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CHAPTER 1 

 

Introduction 

 

 Mathematical competence is essential for personal and societal growth. Arithmetic skills 

can predict a person’s employment level, likelihood of incarceration, and psychological well-

being (Bynner & Parsons, 2005). For example, men with low math ability are more at risk of 

depression than men with competent numeracy. Women with low math ability are less likely to 

have full-time employment than women with competent numeracy.  Western society especially 

values precise calculation over estimation, making exact numerical reasoning an essential skill 

for academic and professional success.  Given that precise mathematical competence is central to 

functioning in everyday life, important questions arise. How does one develop advanced 

approaches to manipulating exact numbers? What are the cognitive processes underlying a 

child’s emerging ability for calculation?  

 Recent research has begun to answer these questions and identified a link between the 

development of exact numerical reasoning1 and cardinal number knowledge. Cardinality, the 

ability to state the quantity of a set, is one of the first numerical skills a child learns (Gelman & 

Gallistel, 1978; Wynn, 1990, 1992) and may serve as a precursor to performing more advanced 

mathematics. The importance of cardinality is supported by cross-cultural studies that have 

found that cultures lacking cardinal number words are unable to reason about exact quantities 

(Gordon, 2004; Pica, Lemer, Izard, & Dehaene, 2004). Such research suggests that before a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

1	  This paper will use numerical reasoning to refer to non-symbolic calculation. Non-symbolic 
sets include object or groups of dots and will be devoid of symbols such as Arabic numerals or 
counting words, which are more advanced representations of quantities (Ansari, 2008).	  



	   2	  

person can reason about a set of objects, he or she must be able to state the exact quantity of the 

set.  

 This first chapter of this thesis lays the groundwork for examining how the emergence of 

exact number reasoning ability in children is specifically supported by the confluence of 

advances in understanding cardinality and the critical role that exact number words may play.  

The relevant literature on three central issues are reviewed. The first section of this introduction 

describes cardinality and how children learn to represent precise quantities. The following 

section investigates why representation must be verbal in nature. The final section of the 

introduction considers whether cardinality is sufficient for exact numerical reasoning and what 

other skills may be necessary.  

 

Cardinality 

 Cardinality refers to the ability to verbally label an exact set of objects. Cognitive 

development studies typically associates cardinality with the last word in a count sequence, one 

procedure used to determine cardinality. While this is a common procedure, there are various 

other procedures used to verbally label a quantity. Nontraditional counting such as backward 

counts, subitizing, and estimation can also be used to determine cardinality, though some 

strategies provide for more accuracy than others. Regardless of the procedure used, to have 

cardinal number knowledge, a child must be able to verbally state the quantity of the set and 

understand that the verbal label represents that quantity.  

 According to Gelman (Gelman & Gallistel, 1978; Gelman & Meck, 1983), children first 

acquire a cardinality principle, as evidence by the early age by which children display cardinal 

number knowledge. This principle is then applied to different sets. More recent research 
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contradicts the idea that cardinality comes from initial principles (Briars & Siegler, 1984; Le 

Corre, Van de Walle, Brannon & Carey, 2006).  Children are able to count correctly before they 

are able to identify the accuracy of other peoples’ counts (Briars & Siegler, 1984), suggesting 

that children apply a counting procedure before they extract more general principles. Similarly 

Le Corre, et al., found that children learn cardinality in stages. First, a child displays cardinal 

number knowledge of a set of one object (one-knower), then cardinal number knowledge of one 

and two (two-knower), and eventually learn the cardinal principle for all sets. This 

developmental trend suggests that one- and two-knowers represent quantities qualitatively 

different than cardinal principle knowers, concluding that cardinality principle knowledge is 

acquired later in a child’s development of exact number knowledge. Children learn to count first 

and then develop cardinal number knowledge.  

 Counting procedures develop slowly. Through social interactions children learn to count 

between the ages of two and three (Mix, Sandhofer & Baroody, 2005); however, Wynn (1990, 

1992) found that children take roughly one year to attribute meaning to a memorized list of 

counting words. Even if a child can count to 10, he/she may not know the cardinality of a set. For 

example, when a three-year-old counts a set of five items and is asked “how many are there?” 

he/she might not yet understand that the last counting word identifies the number of items in the 

set.  

 At first, children learn the meaning of “one” in the manner they learn the meanings of 

quantifiers such as “a” and apply the word to their exact representation of one.  A few months 

later the child uses the same strategy for the word “two” and, later for the word “three.” 

Quantities one, two and three are exactly represented as early as infancy, possibly due to parallel 

individuation (Feigenson, Carey & Spelke, 2002, Starkey & Cooper, 1980). Larger quantities are 
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not exactly represented in infancy, and thus a new procedure is needed to assign meaning to 

counting words greater than three. Carey’s bootstrapping theory argues that children use their 

understanding of one, two and three, combined with their knowledge of the counting chant to 

infer the successor function (Carey, 2001; 2004, 2009). Because three is one more than two and 

the word “four” comes after “three” in the counting chant, four must be one more than three. 

This knowledge of the successor function leads to the cardinality principle, which is then applied 

to all sets larger than four. Under this account, counting leads to the cardinality principle, which 

leads to cardinal number knowledge for all quantities within a child’s counting range. 

 Recent research challenges Carey’s view, Davidson, et al. (2012) find that children 

acquire cardinality before learning the successor principle and that they learn smaller quantities 

before larger ones, even when dealing with numbers greater than four. Instead of learning the 

successor function to conceptualize a cardinality principle, children learn cardinality one quantity 

at a time. Alternatively, counting may lead to cardinality by making the imprecise numerical 

representations more precise (Wynn, 1998; Dehaene, 2001).  Counting words may force 

approximate representations of quantities into distinct categories the way that color terms help 

place colors into distinct categories (Davidoff et al. 1999).  By assigning discrete verbal labels to 

non-discrete approximate representations, analogue representations are forced into exact 

categories.  

 Other research has challenged the very notion that children attain the cardinality principle 

as a whole insight.  For example, Bermejo, et al. (1996) counters Gelman’s cardinality principal 

by suggesting that cardinality develops in stages as opposed to being a foundational principle. 

According to Bermejo cardinality has six stages of development: in response to the questions 

“how many items are there?” (1) the child answers with a random number; (2) the child provides 
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a count sequence without referring to the set; (3) the child counts the set; (4) the child uses the 

“last word” rule; (5) the child answers with the highest count word used, even when a 

nontraditional counting strategy results in a smaller last word; and (6) the child accurately 

identifies the quantity regardless of the counting strategy used. By encouraging children to use 

different count sequences (forward, backward, and erroneous counts), Bermejo was able uncover 

novel evidence that children ages three to five displayed a variety of the six stages of cardinality. 

Thus cardinality, as defined by Gelman is only the fourth stage in cardinality understanding and 

more advanced concepts of cardinality exist.  Importantly, most of the stages rely on counting, 

which serves as essential skill for developing a full understanding of cardinality. 

 Although theoretical accounts of the rise of cardinality differ on the role of counting, the 

counting procedure is present in each. Cardinality may stem from the successor function, 

approximate representations of numbers, or procedural stages, but each of the major theoretical 

accounts reviewed above stress the importance of counting. Number words impose meaning on 

previously vague concepts of exact quantity. In other words, in order to represent exact sets, one 

needs to verbally label the sets.  The next section addresses the importance of these verbal 

representations. 

 

Cardinality and the Sapir-Whorf hypothesis 

 Cardinality is a verbal representation of exact quantity. The verbal nature of this 

representation is especially interesting given that exact numerical processing has been heavily 

linked to linguistic processing. Precise numerical reasoning may share the same underlying 

mechanisms as the ability to verbalize thoughts.  For example, when bilinguals are taught to give 

exact or approximate answers to two-digit addition problems in one language and then switch to 
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their second language, the language swap impacts the reaction time for solving exact problems, 

but not approximate problems (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999).  The 

language swap and exact calculation may place similar demands on mental resources, resulting 

in a delay.  Neuroscience, including lesion and neuroimaging data, similarly points to a 

relationship between language and exact math. In one investigation, a patient with left fronto-

temporal damage and severe language limitations was impaired in exact addition but not 

approximation, whereas another patient with left parietal damage and Gerstmann’s syndrome 

showed slowness in approximating but preserved exact addition abilities (Lemer, Dehaene, 

Spelke, & Cohen, 2003). The fronto-temporal damage resulted in impairments in both language 

and exact calculation.  An fMRI study of healthy participant also finds similarity between the 

brain regions associated with exact numerical reasoning and language processing. The bilateral 

parietal lobes showed greater activation during approximate calculation, and left temporal 

regions typically associated with language – such as the angular gyrus – were more activated 

during exact calculation (Dehaene et al., 1999). These neuroscience findings further support the 

relationship between exact math and language functions.  

 Cross-cultural research suggests language and exact math are not only linked, but that 

linguistic ability drives numeric thought and that cardinal number knowledge impacts one’s 

precise numerical reasoning skills. This causal relationship is demonstrated by two studies that 

investigated the mathematical abilities of Amazonian indigenous tribes that lack a language for 

exact numbers. Members of the Prahã tribe use words for “one,” “two,” and “many”, yet even 

the word for “one” is approximate and signifies “roughly one” or “small” (Gordon, 2004). A 

series of tests evaluated Prahã members’ numerical abilities and found them unable to identify 

exact quantities greater than three. Complementing this research, another study investigated the 
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Mundurukú, a tribe that uses specific number words consistently for quantities “one” and “two”, 

occasionally for “three” and “four,” and rarely for larger quantities (Pica, Lemer, Izard, & 

Dehaene, 2004). Mundurukú and French participants completed an approximate addition and 

comparison task and an exact subtraction task. On the approximation task, Mundurukú 

performed similarly to the French controls (Figure 1A), indicating that language differences 

between the groups did not impact approximate math abilities. On the exact subtraction task 

French controls succeeded at subtraction with all numerosities and showed a minimal problems 

size effect, characteristic of advanced exact subtraction ability. In contrast, as the set sizes grew, 

Mundurukú performance degraded dramatically, showing a drastic problem size effect. (Figure 

1B). Pica and colleagues concluded that non-symbolic exact arithmetic depends on a language 

for exact number. Because the Mundurukú lack the words for large quantities, they cannot 

perform exact calculations and display severe problem size effects typical of novices. For set 

sizes larger than three, Mundurukú could only perform approximate calculations, suggesting that 

counting words or a counting routine is necessary for comprehending large exact quantities. 

Language, or a lack of language, appears to greatly influence numeric thought.   
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 The idea that language impact thought is known as the Sapir-Whorf hypothesis and has 

been debated for many years and in many domains, but only recently has become important for 

mathematical reasoning. According to the Sapir-Whorf hypothesis, language influences thought 

(Whorf, 1956). The strong version of the Sapir-Whorf hypothesis, called linguistic determinism, 

argues that language determines thought and that cognition is limited by the language one 

speaks. Recent research has focused on a weaker form of the hypothesis, called linguistic 

relativity, which argues that language influences but does not control how we see and behave in 

the world.  

Figure 1. Mundurukú performance on non-symbolic approximate and 
exact arithmetic. A) Approximate addition and comparison. Indicate 
which is larger: quantity1+quantity2 or quantity3. French controls 
and Mundurukú performed similarly on this task. B) Exact 
subtraction. Point to the result of quantity1 – quantity2. Mundurukú 
showed a severe problem size effect in comparison to French 
controls’ minimal problem size effect. Adapted from Pica, Lemer, 
Izard, & Dehaene, 2004.  
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 Those in support of the Sapir-Whorf hypothesis view language as a tool for both using 

mathematical knowledge and for constructing new knowledge. According to Ball and Bass 

(2003), mathematical language includes definitions, terminology and symbolic notation, and 

“decisions about what to name, when to name it, and how to specify that which is being named 

are important components of mathematical sensibility and discrimination central to the 

construction of mathematical knowledge.” In this manner, using terminology such as cardinal 

number words builds a child’s understanding of the underlying numerical concept.  

 Neuroscience studies are beginning to provide support for the notion that exact arithmetic 

is heavily dependent on brain regions critical for performing language tasks. Dehaene and 

colleagues (2003) propose separate brain circuits for processing numbers.  According to the 

triple code model, the bilateral intraparietal sulcus mediates notation-independent quantity 

manipulation, including approximate judgments; and the left angular gyrus mediates the retrieval 

of verbal math facts and is important in exact representations of number. According to this 

model, exact number knowledge is stored as verbal math facts, and exact number knowledge is 

linguistic in nature. Without language, exact numerical thinking may not be possible. 

 Taken together, these various lines of research identify a clear link between language and 

exact numerical reasoning. Counting words and cardinality are especially important for 

understanding exact quantities. The next section examines how children move from precise 

numerical representations to numerical reasoning and proposes a new stage in cardinal number 

knowledge called advance cardinality.  
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Advanced Cardinality 

 Counting and cardinality help children precisely represent quantities, but representation 

and reasoning are not the same thing. Children may need additional skills beyond using words to 

label set sizes in order to manipulate exact sets. In order to add or subtract quantities, children 

may also need to draw on their knowledge of how a whole quantity is formed of parts.  

 Children learn part-whole knowledge at a young age. Three- and four-year-olds see 

parents cut up apples into smaller slices. Children take apart toys and put them together, learning 

that a whole is made of smaller parts. These experiences allow children to develop what Resnick 

(1989) calls protoquantitative schemas, vague part-whole knowledge. Protoquantitative schemas 

are not yet integrated with a measurement system or exact representation of numbers and thus, 

on their own protoquantitative schemas are very limited. For example, when young children rely 

on protoquantitative schema, they are often confused by unrelated perceptual cues. A child may 

see an apple on a small plate and by comparison think the apple is large. After the apple is cut up 

and the slices are placed on a large plate, the apple to plate ratio might cause the child to 

complain that he or she is getting less apple than before. Children’s protoquantitative schmeas 

may be imprecise, but these schemas will serve as foundations for later math development. 

