Early Growth in a Perturbed Universe:
Exploring Dark Matter Halo Populations in 2LPT and ZA Simulations

By

Daniel J. Sissom

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
n

PHYSICS

May, 2015
Nashville, TN

Approved:

J. Kelly Holley-Bockelmann, Ph.D.
Andreas A. Berlind, Ph.D.
David A. Weintraub, Ph.D.

Shane M. Hutson, Ph.D.
Robert J. Scherrer, Ph.D



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . .ttt it e d e vi
LIST OF FIGURES . . . . . . . . it i ettt e vii
I Introduction . ... ... ... ... 1
[.L1  Dark Matter Halos in the Early Universe . . . .. .. .. ... ... 2
L11 Halo Formation and Growth . . . . . ... ... ... .... 2

[L.1.2 The Mass Function . . . . .. ... .. ... ... ... ... 4

[L.1.3 Density and Concentration . . . . . . ... .. .. ... ... 5)

[L.14 Halos as Hosts to Baryonic Processes . . . .. ... ... .. 12

.2 Computational Theory . . . . .. .. ... .. .. ... ... .... 15
[.2.1 Collisionless Dynamics and N-body Simulations . . . . . .. 15

[.2.2 Perturbation Theory and Particle Displacement . . . . . . . 18

[.2.2.1 Particle Displacement with zA and 2LPT . . . . . . 19

[.2.2.2 Transients and the Advantages of 2LPT . . . . . . . 21

[.2.2.3 Initial Redshift . . . . ... ... ... ... ... 22

I Numerical Methods . . . ... ... ... ... ... 24
I1.1  Simulation Initialization . . . . . . . . .. ... ... ... ... ... 24
I[.2  Simulations with GADGET-2 . . . . . . . . .. .. ... .. ..... 25
I1.21 GADGET-2 . . . . . . .. o 25

I1.2.1.1  Gravitational Algorithms . . . . . . . .. ... ... 26

[1.2.1.2  Time Integration . . . . . ... ... ... ..... 28

[1.2.2  Simulations. . . . . .. ... ... ... ... ... 29

I1.3 Halo Finding with ROCKSTAR . . . . . . . .. .. ... .. ..... 30
[1.3.1 HaloFinding . . . . .. . ... ... .. ... ... .. 30

[1.3.1.1  FOF Groups . . . . ... . ... ... ... ..... 31

I1.3.1.2  Phase-Space FOF Hierarchy . . . . ... ... ... 31

I1.3.1.3  Converting FOF Subgroups to Halos . . . . . . .. 32

[1.3.1.4  Substructure . . . . . . ... ... ... ... .. .. 33

I1.3.2 Halo Properties . . . . .. ... ... ... .. ... ..... 33

II.4 CROSSMATCH . . . . . . . ... e 34
IL5  Analysis . . . . . . . 35
I1.5.1 Halo Properties with ROCKSTAR . . . . . . .. ... ..... 36

[1.5.1.1  Simulation Snapshots and ROCKSTAR Setup . . .. 36

I1.5.1.2  ROCKSTAR Output and Post-processing . . . . . . . 37

I1.5.2  Density Profile Fitting . . . . . .. ... ... ... ..... 39



[1.5.2.1  Density Profiles . . . . .. ... ... .. ... ... 39

[1.5.2.2 Fitting . . . . . .. ... ... .. ... 39
[1.5.2.3  Characterization of Uncertainty . . .. .. .. . .. 41
[1.5.2.4  Concentration Comparison to ROCKSTAR . . . . . . 41

I1.5.3  Cross-matched Halo Catalog . . . . ... ... ... ..... 43
I1.5.3.1  Cross-matching . . . .. ... ... ... ...... 43
I1.5.3.2  Database Aggregation and Filtering . . . . . . . .. 44

[1.5.4 Halo Comparison . . . . ... .. .. ... ... ....... 45
I1.5.4.1  Match Verification . . . . . . . . ... .. ... ... 45
I1.5.4.2 Morphology . . . . ... ... ... ... ...... 46
I1.5.4.3  Density Profiles . . . . ... ... ... ... . ... 47

I1.5.5  Difference Distributions . . . . . . . ... ... .. ... ... 50
I1.5.5.1 Histograms . . . . . . .. ... ... ... ..... ol
I1.5.5.2 Fitting . . . . ... ... ... ... ... ..., . 51

I1.5.6  Redshift Trends . . . . . ... ... . ... ... ....... 53
I1.5.6.1  Mean and Standard Deviation . . . . ... ... .. 53
I1.5.6.2 Skew . . . . . .. . .. ... ... 55
I1.5.6.3 Kurtosis . . . .. ... ... .. L. o7

I1.5.7 Mass Trends . . . . . . . ... .. ... ... ... ... 60
[1.5.7.1  Binning and Fitting . . . . . .. ... ... ... .. 61
I1.5.7.2  Trends with Redshift . . . .. ... ... .. ... .. 62

I1.5.8  Alternate Difference Distributions . . . . . .. .. ... ... 62
[1.5.8.1 Equivalent Displacement . . . . . . ... ... ... 66
I1.5.8.2  Redshift Trends . . . . .. ... ... ... ..... 67

II.6  Automation . . . . . . .. .. ... ... 67

IIT Exploring Dark Matter Halo Populations in 2LPT and ZA Simula-

tions . . . . L L e e e e e e e e e 71
I[II.1 Introduction . . . . . . . . . .. .. ... 71
III.2 Numercial Methods . . . . . . . . .. .. ... ... ... .. .... 7
IMI.3 Results . . . . .. o 83

I1.3.1 Individual halo pairs . . . . . . .. ... ... ... ..... 83
IT1.3.2 Differences in ensemble halo properties . . . . . . ... ... 85

1I1.3.2.1 Time evolution of mass and concentration differences 86
I11.3.2.2  Global halo population differences as a function of

halomass . . .. .. .. ... .. ... 89

II1.3.3 A census of halo population differences . . . . . ... .. .. 93

[II.4 Discussion . . . . . . . . . . i 95
1.5 Conclusion . . . . . . . . . .. 98
IV Supermassive Black Holes and Their Hosts . . . . . ... ... .. 100
IV.1 Imtroduction . . . . . . . . . . . ... 100
IV.1.1  Galaxy Properties . . . . . . . .. ... ... ... ... ... 100

i



IV.1.1.1 Color . . . . . .. . ...

IV.1.1.2 Morphology . . . . .. .. ... ... ... .....

IV.1.2 Supermassive Black Hole Properties . . . . . . ... .. ...
IV.1.3 Correlations . . . . . . . . . .. ... ... ... ...
IV.1.3.1 The M-Sigma Relation . . . . . ... ... .. ...

IV.1.3.2 The Fundamental Plane . . . . .. ... ... ...

IV.1.3.3 The Green Valley . . . . . . ... ... ... .. ..

IV.2 Galaxy Evolution . . . . ... .. .. .. .. ... ... ...
IV.2.1 Dark Matter Halos . . . . . . ... ... ... ........
IV.2.2 Galaxy Mergers . . . . . . . . . ...

IV.3 Supermassive Black Hole Growth . . . . . . ... ... .. ... ...
IV.3.1 Binary Mergers . . . . . . . . . . ...
IV.3.1.1 Dynamical Friction and Inspiral . . . . .. ... ..

IV.3.1.2 The Final Parsec Problem . . . .. ... ... ...

IV.3.1.3 Gravitational Waves and Recoil Kicks . . . . . . ..

IV.3.2 Accretion . . . . . . . . ...
IV.3.2.1 Bondi-Hoyle-Lyttleton Accretion . . . . . . . .. ..

IV.3.2.2 Disk Accretion and Active Galactic Nuclei . . . . .

IV.4 Conclusion . . . . . . . . . . . .
IV.4.1 Correlations . . . . . . . ... ...
IV.4.2 Open Questions . . . . .. ... .. .. ... ...

V Conclusion . . . . . . @ i i i v i e e e e e e e e e e e e e e e e

BIBLIOGRAPHY . . . . . . i

Appendices . . ... L e e e e e e e e e e e e

A RoOcCKSTAR Configuration and Execution . ... ... .......

A.1 Single Node Configuration File (Text) . . . .. ... ... ... ...
A2 PBS Submission Script (Bash) . . . .. ... ..o
A.3  Post-Processing Script (Bash) . . ... .. ... ..o L.

B CrossMATcH Modifications and Configuration .. ... ... ..

B.1 2vpt First Configuration File (Text) . . . . . . ... ... ... ...
B.2  zA First Configuration File (Text) . . . .. ... ... ... ... ..

C BGC2 Import Code (Python) . . ... ... ... ..........

il



D Density Profile Code (Python) . ... ... ............. 135

E CrossMATCH Best Match Code . . . ................ 143
E.1  Best Match (Python) . . . ... ... ... ... ... . ....... 143
E.2  PBS Submission Script (Bash) . . . ... ... 0000000 143

F Database Generation Code . ... ... ............... 145
F.1  Halo Match (Python) . . .. ... ... ... ... ... ...... 145
F.2  PBS Submission Script (Bash) . . . . ... ... . 00000 149

G Halo Comparison Code . . . ... ... ... ... 151
G.1 Particle Comparison (Python) . . ... .. ... ... ... .. .. 151
G.2  Density Comparison (Python) . . .. ... ... ... ..... ... 156

H Concentration Comparison Code (Python) . .. ... ... .... 164

I Differential Histogram Code . .. ... ... ... ......... 166
[.1  Histogram Generation and Fitting (Python) . . . . . . . ... .. .. 166
[.2 PBS Submission Script (Bash) . . . ... ... ... 00000 174
[.3  PBS Submission Script - Individual Boxes (Bash) . . . . . .. .. .. 174
[.4  Statistics Collection Script (Bash) . . . . ... ... ... ... ... 175

J  Redshift Trends Code (Python) ... ... ............. 176

K Mass Trends Code . . .. ... ... ... ... ... 181
K.1  Mass and Concentration vs. Mass (Python) . . . .. ... ... ... 181
K.2  PBS Submission Script (Bash) . . . .. ... ... oL 186
K.3  Fit Slopes vs. Redshift (Python) . . . .. ... ... .. ... .... 186

L Alternate Differential Distribution Redshift Trends Code (Python) 190

M Miscellaneous Scripts . . . . . . . . . . .. 00 00 e 193
M.1 Directory Structure Setup (Bash) . . .. ... ... ... ... ... 193
M.2 CROSSMATCH Setup (Bash) . . . ... ... .. ... ... ... 193
M.3 Individual Snapshot ROCKSTAR Run Script (Bash) . . . . . .. ... 194
M.4  All Snapshots ROCKSTAR 2LPT PBS Submission Script (Bash) . . . 194
M.5 All Snapshots ROCKSTAR ZA PBS Submission Script (Bash) . . .. 195

v



M.6  All Snapshots ROCKSTAR Post-Process Script (Bash) . . . ... ..
M.7  All Snapshots CROSSMATCH PBS Submission Script (Bash) . . . . .
M.8 All Snapshots Density Profile PBS Submission Script (Bash)



LIST OF TABLES

Table Page
III.1  Coefficients for linear least squares fits from Figure I11.3. . . . . . . 86
I1.2  Coefficients for linear least squares fits from Figure II11.5. . . . . . . 92

vi



Figure

I.1
I.2
L3
1.4

L5

I1.1
I1.2
I1.3
114
I1.5

I1.6

IL.7

I1.8

I1.9

IT.10
IT.11
I1.12

IT.13

LIST OF FIGURES

Page
The halo mass function . . . .. .. .. ... ... ... 6
Concentration upturn for high mass halos at high 2. . . . . .. .. 9
Evolution of concentration with redshift for two halo masses . . . . 10
Halo concentration ¢ as a function of loge™" . . . . . ... .. .. 13
Halo concentration ¢ as a function of halomass . . . . . . . . . .. 14
Potential and force softening. . . . . . . . .. ... 26
Barns-Hut oct-tree in two dimensions. . . . . . . . . ... ... .. 27
Density profiles for two large halos at z =14 and 2 =6. . . . . . . 42
Example of halo particle matching at z=6. . . . .. ... ... .. 46
Comparison of two large well-fit companion halos z =6. . . . . . . 48
Comparison of two large companion halos z = 6 with differing nu-
clear structure. . . . . .. ..o L 49
Histograms of AM,;, and Ac . . . . . .. .. ... ... ... ... 54
Mean, standard deviation, and rms as functions of redshift for gen-
eralized normal fits . . . . . . .. ..o 56

Skew and kurtosis as functions of redshift for generalized normal fits 58

AM;, as a function of Myirave - - - o o o oo 63
Ac as a function of Myiravg - - - -« 64
Slopes of the Ag vs. My ave fit functions. . . . . . ... ... ... 65
Statistics for distributions of dq as functions of redshift . . . . . . . 68

vil



I1.14

I1I1.1

I1I1.2

ITI.3

I11.4

ITL.5

ITI.6

V.1

V.2

IV.3

V4

IV.5

IV.6

V.7

IV.8

Statistics for distributions of dq as functions of redshift . . . . . . . 69

Comparison of matched 2LPT and ZA halos . . . . . ... ... .. 80
Histograms of AM,;, and Ac . . . . . . . .. ... ... ... ... 84
Statistics as functions of redshift for generalized normal fits . . . . 87
AM;, and Ac as a function of My avg - - - - - o o o o oo Lo 90
Slopes of the Ag vs. My, ave fit functions. . . . . . ... ... ... 91
Statistics for distributions of dq as functions of redshift . . . . . . . 94
The Hubble tuning fork . . . . . .. ... ... ... .. ... ... 102
Maser orbits fit to a warped disk for NGC4258 . . . . . . . .. .. 104
The M-o relation for galaxies with dynamical measurements . . . . 106
The fundamental plane for elliptical galaxies . . . . .. . .. ... 108
Distribution of the fraction of galaxies containing AGN . . . . .. 109
Rotation curves for 21 Sc galaxies . . . . . . .. .. ... .. ... 110
Gravitational waveform for a black hole binary merger . . . . . . . 114
Gravitaional wave recoil velocity from black hole mergers . . . . . 116

viil



CHAPTER I

Introduction

In this work, we explore the effects of simulation initialization technique on the
properties of dark matter halo populations in the early Universe. Specifically, we
compare simulations initialized with the Zel’dovich approximation and second-order
Lagrangian perturbation theory and measure the discrepancies in mass and concen-
tration between halos in each simulation during the pre-reionization epoch. Overall,
we find that linear theory underestimates the growth of early halos, resulting in a sup-
pressed halo mass distribution and large mass-dependent concentration fluctuations.
The first two chapters of this work are dedicated to introducing the underlying physics
and numerical methods used in our research. Our primary results are presented in
the third chapter.

The structure of this document is as follows: The remainder of this chapter,
Chapter I, provides an introduction to the early universe and the processes that lead
to galaxy-hosting dark matter halos, as well as the fundamentals of the computational
theory for the numerical methods relevant to this discussion. Chapter II examines
in more detail the specific numerical methods used for this work, with emphasis on
the methodologies of the codes themselves, how they are implemented in the context
of the overall simulation and analysis pipeline, and the results obtained at each step.
Chapter III is a direct representation of the paper submitted to the Astrophysical
Journal (ApJ) on December 13, 2014, which (more succinctly) presents an overview
of the numerical methods and the main results in this work. Chapter IV contains the
material as previously submitted to fulfill the requirements of the Qualifying Exam
and reviews supermassive black holes and their host galaxies. Chapter V concludes

with a review of the results in this work and the direction of future research. Code



for the various programs written for this work and used in our analysis is presented

in the Appendices.

I.1 Dark Matter Halos in the Early Universe

The bulk of this work deals with the distributions of properties of dark matter halos.
To this effect, we begin our discussion with an introduction to dark matter halos in
the early universe, including their formation and growth, the halo mass function, halo
density and concentration, and the baryonic processes of the pre-reionization era that
dark matter halos play host to.

There is ample evidence for the existence of dark matter. We find that the behavior
and characteristics of galaxies and galaxy clusters necessitate the existence of an
additional mass component that is decoupled from the electromagnetic force and
interacts via gravity only. For example, measurements of the circular velocities of
stellar matter in galaxies show a flattening of the rotation curves (Rubin et al. 1980),
where it would be expected that the velocities should decrease with radius if the visible
mass were the only component contributing to the potential. The emission of X-rays
from hot gas in clusters implies a gas temperature to high to be accounted for by
the visible mass (Vikhlinin et al. 2006). Additionally, observations and gravitational
lensing studies of the Bullet cluster show a displacement of the stars and gas from
the primary mass component (Clowe et al. 2006).

The evolution of galaxies, as studied through both observation and numerical
simulation, make sense only in the context of existing inside a larger halo of hidden
mass. As dark matter halos play such a fundamental role in the evolution of the

Universe, it is imperative to thoroughly explore their properties and behavior.

I.1.1 Halo Formation and Growth
The attractive nature of gravity implies that regions of over-density become denser

and regions of under-density become even more under-dense. A perfectly smooth



dark matter (DM) field would continue to stay smooth, as net forces would balance to
zero. However, small density perturbation generated during inflation in the otherwise
smooth primordial DM field trigger the inexorable collapse of dark matter into over-
dense regions known as dark matter halos (Press & Schechter 1974; Bardeen et al.
1986).

The non-linear evolution of the collapse of density fluctuations may be approxi-
mated to first order by the spherical “top-hat” perturbation (Silk 1968; Peebles & Yu
1970; Peebles 1970; Gunn & Gott 1972). In this model, the perturbation is repre-
sented as an isolated, uniform sphere of dark matter. The region outside the sphere
is unperturbed and does not influence the evolution of the sphere. This model affords
an exact solution (Peebles 1980, 1993; Padmanabhan 1993, and referencees therein),
but results in a collapse to infinite density. However, growth of initially small density
inhomogeneities may interrupt the collapse by a rapid relaxation to a finite density
virial equilibrium (Shapiro et al. 1999; Monaco 1998, and references therein).

The definition of a halo arises from the contrast in density between a virialized
over-dense region and the density of the rest of the universe. For example, halos
defined according to the spherical overdensity (SO) method are regions above a certain
density threshold (Bryan & Norman 1998), either with respect to the critical density
pe = 3H?/87G or the background matter density p, = ,,0., where €2, is the matter
density of the Universe. The halo is then the region enclosed within a sphere with
mean density Ap. or Apy, where A commonly ranges from ~ 100 to ~ 500 and is
typically taken to be ~ 200. The radius of the sphere is typically called the virial
radius R, but may alternatively be denoted Ra, where the specific choice of A is
listed (e.g. Ragp)-

Dark matter halos form hierarchically (e.g., Cole et al. 2000; Conselice et al.
2003, and references therein). Small halos form first from gravitational collapse and

successively merge to form larger structures over time, which is often referred to as



the “bottom-up” paradigm. This leads to a characteristic mass of assembling halos
at each redshift, which, at z = 0, are clusters with mass > 10*M,. A typical halo
undergoes a number of mergers throughout its evolution (e.g., Conselice et al. 2003;
Genel et al. 2009; Fakhouri et al. 2010). Defining a major merger to have a mass ratio
of 3 : 1 or less and a minor merger to have a mass ratio of 10 : 1 or less, a massive halo
typically undergoes ~ 4 — 5 major mergers after z ~ 3, with minor mergers occurring
even more frequently. These mergers play a critical role in the mass assembly of a

halo, and greatly influence the evolution of the hosted baryonic galaxy.

I.1.2 The Mass Function

The number density of dark matter halos as a function of halo mass and redshift, often
referred to simply as the mass function, is a key probe of cosmology. The original
formulation of Press & Schechter (1974) is explored in more detail by a number of
studies (e.g., Mo & White 2002; Warren et al. 2006). Here we follow the notation of
Mo & White (2002), where the number density of halos per unit comoving volume

with mass in the interval (M, M + dM) at redshift z is given as
2p0 d 2
n(M,z)dM = 2ho v exp (—V—) dM, (I.1)

where pg is the current mean density of the universe, v = §./[D(2)o(M)], 6. ~ 1.69,
and the linear growth factor can be taken as D(z) = ¢g(2)/[g(0)(1+ z)] (Carroll et al.

1992), where

ot

9(2) m 2 [T — Qg + (14 Q/2)(1+ Q4 /70)] (L.2)

(\V]

The density fractions are, as usual, functions of redshift:

Qa0
E2(z)

. Qm’()(l -+ 2)3

EQ(Z) s QA = QA<Z) =

(1.3)



where

E(z) = [Quo+ (1= Q0)(1 4 2)% + Qno(1 + 2)*] 7%, (L.4)

and Qg, 2,0, and 2, o are the present day values at z = 0. The rms density fluctu-

ations o(M) may be expressed in terms of radius

IM 1/3
R(M) = L5
o= () (15
by
1 o ~ dk
PR = 5 | FPOITRRT (16)
where P(k) is the power spectrum of density fluctuations extrapolated to z = 0

and W (kR) = 3[sin(kR) — kR cos(kR)]/(kR)? is the Fourier transform of a spherical
top-hat filter with radius R.

The Press-Schechter model above does not account for halo mergers. The extended
Press-Schechter model (Bond et al. 1991; Bower 1991; Lacey & Cole 1993; Parkinson
et al. 2008) expands on the original formulation and includes the results of binary
merger trees to provide more realistic halo mass assembly histories. Additionally,
mass functions are often measured from the results of numerical simulations (e.g.,
Warren et al. 2006; Tinker et al. 2008; Heitmann et al. 2006; Reed et al. 2007; Luki¢
et al. 2007), avoiding the limitations of the analytical models. In Figure 1.1, we

provide an example mass function from numerical simulation.

I[.1.3 Density and Concentration

The halo density profile is a measure of the spherically-averaged dark matter density
as a function of radius. For numerical halos in N-body simulations, the density
profile is typically computed by dividing the member particles into logarithmically-
spaced bins from the virial radius inward towards the center, summing the mass of

the particles in each bin, and dividing by the volume of the shell to find the density.
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Figure I.1: The dark matter halo mass function, as measured from sixteen 1024* particle simula-
tions of the ACDM Universe. (Warren et al. 2006)

DM halos almost universally display a characteristic shape in their density profiles.
This shape is most often parameterized with the Navarro-Frenk-White (NFW) profile

(Navarro et al. 1996):

plr) = — (L7)
&1+ %)

where py is the characteristic density and R, is the scale radius where the inner ~ r=*
profile transitions to the outer ~ r=3 profile.

Halo concentration ¢ provides a single-parameter quantization of the density pro-
file. For the NFW profile, concentration is defined as ¢ = R,;;/Rs, where Ry, is the
halo virial radius. Generally, at low redshift, low mass halos are more dense than

high mass halos (Navarro et al. 1997), and concentration decreases with redshift and

increases in dense environments (Bullock et al. 2001b). Neto et al. (2007) addition-



ally find that concentration decreases with halo mass. Various additional studies
have explored concentration’s dependence on characteristics of the power spectrum
(Eke et al. 2001), cosmological model (Maccio et al. 2008), redshift (Gao et al. 2008;
Munioz-Cuartas et al. 2011), and halo merger and mass accretion histories (Wechsler
et al. 2002; Zhao et al. 2003, 2009). For halos at high redshift, Klypin et al. (2011)
find that concentration reverses and increases with mass for high mass halos, while
Prada et al. (2012) find that concentration’s dependence on mass and redshift is more
complicated and is better described through o(M, z), the rms fluctuation amplitude
of the linear density field.

Concentration may be estimated from a halo’s virial mass M, and maximum

circular velocity
GM(<r)
r

‘/CiI‘C = (18)

max

Following Klypin et al. (2011), we outline this relationship for z = 0 and as a function
of redshift. The relation between the virial mass and maximum circular velocity may

be given as (Klypin et al. 2001):

f Tmax c . 12
V::irc - G%‘t—pl/?’ Mvir1/3a (19)
~ Mvir 4m
p= P ?AvirchM, (I.10)
f(z)=In(1+z) — T2 (I.11)

where © = 17/Rs, Tmax = 2.15, Ay, is the overdensity limit that defines the virial
radius, p. is the critical density, and €2y is the matter contribution to the average

density of the universe. At z =0, A, = 360 and 2y = 0.27, which yields

6.72 x 1073 M, /3 /c

Veire(Muyir) = VIn(1+¢) —¢/(1+¢)

(1.12)




for My, in units of A 'My and Vi in units of km s™!. Klypin et al. (2011) find that

at z = 0, this yields the approximation

M. ~0.075
M) =9.60 [ ——— 1.13
(M) (101%11\4@) (1.13)
for distinct halos and
Mo ~0.12
M) =12 ———— .14
(M) (1012h—11\/[@> (1.14)

for subhalos. Figure 1.2 plots concentration as a function of virial mass from z = 0

to z = 5. The dotted lines are given by

—0.075
Mvir ) X

o) =) (i

1+ <AJZEZ)>O'26] : (1.15)

where co(z) and My(z) are free parameters for each z. Concentration displays a
decreasing trend with mass at low redshift. At higher redshift, however, concentration
flattens out and reverses its trend, increasing with mass for the most massive halos.
Figure 1.3 plots concentration as a function of redshift for two representative halo
masses. For a given fixed halo mass, concentration decreases with redshift for low
redshift, then increases again with redshift at high redshift. The black curves are

given by
(Myir, 2) = ¢( My, 0)[6*3(2) + (67 (2) — 1)], (1.16)

where 0(z) is the linear growth factor of fluctuations normalized to §(0) = 1 and & is a
free parameter. For the masses shown in the figure, K = 0.084 for M = 3 x 10**h~tM,,
and k = 0.135 for M = 3 x 1021~ 'M.

Using the same method of determining concentration from halo virial mass and
maximum circular velocity, Prada et al. (2012) find that the complex mass and redshift
dependence of concentration found by Klypin et al. (2011) may be simplified to a

universal U-shaped profile when viewed as a function of the linear rms fluctuation of
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Figure 1.2: Concentration as a function of virial mass for distinct halos from z = 0 to z = 5.
Symbols and solid curves are numerical results, while the dashed curves are analytical fits (Equa-
tion I.15). Concentration decreases with increasing mass except for high-mass halos at high redshift,
for which the concentration flattens and increases with mass. (Klypin et al. 2011)
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decreases with redshift, but reverses and increases with redshift for high redshift. Concentration for
both masses reaches a minimum of ¢y, & 4 — 4.5. (Klypin et al. 2011)
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the density field o(M, z). Figure 1.4 plots c as a function of log o~ for redshifts from
z =0 to z = 6 for halos from the Bolshoi (Klypin et al. 2011) and MultiDark (Prada

et al. 2012) simulations. If we define

T

: a, L17
(Q (L17)

a=(1+42)" (1.18)

where Q70 and 25 o are the matter and cosmological constant contributions to the

density of the universe at z = 0, then the overplotted curve is given by
c(M,z) = By(z)C(d"), (L.19)

o' = Bi(x)o(M, ), (1.20)

Clo) = A [(%) + 1} exp (U‘i) | (1.21)

where A = 2.881, b = 1.257, ¢ = 1.022, and d = 0.060. The rms density fluctuation

may be approximated as

(M,2) = D{z)——— S0 (122
ag = T .
- 1+ 1.102°20 1 6.22,/0353°
where
M —1
= 1.2
4 [1012 h1 M@} ’ (1:23)
5 ( Qo) VI+ a3 22 d
D(z) = 2 ( =2M0 T / a (1.24)
2 QA,O 3/2 1 +:E3 3/2°

The functions By(z) and Bj(z) are defined such that they equal unity at z = 0 for

WMAPS5 parameters:
Cmin (l’)

B _ _Tmin\?)
o(®) = o 1.303)"

(1.25)
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-1

o ()
B (z) = —Zwin\)__ 1.26
1@) = 721 303) (1.26)
where
1 1
Cmin(2) = ¢o + (c1 — ¢o) | — arctan][a(z — )] + 1k (1.27)
T
-1 -1 -1 Sy | L 1
Opin(®) =05 + (07" — 0y ) - arctan[f(x — x1)] + 3| (1.28)
co = 3.618, ¢; = 5.033, a = 6.948, xo = 0.424, (1.29)
oot = 1.047, 07! = 1.646, § = 7.386, 1 = 0.526. (1.30)

The resulting curve closely follows the data at all redshifts from z = 0 to z = 6,
with a minimum concentration of ~ 5 at a well-defined scale of ¢ ~ 0.71. The
relation may also be seen as a function of mass without rescaling to z = 0 by plotting

Equations [.19-1.21, as shown in Figure 1.5.

I.1.4 Halos as Hosts to Baryonic Processes

Early-forming dark matter halos provide an incubator for the baryonic processes that
transform the surrounding space and allow galaxies to form. Initial gas accretion can
lead to the formation of the first Pop-III stars (Couchman & Rees 1986; Tegmark
et al. 1997; Abel et al. 2000, 2002), which, upon their death, can collapse into the
seeds for supermassive black holes (SMBHs) (Madau & Rees 2001; Islam et al. 2003;
Alvarez et al. 2009; Jeon et al. 2012) or enrich the surrounding medium with metals
through supernovae (Heger & Woosley 2002; Heger et al. 2003). The radiation from
these early quasars (Shapiro & Giroux 1987; Madau et al. 1999; Fan et al. 2001), Pop-
[T stars (Gnedin & Ostriker 1997; Venkatesan et al. 2003; Alvarez et al. 2006), and
proto-galaxy stellar populations (Bouwens et al. 2012; Kuhlen & Faucher-Giguére
2012) all play a key role in contributing to the re-ionizing the universe by around
z = 6 (Barkana & Loeb 2001). Additionally, halo mergers can drastically increase the

temperature of halo gas through shock heating, increasing X-ray luminosity (Sinha
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Figure [.4: Halo concentration ¢ as a function of logo~! for halos in the Bolshoi and MultiDark
simulations. The results are rescaled to z = 0. The solid curve C'(¢’) is given by Equation 1.21. A
universal minimum concentration of ~ 5 is seen at o ~ 0.71. (Prada et al. 2012)
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Figure 1.5: Halo concentration ¢ as a function of halo mass at various redshifts for halos in the
Bolshoi (open circles) and MultiDark (filled circles) simulations. The overplotted curves are given

by Equations 1.19-1.21. The analytical approximations fit the data within a few percent. (Prada
et al. 2012)
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& Holley-Bockelmann 2009), and contribute to the unbinding of gas to form the
warm-hot intergalactic medium (Bykov et al. 2008; Sinha & Holley-Bockelmann 2010;
Tanaka et al. 2012).

I.2 Computational Theory

In this section, we present a broad overview of the fundamental theory and driving
equations of computational astrophysics that are relevant to this work. Specific code
implementations, such as the N-body simulation code GADGET-2 and the halo finder
ROCKSTAR, are discussed in Chapter II, so here we instead focus on the mathematical
concepts that form the basis these codes rely on and have in common with varied other
implementations. Specifically, in this section, we discuss collisionless dynamics in N-
body simulations and simulation initialization with the Zel’dovich approximation (zA)
and second-order Lagrangian perturbation theory (2LPT). As the simulations used
in our study are of collisionless dark matter only, we forgo a discussion of collisional

hydrodynamics.

I.2.1 Collisionless Dynamics and N-body Simulations
Astrophysical simulations of stars or dark matter, in essence, track a collisionless fluid,

which is described in the continuum limit by the collisionless Boltzmann equation

(CBE)

vt _ o of 0% af
a o TV ox T ax av Y (I.31)

coupled to the Poisson equation
V20(x, ) = 47G / £, v, 1) dv (1.32)

in an expanding background Universe, typically according to the Friedmann-Lemaitre-
Robertson-Walker metric. Here, @ is the gravitational potential, and the distribution

function f(x,v,t) gives the mass density in phase space. The high-dimensionality
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of the problem, however, makes directly solving the coupled system of equations in-
tractable. Instead, the N-body method, in which the phase-space density is sampled
with a finite number N of tracer particles, is used to evolve the system in time. For
the following discussion, we primarily follow the notation in Springel (2005).

