been used concurrently together to solve a biological 

problem.  

 The results of this dissertation are beneficial for creating treatments for patients 

developing type II diabetes. As a pre-diabetic patient’s insulin resistance increases, β 

cells compensate by increasing insulin secretion. The increased stress to produce more 

insulin leads to β cells death and hyperglycemia. Intervention to decrease insulin 

secretion at the time of insufficient regulation and production of insulin by β cells would 

prevent cell death. This dissertation work suggests only the stimulation of D3 receptors 

is necessary to decrease insulin secretion of the pancreas. 
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