 Resnick describes how protoquantitative schemas develop into number concepts with the 

aid of language.  Once children learn to count they combine their cardinal number knowledge 

with their part-whole protoquantitative schemas, resulting in stable, precise part-whole number 

concepts that are less susceptible to perceptual cues. In this manner counting and language form 

the measurement system that makes the part-whole protoquantitative schema exact. How the 

cardinality/protoquantitative schema integration occurs is poorly understood.  
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 Here the term advanced cardinality refers to cardinal number knowledge that goes 

beyond the last-word rule. A child with basic cardinality fails to have any ability to reason about 

change to that set size (i.e. if it’s split in half, or two are taken away). Yet a child with advanced 

cardinality has clear insight into how the whole cardinal value is comprised of subsets. With 

advanced cardinality, a child’s semantic understanding of five includes the notion that the word 

five captures the cardinal value of the set of all 5 objects, as well as the knowledge that this set is 

comprised of subsets such as four objects and one object, and three objects and two objects. As 

with basic cardinality, the knowledge is centered on a target number word, but with advanced 

carnality the child has a more complex understanding of that word, which can support inferences 

about subsets and exact changes in the cardinal value of the set. Developmentally, children 

assign various levels of meaning to counting words. At first, the counting chant simply conveys 

ordinality. With experience, children learn basic cardinality, and assign quantity to the number 

words. Advanced cardinality represents a new level of meaning by including insights about the 

internal part structure of the whole set.  

 Verbally labeling the parts of sets may be critical to developing advanced cardinality and 

the ability to reason about the set. When number words are associated with part-whole 

knowledge, children can use language for describing sets and their subsets. The integration of 

language and part-whole insights about sets may form the basis of advanced cardinality.  

 The notion that children might form verbal associations between quantities and their parts 

is supported by the literature on math fact recall.  Carpenter and Moser (1984) categorized 

children’s acquisition of arithmetic concepts into three levels of problem solving strategies: 

direct modeling, counting, and recalling. As children develop, they shift from regularly 

employing counting strategies to retrieving math facts from memory (Ashcraft, 1982; Campbell 
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& Graham, 1985; Logan & Klapp, 1991).  Young children learn that “two” goes with two items, 

but as they get older children learn other facts, such as “two plus two equals four”. With 

experience, addition facts and multiplication tables are memorized and internalized such that 

children can quickly and accurately recall this frequently used number knowledge. Such math 

facts are verbal in nature and often link a number word with its addends or its multiplicands and 

multipliers. 

 Math fact retrieval and advanced cardinality may both rely on verbally labeled math 

knowledge, however advanced cardinality differs from math fact recall in a very important way. 

Advanced cardinality builds off children’s protoquantitative schemas and uses language to refine 

part-whole concepts. The general notion of quantity is expanded to include manipulable parts. 

Such ideas of number aid children as early as the direct modeling stage of problem solving, well 

before the math fact recall stage. By the time a child engages in math fact recall, he or she may 

already have well established advanced cardinality knowledge that is being applied to specific 

math problems.  

 Advanced cardinality is a new stage of cardinality that may help children transition from 

representing quantities to reasoning about them.  The Sapir-Whorf hypothesis posits that children 

need access to number words for numerical reasoning, yet the acquisition of advanced cardinality 

goes one step further by suggesting that they need to verbally know how parts make up a whole 

to develop the ability to reason with exact quantities. Language may place constraints on 

imprecise protoquantitative schemas, driving children to develop advanced cardinality and refine 

their ideas of how sets are formed.   
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Summary & Aims 

 Scientific studies of mathematical reasoning provide important insights into the 

foundational skills necessary for children to thrive in the classroom. Developmental research 

identifies cardinality, the verbal labeling of a quantity, as an early skill that serves as the 

foundation for representing exact sets of objects. Cross-cultural and neuroscience findings 

support the Whorfian hypothesis that language influences mathematical thought. Finally, 

educational theories suggest that children build on protoquantitative schemas to learn essential 

part-whole knowledge required to precisely manipulate sets. While the previous research hints at 

skills useful for numerical reasoning, their specific influence has yet to be tested. Investigations 

of cardinality, instruction and advanced cardinality will narrow down the primary skills needed 

to make inferences about exact quantities.  

 The series of experiments has 2 main aims: 

1. To isolate the essential skills necessary for exact numerical reasoning. 

2. To examine the concepts of cardinality and advanced cardinality and their influence on 

numerical reasoning.  

To address these aims, a series of developmental studies examines the numerical abilities as they 

form. Pre-kindergarten (pre-K) through 1st grade children will participate in a deep investigation 

of the intersection between language and mathematics. Such an approach will allow us to 

pinpoint when children learn to reason with exact sets and which linguistic knowledge 

contributes to that development. 

 Chapter two investigates the role of cardinality in numerical reasoning. The experiment is 

modeled after Pica’s study of the Mundurukú, but with early elementary school children who, 
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unlike the Mundurukú, all have access to number words. While cardinality may be necessary for 

precise mathematical manipulation, chapter two addresses whether cardinality is sufficient. 

 Chapter three builds on chapter two by addressing the role of instruction on numerical 

reasoning. Over the course of the kindergarten year, children acquire the skills needed to 

manipulate exact sets. Chapter three teases apart the importance of instruction and maturation for 

this development. By using a school cutoff design, children of roughly the same age but in 

different years of schooling will display their numerical reasoning abilities. Instruction and/or 

maturation may help children move beyond knowing the cardinality of a set to being able to 

make inferences about the set.  

 Chapter four examines a specific form of instruction with an advanced cardinality 

intervention. Pre-K children were trained on part-whole concepts with and without the 

accompanying number words. The combination of language and part-whole knowledge may 

extends children’s’ understanding of basic cardinality, and thus provide a more flexible concept 

of a number that allows children to reason about exact sets. Advanced cardinality may be an 

essential step between cardinality and precise numerical reasoning. 

 Chapter five summarizes the findings from chapters two through four. The significance 

of this collection of research is addressed.  
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CHAPTER 2 
 

Reasoning about quantities: children reveal that words are not enough 

 

Abstract 

 Cross-cultural studies suggest that reasoning about exact numerical changes in sets of 

objects relies on language. In particular, cardinal number – the knowledge of number words that 

refer to exact quantity – has been emphasized as the critical factor underlying exact numerical 

reasoning. In the current study, we show that cardinal number is not enough. Children in 

kindergarten though 3rd grade performed exact subtraction on sets of objects. Similar to 

indigenous tribes that lack a language for each number and despite access to cardinal number, 

Kindergarteners’ accuracy on the non-symbolic number reasoning task was dramatically 

impacted by increases in set size. Finally, individual differences revealed that exact non-

symbolic numerical reasoning is related to symbolic arithmetic and not cardinal number 

knowledge. Our findings suggest that cardinality is insufficient for reasoning about exact 

quantities and that the ability to make inferences about exact changes in the numerosity of sets 

emerges via enculturation practices during the early elementary school years. 

 
Keywords:  Mathematics; Cognitive Development; Subtraction; Cardinality; Language
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Introduction 

 What role does culture play in bestowing numerical reasoning abilities, such as the ability 

to envision the number remaining if three things are taken away from a set of five?  Cognitive 

anthropological studies reveal that such basic numerical cognitive abilities are not human 

universals, but are rather specific to cultures that have words signifying exact cardinal number 

values.  For example, even healthy adult members of the Amazonian Prahã tribe, whose words 

for number are restricted to “one,” “two,” and “many”, are surprisingly unable to make precise 

numerical decisions about sets of objects greater than three (Gordon, 2004), providing support 

for the Sapir-Whorf hypothesis (Whorf, 1956) that some forms of thought are quite dependent on 

language. Further insights into the relationship between basic cognitive reasoning about sets of 

concrete objects and the use of exact number words come from studies of the Mundurukú, whose 

small vocabulary for numbers are applied without categorical numerical boundaries when 

referring to sets of objects  (see figure 2a) (Pica, Lemer, Izard, & Dehaene, 2004).  To test the 

how the presence or absence of exact cardinal number words in a culture enables numerical 

cognition about concrete sets of objects, Pica and colleagues employed a non-symbolic number 

reasoning task that had no explicit requirements for language.  After first seeing a small set of 

objects being placed in a can that occluded their view, then a smaller set of those objects being 

removed in plain sight, participants chose which of three pictures (0, 1 or 2), corresponded to the 

remaining contents of the can.   Remarkably, Mundurukú performance degraded dramatically as 

the set size placed in the can exceeded four.  French controls, in contrast, showed a minimal set-

size effect, leading to a strong cultural-group by set size interaction (see figure 2b).  This 

interaction lends support to the notion that a person’s ability to envision exact transformations 

from one set to another may be enabled by number words that refer to exact values. 



	   21	  

 

 Given the potential importance of understanding how enculturation processes enable 

numerical reasoning, we extend this specific line of research on the relationship between 

enculturation and cognition into the realm of cognitive development.  Within a culture that uses 

number words to refer to exact cardinal values of sets of objects, we can examine the emergence 

of exact numerical reasoning for concrete sets of objects.  This may provide a more direct 

opportunity to place additional constraints on inferences about which aspects of enculturation 

shape exact numerical reasoning, as in the case of reasoning about numerical changes in sets of 

objects. Studies of child development suggest that mastery of exact number word concepts is not 

a unitary process of acquiring and using cardinal number words. Rather, these studies point to a 

Figure.	  2.	  Mundurukú numerical abilities, as appeared in Pica et al. 2004.  On a 
cardinality task (a), for each numerosity on the x-axis, the graph shows the percent of the 
time that Mundurukú labeled it with a specific number word. On a non-symbolic number 
reasoning task (b), for each set size on the x-axis, accuracy is displayed for each group. 
Operands used in the current study are outlined in red.	  
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developmental 2distinction between mastery of cardinal number concepts to signify the exact 

value of a set, and more advanced insights into exact number semantics that support the ability to 

reason about transformations between sets (Griffin, Case, & Capodilupo. 1995).  For example, 

by pre-school age, U.S. children precisely associate counting words with exact sets of items, and 

demonstrate mastery of the cardinality principle -- the knowledge that the last word in a count 

series refers to the numerosity of the whole set (Wynn, 1992).  However, even after mastering 

the count sequence and the cardinality principle, many preschool children often fail to grasp of 

the successor principle – that successive numbers in the count list differ by exactly 1 (Davidson, 

Eng, & Barner, 2012). Apparently, the ability to reason about the changes in the exact number of 

a set of concrete objects may not be bestowed merely by mastering the use of number words to 

refer to cardinal values of sets in an exact, categorical fashion, but rather may require additional 

enculturation practices such as those that occur during formal educational activities.  In other 

words, numerical learning activities that characterize the first years of formal schooling may be 

crucial to the transformation in number reasoning ability that distinguish one culture from 

another, as in the contrast between the Mundurukú and the French described above.  

  These developmental considerations lead to a potentially provocative prediction for 

typically developing children in the U.S. If numerical reasoning about sets of concrete objects 

(e.g. the ability to envision the objects that remain after three are removed from a set of five) is 

not directly linked to insights about natural numbers, counting, and cardinality, but rather depend 

on additional enculturation processes unique to early schooling, then U.S. kindergartener’s 

numerical reasoning about concrete sets should resemble those of the Mundurukú. This should 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2	  with the possible exception of being able to apply a one-to-one correspondence strategy when 
two sets of objects are visible throughout, suggesting an understanding of the more general 
notion of exact value	  
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hold true even for typically developing children who have mastered the precise use of number 

words to refer to the exact cardinal value of a set of objects, but have not yet been fully 

enculturated in formal mathematical training of early elementary school.  In contrast, reasoning 

about exact transformations of concrete sets of objects should emerge over the early years of 

schooling, in tight correlation with learning about symbolic transformations of abstract 

arithmetic.  

 An examination of individual differences will reveal the aspects of enculturation most 

important for reasoning about exact sets and allow us to contrast children’s fluency with 

cardinality versus other enculturation activities such as symbolic arithmetic. Are advances in 

reasoning about non-symbolic changes in number related to mastery of applying number words 

to sets an exact fashion as would be predicted by the Sapir-Whorfian hypothesis and the non-

symbolic nature of each task? Or, in contrast, are advances in reasoning about non-symbolic 

changes in number more associated with the numerical relationships taught via symbolic 

arithmetic? This direct comparison seeks to clarify the importance of language and cardinality in 

reasoning about non-symbolic exact sets and investigate whether an alternative enculturated 

skill, symbolic numerical manipulation, can better account for reasoning about changes in exact 

sets 

 The current study examines a cross-sectional sample of typically developing U.S. 

children from the beginning of kindergarten through the beginning of 3rd grade. Adapting the 

general methods of Pica and colleagues (2004) we examine development of children’s ability to 

represent exact number changes to non-symbolic concrete sets.  In stark contrast to the 

Mundurukú, even the youngest children in this sample reliably provide the exact cardinal value 

for a target set 1 through 8 in a precise and categorical manner (see figure 2a), providing an 
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opportunity to examine how such knowledge impacts numerical cognition at the onset of 

Kindergarten instruction, and how such abilities change over the course of the first several years 

of schooling.  

  This cross-sectional study seeks to test the prediction that comparing children who have 

all mastered the use of number words to refer to exact categorical values of sets of objects, yet 

have different degrees of experience with the enculturation practices of elementary school, will 

recapitulate the group by set size interaction previously reported between contrasting cultures 

with and without exact number words.  Such a finding may underscore an important conceptual 

distinction in the development of numerical cognition between mastery of exact number words 

and the cardinality principle, and the emergence of the ability to reason about numerical changes 

in sets of concrete objects. Such findings may lend support to an alternative to the Sapir-

Whorfian hypothesis, suggesting a central role for educational processes, rather than vocabulary, 

in enabling the enculturation of numerical reasoning.    