For such a system of particles in an N-body simulation, the Hamiltonian is given

by

2
p; 1 mym;o(X; — X;)
H(Xb---,XN,pb---,pN,t):E:WJFgZ: ]a(t) =, (1.33)
ij

where the comoving coordinate vectors x; correspond to canonical momenta p; =
a’m;x;, and a(t) is the time evolution of the scale factor that introduces explicit time
dependence to the Hamiltonian. For simulations with periodic boundary conditions,

the interaction potential p(x) for a cube of size L? is the solution of
1 -
Vip(a) = 4nG |~ 75 + > d(x—nL)|, (1.34)

where n = (ny, ng, ng) iterates through all integer permutations, sampling the single
particle density distribution function 6. Here, the mean density is subtracted, and

the dynamics of the system follow
V26(x) = 4nGlp(x) - 7, (1.35)

with peculiar potential

O(x) = Y mip(x = xi). (1.36)

For non-periodic (vacuum) boundary conditions, the interaction potential for point
masses simplifies to

p(x) = Tix| (1.37)
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for large separations.
At small particle separations as |x; —x;| — 0, particle accelerations computed via

the standard force law

= Gmy|xi — x| (1.38)

= e xl
approach a numerical singularity that can introduce unphysical results for finite time-
steps. To avoid this scenario, numerical simulations employ a softening parameter
€ > 0 in the force law so that it does not diverge for small particle separations. As
a simple example, the softening parameter may be added to the denominator of the

Newtonian force law:

Gm;m;|x; — X,
F, = — LA i ) By 1.39
; (Ix; — x; 2 + €2)3/2 (1.39)

More generally, the single particle density distribution function & (x) of Equation 1.34
is the Dirac J-function convolved with a gravitational softening kernel of comoving
scale €. The specific choice of softening is dependent on the type of simulation and
the system of study. The softening parameter is typically on the order of the mean
inter-particle separation.

Directly calculating forces for every particle from every other particle inherently
requires a double sum, implying a computational cost of O(N?) algorithm complexity
scaling. For large N, this quickly becomes computationally expensive. While the
accuracy afforded by direct summation is sometimes necessary, such as for collisional
systems like high-density star clusters, most studies can tolerate random force errors
up to ~ 1% (Hernquist et al. 1993), introducing the possibility of approximation
methods. There are a number of implementations for force approximations, but a
typical result is a reduction of algorithmic complexity from O(N?) to O(N log N).

The specific implementation employed by GADGET-2 is discussed in Section II1.2.1.
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I.2.2 Perturbation Theory and Particle Displacement

In order to retrieve reliable results from N-body simulations, generation of accurate
initial conditions for a given cosmology is imperative. For cosmological simulations,
the goal in creating initial conditions is to assign particle positions and velocities that
are appropriate for a given simulation starting redshift zg ., and consistent with the
evolution of the Universe up to that point.

The subtle O(107°) density perturbations in place at the CMB epoch are vulner-
able to numerical noise and intractable to simulate directly. Instead, a displacement
field is applied to the particles to evolve them semi-analytically, nudging them from
their initial positions to an approximation of where they should be at a more reason-
able starting redshift for the numerical simulation. Starting at a later redshift aids
in avoiding interpolation systematics and round-off errors (Lukié¢ et al. 2007).

For this discussion, we will assume a ACDM Universe, where the initial density
distribution is described by a Gaussian random field defined by the power spectrum.
We wish to transform the information encoded in the power spectrum into a distri-
bution of discrete particles at zg.¢ that may then be evolved numerically. The first
step is to create a representation of the density field in Fourier space. As the choice
of power spectrum constrains the statistics of the density field and not its specific
distribution, the specific realization of the field is generated from a random seed. The
typical procedure is to create a set of uniform random phases and assign amplitudes
drawn from the Rayleigh distribution (Efstathiou et al. 1985). The density field may
then be used as a basis for creating a particle distribution.

Beginning from a uniform lattice of Lagrangian positions, particles are displaced
to new Eulerian positions and assigned velocities according to a displacement field ¥
that is derived from the density field. The two most common methods for obtaining
this displacement field are the Zel’dovich approximation (zA, Zel’dovich 1970) and

second-order Lagrangian perturbation theory (2LPT, Buchert 1994; Buchert et al.
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1994; Bouchet et al. 1995; Scoccimarro 1998). Initial conditions created with zA
displace initial particle positions and assign velocities via a linear field (Klypin &
Shandarin 1983; Efstathiou et al. 1985), while 2LPT initial conditions add a second-
order correction term to the expansion of the displacement field (Scoccimarro 1998;

Sirko 2005; Jenkins 2010).

[.2.2.1 Particle Displacement with ZA and 2LPT
In this section, we give an overview of the equations necessary to generate initial con-
ditions for N-body simulations using ZA and 2LPT. These results are fully described
in Appendix D1 of Scoccimarro (1998), and are largely reproduced here following that
notation.

As mentioned above, our goal is to displace particles from their initial positions q

to final Eulerian particle positions x via a displacement field ¥(q):
x=q+ ¥(q). (1.40)

If we define the conformal time 7 = [ dt/a(t), where a(t) is the scale factor, and the
conformal expansion rate H = dlna/dr = Ha, where H is the Hubble constant, then
the equation of motion for particle trajectories x(7) is given by
d? d
S AT = Ve, (L41)
T

dr2

where @ is the gravitational potential and V is the gradient operator in Fulerian
coordinates x. Using 1 + §(x) = J~!, where 6(x) = [p(x,t) — p|/p is the density
contrast and the Jacobian determinant is J(q,7) = det(d;; + ¥, ), where ¥, ; =

0¥,/0q;, we may take the divergence of 1.41 to obtain

d?x dx R B
o 7—[(7-)—} = 597—[ (J—1). (1.42)

s [0 e
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Using V,; = (0, + \Ili,j)_lvqj, where the gradient operator in Lagrangian coordinates
V4 = 0/0q, this equation may be rewritten in terms of Lagrangian coordinates.
The solution to this transformed equation is given to first order by the Zel’dovich

approximation:

Vo 80 = —Dy(1)0(q). (1.43)

where §(q) is the Gaussian density field determined by the initial conditions and

Dy (7) is the linear growth factor, which obeys

d%D,
dr2

dD, 3
+ H(T)d—Tl = §QH2(T)D1. (1.44)

The Zel’dovich approximation solution for the particle displacement field is then given
by

x(q,7) =q+ ¥(q,7) ~ q— Di(1)Ve(q), (L45)

where ¢(!)(q) is a Lagrangian potential given by the initial conditions. The velocities

of particles initially at q are given by
v~ —Dy(r)H(7) [V (a), (1.46)

where f(€, A) is defined as

dln D, 1dnD,
(AN = L L
fil, A) dlna H dr

(L47)

The second-order (2LPT) correction is found by a perturbative solution to the
non-linear equation for ¥(q) (Equation 1.42 transformed to Lagrangian coordinates),
expanding about the linear (zA) solution (Equation 1.43) to yield (e.g., Bouchet et al.
1995)

Vo w = D0 Y [l - wel], (1.45)

2
i#]
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where Dy(7) is the second-order growth factor, which may be approximated as Dy(7) &
—3D?(7)/7 (Bouchet et al. 1995). The displacement field may then be written in

terms of two Lagrangian potentials ¢(!) and ¢®:

x(q) = q— D1 V0" + DyV,6®. (1.49)

Likewise, the comoving velocities are then given to second order by

(o

X
V=1 7 —Di fiHV ;¢ + Dy fHV (1) (L.50)

The logarithmic derivatives of the growth factors f; may be approximated as f; ~ Q°/°
and fy ~ 2Q05/11 (Bouchet et al. 1995). The potentials ¢(*) and ¢ are derived by

solving a pair of Poisson equations (Buchert et al. 1994):
2 (1 _ <
Vi (q) = 6"(q), (L51)

Vip®(q) = 69(q), (L52)

where §((q) is the linear overdensity, and §®(q) is the second-order overdensity

given by

0¥(@) =) {cb,(i)(qw,(}} (@) - |6 (@)] 2} , (1.53)

1>7

where c;S(Z) = 0?¢™ /0q;0q; (Jenkins 2010).

[.2.2.2 Transients and the Advantages of 2LPT

A primary concern when generating cosmological initial conditions is the effects of
non-linear decaying modes, or transients, which introduce deviations from the grow-
ing modes of the exact dynamics. Linear growing modes of density and velocity

perturbations are correctly reproduced by zZA. However, ZA has shown to be inaccu-
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rate in regards to higher-order growing modes and non-linear correlations (Grinstein
& Wise 1987; Juszkiewicz et al. 1993; Bernardeau 1994; Catelan & Moscardini 1994;
Juszkiewicz et al. 1995), and fails to accurately represent statistical quantities that
probe phase correlations of density and velocity fields (Scoccimarro 1998).

We cannot expect accurate simulation results until enough time has passed for
transients to have sufficiently decayed away. Transients are damped proportional to
1/a in ZA. In 2LPT, however, transients are damped more quickly as 1/a®. Therefore,
structure in 2LPT should be accurate after fewer e-folding times than in zZA (Scocci-
marro 1998; Crocce et al. 2006; Jenkins 2010). Reed et al. (2013) suggest that for
2LPT-initialized simulations, between 10 and 50 expansion factors are needed before
the relevant epoch of halo formation if percent level accuracy is to be achieved.

The practical result is that high-c DM density peaks at high redshift are sup-
pressed in ZA compared with 2LPT for a given starting redshift (Crocce et al. 2006).
While differences in ensemble halo properties, such as the halo mass function, between
simulation initialization methods are mostly washed away by z = 0 (Scoccimarro
1998), discrepancies between zZA and 2LPT remain at earlier redshifts (Reed et al.
2013; L’Huillier et al. 2014), though these trends are relatively less studied (Lukié¢

et al. 2007).

[.2.2.3 Initial Redshift

When setting up an N-body simulation, it is critical to choose an appropriate starting
redshift, determined by box size and resolution (Luki¢ et al. 2007). As 2LPT more
accurately displaces initial particle positions and velocities, initialization with 2LPT
allows for a later starting redshift compared with an equivalent zZA-initialized simula-
tion. However, many ZA simulations do not take this into account, starting from too
late an initial redshift and not allowing enough e-foldings to adequately dampen away

numerical transients (Crocce et al. 2006; Jenkins 2010). In order to characterize an
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appropriate starting redshift, the relation between the initial rms particle displace-
ment and mean particle separation must be considered. The initial rms displacement

A s 1s given by

4 [Fny
AI?rns = _7T P(ka Zstart> dk, <I54)
3 J ;
where ky = 2m/Lpex is the fundamental mode, Lo is the simulation box size,

kny = %N k; is the Nyquist frequency of an N® simulation, and P(k, zgar) is the
power spectrum at starting redshift zg..¢. In order to avoid the “orbit crossings” that
reduce the accuracy of the initial conditions, A, must be some factor smaller than
the mean particle separation A, = L. /N (Holley-Bockelmann et al. 2012). For
example, making orbit crossing a ~ 100 event imposes Ayy,s/A, = 0.1. However, for
small-volume, high-resolution simulations, this quickly leads to impractical starting
redshifts, placing such a simulation well into the regime of introducing errors from
numerical noise caused by roundoff errors dominating the smooth potential. A more

relaxed requirement of Ay,s/A, = 0.25, which makes orbit crossing a ~ 40 event,

often proves a more practical choice.
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CHAPTER I1

Numerical Methods

In this chapter, we discuss the computational tools used in this study. While Sec-
tion 1.2 dealt with the underlying principles behind some of the numerical methods
used here, this section will instead focus on the actual implementation details of the
code, as well as how each piece is incorporated into the analysis pipeline. The content
proceeds in a natural order, following the flow of data. We begin with generation of
simulation initial conditions according to zA and 2LPT, followed by a discussion of
GADGET-2 and our specific simulations, halo finding with ROCKSTAR, and pairing
companion halos between simulations with CROSSMATCH. We then present the tools
created for analysis of the data, and conclude with a discussion of the automation
steps and scripts used to tie each component together. We additionally present ex-
ample plots obtained from some of the analysis steps in order to demonstrate the
function of each code. However, we defer discussion of the actual results presented
in these plots until Chapter III, where they are given full treatment. The code ref-
erenced in this section that was specifically created for this project is reproduced in

the Appendices.

II.1 Simulation Initialization

We have already discussed the fundamentals of particle displacement with zZA and
2LPT in Section 1.2.2.1, so this section will instead provide an overview of the steps
performed in the numerical implementation of simulation initialization. The code
used to generate ZA and 2LPT initial conditions for the simulations used in this
study follows the prescription detailed in Appendix D2 of Scoccimarro (1998), so we
will simply summarize what is presented there. For this section, a tilde will denote

Fourier-space quantities.
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Beginning with a linear power spectrum, a Gaussian density field 0 (k), with wave
number Kk, is generated in Fourier space. Equation 1.51 is then used to find the Fourier
space first-order potential ¢! (k), after which an inverse fast Fourier transform (FFT)
is applied to produce ¢ (q). The first-order particle displacements and velocities
are then found from Equations .45 and 1.46 by differencing ¢()(q) along the three
coordinate vectors to obtain ngb(l), providing the solution according to ZA.

The 2LPT displacements and velocities are derived from the zZA solution by using
V¢ to find the terms of the sum in Equation 1.53. The diagonal terms V% ¢("),
V2,01, V2,61 are obtained by diagonally differencing the components of the quﬁ(l)
array. These are multiplied together to obtain the first term of Equation 1.53. The
non-diagonal terms gzﬁfil]-)(q) are found by differencing V¢!, and the results are
accumulated to form the second term of Equation 1.53. An FFT is applied to §®(q),
Equation 1.52 is solved in Fourier space, and an inverse FFT is applied to the resulting
¢(2)(k) to yield ¢®(q). The second-order potential ¢(?)(q) is then differenced in each
direction to yield Vq¢(2). With both ngb(l) and Vq¢(2), Equations 1.49 and 1.50 are

used to find particle displacements and velocities, providing the solution for 2LPT.

I1.2 Simulations with GADGET-2

We use the massively parallel TreeSPH (Hernquist & Katz 1989) cosmological N-
body simulation code GADGET-2 (Springel et al. 2001; Springel 2005) for the dark
matter simulations presented in this work. In this section, we give an overview of the

fundamentals of the GADGET-2 code, followed by details of our particular simulations.

I1.2.1 GADGET-2

GADGET-2 is a massively parallel cosmological N-body simulation code which cal-
culates gravitational forces via a hierarchical multipole expansion and ideal gas pa-
rameters via smoothed particle hydrodynamics (SPH; Gingold & Monaghan 1977).

This section will discuss the gravitational algorithms used to compute forces and the
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Figure I1.1: Potential (left) and force (right) softening. The solid curves are the spline softening
of Equation II.1. Curves for Plummer softening (dotted) and Newton’s law (dashed) are provided
for comparison. Here, h = 1.0 and € = h/2.8. (Springel et al. 2001)

time integration method used to advance the simulation. As our simulations are col-
lisionless only, we do not discuss the details of the implementation of gas dynamics

in GADGET-2.

I1.2.1.1 Gravitational Algorithms

Force computation suffers from a numerical singularity as the separation between two
particles approaches zero, as discussed in Section [.2.1. A modification of the force
law is therefore required at small separation scales. Force softening is accomplished

in GADGET-2 using a spline kernel (Monaghan & Lattanzio 1985) W (|z|, h = 2.8¢),

where )
1=6(5)°+6(5)", 0<5<]
8
Wirh) = —532(1-1%)°, lor<y, (IL.1)
0, 7> L

An example of this softening is shown in Figure II.1 for the potential and force.

As discussed in Section I.2.1, direct summation N-body techniques are prohibitively
slow for modern simulations. GADGET-2 therefore makes use of a hierarchical multi-
pole expansion technique, often called a “tree” algorithm, using the Barnes-Hut octal

tree (Barnes & Hut 1986) algorithm. This method recursively divides the simulation
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Figure I1.2: Barns-Hut oct-tree in two dimensions. The simulation volume is recursively parti-
tioned into cells until each contains only one particle each. Empty cells may be ignored. (Springel
et al. 2001)

volume into eight cells at each level of refinement, continuing the division until each
cell contains only one particle. A visual description of this process in two dimensions
is given in Figure I1.2. Distant particles can then be grouped together for the force
calculation, reducing the algorithm complexity to O(N log V).

The Barnes-Hut octal tree algorithm begins with a cubic cell encompassing the
entire simulation volume. The cell is then divided into eight daughter cells. If the cell
contains no particles, it is ignored. If it contains one particle, the dividing process
for that cell ends there. If it contains more than one particle, the process continues
recursively, dividing daughter cells into eight octants each, until each cell contains
either one or no particles. A multipole expansion of all daughter cells is then found
for each node, or “leaf.”

The accuracy of the force computation can be set by choosing how far to “walk” the
tree. For each particle, the goal is to calculate the gravitational accelerations from all
other particles accurately and quickly. There is a trade off, however, as increasing the
accuracy of the tree code toward that of a direct summation approach also increases
the runtime complexity toward that of an O(N?) algorithm. The balance between

runtime and accuracy is controlled by the opening angle parameter . A node of
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mass M and extension [ will be considered for usage if

2
G]2\4 (1) < alal, (IT.2)

T T

where r is the distance from the particle to the node and |a]| is the total acceleration
from the previous time-step. Nodes that are massive, large, and near enough to fall
outside this criterion are opened so that the daughter cells are recursively considered.

GADGET-2 can optionally make use of a hybrid approach for calculating forces,
called the TreePM method (Xu 1995; Bode et al. 2000; Bagla 2002), where long range
forces are computed using a particle-mesh algorithm instead of the Barnes-Hut octal

tree. The GADGET-2 implementation of TreePM follows that of Bagla & Ray (2003).

I1.2.1.2 Time Integration
The N-body Hamiltonian is separable such that H = Hy, + H,or. Time evolution
operators for each of Hy;, and Hpoy may be computed exactly, leading to “drift” and

“kick” operators (Quinn et al. 1997):

pi = Di
D, (At) : 11.3
(A1) . (IL.3)
T; T; + — 5
T; = Ty,
Ki(At) : AL 3y (IL.4)
pi — i+t fz/ —,
t a/
where
0D (x;;
fi=— Zmimj—¢<x ) (IL5)

- Ox;
j
is the force in particle 7.

A time evolution operator U(At) for an interval At may be approximated by

combining the above two operators, where each fall a half time-step after the previous
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operation:

U(At) =D (%) K(At)D (%) , (IL.6)

or

U(At) = K (%) D(At)K <%) : (IL.7)
which gives us a leapfrog integrator constructed as a drift-kick-drift (DKD) or kick-
drift-kick (KDK) operator. DKD and KDK are symplectic and time reversible, as
both D; and K; are symplectic.

Cosmological simulations inherently contain a large dynamic range in time scales.
Maintaining a constant time-step would be computationally prohibitive and waste-
ful, as high-density regions like the centers of galaxies require orders of magnitude
smaller time-steps than low-density regions like the intergalactic medium. GADGET-2

therefore uses adaptive individual time-steps which are much more computationally

efficient. The time-step criterion for collisionless particles is

1/2
At (2776) ] , (IL.8)

Atgrav = min W

where 7 is an accuracy parameter, € is the gravitational softening, and a is the parti-
cle’s acceleration. The maximum allowed time-step is At .y, which is usually chosen
to be a small fraction of the dynamical time of the system.

GADGET-2 allows particles to take on time-steps as a power of two subdivision of
a global time-step. A particle is allowed to move to a smaller time-step at any time.
However, moving to a larger time-step is only allowed on every second iteration and

when this would lead to synchronization with the higher time-step hierarchy.

I1.2.2 Simulations
We use GADGET-2 to evolve six dark matter—only cosmological volumes from zg,,+ =

300 to z = 6 in a ACDM universe. Each simulation is initialized using WMAP-
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5 (Komatsu et al. 2009) parameters. For each of the three simulation pairs, we
directly compare 2LPT and zZA by identically sampling the CMB transfer function
and displacing the initial particle positions to the same starting redshift using 2LPT
and ZA. The three sets of simulations differ only by the initial phase sampling random
seed. Each volume contains 5122 particles in a 10 h~! Mpc box.

Following Heitmann et al. (2010), we choose conservative simulation parameters
in order to ensure high accuracy in integrating the particle positions and velocities.
We have force accuracy of 0.002, integration accuracy of 0.00125, and softening of
0.5 ! kpc, or 1/40 of the initial mean particle separation. We use a uniform particle
mass of 5.3 x 10°h M. We select PMGRID, which defines the Fourier grid, to be
1024, SMTH, which defines the split between short- and long-range forces, to be
1.5 times the mesh cell size, and RCUT, which controls the maximum radius for

short-range forces, to be 6.0 times the mesh cell size.

II.3 Halo Finding with ROCKSTAR

ROCKSTAR (Robust Overdensity Calculation using K-Space Topologically Adaptive
Refinement; Behroozi et al. 2013) is a halo finder based on the hierarchical refinement
of friends-of-friends (FOF) groups in six phase space dimensions and, optionally, one
time dimensions. It has been shown (Knebe et al. 2011) to be robust in recovering
halo properties, determining substructure, and providing accurate particle member
lists, even for notoriously difficult scenarios such as for low particle count halos and

halos undergoing major merger events.

I1.3.1 Halo Finding

Halo finding in ROCKSTAR is broken down into a number of steps, leading from the
particle distribution of a simulation snapshot to the recovery of individual halo prop-
erties. FOF overdensity groups are distributed among the analysis processors which

build hierarchies of FOF subgroups in phase space, determine particle membership
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for halos, compute host halo/subhalo relationships, remove unbounded particles, and

compute halo properties. A summary of each of these steps is provided below.

I1.3.1.1 FOF Groups

The 3D friends-of-friends algorithm groups particles together if they fall within a
set linking length of each other. The linking length is often chosen as a fraction
b of the mean interparticle distance, with typical values ranging from b6 = 0.15 to
b= 0.2 (More et al. 2011). As ROCKSTAR only uses FOF groups for breaking up the
simulation volume to be distributed to individual processors, it is able use a modified
algorithm for calculating FOF groups that is an order of magnitude faster than the
typical procedure of finding all particles within the linking length for every particle.
For particles with more than 16 neighbor particles, the neighbor finding process is
skipped for the neighboring particles. Instead, particles are linked to the same group
if they are within two linking lengths of the original particle. This method runs much
faster than the standard FOF algorithm, and links together at minimum the same
particles. With this approach, run time decreases instead of increases with increasing
linking length. ROCKSTAR therefore uses a large linking length of b = 0.28. The
FOF groups are distributed among the available processors according to individual

processor load.

I1.3.1.2 Phase-Space FOF Hierarchy

Within each FOF group, FOF subgroups are found hierarchically in phase-space.
A phase-space linking length is adaptively chosen so that a constant fraction f of
particles are linked together with at least one other particle. For two particles p; and

pe, the phase-space distance metric is defined as (Gottloeber 1998)
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where o, and o, are the particle position and velocity dispersions for the FOF group.
The phase-space distance to the nearest neighbor is computed for each particle, the
linking length is chosen such that f = 0.7, and a new FOF subgroup is determined.
This process is repeated recursively on the new FOF subgroups until a minimum

threshold of 10 particles is reached at the deepest level of the hierarchy.

I1.3.1.3 Converting FOF Subgroups to Halos

Seed halos are created for each of the deepest level subgroups in the FOF hierarchy.
Particles from successively higher levels of the hierarchy are then assigned to the seed
halos until all particles in the original FOF group are accounted for. To suppress
extraneous seed halo generation due to noise, seed halos are merged if their positions
and velocities are within 100 of Poisson uncertainties of each. Specifically, the halos

are merged if

V(w1 — 22202 + (01 — v2)2py% < 10V2, (11.10)

with

Mo = O'm/\/ﬁv (Hll>
My = O-v/\/ﬁu (II'12>

where o, and o, are the position and velocity dispersions of the smaller seed halo,
and n is the number of particles of the smaller seed halo.

If a parent FOF group contains multiple seed halos, particles are assigned to the
closest seed halo in phase space. The distance between a halo h and a particle p is

given by

dyn,vir g%

Thp — T Up — U
d(h,p)—< R U ) , (11.13)

Umax
Tdyn,vir = Umaxtdyn,vir = 4—7 (1114)
\/ gﬂ-Gpvir

where the seed halo currently has velocity dispersion ¢, and maximum circular ve-
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locity vmax. Here, “vir” refers to the virial overdensity as defined by Bryan & Norman
(1998) for pyir, which is 360 times the background density at z = 0. ROCKSTAR does,

however, allow other choices for density definitions.

I1.3.1.4 Substructure
Satellite membership is assigned based on phase-space distances before calculating
halo masses. Equation II.13 is used to find the distance to all other halos with a
greater number of particles, treating each halo center as a particle. The halo is then
assigned to be a subhalo of the closest larger halo within the same FOF group, if
one exists. If data from an earlier time-step is available, then halo cores at the
current time-step are linked to halos from the previous time-step based on the largest
contribution to the current halo core’s particle membership.

Halo masses are then determined so that particles assigned to the host are not
counted in the mass of the subhalo, but particles in the subhalo are included in the
mass of the host. Subhalo membership is then recalculated such that subhalos are

those that fall within rA of more massive host halos.

I1.3.2 Halo Properties

Halo positions based on maximum density peaks are more accurate than those found
by averaging all FOF halo particles (Knebe et al. 2011). As ROCKSTAR has already
determined the halo density distribution when calculating the FOF subgroup hierar-
chy, halo positions are readily calculated by taking the average position of the particles
in the inner subgroup which best minimizes the Poisson error.

The velocity of the halo core can be substantial offset from that of the halo bulk
(Behroozi et al. 2013). The velocity for the halo is calculated as the average velocity
of the particles within the innermost 10% of the halo radius, as the galaxy hosted by
the halo should be most associated with the halo core.

Halo masses are calculated using the spherical overdensity (SO) out to various
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density thresholds, including the virial threshold of Bryan & Norman (1998) and
density thresholds relative to the background density and the critical density. Mass
calculations include all particles from the substructure contained in the halo, and
can optionally remove unbound particles. As subhalo particles can be isolated from
those of the host halo, mass calculations for substructure can also be obtained with
spherical overdensities using only the particles belonging to the subhalo.

The scale radius R, is determined by dividing halo particles up into up to 50 radial
equal-mass bins, with a minimum of 15 particles per bin, and fitting an NF'W profile
to the bins to find the maximum-likelihood fit. The Klypin scale radius (Klypin et al.
2011), which uses v and My, to calculate Ry, is also determined.

A number of other parameters are calculated, including the angular momentum,
halo spin parameter (Peebles 1969), Bullock spin parameter (Bullock et al. 2001a),
central position offset (defined as the distance between the halo density peak and
the halo center of mass), central velocity offset (defined as the difference between the
halo core velocity and the bulk velocity), ratio of kinetic to potential energy, and

ellipsoidal shape parameters (Zemp et al. 2011).

I1.4 CrossMATCH
Having pairs of corresponding 2LPT and ZA simulations necessitates a method for
reliably matching halos between the two if we wish to compare properties of com-
panion halos. To accomplish this, we use the CROSSMATCH code initially developed
by Manodeep Sinha. CROSSMATCH uses particle IDs to find matching halos based
on the percentage of common constituent particles. The code was modified for this
study to import and process the BGC2 files output by the ROCKSTAR halo finder.
As dynamical variations between 2LPT and ZA simulations can cause companion
halos to diverge in their evolutionary history, we cannot rely on bulk halo properties

such as mass or central position as a primary means of matching. CROSSMATCH
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therefore relies on ID-based particle matching to pair halos. Companion simulations
are initialized with identical particle ID schemes, and CROSSMATCH can then use
these particle IDs to find pairs that are most likely to be the “same” halo for a
given simulation snapshot. At the most basic level, CROSSMATCH reads in halo and
particle lists from a halo finder such as ROCKSTAR, iterates through the lists from
one simulation, and finds the halo with the largest number of shared particles from
the other simulation.

As CROSSMATCH needs to run on data from simulations with large numbers of
particles, total runtime becomes a concern. A naive approach would be to iterate
through the first particle list, and for every particle, linearly search through the en-
tire second particle list to find which halo a particle belongs to. This would result in
an O(N?) runtime complexity. To decrease runtime to an acceptable level, the second
particle list is first sorted by particle ID using a standard QuickSort algorithm, which
then enables the use of a more efficient binary search. This reduces runtime complex-
ity to an O(N log N) algorithm. Halos from the second simulation are then ranked
by the percentage of particles in common with the halo from the first simulation, and

the best match is selected.

I1.5 Analysis
In this section, we discuss the details of the pipeline used for this work, including
the analysis and plotting codes, databases, and automation scripts. We also present
an overview of the results obtained at each step. A more in depth discussion of
the observed trends and interpretations of results are presented in Sections I11.3 and
I11.4, and the figures presented here are provided only as examples of the output of
the analysis code.

As a high-level overview, we gather snapshots from previously run 2LPT and

zA simulations, find halos in each snapshot with ROCKSTAR, match halos between
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simulations with CROSSMATCH, and compare the differences in various properties
between corresponding 2LPT and ZA halos, primarily as functions of redshift and
halo mass. The specific codes developed for and used in our analysis are provided in

the Appendices, and are referenced with the relevant discussions below.

I1.5.1 Halo Properties with ROCKSTAR
Halos are identified and measured with the ROCKSTAR halo finder, which is discussed
in detail in Section I1.3. Here, we discuss the setup necessary to run ROCKSTAR, as

well as its output files, post-processing steps, and particle list extraction.

I1.5.1.1 Simulation Snapshots and ROCKSTAR Setup

We run ROCKSTAR on snapshots from each of our six simulation boxes. Each box has
62 snapshots, with 5123 dark matter particles each. For each snapshot, a ROCKSTAR
run directory is set up with a number of configuration files and scripts, including the
ROCKSTAR configuration file (Appendix A.1), PBS submission script (Appendix A.2),
a script to clean files from previous runs and begin a new run (Appendix M.3), and
a script for post-processing generated output files (Appendix A.3). A directory for
particle data contains a link to the actual simulation snapshot and a file containing a
list of snapshot files, which for our setup contains only one item. A directory is also
created for output halo data files. We discuss automation of run directory setup and
simultaneous launching of multiple ROCKSTAR instances in Section II.6.

The parameter file controls various configuration options including simulation
type, physical units, cosmological parameters, I/O options, halo definitions, and pro-
cess setup. ROCKSTAR has native support for GADGET’s snapshot format and can
automatically import cosmological parameters and box size. Length and mass scales
must be input to convert from simulation units. ROCKSTAR uses periodic boundary
conditions based on the number of analysis processes. Periodic boundary conditions

are assumed if using a multiple of eight analysis processes and are not assumed if
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using one analysis process. Halo virial radius and mass definitions may be set to
either virial or a multiple of either the critical or background density. We select halos
to be defined by the virial radius and mass. We are interested in defining halos as
spherical overdensity halos rather than friends-of-friends halos, so we also choose to
define halo properties based on all particles within the virial radius, whether or not
they are energetically bound to the halo.

ROCKSTAR is run as a server-client setup. This is designed so that one processor
acts as a director and output manager, one or more processors read in the input
snapshots, and the remaining processors or compute nodes do the actual processing on
different segments of the simulation box. ROCKSTAR uses sockets for communication
between the server process and the worker processes if running on multiple nodes.
However, we run each instance of ROCKSTAR on one node only, with ten processor
cores for the necessary functions. One processor acts as the server, one as the snapshot

reader, and the remaining eight as halo finders.

I1.5.1.2 ROCKSTAR Output and Post-processing
ROCKSTAR outputs halo information in ASCII plaintext, binary, and BGC2 binary
formats. As mentioned above, we run ROCKSTAR with eight worker processes per
snapshot. Each worker process outputs its own set of data files, with each file covering
a separate octant of the simulation box plus a small overlap region. Halos with
particles in the overlap region are saved based on the location of their centers. In
addition to the per-processor output, a composite list of halos (and only halos) from
all worker processors are created.

Through its various output files, ROCKSTAR provides a large number of measured
halo properties, including halo ID, number of constituent particles, masses to various
radii, position, velocity, angular momentum, spin, virial radius, scale radius, shape

parameters, energy parameters, position and velocity offsets between the center of
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mass and the peak density, and parent halo ID. Whether or not full friends-of-friends
particle lists are saved is controlled via the configuration file. In addition, spherical
overdensity particle lists of particle positions, velocities, and IDs are saved only when
utilizing BGC2 output. Individual particle masses are not included as our simulations
have uniform particle mass.