 

Methods 

 

Participants 

 A sample of 329 children were recruited from private schools within Davidson County, 

TN, and participated in two one-hour sessions, as part of a larger study of children’s developing 

number, reading and attention skills. The inclusion criteria were a) English speaking, b) normal 

or corrected-to-normal vision, c) full completion and compliance with the instructions of the 

Non-symbolic Number Reasoning (NNR) task and d) achievement of at least 75 % accuracy on 

an assessment of cardinality skills for number words 1 through 8 (Starkey & McCandliss, 2014), 
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to ensure that children had indeed mastered the use number words in English to refer to cardinal 

values of objects in a precise and categorical fashion. All data was collected early in the school 

year  (mean date = October 9th, std = 18 days) in each of the grades kindergarten through 3rd 

grade. Of the 329 children who initially participated in the study, 29 failed to reach inclusion 

criteria. Five participants did not reach 75% accuracy in the cardinality task.  Twenty-four did 

not complete the NNR task due to time constraints (n=5), a request by the child to end early 

(n=11) or some other reason (n=3). In addition, five children provided response patterns clearly 

indicating a misunderstanding of the task instructions. The sample of 300 participants that passed 

the inclusion criteria are described in table 1.  

 

 

 

Procedures 

 Children participated in the computerized NNR task and cardinality tasks on one day and 

completed the Woodcock-Johnson III Math Fluency subtest during a testing session on a second 

day, no longer than 2 week before or after the computerized testing session. To ensure that 

children mastered the words for exact sets and the cardinality principle, each child completed an 

exact enumeration task in which they viewed dots representing pieces of fish food in displays 

Beginning of the school 
year IQ SES 

Grade 
Mean 

Age (SD) N Score (SD) Average of Daycare 
+PreSchool (SD) N Average of 

Parent Educ (SD) N 

K 5.93 (.40) 71 (33M, 38F) 106.86 (16.14) 19.20 (10.38) 21 17.15 (1.45) 21 

1 6.94 (.37) 73 (36M, 37F) 103.37 (19.52) 22.21 (10.24) 18 16.92 (1.27) 18 

2 7.90 (.35) 71 (36M, 35F) 111.13 (14.91) 18.13 (9.56) 15 17.25 (1.63) 14 

3 8.92 (.42) 85 (42M, 43F) 109.19 (14.84) 20.32 (11.74) 17 16.91 (1.73) 17 

Table	  1.	  Description of the participants including IQ and socioeconomic status.	  
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ranging from 1-8 dots, randomly displayed 8 times per set size (see Starkey & McCandliss, 

2014). In this task, children were instructed to produce only the final exact value of the set, 

ensuring that the answer given was their assessment of the set’s cardinal value.  

 Each trial of the NNR computerized task presented children with a short video clip of a 

woman who first peers into a bucket containing 4 to 8 discs, then removes a subset by hand, and 

shows the viewer the subset she removed.  The child’s task is to press a button underneath one of 

three pictures representing the possible number of disks remaining: one, two, or three.  As in 

Pica et al., (2004) the task required no use of number words, and involved watching simple 

concrete transformations of objects, as might happen in the real world.  Children were tested 

individually on a Dell Latitude E6500 computer with a 15.4” display running E-prime 2.0 

(Psychology Software Tools, Pittsburgh, PA, USA). Two practice trials were provided with the 

option of repeating the trials once if needed, followed by 30 test trials.  Timing of the 

progression of each trial was controlled by the child at three points.  The child initiated the start 

of each trial with a button press, which started a wide-view video showing a woman looking into 

a bucket (3200ms), followed by an overhead image of the 4 to 8 discs within the bucket.  This 

image remained on screen until the child advanced the sequence with a second button press (or a 

7000 msec time-out was reached).  Next, a dynamic wide-view video showed the woman 

reaching into the bucket (1200ms), followed by a close-up of her palm holding 1 to 7 discs, 

which remained onscreen until the child pressed one of three buttons indicating the number of 

discs remaining. (see figure 3).  Finally, an image of the correct number of items remaining in 

the bucket appeared (1500 ms) along with a sound indicating whether the response was correct 

or incorrect.  
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Stimuli 

 Stimuli were created to produce four levels of the factor “Set Size” defined by the 

number of discs of the first operand (first image of the bottom of the bucket).  Set sizes included 

4, 5, 6, and 7.  6 trial sequences were created for each set size, consisting of two trials each of the 

set size image followed by a second operand (n-1, n-2, n-3) as displayed by the image of discs on 

a hand. In addition, a set of six “filler trials” were created for first operand set size 8 paired with 

second operand 7, 6, 5, which served as a boundary condition, to avoid the influence of strategic 

biases that may be applied to the largest value in a repeated trials design.  

 Images of black disks were generated using MATLAB 7 (MathWorks, Natick, MA, 

USA) and were superimposed using Adobe Fireworks onto images of a bucket (4 to 8 disks) or 

the open palm of a hand (1-7 disks).  The disks were visually manipulated to remain the same 

Figure	  3.	  NNR task sequence of events	  
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size throughout all trials, yet the spatial arrangements of the disks in the bucket’s bottom surface 

was manipulated to ensure that no one low-level perceptual feature would correspond 

transparently to the numerosity of the first set.  On half the trials, the size of the smallest 

invisible rectangular enclosure that could bound the set of disks was designed to increase (by 

67%) for each additional item beyond 4, while overall density of each set decreased by between 

25% and 31% per additional item over 4.  In the other half of trials, enclosure size decreased by 

40% for each additional item over 4, and density increased by between 90% and 104%.  The 

median enclosure size was used for the second operand for all trials.  

 

Woodcock-Johnson III Math Fluency subtest 

 Woodcock Johnson III is a standardized achievement test appropriate for subjects ages 5 

and older, and the Math Fluency subtest measures how many symbolic arithmetic problems a 

child can complete in 3 minutes. The 160-item test begins with 60 addition and subtraction 

problems followed by a mix of addition, subtraction and multiplication problems. Raw scores 

were attained and consist of the number of correct answers given before the participant missed 6 

consecutive problems. 

 

Results 

 Accuracy scores and median reaction times were computed for each of four levels of the 

Set Size factor: initial set size (i.e. number of disks in the bucket) of 4, 5, 6, and 7.  

Of the 300 participants passing the inclusion criteria, 25 were identified as outliers for having 

accuracy (n=13) or response times (n=12) more than 2 standard deviations away from their 

grade’s mean. To ensure that the extreme cases did not drive effects, analyses are reported for the 
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sample of 275 subjects after outliers were removed, however each of the significant findings 

reported below remained significant in the analysis of the larger sample.  

 Participants’ accuracy data were submitted to a separate mixed model, repeated measures 

ANOVA designed to examine the factors of Grade (K,1,2,3),  Set Size (first operand value 

4,5,6,7) and Envelope Congruence (Congruent, Incongruent). According to Mauchly’s test, the 

assumption of sphericity was violated for set-size effects, chi-square = 55.02, p <.001,  so 

degrees of freedom were corrected with Greenhouse-Geisser estimates, epsilon = 0.89. 

Significant main effects emerged for Grade, F(3,296) = 73.39, p<.001, and Set Size, F(2.67, 

791.20) = 42.00, p<.001.  In contrast, no main effect nor any interactions emerged for the 

Envelope Congruence factor, suggesting that the spatial extent of the first set had no influence on 

children’s decisions about exact non-symbolic subtraction.  Crucially, Grade and Set Size 

produced a significant interaction, F(8.02, 791.20) = 4.23, p<.001 (see figure 4). Post-hoc 

planned comparisons revealed significant differences between all grades, p < .03) except 

between 2nd and 3rd grades.  
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 Second and third graders’ accuracies approached ceiling, potentially driving the group by 

set size interaction. Thus, response times, which have no measurement-imposed floor or ceiling, 

were submitted to a mixed model, repeated measures ANOVA with Grade and Set Size as 

factors. According to Mauchly’s test, the assumption of sphericity was violated for set size 

effects, chi-square = 153.80, p <.001,  so degrees of freedom were corrected with Greenhouse-

Geisser estimates, epsilon = 0.78. Significant main effects emerged for Grade, F(3, 288) = 35.38, 

p < .001 and Set Size, F(2.33, 670.03) = 301.19, p < .001. Grade and Set Size produced a 

significant interaction F(6.98, 670.03) = 3.78, p < .001, indicating that the grade by set-size 

interaction is not simply due to a ceiling effect in the accuracy data.  

 Individual differences in NNR accuracy were analyzed to explore how this emerging skill 

Figure	  4.	  School children’s numerical abilities.  On the EE task (a), for each numerosity 
on the x-axis, the graph shows the percent of the time that Kindergarteners labeled it with 
a specific number word. On the ENS task (b), for each set size on the x-axis, accuracy is 
displayed for each grade.	  
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is linked to two other processes that are concurrently developing: fluency in providing the exact 

cardinal value of non-symbolic sets, and fluency in symbolic arithmetic.  When enumerating, 

larger sets result in slower response times, causing a linear relationship with a large positive 

slope.  As children develop, they become faster at enumerating sets of objects and the set size x 

response time slope decreases (Svenson, & Sjöberg, 1983). Therefore, cardinality fluency was 

characterized by response time slopes for random sets of 5-7 dots (see Starkey & McCandliss, 

2014 for details). Smaller sets in the subitizing range were excluded for not requiring a counting 

routine. One outlier was removed for having a slope more than 3 standard deviations from the 

mean. Individual differences in symbolic arithmetic were characterized by Woodcock Johnson 

III Math Fluency raw scores and individual differences in ENS ability were characterized by the 

accuracy slopes for set sizes 4-7. Nine children who did not score above chance on the easiest set 

size of 4 were excluded as outliers.  Set size slopes in the cardinality task and Math Fluency 

scores both show significant grade effects, F(3,228) = 5.77, p < .01, and F(3,228) = 231.25, p < 

.001, respectively, in a manner similar to NNR accuracy slopes, motivating an investigation into 

how they may contribute to the development of NNR abilities.  A linear regression model was 

used to predict kindergarteners’ NNR accuracy slopes from cardinality fluency and no 

correlation emerged. A linear regression model was then used to predict kindergarteners’ NNR 

accuracy slopes from symbolic math fluency. Math Fluency significantly predicted NNR slopes 

(r2 = 0.10, p < .05), suggesting that symbolic arithmetic, not cardinality fluency, is linked to 

emerging NNR ability. When both cardinality fluency and Math Fluency were entered into a 

linear step-wise regression model to predict kindergarteners’ NNR accuracy slopes, Math 

Fluency entered the model first and significantly predicted NNR slopes (r2 = 0.10, p < .05) and 

cardinality fluency did not significantly account for variance in NNR.  
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Discussion 

 Reasoning about changes in sets of objects develops in early elementary school children.  

This cross-sectional investigation revealed that kindergarteners’ performance was most impacted 

by increases in set sizes. All grades reached 70% accuracy when the first operand was 4, but for 

first operands of 5 or greater, kindergarteners’ accuracy scores drastically deteriorated. 

Importantly, all of the kindergarteners could verbally identify even the largest sets included in 

the task, indicating that increases in set size during the NNR task impacted kindergarteners’ 

numerical reasoning abilities, not simply their ability to determine a set’s numerosity. 

 The kindergarteners performance declined as set size increased, in a manner very similar 

to that of the Mundurukú reported by Pica et al (2004). Though Mundurukú’s limitations in this 

task have been attributed to a lack of language for exact number, such an account is at odds with 

the current findings. All children in the current study could successfully assign counting words to 

exact sets in a precise and categorical fashion, yet showed severe set size effects, indicating that 

cardinality is not sufficient for reasoning about changes in exact quantities. Therefore, the gap in 

Mundurukú and French numerical reasoning abilities likely emerged from cultural differences 

beyond access to cardinality and counting routines.  

 Cardinal number knowledge does not allow for precise numerical reasoning, 

contradicting the language hypothesis. Previous critiques of the language hypothesis note that 

some of the Mundurukú knew the Portuguese counting words yet failed to use them to complete 

the exact subtraction task, discounting the theory that verbal labels allow for exact numerical 

reasoning (Gelman & Butterworth, 2005).  The current study builds on this critique by showing 

that even those with fluent enumeration skills still struggle to reason about exact quantities. 
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 Fluency of applying an exact number word to a non-symbolic set develops across grades, 

yet individual differences in this ability bear no relation to differences in non-symbolic 

numerical reasoning. Children that displayed high fluency in providing the exact cardinal value 

of non-symbolic sets were no better on the non-symbolic numerical reasoning task than children 

that displayed low fluency in the cardinality task, further indicating that language is not the key 

to exact numerical reasoning.  Instead, symbolic arithmetic ability predicted exact, non-symbolic 

numerical reasoning set size slope. The emergence of precise numerical reasoning, while likely 

driven by enculturation practices, seems to be more related to enculturation practices linked to 

symbolic arithmetic than those linked cardinal number knowledge and enumeration skills. 

 Access to counting words is not sufficient to make inferences about changes in exact sets 

of objects, however, it may remain a necessary step in the acquisition of non-symbolic numerical 

reasoning skills. For example, Brazilian homesigners who live in a culture that values exact 

number but lack signs for numbers cannot reason about exact quantities, suggesting that 

enculturation is insufficient and that language remains important for making such numerical 

inferences (Spaepen, Coppola, Spelke, Carey, & Goldin-Meadow, 2011). In the U.S., children 

acquire cardinality, at around age 4, meaning that they know that the last word in a count list 

correspond to the numerosity of a set.  Counting words provide the first symbolic representations 

of numerosities and may help categorize approximate notions of number into exact amounts.  

The current study finds that exact number knowledge, represented by children’s knowledge of 

cardinality, is not enough to manipulate exact sets, but that a second enculturation process may 

take place during the first formal year of schooling. The importance of formal instruction is 

further highlighted by the relationship between exact numerical reasoning and symbolic 

arithmetic ability, a common topic taught in early elementary school.  Whether one ability drives 
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the development of the other or whether both develop via a third skill learned in kindergarten 

still needs to be determined and futures studies should further examine the development of this 

relationship. 

 We theorize that non-symbolic numerical reasoning is acquired through instruction and 

that the poor performance among American kindergartners and Mundurkú is due to their limited 

experience with numbers as opposed to their age. Adult Mundurukú were as restricted in their 

ability to make inferences about exact sets as children, eliminating maturation as the explanation 

for the acquisition of this skill. Future studies should directly measure schooling effects with a 

school cutoff design, which would better isolate the importance of schooling from maturation 

(Morrison, Smith, & Dowehrensberger, 1995).  