As previously mentioned, we want halos defined based on spherical overdensity
particle lists. These are only available from ROCKSTAR’s BGC2 binary output format,
with all other available particle lists consisting of friends-of-friends particles. The
BGQC2 files consist of a 1024 byte header, halo data of 72 bytes per halo, and particle
data with 32 bytes per particle. The header consists of an unsigned 8-byte integer, 16
8-byte signed integers, 19 8-byte double-precision floating point numbers, and extra
padding out to 1024 bytes. We refer the reader to the bgc2.h header file in the publicly
available ROCKSTAR source code for the list and explanation of the header variables.
The data for each halo consist of 2 8-byte signed integers for ID and parent ID, 2
8-byte unsigned integers for number of particles and number of particles excluding
substructure, and 10 4-byte floating point numbers for radius, mass, three position
components, three velocity components, maximum circular velocity, and the radius of
the maximum circular velocity. The data for each particle consist of 1 8-byte signed
integer for ID and 6 4-byte floating point numbers for three position components and
three velocity components. There is a 4-byte offset before the header, and 8-byte
offsets between the header and halo data and between the halo data and particle
data. Our python code for reading in BGC2 files is presented in Appendix C. C code
for reading in BGC2 files is bundled with the ROCKSTAR source code.

After ROCKSTAR is run, some post-processing of the output is needed. By default,
ROCKSTAR does not provide information on membership information for substruc-
ture. Two scripts—one for the composite halo list and one for the BGC2 files—are

provided with ROCKSTAR to cycle back through the halo lists and find the "parents,"
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or the halo in which a given subhalo is contained. A script is also provided to convert
halo information in the BGC2 files to ASCII plaintext. Our script for running these

post-processing steps is presented in Appendix A.3.

I1.5.2 Density Profile Fitting

While ROCKSTAR’s output includes measurements for halo virial and scale radii, and
thus concentration, we independently fit NF'W density profiles to halos and measure
concentration as a verification of ROCKSTAR’s fitting. The full density profile python
code is presented in Appendix D. This section is included for completeness only, as we
find that only a small fraction of halos are well fit by our method, and we instead rely

on concentration measurements directly from ROCKSTAR for subsequent analysis.

I1.5.2.1 Density Profiles
For each halo, a list of constituent spherical overdensity particles is obtained from the
post-processed BGC2 catalog from ROCKSTAR’s output. For our purposes here, the
relevant parameters are particle mass and position. We also use the values for each
halo’s center position and virial radius as found by ROCKSTAR.

Density profiles are then constructed by binning the particle positions in logarith-
mic radial bins from the resolution limit of the simulation to the halo virial radius
and multiplying by particle mass. Before being passed to the fitting routine, density

profiles are normalized to unity for both virial radius and maximum density.

I1.5.2.2 Fitting
Halos are fit using the CurveFit routine from the SciPy Optimize library. It uses
the Levenberg-Marquardt algorithm (Marquardt 1963) for non-linear least squares
fitting.

CurveFit is called by providing a model function, independent variable, measured

dependent variable, and optionally weights for the dependent variable and initial
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guesses for fit coefficients. Here, our fit function is the NFW dark matter density
profile (see Equation 1.7). The free parameters to be fit are the scale radius R and
the characteristic density py.

As the least squares algorithm is sensitive to local minima, care must be taken
in choosing initial guesses for the fit coefficients. Additionally, large dynamic range
in the fit parameters tended to produce poor results. We explored a number of
approaches to improve solution stability, including fitting in logarithmic space and
randomizing the initial guesses and picking the best solution. We found the best
results were achieved by normalizing the data to unity for both radius and density,
and choosing initial guesses within an order of magnitude for a typical halo, namely,
normalized R; = 0.1 and normalized py = 1.0.

Some halos with irregular profiles presented the problem of the fitting algorithm
choosing an unphysical scale radius larger than the virial radius of the halo. In order to
heavily penalize this option from being chosen by the fitting algorithm, the fit density
profile returned by the model function must differ from the input measured density
profile as much as possible. However, we discovered that the transition between a
real fit and a purposefully distorted fit must also be smooth, as a disjointed jump
such as, say, returning a very large number for every value if Ry > R,;, would cause
the algorithm to fail. We achieve this smooth transition penalty by adding the term
(Rs — 1)e” to the density returned by the model function if the fitting algorithm tries
to guess a value of R, larger than R,;,. However, while this did force halos to have
definable concentrations, these halos often ended up with best fit scale radii equal to
or just slightly less than the virial radii.

As we fit halos over a large range in redshift, we found low particle count ha-
los to have noisy density profiles that were inherently more difficult to properly fit.
Throughout our analysis, we use a lower bound of 100 particles to define a halo. At

high redshift, even the largest halos are just beginning to cross this threshold. With
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so few particles spread across the number of bins necessary to properly define a den-
sity profile (we adaptively reduce the number of bins if there are too few particles in
a bin, with a minimum of 5 bins), we are left with only a handful of particles per bin.
In Figure I1.3, we compare one of the largest halos at z = 14 with one of the largest

halos at the end of the simulation at z = 6.

I1.5.2.3 Characterization of Uncertainty

An initial motivation for finding our own concentration parameters independent from
ROCKSTAR is that ROCKSTAR does not provide information about the quality of its
density profile fits. We assign Poisson errors to the density in each bin such that
o, = oV N /N, where p is the density and N is the number of particles in each bin.
These uncertainties are then provided as weights to the CurveFit routine. Upon
finding a best fit, the routine provides the fit parameters and an estimation of the
uncertainty in those parameters via a covariance matrix, which we use to calculate
the uncertainty in the concentration. Additionally, we find the x? for the overall fit,
which we use as an indicator of whether to accept or reject the fit for a given halo.

We accept halos with x? < 10.

I1.5.2.4 Concentration Comparison to ROCKSTAR

Overall, we do not find good agreement with ROCKSTAR. Using a script (see Ap-
pendix H) to compare the concentrations derived from our fits with those from ROCK-
STAR, we find that at z = 6 only 26% of halos fit by our method have concentrations
within 20% of concentrations as measured by ROCKSTAR. We have slightly more
agreement with high mass halos, with 37% agreement if we only consider the most
massive 10% of halos. Additionally, we do not find good fits for every halo. If the
distribution of particles would produce too few bins or the fitting routine exceeded a
maximum number of iterations to find a stable solution, the halo is not fit. We also

exclude halos with fits returned with very large x? values. Because of the discrep-
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Figure II.3: Spacial projections and density profiles for two large halos at z = 14 (top) and
z = 6 (bottom). Both halos are from the Box 1 2LPT simulation, and are the largest halos at their
respective redshifts. The density profiles are fit with an NF'W profile, and the resulting scale radius
is plotted as a vertical dot-dash purple line.
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ancies in our results and the fact that we do not find acceptable fits for every halo,
we use the more complete ROCKSTAR data for the final concentration measurements

used in the remainder of our analysis.

I1.5.3 Cross-matched Halo Catalog

We need to be able to directly compare corresponding halos from the two suites of
simulations. We match halos between zZA and 2LPT simulations based on constituent
particles with the CROSSMATCH code modified to import ROCKSTAR’s BGC2 binary
output files. Properties of the matched halos are then compiled into one large database

per box for further filtering and analysis.

I1.5.3.1 Cross-matching

Our simulations are initialized with identical particle ID schemes, and we are thus
able to uniquely identify and track matching particles between simulations and match
halos based on the largest number of shared particles. As the full implementation of
the CROSSMATCH code is previously discussed in Section I1.4, we only briefly sum-
marize its place in our analysis pipeline here. The script in Appendix M.2 sets up
the directory structure for the CROSSMATCH analysis and copies the CROSSMATCH
parameter files (Appendices B.1 and B.2) to the appropriate run directories. CROSS-
MATCH is then run for each snapshot via the submission script in Appendix M.7,
which is run for each simulation box.

Once caveat of the CROSSMATCH code is that matches are not necessarily unique.
For each halo in the first simulation, only one best match halo will be selected from
the second simulation. However, there may be other halos from the first simulation
that also have the same halo from the second simulation selected as a best match. For
example, such a situation may arise in the case of offset merging epochs. To counter
this, we run CROSSMATCH in both directions—once matching zZA halos to 2LPT halos

and once matching 2LPT halos to ZA halos—and choose best match halos as those that
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are matched in both directions. This assures a unique one-to-one matching between
2LPT and ZA halos. The code and submission script that select the best matches from

the 2LPT-first and zA-first cross-matched halo lists are presented in Appendix E.

I1.5.3.2 Database Aggregation and Filtering

We now have raw halo data we need for further study, but are also left with a large
number of disparate files that contain this information. For every snapshot, we have
cross-simulation halo matching information from CROSSMATCH and the best match
selection script, independent density profile and concentration measurement infor-
mation from the density profile program, and original halo properties and host halo
membership information from ROCKSTAR spread across plaintext and BGC2 binary
files for each processor on which ROCKSTAR was run, all for three simulation boxes
each for both 2LPT and ZzA.

We combine the information from all of these file into one centralized database per
snapshot with the database generation program and submission script in Appendix F.
The program reads in all of the source data files, finds companion halos from the
output of CROSSMATCH, and outputs all available data for each halo pair aggregated
together. The program is run for each of our 62 snapshots per simulation box, giving
186 total database files.

With the first version of our database generation code, total runtime became a
significant factor. The halo matching code was initially implemented in a naive double
loop search through all the data files to find collect halo pair properties. Pure python
loop structures are exceedingly slow for larger data sets, and an initial estimate gave
a runtime on the order of weeks or months. This was unacceptable, as there are many
snapshots, and the aggregation may need to be performed multiple times if any of the
previous steps in the analysis pipeline were to be modified. The code was therefore

rewritten to take full advantage of the vectorization of the NumPy library, achieving
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a massive speedup to a runtime of order a few seconds.

In order to retain a centralized database of all available information for matched
halos, we do not filter out halos at this step. Subsequent analysis, however, does
remove halo pairs from consideration in certain circumstances. For early analysis
involving our independent density profile fitting, we ignore halos based on evidence
of a poor fit, including halos that have measured concentrations greater than 100 or
less than 1, pg less than zero, or x? greater than 10. However, as we do not use these
results in our final analysis, these filters are not relevant to the collected halo catalog.
For all analysis, we remove halos with fewer than 100 particles and halos that exist

as substructure in a larger host halo.

I1.5.4 Halo Comparison

With a catalog of DM halos cross-matched between 2LPT and ZA simulations, we are
able to directly compare properties on a halo-by-halo basis. At this stage, we are
mostly concerned with a qualitative comparison between individual halos in order to
judge the overall success of halo matching and the broad differences in halo evolution

arising from differences in simulation initialization.

I1.5.4.1 Match Verification
In order to compare halo evolution between 2LPT and ZA simulations, we first need
to ensure that the halos being compared do actually represent the same halo in each
simulation. One way we do this is by visual inspection of the halos’ position, virial
radius, and morphology. The CROSSMATCH code as well as its implementation in
our analysis pipeline are discussed above, so here we instead focus on the plots used
as a visual sanity check on the resulting matches. The python code used to generate
these plots is listed in Appendix G.1.

As we wish to compare halos that may have followed different evolutionary paths

in their respective 2LPT or ZA simulations, we are unable to do a hard cut on a single
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Figure I1.4: Example of halo particle matching at z = 6. Blue dots are 2LPT halo particles, and
red dots are ZA halo particles. Black circles are the virial radii of the halos. Good matches are
achieved for halos, with only slight drift between simulations.

parameter such as mass, radius, position or particle distribution. However, large
variances in any of these properties can hint at a problem in the matching algorithm.
We therefore perform a quick visual check on a number of halo pairs by plotting their
relative positions, radii, and constituent particle distributions in order to verify that
the CROSSMATCH code performed as expected.

An example of this comparison is shown in Figure I1.4, where we plot two large
matching halos at z = 6. Particles belonging to the halos are plotted as points, with
2LPT halo particles in blue and ZA halo particles in red. The virial radii of the two
halos are represented by the black circles. The virial radii and particle distributions
are very similar, and there is only a small offset in position. We consider this a

successful match.

I1.5.4.2 Morphology

The morphology of a dark matter halo can provide insight into its structural evolution
and merger history. Features such as tidal tails, irregular shapes, and offset nuclei
hint at recent merger activity, while more symmetrical distributions suggest a quieter
recent history. We compare DM particle distributions of matched halos by observing
the projected density map along three axis vectors as a guide to lead the discussion

of halo merger histories. The python code for plotting these, as well as the density
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profiles discussed below, is listed in Appendix G.2.

By comparing the projected density morphologies of companion 2LPT and ZA ha-
los, we get a qualitative impression of the differences in their current evolutionary
state. We found the inner nuclear region to often display the most discernible differ-
ence in structure between the two halos. For halo pairs where this difference is most
apparent, such as one halo having a single central core with the other halo having
two distinct density peaks, we believe the most likely cause to be an offset in merger
epochs between the two simulations. In this case, the snapshot from one simulation
would catch the merger in progress, with multiple unsettled density peaks still visible,
while the other simulation snapshot would catch the halo after it has settled into a
more virialized state.

As an example of this, we plot comparisons of two z = 6 halo pairs in Figures I1.5
and I1.6. The top two rows of panels of each show XY, XZ, and YZ projections of the
dark matter density for the 2LPT and ZA halo on the first and second row, respectively.
The density map is shown with a logarithmic color scale, and equal density contours
are marked with white curves. Figure I1.5 shows a pair of large halos that display
similar central structure. These halos are unlikely to have largely differed in their
evolution shortly prior to the snapshot. Figure I1.6, however, shows a halo pair with
differing nuclear structure. The zA halo displays two distinct central density peaks,

while the 2LPT halo shows only a single more relaxed core.

I1.5.4.3 Density Profiles

The code listed in Appendix G.2, which produces the density projections discussed
above, also plots comparisons of the halos’ density profiles. We have addressed the
creation of density profiles in Section 11.5.2, and here the same method is used for
each profile. In this case, we with to directly compare the profiles of the companion

2LPT and ZA halos, so they are plotted together, alongside the 2-D density projections
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Figure II.5: Two large matched halos at z = 6 with similar nuclear structure. Top two rows:
Projected density maps, with XY, XZ, and YZ views of the central nuclear region of the halos.
Density is represented by a logarithmic color scale, and equal density contours are plotted as white
curves. The first and second rows depict the 2LPT and ZA halo, respectively. Bottom two rows:
Radially-binned halo density profiles fit with the NFW density profile model. The blue stepped
profiles are the binned data, red curves are the fit NFW models, black dashed lines are the resolution
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discussed in the previous section.

We again consider the halo pairs compared in Figures II.5 and II.6, where the
bottom two panels of each display the density profiles of the 2LPT and ZA halos,
respectively. Halo particles are binned in logarithmically-spaced radial bins from the
virial radius inward to the simulation resolution limit. The profiles are fit with the
NFW profile model with free parameters for scale radius and characteristic density.
The resulting fit is overplotted as red curves, and the scale radius is marked with the
vertical purple dot-dash lines.

The halos in Figure I1.5 display very similar central morphology and are both
well-fit by the NFW profile. The more relaxed and spherically symmetrical halos
such as these tend to be easier to fit well than more irregular halos. The measured
scale radii for these halos are also very similar, and combined with the similar virial
radii, produce similar concentration values. The halos in Figure I1.6 display a more
differing structure. While the 2LPT halo is relatively symmetrical, the ZA halo has two
distinct central density peaks. Here, there is a marked difference in the resulting scale

radii, with the 2LPT halo displaying a larger concentration than its ZA companion.

I1.5.5 Difference Distributions

We now turn our focus to the ensemble halo population as a whole. Comparing indi-
vidual companion halos can realistically only give a qualitative picture of differences
arising between 2LPT and ZA simulations, as the large number of halos necessitates
consideration of only a small percentage of the sample. We therefore need a con-
sistent way of measuring the behavior of the entire population. In this section, we
discuss how we measure these differences in halo populations using the codes listed in
Appendix I. In particular, the analysis code itself is listed in Appendix 1.1, the script
to run the analysis on the combined halo population from all three simulation boxes

is listed in Appendix 1.2, the script to run the analysis on the simulation boxes inde-
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pendently is listed in Appendix 1.3, and the script to collect the resulting statistics

from all the individual snapshots into one database is listed in Appendix 1.4.

11.5.5.1 Histograms

We wish to explore differences in a number of halo properties, so we construct a
generic distribution so that any measured halo quantity ¢ can be considered. The
distribution should highlight the differences between 2LPT and ZA halo populations
while remaining unbiased to the choice of simulation initialization. This leaves us
with a distribution of the differences between 2LPT and ZA quantities, normalized by

the average of the two:

Ag = Lrer — e (I.15)
Qavg

where Gayg = %(CJ2LPT +q,4). Defined in this way, difference distributions of, e.g., virial
mass AM,;, concentration Ac, or the offset distance between the central density
peak and the center of mass AX,g can all be considered on equal footing. We create
distribution histograms of Aq for various halo quantities both for the combined halo
catalog from the stacked simulation boxes and for the individual simulation boxes

separately.

I1.5.5.2 Fitting

In order to extract a number of statistical quantities and to get a better high-level
feel for the leading behavior of the distributions, we wish to fit a statistical model
to the data histograms. While the data would seem to be distributed according to a
Gaussian distribution at first glance, we found the deviations from Gaussianity to be
more significant than could be ignored. After significant trial and error, we found the

Ag distributions to be best described by a generalized normal distribution (Nadarajah
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2005) with the probability density function

f(z) ellz=nl/e)’, (I1.16)

~ 20I(1/B)

where p is the mean, « is the scale parameter, (3 is the shape parameter, and I is the

gamma function

I(t) = / 7l da. (I1.17)
0

The shape parameter (3 is restricted to § > 1. This allows the distribution to poten-
tially vary from a Laplace distribution (5 = 1) to a uniform distribution (8 = o0)

and includes the normal distribution (5 = 2). The distribution has variance

,  a’T'(3/p)
= —F(l/ﬁ) (I1.18)
and excess kurtosis
_IG/Bra/s)
Yy = T3]3 ) _ 3. (I1.19)

The distribution is symmetric, and thus has no skewness by definition. As such, the
values obtained for the skew of the distribution are measured directly from the data.

We use the CurveFit module from the SciPy library for all of our functional
fitting. CurveFit is a non-linear least squares fitting routine that can fit an arbitrary
input function to data with optional uncertainties. It can return estimates of the
free parameters of the model, as well as a covariance matrix used to determine the
uncertainties in the fit coefficients.

We found our fitting routine to be fairly sensitive to differences in initial guess of fit
coefficients. CurveFit is not guaranteed to find global minima, and can become stuck
in local extrema. This ends up being most probable when trying to find multiple
fit coefficients with large dynamic range. We found the best way to address this

was to scale the data to unity in each dimension whenever possible. In the case of
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our difference histograms, the standard deviations of the distributions are typically
around order unity, so it was only necessary to normalized the counts. We also found
that we achieved better results when fitting in logarithmic space.

We explored a number of halo parameters, but found the most interesting distribu-
tions to be those for virial mass and concentration. In Figure I1.7, we plot histograms
of AM,; and Ac in the left and right columns, respectively, for three representative
simulation snapshots at z = 14.7, z = 10.3, and z = 6.0. Data from the entire sample
are plotted as blue histograms, data for the top 25% of halo pairs, sorted by 2LPT
halo mass, are plotted as grey-filled green histograms, and the generalized normal

distribution fits are overplotted as red dashed curves.

I1.5.6 Redshift Trends

Up to this point, we have only considered one snapshot at a time. While we have
observed variations with redshift, this has not been explicitly quantified. In this
section, we consider the statistical quantities derived from the generalized normal
distribution fits from the previous section as functions of redshift. The code used for

this analysis is listed in Appendix J.

I1.5.6.1 Mean and Standard Deviation
Representing the mean and standard deviation of the distributions is relatively straight-
forward. For the fit generalized normal distributions, we record values for the mean,
uncertainty in the mean, standard deviation, and uncertainty in the standard devia-
tion. We also record the mean and standard deviation of the underlying distribution
as directly measured from the data.

In Figure I1.8, we plot the mean and standard deviation of the distributions for
mass and concentration, as well as the rms value derived from the data, all as functions
of redshift. The mean is plotted as blue points with error bars, the standard deviation

is plotted as two black dashed lines that represent 4 o, and the rms is plotted as a
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Figure II.7: Histograms of AM;, (left column) and Ac (right column) for snapshots at z = 14.7,
z =10.3, and z = 6.0 (top, middle, and bottom panels, respectively). The small gray-filled histograms
count only the top 25% most massive halos. The main histograms are fit with a generalized normal
distribution with parameters for mean, scale, and shape, overplotted as the red dashed line (see

Equation I1.16).
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dotted green line.

In this case, we wish to be conservative with the error bars on the mean. Since
we have a measurement for the mean both from the fitting distribution and the
underlying data, we can incorporate both of these into our result. The points plotted
in Figure I1.8 are the mean measured from the fit distribution, and the error bars are
the uncertainty in the mean estimated from the least squares routine. However, if the
mean measured directly from the data falls outside the error bars, the error bars are
expanded to encompass that measurement. This is most often not a concern, as the
means for most snapshots are very close together. However, when there is a slight

discrepancy between the fit and data values, the error bars will reflect this.

I1.5.6.2 Skew
The generalized normal distributions we use to fit our Agq histograms are symmetrical
by definition and therefore have no inherent skew. This was a simplifying assumption
necessary to use a well-defined distribution as well as reduce the number of free
parameters during fitting. We do note, however, that the skew of our underlying data
is often large enough to not be ignored.

Therefore, we need an alternate way to measure skew and its uncertainty. We use

the skew routine from the SciPy statistics library, which defines skew as

3
5]

where 1, are central moments given by

pom = BI(X = )" = (wx — p)"plax) (I1.21)
_ ké(—l)m-k () )t (11.22)
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with non-central moments p!  given by
fo = EIX™) = app(an), (I1.23)
k

where p(xy) is the probability density function. The skew is then measured from the
entire halo sample for the three combined simulation boxes. Uncertainty in skew is
evaluated by taking the skew of the three boxes as independent measurements. The
results for skew as a function of redshift are plotted as blue curves for the AM,;. and

Ac distributions in Figure I1.9.

I1.5.6.3 Kurtosis

Variable kurtosis is a fundamental part of the generalized normal distribution, so we
may therefore derive the kurtosis directly from the fit distribution parameters. The
generalized normal distribution is defined in terms of a shape parameter (§, which
does introduce some complexity in the conversion to kurtosis. The shape parameter
is converted to excess kurtosis by way of Equation I1.19. As this definition includes
the Gamma function, a number of steps are required to convert the uncertainty in
shape parameter to the uncertainty in kurtosis, which we outline below.

The standard deviation of a function f(xy,xs,...,z,) is, in general, given by

sp = Z(%) 52, (I1.24)

xT

with summation over all independent variables z. The generalized normal distribution

f(z) e~ (le=nl/@)? (I1.25)

_ B
2al'(1/B)
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with mean p, scale parameter o, and shape parameter /3, has excess kurtosis

_ LG/AT(/6)

= — 3. 11.26
The gamma function
[(x) = / t" et dt (I1.27)
0
has the first derivative
I(x) = I'(2)ibo(z), (I1.28)

where the digamma function vy is the derivative of the logarithm of the gamma

function and is given by

Po(x) = /0 ) (e; — 16__3:t) dt (11.29)

if the real part of z is positive.
We now apply (I1.24) to (I1.26) to find the standard deviation of the excess kur-

tosis:

Sy = (i—?) 5% (I1.30)
dve
:Sﬁw (1131)
4 [TEBras)
- ﬁd@{ T(3/5) 3]‘ (IL.52)

Making the substitution x = 1/8 and dxr = —1/8? d3, taking the derivative, and
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doing a bit of algebra, we have:

dys dx
7T dp (IL.33)
_g (L) 4 [IGoI()
- ( 62) dx[ T(3x) 3} (IL.34)
e {”3@ HIGANE) — Hoar e } .

= SBF( : {F (32)2[5T(52)1bo (52)T () + T'(52)T (2)abo ()] — F(5x)F(m)[6F(3x)2w0(3x)]}

(11.36)

2

= SBF i {6T (52)T'(32)°T (x)ho(3z) — ['(52)T'(3z)°I' () [5¢0 (5x) + tho(z)] }

(I1.37)
= sy éx)4 {D(52)D(32)20 () [6v0(3x) — 5o(52) — ()]} (IL38)
_ o I'(52)I(z)
= S8 W[wo(?w) — 5tho(5z) — 1bo(z)]- (I1.39)

Substituting back in for x and recognizing an occurrence of ~,, we have the result

51y = sﬁ% (12 + 3) [6¢0(3/8) — 5¢0(5/8) — to(1/5)], (IL40)

with which we can find the uncertainty in the kurtosis given the value and uncertainty
of the shape parameter 3.

With a method of determining the uncertainty in kurtosis established, we may now
provide an example of the results (which, again, will be discussed in Chapter III). In
Figure I1.9, we plot the kurtosis and associated uncertainties as a function of redshift

as red curves for distributions of AM,; and Ac.

I1.5.7 Mass Trends
So far, our analysis has mostly focused on the behavior of the entire halo sample

as a single unit. However, there is also a wealth of information available when the
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statistics for our sample are viewed as functions of halo mass. In this section, we
explore our halo ensemble more deeply by dividing into bins of mass and viewing the
behavior of the resulting subsamples. In this way, we are able to explore differences
in low- and high-mass halos, as well as quantify the explicit mass dependencies. The

codes used for this analysis are listed in Appendix K.

I1.5.7.1 Binning and Fitting

When representing the mass dependence of our various halo properties, we wished to
do so in a way that was both straightforward to quantify and visually descriptive of
the overall distribution of the data. We found the best way to accomplish this was
to provide a dual representation, with the data both binned in mass for least-squares
fitting and binned two dimensionally in mass and Ag, with a color scale representing
bin density, for a human reader to more easily see the relative population of the
parameter space.

First, the data is binned on a 2-D grid. We found this to be the most natural way
to visually represent the distribution of the data, as some features like population
sparseness at high redshift, asymmetry, and large differences in number between low-
and high-mass halos would be more difficult to convey with only average mass bin
means and standard deviations. The binned data are plotted with a logarithmic color
scale and smoothed with a Gaussian kernel.

As a technical aside, we note that plotting bins with zero members with a log-
arithmic color scale naturally leads to poor results. We counter this by artificially
counting one half halo for bins that are otherwise empty, and rescale the color rep-
resentation to make anything less than one unit per bin display the minimum color
value.

As an alternate representation, and mainly for the benefit of a more quantitative

analysis, we bin the data along the average halo mass axis. For each bin, we measure
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the mean and standard deviation of the data. The uncertainty in the mean is then
calculated as the standard deviation divided by the square root of the number of
particles in the bin. We find a linear fit to the bin means using our standard least-
squares approach, weighted by the mean uncertainties.

Example plots are provided in Figures I1.10 and II.11 to demonstrate this ap-
proach. The 2-D binned data is plotted using a logarithmic color scale to represent
the number density of halos in a given cell. The bin means and associated uncer-
tainties are plotted as the black points with error bars. The standard deviation to
either side of the mean is plotted as black dotted lines. The least-squares fit to the

bin means is plotted as a solid magenta line.

I1.5.7.2 Trends with Redshift

To better analyze the time evolution of the mass dependence, we need a more compact
representation than simply looking at successive individual redshift snapshots. The
most informative individual parameter from these plots is the slope of the linear fit
line for Aq as a function of average halo mass. We therefore plot the slopes and
associated uncertainties for each snapshot as a function of redshift, with examples
for AM,;, and Ac displayed in Figure I1.12. The data are then fit with our linear

least-squares routine, and the fit is overplotted as a red dashed line.

I1.5.8 Alternate Difference Distributions

The distributions of Ag that have been discussed up to this point are an excellent
measure of the overall behavior of the halo population differences between 2LPT
and zA simulations. However, as these distributions rely on the average quantity
Qave = (@2uer + Gz)/2 for normalization, quantities like the fraction of halo pairs
differing by a given amount between simulations are more difficult to extract. We

therefore redefine our distribution quantity to instead use a normalization factor of
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Figure II1.10: AM,;, as a function of Myiy ave. For the 2-D color histogram, halos are counted in
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are also divided into logarithmically-spaced bins in average virial mass, and the mean for each bin
is plotted as a black point. The black dotted curves are the standard deviation around the mean.
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z = 6.0. These plots are provided as examples of the output at this stage of the analysis and are
further discussed in Chapter III.
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Qza:

5q = M’ (11.41)
Qza

which allows for a more direct comparison between halo pairs. Statistics for these
distributions are saved alongside the output for Ag distributions with the codes in

Appendix I.

11.5.8.1 Equivalent Displacement
The question may be asked why these distributions have not been used all along,
as they more readily offer more quantitative values for our halo populations. Our
previous distributions of Ag are symmetrical between 2LPT and ZA quantities, which
allows us to be completely unbiased as to which simulation initialization is correct.
The distributions of dg lose this symmetry, and are only defined for d¢ > —1 for
positive quantities like mass and concentration.

For this analysis, we therefore need a way to consider halo pairs that differ by a
certain amount in either direction (e.g. pairs that differ in quantity ¢ by 10%, whether

q is larger in 2LPT or ZA). Rearranging Equation I1.41 yields

qovpr = (6q + 1>q2A7 (1142)

and making the substitution z = dq + 1 gives us

gorpr = XGza- (II43)

For a given z, we want to find z., such that z., = 1/x. Substituting now for z and

Teq and rearranging gives us
1

= — -1 11.44
0g+1 ’ ( )

0eq

the value for which a halo pair with a larger ¢ in ZA would differ by the same factor
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as a halo pair with a larger ¢ in 2LPT.

I1.5.8.2 Redshift Trends

In Figures 11.13 and I1.14, as an example of the output at this step, we plot statistics
for our dq distributions as functions of redshift. In Figure I1.13, we plot the dq of the
peak of the distribution, as well as the d¢ values where 50%, 10%, and 1% of halo
pairs fall at or above dq. In Figure 11.14, we plot the fraction of halo pairs f, that
fall outside various dq values. The solid curves represent the fraction of halo pairs
that have a 2LPT mass or concentration at least 1.1, 1.5, 2.0, or 5.0 times that of
the corresponding ZA halo. Dashed curves represent the same values, regardless of
whether the 2LPT or ZA mass or concentration is higher. This is the same as counting
halos that fall above a given dq as well as below the corresponding dgeq. The code for

creating these plots is listed in Appendix L.

I1.6 Automation

Dealing with the large number of data files, programs, and pipeline steps used in
our analysis quickly becomes prohibitive in terms of time and complexity when each
must be dealt with completely “by hand.” In order to shorten the time needed for
a full analysis of the data down to a reasonably human-scale level, a certain level
of automation is required. A combination of shell scripting and basic parallelization
was used to this effect. This has the added benefit of providing a self-documenting
reproducibility to the analysis that was invaluable for the inevitable times when an
error was discovered and the entire pipeline had to be re-run from the beginning. In
this section, we will give a very brief summary of the automation steps taken and the
scripts written for these tasks. Scripts run locally or launched manually are written
in Bash, while job scripts that are submitted to the ACCRE compute cluster use the
PBS syntax for communication with the scheduler and Bash for the remaining logic.

The creation of the directory structure for analysis with ROCKSTAR and subse-
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Figure I1.13: Statistics for distributions of §M;. (top) and dc (bottom) as functions of redshift.
The dq of the peak of the distribution (black curve), and the d¢ where 50% (red dashed curve),
10% (green dashed curve), and 1% (blue dashed curve) of the halos fall at or above dq. These plots
are provided as examples of the output at this stage of the analysis and are further discussed in
Chapter III.
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Figure I1.14: Statistics for distributions of §M;, (top) and éc (bottom) as functions of redshift.
The fraction of halos with dq greater than 0.10 (solid blue curve), 0.50 (solid green curve), 1.00 (solid
red curve), and 4.00 (solid black curve). The dashed curves additionally count halo pairs with dq
lower than the corresponding equivalent displacements of -0.09, -0.33, -0.50, and -0.80, respectively
(see Equation I1.44). These plots are provided as examples of the output at this stage of the analysis
and are further discussed in Chapter III.
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quent halo catalog generation steps was done using the script listed in Appendix M.1.
The creation of the directory structure for CROSSMATCH was done using the script
listed in M.2. Individual instances of ROCKSTAR may be run on individual snapshots
with the script in Appendix M.3, while all snapshots may be run as a batch job us-
ing the scripts in Appendices M.4 and M.5 for 2LPT and ZA snapshots, respectively.
The output from ROCKSTAR is run through a post-processing step that is automated
using the script in Appendix M.6. The CROSSMATCH program is run with the script
in Appendix M.7, and the python code to generate density profiles is launched with
the script in Appendix M.8. A number of other Bash scripts, PBS submission scripts,
and Python programs, which we have already discussed in the above sections, were

used for automation of the remainder of the analysis pipeline.
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CHAPTER III

Exploring Dark Matter Halo Populations in 2LPT and ZA Simulations

We study the structure and evolution of dark matter halos from z = 300 to z = 6
for two cosmological N-body simulation initialization techniques. While the second-
order Lagrangian perturbation theory (2LPT) and the Zel’dovich approximation (ZA)
both produce accurate present day halo mass functions, earlier collapse of dense
regions in 2LPT can result in larger mass halos at high redshift. We explore the
differences in dark matter halo mass and concentration due to initialization method
through three 2LPT and three ZA initialized cosmological simulations. We find that
2LPT induces more rapid halo growth, resulting in more massive halos compared to
zA. This effect is most pronounced for high mass halos and at high redshift, with
a fit to the mean normalized difference between 2LPT and ZA halos as a function of
redshift of gy, = (7.884+0.17) x 10732 — (3.07 £ 0.14) x 1072, Halo concentration
is, on average, largely similar between 2LPT and ZA, but retains differences when
viewed as a function of halo mass. For both mass and concentration, the difference
between typical individual halos can be very large, highlighting the shortcomings of

ZA-initialized simulations for high-z halo population studies.