 This study demonstrates that basic cardinality is inadequate for precisely reasoning about 

numbers. Instead, children develop exact numerical reasoning abilities during the first formal 

years of schooling, well after mastering cardinality.  The relationship between symbolic math 

fluency and non-symbolic numerical reasoning further points to the importance of formal math 

instruction, providing an alternative to the language hypothesis. Closer investigation of this 

essential time period will reveal the most effective cultural practices that lead to non-symbolic 

numerical reasoning abilities, which will, in turn, influence early elementary school instruction.  
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CHAPTER 3  

 

The impact of one year of schooling on exact numerical reasoning 
 

Abstract 

  In early elementary school, children learn to reason about exact sets of objects. 

Education, maturation, and fluent use of mathematical language are all suggested to be the key to 

this new and important skill. The current study teases the factors apart by directly contrasting the 

effects of maturation versus schooling within the same language community. Using a school 

cutoff design, old kindergarteners are compared to young first graders. Result show a large 

discrepancy in numerical reasoning ability at the beginning of the school year suggesting that the 

first graders benefited from the previous year’s worth of formal instruction. A follow up 

longitudinal study examined how the kindergarten group changed over the school year. At the 

end of the year, grade no longer impacted numerical reasoning skills suggesting that the 

kindergarten experience is responsible to the development of numerical reasoning skills. 

 

Keywords:  Mathematics; Cognitive Development; School Cutoff, Reasoning 
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Introduction 

 Exact numerical reasoning is essential for children to succeed in the classroom and thrive 

as adults, however the cognitive and developmental basis for such skills remains poorly 

understood. Language (Pica, P., Lemer, C., Izard, V., & Dehaene, 2004; Gordon, 2004; Spaepen, 

Coppola, Spelke, Carey & Goldein-Meadow, 2011), counting (Carey, 2001), general 

enculturation practices (Gelman & Butterworth, 2004; Butterworth, Reeve, Reynolds & Lloyd 

2008) and maturation (Piaget, 1960) are all proposed to be critical for reasoning about exact 

numbers. Teasing these factors apart is the challenge.  Studies comparing speakers of different 

languages are often confounded by cultural differences, and schooling effects are often 

confounded by maturation.  Isolating the influence of enculturation practices, such as schooling, 

from language, counting, and age will help to explain the development of exact mental 

arithmetic. 

 Cross-cultural studies have suggested that language is essential for understanding and 

manipulating exact quantities. The Amazonian Mundurukú tribe has no words for numbers 

beyond “a,” “few,” “some,” and “many” (Pica, P., Lemer, C., Izard, V., & Dehaene, 2004). In an 

exact subtraction task, adults and children viewed videos that contained no language or symbols. 

They merely depicted a small set of dots lingering above a can for a while, before entering the 

can so they could no longer be seen, followed by a smaller set of dots leaving the can and 

lingering for a while.   To assess when the viewer knew the exact number of dots left in the can, 

participants were asked to select one of three pictures, which always showed zero, one or two 

dots remaining in a can. As the set size of the dots entering and leaving the can grew beyond the 

smallest numbers, Mundurukú child and adult performance degraded dramatically, whereas the 

French controls showed a minimal set-size effect. Pica and colleagues concluded that non-
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symbolic exact numerical reasoning depends on a language for exact quantities. However, many 

things differ between the Mundurukú and Western subjects, including the importance of exact 

quantity in their culture, their social interactions such as barter and exchange versus selling and 

buying, and even presumably irrelevant things like their diet.  Therefore, although the conclusion 

that culture plays a strong role in number concept development gains important support, our 

understanding of which cultural mechanisms of transmission are necessary, and which are 

sufficient, remains an open, but crucial question. Does just the act of mastering number names 

for cardinal values enable one to reason about number, or are other cultural practices enabling 

such numerical cognition? 

 We can observe the enculturation process more directly by examining the development of 

non-symbolic numerical reasoning abilities in Western children, who all live in similar cultures. 

In Western societies, much of the enculturation process occurs in school.  Therefore, a recent 

study employed a technique similar to those used by Pica and colleagues (2004) to examine the 

emergence of numerical reasoning skills early in elementary school - the first years of the 

enculturation process (Moneta-Koehler & McCandliss, in preparation).  By the start of 

kindergarten, all the children in the study had mastered the counting routine and had acquired 

cardinality for exact number, displaying that they were not verbally limited like the Mundurukú. 

On a non-symbolic exact subtraction task, kindergarteners were impacted by set size in a manner 

similar to Mundurukú, whereas second and third graders showed minimal set-size effects.  Both 

young and old children presented similar language abilities, suggesting that language was not 

sufficient to perform exact numerical reasoning, but that instruction and/or maturation are 

necessary for precise mental calculation.  
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 Early elementary school children range from ages five to seven, a stage associated with 

improved cognitive control (Rueda, Rothbart, McCandliss, Saccomanno & Posner, 2005). 

Children at this age also develop basic reasoning skills including concepts of conservation and 

class inclusion (Piaget, 1960). This age-related cognitive development coincides with the start of 

formal instruction, confounding the individual roles of age and schooling.  Thus, the vast 

differences between the kindergarten and 1st grade children’s numerical reasoning skills could be 

mainly associated with a maturation driven change in cognition or kindergarten instruction. 

 The current study investigates the foundations of precise numerical reasoning by 

disentangling the effects of age and schooling with a school cutoff design. In a school cutoff 

design, participants are selected based on how close their birthdays are to the cutoff date for 

school entry. For example, a child with a birthday that fell a week before the cutoff date would 

be placed into a grade higher than a child with a birthday that fell a week after the cutoff date.  

Such children would differ by two weeks in age, but experientially, they would differ by an 

entire school year with regard to the educational experiences that are specific to these grade 

assignments.  Thus a school cutoff design allows researchers to investigate schooling effects 

while minimizing age effects (Morrison, Smith, & Dowehrensberger, 1995). 

 The current question focuses on how exact number cognition is supported by general 

language differences between cultures, versus other cultural practices involving number. Thus, it 

would be highly informative to compare children of very similar ages who were segregated by 

age-cutoff into a group that was just about to embark on kindergarten versus a group that just 

completed kindergarten. By testing near the school cutoff age at the beginning of the school year, 

we can contrast “young 1st graders”  (i.e. those who just recently completed kindergarten) and 

“old Kindergarteners” (i.e. those just about to embark on kindergarten instruction). 
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 These children are part of a culture that uses exact number labels pervasively and teaches 

such skills at a very young age. If exact numerical reasoning relies more heavily on specific 

kindergarten instruction than on maturation, exact subtraction performance will be significantly 

better in the young 1st grader group than in the group of old kindergartners.  Experiment 2 

follows up with these children at the end of the school year to further assess the impact of a 

kindergarten education.  If numerical reasoning skills are more dependent on instruction than 

maturation, than kindergartners’ performance at the end of the school year will resemble that of 

1st graders at the beginning of the school year.  

 The current investigation is part of a larger study and the numerical reasoning paradigm 

from chapter two was adapted to capture more nuanced reasoning abilities that are of interest for 

the larger study. The previous design focused on subtraction problems with solutions ranging 

from one to three. The new design consists of problems with solutions ranging from zero to six, 

such that performance can be evaluated based on accuracy and precision - incorrect answers can 

be evaluated for how close they are to correct solutions. The new paradigm is important for 

comparing children’s performance on this exact numerical reasoning task to a similar 

approximate numerical reasoning task. However, for the purposes of this cutoff study, the 

experiments focuses on aggregate task accuracy, to maintain consistency with previous cutoff 

analyses (Bisanz, Morrison & Dunn, 1995; Morrison, et al., 1995).  

 

Experiment 1 

 Experiment 1 examines the numerical reasoning abilities of old kindergarteners and 

young first graders at the beginning of the school year. At the beginning of the school year, 
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kindergarteners will have experienced minimal formal math instruction, whereas first graders 

will have an entire year of kindergarten education to draw from. Thus, these similarly aged 

children will reveal the importance of that kindergarten year for exact numerical reasoning.  

 

Methods 

Participants 

 A sample of 58 elementary school children were selected from 12 Nashville area public 

schools: 35 kindergarteners (ranging from five years and nine months to six years old at the 

cutoff date for school entry) and 24 first graders (ranging from six years to six years and three 

month old at the cutoff date). In contrast to chapter two, the current study was run in public 

school programs. The school district used Pearson’s enVisionMATH curriculum that focused on 

problem-based learning and relied heavily on the use of visual for conceptual learning. Lessons 

related to numerical reasoning included comparing sets, decomposing sets up to 10 into addend 

pairs, acting out situations related to addition and subtraction, and composing and decomposing 

number into 10s and ones. Data were collected in the first three months of the school year.  

Letters were sent home to the parents of children in an afterschool program.  The two groups 

(kindergarten and 1st grade) have very similar scores on level of parental education (see table 2).  

 

 

 

 

 

Grade Mean 
Age (SD) N 

Average of 
Parent Educ 

(SD) 
N 

K 5.80 (.10) 35 (16F, 19M) 16.25 (1.80) 24 

1 6.24 (.09) 24 (13F, 11M) 16.81 (1.70) 16 

Table 2. Description of the participants and socioeconomic status regarding the years 
of parents’ education (collected on a subset of the participants).	  
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Procedure 

 Children completed a computerized non-symbolic numerical reasoning task.  In this task, 

children viewed short videos of a woman removing discs from a bucket and determined how 

many discs remained. The task avoided the use of Arabic numerals and number words, and 

instead tested how children manipulate visual objects presented in a real-world scenario. 

Children were given two practice trails and if they failed on both, the experimenter repeated the 

practice trials. They then completed 28 self-initiated subtraction problems where they saw a 

women looking into a bucket (3200ms), discs in a bucket (viewable for 7000ms with the option 

to advance sooner), the woman removing discs from a bucket (1200ms) and discs on a hand 

(viewable for an unlimited amount of time). Children responded 

by pressing a key with an image of zero to six discs in a bucket 

and then saw an image of the correct number of items remaining 

in the bucket (1500) with a sound indicating their success on the 

trial.  Trials consisted of first operands ranging from four to nine 

and second operands ranging from zero to seven. The difference 

between operands ranged from zero through six and each 

occurred four times, resulting in each response option being 

equiprobable throughout the study  (see table 3). 

    

 

 

 

 

Operand 1 Operand 2 Difference 
4  4 0 
5 5 0 
5 4 1 
5 3 2 
5 2 3 
5 1 4 
5 0 5 
6 6 0 
6 5 1 
6 4 2 
6 3 3 
6 2 4 
6 1 5 
6 0 6 
7 7 0 
7 6 1 
7 5 2 
7 4 3 
7 3 4 
7 2 5 
7 1 6 
8 7 1 
8 6 2 
8 5 3 
8 4 4 
8 3 5 
8 2 6 
9 3 6 

Table 3. 28 subtraction problems	  
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Stimuli 

 Images were created with MATLAB 7 (MathWorks, Natick, MA, USA). To ensure that 

participants relied on numerosity instead of low-level perceptual features, spatial arrangement of 

the discs varied.  For half the trials the area occupied by the first operand increased by 67% for 

each additional item beyond four, causing the range of densities to decrease by between 25% and 

31% relative to the other half of trials.  In these trails the areas of the dot display was congruent 

with set size (area congruent trials). For the other half of the trials area for the first operand 

decreased by 40% for each additional item beyond 4, causing density of each set decreased by 

between 90% and 104% (area incongruent trials).  The median enclosure size was consistently 

used for the second operand. Disk size remained constant throughout all phases of the 

experiment.  

2.2 Results  

 Accuracy scores were computed for each participant. Old kindergarteners performed 

significantly worse than young first graders on the exact, non-symbolic subtraction task, t(57) = 

5.65, p < .001. (see table 4). A linear regression model was used to predict children’s numerical 

reasoning accuracy scores from children’s age, entered as the number of days between the 

child’s 6th birthday and the school cutoff date. Age significantly predicted numerical reasoning 

accuracy (r2 = 0.27, p < .001).  Grade was then entered into the model to	  assess	  schooling	  

effects	  above	  and	  beyond	  age	  effects. In a step-wise linear regression model with age and grade 

as predictors, grade entered the model first and significantly predicted numerical reasoning 

accuracy (r2 = 0.36, p < .001). When age and grade were both entered into the model the age 

effect became non-significant (r2 = 0.00, p = .93) and only grade uniquely predicted numerical 

reasoning ability (r2 = 0.12, p < .001).  
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 With a school cutoff design, the key test to estimate the effect of grade is a regression 

discontinuity analysis. A regression discontinuity analysis compared the two regression lines for 

age and numerical reasoning accuracy scores for each group and tested whether the two 

regression lines significantly differed from one another (see figure 5). The univariate general 

linear model revealed a significant difference in the mean centered intercepts for each grade, 

F(1,56) = 7.51, p < .01. Across the whole model, there was no unique effect of age, nor was there 

a difference in the slope of the regression lines for each grade.  The estimated grade effect is 

0.35, t(1) = 2.75, p < .01, suggesting that the difference in grade accounts for a 35% increase in 

accuracy across the two grade groups. These findings suggest that whatever experiences are 

differentiated by assigning children to kindergarten for a year versus assigning them to other 

experiences for a year significantly improves a child’s ability to perform exact, non-symbolic 

calculation within a task that has no explicit demands or stimuli associated with linguistic or 

symbolic number.  

 

 

 

 

 

 

Group Mean Percent Correct 
(SD) 

Old K 0.39 (.28) 

Young 1st 0.74 (.15) 

Table 4. Descriptive statistics of children’s overall accuracy  

	  



	   46	  

 

 

 Although the school cutoff study was designed to contrast development of aggregate task 

accuracy within an exact subtraction task, it is important to note that the design of the current 

task differs from the task previously reported in Chapter 2.  To investigate whether the current 

study shared a key finding with the task version reported in chapter two – that task performance 

was dependent on set size – a follow-up analysis was conducted.  Accuracy scores were 

computed for each of four levels of the Set Size factor: initial set size (i.e. number of disks in the 

bucket) of 5, 6, 7, and 8 (note set sizes 4 and 9 were filler trials to avoid boundary effects, and set 

sizes generally co-vary across initial and second sets, see table 3).  Accuracy data were submitted 

to a separate mixed model, repeated measures ANOVA designed to examine the factors of Grade 
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Figure 5. Time point 1 subtraction accuracy plotted by age. The discontinuity between 
regression lines for each group reveals an effect of grade at the beginning of the school 
year. 
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(old K, young 1st), Set Size (first operand value 5,6,7,8) and Area Congruence (Congruent, 

Incongruent). As in Chapter 2, significant main effect emerged for Set Size, F(3, 171) = 14.35, 

p<.001, suggesting that both tasks demonstrate that performance is dependent on set size.  In 

addition, as in the previous analysis Grade demonstrated a significant main effect, F(1,57) = 

31.79, p  .001, and Area Congruence produced no effect. No significant interactions between 

these factors researched significance (see figure 6).  