II1.1 Introduction
The pre-reionization epoch is a time of significant evolution of early structure in the
Universe. Rare density peaks in the otherwise smooth dark matter (DM) sea lead to
the collapse and formation of the first dark matter halos. For example, at z = 20,
10" Mg, halos are ~ 40 peaks, and 10®* M halos, candidates for hosting the first
supermassive black hole seeds, are ~ 50 peaks.

These early-forming dark matter halos provide an incubator for the baryonic pro-

cesses that allow galaxies to form and transform the surrounding IGM. Initial gas

71



accretion can lead to the formation of the first Pop-11I stars (Couchman & Rees 1986;
Tegmark et al. 1997; Abel et al. 2000, 2002), which, upon their death, can collapse
into the seeds for supermassive black holes (SMBHs) (Madau & Rees 2001; Islam
et al. 2003; Alvarez et al. 2009; Jeon et al. 2012) or enrich the surrounding medium
with metals through supernovae (Heger & Woosley 2002; Heger et al. 2003). The
radiation from early quasars (Shapiro & Giroux 1987; Madau et al. 1999; Fan et al.
2001), Pop-III stars (Gnedin & Ostriker 1997; Venkatesan et al. 2003; Alvarez et al.
2006), and proto-galactic stellar populations (Bouwens et al. 2012; Kuhlen & Faucher-
Gigueére 2012) all play a key role in contributing to re-ionizing the Universe by around
z = 6 (Barkana & Loeb 2001). Additionally, halo mergers can drastically increase the
temperature of halo gas through shock heating, increasing X-ray luminosity (Sinha
& Holley-Bockelmann 2009) and unbinding gas to form the warm-hot intergalactic
medium (Bykov et al. 2008; Sinha & Holley-Bockelmann 2010; Tanaka et al. 2012).

Since the pre-reionization era is such a critical epoch in galaxy evolution, much
effort is expended to characterize the dark matter distribution accurately. Statistical
measures of the DM halo population, such as the halo mass function, are employed
to take a census of the collapsed halos, while 3-point correlation functions are used
to describe the clustering of these halos as a probe of cosmology. Detailed analysis
of the structure of individual halos involves characterizing the DM halo mass and
density profile.

There are a number of ways to define a halo’s mass, the subtleties of which be-
come significant for mass-sensitive studies, such as the halo mass function (Press &
Schechter 1974; Reed et al. 2007; Heitmann et al. 2006; Luki¢ et al. 2007). For a re-
view, see, e.g., White (2001) and references therein. Additionally, see Voit (2005) and
references therein for a more observationally-focused discussion. From a simulation
standpoint, however, the two most common ways to obtain halo mass are through

either spherical overdensity or friends-of-friends (FOF) techniques. The spherical
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overdensity method identifies regions above a certain density threshold, either with
respect to the critical density p. = 3H?/87G or the background density p, = Q,,pe,
where €2, is the matter density of the universe. The mass is then the mass enclosed
in a sphere of some radius with mean density Ap., where A commonly ranges from
~ 100 to ~ 500. Alternatively, the FOF method finds particle neighbors and neigh-
bors of neighbors defined to be within some separation distance (Einasto et al. 1984;
Davis et al. 1985). Halo mass, then, is simply the sum of the masses of the linked
particles.
The density profile of a DM halo is most often modeled with the NFW (Navarro
et al. 1996) profile:
plr) = — L, (IL.1)
& (1+%)

where pg is the characteristic density, and the scale radius Ry is the break radius

1 and outer ~ r=2 density profiles. The NFW density profile

between the inner ~ r~
is quantified by the halo concentration ¢ = Ry;,/Rs. Ryir is the halo virial radius,
which is often defined as the radius at which the average interior density is some
factor A, times the critical density of the universe p., where A, is typically ~ 200.
Concentration may also be obtained for halos modeled with the Einasto (Einasto &
Haud 1989) profile. However, while halo profiles can be better approximated by the
Einasto profile (Navarro et al. 2004, 2010; Gao et al. 2008), the resulting concen-
trations display large fluctuations due to the smaller curvature of the density profile
around the scale radius (Prada et al. 2012).

Generally, at low redshift, low mass halos are more dense than high mass halos
(Navarro et al. 1997), and concentration decreases with redshift and increases in
dense environments (Bullock et al. 2001b). Neto et al. (2007) additionally find that

concentration decreases with halo mass. Various additional studies have explored

concentration’s dependence on characteristics of the power spectrum (Eke et al. 2001),
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cosmological model (Maccio et al. 2008), redshift (Gao et al. 2008; Munoz-Cuartas
et al. 2011), and halo merger and mass accretion histories (Wechsler et al. 2002;
Zhao et al. 2003, 2009). For halos at high redshift, Klypin et al. (2011) find that
concentration reverses and increases with mass for high mass halos, while Prada
et al. (2012) additionally find that concentration’s dependence on mass and redshift
is better correlated with o (M, z), the rms fluctuation amplitude of the linear density
field.

Cosmological simulations that follow the initial collapse of dark matter density
peaks into virialized halos often neglect to consider the nuances of initialization
method. Despite much effort in characterizing the resulting DM structure, com-
paratively less attention is paid to quantifying the effect of the initialization and
simulation technique used to obtain the DM distribution. The subtle O(107°) den-
sity perturbations in place at the CMB epoch are vulnerable to numerical noise and
intractable to simulate directly. Instead, a displacement field is applied to the parti-
cles to evolve them semi-analytically, nudging them from their initial positions to an
approximation of where they should be at a more reasonable starting redshift for the
numerical simulation. Starting at a later redshift saves computation time as well as
avoiding interpolation systematics and round-off errors (Lukié¢ et al. 2007).

The two canonical frameworks for the initial particle displacement involved in gen-
erating simulation initial conditions are the Zel’dovich approximation (zA, Zel’dovich
1970) and 2nd-order Lagrangian Perturbation Theory (2LPT, Buchert 1994; Buchert
et al. 1994; Bouchet et al. 1995; Scoccimarro 1998). ZzA initial conditions displace
initial particle positions and velocities via a linear field (Klypin & Shandarin 1983;
Efstathiou et al. 1985), while 2LPT initial conditions add a second-order correction
term to the expansion of the displacement field (Scoccimarro 1998; Sirko 2005; Jenkins
2010).

Following Jenkins (2010), we briefly outline 2LPT and compare it to ZA. In 2LPT,

74



a displacement field ¥(q) is applied to the initial positions g to yield the Eulerian
final comoving positions

r=q+ . (I11.2)

The displacement field is given in terms of two potentials ¢! and ¢®:
x=q— DV, + DV, 0P, (I11.3)

with linear growth factor D; and second-order growth factor Dy ~ —3D?/7. The
subscripts ¢ refer to partial derivatives with respect to the Lagrangian coordinates q.

Likewise, the comoving velocities are given, to second order, by
v=—D fLHV Y + Dy f, HV 6P, (I11.4)

with Hubble constant H and f; = dIn D;/d Ina, where a is the expansion factor. The
relations f; =~ 07/ and fo = 29%11, with matter density €,,, apply for flat models
with a non-zero cosmological constant (Bouchet et al. 1995). The fi, fo, and Dy
approximations here are very accurate for most actual ACDM initial conditions, as
Q,, is close to unity at high starting redshift (Jenkins 2010). We may derive ¢") and

) by solving a pair of Poisson equations:

Vie(q) = 6" (q), (I1L.5)

with linear overdensity §(*)(q), and

Vio®(q) = 6%(q). (I11.6)
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The second-order overdensity §(®(q) is related to the linear overdensity field by

(0) = {o @) - o] | )
i>j
where ¢;; = 0°¢/0q;0q;. For initial conditions from ZA, or first-order Lagrangian
initial conditions, the ¢ terms of Equations II1.3 and II1.4 are ignored.

In theory, non-linear decaying modes, or transients, will be damped as 1/a in ZA.
In 2LPT, however, transients are damped more quickly as 1/a?. It should be expected,
then, that structure in 2LPT will be accurate after fewer e-folding times than in zZA
(Scoccimarro 1998; Crocce et al. 2006; Jenkins 2010). The practical result is that
high-oc DM density peaks at high redshift are suppressed in ZA compared with 2LPT
for a given starting redshift (Crocce et al. 2006). While differences in ensemble halo
properties, such as the halo mass function, between simulation initialization methods
are mostly washed away by z = 0 (Scoccimarro 1998), trends at earlier redshifts are
less studied (Luki¢ et al. 2007).

In this paper, we explore the effects of ZA and 2LPT on the evolution of halo
populations at high redshift. It is thought that 2LPT allows initial DM overdensities
to get a “head start” compared with zA, allowing earlier structure formation, more
rapid evolution, and larger possible high-mass halos for a given redshift. We explore
this possibility by evolving a suite of simulations from z = 300 to z = 6 and comparing
the resulting differences in halo properties arising from initialization with ZA and 2LPT
in these these otherwise identical simulations.

We discuss the simulations, halo finding, and analysis methods in Section III.2,
results in Section III.3, implications, caveats, and future work in Section III.4, and a

summary of our results and conclusions in Section IIL.5.
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I11.2 Numercial Methods

We use the N-body tree/SPH code GADGET-2 (Springel et al. 2001; Springel 2005)
to evolve six dark matter—only cosmological volumes from zg,+ = 300 to z = 6 in
a ACDM universe. Each simulation is initialized using WMAP-5 (Komatsu et al.
2009) parameters. For each of the three simulation pairs, we directly compare 2LPT
and ZA by identically sampling the CMB transfer function and displacing the initial
particle positions to the same starting redshift using 2LPT and ZA. The three sets
of simulations differ only by the initial phase sampling random seed. Each volume
contains 5123 particles in a 10 ~~! Mpc box. Following Heitmann et al. (2010),
we choose conservative simulation parameters in order to ensure high accuracy in
integrating the particle positions and velocities. We have force accuracy of 0.002,
integration accuracy of 0.00125, and softening of 0.5 h=! kpc, or 1/40 of the initial
mean particle separation. We use a uniform particle mass of 5.3 x 10°A M. Full
simulation details are discussed in Holley-Bockelmann et al. (2012).

One facet often overlooked when setting up an N-body simulation is an appro-
priate starting redshift, determined by box size and resolution (Luki¢ et al. 2007).
As 2LPT more accurately displaces initial particle positions and velocities, initial-
ization with 2LPT allows for a later starting redshift compared with an equivalent
ZA-initialized simulation. However, many zZA simulations do not take this into ac-
count, starting from too late an initial redshift and not allowing enough e-foldings
to adequately dampen away numerical transients (Crocce et al. 2006; Jenkins 2010).
In order to characterize an appropriate starting redshift, the relation between the
initial rms particle displacement and mean particle separation must be considered.
The initial rms displacement A, is given by

AZ A [hNy
rms 3

P(k, Zstart) dk, <1118>
kg
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where ky = 2m/Lpox is the fundamental mode, Ly is the simulation box size,

kny = 2N ks is the Nyquist frequency of an N 3 simulation, and P(k, 2gart) is the

y T 2

power spectrum at starting redshift zg.. In order to avoid the “orbit crossings” that
reduce the accuracy of the initial conditions, A, must be some factor smaller than
the mean particle separation A, = L. /N (Holley-Bockelmann et al. 2012). For
example, making orbit crossing a ~ 100 event imposes A,s/A, = 0.1. However,
for small-volume, high-resolution simulations, this quickly leads to impractical start-
ing redshifts. Continuing our example, satisfying A,ns/A, ~ 0.1 for a 10~ Mpe,
5123 simulation suggests zgare &~ 799. Unfortunately, starting at such a high redshift
places such a simulation well into the regime of introducing errors from numerical
noise caused by roundoff errors dominating the smooth potential. A more relaxed
requirement of A,,s/A, = 0.25, which makes orbit crossing a ~ 4o event, yields
Zstart = 300, which we adopt for this work. For our small volume, the fundamental
mode becomes non-linear at z ~ 5, after which, simulation results would become
unreliable. We therefore end our simulations at z = 6.

For each of our six simulations, we use the 6-D phase space halo finder code
ROCKSTAR (Behroozi et al. 2013) to identify spherical overdensity halos at each
timestep. ROCKSTAR follows an adaptive hierarchical refinement of friends-of-friends
halos in 6-D phase space, allowing determination of halo properties such as halo mass,
position, virial radius, internal energy, and number of subhalos. ROCKSTAR tracks
halos down to a threshold of around 20 particles, but we use a more conservative 100
particle threshold for our analysis. We use all particles found within the virial radius
to define our halos and their properties.

We identify companion halos between 2LPT and ZA simulations based on the
highest fraction of matching particles contained in each at any given timestep. We
remove halo pairs where either one or both halos are considered subhalos (i.e. a halo

must not be contained within another halo) and pairs with fewer than 100 particles
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in either 2LPT or ZA. We are left with approximately 60,000 total halo pairs for
our three boxes at z = 6. With halo catalogs matched between simulations, we
can compare properties of individual corresponding halos. To mitigate the effects of
cosmic variance on our small volumes, we “stack” the three simulation boxes for each
initialization method, and combine the halos from each into one larger sample for our
analysis.

Halo concentration is derived from ROCKSTAR’s output for R, and R.;.. Here, R;,
is the virial radius as defined by Bryan & Norman (1998). Figure III.1 makes evident
the difficulty in fitting density profiles and obtaining concentration measurements for
typical realistic halos. Large substructure, as displayed by the zA halo, can disrupt
the radial symmetry of the halo and cause significant deviations in the density profile.
Centering can also be an issue in these cases. Due to these complications, there are
a number of approaches for finding halo concentrations (Prada et al. 2012), but for
consistency, we use the values derived from ROCKSTAR'’s fitting for our concentration
measurements.

At each simulation snapshot, we measure and compare a number of parameters
for halos in both 2LPT and zA simulations. For each quantity ¢, we create histograms

of Ag, the normalized difference in ¢ between halos in the 2LPT and ZA simulations:

Aq = Burr — Gon (I11.9)
Qavg
where ¢ave = %(qQLPT + @z1). The choice of gu, for normalization allows us to be

unbiased in our assumption of which halo better represents the truth, but can mask
large differences between individual halos. We fit each of these Ag histograms with a
generalized normal distribution (Nadarajah 2005) with the probability density func-
tion

f(x) ellz=nl/e)” (I11.10)

~ 2al(1/5)
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Figure III.1: Top two rows: Density projections for two matching halos at z = 6. The first and
second row are 2LPT and ZA, respectively. The halos appear to be either undergoing or have recently
undergone a major merger. The 2LPT halo appears to be more relaxed and further along in the
merger process, while the zZA halo lags behind, still displaying two distinct cores. The halos have
masses of 5.95 x 10°M, for 2LPT and 5.85 x 10°Mg, for ZA. Bottom two rows: Density profiles for
the same two halos as above. NF'W profiles are fit to logarithmic radial bins of particle position and
are overplotted as red curves. The purple dot—dash lines mark the scale radii. The black dotted
lines mark the resolution limit of the simulations.
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where p is the mean, « is the scale parameter, (3 is the shape parameter, and I is the
gamma function

[(t) = / e du. (ITL.11)
0

The shape parameter (3 is restricted to f > 1. This allows the distribution to poten-
tially vary from a Laplace distribution (5 = 1) to a uniform distribution (8 = o0)

and includes the normal distribution (5 = 2). The distribution has variance

,  a’T'(3/p)
o= —F(l/ﬁ) (II1.12)
and excess kurtosis
_IG/Bra/s)
Yo = —F(3/5)2 3. (I11.13)

The distribution is symmetric, and thus has no skewness by definition. As such, the
values for skew presented below are measured directly from the data.

As our fitting distributions are symmetrical, in order to derive uncertainties for
skew, we measure the skew of the distributions for each of our three simulation boxes
individually as well as for the single stacked data set. Uncertainty in skew is then
simply the standard deviation of the mean of the skew of the three individual boxes.

Determining the uncertainty in the kurtosis is slightly more involved, as kurtosis
is determined by a transformation of the generalized normal distribution’s shape
parameter 3 according to Equation III.13. Following the standard procedure for

propagation of uncertainty, we calculate the standard deviation of the kurtosis:

Sy = (i—?) 5% (II1.14)
A [TEAr
- 175 { o 3] . (IIL.15)
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The derivative of the gamma function is

I(z) = T'(z)o(z), (I11.16)

where the digamma function 1y is the derivative of the logarithm of the gamma

function and is given by

Yo(z) :/OOO (%— 16__1_t) dt (II1.17)

if the real part of = is positive. Now, taking the derivative of 7, and doing a bit of

algebra yields

51y = sﬁ% (12 + 3) [6¢0(3/8) — 5u0(5/8) — o(1/8)]. (I11.18)

with which we can find the uncertainty in the kurtosis given the value and uncertainty
of the shape parameter [ estimated from the least squares fit routine.

In addition to distributions of Aq, we also consider distributions of

5q = Q2er — Gan (I11.19)
Qza

to better quantify the fraction of halos differing by a given amount between 2LPT
and ZA simulations. This is better suited to track the fractional differences between
the halo populations and allows us to pose questions like: how many 2LPT halos are
more massive than their ZA counterparts by at least a given amount? However, this
function is inherently non-symmetrical, and is only defined for d¢ > —1 for positive
quantities like mass and concentration. Therefore, in order to count halo pairs that

differ by a certain amount, regardless of whether ¢ is larger for the 2LPT or ZA halo,

82



we define
1

= — -1 II1.20
dg+1 ’ ( )

0eq

the value for which a halo pair with a larger ¢ in ZA would differ by the same factor

as a halo pair with a larger ¢ in 2LPT.

II1.3 Results

With our catalog of matched dark matter halos, we directly compare differences in
halo properties arising from initialization with 2LPT vs ZA. We consider halos on a
pair-by—pair basis as well as the entire sample as a whole. Overall, we find 2LPT

halos have undergone more growth by a given redshift than their ZA counterparts.

I11.3.1 Individual halo pairs

We compare large scale morphologies, density profiles, and various other halo proper-
ties for halo pairs on an individual halo-by—halo basis for several of the most massive
halos. Morphologies appear similar for most halos, indicating good halo matches be-
tween simulations. However, many pairs display differences in central morphology,
such as the number and separation of central density peaks. We interpret these cases
to be examples of differences in merger epochs, in which case one halo may still be
undergoing a major merger, while its companion is in a more relaxed post-merger
state. We give an example of one such pair at z = 6 in Figure III.1. The top two
rows show density projections of the nuclear regions for a large 2LPT and matching
ZA halo (first and second rows, respectively). We find the zZA halo to contain two
distinct density peaks with a separation of ~ 10 kpc, while the 2LPT halo displays
only a single core. On the third and fourth rows, we plot the density profiles of the
same two halos (2LPT and ZA, respectively). Here, with nearly identical virial radii,

we can readily see that the 2LPT halo is more concentrated than its ZA counterpart.
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Figure II1.2: Histograms of AM,;, (left column) and Ac (right column) for snapshots at z = 14.7,
z =10.3, and z = 6.0 (top, middle, and bottom panels, respectively). The small gray-filled histograms
count only the top 25% most massive halos. The main histograms are fit with a generalized normal
distribution, overplotted as red dashed curves, with parameters for mean, scale, and shape (see
Equation II1.10). The distributions for AM,;, have positive means and heavier 2LPT halos, with
the most pronounced difference at high redshift. The distributions shown here have means of (8.4 +
1.8)x 1072, (4.8740.87) x 1072, and (1.7940.31) x 1072, respectively. The skew of the distribution is
also the most positive at high redshift, and shifts toward symmetry by z = 6. The Ac distributions
remain symmetric about zero and have negligible skew. The means are consistent with zero, at
(2.6 £2.7) x 1072, (0.2 £ 2.6) x 1072, and (0.3 + 1.1) x 1072, respectively. Both distributions have
excess kurtosis consistently larger than that of a standard Gaussian distribution, with a sharp peak
and heavy tails.
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I11.3.2 Differences in ensemble halo properties
For the halo population as a whole, we examine distributions of virial mass M,;, and
concentration c. We plot histograms of AM,;, and Ac in the left and right columns,
respectively, of Figure II1.2 for redshifts 14.7, 10.3, and 6.0. For each panel, the blue
histogram features the entire halo sample, and the smaller gray-filled green histogram
displays only the top 25% most massive halos, ordered by 2LPT mass. Fits to the
primary histograms are overplotted as red dashed curves.

Throughout the simulation, we find a tendency for 2LPT halos to be more massive.
At z = 15, the mean of the AM,;, distribution is (9.3 4= 1.2) x 1072, The mean is
consistently positive (heavier 2LPT halos) and is most displaced from zero at high
redshift. The peak of the distribution gradually moves closer to zero as we progress
in redshift. We find the least difference between paired halos for the final snapshot
at z = 6, with pan,, = (1.79 £0.31) x 1072

The higher-order moments of the AM,;, distribution are of interest as well, as we
find significant deviation from a Gaussian distribution. One may expect this from
the non-linear nature of gravitational collapse; the most massive outliers collapse
earlier in 2LPT, and this head start compounds subsequent evolution. As we use
a symmetrical generalized normal distribution to fit the data, the skew cannot be
recovered from the fit itself; we therefore measure deviation from symmetry directly
from the data. By z = 6, we observe a rather symmetrical distribution, with both
sides of the histogram equally well described by our fit. However, at higher redshift,
we note a marked increase in skewness and deviation from this symmetry. As redshift
increases, we observe an increasing difference between the fit curve and the bins to
the left of the histogram peak.

We find the distributions to be much closer to a Laplace distribution than a Gaus-

sian, with shape parameter consistently sitting at or very close to f = 1. Compared

to a Gaussian distribution, the larger excess kurtosis implies a narrower central peak
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Table I11.1: Coefficients for linear least squares fits from Figure II1.3.
A B

AMy, (7.88+£0.17) x 1073 (—3.07 £ 0.14) x 1072
Ac  (3.6240.95) x 1073 (—2.34 4 0.84) x 1072

and heavier outlying tails. Our fit is constrained such that 5 > 1, so the kurtosis of
the data itself could potentially be higher than the fit implies.

We find no overall preference for more concentrated 2LPT or ZA halos. In contrast
to the AM,;, histograms, Ac shows very little deviation from symmetry about zero.
Throughout the simulation, we find the distributions to have a mean close to zero
and negligible skew. The widths of the distributions are much larger than those for
A M., with the standard deviation of the Ac distributions consistently about an
order of magnitude higher than for AM,;.. As with mass, concentration histograms
are sharply peaked with heavy tails, implying a tendency for halo pairs to move

towards the extremes of either very similar or very discrepant concentrations.

II1.3.2.1 Time evolution of mass and concentration differences

In Figure II1.3, we more quantitatively assess the evolution of our various trends
hinted at in Figure II1.2. Here, we plot the mean, root mean square (rms), standard
deviation, skew, and kurtosis for AM;. and Ac as functions of redshift. Uncertainty
in the mean is estimated directly from least squares theory.

The mean for AM,;, is positive and highest at high redshift, trending toward zero
by the end of the simulation. Distributions for Ac retain means close to and consistent
with zero. Standard deviation decreases slightly for both AM,;, and Ac. From z = 15
to z = 6, standard deviation falls from (9.0 &+ 1.5) x 1072 to (6.08 £ 0.31) x 1072 for
AM,;, and from 0.73 £0.11 to 0.551 =+ 0.026 for Ac.

We find least square linear fits for both mean AM,;, vs z and mean Ac vs z.

Coeflicients for slope A and y-intercept B for the fit equation u = Az + B are given
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Figure II1.3: Mean, standard deviation, and rms (left column) and skew and excess kurtosis (right
column) as functions of redshift for AMy;, (top row) and Ac (bottom row). In the left column, u
is plotted as blue points, u £ o is plotted as the black dashed curves, and rms values are plotted
as a green dotted curve. The red dashed line is a linear fit to the mean. We find a significant
trend for p for AM,; to be more positive at higher redshift and gradually shift toward zero as the
simulation progresses, with a fit function of paar,, = (7.88 £ 0.17) x 10732z — (3.07 £ 0.14) x 1072
The mean for Ac, however, remains at or very near zero for most of the simulation and is fit by
pae = (3.624+0.95) x 10732 — (2.34 £ 0.84) x 1072, The AM,;, and Ac distributions narrow over
time, with a slight decrease in o. In the right column, we plot skew (blue curve) and excess kurtosis
(red curve). Skew is positive for much of the simulation for AM,;,, but is much smaller for Ac.
Kurtosis is large (much more peaked than Gaussian) for both AM,;, and Ac throughout much of
the simulation, and especially at later redshift.
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in Table III.1 for both cases. We find a significant trend for AM,;,, with a slope ~ 460
from zero. Conversely, the slope for Ac is much smaller and, considering the larger
spread of the underlying distributions, can be considered negligible. For AM,;., the
y-intercept coefficient B likely has little meaning in terms of the actual behavior at
z =0, as we expect the trend to level out at later redshift.

We do note, however, that the mean can be deceiving as an indicator of total
difference between halo populations, especially when it is close to zero as with con-
centration. It should be noted that while the mean can indicate a lack of average
difference between the whole sample of 2LPT and ZA halos, there can still be very large
discrepancies between many individually paired halos. We visualize this by plotting
the rms of AM,;, and Ac, which is plotted as a green dotted curve. Unlike the mean,
standard deviation, and kurtosis, which are measured from fits to the histograms, rms
is measured directly from the data and is not dependent on fitting. The large rms
values are indicative of how much overall difference can arise between 2LPT and ZA
halos, even though the differences may average to zero when considering the entire
population. The rms for both AM,;, and Ac starts highest at high redshift—0.19 for
AM,;, and 0.57 for Ac at z = 15—and steadily decreases throughout the simulation,
reaching minimums of 0.11 for AM,;, and 0.45 for Ac by z = 6.

Additionally, it is of interest to consider the percentage of halo pairs that are
“wrong” at some given time, regardless of whether the quantity is higher in 2LPT or
zA. For example, if we count halos outside a slit of € = 10% around Ag = 0, we find
that by z = 6, 14.6% of halo pairs still have substantially mismatched masses, and
74.3% have mismatched concentrations. It is evident that a substantial percentage of
halo pairs can have markedly different growth histories, even when there is little or
no offset in the ensemble halo population average.

Kurtosis is consistently large for both mass and concentration, with a slight in-

creasing trend throughout the simulation for concentration. It reaches maximum

88



values of 17.5 + 2.4 at redshift 10 for AM,;, and 15.4 + 1.0 at the end of the simula-
tion at redshift 6 for Ac. Skew is positive for much of the simulation for mass, but is
much smaller for concentration. We find average skews of 0.39 £+ 0.29 for AM,;, and
0.045 + 0.028 for Ac. These higher moment deviations from Gaussianity again hint
at the non-linear dynamics at play in halo formation.

The narrow peak and heavy tails of the distribution may indicate a fair amount
of sensitivity to initial differences in halo properties, in that halo pairs that start
out within a certain range of the mean are more likely to move closer to the mean,
while pairs that are initially discrepant will diverge even further in their character-
istics. This is indicative of the non-linear gravitational influence present during halo
evolution, and is further supported by a kurtosis that increases with time.

The skew at high redshift for AM,;. may give another hint at the non-linear halo
formation process. Runaway halo growth causes more massive halos to favor even
faster mass accretion and growth. The positively skewed distributions show a picture
of 2LPT halo growth in which initial differences in mass are amplified most readily in
the earliest forming and most massive halos, again indicating the extra kick-start to
halo growth provided by 2LPT initialization. While the slight decrease in skew with
redshift may be counter-intuitive to this notion, it is likely that the large number of
newly formed halos begin to mask the signal from the smaller number of large halos

displaying this effect.

II1.3.2.2 Global halo population differences as a function of halo mass

We consider AM,;, and Ac as a function of average halo mass Myiy avg = (Myir,20er +
My z4)/2 for three representative timesteps in Figure III.4. The data are binned in
average virial mass, for which means and standard deviations are provided as the
black points and black dotted curves, respectively. The error bars on the black points

represent the uncertainty in the mean and are the standard deviation divided by the
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Figure ITI.4: AM,; (left column) and Ac (right column) as functions of My ave. For the 2-D
color histogram, halos are counted in rectangular bins and smoothed with a Gaussian kernel with a
logarithmic color scale. The halos are also divided into logarithmically-spaced bins in average virial
mass, and the mean for each bin is plotted as a black point. The black dotted curves are the standard
deviation around the mean. The magenta line is the linear least-squares best fit to the bin means.
The light grey dashed line at Ag = 0 is provided to guide the eye. The three rows again correspond
to snapshots at z = 14.7, z = 10.3, and z = 6.0. We again see the overall offset for positive AMy;,
as before, and additionally find a small tendency for more massive halo pairs to be more likely
to have even larger AM,;,. Fit equations for the left column panels are AM;, = —(0.5 £ 1.5) x
1072 log(Myir,avg) + (0.15£0.12), AMyi, = (1.03£0.46) x 1072 log(Myir avg) — (2.6 £3.8) x 1072, and
AMyi; = (3.49+0.99) x 1073 log(Myir,avg) — (6.8 £8.3) x 1073, respectively. Concentration shows an
opposite trend where more massive halos are less concentrated in 2LPT than in ZA. The right column
panels have fit equations Ac = —(0.256 £ 0.093) log(Myir,avg) + (2.07 £ 0.76), Ac = —(7.0 £ 1.2) x
1072 log(Myir,avg) + (0.595 £ 0.099), and Ac = —(1.10£0.31) x 1072 log(Myir,ave) + (0.103 £ 0.026),

respectively.
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Figure IIL.5: Slopes of the Ag vs. Myiy avg fit functions. The left and right panels correspond to
the AM,;, and Ac plots in the left and right columns, respectively, of Figure I11.4. Linear least-
squares fits to the data are overplotted as red dashed lines. Overall, we find a trend of positive
and increasing slope with redshift for AM,; and negative and decreasing slope with redshift for
Ac. We find fit equations of Slope = (9.4 £ 2.4) x 1074z — (1.8 & 1.8) x 1073 for AM,;, and
Slope = —(7.3 4+ 1.9) x 10732 + (3.7 £ 1.4) x 1072 for Ac. Snapshots at very high redshift, » > 14
for AM;, and z 2 13 for Ac, begin to deviate from these trends. However, it is uncertain if this
deviation is significant due to the low number statistics of our sample at such high z.

number of halos in that bin. We additionally bin the data in rectangular bins on a
2-D grid with a logarithmic color map to feature the entire distribution of the data.
Linear fits to the bin means are overplotted in magenta.

We find that AM,;, tends to increase with increasing My, ave for most snapshots.
2LPT halos are consistently more massive than their ZA counterparts, and, aside from
the highest redshift snapshots, this difference increases with average halo mass. While
less massive halo pairs have a larger spread in the difference in 2LPT and ZA mass,
more massive halo pairs are consistently heavier in 2LPT than in ZA. At redshift
14.7, we find a transition between negative and positive slopes, and here the fit is
AMy, = —(0.5 £ 1.5) x 107?log(Myir.avg) + (0.15 £ 0.12). The slope of the fit lines
then become positive and trends back towards zero as we progress in redshift, with a
fit of AMyi, = (3.49 +0.99) x 1073 log(Myiravg) — (6.8 £8.3) x 1072 by z = 6.

We additionally find a trend for more massive halo pairs to be more concen-
trated in ZA. This trend is somewhat stronger than for AM,;, but again, high
z snapshots differ from the trend. The fit equations for z = 15 and z = 6 are

Ac = —(0.256 £ 0.093) log(Muyiravg) + (2.07 £ 0.76) and Ac = —(1.10 + 0.31) x
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Table I11.2: Coefficients for linear least squares fits from Figure IIL.5.
A B

AMy  (944£24) x107* (=18 +1.8) x 1073
Ac  (=73+1.9)x107%  (3.7+1.4) x 102

1072 log(Myir ave) + (0.103 & 0.026), respectively. The negative slope for most of the
redshift range might be expected, as halo concentration is expected to decrease with
increasing mass for all but the largest halos, where the concentration begins to in-
crease with increasing mass (Klypin et al. 2011; Prada et al. 2012), and we find that
A M, increases with average mass for all but the highest redshift snapshots. The
turnover in halo concentrations displayed in Klypin et al. (2011) and Prada et al.
(2012) should be relatively inconsequential for our simulations, as we have a signif-
icantly smaller box size, and thus a smaller maximum halo mass. Additionally, our
most massive halos account for a very small percentage of the total halo popula-
tion, causing the larger number of small halos to be more significant in the resulting
fits. The data have a larger variance than AM,; by a factor of ~ 2. Again, mass
dependence is smallest by z = 6. To reconcile these trends with the symmetrical
concentration distributions of Figure I11.2, we note that the trends in mass may be
obscured by integration across the entire mass range and still result in overall Ac
distributions symmetric about zero. Additionally, the histograms of Figure I11.2 may
be swamped by the large number of low mass halos, which masks the large difference
in concentration seen here.

The slopes of the fits to the Ag vs. M, ave data are plotted in Figure II1.5. Linear
least-squares fits are overplotted as red dashed lines. We find a trend for there to
be more Ag dependence on M, ave With increasing redshift, except for the highest z
snapshots, where the trends seem to reverse. Coefficients A and B for the fit equation
Slope = Az + B are listed in Table II1.2. The data are well-fit by the best fit line for

most of the redshift range, except for z 2 14 for AM,;, and z 2 13 for Ac, which begin
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to deviate from the trend. While this may simply be due to the fluctuations inherent
when dealing with the low number of matched halos available in our sample at these
very high redshifts, a shift to positive slope for concentration may be expected. At
these redshifts, only the most massive halos halos fall above our particle threshold,
whereas at later redshift, the large number of small halos can overwhelm the statistics.
These massive halos are most affected by high redshift differences due to initialization

and may retain larger 2LPT concentrations due to earlier formation.

I11.3.3 A census of halo population differences

As our distributions of Agq rely on the average quantity ¢aye = (gapr + ¢za)/2 for
normalization, it can be difficult to extract certain statistics, such as the fraction of
halo pairs differing by a certain amount between 2LPT and ZA simulations. To address
this, for this section, we redefine our difference distributions to instead use ¢,, as the
normalization factor (see Equation II1.19). In Figure II1.6, we plot, as functions
of redshift, statistics derived from these alternate fractional difference distributions
0 M, and dc. In the left column, we plot the dq of the peak of the distribution along
with the dg where various percentages of the halo pairs fall at or above dq.

As the dq value of the peak of the distribution is the location of the mode, it
represents the most typical halo pair. While concentration differences remain close
to zero throughout the simulation, the mass difference peak moves from a dM,; of
9x 1072 at 2 =15t0 3 x 1072 at 2 = 6. The 1% of halo pairs with the largest excess
2LPT mass have 2LPT mass at least twice ZA mass at z = 15 and 1.5 times ZA mass
at z = 6. For concentration, the 1% most 2LPT concentrated halo pairs differ by at
least a factor of 6 at z = 15 and 4 at z = 6.

In the right column of Figure II1.6, we plot the fraction of halos f; that fall outside
various 0q values. The solid curves represent halo pairs that have dq greater than or

equal to the listed values, i.e., the fraction of halo pairs where the 2LPT halo has
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Figure II1.6: Statistics for distributions of §M,;, (top row) and ¢ (bottom row) as functions of
redshift. Left column: The dq of the peak of the distribution (black curve), and the d¢ where 50%
(red dashed curve), 10% (green dashed curve), and 1% (blue dashed curve) of the halos fall at
or above dq. As with distributions of AM,;., 6 My, has the largest positive displacement at high
redshift and steadily decreases throughout the simulation. Additionally, ¢ maintains a peak near
zero and has a spread much larger than that of M. Right column: The fraction of halos with dq
greater than 0.10 (solid blue curve), 0.50 (solid green curve), 1.00 (solid red curve), and 4.00 (solid
black curve). The dashed curves additionally count halo pairs with d¢ lower than the corresponding
equivalent displacements of -0.09, -0.33, -0.50, and -0.80, respectively (see Equation I11.20). We find
that 50% of 2LPT halos are at least 10% more massive than their ZA companions at z = 15, reducing
to 10% by z = 6. Halos in 2LPT are at least twice as concentrated for 12% of halos at z = 15 and
7.8% of halos at z = 6.
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a virial mass or concentration that is at least 1.1, 1.5, 2.0, or 5.0 times that of its
corresponding ZA halo. The dashed curves represent the fraction of halo pairs where
one halo has a virial mass or concentration at least 1.1, 1.5, 2.0, or 5.0 times that of
its companion, regardless of whether the 2LPT or zZA value is higher.

We find that half of halo pairs are at least 10% more massive in 2LPT at z = 15.
By z = 6, this has fallen to 10%. Furthermore, 1% are at least twice as massive in
2LPT at z = 15, and by z = 6, this has only reduced to 0.3%. Halos in 2LPT are
at least twice as concentrated as their ZA counterparts for at least 12% of the halo
population at z = 15 and at least 8% by 2z = 6. Halo pairs that are at least 5 times
as concentrated in 2LPT make up 1.3% of the sample at z = 15 and 0.3% at z = 6.

If we consider only the difference in properties between paired halos, regardless
of whether the 2LPT or ZA halo has the higher mass or concentration, we include
an even larger percentage of the population. We find 54% of the halo pairs differ in
mass by at least 10% at z = 15, with 16% differing by z = 6. Halos that are at least
twice as massive in either 2LPT or zZA account for 1.1% at z = 15 and 0.5% at z = 6.
Halos that are at least twice as concentrated in either 2LPT or ZA account for 25%

at 2 =15 and 15% at z = 6.

II1.4 Discussion

As we evolve our DM halo population from our initial redshift to z = 6, we find
that simulation initialization with 2LPT can have a significant effect on the halo
population compared to initialization with zA. The second-order displacement boost
of 2LPT provides a head start on the initial collapse and formation of DM halos.
This head start manifests itself further along in a halo’s evolution as more rapid
growth and earlier mergers. 2LPT halos are, on average, more massive than their zA
counterparts at a given redshift, with a maximum mean AM,;, of (9.3 +£1.2) x 1072

at z = 15. The larger mass for 2LPT halos is more pronounced for higher mass
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pairs, while 2LPT halo concentration is larger on the small mass end. Both mass and
concentration differences trend towards symmetry about zero as halos evolve in time,
with the smallest difference observed at the end of the simulations at z = 6, with
a mean AM,;, of (1.79 £ 0.31) x 1072, Casual extrapolation of our observed trends
with redshift to today would indicate that, barring structure like massive clusters
that form at high redshift, 2LPT and ZA would produce very similar halo populations
by z = 0. However, the larger differences at high redshift should not be ignored.

The earlier formation times and larger masses of halos seen in 2LPT-initialized
simulations could have significant implications with respect to early halo life during
the Dark Ages. Earlier forming, larger halos affect the formation of Pop-III stars, and
cause SMBHs to grow more rapidly during their infancy (Holley-Bockelmann et al.
2012) and produce more powerful early AGN. The epoch of peak star formation may
also be shifted earlier. This could additionally increase the contribution of SMBHs
and early star populations to the re-ionization of the universe. Larger early halos
may also increase clustering, speed up large scale structure formation, and influence
studies of the high-z halo mass function, abundance matching, gas dynamics, and
galaxy formation.

In these discussions, it is important to note that it is wrong to assume that the zA
halo properties are the “correct” halo properties, even in a statistical sense. While halo
mass suggests the most obvious shortcoming of ZA simulations, even properties such
as concentration—that show little difference on average between 2LPT and ZA—can
have large discrepancies on an individual halo basis. Failure to consider uncertainties
in halo properties for high z halos in ZA simulations can lead to catastrophic errors.

We note a few caveats with our simulations and analysis. We did not exclude
substructure when determining the properties of a halo, and although this would not
change the broad conclusions herein, care must be taken when comparing to works

which remove subhalo particles in determining halo mass and concentration. Halo
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matching is not perfect, as it is based on one snapshot at a time, and may miss-count
halos due to merger activity and differences in merger epochs. However, we believe
this effect to be minor. While we compared ROCKSTAR’s output with our own fitting
routines and found them to broadly agree, ROCKSTAR does not provide goodness of fit
parameters for its NFW profile fitting and Rs measurements. It also may be debated
whether it makes sense to even consider concentration of halos at high redshift which
are not necessarily fully virialized.

As ROCKSTAR does not provide goodness-of-fit parameters for its internal density
profile measurements used to derive concentration, error estimates for concentration
values of individual halos are unknown. Additionally, proper density profile fitting
is non-trivial, as the non-linear interactions of numerical simulations rarely result in
simple spherical halos that can be well described using spherical bins. Halo centering
issues may also come into play, although ROCKSTAR does claim to perform well in
this regard.

We use a simulation box size of only (10 Mpc)3. This is too small to effectively
capture very large outlier density peaks. We would, however, expect these large
uncaptured peaks to be most affected by 2LPT initialization, so the effects presented
here may even be dramatically underestimated. Additionally, a larger particle number
would allow us to consider smaller mass halos than we were able to here, and to better
resolve all existing structure. A higher starting redshift could probe the regime where
2LPT initialization contributes the most. It would also be of interest to evolve our halo
population all the way to z = 0. The addition of baryons in a fully hydrodynamical
simulation could also affect halo properties. These points may be addressed in future

studies.
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ITI1.5 Conclusion

We analyzed three 2LPT and ZA simulation pairs and tracked the spherical overdensity
dark matter halos therein with the 6-D phase space halo finder code ROCKSTAR to
compare the effect of initialization technique on properties of particle-matched dark
matter halos from z = 300 to z = 6. This approach allowed us to directly compare
matching halos between simulations and isolate the effect of using 2LPT over ZA. In

summary, we found the following:

e 2LPT halos get a head start in the formation process and grow faster than their
ZA counterparts. Companion halos in 2LPT and ZA simulations may have offset

merger epochs and differing nuclear morphologies.

e 2LPT halos are, on average, more massive than zA halos. At z = 15, the mean
of the AM,;, distribution is (9.3 4+ 1.2) x 1072, and 50% of 2LPT halos are at
least 10% more massive than their ZA companions. By z = 6, the mean AM,;,

is (1.79 £ 0.31) x 1072, and 10% of 2LPT halos are at least 10% more massive.

e This preference for more massive 2LPT halos is dependent on redshift, with the
effect most pronounced at high z. This trend is best fit by AM,;, = (7.88 +
0.17) x 10732z — (3.07 £ 0.14) x 1072

e Earlier collapse of the largest initial density peaks causes the tendency for more
massive 2LPT halos to be most pronounced for the most massive halos, a trend
that increases with redshift. We find a trend of AM,;, = (1.03 £ 0.46) x
1072 log(Myir avg) — (2.6 £ 3.8) x 1072 for z = 10. By z = 6, this has flattened to
AMyi, = (3.49 £0.99) X 1073 log(Myiravg) — (6.8 £8.3) x 1073, As a function of
redshift, the slopes of these equations are fit by Slope = (9.4 +2.4) x 1074z —

(1.8+1.8) x 1073,

e Halo concentration, on average, is similar for 2LPT and ZA halos. However, even

by the end of the dark ages, the width of the Ac distribution—oa. = 0.551 £+
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0.026 at z = 6—is large and indicative of a significant percentage of halos with
drastically mismatched concentrations, despite the symmetrical distribution of
Ac. At z = 15, 25% of halo pairs have at least a factor of 2 concentration

difference, with this falling to 15% by z = 6.

e There is a trend for ZA halos to be more concentrated than 2LPT halos at
high mass. However, this trend seems to reverse above z ~ 12. We find Ac =
—(0.256£0.093) log(Myir avg) +(2.07£0.76) at z = 15 and Ac = —(1.10£0.31) x
1072 log(Myir avg) — (0.103 £0.026) at z = 6. The slopes of these equations, as a
function of redshift, are fit by Slope = —(7.3+1.9) x 107324 (3.7+1.4) x 1072
This is not visible in the symmetrical Ac distributions, as the trends are roughly
centered about zero and are washed away when integrated across the entire mass

range.

We have found that choice of initialization technique can play a significant role in
the properties of halo populations during the pre-reionization dark ages. The early
halo growth displayed in 2LPT simulations, or conversely the delayed halo growth
arising from the approximations made in ZA-initialized simulations, makes careful
attention to simulation initialization imperative, especially for studies of halos at
high redshift. It is recommended that future N-body simulations be initialized with
2LPT, and that previous high-z or high-mass halo studies involving ZA-initialized
simulations be viewed with the potential offsets in halo mass and concentration in
mind.

This work was conducted using the resources of the Advanced Computing Center
for Research and Education (ACCRE) at Vanderbilt University, Nashville, TN. We
also acknowledge the support of the NSF CAREER award AST-0847696. We would
like to thank the referee for helpful comments, as well as the first author’s graduate

committee, who provided guidance throughout this work.
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CHAPTER IV

Supermassive Black Holes and Their Hosts

A note to the reader: This chapter is, in essence, the paper previously submitted prior
to the Qualifier Exam to partially fulfill the requirements for candidacy for doctoral
research. It is presented as an aside, and the subject matter differs somewhat from
the rest of this document. This content serves as an introduction to the original plan
for dissertation research, which was to study the evolution of the spin of supermassive
black holes as they accrete gas in the infall towards the center of galaxies following
major merger events for the purpose of determining recoil kick velocities and retention
probabilities. However, the simulation methods used in this endeavor were found to
be ill-suited to follow black hole evolution between simulation snapshots, and the

project had to be abandoned.

IV.1 Introduction

The study of the evolution of galaxies and the growth of the supermassive black holes
at their cores go hand in hand. Although the typical length scales for the two can vary
by many orders of magnitude, they seem inexorably linked. Observational correlations
between galaxy and supermassive black hole properties hint at an underlying co-

evolution driven by shared mechanisms.

IV.1.1 Galaxy Properties

How do we describe a galaxy? Being extended, resolvable objects, galaxies provide
a unique wealth of observable characteristics not obtainable from point sources such
as stars. While many characteristics can be deduced about point sources, the actual
observations themselves come down to measuring position on the sky and measuring

flux as a function of frequency and time. From this information, all that we know
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about stars and other point sources, such as temperature, age, size, and composition,
can be inferred. However, for extended objects like galaxies, we are given more to

work with.

IV.1.1.1 Color

A galaxy’s color is determined by its stellar component. While a galaxy in itself may
be resolvable, for all but the most nearby of galaxies, individual stars are not. What
we see when looking at a particular small section of a galaxy is the averaged-together
light from stars in that section.

Broadly, bluer late-type spirals have a u —r color of around 1.3 — 2.0, while redder
early-type galaxies have a u—r color of around 2.3—2.7. The color of a galaxy can be a
good indicator for its age and evolutionary stage. Star formation processes generally
tend to produce many smaller, cooler, redder stars and fewer larger, hotter, bluer
stars. These small, cool stars are much longer-lived than their massive counterparts,
while the large, warm stars are much brighter. After star formation turns off, the
short-lived blue stars begin to die off, and the galaxy becomes redder, as more of the

fraction of total light comes from the red end of the population.

IV.1.1.2 Morphology

The extended nature of galaxies allows us to observe their morphology. The classi-
fication scheme originally devised by Hubble (1926) places galaxies into four broad
categories: elliptical, spiral, lenticular, and irregular. Elliptical galaxies tend to be
larger, redder, more gas-poor, and dominated by more radial orbits. Spiral galaxies
tend to be smaller, bluer, more gas-rich, and have more of a disk component. Spirals
can have a number or arms, a central bulge, and a central bar. Lenticular galaxies
are middle-of-the-road galaxies, with both a strong central bulge like an elliptical,
and an extended disk like a spiral, however without spiral arms. Irregular galaxies

tend to defy this simple classification scheme, and can be found in any number of
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Figure IV.1: The Hubble tuning fork. On the left of the diagram are elliptical galaxies. EO galaxies
are the most spherical, while E7 are the most flattened or elongated. SO are lenticular galaxies. The
top branch on the right are spiral galaxies with no bar, while the bottom right branch are spiral
galaxies with a bar. Both progress from tightly wound spiral arms and large bulges to loosely wound
spiral arms and small to no bulges, going from Sa to Sc or SBa to SBc.

configurations.

Figure IV.1 is a cartoon of the classification scheme. To the left of the diagram
are elliptical galaxies. The subcategories are an indication of the shape of the galaxy,
with the most spherical on the left and progressing to more flattened shapes to the
right. On the right of the diagram are spiral galaxies. These are broken into two
branches, based on whether or not the galaxy contains a central bar. Moving from
right to left, the spiral arms of the galaxies become more tightly wound, and the
central bulges become more dominant. At the center of the diagram where the spiral
fork meets the elliptical line, lie lenticular galaxies. Irregular galaxies are, as the name

would imply, irregular and do not fall on the diagram.
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IV.1.2 Supermassive Black Hole Properties

A non-merging black hole, much like an elementary particle, can be described simply
by its mass, charge, and spin. Its effect on its local spacetime, infalling matter,
and surrounding environment all come back to these three parameters. However,
determination of these parameters and the study of how black holes interact with
their surroundings can be quite involved.

Black holes are, by their very nature, black, and difficult to observe. We cannot
see light emitted directly from a black hole as we would a star, since a black hole is
defined as an object massive and compact enough to not allow light within its event
horizon to escape. We are forced, therefore, to employ other methods of measuring
black holes.

Thus far, the majority of progress in the measurement of black hole properties
has been in measuring mass. There are a number of ways to measure the mass of a
black hole. Here, we will briefly discuss masers, stellar dynamics, gas dynamics, and
reverberation mapping as methods of measuring a supermassive black hole’s mass.

Astrophysical masers are sources of stimulated spectral line emission in the mi-
crowave band formed in regions of high-density gas comprised of molecules such as
hydroxyl, formaldehyde, and water (Lo 2005). Since the emission frequencies of these
sources are very well constrained, high-accuracy Doppler shifts can be determined.
These Doppler shifts can then be used to determine velocities for the masers, and
thus how much mass is enclosed by their orbits. If these masers lie very close to the
supermassive black hole (SMBH) in the center of their galaxy, the enclosed mass can
be constrained to be primarily that of the SMBH.

Stellar dynamics and gas dynamics both probe light coming from matter near the
black hole. The width of broadened spectral lines from either the stars or gas can
be used to determine a velocity dispersion for the matter local to the SMBH. This

velocity dispersion, therefore, can then be used to determine the potential through
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Figure IV.2: Maser orbits fit to a warped disk for NGC4258. Masers can also be useful for distance
determinations. Here, the positions and velocities of water masers are able to be fit to a warped
disk model surrounding a supermassive black hole. This allows the interpolation of physical radii
away from the black hole, giving us both the black hole mass and an standard ruler to allow precise
determination of the distance to NGC4258. (Herrnstein et al. 1999)

which the matter is traveling, and thus the mass of the black hole.

A special case of stellar dynamics for which the orbits of the constituent stars can
be resolved—mnamely, for the case of our own Milky Way—adds another dimension to
our knowledge of the stellar orbits. Over time, we can observe the proper motion on
the sky for these orbits. Combining these measurements with Doppler measurements
for radial velocity yields full orbital solutions. Then, it simply requires Kepler’s laws
to determine the mass of the SMBH.

Reverberation mapping can be thought of as “echo-mapping” the gas disk around
a SMBH. Continuum emission very near the black hole travels outward and stimulates

broad line emission in surrounding gas. Any changes in the continuum emission will
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take time to propagate to the broad line region, since the speed of light is finite. By
measuring the timing difference in the change in continuum emission and change in
stimulated broad line emission, the physical distance from the SMBH to the broad
line region can be inferred. With this radius, and the velocity of the gas in the broad
line region measured by the width of the broadened lines, a black hole mass can be

determined (Blandford & McKee 1982).

IV.1.3 Correlations

Correlations between varying properties of galaxies and black holes can provide much
deeper insight into the dynamics that shape the evolution of both. Of particular
interest here are the fundamental plane of elliptical galaxies, the M — o relation, and

the green valley-AGN relation.

IV.1.3.1 The M-Sigma Relation

If we consider the all the observable properties of a galaxy and compare them to the
mass of its SMBH, the tightest correlation can be found with the velocity dispersion
o of the galaxy’s bulge. Such a tight correlation is surprising, as the sphere of in-
fluence of a typical SMBH does not extend much past order a few pc, while bulges
exist on scales of a kpc or greater. In essence, the supermassive black hole and the
outer edges of the bulge shouldn’t “feel” each other. Nevertheless, the correlation is
indeed there, suggesting some mechanism that influences—or is influenced by—both
of them. Giiltekin et al. (2009) use a sample of 49 Mpy measurements and 19 upper
limits to measure this correlation, and find log(Mpg/Ms) = a+ Blog(c/200 km s™1)
with (a, 8, €) = (8.12 £ 0.08 M, 4.24 £+ 0.41M,0.44 £ 0.06 M) for all galaxies and
(e, B,€0) = (8.23 +0.08 M, 3.96 + 0.42M,,0.31 £ 0.06 M) for ellipticals, where ¢ is

the intrinsic scatter in the relation.
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Figure IV.3: The M-o relation for galaxies with dynamical measurements. Black hole mass is
plotted vs velocity dispersion of its host spheroid. The symbols represent the method by which
the black hole mass was measured: pentagrams for stellar dynamics, circles for gas dynamics, and
asterisks for masers. Upper limits are given by arrows. Error ellipses are colored by galaxy type, with
red for ellipticals galaxies, green for lenticular galaxies, and blue for spiral galaxies. The saturation
of the color is inversely proportional to the area of the ellipse. For this sample, the best fit relation
is My = 10812 Mg (/200 km s~1)424. Galaxies not included in this fit are labeled as squares.
(Giiltekin et al. 2009)
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IV.1.3.2 The Fundamental Plane

While not a direct correlation with the properties of supermassive black holes, the
fundamental plane of elliptical galaxies offers insight into the characteristics of their
hosts. The fundamental plane is a three-parameter correlation between properties
of elliptical galaxies: velocity dispersion, effective radius, and surface brightness.
This correlation (Figure IV.4) between these three parameters is tighter than the
combination of any two alone (Djorgovski & Davis 1987). The fit for this correlation
can be given as log R, = 0.36((I)./up) + 1.4log 0y, where R, is the effective radius
in kpc, (I), is the mean surface brightness interior to R, in units of pp, and oy is the

velocity dispersion in km s~ (Binney & Merrifield 1998).

IV.1.3.3 The Green Valley

When considering both the color and stellar mass of a galaxies, a correlation emerges
where many galaxies lie in either the “blue cloud” of bluer, lower mass galaxies, or
the “red sequence” of redder, generally higher mass galaxies. The area between these
two is known as the “green valley” and, while not as populated as the blue cloud or
red sequence, holds special interest when active galactic nuclei (AGN) are considered.
AGN are very luminous regions at the centers of some galaxies. Schawinski et al.
(2010) show that galaxies falling on the green valley are much more likely to host
AGN than galaxies on the blue cloud or red sequence, hinting at an underlying link

between the evolution of galaxies, and the activity at their centers.

IV.2 Galaxy Evolution

IV.2.1 Dark Matter Halos

Every galaxy resides inside a dark matter halo. Often about an order of magnitude
larger in both radius and mass than the baryonic component, dark mater halos dom-
inate the large-scale behavior of galaxies. Dark matter is matter that is thought to

interact very weakly or not at all with light and ordinary matter, except gravita-
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Figure IV.4: The fundamental plane for elliptical galaxies. Top panels: The top panels show the
one-parameter scaling relations, with the relation between radius and mean surface brightness on
the left and the relation between luminosity and velocity dispersion (the Faber-Jackson relation) on
the right. Bottom left: The relation between the surface brightness and velocity dispersion. This is
an almost face-on view of the fundamental plane. Bottom right: The relation between the effective
radius and the combination of surface brightness and velocity dispersion. This is the edge-on view
of the fundamental plane. (Kormendy & Djorgovski 1989)
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Figure IV.5: Distribution of the fraction of galaxies containing AGN. Galaxy color in u-r is plotted
vs stellar mass. The contours are the galaxy population for all galaxies (top-left), early-type galaxies
(top right), intermediate-type galaxies (bottom left), and late type galaxies (bottom right). For the
three sub-samples, dotted contours represent the full sample for comparison. The green shaded
contours represent the fraction of galaxies in that subsample that contain active galactic nuclei. It
can be clearly seen that the AGN fraction is highest for galaxies falling within the green valley.
(Schawinski et al. 2010)

tionally. Evidence for dark matter comes from a number of sources, including the
relatively flat rotational velocity curve of galaxies, the velocity dispersion of galaxies,
gravitational lensing measurements, galaxy clustering, and the offset between the gas
and dominant mass measured in the Bullet cluster. Here we will briefly discuss the
evidence from flat rotation curves.

If there were no dark matter component and only the baryonic components (i.e.
stars and gas) contributed to the galactic potential, we would expect the rotational

velocity of galaxies to fall off with radius. However, observations show that the
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Figure IV.6: Rotation curves for 21 Sc galaxies. It is readily identifiable that the rotation curves
do not fall off as would be expected for galaxies without a dark matter component. (Rubin et al.
1980)

rotation curve remains relatively flat (Rubin et al. 1980). Figure IV.6 shows several
observed rotation curves.

Navarro et al. (1997) found that dark matter halos generally follow the same
density profile, regardless of mass. This universal dark matter density profile can be

given as
1
P & Gy + rfa)

(IV.1)

where a is the radius where the profile transitions from an 7~ power law to an =3

power law.

IV.2.2 Galaxy Mergers

Galaxy mergers are the fundamental mechanism by which galaxies grow and evolve.
Collisions between galaxies trigger processes that can alter nearly all the properties
of the galaxies. Naturally, mergers increase the mass of galaxies. Starting from small
perturbations in the early universe, gravity slowly pulls matter together to form

larger and larger clumps. These clumps of gas and dark matter eventually form stars,
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beginning what we think of as typical galaxies, and over time, these galaxies merge
together into larger and larger galaxies.

Mergers affect many other properties of galaxies as well. Mergers distort the
shapes of galaxies, causing long tidal tails to form and the entire morphology to
appear irregular. The disk structures of spiral galaxies that form from the settling
of the rotational component are distorted and “puffed up” into components with ever
increasing bulge-like properties.

Mergers can trigger wide-scale starburst events, where a large portion of gas goes
into the formation of stars. Much of the gas component of the galaxy can subsequently
be blown out by the winds from the supernovae of short-lived O and B stars. This
shuts off star formation, and as the stellar population is no longer replenished with
new high-mass stars, the galaxy becomes progressively redder as large stars die.

The general trend is for mergers to move galaxies from the right side of the Hubble
tuning fork towards the left, turning blue, gas rich spirals into red, gas poor ellipticals.
This process is aided by the AGN feedback also triggered during galaxy mergers, as

we discuss in the following section.

IV.3 Supermassive Black Hole Growth
Supermassive black holes grow by two primary mechanisms, binary mergers and gas

accretion. Through a combination of these, black holes can grow to as large as ~ 10—

101 Mg, by z = 0.

IV.3.1 Binary Mergers

When two galaxies merge, the supermassive black holes at their hearts begin a process
that will eventually lead to their coalescence. There are generally thought to be three
stages to this journey. First, the black holes sink towards the center of the merged
galaxy through mass segregation and dynamical friction until they form a bound

orbit with each other. Then, the black holes tighten their orbit through three-body
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scattering of nearby stars. Finally, as the black holes become close enough together
for general relativistic effects to come into play, gravitational waves are emitted and

radiate away the remaining orbital energy until the binary coalesces.

IV.3.1.1 Dynamical Friction and Inspiral
During the majority of the inspiral process, the black holes do not “feel” each other’s
gravitational pull. Instead, interactions with the galaxy itself push the holes together.

As it travels through a galaxy, a black hole—or any massive body—is slowed by
the surrounding field of matter. Gravitational attraction pulls surrounding matter
toward the black hole. However, as the black hole is moving with respect to the local
medium, the attracted particles will tend to fall behind the black hole. This creates
a wake of overdensity that gravitationally attracts the black hole from behind and
slows its velocity. Chandrasekhar (1943) develops this notion of dynamical friction
for the motion of a star through a sea of other stars. If the distribution of velocities
of the surrounding particles is Maxwellian, the acceleration on the black hole can be
written as

dvy _47TG2M,01HA 2X e

di = U?\/l erf(X) — ﬁe* Vi, (IVQ)

where v, is the velocity of the black hole, M is it’s mass, p is the density of

surrounding matter, erf is the error function, In A is the Coulomb logarithm, and
X = vy /(v/20) where o is the velocity dispersion of the surrounding medium (Bin-
ney & Tremaine 1988). As the black hole is slowed by dynamical friction, it loses

angular momentum and sinks towards the center of the galaxy’s potential well.

IV.3.1.2 The Final Parsec Problem
Dynamical friction and mass segregation can only take us so far. Once the black holes
are close enough together, they form a bound binary orbit. This generally occurs for

separations of around a few to tens of parsecs. This presents a problem, however,
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since the orbit needs to shrink to around 1072-1073 pc in order for gravitational wave
emission to remove energy from the orbit in a significant amount. The orbit can be
tightened with three-body scattering of stars that wander through the orbit of the
binary, however, in the spherical galaxies where mergers often take place, there is a
depletion of stars with orbits that intersect the binary. Khan et al. (2011), however,
show that the non-spherical, triaxial potential typical of post-merger galaxy remnants
can efficiently funnel stars through the orbit of the black hole binary with sufficient

intensity to tighten the binary orbit to the gravitational wave regime.

IV.3.1.3 Gravitational Waves and Recoil Kicks

Once the black hole binary separation reaches the point where strong field general
relativistic effects come into play, we no longer require external influences to nudge
the black holes together. In the final plunge toward coalescence, the black hole binary
sheds energy through emission of gravitational radiation. As energy is radiated away,
the binary tightens its orbit until the two black holes merge into one. Following
this coalescence, the resultant black hole undergoes a “ringdown” phase, in which the
distorted space time settles back down into a black hole that can again be simply
described by mass, charge, and spin.

The emission of gravitational waves has two interesting consequences. First, the
radiation from two merging supermassive black holes is extremely loud, and can
potentially provide an observational signature of the process for gravitational wave
observatories. Second, the gravitational waves carry linear momentum, leading to a
recoil “kick” imparted to the black hole merger remnant.

Recent advances in numerical relativity simulations have provided a much deeper
insight into the black hole binary merger process than has been previously available.
Waveforms produced from these simulations (Figure IV.7) can be used to predict what

gravitational wave observatories such as LIGO and LISA would expect to observe
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Figure IV.7: Gravitational waveform for an equal-mass, non-spinning black hole binary merger.
This is the final waveform, extrapolated to infinity, from the numerical relativity simulation of Scheel
et al. (2009). The waveform is shown on the top panel with a linear y-axis and on the bottom panel
with a logarithmic y-axis. The left panels are the earlier stages of inspiral, and the right panels show
the merger and ringdown stages.

for signals originating from merging supermassive black hole binaries. Having these
waveforms as templates for comparison to data can greatly increase the signal to noise
ratio for these detectors, potentially allowing the gravitational wave events to be seen
among the sea of noise. These waveforms produced from simulations of the last few
orbits of inspiral through the merger and ringdown can be combined with waveforms
suggested from post-Newtonian approximations for the longer duration inspiral to
provide a complete extended signal to match against.