 

 

 

 

Discussion 

 Overall, these results clearly indicate that children’s numerical reasoning abilities are 

highly influenced by schooling.  Age and grade each correlate with numerical reasoning skills 

and are highly correlated with each other. However, grade has a stronger relationship with 
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numerical reasoning, and grade made unique contribution beyond that of age. The lack of an age 

effect is unsurprising given that by design children were selected from a narrow age range. This 

study design provided a highly informative contrast for a regression discontinuity analysis that 

further found an important effect of age. Regression lines comparing age to numerical reasoning 

skills showed drastically higher intercepts for the young 1st grade group than for the old 

kindergarten group, much higher than would be predicted by extending the regression line from 

the old kindergarten group all the way through the young 1st grade group (and vice versa). If 

children’s numerical reasoning development was driven by increased overall exposure to the 

general culture or maturational factors, rather than factors unique to the kindergarten experience, 

then we should expect a general age effect and no difference in intercepts between the two 

groups.   Instead, drastic difference between the intercepts suggests that the first graders’ 

numerical reasoning abilities are driven by their school experience. At the beginning of the 

school year, the young first graders have the benefit of a kindergarten education, something that 

the old kindergarteners have barely experienced. Thus, for this sample of children, the 

kindergarten experience likely drives the improved performance of the first grade group.  

The set size effect indentified in chapter two emerged in this experiment, confirming that 

performance accuracy in this task is indeed set-size dependent. Larger quantities elicited more 

errors and slower response times relative to smaller ones.  Interestingly, the grade by set size 

interaction previously reported in a different variant of this task was not present in the current 

results. Such differences may be potentially explained by several differences across these studies, 

including the more restricted grade range examined (K-1st vs. K-3rd), the complexity of the array 

of forced-choice response options (7 versus 3), or the overall set sizes examined (5,6,7,8 versus 

4,5,6,7). Such factors may diminish the emergence of Grade by Set Size interactions in younger 
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grades. Moreover, the children in chapter two were drawn from private schools, whereas the 

children in the current study attended public school. As a result of differences in socioeconomic 

status or school curriculum, the first graders in the current study are more strongly impacted by 

set size than the first graders in chapter two. On comparable set sizes of five, six, and seven the 

first graders in the current study performed overall more like the kindergarteners from chapter 

two, and the kindergartners in the current study performed much worse than the kindergarteners 

from chapter two. These differences might suggest that set size by grade interactions are 

strongest as children approach ceiling performance on the easier sets, but do not emerge when all 

set sizes are far from ceiling as was the case for both groups in the current study.  

 Given the cross-sectional framework of this experiment, support for schooling effect rests 

heavily on the assumption that the old kindergarten and young first graders were otherwise 

similar, and the central differences between them are attributable to the age-based assignment of 

grade. One key piece of information may provide evidence on the degree to which this 

assumption is valid – a longitudinal follow-up study of the old kindergarteners in this sample.  

 

Experiment 2 

 Experiment 2 examines the numerical reasoning abilities of old kindergarteners and 

young first graders at the end of the school year. At the end of the school year, kindergarteners 

will have experienced a year’s worth of formal schooling, and display how that experience 

impacts their numerical reasoning abilities.  If kindergarten education accounts for gains in 

numerical reasoning, the kindergartners’ year-end performance will match that of first graders at 

the beginning of the school year. Furthermore, the longitudinal follow up will reveal how a first 

grade education further impacts numerical reasoning ability. 
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Methods 

 Twenty-eight kindergarteners and 17 first graders agreed to participate in a second round 

of data collection during the last two months of the school year. Children completed the same 

task from Experiment 1. One 1st grader’s year-end score was more than 3 standard deviations 

away from the mean and much lower than his or her time one score. The subject was removed as 

an outlier, resulting in 16 first graders for Experiment 2.  

 

Results 

 After six months of schooling, kindergarteners’ exact, numerical reasoning scores 

improved from their scores at the beginning of the year, t(27) = 6.28, p < .001 (see table 5). The 

first graders’ similarly made gains from the beginning to the end of the year, t(16) = 3.19, p <.01. 

Comparing year end scores, first graders performed better than kindergarteners on the exact, 

non-symbolic subtraction task, t(42) = 2.77, p < .05. To test the value of a kindergarten education 

the important comparison is between the kindergarteners year-end performance and that of the 

first graders at the beginning of the year. Importantly, there was no significant difference 

between numerical reasoning scores for kindergarteners at the end of the school year and first 

graders at the beginning of their school year.  

 

 Mean Percent Correct (SD) 
Group Beginning of the year End of the year 

Old Kindergarteners 0.39 (0.28) 0.70 (0.23) 

Young 1st Graders 0.75 (0.14) 0.87 (0.11) 

Table 5. Descriptive statistics of children’s overall accuracy by group and by time period. 
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 To reexamine the impact of grade and age at the end of the year, a linear regression 

model was used to predict children’s numerical reasoning accuracy scores from children’s age. 

Age showed no significant effect of year-end numerical reasoning accuracy. Grade was then 

entered into the model. In a step-wise linear regression model with age and grade as predictors, 

grade entered the model first and significantly predicted numerical reasoning accuracy (r2 = 0.11, 

p < .001). With both age and grade in the model, the relationship between grade and numerical 

reasoning ability showed a marginally significant trend to (age: r2 = 0.01, p = .53; grade: r2 = 

0.06, p =.08). Moreover, a regression discontinuity analysis compared the two regression lines 

for age and numerical reasoning accuracy scores for each group at the end of the school year (see 

figure 7). The univariate general linear model revealed no effects of grade. The univariate 

general linear model also revealed no effect of age or a difference in the slope of the regression 

lines for each grade.  
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Discussion 

 Experiment 2 found that kindergarten children greatly improve their numerical reasoning 

abilities over the course of the school year. For this sample, impressive learning takes places 

during kindergarten, either because of an important maturational stage or educational experience. 

Importantly, the performance of the kindergarteners at the end of the school year, resemble that 

of first graders at the beginning of the school year. Such an effect further highlights the 

importance of school for numerical reasoning skills. If numerical reasoning developed with 

maturation, we would expect the older 1st grade children to outperform the younger 

kindergarteners, but they do not.  

 By the end of the year, neither age nor grade uniquely contribute to precise numerical 

reasoning abilities, suggesting that for this sample, schooling effects are limited to kindergarten 

and may not continue in 1st grade. The year-end numerical reasoning scores are difficult to 

interpret because the scores approached ceiling. Future studies should use a more challenging 

task with larger set sizes to reduce the ceiling effect and better capture how the first grade 

experience continues to contribute to numerical reasoning abilities.  

 

General Discussion 

 The ability to exactly calculate has been thought to depend on language, cardinality, 

maturation, and/or schooling. The current study focused on isolating schooling effects from age 

by employing a school cutoff design. At the beginning of the school year, old kindergarteners 

performed significantly worse than young first graders.  Regression analyses determined that the 

difference in performance is due to the different grades and not a result of the slight difference in 

ages between the groups.  
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 Our findings are compatible with previous studies of age and schooling. A previous 

school-cutoff study found an impact of schooling, as opposed to age, on mental arithmetic 

abilities (Bisanz, Morrison, & Dunn, 1995).  Cross-cultural data support the ideas that mental 

arithmetic ability is susceptible to cultural influence, as evident by the varied arithmetic abilities 

across countries (NCES, 2011). Additionally, both Mundurukú children and adults performed 

poorly on an exact subtraction task, suggesting that maturation alone does not lead to the 

development of exact arithmetic skills.  

 By the end of the school year, kindergartners’ exact, non-symbolic subtraction abilities 

greatly improved.  Most importantly, the kindergartners’ year-end numerical reasoning abilities 

resembled those of the first graders’ abilities at the beginning of the year. Over the course of the 

kindergarten year, these children improved more than would be predicted by maturation, 

suggesting that schooling strongly influences numerical reasoning ability. 

 The current study highlights the importance of schooling in the development of numerical 

reasoning skills, however, instruction alone may not be sufficient. Instead, the combination of 

instruction, age and language may guide the acquisition of exact arithmetic. For example, 

children may need to reach a particular age or acquire knowledge of cardinality before they are 

ready to receive the type of instruction offered in kindergarten. Future studies should examine 

the interactions between age, language and instruction to determine the essential combination of 

factors needed to exactly calculate. Additionally, kindergarten education consists of a series of 

lessons and experiences. A closer look at specific instructional techniques will reveal the 

minimal cognitive abilities necessary to exactly reason about quantities.  

 In sum, kindergarten education in U.S. middle income schools plays an important role in 

children’s abilities to exactly subtract quantities. This study brings us one step closer to 
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determining the combination of essential skills necessary for exact arithmetic. Establishing the 

foundation for exact calculation will lead to the creation of more efficient instructional practices 

and the development of early assessments and interventions for children at risk for developing 

math disabilities.  



	   55	  

References: 

Bisanz, J., Morrison, F. J., & Dunn, M. (1995). Effects of age and schooling on the acquisition of 

elementary quantitative skills. Developmental Psychology, 31(2), 221. 

Butterworth, B., Reeve, R., Reynolds, F., & Lloyd, D. (2008). Numerical thought with and 

without words: Evidence from indigenous Australian children. Proceedings of the National 

Academy of Sciences, 105(35), 13179–13184. doi:10.1073/pnas.0806045105 

Carey, S. (2001). Cognitive Foundations of Arithmetic: Evolution and Ontogenisis. Mind & 

Language, 16(1), 37–55. 

Gelman, R., & Butterworth, B. (2005). Number and language: how are they related? Trends in 

Cognitive Sciences, 9(1), 6–10. doi:10.1016/j.tics.2004.11.004 Gordon, P. (2004). Numerical 

cognition without words: Evidence from Amazonia. Science, 306(5695), 496. 

Morrison, F. J., Smith, L., & Dow-Ehrensberger, M. (1995). Education and cognitive 

 development: A natural experiment. Developmental Psychology, 31(5), 789–799. 

Moneta-Koehler, L. & McCandliss, B. D. (in preparation). Reasoning about quantities: 

 children reveal that words are not enough. 

Piaget, J. (1960). The psychology of intelligence. Patterson, NJ: Littlefield, Adams.  

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in  

an Amazonian indigene group. Science, 306(5695), 499. 

Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). 

Training, maturation, and genetic influences on the development of executive 

attention. Proceedings of the national Academy of Sciences of the United States of 

America, 102(41), 14931-14936. 



	   56	  

Spaepen E., Coppola M., Spelke E. S., Carey S. E., Goldin-Meadow S. (2011). Number without 

a language model. Proc. Natl. Acad. Sci. U.S.A. 108, 3163–3168.  

 doi: 10.1073/pnas.1015975108 

National Center for Education Statistics (NCES). Trends in International Mathematics and 

Science Study: TIMSS 2011 results. Retrieved January 14, 2015, from 

http://nces.ed.gov/timss/results11.asp 



	   57	  

CHAPTER 4 

 

Advanced cardinality and children’s exact numerical reasoning abilities 

 

Abstract 

 Language, in the form of verbal counting and cardinality, has been identified as necessary 

for exact numerical reasoning. The current study further examines the role of language by 

teaching advanced cardinality, knowledge about cardinal number knowledge that goes beyond 

the last-word rule. Children trained on all the parts that form a whole with either number word 

(e.g. “five is made of the three block and the two block”) or color words (e.g. “five is made of 

the gray block and the pink block”). Results show children’s numerical reasoning skills improve 

only for the set sizes trained with number words, suggesting that language continues to impact 

precise numerical reasoning skills and should be emphasized during part-whole instruction. 

Moreover, advanced cardinality training resulted in numerical reasoning gains only for set sizes 

within one’s zone of proximal development. Basic cardinal number knowledge differs among 

sets, contrasting the commonly held view that a general cardinality principle is similarly applied 

to all quantities.  

 
Keywords:  Mathematics; Cognitive Development; Cardinality; Language; Number Bonds, 

Part-whole



	   58	  

 

Introduction 

 Cardinality, the ability to state the quantity of a set, is a prerequisite for more advanced 

mathematics. Developmentally, children learn to count and use cardinality before they learn to 

add and subtraction quantities (Gelman & Gallistel, 1978). Cross-culturally we see that cultures 

lacking a language for exact quantities, such the Praha and the Mundurukú, are severely impaired 

in their abilities to reason about exact sets (Gordon, 2004; Pica, Lemer, Izard, & Dehaene, 2004). 

For example, members of the Amazonian Mundurukú tribe performed a non-symbolic 

subtraction task. As the set sizes increase, Mundurukú accuracy drastically decreases in a manner 

dissimilar from a group of French controls (Pica et al., 2004). The study concluded that one 

needs the words for a quantity before he or she can make mathematical inferences about that 

quantity. Such a dependence on language is supported by the Sapir-Whorf hypothesis (Whorf, 

1956), and by neuroscience studies that show a relationship between language and exact number 

processing (Lemer, Dehaene, Spelke, & Cohen, 2003; Dehaene, Piazza, Pinel & Cohen, 2003; 

Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999).  Combined, the literature strongly suggests 

that language and cardinality are necessary for precise numerical reasoning. 