For asymmetric mergers, gravitational radiation is emitted anisotropically. This
causes a recoil kick, in which the gravitational waves impart a net velocity to the final
black hole with respect to the original center of mass. The magnitude and direction

of this kick are dependent on the mass ratio of the binary and the spins of the two
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black holes—in all, a 7-dimensional parameter space. This large parameter space has
been largely explored with numerical relativistic simulations, and analytic equations
can be fit to the data to predict the recoil from a given merger configuration. Holley-

Bockelmann et al. (2008), give these equations as

Viick = (1 + €) [& (v + v1 cos§) + Juo siné + 2y ], (IV.3)
where
VU = A% {1 + Bﬁ} : (IV.4)
vl = Hﬁ @Q - qa!) , (IV.5)
v = K cos (6 — ) ﬁ (af — gat). (IV.6)

Here, the fitting constants are A = 1.2x 10* km s™!, B = —0.93, H = (7.34+0.3) x 10°
km s7!, and K = (6.0 4 0.1) x 10* km s~!. The 2 unit vector is in the direction of
the orbital angular momentum, and L and || refer to components perpendicular and
parallel to Z, respectively. The fitting parameters are the eccentricity e, the mass
ratio ¢ = Mo /M, and the reduced spin parameters o; = S;/M? where S is the spin
angular momentum. The orientation of the merger is given by the angles ©, ©¢, and
¢ (Holley-Bockelmann et al. 2008).

Slices through this parameter space are shown in Figure IV.8. For certain config-
urations of the merger, the recoil velocity can be very high. Very asymmetric mergers
can produce recoils as high as ~ 4000 km s~!. These large recoils can be enough for
the black hole to escape the potential well of its host galaxy and be ejected. Even less
extreme recoil kicks can affect the evolution of black holes, as the kicked black hole
can oscillate about its host’s center, potentially changing its local gas environment

and accretion rate.
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Figure IV.8: Left: Gravitaional wave recoil velocity from a merger of nonspinning black holes
as a function of eccentricity and mass ratio. Data from numerical relativity simulations (Gonzélez
et al. 2007) are overlaid along the zero eccentricity line. The overlaid white contours are the escape

velocity of a typical globular cluster, 50 km s~!. Right: Gravitational wave recoil kick velocity

as a function of spin parameter and mass ratio for a merger of spinning black holes on a circular
orbit with spins perpendicular to the orbital plane of the binary and anti-aligned with each other.
Again, the 50 km s~! escape velocity of a globular cluster is overlaid as white contours. Results
from numerical relativity simulations are over-plotted: squares for Koppitz et al. (2007), cirlces for
Herrmann et al. (2007), and star for Briigmann et al. (2004). (Holley-Bockelmann et al. 2008)

IV.3.2 Accretion

Although mergers play an important role in the evolution of supermassive black holes,
gas accretion can often dominate in terms of mass growth. Gas can fall into a black
hole in a number of ways. Here, we will discuss accretion onto a moving black hole,

spherical accretion onto a stationary black hole, and disk accretion onto a stationary

black hole.

IV.3.2.1 Bondi-Hoyle-Lyttleton Accretion

Let us first consider a massive object, in this case our black hole, moving through a
uniform density gas medium. Just as in the case of dynamical friction, particles close
enough to the black hole will feel a gravitational attraction, causing them to move
toward the black hole. As they move closer, the black hole is also moving through
the medium, causing the gas particles to focus behind the black hole. As the particle
stream reaches the wake directly behind the black hole, it collides with opposing

streams, causing the angular momentum to go to zero. If these particles are bound,
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they will proceed to fall onto the black hole. Hoyle & Lyttleton (1939) derive an

impact parameter for which particles will be accreted,

2GM
o< ogr = Ugo , (IV?)
and a mass accretion from the wake column at a rate of
: ArG?2M? o
Mus, = T0% Voo = ———m P2 (IV.8)
,UOO

where v, and ps are the velocity and density far away from the black hole, respec-
tively. Expanding upon this analysis, Bondi & Hoyle (1944) suggest that the accretion
rate should rather be

, (IV.9)

where « is a constant between 1 and 2, with a typical value of around 1.25.
For an accretor at rest in an isotropic gas medium, one would expect accretion
to be a spherical process. Bondi (1952) considers this configuration, and finds the

accretion rate for this “temperature-limited” case to be

(IV.10)

where ¢; o is the speed of sound far away from the black hole.
Extrapolating between this result and the “velocity-limited” case of Equation IV.9
suggests (Bondi 1952)
Mpy = , (IV.11)

as an order of magnitude estimate of the more general case of accretion. Numerical
simulations (Shima et al. 1985) suggest an additional factor of 2 is needed for bet-

ter agreement with simulation results, giving us a generally applicable from for the
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accretion rate,

Mgy = : (IV.12)

IV.3.2.2 Disk Accretion and Active Galactic Nuclei

Active galactic nuclei play a fundamental role in the evolution of both supermassive
black holes and their host galaxies. As gas falls in to a black hole in the center of
a galaxy, its angular momentum forces it into an accretion disk. As matter moves
towards the SMBH, it transfers its gravitational potential energy to thermal energy.
For accretion disks around supermassive black holes, this can cause the disk to emit
large amounts of electromagnetic radiation (Lin & Papaloizou 1996).

This emitted radiation is important in a number of ways. Most critical to the
SMBH itself is the radiation pressure exerted on infalling matter. This radiation
pressure sets an upper limit on the rate of accretion, as there is a point where the
force from emitted radiation balances the force of gravity for infalling gas (Rybicki &

Lightman 1979). This limit, known as the Eddington limit, is given by

Lpag = 4nGMcemy Jor = 1.25 x 10%erg s (M /M), (IV.13)

where c is the speed of light, mpy is the mass of hydrogen, and o is the Thompson
cross section.

The radiation given off by the accretion disk affects galactic properties as well.
Powerful AGN can strip away gas from the center of the galaxy, halting star formation.
This can quickly change a galaxy from a blue, gaseous, star forming galaxy into one

that is red, dry, and dead.

IV.4 Conclusion
We have seen that galaxies and the supermassive black holes at their centers both have

their most dramatic periods of evolution around the same time. Galaxy mergers grow
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both the galaxy and the SMBH. Galaxies grow and become more elliptical as mergers
bring in additional mass on orbits that can disrupt their gaseous disks. These mergers
also bring in counterpart supermassive black holes that fall toward the center of the
galaxy and merge with the central SMBH, while also triggering accretion events and

AGN feedback that pump energy back into the galaxy, shutting off star formation.

IV.4.1 Correlations

In light of these shared growth mechanisms, the correlations mentioned in Section
IV.1 begin to move from a purely observational coincidence to a natural result of
co-evolution. The M- relation is a natural byproduct of the simultaneous growth
of supermassive black holes and their galaxies during merger events. The mass of
the SMBH increases due to the merging of binary companions and increased levels
of accretion, while the host mass, and thus velocity dispersion, increases due to the
infalling galaxy itself. Likewise, the overabundance of AGN in galaxies lying in the
green valley is the consequence of simultaneous change. Mergers both trigger highly
luminous AGN feedback and cause an inexorable shift from the blue cloud, through
the green valley, to the red sequence. Even the increase in scatter of the M—o relation
at low masses can be explained by the galaxies having lower mass, and therefore being
more likely to allow a gravitational wave recoil kicked black hole of a given velocity

to escape.

IV.4.2 Open Questions

In the end, there remain a number of open questions. How can very large supermassive
black holes form so early? What is dark matter actually made of? How do galaxies
retain their black holes if merger recoils can kick them with velocities greater than the
escape velocity of the galaxy? Over what range are our correlations truly valid? These
are just some of the questions that are currently being investigated, and promise to

provide a rich field of study for years to come.
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CHAPTER V

Conclusion

In this work, we have explored the properties and evolution of dark matter halos in the
early Universe and the numerical effects of simulation initialization technique on their
mass and concentration. Using six cosmological dark matter only N-body simulations
evolved with the TreeSPH code GADGET-2, with three initialized according to the
Zel’dovich approximation and three initialized according to second-order Lagrangian
perturbation theory, we have compared distributions of halo properties as found by
the six-dimensional phase space halo finder ROCKSTAR. Our study has focused on
the early Universe in the pre-reionization epoch z > 6, as it is at these early times
that the subtle differences in numerical technique become most pertinent.

We have found marked differences in the halo populations between simulation
initialization type. The linear nature of ZA underestimates the growth of early halos,
resulting in a suppressed halo mass distribution and large concentration fluctuations.
2LPT halos get a head start in the formation process and tend to grow faster than zA
halos, with potentially earlier merger epochs and differing nuclear morphologies.

Halos in 2LPT simulations are, on average, more massive than ZA halos. This
effect is dependent on redshift and most pronounced at high z. We find 50% of 2LPT
halos are at least 10% more massive than their ZA companions at z = 15, and 10% are
at least 10% more massive by z = 6. Additionally, the earlier collapse of the largest
density peaks in 2LPT causes the mass difference to be largest for the most massive
halos. This is again more prominent at high redshift, until z ~ 14, where the trend
seems to begin to reverse.

While halo concentration is similar for ZA and 2LPT simulations on average, in-

dividual halo pairs can retain large discrepancies. We find 25% of halo pairs to have
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concentrations differing by at least a factor of 2 at z = 15 and 15% at least a factor
of 2 different by z = 6. Additionally, viewing concentration difference as a function of
mass displays a trend for zA halos to be more concentrated than their 2LPT counter-
parts at high mass, while low mass halos tend to be more concentrated in 2LPT. This
tendency increases with redshift until z ~ 12, where, as in the case of mass difference,
the trend appears to reverse.

There remains the opportunity for further research into the effects of ZA and 2LPT
initialization on high-z dark matter halos. Our simulations consist of 5122 particles in
volumes of (10 Mpc)3. This box size is too small to effectively capture very large out-
lier density peaks that correspond to the largest early halos. These large uncaptured
density peaks should be expected to be most sensitive to initialization technique. The
results in this work, therefore, may even be dramatically underestimated. Addition-
ally, as computer cluster hardware continues to improve, larger N simulations become
more feasible. A larger particle number would allow the increase in resolution needed
to consider smaller mass halos and better resolve existing substructure. This is most
critical for high redshift, as early-forming halos at large z are inherently represented
with fewer particles, making accurate measurement of internal structure such as the
density profile more difficult. Generation of consistent merger trees would allow track-
ing of individual halos through simulation snapshots, presenting the opportunity to
study precise merger epochs as well as full mass accretion histories. We primarily
explored virial mass and concentration in this study, but other halo statistics may
also prove interesting probes of simulation differences. ROCKSTAR provides measure-
ments for a number of additional halo properties, including angular momentum, spin,
nuclear position offset, nuclear velocity offset, ellipsoidal shape parameters, and en-
ergy statistics. It would be relatively straightforward to incorporate study of these
parameters into our analysis pipeline, which should also be readily adaptable to the

output of larger and higher resolution numerical simulations.
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Appendix A

RoOCKSTAR Configuration and Execution

A.1 Single Node Configuration File (Text)

#Rockstar Halo Finder
#Parallel config file for multi-cpu, multi-snapshot halo finding

#Note that periodic boundary conditions are assumed for NUM_WRITERS > 1.

#See README for details.

#0nce compiled ("make"), run Rockstar server as
# ./rockstar -c parallel.cfg

#Then launch the reading/analysis tasks with:

# ./rockstar -c auto-rockstar.cfg

#You will have to launch at least NUM_BLOCKS+NUM_WRITERS processes.

FILE_FORMAT = "GADGET2" # or "ART" or "ASCII"

PARTICLE_MASS = 0 # must specify (in Msun/h) for ART or ASCII

# You should specify cosmology parameters only for ASCII formats

# For GADGET2 and ART, these parameters will be replaced with values from the

# particle data file

SCALE_NOW = 1

ho = 0.7

01 = 0.73

Om = 0.27

# For GADGET2, you may need to specify conversion parameters.

# Rockstar’s internal units are Mpc/h (lengths) and Msun/h (masses)

GADGET_LENGTH_CONVERSION = 1le-3
GADGET_MASS_CONVERSION = 1e+10

# This specifies the use of multiple processors:
PARALLEL_IO = 1

# Output full particle information as well as halos for N number
FULL_PARTICLE_CHUNKS = 0

# This should be less than 1/5 of BOXSIZE
OVERLAP_LENGTH = 1.5

# This specifies how many CPUs you want to analyze the particles:

NUM_WRITERS = 8

# Calculate radii and other halo properties using unbound (0) or
BOUND_PROPS = 0

# This sets the virial radius/mass definition ("vir", "XXXc", or
MASS_DEFINITION = "vir"

# This specifies the I/0 filenames:
OUTBASE = "halos"

INBASE = "particles"

NUM_SNAPS = 1

NUM_BLOCKS = 1

#BGC2_SNAPNAMES = "snapnames.lst"
#FILENAME = "particles_<snap>.<block>.dat"

A.2 PBS Submission Script (Bash)

#!/bin/sh

#PBS -M djsissom@gmail.com
#PBS -m bae

#PBS -1 nodes=1:ppn=10
#PBS -1 pmem=3000mb

#PBS -1 mem=30000mb

#PBS -1 walltime=0:30:00
#PBS -o out.log

#PBS -j oe

# Change to working directory
echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

# Start the server
rockstar -c onenode.cfg &> server.out &

# Wait for auto-rockstar.cfg to be created
perl -e ’sleep 1 while (!(-e "halos/auto-rockstar.cfg"))’

mv halos/auto-rockstar.cfg

# Execute the reader processes

of procs

only bound (1) particles

"XXXb")

mpiexec -verbose -n 1 rockstar -c auto-rockstar.cfg >> clients.out 2>&1 &

sleep 20
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# Execute the analysis processes
mpiexec -verbose -n 8 rockstar -c auto-rockstar.cfg >> clients.out 2>&1

# - end of script

A.3 Post-Processing Script (Bash)

#!/bin/bash

echo ’running finish_bgc2...’
~“/projects/programs/nbody/rockstar/Rockstar-0.99.9/util/finish_bgc2 -c onenode.cfg -s 0

echo ’running bgc2_to_ascii...’

~“/projects/programs/nbody/rockstar/Rockstar-0.99.9/util/bgc2_to_ascii -c onenode.cfg -s 0 > halos/all_halos.bgc2.
ascii

echo ’running find_parents...’

~“/projects/programs/nbody/rockstar/Rockstar-0.99.9/util/find_parents halos/out_0.list 10.0 > halos/out_0.list.

parents

echo ’finished’
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Appendix B
CrOsSsSMATCH Modifications and Configuration

2LPT First Configuration File (Text)

MIN_SNAPSHOT_NUM O
MAX_SNAPSHOT_NUM 0

MAX_RANK_LOC 0

OUTBASE

B.2

crossmatch_21pt_first

zA First Configuration File (Text)

MIN_SNAPSHOT_NUM O
MAX_SNAPSHOT_NUM O

MAX_RANK_LOC 0

OUTBASE

crossmatch_za_first
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Appendix C

BGC2 Import Code (Python)

#!'/usr/bin/env python

1

2

3 import sys

| import struct

>

6 def read_bgc2(filename):
7 offset = 4

8 groupoffset = 8

9 particleoffset = 8

11 headersize = 1024
12 groupsize = 4%8 + 10%4

13 particlesize = 1%8 + 6%4

14

15 headerformat = ’=Q_16q.,194d’

16 groupformat = ’=2q;,2Q.,10f’

17 particleformat = ’=q_6f’

18

19 print "Reading,"+filename+"..."
20 fd = open(filename, ’rb’)

21 bin_string = fd.read ()

22 fd.close ()

23 print "Finished_reading, file."
24 bin_string = bin_stringloffset:]
25

26 # Header stuff

27 header_bin = bin_string[:headersizel
28 header_pad = headersize - 36%*8

header = list(struct.unpack(headerformat, header_bin[:-header_padl))

# Group stuff
ngroups = header [8]
print ’ngroups,=.’, ngroups
groupstart = headersize + groupoffset
groupend = groupstart + ngroups*groupsize
group_bin = bin_string[groupstart:groupend]
group = []
for i in range(ngroups):
group.append (list (struct.unpack (groupformat, group_bin[i*groupsize:(i+1)*groupsizel)))

# Particle stuff
particlestart = headersize + groupoffset + ngroups*groupsize + particleoffset
particle_bin = bin_string[particlestart:]
particle = []
p_start = 0
for i in range(ngroups):
npart = groupl[il[2]
particle.append ([])
for j in range(npart):
particle[i].append(list (struct.unpack(particleformat, particle_bin[p_start:p_start+particlesizel)))
p_start += particlesize

52 p_start += particleoffset

53

54 print "Finishedyparsing bgc2,file"
55 return header, group, particle

58 def main():
59 header, group, particle = read_bgc2(sys.argv[1])

61 print ’Header contents:’
62 for value in header:
63 print value

64 print

66 print ’Group[0],contents:’
67 for value in group[0]:

68 print value

69 print

print ’Particlesyinggroup[0]:’

for value in group[1]:
print value

71

72 for part in particle[0]:
73 print part

74 print

75

76 print ’Group[1],contents:’
7

7

79 print
80
81 print ’Particlesyinggroup[1]:’

82 for part in particle([1]:
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84
85
86
87
88

90

if

print part

__name__
main ()

’__main__’:
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Appendix D

Density Profile Code (Python)

#!'/usr/bin/env python

import sys

import bgc2

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.ticker import MultipleLocator
from scipy.optimize import curve_fit

from scipy.stats import chisquare

#read_mode = ’ascii2’
read_mode = ’bgc2’
if read_mode == ’bgc2’:
use_bgc2 = True
use_all = False
individual_masses = False
halo_id = 146289
nbins = 50
nfit = 500
ooms = 3.0
mass_scale = 1.0
common_mass = 5.33423e5

dist_scale = 1.0e3
#res_limit = 0.488
#res_limit 4.0
res_limit = 0.5
#res_limit = 10.0
draw_frac = 0.1
tick_base_major = 100.0
tick_base_minor = 10.0
find_com = False

elif read_mode == ’ascii’:
use_bgc2 = False
use_all = True
individual_masses = True
halo_id = 0
nbins = 100
nfit = 500
ooms = 5.0
mass_scale = 1.0el2
dist_scale = 200.0
res_limit = 1.0e-2
draw_frac = 2.0e-4
tick_base_major =
tick_base_minor = 20.0
find_com = True

elif read_mode == ’ascii2’:
use_bgc2 = False
use_all = True
individual_masses = True
halo_id = 0
nbins = 100
nfit = 500
ooms = 3.5
mass_scale = 1.0el0
dist_scale = 1.0
#res_limit = 3.0e-1

res_limit = 1.0
draw_frac = 1.0e-2
tick_base_major = 200.0
tick_base_minor = 40.0
find_com = True

else:

sys.exit (98712)

#outfile = ’asciitest_halo_properties.txt?’
outfile = ’density_profile_halos.dat’
comfile = ’center_of_mass.txt’

make_plot = False
#make_plot = True

draw_density = True

#plot_base = ’asciitest_density_profile.fig.’
plot_base = ’figure_’

plot_ext = ’.eps’

dist_units = ’kpc’

xlabel_proj = [r’X Position, (%suh$"{-1}$)> % (dist_units),
Positiony (%suh$~{-1}$)> % (dist_units)]

ylabel_proj = [r’Y Position, (%suh$"{-1}$)> % (dist_units),
Position, (%suh$~{-1}$)> % (dist_units)]

xlabel_prof = r’Radius,(%s h$°{-1}$)’ % (dist_units)
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r’X,Positiony, (%suh$~{-1}$)°

r’Z,Positiony (%suh$~{-1}$)°

%

%

(dist_units),

(dist_units),

r’Y,

r’Z,



81 ylabel_prof = r’Density, (M$_{\odot}$, %s$ {-3}$,h$"{2}8)> % (dist_units)
82 npixels = 50

83

84 #common_mass = 1.0e-7
85 #common_mass = 1.0e5
86 mass_col = 0

37 pos_cols = (1,2,3)

88 vel_cols = (4,5,6)

89 halo_id_col = 0

90

91 grav_const = 4.3e-6 # kpc M_sol~-1 (km/s)"2
92

93

94 def read_files(files):

95 data = 0

96 for file in files:

97 print ’Reading, file %s...’ % (file)

98 if data == 0:

99 data = np.genfromtxt(file, comments=’#’)

100 else:

101 data = np.append(data, np.genfromtxt(file, comments=’#’), axis=0)
102 print ’Finishedyreading, files.’

103 return data

104

105

106 def my_chisq(ydata,ymod,deg=2,sd=None):

107 W

108 Returns,the reduced chi-squaregerror,statisticyforyanarbitrary model,

109 chisq/nu, whereynuyis,the number of degrees of freedom. If individual

110 standardydeviations,(array,sd)g are supplied,_ then,the chi-square error

111 statisticyisycomputedyasytheysumyof squaredyerrors divided by, the standard
112 deviations._ Seeyhttp://en.wikipedia.org/wiki/Goodness_of_fit for,reference.

114 ydata,ymod,sd_assumed toybe Numpy, arrays._ deg integer.

115

116 Usage:

117 >>>,chisq=redchisqg(ydata,ymod,n,sd)
118 where

119 ydatay:,data

120 ymod, :umodel_ evaluated at, the,same x points as ydata
121 ny:ynumberof free parameters, in, the model

122 sdy:puncertaintiesyingydata

124 RodrigoyNemmen

125 http://goo.gl/8S100

126 guu"""

127 # Chi-square statistic
128 if sd==None:

129 chisq=np.sum((ydata-ymod) **2)

130 else:

131 chisq=np.sum( ((ydata-ymod)/sd)**2 )

132

133 # Number of degrees of freedom assuming 2 free parameters
134 nu=ydata.size-1-deg

135 return chisq/nu

136

137

138 def calc_m_enclosed(mass, pos):

139 r = np.sqrt(pos[:,0]*%2 + pos[:,1]1**2 + pos[:,2]%%2)
140 r = np.sort(r)

141 first_good_bin = 0

142 for i in range(len(r)):

143 if r[i] > res_limit:

144 first_good_bin = i

145 break

146 print ’riy,=’, r[first_good_bin-1]

147 print ’r2,=’, r[first_good_bin]

148 print ’r3,=’, rlfirst_good_bin+1]

149 m_extra = mass[0] * first_good_bin

150 r = r[first_good_bin:]

151 #m_enclosed = np.zeros(len(r))

152 #for i in range(len(r)):

153 # m_enclosed[i] = mass[0] * (i + 1.0)
154 m_enclosed = (np.arange(len(r)) + 1.0) * mass[0] + m_extra
155 return r, m_enclosed

156

157

158 def calc_density_profile(mass, pos):
159 r = np.sqrt(pos[:,0]**2 + pos[:,1]1**2 + pos[:,2]%%2)

160 max_r = r.max()

161 #min_r = max_r / 10**ooms

162 min_r = res_limit

163 log_range = np.loglO(max_r) - np.loglO(min_r)
164

165 #global nbins

166 local_nbins = float(nbins + 1)

167 #nbins = len(r) / 1000
168 while True:

169 bins = np.arange(local_nbins)

170 bins = max_r * 10.0**(log_range * bins / (local_nbins-1.0) - log_range)
171 bin_mass, r_bins = np.histogram(r, bins, weights=mass)

172 if (bin_mass == 0.0).any():
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173 local_nbins -= 1

174 continue

175 else:

176 break

177

178 #print ’Binning particles using bin edges of \n’, r_bins
179

180 rho = bin_mass / (sphere_vol(r_bins[1:]) - sphere_vol(r_bins[:-11))
181

182 N_bin, blah = np.histogram(r, bins)

183 rho_err = poisson_error(N_bin) * rho

184

185 return r_bins, rho, rho_err

186

187

188 def logbin(pos):
189 r = np.sqrt(pos[:,0]**2 + pos[:,1]1**2 + pos[:,2]%%2)

190 max_r = r.max()

191 min_r = max_r / 10**ooms

192 log_range = np.loglO(max_r) - np.loglO(min_r)

193

194 global nbins

195 nbins = float(nbins + 1)

196 bins = np.arange (nbins)

197 bins = max_r * 10.0x*(log_range * bins / (nbins-1.0) - log_range)
198

199 hist, bin_edges = np.histogram(r, bins)

200 #print ’Binning particles using bin edges of \n’, bin_edges
201 return hist, bin_edges

202

203

204 def poisson_error(N):

205 err = np.sqrt(N) / N

206 return err

207

208

209 def sphere_vol(r):

210 volume = (4.0 / 3.0) * np.pi * r**3

211 return volume

212

213

214 def get_rho_O(R_s, R_vir):

215 H = 70.0e-3 # km s~ -1 kpc~-1

216 G = 4.3e-6 # kpc M_sol~"-1 (km/s)"2

217 rho_crit = 3.0 * H*x2 / (8.0 * np.pi * G)

218
219 v = 178
220 ¢ = R_vir / R_s

221 g = 1.0 / (np.log(1.0+c) - c/(1.0+c))
222 delta_char = v * c*x3 * g / 3.0

224 return rho_crit * delta_char

227 def nfw_fit_rhoO(r, R_s, rho_0):

228 if R_s >= 1.0:

229 return (R_s - 1.0) * np.exp(r) + rho 0 / (( r / R_s ) * ( 1.0 + r / R_s )**2)
230 return rho 0 / (C r / R_s ) * ( 1.0 + r / R_s )*x2)

231

232

def nfw_fit_rhoO_log(r, R_s, rho_0):
r = 10.0%*r
R_s = 10.0x*R_s
rho_0 = 10.0x*rho_0
profile = rho 0 / (( r / R.s ) *x ( 1.0 + r / R_s )*%2)
return np.loglO(profile)

def nfw_def_rhoO(R_vir):
def _nfw_def_rhoO(r, R_s):
rho_0 = get_rho_O(R_s, R_vir)
return rho_0 / (C r / R_s ) * ( 1.0 + r / R_s )*x2)
return _nfw_def_rhoO

def nfw_databin_rhoO(rho_0):
def _nfw_databin_rhoO(r, R_s):
return rho 0 / (C r / R_s ) * ( 1.0 + r / R_s )*x2)
return _nfw_databin_rhoO

ot

def dm_profile_fit_rhoO_log(r, R_s, rho_0, alpha):
r = 10.0%*r
R_s = 10.0**R_s
rho_0 = 10.0*%**rho_0
alpha = 10.0%**alpha
profile = rho_ 0 / (C r / R_s ) * ( 1.0 + r / R_s )#**alpha)
return np.loglO(profile)

def dm_profile_fit_rhoO(r, R_s, rho_0, alpha):
return rho_ 0 / (( r / R_s ) * ( 1.0 + r / R_s )#*xalpha)
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265

266

267 def dm_profile_def_rhoO(R_vir):

268 def _dm_profile_def_rhoO(r, R_s, alpha):

269 rho_0 = get_rho_O(R_s, R_vir)

270 return rho_ 0 / (( r / R_s ) * ( 1.0 + r / R_s )*xalpha)
271 return _dm_profile_def_rhoO

272

273

274 def dm_profile_databin_rhoO(rho_0):

275 def _dm_profile_databin_rhoO(r, R_s, alpha):

276 return rho_ 0 / (C r / R_s ) * ( 1.0 + r / R_s )#**xalpha)
277 return _dm_profile_databin_rhoO

278

279

280 def nfw_cdf(r, R_s, rho_0):

281 r = 10.0%*r

282 R_s = 10.0**R_s

283 rho_0 = 10.0**rho_0

284 profile = rho_0 * R_s * (np.log(1.0 + r / R_s) - 1.0 / (1.0 + r / R_s))
285 return np.loglO(profile)

286

287

288 def nfw_cdf_nolog(r, R_s, rho_0):

289 profile = rho_0 * R_s * (np.log(1.0 + r / R_s) - 1.0 / (1.0 + r / R_s))
290 return profile

291

292

293 def mass_profile(s, c):

294 g = 1.0 / (np.log(1.0 + ¢c) - c / (1.0 + ¢))

295 return g * (np.log(1.0 + c * s) - c *x s / (1.0 + ¢ * s))
296

297

298 def fit_mass_profile(s, m_enclosed, err=None, R_vir=None):
299 #for i in range(len(s)):

300 # if s[i] > res_limit:

301 # first_good_bin = i
302 # break

303 first_good_bin = 0

304

305 #popt, pcov = curve_fit(nfw_cdf, np.logiO(r), np.loglO(m_outside), sigma=np.loglO(err))
306 # popt, pcov = curve_fit(nfw_cdf, np.logl0(r), np.logl0(m_outside))

307 # popt = 10.0%*popt

308 # pcov = 10.0%*pcov

309 popt, pcov = curve_fit(mass_profile, s, m_enclosed)
310

311 print ’fit_params,=’, popt

312 print ’covariance,=’, pcov

313 nfw_r = np.linspace(s[0], s[-1], nfit)
314 nfw_fit = mass_profile(nfw_r, popt[0])
315 chi2_fit = mass_profile(s, popt[0])

317 chi2 = chisquare(np.loglO(m_enclosed[first_good_bin:]), np.loglO(chi2_fit[first_good_bin:]))
318 chi2_nolog = chisquare(m_enclosed[first_good_bin:], chi2_fit[first_good_bin:])
319 print ’chi_squarey=’, chi2

320 print ’chi_square_nolog,=’, chi2_nolog

321 return nfw_r, nfw_fit, popt, pcov, chi2[0]
322

323

324 def fit_profile(r, rho, err=None, R_vir=None):
325 first_good_bin = 0

326 # for i in range(len(r)):

327 # if r[i] > res_limit:

328 # rho_0_databin = rhol[il

329 # first_good_bin = i

330 # break

331 # print ’first_good_bin =’, first_good_bin

< #ommoo - choose one fitting type --------- #

334 #popt, pcov = curve_fit(nfw_fit_rhoO, r, rho, sigma=err)

335 #popt, pcov = curve_fit(nfw_def_rhoO(R_vir), r, rho, p0=[10.0], sigma=err)
336 #popt, pcov = curve_fit(nfw_databin_rhoO(rho_0_databin), r, rho, sigma=err)
337 blah = 3

338 if blah == 0:

339 for i in range (100):

340 a = 2.0 * np.random.random() * 0.1 * r.max()

341 b = 2.0 * np.random.random() * 10.0

342 ¢ = 2.0 * np.random.random() * 2.0

343 try:

344 popt, pcov = curve_fit(dm_profile_fit_rhoO, r, rho, pO=[a,b,c]l, sigma=err)
345 except RuntimeError:

346 continue

347 if (popt[0] < r.max()) and (popt[2] >= 0.0):

348 break

349 elif i >= 99:

350 print ’noygoodyfit,found,for,this halo...?’

351 # return None, None, None, None, None

352 elif blah == 1:

353 #a = r.max() / 100.0

354 a = 0.001

355 b = rhol[first_good_bin]

356 c = 0.001
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358
359
360
361
362
363
364
365
366
367
368

370

431
432
433
434
435
436
437

439
440

442
443

445
446
447

#popt, pcov = curve_fit(dm_profile_fit_rhoO, r, rho, sigma=err)
Print 2 ---mmm e e 3

print ’rho_O_before,=’, b

#try:

#popt, pcov = curve_fit(dm_profile_fit_rhoO, r, rho, pO=[a,b,c], sigma=err, maxfev=1, xto0l=100.0)

popt, pcov = curve_fit(dm_profile_fit_rhoO, r, rho, pO=[a,b,c], sigma=err, xtol=1.0e-1)
#except RuntimeError:
# print ’just checking for now...’
print ’rho_Opafter,=’, popt[1]
#sys.exit ()
elif blah == 2:

#popt, pcov = curve_fit(dm_profile_fit_rhoO_log, np.logl0(r), np.logl0(rho), sigma=np.loglO(err))

popt, pcov = curve_fit(nfw_fit_rhoO_log, np.logl0(r), np.loglO(rho), sigma=np.loglO(err))
popt = 10.0x**popt
pcov = 10.0%*pcov
elif blah == 3:
popt, pcov = curve_fit(nfw_fit_rhoO, r, rho, sigma=err, p0 = [0.1, 1.0])

#popt, pcov = curve_fit(dm_profile_def_rhoO(R_vir), r, rho, sigma=err)
#popt, pcov = curve_fit(dm_profile_databin_rhoO(rho_0_databin), r, rho, sigma=err)
o . #

print ’fit_params,
print ’covariance

> Popt
, pcov

nfw_r = np.linspace(r[0], r[-1], nfit)

#Hoommmm - choose one fitting type --------- #

nfw_fit = nfw_fit_rhoO(nfw_r, popt[0], popt[1])

#nfw_fit = nfw_def_rhoO(R_vir) (nfw_r, popt[0])

#nfw_fit = nfw_databin_rhoO(rho_O_databin) (nfw_r, popt [0])

#nfw_fit = dm_profile_fit_rhoO(nfw_r, popt[0], popt[1], popt[2])

#nfw_fit = dm_profile_def_rhoO(R_vir) (nfw_r, popt[0], popt[1])

#nfw_fit = dm_profile_databin_rhoO(rho_O_databin) (nfw_r, popt[0], popt[1])

#o-mm - choose one fitting type --------- #
chi2_fit = nfw_fit_rhoO(r, popt[0], poptl[1])

#chi2_fit nfw_def_rhoO(R_vir) (r, popt[0])

#chi2_fit = nfw_databin_rhoO(rho_O_databin) (r, popt [0])

#chi2_fit = dm_profile_fit_rhoO(r, popt[0], popt[1], popt[2])

#chi2_fit = dm_profile_def_rhoO(R_vir) (r, popt[0], poptl[1])

#chi2_fit = dm_profile_databin_rhoO(rho_O_databin) (r, popt[0], popt[1])

#chi2 = my_chisq(rho, chi2_fit, 2, err)
chi2 = chisquare(rho, chi2_fit)

print ’chi_square,=’, chi2

chi2 = chi2[0]

return nfw_r, nfw_fit, popt, pcov, chi2

def draw_projection(fig, place, plot_lim, x, y):
ax = plt.subplot(2,3,place+l, aspect=’equal’)
im = ax.plot(x, y, linestyle=’’, marker=’.’, markersize=1, markeredgecolor=’blue’)
ax.set_xlabel (xlabel_proj[placel)
ax.set_ylabel (ylabel_proj[placel)
ax.set_xlim(-plot_lim, plot_lim)
ax.set_ylim(-plot_lim, plot_lim)
ax.xaxis.set_major_locator (MultipleLocator(tick_base_major))
ax.xaxis.set_minor_locator(MultipleLocator(tick_base_minor))
ax.yaxis.set_major_locator(MultipleLocator(tick_base_major))
ax.yaxis.set_minor_locator (MultipleLocator(tick_base_minor))
return fig

def draw_density_projection(fig, place, plot_lim, x, y):
limits = [[-plot_lim, plot_lim], [-plot_lim, plot_lim]]
ax = plt.subplot(2,3,place+l, aspect=’equal’)
#ax.set_xlim(-plot_lim, plot_lim)
#ax.set_ylim(-plot_lim, plot_lim)

#im = ax.plot(x, y, linestyle=’’, marker=’.’, markersize=1, markeredgecolor=’blue’)

z, xedges, yedges = np.histogram2d(x, y, bins = npixels, range = limits)

#z = np.logl0(z)

im = ax.imshow(z.T, extent=(-plot_lim, plot_lim, -plot_lim, plot_lim), interpolation=’gaussian’
)

ax.locator_params (nbins=6)

ax.set_xlabel(xlabel_proj[placel)

ax.set_ylabel (ylabel_proj[placel)
# ax.xaxis.set_major_locator(MultipleLocator (tick_base_major))
# ax.xaxis.set_minor_locator(MultipleLocator (tick_base_minor))
# ax.yaxis.set_major_locator(MultipleLocator(tick_base_major))
# ax.yaxis.set_minor_locator(MultipleLocator(tick_base_minor))

return fig

def draw_density_profile(fig, r, rho, err=Nomne):
ax = plt.subplot(2,1,2)
im = ax.loglog(r, rho, linestyle=’steps-mid-’)
linel = ax.axvline(res_limit, color=’black’, linestyle=’:’)
#ax.set_xlim(r_bins [0], r_bins[-1])
ax.set_x1lim(r[0] - (r[1]-r([0]), r[-1] + (r[-11-r([-21))
ax.set_xlabel (xlabel_prof)
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ax.set_ylabel(ylabel_prof)
if err != None:

err_bars = ax.errorbar(r, rho, yerr=err,linestyle=’None’)
return fig, ax

def draw_nfw_profile(fig, ax, r, rho, R_s=Nomne):

ax.loglog(r, rho, linestyle=’-’, color=’red’)
if R_s != None:
line = ax.axvline(R_s, color=’purple’, linestyle=’-.’)

return fig

def calc_kinetic_energy(mass, vel):

vsq = vell[:,0]**2 + vell[:,1]1%%2 + vell[:,2]**2
energy = 0.5 * np.sum(mass*vsq)
return energy

def calc_potential_energy(mass, pos):

local_sqrt = np.sqrt

partial_sum = 0.0

for i in range(len(mass)):
for j in range(len(mass)):

if § 1= di:
r_diff = local_sqrt((pos[i,0] - pos[j,0])**2 + (pos[i,1] - pos[j,1]1)**2 + (pos[i,2] - pos[j,2])**2)
partial_sum = partial_sum - mass[il*mass[j]/r_diff

energy = partial_sum * grav_const / 2.0

return energy

def calc_angular_momentum(mass, pos, vel):

ang_mom_x = np.sum(mass * (pos[:,1] * vel[:,2] - pos([:,2] * vell:,11))
ang_mom_y = np.sum(mass * (pos[:,2] * vell[:,0] - pos[:,0] * vell:,2]))
ang_mom_z = np.sum(mass * (pos[:,1] * vell[:,2] - pos[:,2] * vell:,1]))
ang_mom = np.sqrt(ang_mom_x**2 + ang_mom_y**2 + ang_mom_z**2)

return ang_mom

def main():

#*

HOHOHE H R O OH O H O H B HEHEH R

with open(outfile, ’w’) as fd:
#fd.write(’#halo_mass concentration R_vir R_s +- err rho_0 +- err alpha +- err chi_square\n’)
fd.write(’#halo_iduuuuuuuuhalo_massyuuuuuuuuuuX_POSuLLLLLLLLLLY-POSULLLLLLLLLLZ_POS LuLLLLLLLLLLLLLCUT -LLLLLLL
wuuuuerruuuuuuuuuuuR_VirsuuuuououoouoRosut - LLuoLLLLLLLLe T T LLLLLLLLLLLThO 0Lt - LuLLLLLLLLLLeTTLuLuuuchi_square
wuuuunbinsyuuuN_parti\n’)
with open(comfile, ’w’) as fd:
fd.write (’#id mass dx dy dz\n’)

if use_bgc2 == True:

header, halos, particles = bgc2.read_bgc2(sys.argv[1])
for i in range(len(halos)):

if halos[il][halo_id_col] == halo_id:

index = i
halo_particles = np.asarray(particles[index])
pos = halo_particles[:,pos_cols[0]:pos_cols[0]+3] * dist_scale
r_vir = halos[index][4] * dist_scale
else:

# Read in particle files
data = read_files(sys.argv([1:])
# Select particles with a given halo ID and convert positions from Mpc to kpc
if use_all == False:

halo_particles = datalnp.where(datal[:,halo_id_col] == halo_id)]
if use_all == True:

halo_particles = data
del data
pos = halo_particles[:,pos_cols[0]:pos_cols[0]+3] * dist_scale
r_vir = 241.48
#r_vir = pos.max()

for input_file in sys.argv[1:]:
if use_bgc2 == True:
#header, halos, particles = bgc2.read_bgc2(sys.argv[1])
header , halos, particles = bgc2.read_bgc2(input_file)

halos = np.asarray (halos)

indices = np.argsort(halos[:,2]) # sort by number of particles

indices = indices[::-1] # start with the biggest
else:

data = read_files([input_filel)
# Select particles with a given halo ID and convert positions from Mpc to kpc

if use_all == False:

particles = [datalnp.where(datal[:,halo_id_col] == halo_id)]]
if use_all == True:

particles = [datal
del data

itteration = 0
#for index in range(len(halos)):
#for index in range(1):
#for index in indices[:10]:
for index in indices:
if ((len(particles[index]) >= 100) and (halos[index][1] == -1)):
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539
540 halo_particles = np.asarray(particles[index])
541 pos = halo_particles[:,pos_cols[0]:pos_cols[0]+3] * dist_scale
542 vel = halo_particles[:,vel_cols[0]:vel_cols[0]+3]
543
544 if use_bgc2 == True:
545 halo_id = halos[index][0]
546 r_vir = halos[index][4] * dist_scale
547 halo_mass = halos[index][5]
548 halo_pos = np.array([halos[index][6] * dist_scale, halos[index][7] #* dist_scale, halos[index][8] x
dist_scalel)
549 halo_vel = np.array([halos[index][9], halos[index][10], halos[index][11]])
550 else:
551 r_vir = 241.48
552 halo_id = 0
553 #halo_mass = mass[0] #* len(halo_particles)
554 halo_pos = np.array([0.0, 0.0, 0.0])
555 halo_vel = np.array([0.0, 0.0, 0.0])
556
557
558 if individual_masses == True:
559 mass = halo_particles[:,mass_col] * mass_scale
560 else:
561 mass = np.ones(halo_particles.shape[0]) * common_mass * mass_scale
562
563 if use_bgc2 False:
564 halo_mass = mass[0] * len(halo_particles) #fix placement of this for ascii test
565
566 print ’Using%dyuparticlesyinghalo%d.” % (halo_particles.shape[0], halo_id)
567
568 # Find center of mass
569 if find_com == True:
570 mass_tot = mass.sum()
571 m_pos = mass.reshape(mass.shape[0],1) * pos
572 com = m_pos.sum(axis=0) / mass_tot
573 pos = pos - com
574 print ’Centerjof mass =, (%gulubgulukg)’ % (com[0], com[1], com[2])
575 else:
576 pos = pos - halo_pos
577 vel = vel - halo_vel
578
579 #with open(comfile, ’a’) as fd:
580 # fd.write("%d %g %g %g %g\n" % (halo_id, halo_mass, halo_pos[0] - com[0], halo_pos[1] - com[1],
halo_pos[2] - com[2]))
581
582 # Bin halo particles into logarithmic shells and compute density
583 r_bins, rho, rho_err = calc_density_profile(mass, pos)
584
585 if len(r_bins) < 5:
586 print ’Too,fewybins.,,Skipping,this halo.’
587 with open(outfile, ’a’) as fd:
588 fd.write ("%8dy,%16.12g,,%14.10gLuu%14.10g,%14.10guu%kl4dy+-L%14duu%14duu%14dy+-L%14dyu%14du+-0%14duu%14
dyu%8duu%8d\n" % (halo_id, halo_mass, halo_pos[0], halo_pos([1], halo_pos[2], -9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999, -9999, len(halo_particles)))
589 continue
590
591 # hist, r_bins = logbin(pos)
592 # err = poisson_error (hist)
593 # rho = mass * hist / (sphere_vol(r_bins[1:]) - sphere_vol(r_bins[:-1]))
594 # rho_err = err * rho
595 mid_bins = 10.0**(0.5 * (np.loglO(r_bins[1:]1) + np.loglO(r_bins[:-11)))
596 print ’nbins,=y’, len(mid_bins)
597
598 # Don’t pass NaN’s to fitting routine
599 rho_err_nonan = np.copy(rho_err)
600 nan_check = np.isnan(rho_err_nonan)
601 for i in range(len(rho_err_nonan)):
602 #if (nan_check[i] == True):
603 # rhol[i]l = 1.0e-10
604 if (mid_bins[i] < res_limit) or (nan_check[i] == True):
605 rho_err_nonan[i] = 1.0e10
608 # r, m_enclosed = calc_m_enclosed(mass, pos)
609
610 # Fit an NFW profile to the data
611 # try:
612 nfw_r, nfw_fit, popt, pcov, chisq = fit_profile(mid_bins / r_vir, rho / rho.max(), err = rho_err_nonan /
rho.max (), R_vir = 1.0)
#nfw_r, nfw_fit, popt, pcov, chisq = fit_mass_profile(r / r_vir, m_enclosed / halo_mass)
nfw_r = nfw_r * r_vir
nfw_fit = nfw_fit * rho.max ()
#nfw_fit = nfw_fit * halo_mass
scale_radius = popt[0] * r_vir
scale_radius_err = pcov[0,0] * r_vir
rho_0 = popt[1] * rho.max()
rho_O_err = pcov[1,1] * rho.max()
concentration = r_vir / scale_radius
concentration_err = concentration * scale_radius_err / scale_radius

# Print parameters
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print ’r_viry=’, r_vir

print "rho_Oyu=y%gu+/-u%g" % (rho_0, rho_O_err)

print "scaleyradiusy=y%gu+/-u%g" % (scale_radius, scale_radius_err)
print "concentrationy=y%gu+/-0%g" % (concentration, concentration_err)

#put these back sometime#H##H#H#H##HARSHRAHRAHRAHRAHBAHBARHHRBHRAHRBHRBHARBHRBHRBHRBHRBHRBHHBHH

kin_energy = calc_kinetic_energy(mass, vel)
pot_energy = calc_potential_energy (mass, pos)
ang_mom = calc_angular_momentum(mass, pos, vel)

ttow = 2.0 * abs(kin_energy / pot_energy)

lambda_spin = ang_mom * np.sqrt(abs(kin_energy + pot_energy)) / (grav_const * (np.sum(mass))**2.5)
kin_energy = 0.0
pot_energy = 0.0
ang_mom = 0.0

N

ttow = 0.0
lambda_spin = 0.0
EEE TR ET T T EET LTI TTTIETTIIEET TS ITT LI TTTTIET T IET T TTTIET T LT LT T

if isinstance(pcov, float):
print "inf covarianceyreturned, skipping,this halo...
with open(outfile, ’a’) as fd:
fd.write ("%8d,%16.12g,u%14.10g,,%14.10g,u%14.10gLu%14du+-uh14duu%l4dou%lady+-u%hl4dynhlady+-L%14dLu%14
dy,%8duu%8d\n" % (halo_id, halo_mass, halo_pos[0], halo_pos[1], halo_pos[2], -9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999, -9999, len(halo_particles)))

650 continue

651

652 #Write parameters to file

653 with open(outfile, ’a’) as fd:

654 #fd.write("%g %g %g kg +- hg hg +- %hg hg +- hg heg\n" % (halo_mass, concentration, r_vir,
scale_radius, pcov[0,0], rho_0, pcov[1,1], alpha, pcov[2,2], chisq))

655 fd.write ("%8d,%16.12g,,%14.10g,,%14.10g,,%14.10g,,%14.10g,+-,%14.6g,,%14.10g,,%14.10g,+-,%14.6g,,%14.10

gut-u%14.6gu%14.10g,,%8d,%8d\n" % (halo_id, halo_mass, halo_pos[0], halo_pos[1], halo_pos[2],
concentration, concentration_err, r_vir, scale_radius, scale_radius_err, rho_0, rho_O_err, chisq, len(r_bins
), len(halo_particles)))

656

657

658 HARHHARHRBRHHH A BB R BB RH AR R BB BB H AR R R SRR RS H### ### dedug

659 #blah_fit = nfw_fit_rhoO(nfw_r, 20.0, 9.0e5)

660

661 # Plot density profile histogram

662 if (make_plot == True) and (itteration < 10):

663 # Find the maximum of x, y, or z to be limit of projection plots

664 plot_lim = pos.max ()

665 # Pick only a certain perentage of particles for projection plots

666 if (draw_frac < 1.0):

667 np.random.shuffle (pos)

668 pos = pos[:(draw_frac*pos.shape[0])]

669

670 fig = plt.figure()

671 if draw_density == True:

672 fig = draw_density_projection(fig, 0, plot_lim, pos[:,0], pos[:,1])
673 fig = draw_density_projection(fig, 1, plot_lim, pos[:,0], posl[:,2])
674 fig = draw_density_projection(fig, 2, plot_lim, pos[:,1], pos[:,2])
675 else:

676 fig = draw_projection(fig, 0, plot_lim, pos[:,0], posl[:,1])

677 fig = draw_projection(fig, 1, plot_lim, pos[:,0], posl[:,2])

678 fig = draw_projection(fig, 2, plot_lim, pos[:,1], pos[:,2])

679 fig, ax = draw_density_profile(fig, mid_bins, rho, err=rho_err) #put this back for binning
680 #fig, ax = draw_density_profile(fig, r, m_enclosed) #take this out for binning
681 fig = draw_nfw_profile(fig, ax, nfw_r, nfw_fit, R_s=scale_radius)

682 #fig = draw_nfw_profile(fig, ax, nfw_r, blah_fit, R_s=20.0)

683 fig.tight_layout ()

684 plt.savefig(plot_base+str(itteration)+plot_ext)

685

686 #sys.exit ()

687

688 itteration += 1

689

690

691 if __name__ == ’__main__’:

692 main ()
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Appendix E

CROSSMATCH Best Match Code

E.1 Best Match (Python)

#!/usr/bin/env python

import sys
import getopt
import numpy as np

def main():
# read in files
print ’reading,files...’
with open(sys.argv[1]) as f:

matchesl = f.readlines ()
with open(sys.argv([2]) as f:
matches2 = f.readlines ()

print ’doneyreading files’

header = matches1[2:6]

header.insert (0, ’#_ Bestymatches for bi-directional crossmatch\n’)

header.insert (1, ’#\n’)

matchesl = matches1[7:]
matches2 = matches2[7:]

# convert to numpy arrays

print ’converting,toynumpy arrays...’
match_arrayl = np.asarray([line.split() for line in matchesi],
match_array2 = np.asarray([line.split() for line in matches2],

print ’done,converting’

# find matches that exist in both lists
print ’finding matches...’
mask = np.zeros(len(match_arrayl), dtype=bool)
for i, line in enumerate(match_arrayl):
idl = line([id1_coll
id2 = line[id2_coll

tmp = (match_array2[:,idl_coll]l == id2)
tmp = (match_array2[tmp,id2_col] == id1)
mask [i] = tmp.any ()
if i % 1000 == 0:

print "Finishedgliney", i

print ’doneymatching’
out_array = match_arrayl[mask]

# write results

print ’writing,results...’

with open(sys.argv[3], ’w’) as f:
f.writelines (("%s" % line for line in header))
np.savetxt (f, out_array, fmt=’%10d4’)

print ’Finished.’

id1l_col

npartl_col =
id2_col =
npart2_col =
ncommon_col =
hnuml_col =
hnum2_col =

oW N KR O

if __name__ == ’__main__’:
main ()

E.2 PBS Submission Script (Bash)

#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae

#PBS -1 nodes=27:ppn=1
#PBS -1 pmem=20000mb

#PBS -1 mem=54000mb

#PBS -1 walltime=0:30:00
#PBS -0 out.log

#PBS -j oe

#nodes=186:ppn=1
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12 #pmem=20000mb
13 #mem=372000mb
14

15 minsnap=53

16

6 maxsnap=61

18 minbox=1
19 maxbox=3

21 # Change to working directory
22 echo $PBS_NODEFILE
23 cd $PBS_O_WORKDIR

24

25 for ((i=$minbox; i<=$maxbox; i++)); do

26

27 for ((snap=$minsnap; snap<=$maxsnap; snap++)); do

if [ $snap -1t 10 ]; then
j=00$snap

elif [ $snap -1t 100 ]; then
j=0$snap

fi

base_dir="/projects/simulations/rockstar/box${i}
crossmatch_dir=${base_dir}/crossmatch/snap${j}
first_file=${crossmatch_dir}/crossmatch_2lpt_first_000.txt
second_file=${crossmatch_dir}/crossmatch_za_first_000.txt
outfile=${crossmatch_dir}/crossmatch_000.txt
logfile=${crossmatch_dir}/best_crossmatch.log

echo "Starting box${il} snap${j}..."
{

mpiexec -verbose -n 1 ./best_crossmatch.py ${first_file} ${second_file} ${outfile} > ${logfile} 2>&1
echo "Finished_ box${i}_ snap${j}"

} &
49 done
50
51 done
52
53 wait

# - end of script
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Appendix F
Database Generation Code

F.1 Halo Match (Python)

1 #!/usr/bin/env python
2

3 import sys

4 import getopt

5 import numpy as np

def main():
# read and parse command line arguments
opts, args = get_args(sys.argv[1:])
output_file, match_file, densprof_files, parents_files, ascii_files = parse_args(opts, args)

# read in headers as lists and data as numpy arrays

match_header, match_data = read_files(match_file, header_line = 3)
densprof_headerl, densprof_datal = read_files(densprof_files[0], header_line = 0)
densprof_header2, densprof_data2 = read_files(densprof_files[1], header_line = 0)

parents_headerl, parents_datal = read_files(parents_files[0], header_line = 0)
parents_header2, parents_data2 = read_files(parents_files[1], header_line = 0)
ascii_headert, ascii_data1l = read_files(ascii_files[:(len(ascii_files)/2)], header_line
ascii_header2, ascii_data2 = read_files(ascii_files[(len(ascii_files)/2):], header_line

print ’Finished reading, files.’

# filter matches, remove duplicate halo matches, and reorder match columns
print ’Fliteringgmatch, data...’
match_data = filter_matches (match_data)
if filter_duplicate_matches:
match_data = filter_dups(match_data, unique_col = match_idl_col)
match_data = filter_dups(match_data, unique_col = match_id2_col)
if reorder_match_columns:
match_header , match_data = reorder_match_cols(match_header, match_data)

# calculate number of subhalos and add column to parents data and headers
print ’Finding, number of subhalos...’

parents_headerl.append (’N_subs’)

parents_header2.append (’N_subs’)

parents_datal = count_subs(parents_datal)
parents_data2 = count_subs(parents_data2)
39 # create header
40 print ’Making header...’
41 header = make_header (match_header, densprof_headerl, densprof_header2, \
42 parents_headerl, parents_header2, ascii_headeril, ascii_header2)
43
A4 # match halos
45 print ’>Matching halos...’
46 halos = match_halos(match_data, [densprof_datal, densprof_data2, \
47 parents_datal, parents_data2, ascii_datal, ascii_data2])
18
19 # filter based on given criteria and sort
50 print ’Filtering halogdata...’
51 if filter_halo_properties:
52 halos = filter_halos(halos)
53 if sort_col != None:
54 sort_mask = halos[:,sort_col]l.argsort ()
55 sort_mask = sort_mask[::-1]
56 halos = halos[sort_mask]
57
58 # output matched table
59 print ’Writing,resluts...’
60 write_results (output_file, header, halos)
61
62 print ’Finished.’

def get_args(arglist):
try:
opts, args = getopt.gnu_getopt(arglist, shortopts, longopts)
except getopt.GetoptError:
print "Invalid,option(s)."
print help_string
sys.exit (2)
if opts == []:

73 print ’Nojoptions,given.’
T4 print help_string

75 sys.exit (2)

76 return opts, args

7

78

79 def parse_args(opts, args):
80 densproffiles = None
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81 parentsfiles = None

82 asciifiles = None

83 use_ascii = False

84 for opt in opts:

85 if (opt [0] ’-h’) or (opt[0] == ’--help’) or (opts == Nomne):
86 print help_string

87 sys.exit (0)

88 if (opt[0] == ’-0’) or (opt[0] == ’--outfile’):

89 outfile = opt[1]

90 if (opt[0] ’-m’) or (opt[0] == ’--match’):

91 matchfile = opt[1]

92 if (opt[0] == ’-d’) or (opt[0] == ’--density’):

93 densproffiles = create_append(densproffiles, opt[1])
94 if (opt[0] == ’-p’) or (opt[0] == ’--parents’):

95 parentsfiles = create_append(parentsfiles, opt[1])
96 if (opt[0] ’-a’):

97 use_ascii True

98 if use_ascii:

99 if len(args) % 2 != 0:

100 print ’Mustyhavegan evenynumber of ascii files!”’

101 sys.exit (3)

102 for arg in args:

103 asciifiles = create_append(asciifiles, arg)

104 return outfile, matchfile, densproffiles, parentsfiles, asciifiles

107 def create_append(lst, value):

108 if 1lst == None:
109 1st = [valuel
110 else:
111 1st.append(value)
112 return 1lst
113
114
115 def read_files(files, header_line = None, comment_char = ’#’):
116 header = None
117 data = None
118 if type(files) == str:
119 files = [files]
20
121 if header_line != None:
122 with open(files[0], ’r’) as fd:
123 for line in range(header_line):
124 fd.readline ()
125 header = fd.readline()
126 if header [0] != comment_char:
127 print "Header_ mustystartywithyay’%s’" % comment_char
128 sys.exit (4)
129 header = header[1:]
130 header = header.split ()
131
132 for file in files:
print ’Reading file %s...’ % (file)
if data == None:
data = np.genfromtxt(file, comments=’#’)
else:

data = np.append(data, np.genfromtxt(file, comments=’#’), axis=0)

9 if header_line == None:
40 return data
141 else:
142 return header, data
143
144
145 def filter_matches (halos):
146 if filter_bad_matches:
147 halos = halos[halos[:,match_id1l_col] !'= -1]
148 halos = halos[halos[:,match_id2_col] !'= -1]
149 if (min_npart != 0) and (min_npart != None):
150 halos = halos[halos[:, match_npartl_col] >= min_npart]
151 halos = halos[halos[:, match_npart2_col] >= min_npart]
152 if (minperc_ncommon != 0) and (minperc_ncommon != None):
153 halos = halos[halos[:, match_ncommon_col] / halos[:, match_npartl_col] >= minperc_ncommon]
154 halos = halos[halos[:, match_ncommon_col] / halos[:, match_npart2_col] >= minperc_ncommon]

return halos

58 def filter_dups(halos, unique_col = 0):

159 ncommon = halos[:, match_ncommon_col]

160 nl = halos match_nparti_col]

161 n2 = halos[:, match_npart2_coll]

162 rank = ncommon**2 / (nl % n2) - np.abs(nl - n2) / (nl + n2)
163

164 sort_mask = np.argsort(rank)

165 halos = halos[sort_mask]

166

167 unique, mask = np.unique(halos[:, unique_col], return_index=True)
168 halos = halos[mask]

169 return halos

172 def reorder_match_cols(match_header, match_data):
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global match_idl_col
global match_id2_col
global match_hnuml_col
global match_hnum2_col
global match_nparti_col
global match_npart2_col
global match_ncommon_col

order = [match_idil_col, match_id2_col, \
match_hnuml_col, match_hnum2_col, \
match_nparti_col, match_npart2_col, \
match_ncommon_col]

match_header = [match_header[index] for index in order]

match_data = match_datal[:, order]

match_idl_col =
match_id2_col =
match_hnumi_col =
match_hnum2_col =
match_npartl_col =
match_npart2_col =
match_ncommon_col =

DU WN RO

return match_header , match_data

def count_subs (halos):

id = halos[:, id_col]

parents = halos[:, parents_col]

parents = parents[parents != -1]

nsubs = (id[:, np.newaxis] == parents).sum(axis = 1)
halos = np.column_stack((halos, nsubs))

return halos

def make_header (match, densprofl, densprof2, parentsl, parents2, asciil, ascii2):
# zeroeth line just lists column number

total_len = len(match + densprofl + densprof2 + parentsl + parents2 + asciil + ascii2)
header_line0 = [str(i) for i in range(total_len)]

header_line0 = ’,,’.join(header_line0)

header_line0 = ’#’ + header_lineO

# first line denotes which file columns are from

17

16 match_repeat = len(match) - 4

1 densprof_repeat = len(densprofl + densprof2) - 4

18 parents_repeat = len(parentsl + parents2) - 4

1¢ ascii_repeat = len(asciil + ascii2) - 4
match_part = ’4y’.join([’|---?, ’cross’, ’match’] + [’----’] % match_repeat + [’---]"])
densprof_part = ’,’.join([’|---’, ’density’, ’profile’] + [’----’] x densprof_repeat + [’---]’1)
parents_part = ’_’.join([’|---?, ’rockstar’, ’parents’] + [’----’] * parents_repeat + [’---[|’])
ascii_part = ’4u’.join([’|---?, ’rockstar’, ’ascii’] + [’----’] % ascii_repeat + [’---]’1])
header_linel = ’,,’.join([match_part, densprof_part, parents_part, ascii_partl])
header_linel = ’#’ + header_linel

# second line labels 21pt and za columns

tot_len = len(match + densprofl + densprof2 + parentsl + parents2 + asciil + ascii2)

header_line2 = [’21pt’ if i % 2 == 0 else ’za’ if i % 2 == 1 else ’blah’ for i in range(tot_len - 1)]
header_line2.insert(len(match) - 1, ’matched’)

header_line2 = ’,,’.join(header_line2)

header_line2 = ’#’ + header_line2

# third line pulls labels from original file headers

match_part = match

densprof_part = interweave (densprofl, densprof2)

parents_part = interweave(parentsl, parents2)

ascii_part = interweave (asciil, ascii?2)

header_line3 = match_part + densprof_part + parents_part + ascii_part
header_line3 = ’,,’.join(header_line3)

header_line3 = ’#’ + header_line3

header = [header_line0O, header_linel, header_line2, header_line3]

return header

def interweave(listl, list2):
newlist = listl + list2
newlist[::2] = listil
newlist[1::2] = list2
return newlist

def interweave_np_2d(arrayl, array2):
258 newarray = np.empty((len(arrayl), len(array1[0]) + len(array2[0])))

259 newarrayl[:,::2] = arrayl
260 newarray[:,1::2] = array2
261 return newarray
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265 halos = matches.copy ()

266 for i, array in enumerate (arrays):

267 if array != None:

268 match_id_col = i % 2

269 halos = sort_stack(halos, array, match_id_col)

270

271 # interweave columns so that matching 21pt/za columns are adjacent
272 tmp_halos = halos

273 halos = np.empty((len(tmp_halos), len(tmp_halos[0])))
274 halos[:,:len(matches[0])] = matches

275 startcol = len(matches[0])

276 for i in range (0, len(arrays), 2):

277 colrangel = len(arrays[i][0])

colrange2 = len(arrays[i+1][0])

return halos

def sort_stack(halos, array, match_id_col):
# add empty columns to halos to later fill with halo data

rows = len(halos)
origcols = len(halos[0])
newcols = len(array[0])

empty = np.empty((rows, newcols))
empty[:] = np.nan
halos = np.column_stack((halos, empty))

# remove halos from array with no matches
match_id = halos[:, match_id_coll]
array_id = array[:, id_coll]

array_mask = np.inld(array_id, match_id)
array = arrayl[array_mask]

# create mask so we only add lines for halos in array
array_id = array[:, id_coll

halo_mask = np.inld(match_id, array_id)

masked_halos = halos[halo_mask]

# create masks to sort by halo id
match_id_sort_mask = np.argsort(masked_halos[:, match_id_coll)
sorted_masked_halos = masked_halos[match_id_sort_mask]

# sort array by halo id and copy to empty columns of view of halos
array_id_sort_mask = np.argsort(array[:,id_col])
sorted_masked_halos[:, origcols:] = arraylarray_id_sort_mask]

# ’unmask’ - put data back in original halos
masked_halos [match_id_sort_mask] = sorted_masked_halos
halos[halo_mask] = masked_halos

return halos

def filter_halos(halos):
#todo
return halos

def write_results(output_file, header, halos):
format = get_format (halos[0])
with open(output_file, ’w’) as fd:
for line in header:
fd.write(line + ’\n’)
np.savetxt (fd, halos, fmt=format)

def get_format(line):

format = ’,’.join(format)
return format

help_string = ’7’

Available options are:

vuou-h,u--help

uuuu-V,u--verbose

vuuu-ou<outfile>, --outfile <outfile>
vuuu-my<matchlist >, --match <matchlist>
vuuu-dy<densityprofile_file>, ,--density,<densityprofile_file>
vuuu-pu<parents_file>,  --parentsy<parents_file>
vuuu-ay<ascii_files>, --ascii_<ascii_files>_ - must_ beglast)
IR

shortopts = "hvo:m:d:p:a"
longopts = ["help", "verbose", "outfile=", "matchfile=", "density="

lt_cols = []
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endcol = startcol + colrangel + colrange2

colsl = tmp_halos[:,startcol:startcol+colrangel]

cols2 = tmp_halos[:,startcol+colrangel:startcol+colrangel+colrange2]
halos[:,startcol:endcol] = interweave_np_2d(colsl, cols2)

startcol = endcol

format = [’%d’ if col in int_cols else ’%1.14g’ for col in range(len(line))]

"parents="

B

"ascii"



1t_vals = []

gt_cols = []
gt_vals = []

eq_cols = []
eq_vals = []

ne_cols = []
ne_vals = []

368 #int_cols = [0, 1, 2, 3, 4, 5, 6, 7, 8]
369 int_cols = []

371 match_id2_col 1

372 match_npart2_col = 2

373 match_idl_col = 4

374 match_nparti_col = 5

375 match_ncommon_col = 6

376 match_hnuml_col = 3

377 match_hnum2_col 0

378

379 id_col ] # col of each input file

380 sort_col = 47 # col of final table - use None to turn off sorting
381 parents_col = -1

382

383 filter_bad_matches = True

384 filter _duplicate_matches = False

385 reorder_match_columns = True

386 filter_halo_properties = False

387 min_npart = 20 # use 0 or None to use all size halos
388 minperc_ncommon = 0.05 # a fraction, use 0 or None to use any match percent
389

390

391 if __name__ == ’__main__’:

392 main ()

F.2 PBS Submission Script (Bash)

1 #!/usr/bin/env bash

2 #PBS -M djsissom@gmail.com
3 #PBS -m bae

| #PBS -1 nodes=1:ppn=1

5 #PBS -1 pmem=40000mb

6 #PBS -1 mem=4000mb

7 #PBS -1 walltime=1:00:00

8 #PBS -o out.log

9 #PBS -j oe

11 minsnap=0
12 maxsnap=61

14 minbox=1
15 maxbox=3

17 # Change to working directory
18 echo $PBS_NODEFILE
19 cd $PBS_O_WORKDIR

20

21 for ((i=$minbox; i<=$maxbox; i++)); do

22

23 for ((snap=$minsnap; snap<=$maxsnap; snap++)); do

24

25 if [ $snap -1t 10 ]; then

26 j=00$snap

27 elif [ $snap -1t 100 1; then

28 j=0$snap

29 fi

30

31 base_dir="/projects/simulations/rockstar/box${i}

32 crossmatch_dir=${base_dir}/crossmatch/snap${j}

33 snap_dir_2lpt=${base_dir}/21pt/snap${j}

34 snap_dir_za=${base_dir}/za/snap${j}

35 logfile=${crossmatch_dir}/match_halos.log

36

37 echo "Starting box${i}y,snap${j}t..."