  How children develop cardinal number knowledge has been debated for some time. Early 

theories suggest that children access a general cardinality principle and apply that principle to 

counting (Gelman & Gallistel, 1978). Contrary views suggest that children use the counting 

chant to learn the meaning of “one” then the meaning of “two” and finally the meaning of 

“three” before acquiring a general cardinality principle to apply to all larger numbers (Le Corre 

& Carey 2009; Le Corre, Van de Walle, Brannon & Carey, 2006; Sarnecka & Carey. 2008; 

Sarnecka & Lee, 2009; Wynn, 1990; Wynn 1992). First, children rely on an innate system of 
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parallel individuation that precisely distinguishes between the small sets one, two and three 

(Feigenson, Carey & Spelke, 2002, Starkey & Cooper, 1980). Just as children learn the meaning 

of quantifiers such as “a” in speech, they learn the meanings of  “one” and, after roughly six 

months, the meaning of “two” and eventually “three.” The precise words map fairly easily onto 

the similarly precise quantity representations. Larger numbers, however, initially have 

approximate representations and thus exact number words do not easily map onto them. Instead, 

according to Carey’s (2001; 2004; 2009) bootstrapping theory, practice reciting the counting list 

helps children learn that the counting words are ordered and that a word that appears later in the 

list represents a quantity greater than its immediate predecessor. In other words, because the 

word ‘four’ comes immediately after the word ‘three’ in the counting list, four items must be one 

greater than three. This knowledge of the successor function teaches children the cardinality 

principle, which generalizes to all quantities greater than three (or, in some cases, four). 

Baroody, et al. (1983) similarly found that mathematical rules and principles, such as the 

successor function, can be automatically applied to new numbers.   

 By contrast, Davidson et al. (2012) found that children learn basic cardinal number 

knowledge before they learn the successor function.  Children that correctly label sets do not 

always know which of two counting words is associated with the larger quantity. These children 

also might not understand that successive numbers differ by one. In contrast to Carey’s view on a 

natural number insight that applies to all natural numbers greater than four, Davidson, et al. 

found that children continue to learn cardinality one quantity at a time, starting with small 

quantities and then learning larger quantities. For example, after acquiring cardinality for four, a 

child then learns five, followed by six. This evidence strongly supports the notion that children 

do not generalize a principle to all quantities greater than four.  
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 Even after children acquire basic cardinal number knowledge, a recent investigation 

suggests that cardinality is not sufficient for exact numerical reasoning and cardinal number 

knowledge needs to be supplemented with instruction.  In the study, elementary school children 

performed a subtraction task similar to that used with the Mundurukú (Moneta-Koehler & 

McCandliss, in preparation). The youngest subjects, kindergarteners, performed just like the 

Mundurukú, displaying deceasing accuracy as the problem sizes increase. Interestingly, unlike 

the Mundurukú, the kindergarteners all had cardinality for the quantities used in the task, 

demonstrating that cardinality is not the missing link to exact numerical reasoning. Language is 

not enough. After completing kindergarten, the first year of formal instruction, children made 

great gains and these gains are attributed to schooling, not maturation (Moneta-Koehler & 

McCandliss, in preparation). Therefore, language must be combined with instruction for children 

to accurately reason about exact sets.  

 Resnick (1989) suggests that instruction helps children integrate their cardinal number 

knowledge with protoquantitative schemas regarding how a whole is made up of smaller parts. 

Early in life children learn how a pie is sliced into pieces and how puzzle pieces combine to 

make a picture. These types of early experiences form imprecise part-whole schemas.  Resnick 

theorized that when these protoquanitiative combined with language, children are able to 

precisely reason about sets. Formal instruction may help children integrate their cardinal number 

knowledge and protoquantitative part-whole schemas, and recent educational trends support this 

idea.  

 According to the Common Core, an educational activity called “number bonds” should 

be taught in kindergarten (National Governors Association Center for Best Practices & Council 

of Chief State School Officers, 2010). Number bonds refers to all the pairwise number 
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combinations within a given number that add up to that number.  For example, the set of five is 

comprised of the number bonds one and four, and the number bonds two and three. Educational 

activities designed to teach number bonds are often accompanied by visuals, which serve to 

emphasize part-whole schemas and encourage children to see how precise whole numbers are 

comprised of smaller precise sets. In this part-whole number instruction, a child will learn that, 

say, five is made up of the combination of one and four and the combination of two and three.  In 

contrast to activities that teach children all the “two” addition facts (2 + 1 = 3, 2 + 2 = 4, 2 + 3 = 

5, etc.), in number bonds activities children focus on the meaning of the sum and learning all the 

ways that the sum can be constructed by smaller precise numbers. This instructional shift was 

partially motivated by the high performance of Chinese and Singaporean students (Organisation 

for Economic Co-operation and Development, 2013) and their use of numerical regroupings.  

For example, Chinese teachers are more likely to point out the multiple ways one can regroup a 

number. They will encourage children to break, say, 26 in to 20 + 6, 10 + 10 + 6, 20 + 3 + 3, and 

10 + 10 + 3 + 3, resulting in a stronger conceptual understanding of numbers (Ma, 1999). Eager 

to improve American students’ international ranking, U.S. teacher began using Singapore and 

Chinese teaching styles, including the use of number bonds.   

 The current study builds on Resnick’s idea that children combine cardinality and part-

whole knowledge to advance their understanding of numerical cardinality and reason about exact 

sets. We will refer to this expanded view of cardinality as  “advanced cardinality”. The concept 

of cardinality, as it is currently used in the literature, does not capture the notion that the 

semantics of an exact number word must include essential part-whole knowledge about that 

quantity.  Thus, in contrast to the well established definition of cardinality in the literature 

reviewed above, when achieving advanced cardinality, children come to learn that the meaning 
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of the word “five” refers not just to an exact set of five objects, but also the combination of the 

precise subsets one and four, as well as the combination of the precise subsets two and three. The 

goal of this investigation is to test whether reasoning about precise numbers requires children to 

explicitly integrate their cardinal number words with part whole knowledge. Must the 

associations between quantities and their parts need to be verbal in nature for one to learn 

advanced cardinality? Must the word “five” be associated with the words “one and four” and 

“two and three” in order to reason about exactly five things? Thus, a central aim of this study is 

to test for a language effect, by contrasting part-whole training with number words versus part-

whole training without number words. If advanced cardinality learning relies on language, 

integrating cardinality words with part whole knowledge will lead to different learning than 

simply introducing part whole knowledge via number bonds. 

 The study further examines the impact of advanced cardinality by assessing how insight 

gained about one number, such as five, transfers to other numbers, such as six, thus addressing 

the degree to which a specific intervention might change children’s general number knowledge 

and reasoning abilities, versus advance their understanding only of a specific number concept. If 

children learn general principles such as the successor function, cardinal number principles, and 

automatically accessed arithmetic rules (Carey, 2001; Baroody 1983), then we would expect 

advanced cardinality training on one set to transfer to another unlearned set, thus supporting 

gains in numerical reasoning for all set sizes. Alternatively, if children progress not through the 

induction of abstract principles, but rather through progressive development of specific number 

concepts through experience, children will only show numerical reasoning gains for the trained 

set size.   Thus, a second major goal of this study is to test for a Set Size specificity training 
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effect, by contrasting numerical reasoning gains with sets in the verbally mediated advanced 

cardinality training versus gains with the sets in the control condition. 

 In addition, the study is designed to examine an additional question about learning 

advanced cardinality that might highlight important differences between how learning could 

progress differently between the quantity five and the quantity six. Will children learn to reason 

with either quantity equally well, or will children learn to reason with the smaller set before 

advancing to larger ones?  If learning progresses in a way that reflects insight into general, 

abstract principles into cardinality of natural numbers larger than four, as advanced by Le Corre 

& Carey (2009) children might be expected to respond equally well to training on five or six. 

However, if insights into principles of cardinality are learned by progressively extending 

knowledge and insight from smaller quantities to larger ones, as Davidson et al. (2012) suggests, 

children who demonstrate insight into advanced cardinality for four should be well better 

prepared to learn advanced cardinality for five, however advanced cardinality training on six 

should have little impact. Thus, the third and final goal of this study is to test for a training 

magnitude effect, by contrasting numerical reasoning gains for the quantity five versus six.   

 

Methods 

Participants 

 42 pre-kindergarten (pre-K) children from five Nashville area preschools participated in 

the study. Typically developing pre-K students know basic cardinality for numbers but have not 

been exposed to the formal math instruction introduced in kindergarten. Thus, the intervention 

was not confounded with other formal math instruction shown to improve children numerical 

reasoning abilities. Consent forms and questionnaires were sent home for interested parents to 
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complete and return to the participating child’s preschool. The parental questionnaire probed the 

child’s upbringing, including time spent in daycare, family socioeconomic status and any 

psychological or development problems. 

 Participants were in included in the study if they displayed typical development, had 

normal or corrected-to-normal vision, spoke English, and completed the assessment and training 

tasks. Additionally, children were only included if, during the prestest, they displayed basic 

cardinality: achievement of at least 75% accuracy on the enumeration task and, after 3 trials per 

set-size, could correctly forms all quantities in the give-a-number task. Of the initial 42 

participants, six did not have basic cardinality, three requested to end the study early, and one 

was revealed to have a developmental disability, resulting in 32 participants.  

 

Procedure  

 Children completed the pretests, intervention and posttests in four one-on-one sessions at 

their preschool with a visiting experimenter. On day one, children completed the cardinality and 

numerical reasoning tasks; on days two and three children received the intervention; and on day 

4 children performed one round of the intervention and repeated the numerical reasoning tasks. 

In this manner, children were exposed to the intervention three of the four days.  

 

Cardinality Tasks 

 The pretest included brief assessments of basic cardinality and advanced cardinality. The 

basic cardinality assessment included an enumeration task and the give-a-number task (Wynn, 

1992).  In the enumeration task, child viewed sets of randomly arranged black dots on a grey 

background. The children were instructed to say “how many dots” were on the page, and the 
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experimenter noted his/her response.  All sets between one and six were included four times, 

resulting in 24 trials. Wynn’s Give-a-number task was also conducted. Children were asked to 

give sets of blocks to one of two stuffed animals. Sets started small with just one block and 

increased by one until children were asked to give six blocks to the animal toy.  

  Bermejo’s jump forward task (Bermejo, 1996; Bermejo, Morales, & deOsuna, 2004) and 

has previously been used to assess whether a child can only use the last word in a count sequence 

to determine cardinality or if the child’s understanding of the quantity exceeds the counting 

strategy. During the jump forward task, children were showed five blocks and were asked to 

count the set starting with the word “two.” The experimenter then asked, “how many blocks are 

there all together?” and noted the child’s response. The child then repeated the task with a set of 

six blocks.  

 

Numerical Reasoning Tasks 

 The non-symbolic subtraction task was based off the task used with the Mundurukú and 

has previously been used to assess kindergartener’s exact reasoning abilities. The experimenter 

introduced the task as a game in which children view videos of a women placing discs into a 

bucket and determine whether four, five, or six discs remained (see figure 7). By situating the 

task in a real-world scenario, avoiding symbols with which some children may not be fluent, and 

keeping answers in the positive range, the youngest participants were able to complete the task. 

The instructions purposefully avoided words such as “count” or “subtract” allowing children’s 

own strategies to emerge.  

 Children were given two practice trials with the option of repeating the trials if the child 

failed both times. Children completed 18 self-initiated subtraction problems where they viewed 
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videos of a women looking into a bucket (3200ms), an image of discs in a bucket (viewable for 

7000ms with the option to advance sooner), a video of a woman removing discs from a bucket 

(1200ms) and an image of the removed discs on a hand (viewable for an unlimited amount of 

time) (see figure 8). The difference was always one, two, or three causing the first and second 

operands to covary.  Children responded by pressing a key with an image of one, two, or three 

discs in a bucket and saw an image of the correct number of items remaining in the bucket 

(1500) with a sound indicating their success on the trial. While the child completed the task, the 

experimenter noted strategies used during each stage of each trial. Strategies consisted of verbal 

counting, finger counting, stating the quantity of a set, and performing a verbal or finger 

operation.  

 Trials consisted of four set-sizes, as determined by the first operand. Six trials of each 

set-size were included such that there all three answers (one, two, and three) were represented 

twice (e.g, for set-size four, there were two trials of 4-3, 4-2, and 4-1).  

 Images of dots were generated using MATLAB 7 (MathWorks, Natick, MA, USA). Dot 

size remained constant, but their arrangement varied in order to prevent children from relying on 

non-numerical properties. Low-level perceptual features, such as enclosure size and density have 

been shown to influence children’s quantity decisions (Piaget, 1952). First operand discs 

appeared in rectangular invisible enclosures of three sizes. On half the trials enclosure size for 

the sum increased (by 67%) and density decreased (by between 25% and 31%) with quantity 

(Envelope Congruent trials), and on half of the trials enclosure size for the sum decreased (by 

40%) and density increased (by between 90% and 104%) with quantity (Envelope Incongruent 

trials). The median enclosure size was used for the second operand. 
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 The addition task complemented the subtraction task by manipulating the same quantities 

(see table 6). Children viewed videos of a women looking into a bucket (3200ms), an image of 

discs in a bucket (viewable for 7000ms with the option to advance sooner), a video of a woman 

about to add discs to the bucket (1200ms), and an image of those additional discs on a hand 

(viewable for unlimited time until the child responded), Children responded by pressing a key 

with an image of four, five or six discs in a bucket. As with the stimuli in the subtraction task, 

enclosure size and density varied by the set size, defined by the sum in the addition task.  

 

 

 

Figure	  8.	  Exact numerical reasoning subtraction task sequence of events	  
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Subtraction Task Addition Task 
Operand 1 Operand 2 Difference Operand 1 Operand 2 Sum 

4 3 1 3 1 4 
4 2 2 2 2 4 
4 1 3 1 3 4 
5 4 1 4 1 5 
5 3 2 3 2 5 
5 2 3 2 3 5 
6 5 1 5 1 6 
6 4 2 4 2 6 
6 3 3 3 3 6 

Intervention 

 The intervention consisted of a computer game that resembleed Tetris and was based off 

a game designed by the London Knowledge Lab (http://number-sense.co.uk/numberbonds, 

Butterworth & Laurillard, 2010).  In the game children visually formed a target number by 

horizontally lining up digital Cuisenaire rods. The rods were segmented to best represent their 

corresponding quantities. If the correct rod was chosen, the entire width of the workspace was 

filled, indicating that the target quantity was correctly made. For example, if the target number 

was five, a gray rod representing three might have “fallen” from the top left side of the screen to 

the bottom left side of the screen (see figure 9). The subject then reviewed a set of colored rods 

representing all the numbers from one through four and verbally selected one by its number 

name, in this case “two.” If the child chose correctly, the second rod fit perfectly between the 

first rod and the right hand side of the screen, forming the whole quantity five.  

Table 6. Trials for each of the numerical reasoning tasks 



	   69	  

 

 

 

 The child heard the sentence, “Five is made of three and two” and repeated it to reinforce 

the verbal part-whole knowledge. The whole quanitity was displayed as a complete row along 

the bottom of the screen and remained in place for the duration of the round. If the child chose an 

incorrect quantity, the second rod either failed to touch the first rod or overlapped with the first 

rod. In both incorrect scenarios the first and second rod disappeared and the first rod  “fell” again 

until the child chose the correct second rod.  The goal of the game was to build a tower of 

number bonds representing all the numerical pairs that add up to the target quantity. Each child 

learned one quantity, counterbalanced across the quantities five and six.  

Figure 9. Intervention based off the Number Bonds game designed by the 
London Knowledge Lab (Butterworth & Laurillard, 2010). In order to make 5, 
children select the rod from the right side of the screen to complete the 
workspace on the left side of the screen. 



	   70	  

 The other quantity was used in the control condition, in which the subject completed the 

same intervention as the test group, but learned different verbal associations. Instead of calling 

the rods by their number names, they identified them by color. For example, if the control 

condition target number was five, a gray rod representing three might have “fallen” from the top 

of the screen. The child then selected the pink rod representing two by saying the word “pink,” 

and the part-whole knowledge was reinforced with the verbal statement “five is made of gray 

and pink.” The visual stimuli and part-whole concepts were controlled between conditions and 

the two groups only differed by the verbal associations children learned. 

 For the intervention, the quantity taught with number words varied as well as which 

quantity was taught first, resulting in four conditions which were counterbalanced across 

participants.   

 

Results 

Cardinality pretest 

 All participants revealed knowledge of the words up to “six” in the give-a-number task 

and achieved a mean accuracy score at or above 0.75 in the enumeration task (mean: 0.95 sd: 

0.07). Alternatively, on the jump forward task, no children successfully stated both quantities. 

Four children correctly labeled the set of five blocks and two different children correctly named 

the set of six. Thus all children displayed cardinal number knowledge but did not show major 

advances beyond the limits of basic cardinality. 
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Subtraction pretest 

 Average accuracy scores by set size were calculated for each subject on the subtraction 

tasks.  As in the Mundurukú study, set size for the subtraction task is determined by the first 

operand, such that accuracy for four includes the trials 4-1, 4-2 and 4-3. Accuracy data was 

submitted to a repeated-measures ANOVA to assess Sets Size (4, 5, 6) and Envelope 

Congruence (Congruent, Incongruent). Significant Set Size effects emerged F(2,62) = 13.445, 

p<.001, suggesting that larger sets were harder to reason with than smaller ones (see figure 10). 

Reaction time data similarly showed a Set-Size effect F(2,54) = 9.80, p<.001, ruling out a 

time/accuracy tradeoff. Pairwise comparisons revealed that accuracy for Set Size six was lower 

than that for Set Size five, p <.05. Because Set Size five was easier than Set Size six, children 

might make greater gains on the Set Size five posttest trials because they are ready to learn that 

set. Reasoning with five might be in pre-K children’s zone of proximal development (Vygotsky, 

1978). Alternatively, the training might show a 

greater impact on Set Size six given that there is 

greater room for growth. No main effects nor any 

interactions emerged for the Envelope Congruence 

factor, suggesting that the spatial extent of the first 

set had no influence on children’s decisions about 

exact non-symbolic subtraction. 

   

 

 
Figure	  10.	  Pretest subtraction accuracy by  
Set Size. 
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Advanced cardinality training 

 Children engaged in the intervention for a set amount of time, but varied in the number of 

training rounds they completed. Paired sample t tests compared number of rounds played 

between quantity (mean of 19.75 and 17 rounds of training on 5 and 6, respecitvely) and training 

condition (mean of 18.94 and 17.81 rounds on the number and color term conditions, 

respectively) and revealed significant difference between quantity, t(31) = 4.61, p <.001. 

Children completed more rounds of the intervention when training on five than on six. One-way 

independent t-tests comparing the rounds of training on five and six for each condition revealed 

only a significant difference during the number condition t(30) = 1.86, p <.05.  Children 

completed more rounds of training when learning five with number words than when learning six 

with number words.  

 To further examine the role of training, children’s pretest subtraction scores were 

compared to children’s training performance. A linear regression model was used to predict the 

number of rounds children played of the number condition from their subtraction pretest 

accuracy scores.  Pretest subtraction performance significantly predicted the number-condition 

training rounds completed, r2 = 0.36, p < .001. The number-condition was separated by quantity 

and reentered into new linear regression models. Pretest subtraction performance significantly 

predicted how many rounds children played when learning five with number words, r2 = 0.49, p 

< .01, but did not predict how many rounds children played when learning six. Pretest 

subtraction abilities were related to children’s advanced cardinality training of quantity five, but 

not six.  
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Impact of advanced cardinality training on exact subtraction 

 After training, children repeated the numerical reasoning assessments, and gains were 

characterized. Accuracy data was submitted to a repeated-measures ANOVA to assess Sets Size 

(4, 5, 6) and Time  (Pretest, Posttest). Aside from a main effect of Set Size, F(2,62) = 26.713, 

p<.001, no other main effects or interactions were found. As a whole, children did no better on 

the subtraction posttest as they did on the pretest.  

 

Does learning advanced cardinality rely on the use of number words? 

 In order to assess the impact of training condition, Set Size specificity was examined. 

Subjects’ subtraction trials were coded according to their intervention group. For the 

intervention, children either learned the target number five or six with number labels. If a child 

learned five with number words, then the subtraction trials 5-4, 5-3 and 5-2 were all coded as 

having been trained in the intervention with number words and the trials 6-5, 6-4 and 6-5 were 

all coded as being trained with color words, with the reverse being true if a child learned six with 

number words. A paired sample t-test compared children’s posttest accuracy scores for numerb 

word trained sets vs. color word trained sets and found no difference. To assess how number 

word training impacted gains on the subtraction task, accuracy data was submitted to a repeated-

measures ANOVA assessing Training (Number Word Trained Set Size, Color Word Trained Set 

Size) and Time (Pretest, Posttest). The interaction between Training and Time on the subtraction 

task reached significance, F(1,31) = 4.399, p<.05, indicating that children improved from pretest 

to posttest only on the subtraction trials involving the quantity trained with number words. 

Children that trained on one quantity with number words show no improved numerical reasoning 

for the other quantity, suggesting that cardinality relied on the use of number words and did not 
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transfer to quantities studied with color words. A paired sampled T-test on subtraction Number 

Word Trained Set Size and Color Word Set Size pretest scores revealed a significant difference, 

T(31) = 2.095, p <.05, suggesting that the Number Word Trained Set Size posttest gains may be 

influenced by differences between the groups’ pretest scores.  

 

Is there a zone of proximal development for learning advanced cardinality? 

 Trained magnitudes include both five and six. Separating the quantities reveals whether 

number word advanced cardinality training impacts numerical reasoning abilities for only one 

quantity. Accuracy data was submitted to a repeated-measures ANOVA assessing Training 

(Number Word Trained Set Size, Color Word Trained Set Size), Time (Pretest, Posttest) and Set 

Size (5,6). A 3-way interaction between Training, Time and Set Size reached significance, 

F(1,30) = 4.32, p < 0.05, suggesting that training impacts gains for magnitudes five and six 

differently. Pairwise comparisons assessed the impact of Time (Pretest, Posttest) for each 

magnitude and for each training condition. Only the children that trained on five withnumer 

words showed effects of time on subtraction trials of Set Size 5, p < 0.05 (see figure 11a). 

Verbally mediated advanced cardinality training only works for the quantity five. Children who 

trained on six with number words showed no significant gains (see figure 11b). Finally, for Set 

Size 5, there was no significant difference between the training groups’ pretest scores suggesting 

that the gains were driven by the intervention.  
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Does advanced cardinality training assist in exact addition? 

 The addition task was newly developed for this study. An exploratory analysis was 

performed to examine the effectiveness of the task and the extent to which verbally mediated 

advanced cardinality training transferred to addition reasoning skills.  Set size for the addition 
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Figure	  11.	  Pre and posttest numerical reasoning accuracy for untrained and 
trained quantities separated for subtraction a) Set Size 5 and b) Set Size 6.	  
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task was determined by the sum, such that accuracy for four includes the trials 3+1, 2+2, and 

1+3. Pretest accuracy data was submitted to a repeated-measures ANOVA to assess Sets Size (4, 

5, 6), however no Set Size effects emerged, suggesting that smaller addition problems were just 

as difficult to solve as the large ones. After training, posttest scores and gains were characterized. 

Accuracy data was submitted to a repeated-measures ANOVA to assess Sets Size (4, 5, 6) and 

Time  (Pretest, Posttest), revealing no main effects nor interactions.  

 In order to investigate Set-Size specificity, a paired sample t-test compared children’s 

posttest accuracy scores for quantities they were trained on with number words vs. color words 

and found no difference. To assess how training impacted gains on the addtion task, accuracy 

data was submitted to a repeated-measures ANOVA assessing Training (Number Word Trained 

Set Size, Color Word Trained Set Size) and Time (Pretest, Posttest) and again found no effects. 

As in the subtraction task, effects may be limited to a specific Set Size or magnitude.  

 To examine magnitude specificity, accuracy data was submitted to a repeated-measures 

ANOVA assessing Training (Number Word Trained Set Size, Color Word trained Set Size), 

Time (Pretest, Posttest) and Set Size (5,6) and no significant effects emerged. Finally, for Set 

Sizes 5 and 6, paired Sample T-Tests assessed the impact of Time (Pretest, Posttest) on 

numerical reasoning accuracy data for children who trained with number words that set and 

children who trained with number words on the opposite set. Only the children that trained on 

five with number words showed trending effects of time on numerical reasoning trials of Set Size 

5, T(15) = 1.84, p = 0.086. Like with the subtraction findings, advanced cardinality training may 

only works for the quantity five. Children who trained on six with number words showed no 

gains. Finally, for Set Size 5, there was no significant difference between the training groups’ 

pretest scores suggesting that the trending gains were driven by the intervention.  
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Discussion 

 Pre-K children had basic cardinal number knowledge, as displayed by their accurate 

responses to the enumeration and give-a-number tasks. Conversely, these children did not 

demonstrate strong advanced beyond the limits of basic cardinality, evident by their inability to 

determine cardinality with a nontraditional counting strategy. Thus, the participants were 

perfectly prepared to receive advanced cardinality training.  

  Prior to training, children completed numerical reasoning tasks: one subtraction task and 

one addition task.  We focused on the subtraction task for two reasons. First, the task has been 

previously shown to work with young children. Second the subtraction schema more closely 

matches the training schema. During training, children learned a target quantity followed by its 

addends, and similarly, subtraction problems start with the target quantity followed by its parts.  

Addition problems, however, flip the order from training, starting with the parts and ending with 

the sum. Thus the advanced cardinality knowledge gained during training may more easily 

transfer to subtraction than addition.  

 On the nonsymbolic subtraction task children showed lower accuracy and longer 

response time when reasoning about larger quantities. This classic set size effect (Zbrodoff & 

Logan, 2005) suggests that larger quantities are harder to reason with than smaller ones and 

replicated previous findings that basic cardinality is insufficient for numerical reasoning. All the 

children had cardinal number knowledge of five and six, yet performed poorly subtracting with 

those quantities. Additional skills were necessary for numerical reasoning. Performance on this 

subtraction pretest predicted children’s performance during the advanced cardinality 

intervention. Children with higher subtraction accuracy scores played more rounds of the number 

condition training game.  Importantly, this relationship only held for those children that learned 
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all the ways to make five. Subtracting accuracy was unrelated to the number of rounds children 

trained on six. This difference is the first piece of evidence suggesting that children learn the 

quantities five and six differently.  

 At the end of the training, children that learned part-whole knowledge with numerical 

labels improved their numerical reasoning skills, whereas children that learned part-whole 

knowledge with color labels did not. Number word mediated advanced cardinality training 

successfully shifted children from representing a quantity to reasoning with a quantity. Children 

needed more than part-whole number training, for the color condition training did not result in 

improved numerical reasoning. Instead, number terms extended children’s part-whole schemas to 

something they could apply to new situations, namely non-symbolic subtraction. The role of 

language extends beyond counting and continues to impact children’s mathematical 

competencies, further supporting the Sapir-Whorf hypothesis.    

 Number words mediated advanced cardinality did not transfer to the quantity learned 

with color words. Children that learned the number words for the subsets of five were unable to 

reason about six. Instead of learning a general part-whole procedure or advanced cardinality 

principle as suggested by Baroody (1983), children learned part-whole knowledge of a specific 

set that only improved reasoning with that set. This set size specific learning contradicts the idea 

that a cardinality principle is applied to all quantities greater than four.  The number word 

advanced cardinality training provided children precise part-whole concepts and subsequent 

reasoning ability, but only for the trained quantity. The children failed to develop advance 

cardinality for the quantity in the color condition, limiting reasoning capabilities with that 

quantity.  
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 Importantly, training on advanced cardinality improves subtraction ability but only for 

the quantity five. The children number word training on the quantity five strengthened their 

reasoning skills for trials of Set Size five, whereas children with number word training on six did 

not improve on subtraction trials of Set Size six. Children’s inabilities to reason with six suggests 

that that children may learn cardinal number knowledge for smaller quantities before larger ones 

(Davidson, et al., 2012) and that six is beyond these children’s zone of proximal development 

(Vygotsky, 1978). Children were prepared to learn about the magnitude five, and five only. Prior 

to completing the posttest, children showed a correlation between their pretest subtraction 

accuracy scores and the number of rounds they engaged with the intervention. Again this effect 

only held for children that trained with number words on five and not six, further suggesting that 

these children’s prior knowledge of numerical reasoning prepared them to learn advanced 

cardinality for five. Children were evidently not ready to learn about six. Recent research has 

found that, after learning to mentally represent four, they then learn about all the other quantities 

in their count range (Le Corre & Carey 2009; Le Corre, et al., 2006; Sarnecka & Carey. 2008; 

Sarnecka & Lee, 2009; Wynn, 1990; Wynn 1992). The current study contradicts this concept by 

showing children capable of counting to six, but unable to represent six in the same manner in 

which they represented, and subsequently reasoned with, five. Instead children’s magnitude 

specificity suggests that children learn quantities one at a time, and that children need to master 

five before they can accurately represent six, acquire advanced cardinality for six and finally 

reason with six. 

 Alternatively, the magnitude specificity may have arisen because children completed an 

average of 2.75 more rounds of number word training on the quantity five than on six. The five 

condition was shorter given that it only taught four combinations, compared to the five addend 
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pairs used to make the quantity six, explaining the difference in rounds of play. Such a 

discrepancy may impact children’s ability to reason with each magnitude. However, the 

discrepancy does not explain why there was a correlation between children’s initial reasoning 

ability and rounds of number word training only for the quantity five. Nevertheless, future 

studies should hold rounds of training constant and allow training time to vary to compliment 

this study and clarify why children learned to reason with five and not six. 

 On the addition task, children showed a trend toward magnitude specificity, such that 

children that trained on five made gains on trials of Set Size five.  The addition task may have 

required too far transfer from the advanced cardinality training in order for the gains to reach 

significance. During the intervention, children learned how a whole quantity breaks into parts, 

whereas the addition task requires a flipped schema starting with the parts and ending with the 

whole.  Moreover, the addition task failed to display classic set-size effects suggesting that the 

task may not be ideally suited for capturing pre-K children’s numerical reasoning abilities. 

 Importantly, these findings suggest that advanced cardinality results in a deep 

understanding of part-whole knowledge, something quite different than simply math fact recall. 

In both instanced, a child may learn to verbally associate a target quantity with its addends, but 

unlike math fact recall, advanced cardinality knowledge transfers to unfamiliar situations. After 

training on advanced cardinality, children applied their new part-whole knowledge to a novel 

task, novel stimuli, and without the need for any linguistic labels. Advanced cardinality practice 

of the form “5 is made of 3 and 2” led to improvement on seeing 5 things, seeing 3 taken away, 

and inferring that there are 2 left, suggesting a novel inference, rather than a fact look up, which 

would be heavily influenced by surface details. 
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 In sum, number word mediated advanced cardinality training does bridge the gap 

between basic cardinality and numerical reasoning. Part-whole knowledge combined with 

numeric verbal labels allows children to precisely reason with quantities, further supporting the 

role of language in exact mathematical competency. Interestingly, this sample of pre-K children 

were prepared to learn only about the quantity five and not six, suggesting that only five was in 

their zone of proximal development. Children’s initial cardinal number knowledge of five 

differed from that of six, countering the commonly held belief that children apply a cardinality 

principle to all quantities in their counting range. Thus, in order to improve mathematical 

reasoning, children would benefit from advanced cardinality training with smaller quantities, 

followed by larger ones.  
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CHAPTER 5 

 

Discussion and integration of findings 

 

Summary of findings 

  Broadly, this research probes the mechanisms that underlie numerical reasoning. 

Language, maturation and instruction all work together to provide the representations and 

strategies necessary for children to manipulate exact quantities. Chapter two looked at the role 

of cardinality in reasoning about exact sets. Children that have cardinality still failed to precisely 

reason about quantities, challenging the previously proposed theory that language is the key to 

numerical reasoning. While language may be necessary, access to counting words is not 

sufficient for manipulating quantities.  

 Chapter three looked at potential missing links to numerical reasoning: maturation and 

education. As opposed to the kindergartners, the private school first graders in chapter two had 

the ability to precisely reason about quantities, suggesting that either age or schooling supports 

this development. Using a school cut-off design, young first graders and old kindergarteners 

completed the exact numerical reasoning task. These children were almost the same age, yet the 

first graders again out-performed the kindergarteners. Using a regression discontinuity analysis, 

instruction was identified as the primary reason for the first grader’s superior performance. By 

the end of the school year kindergartens made significant gains in their reasoning abilities and 

their year-end performance resembled that of first graders at the beginning of the year. Thus, the 

kindergarten experience in middle income schools allowed children to precisely reason about 

quantities.  
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 Chapter four pushed the investigation further by proposing an instructional technique 

that contributes to children’s acquisition of precise numerical reasoning skills. Children may 

learn part-whole number knowledge in kindergarten. The study investigated a concept called 

advanced cardinality and tested the importance of language for acquiring this sophisticated 

cardinal number knowledge. The training study taught children to verbally associate target 

quantities with their parts and assessed how this verbally mediated training led to advanced 

cardinality knowledge and numerical reasoning. Verbally mediated advanced cardinality training 

did improve children’s numerical reasoning ability, but only for the quantities studied with 

number words. For example, if a child learned the number words for the parts that form the 

quantity five, the child showed gains when reasoning with five, but not when reasoning with six. 

Furthermore, number word mediated advanced cardinality training only appeared to work for the 

quantity five. Children that trained with six did not gain numerical reasoning abilities, suggesting 

that five, not six, is within a middle income pre-K child’s zone of proximal development.  

 

Instruction and the Sapir-Whorphian hypothesis 

 Cross-cultural studies and neuroscience findings similarly point to the importance of 

language for precise mathematical reasoning. Amazonian tribes that do not have exact counting 

words are limited in their numerical reasoning skills (Gordon, 2004; Pica, Lemer, Izard, & 

Dehaene, 2004). Neuroscience data concludes that the brain regions associated with language are 

also associated with exact numerical reasoning, suggesting that the two abilities may be 

processed similarly (Dehaene, Spelke, Pinel, Stanescu & Tsivkin, 1999). Thus, counting and 

cardinality are likely early steps to reasoning about quantities, supporting the Whorfian 

hypothesis that language influence thought (Whorf, 1956). 
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 Contrasting the Whorfian hypothesis, chapter 2 found that children with basic cardinal 

number knowledge were still poor at exact numerical reasoning. Language did not allow for 

children to precisely manipulate sets. Similarly, Butterworth and colleagues (2008) found that 

language does not account for mathematical reasoning skills. They conducted a study with 

indigenous Australian children who spoke either Warlpiri, a language with the words for “one,” 

“two,” and “many,” Anindilyakwa, a language with the words for “one,” “two,” “three/four,” 

and “many,” or English. Children were asked to match the number of counters to a previously 

shown (and then hidden) set of counters, to match a set of counters to a set of auditory taps, or to 

match a set of counters to the sum of two sets that were placed under a mat.  All four- and five-

year-old children’s accuracies were low on these tasks (less than 40% for large sets), and no 

language effects were found between children, leading to the conclusion that language does not 

mediate exact number knowledge.  Butterworth rejects the language hypothesis and instead 

claims that other cultural difference such as schooling, not language, account for precise 

mathematical reasoning ability (Gelman & Butterworth, 2009). As chapter three determined, 

kindergarten instruction develops one’s ability to reason about quantities, supporting the role of 

additional cultural experiences.  

 Neither language nor schooling solely explains precise numerical skills, but instead work 

together. Instruction focus children’s attention on language, and language categorizes and refines 

abstract concepts. While a child may acquire basic cardinality via general interactions with the 

world, carefully designed instruction, such as that used in chapter four, help children learn how a 

whole is broken up into its parts, and importantly, how to label those parts. These verbally 

labeled parts refine vague protoquantitative schemas allowing a child to reason with a quantity. 

In this manner, instruction and language work in tandem to move a child from having basic 
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cardinal number knowledge to being able to reason with those numbers. First, language and 

cardinality allow for precise representations of a quantity. Then instruction builds on this basic 

cardinal number knowledge to allow for more advanced cardinal number knowledge to develop.  

 

Stages of cardinal number knowledge 

 Cardinal number knowledge is often determined by one’s ability to state the last word in 

a count sequence, however this strategy does not always work. As found in chapter 4, a child 

may be able to determine cardinality when using a standard counting strategy, but fail when 

forced to use a nontraditional counting strategy, such as counting starting with the number word 

“two”.  Thus, the last-word rule is just one stage on cardinal number knowledge. Other counting 

rules, such stating the largest count word also fall in this strategy-depended stage of cardinality. 

 Next a child learns to accurately assign a number word to a quantity regardless of 

strategy.  Previously, this accurate mapping between a number word and a set was considered to 

be the last stage of number knowledge (Bermejo & Lago, 1990; Fuson & Hall, 1983). Once a 

child can state the quantity of a set, the child has cardinal number knowledge.  

 Chapter 4 proposed a later stage called advanced cardinality that allows children to make 

part-whole inferences about sets. Counting words can be associated with much more that just the 

quantity of a set and advanced cardinality captures these additional associations. For example, 

when one hears the word “five” it might activate a set of five things and all the parts associated 

with five.  Children’s previous imprecise part-whole knowledge of five gains precision with the 

use of number words. Advanced cardinality develops with the aid of number words and serves as 

an important step for developing the ability to exactly reason about quantities.  
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Development of numerical reasoning skills 

 Based on the literature and the three previous chapters, I propose a developmental 

trajectory for learning to reason about quantities. In order to exactly reason about quantities, a 

child needs to precisely represent a quantity. At first, quantities, such a five and six are 

approximately represented (Halberda & Feigenson, 2008; Xu & Spelke; 2000), but once a child 

learns to maps the word “five” onto the set of 5 objects, the concept becomes more precise. 

Following the Whorfian hypothesis, the word places the concepts into a category, such that the 

quantity five becomes distinct from the quantities four and six.  

 This basic cardinality develops one quantity at a time. Just after age 2 a child will 

learning the counting chant, but will not assign those words to any sets (Wynn, 1992). Then, in 

the same manner in which a child learns quantifiers such as “a” or “some”, a child will map the 

word “one” onto their precise concept of one. Roughly six months later the child will learn the 

meaning of “two” and after another six months learn the meaning of “three” (Le Corre & Carey, 

2009). Quantities one, two and three are exactly represented as early as infancy (Feigenson, 

Carey & Spelke, 2002, Starkey & Cooper, 1980), thus, the mapping of the precise number word 

to the precise quantity representation is fairly straightforward. Quantities larger than three fall 

outside the subitizing range for a typical child and only exist as approximate representations.  

Previous theories argue that mapping a precise counting word, such as “four” onto an imprecise 

representation of the set is very difficult, but once a child masters it, can apply the mapping to all 

the sets within his or her counting range (Le Corre & Carey 2009; Le Corre, Van de Walle, 

Brannon & Carey, 2006; Sarnecka & Carey. 2008; Sarnecka & Lee, 2009; Wynn, 1990; Wynn 

1992). Study four counters that theory by finding that children’s knowledge of the word “five” is 

very different from their knowledge of the word “six.” Children’s ability to reason with five 
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correlated with their performance during advanced cardinality training for five, yet this 

relationship did not exist for the quantity six. Children’s prior knowledge of five differed than 

that for six such that the children were prepared to learn more about five, not six. Children do not 

learn to represent sets four and larger all at once, but continue to master smaller sets before 

mastering larger ones.  

 Once a child masters basic cardinality for a quantity, he or she is still not ready to reason 

with that quantity. While cross-cultural studies have suggested that number words and the 

subsequent exact representations of quantities are the keys to exact numerical reasoning (Pica, et 

al,, 2004), chapter two found that children with fluent enumeration skills were still poor at 

numerical reasoning. Thus, basic cardinal number knowledge is not enough for to reason about 

quantities. Instead, children need additional experiences with numbers, which, as chapter 3 

found, occurred during kindergarten. Experiences such as number word mediated advanced 

cardinality instruction (chapter 4), focuses children’s attention on the parts that form a whole 

number and the number words used to characterize these part-whole relationships.  Once a child 

learns to verbally associate the parts that form the target quantity, he or she is prepared to reason 

with that quantity (chapter 4). Advanced cardinality is the final step before numerical reasoning.  

 Interestingly, as with basic cardinality, advanced cardinality and numerical reasoning 

may develop one quantity at a time beyond the number four. A child will apply advanced 

cardinality knowledge to reasoning with five before he or she masters and applies advanced 

cardinality to reasoning about six (chapter 4). Instruction must continue with larger and larger 

sets for children to build their numerical reasoning skills.  
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Implications for education 

 Chapter three showed how middle income children learn to reason with exact sets over 

the course of kindergarten.  Impressively, chapter four showed that these reasoning skills can be 

acquired in just three days with a carefully designed intervention. By identifying and training the 

essential skills required for numerical reasoning, we can teach children to make great gains in a 

very short amount of time. Advanced cardinality is one such skill that can rapidly allow children 

to reason about exact sets and should be seriously considered when designing preschool and 

early elementary school curriculum. 

 The role of verbally mediated advanced cardinality follows the recent research on the 

importance of mapping number concepts to symbols.  Recent studies have found that children’s 

abilities to map quantities to Arabic numerals correlates with math achievement (Holloway & 

Ansari, 2009; Mundy & Gilmore, 2009) and may even predict mathematics learning disabilities 

(Rousselle & Noël, 2007).  Similarly, advanced cardinality focuses on the link between number 

concepts (how parts form a whole) and symbols (verbal number labels) and this mapping 

improves children’s numerical reasoning skills. Recent educational practices further support the 

concept of advanced cardinality. The Common Core recommends teaching number bonds in 

kindergarten, and some teachers and administrates have integrated Singapore math into the 

classroom. Both of these initiatives emphasize teaching the many ways a whole number can be 

broken up into parts. Chapter four provides empirical evidence that these practices, when 

combined with language, help children reason about quantities.  

 We have already made great strides in determining the cognitive foundations of precise 

numerical reasoning. This set of studies builds off the current findings regarding language and 

instruction and attempts to determine the missing link between exact numerical representations 
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and exact numerical reasoning. Cardinality is an important step to numerical reasoning, but only 

after learning advanced cardinality can children accurately reasoning about quantities.  Chapter 

four proposed one means of teaching advanced cardinality, but other instructional approaches 

should be evaluated to determine the most effective means for teaching young children and 

providing them with a strong foundation for future math learning.    
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