38

39 {

40 #mpiexec -verbose -n 1 \

41 ./match.py -o ${crossmatch_dir}/halos.dat \

42 -m ${crossmatch_dir}/crossmatch_000.txt \

43 -d ${snap_dir_21pt}/halos/density_profile_halos.dat \
44 -d ${snap_dir_zal}/halos/density_profile_halos.dat \
45 -p ${snap_dir_21lpt}/halos/out_0.list.parents \
46 -p ${snap_dir_zal}/halos/out_0.list.parents \
47 -a \

48 ${snap_dir_21pt}/halos/halos_0.*.ascii \

49 ${snap_dir_za}/halos/halos_0.*.ascii \

50 > ${logfile} 2>&1

51

52 echo ’Aligning columns...’ >> ${logfile} 2>&1
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o

column -t ${crossmatch_dir}/halos.dat > ${crossmatch_dir}/tmp156546.dat 2>> ${logfile}
mv ${crossmatch_dir}/tmp156546.dat ${crossmatch_dir}/halos.dat 2>> ${logfile}

o

S DU W

5 echo ’Finished.’ >> ${logfile} 2>&1
5 echo "Finishedgbox${i}_snap${j}"
57 }

58 #} &

59

60 done

61

62 done

63

64 wait

65
66 # - end of script
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Appendix G

Halo Comparison Code

G.1 Particle Comparison (Python)
#!/usr/bin/env python

import sys

import bgc2

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import Circle

from matplotlib.ticker import MultipleLocator
from scipy.optimize import curve_fit

from scipy.stats import chisquare

#id1,
#id1,

id2
id2 =

727,
4416,

#id1,
#id1,

id2 =
id2 =

4416,
4416,

4420 # 21pt first

727 # za first

4420 # both za
4416 # both za

id2 =
id2 =
id2 =
id2 =
id2 =

#id1,
#id1,
#id1,
#id1,
idt,

653, 4355
38, 3803
155099,

98722,
84289,

80362
14357
143514

ascii2?
’bgc2’

#read_mode =
read_mode =
if read_mode ==
use_bgc2 = True
use_all = False
multiple_halos = True
individual_masses = False
halo_id = 146289
nbins = 50
nfit = 500
ooms = 3.0
mass_scale = 1.0
5.33423e5
1.0e3
0.488
4.0

10.0

bgc2:

common_mass =
dist_scale =
#res_limit =
res_limit =
#res_limit =
#draw_frac = 1.0e-2
draw_frac = 1.0
tick_base_major = 10.0
tick_base_minor = 1.0

elif read_mode ascii’:
use_bgc2 = False
use_all = True
individual_masses =
halo_id = 0
nbins = 100
nfit = 500
ooms = 5.0
mass_scale =
dist_scale =
res_limit =
draw_frac =
tick_base_major =
tick_base_minor = 20.0

elif read_mode >ascii2’:

True

use_bgc2 = False
use_all = True
individual_masses = True
halo_id = 0

nbins = 100

nfit = 500

ooms = 3.5

mass_scale = 1.0el0
dist_scale = 1.0
res_limit = 3.0e-1
draw_frac = 1.0e-2
tick_base_major = 200.0
tick_base_minor = 40.0

else:
sys.exit (98712)

outfile =
comfile =

’halo_properties.txt’
>center_of_mass.txt’
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90

92

102
103
104
105
106
107
108
109

122

124
125
126
127
128
129
130
131
132
133
134
135
136
137

140

make_plot = True

plot_base = ’density_profile.fig.?’
plot_ext = ’.eps’

dist_units = ’kpc’

xlabel_proj = [r’X, Positiony(%s h$~{-1}$)’ % (dist_units), r’X Positiony (s h$"{-1}$)’

Positiony (%s h$~{-1}$)’ % (dist_units)]

ylabel_proj = [r’Y_ Positiony(%s h$~{-1}$)’ % (dist_units), r’Z Positiony (s h$"{-1}$)’

Positiony (%s h$~{-1}$)’ % (dist_units)]
xlabel_prof = r’Radius,(%s_ h$°{-1}$)’> % (dist_units)

ylabel_prof = r’Density, (M$_{\odot}$, %s$"{-3}$,h$"{2}8)’ % (dist_units)

#common_mass = 1.0e-7
#common_mass = 1.0eb
mass_col = 0

pos_cols = (1,2,3)

vel_cols = (4,5,6)
halo_id_col = 0

grav_const = 4.3e-6 # kpc M_sol~-1 (km/s)"2

-> nfw, fit rho_0
-> nfw, calculate rho_O0

profile_type = 0

-> fit outer slope, calculate

EE T N

0
1
2
3 -> fit outer slope, fit rho_O
4
5

def read_files(files):

data = 0
for file in files:
print ’Reading, file %s...” % (file)
if data == 0:
data = np.genfromtxt(file, comments=’#’)
else:

-> nfw, rho_0 middle of leftmost bin above resolution

rho_0

-> fit outer slope, rho_0 middle of leftmost bin above resolution

data = np.append(data, np.genfromtxt(file, comments=’#’), axis=0)

print ’Finished reading files.’
return data

def calc_density_profile(mass, pos):

r = np.sqrt(pos[:,01**2 + pos[:,1]1**2 + pos[:,2]%x2)

max_r = r.max()
#min_r = max_r / 10%*ooms
min_r = res_limit

log_range = np.loglO(max_r) - np.loglO(min_r)

#global nbins

local_nbins = float(nbins + 1)
#nbins = len(r) / 1000

while True:

bins = np.arange(local_nbins)
bins = max_r * 10.0**(log_range * bins / (local_nbins-1.0) - log_range)
bin_mass, r_bins = np.histogram(r, bins, weights=mass)
if (bin_mass == 0.0).any():
local_nbins -= 1
continue
else:
break

#print ’Binning particles using bin edges of \n’,

rho = bin_mass / (sphere_vol(r_bins[1:]) - sphere_

N_bin, blah = np.histogram(r, bins)
rho_err = poisson_error(N_bin) * rho

return r_bins, rho, rho_err

def logbin(pos):

r_bins

vol(r_bins[:-1]))

r = np.sqrt(pos[:,0]**2 + pos[:,1]1**2 + pos[:,2]%%2)

max_r = r.max()
min_r = max_r / 10**ooms
log_range = np.loglO(max_r) - np.loglO(min_r)

global nbins

nbins = float(nbins + 1)

bins = np.arange (nbins)

bins = max_r * 10.0%*(log_range * bins / (nbins-1.
hist, bin_edges = np.histogram(r, bins)

#print ’Binning particles using bin edges of \n’,
return hist, bin_edges

def poisson_error (N):
err = np.sqrt(N) / N
return err

def sphere_vol(r):
volume = (4.0 / 3.0) * np.pi * r**3

0) - log_range)

bin_edges
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(dist_units),

(dist_units),

r’Y,

r’Z,



retu

def ge

H =

€ G =

177 rho_
178

179 v

180 c =

181 g =

182 delt
183

184 retu
185
186

187 def nf
188 retu

rn volume

t_rho_O0(R_s, R_vir):

70.0e-3 # km s~-1 kpc~-1

4.3e-6 # kpc M_sol~-1 (km/s)"2

crit = 3.0 * H**2 / (8.0 * np.pi * G)

178

R_vir / R_s

1.0 / (np.log(1.0+c) - c/(1.0+c))
a_char = v *x c*x*3 * g / 3.0

rn rho_crit * delta_char

w_fit_rhoO(r, R_s, rho_0):
rn rho 0 / (Cr / R.s ) * ( 1.0 + v / R_s )*

w_fit_rhoO_log(r, R_s, rho_0):
10.0%*r

= 10.0**R_s

0 = 10.0%*rho_0

*2)

ile = rho 0 / ((r / R.s ) * (1.0 + r / R_s )*x2)

rn np.loglO(profile)

w_def_rhoO(R_vir):
_nfw_def_rhoO(r, R_s):
0_0 = get_rho_O(R_s, R_vir)

turn rho 0 / (C r / R_s ) * ( 1.0 + r / R_s )*x%2)

rn _nfw_def_rhoO

w_databin_rhoO(rho_0):
_nfw_databin_rhoO(r, R_s):

turn rho 0 / (( r / R_s ) * ( 1.0 + r / R_s )*x*2)

rn _nfw_databin_rhoO

212 def dm_profile_fit_rhoO_log(r, R_s, rho_0, alpha):

190

191 def nf
192 r =

193 R_s

194 rho_
195 prof
196 retu
197

198

199 def nf
200 def

201 rh
202 re
203 retu
204

205

206 def nf
207 def

208 re
209 retu
210

211

213 r =

214 R_s

215 rho_
216 alph
217 prof
218 retu
219

220

10.0%x*r

= 10.0%xR_s

0 = 10.0%**rho_0
a = 10.0%*alpha

ile = rho_,0 / (C r / R_s ) * ( 1.0 + r / R_s )#**alpha)

rn np.loglO(profile)

221 def dm_profile_fit_rhoO(r, R_s, rho_0, alpha):
222 return rho_ 0 / (C r / R_s ) * ( 1.0 + r / R_s )#*xalpha)

225 def dm_profile_def_rhoO(R_vir):

def
rh

retu

_dm_profile_def_rhoO(r, R_s, alpha):
0_0 = get_rho_O(R_s, R_vir)

rn _dm_profile_def_rhoO

232 def dm_profile_databin_rhoO(rho_0):

def

retu

238 def fi

_dm_profile_databin_rhoO(r, R_s, alpha):

rn _dm_profile_databin_rhoO

t_profile(r, rho, err=None, R_vir=None):

popt, pcov = curve_fit(dm_profile_fit_rhoo
except RuntimeError:
continue
if (popt[0] < r.max()) and (popt[2] >= 0.0):
break
elif i >= 99:
print ’noygoodyfityfound, for,this halo...?
return None, None, None, None, None

s T

return rho_ 0 / (( r / R_s ) * ( 1.0 + r / R_s )#*xalpha)

return rho 0 / (( r / R_s ) * ( 1.0 + r / R_s )#**xalpha)

rho, pO=[a,b,c],
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for i in range(len(r)):
if r[i] > res_limit:
rho_0_databin = rho[i]
first_good_bin = i
break
#o-mmmm - choose one fitting type --------- #
#popt, pcov = curve_fit(nfw_fit_rhoO, r, rho, sigma=err)
#popt, pcov = curve_fit(nfw_def_rhoO(R_vir), r, rho, p0=[10.0], sigma=err)
#popt, pcov = curve_fit(nfw_databin_rhoO(rho_O_databin), r, rho, sigma=err)
blah = 2
if blah == 0:
for i in range (100):
a = 2.0 * np.random.random() * 0.1 * r.max()
b = 2.0 * np.random.random() * 10.0
¢ = 2.0 * np.random.random() * 2.0
try:

sigma=err)



309

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

elif blah == 1:
#a = r.max() / 100.0
a = 0.001
b = rhol[first_good_bin]
c = 0.001
#popt, pcov = curve_fit(dm_profile_fit_rhoO, r, rho, sigma=err)
print 2------------- 2
print ’rho_O_before,
#try:
#popt, pcov = curve_fit(dm_profile_fit_rhoO, r, rho, pO=[a,b,c], sigma=err, maxfev=1,

popt, pcov = curve_fit(dm_profile_fit_rhoO, r, rho, p0=[a,b,c], sigma=err, xtol=1.0e-1)

#except RuntimeError:
# print ’just checking for now...~’
print ’rho_O_after_=’, popt[1]
#sys.exit ()

elif blah == 2:

Xt01=100.0)

#popt, pcov = curve_fit(dm_profile_fit_rhoO_log, np.logl0O(r), np.logl0(rho), sigma=np.loglO(err))
popt, pcov = curve_fit(nfw_fit_rhoO_log, np.logl0(r), np.logl0(rho), sigma=np.loglO(err))

popt = 10.0**popt

pcov = 10.0**pcov
elif blah == 3:
popt, pcov = curve_fit(nfw_fit_rho0, r, rho, sigma=err)
#popt, pcov = curve_fit(dm_profile_def_rhoO(R_vir), r, rho, sigma=err)
#popt, pcov = curve_fit(dm_profile_databin_rhoO(rho_O_databin), r, rho, sigma=err)
B oo oo m e #

print ’fit_params_ =’, popt

print ’covariance_ =’, pcov

nfw_r = np.linspace(r[0], r[-1], nfit)

#oemmmmae o choose one fitting type --------- #

nfw_fit = nfw_fit_rhoO(nfw_r, popt[0], popt[1])

#nfw_fit = nfw_def_rhoO(R_vir) (nfw_r, popt[0])

#nfw_fit = nfw_databin_rhoO(rho_O_databin) (nfw_r, popt [0])

#nfw_fit = dm_profile_fit_rhoO(nfw_r, popt[0], popt[1], poptl[2])

#nfw_fit = dm_profile_def_rhoO(R_vir) (nfw_r, popt[0], popt[1])

#nfw_fit = dm_profile_databin_rhoO(rho_0O_databin) (nfw_r, popt[0], popt[1])

#o-mmm - choose one fitting type --------- #

chi2_fit = nfw_fit_rhoO(r, popt[0], poptl[1])

#chi2_fit = nfw_def_rhoO(R_vir) (r, popt[0])

#chi2_fit = nfw_databin_rhoO(rho_O_databin) (r, popt [0])

#chi2_fit = dm_profile_fit_rhoO(r, popt[0], popt[1], popt[2])

#chi2_fit = dm_profile_def_rhoO(R_vir) (r, popt[0], popt[1])

#chi2_fit = dm_profile_databin_rhoO(rho_O_databin) (r, popt[0], popt[1])

chi2 = chisquare(np.logliO(rho[first_good_bin:]), np.logl0(chi2_fit[first_good_bin:]))

chi2_nolog = chisquare(rho[first_good_bin:], chi2_fit[first_good_bin:])
print ’chi_square;=’, chi2

print ’chi_square_nolog,=’, chi2_nolog

return nfw_r, nfw_fit, popt, pcov, chi2[0]

def draw_projection(fig, place, plot_lim, x, y):

ax = plt.subplot(1,3,place+l, aspect=’equal’)

im = ax.plot(x, y, linestyle=’’, marker=’.’, markersize=1, markeredgecolor=’blue’)

ax.set_xlabel (xlabel_proj[placel)

ax.set_ylabel (ylabel_proj[placel)

ax.set_xlim(-plot_lim, plot_lim)

ax.set_ylim(-plot_lim, plot_lim)
# ax.xaxis.set_major_locator(MultipleLocator (tick_base_major))
# ax.xaxis.set_minor_locator(MultipleLocator (tick_base_minor))
# ax.yaxis.set_major_locator(MultipleLocator(tick_base_major))
# ax.yaxis.set_minor_locator(MultipleLocator(tick_base_minor))

return fig, ax

def draw_projection_again(fig, ax, x, y):
im = ax.plot(x, ¥y, linestyle=’’, marker=’.’, markersize=1, markeredgecolor=’red’)
return fig

def draw_density_profile(fig, r, rho, err=None):
ax = plt.subplot(2,1,2)
im = ax.loglog(r, rho, linestyle=’steps-mid-’)
linel = ax.axvline(res_limit, color=’black’, linestyle=’:’)
#ax.set_xlim(r_bins [0], r_bins[-1])
ax.set_xlim(r[0] - (r[1]-r[0]), r[-1] + (r[-1]1-r[-2]))
ax.set_xlabel(xlabel_prof)
ax.set_ylabel(ylabel_prof)
if err != None:
err_bars = ax.errorbar(r, rho, yerr=err,linestyle=’None’)
return fig, ax

def draw_nfw_profile(fig, ax, r, rho, R_s=None):

ax.loglog(r, rho, linestyle=’-’, color=’red’)
if R_s != None:
line = ax.axvline(R_s, color=’purple’, linestyle=’-.’)

return fig
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414

416
417

419
420
421

423

def calc_kinetic_energy(mass,

vel):

vsq = vell[:,0]**2 + vell[:,1]%x2 + vell[:,2]**2
0.5 * np.sum(mass*vsq)
return energy

energy =

def calc_potential_energy (mass,

local_sqrt
partial_sum
for i in range(len(mass)):

for j
if

r_diff

pos):
np.sqrt
= 0.0

in range(len(mass)):

i:
= local_sqrt ((pos[i,0]

- pos[j,01)**2 + (pos[i,1] - pos[j,1]1)**2 + (posl[i,2]
partial_sum = partial_sum - mass[il*mass[jl/r_diff

energy = partial_sum * grav_const / 2.0
return energy

def calc_angular_momentum(mass,

ang_mom_x
ang_mom_y
ang_mom_z
ang_mom =

def main():

pos,
np.sum(mass * (pos[:,1]
np.sum(mass * (pos[:,2]
np.sum(mass * (pos[:,1]

vel):

* vell[:,2] - posl[:,2] * vell:,1]))
* vell[:,0] - pos[:,0] * vell:,2]))
* vell[:,2] - posl[:,2] * vell:,1]))

np.sqrt(ang_mom_x**2 + ang_mom_y**2 + ang_mom_z*%*2)
return ang_mom

#for input_file in sys.argv[1:]:

#header1l, halosl,
#header2, halos2,
nargs = len(sys.argv) - 1
if (float(margs) % 2.0) !'= 0.0:
print ’number_of ,arguments must_ beyeven’

sys.exit ()

for i in range(nargs / 2):

i+=1

temp_headertl,
temp_header2,

if i ==

halosl, particlesl = temp_halosil,

1

halos2,

else:
halos

1

halos2

halosl =
halos2 =
#indices
#indices =

temp_halosl,
temp_halos2,

particles2 = temp_halos2,

np.append (halosi,
np.append (halos2,

np.asarray (halos1)
np.asarray (halos2)

itteration

#for inde
#for inde

bd
b4

temp_halosi,
temp_halos2,
particlesl = np.append(particlesl,
particles2 = np.append(particles2,

i
i

np.argsort (halos[:,2])
indices[::-1]

0
n indices[:1000]:
n indices:

temp_particlesl
temp_particles?2

axis=0)
axis=0)
temp_particlesl,
temp_particles2,

# sort by number
# start with the

for index in range(halosl.shape[0]):
halo_id = halosi[index,0]

particlesl = bgc2.read_bgc2(sys.argv[1])
particles2 = bgc2.read_bgc2(sys.argv[2])

temp_particlesl = bgc2.read_bgc2(sys.argv[i])
temp_particles2 = bgc2.read_bgc2(sys.argv[(nargs / 2) + il)

axis=0)
axis=0)

of particles
biggest

if (halo_id == idl):
Print 2---c-c-ccmmmm e e e e e e e e e e e e e e e e e e e e
halo_particlesl = np.asarray(particlesi[index])
posl = halo_particlesi[:,pos_cols[0]:pos_cols[0]+3]

#vell = halo_particlesi[:,vel_cols[0]:vel_cols[0]+3]

r_vir

halo_posl = np.array([halosl[index][6] * dist_scale,

1

halosl[index][4] * dist_scale
halo_massl = halosl[index][5]

dist_scalel)

#halo_vell = np.array([halosl[index][9],

print
# Fin
#pos
#vel

# Pic

pos

d

k

1

’Usingy%dyuparticlesyinghaloy%d.” %

c

P
v

enter of mass
os - halo_pos
el - halo_vel

halosi[index][10],

* dist_scale

halosl[index] [7] * dist_scale,

(halo_particlesl.shape[0],

only a certain perentage of particles for projection plots
if (draw_frac < 1.0):
np.random.shuffle (pos1)

posl[:(draw_frac*posi.

shape [0])]

for index in range(halos2.shape[0]):

halo_id = halos2[index,0]

if (halo_id == id2):
print ?--------- e
halo_particles2 = np.asarray(particles2[index])
pos2 = halo_particles2[:,pos_cols[0]:pos_cols[0]+3]

#vel2 = halo_particles2[:,vel_cols[0]:vel_cols[0]+3]

* dist_scale
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halosl[index][11]])

- pos[j,2]) *x*2)

halosl[index][8] *



#

ce
po
po

pl

#

if
496 if
497 ma

r_vir2 = halos2[index][4] #* dist_scale
halo_mass2 = halos2[index][5]

halo_pos2 = np.array([halos2[index][6] * dist_scale, halos2[index][7] * dist_scale, halos2[index][8]

dist_scalel)
#halo_vel2 = np.array([halos2[index][9], halos2[index][10], halos2[index][11]])

print ’Using,%dyparticlesyin haloy%d.’ % (halo_particles2.shape[0], halo_id)

# Find center of mass
#pos = pos - halo_pos
#vel = vel - halo_vel

# Pick only a certain perentage of particles for projection plots
if (draw_frac < 1.0):

np.random.shuffle (pos2)

pos2 = pos2[:(draw_frac*pos2.shape[0])]

Find the maximum of x, y, or z to be limit of projection plots
nter = (halo_posl + halo_pos2) / 2.0

sl = posl - center

s2 = pos2 - center

halo_posl = halo_posl - center
halo_pos2 = halo_pos2 - center

ot_lim = np.append(posl, pos2).max()

Plot density profile histogram
(make_plot == True):
fig = plt.figure()

fig, ax = draw_projection(fig, 0, plot_lim, posi[:,0], posi[:,1])

fig = draw_projection_again(fig, ax, pos2[:,0], pos2[:,1])
ax.add_patch(Circle((halo_pos1[0], halo_pos1[1]), r_virl, fc="None", ec="black", lw=1))
ax.add_patch(Circle ((halo_pos2[0], halo_pos2[1]), r_vir2, fc="None", ec="black", lw=1))

fig, ax = draw_projection(fig, 1, plot_lim, posil[:,0], posil[:,2])

fig = draw_projection_again(fig, ax, pos2[:,0], pos2[:,2])
ax.add_patch(Circle((halo_pos1[0], halo_pos1[2]), r_virl, fc="None", ec="black", lw=1))
ax.add_patch(Circle((halo_pos2[0], halo_pos2[2]), r_vir2, fc="None", ec="black", lw=1))

fig, ax = draw_projection(fig, 2, plot_lim, posi[:,1], posi[:,2])

fig = draw_projection_again(fig, ax, pos2[:,1], pos2[:,2])
ax.add_patch(Circle((halo_pos1[1], halo_pos1[2]), r_virl, fc="None", ec="black", lw=1))
ax.add_patch(Circle((halo_pos2[1], halo_pos2[2]), r_vir2, fc="None", ec="black", lw=1))

#fig, ax = draw_density_profile(fig, mid_bins, rho, err=rho_err)
#fig = draw,nfw,profile(fig, ax, nfw_r, nfw_fit, R_s=scale_radius)
fig.tight_layout ()
#plt.savefig(plot_base+str(itteration)+plot_ext)
plt.savefig(’test.eps’)

__name__ == ’__main__"’:

in ()

G.2 Density Comparison (Python)

1 #1/u
2
3 impo
4 impo
5 impo
6 impo
7 mpl.
8 impo
9 from
10 from
11 from
12 from
13 from
14 from
15 from
16 from
17
18
19 ####
20 ####
21
22 def
23
24
25
26
27
28
29
30
31
32
33
34
35

sr/bin/env python

rt sys

rt bgc2

rt numpy as np

rt matplotlib as mpl

use (’Agg?)

rt matplotlib.pyplot as plt
matplotlib.patches import Circle
matplotlib import patheffects
mpl_toolkits.axes_gridl import ImageGrid
scipy.stats import ks_2samp

scipy.stats import chisquare
scipy.optimize import curve_fit
scipy.ndimage.filters import gaussian_filter
ipdb import set_trace

Note: only run one box pair at a time.
ex: ./compare.py /crossmatch_dir/halos.dat /21lpt_dir/halos_0.*.bgc2 /za_dir/halos_0.*.bgc2
main () :

crossmatched_halo_file, bgc2_2lpt_files, bgc2_za_files = parse_args(sys.argv[1:])
header, halos = read_files(crossmatched_halo_file, header_line = 3)

bgc2_21pt_header, bgc2_21lpt_halos, bgc2_2lpt_particles = get_bgc2_data(bgc2_2lpt_files)
bgc2_za_header, bgc2_za_halos, bgc2_za_particles = get_bgcQ_data(bgc2_za_files)

header = np.asarray(header)
bgc2_21pt_halos, bgc2_za_halos = map(np.asarray, (bgc2_21pt_halos, bgc2_za_halos))

if sort_col != None:

halos = sort_by_column(halos, sort_col)
if remove_nonfit_halos:
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halos = remove_nans (halos)
if global_filter_halos:

halos = filter_halos (halos)
if (nhalos != None) or (nhalos != 0):
#halos = halos[:nhalos]
halos = halos[[0,70]] HHHBHEHRH AR R AR A HHAHH##H###H hard coded for the moment
#halos = halos [10000:10050]
header, halos = add_c_columns (header, halos)
header = reduce_header (header)
for i, halo_pair in enumerate (halos):

make_plot (i, header, halo_pair,
bgc2_21lpt_particles,

bgc2_21pt_halos,
bgc2_za_particles)

bgc2_za_halos, \

51 print ’Finishedyallgplots.’
52
53
54 def parse_args(args):
55 crossmatched_halo_file = args[0]
56 if len(args[1:1) % 2 !'= 0.0:
57 print ’Mustycallywith,even number of bgc2, files...exiting.’
58 sys.exit (-1)
59 bgc2_files = args[1:]
60 bgc2_21lpt_files = bgc2_files[:len(bgc2_files)/2]
61 bgc2_za_files = bgc2_files[len(bgc2_files)/2:]
62 return crossmatched_halo_file, bgc2_21lpt_files, bgc2_za_files
63
64
65 def read_files(files, header_line = None, comment_char = ’#’):
66 header = None
67 data = None
68 if type(files) == str:
69 files = [files]
70

if header_line != None:

with open(files[0], ’r’) as fd:

3 for line in range(header_line):
1 fd.readline ()
5

header = fd.readline ()
6 if header [0] != comment_char:
7 print "Header_ mustgstartywithya,’%s’" % comment_char
8 sys.exit (4)
79 header = header[1:]
80 header = header.split ()
81
82 for file in files:
83 print ’Reading filey%s...’ % (file)
84 if data == Nomne:
85 data = np.genfromtxt(file, comments=comment_char)
86 else:
87 data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)
88
89 print ’Finishedjreading, files.’
90 if header_line == None:
91 return data
92 else:
93 return header, data
94
95
96 def get_bgc2_data(bgc2_files):
97 header = None
98 halos = None
99 particles = None
100 for bgc2_file in bgc2_files:
101 print ’Reading filey%s...” % (bgc2_file)
102 tmp_header , tmp_halos, tmp_particles = bgc2.read_bgc2(bgc2_file)
103 if header == None:
104 header = tmp_header
105 halos = tmp_halos
106 particles = tmp_particles
107 else:
108 halos = np.append(halos, tmp_halos, axis=0)
109 particles = np.append(particles, tmp_particles, axis=0)
110 print ’Finished_reading,bgc2, ,files.”’
111 return header, halos, particles
112
113
114 def sort_by_column(halos, col):
115 print ’Sorting halos...’
116 mask = np.argsort(halos[:, coll)
117 mask = mask[::-1]
118 halos = halos[mask]
119 return halos
120
121
122 def remove_nans (halos):
123 print ’Removing NaNs...’
124 halos = halos[halos[:,c_21lpt_col]l != -9999]
125 halos = halos[np.isfinite(halos[:,c_21pt_coll)]
26 halos = halos[np.isfinite(halos[:,c_za_col])]

return halos
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def

def

def

filter_halos (halos):
print ’Filtering_data...’
for col, val in zip(lt_cols, 1lt_vals)

halos = halos[halos[:, col] <= vall

for col, val in zip(gt_cols, gt_vals)

halos = halos[halos[:, col] >= vall

for col, val in zip(eq_cols, eq_vals)

halos = halos[halos[:, coll == vall

for col, val in zip(me_cols, ne_vals)

halos = halos[halos[:, coll != vall

return halos

add_c_columns (header, halos):

cl_rockstar = halos[:, Rvi_col] / halos[:, Rsi_col]
c2_rockstar = halos[:, Rv2_col] / halos[:, Rs2_col]

halos = np.column_stack((halos, cl_rockstar, c2_rockstar))
header = np.append(header, ’c_rockstar’)
header = np.append(header, ’c_rockstar’)

return header, halos

reduce_header (header):

header_21pt = header [print_cols_21pt]

header_za = header [print_cols_zal

if (header_21lpt == header_za).all():
header = header_21pt

else:

print ’columnymismatch... exiting?’

set_trace ()
sys.exit (123)
return header

make_plot (itteration, header, halo_pair,

bgc2_particles_21pt, bgc2_particles_za):

id_21pt = halo_pair[id_col_21pt]
id_za = halo_pair[id_col_zal]

properties_21lpt = halo_pair[print_cols_21pt]
properties_za = halo_pair[print_cols_zal

# find 21pt and za halo from id

halo_index_21pt = np.where(bgc2_halos_21ptl[:,
halo_index_za = np.where(bgc2_halos_zal:,

bgc2_halos_21pt = bgc2_halos_21pt[halo_index_21pt]

bgc2_halos_za = bgc2_halos_za[halo_

# convert particles to numpy arrays

index_zal

bgc2_halos_21pt,

halo_id_col]
halo_id_coll

bgc2_halos_za, \

id_21pt) [0] [0]
id_za) [0][0]

bgc2_particles_21pt = np.asarray(bgc2_particles_21lpt[halo_index_21pt])
bgc2_particles_za = np.asarray(bgc2_particles_zal[halo_index_zal)

# make density profiles

r_21pt, rho_21pt, rho_err_21lpt, r_vir_21lpt = density_profile(bgc2_halos_21lpt,

r_za, rho_za, rho_err_za, r_vir_za = density_profile(bgc2_halos_za,

# fit density profiles

nfw_r_21pt, nfw_rho_21pt, r_s_21lpt =
rho_err_21pt / rho_2lpt.max() )

nfw_r_za , nfw_rho_za , r_s_za =
rho_err_za / rho_za.max () )

# de-normalize values
nfw_r_21pt = nfw_r_21pt * r_vir_21lpt
nfw_r_za = nfw_r_za * r_vir_za

fit_profile( r_21pt / r_vir_21lpt,

fit_profile( r_za

nfw_rho_21pt = nfw_rho_21lpt * rho_21pt.max()

nfw_rho_za = nfw_rho_za * rho_za.
r_s_21lpt = r_s_21lpt * r_vir_21pt
r_s_za = r_s_za * r_vir_za

# find center of halos and plot limit

max ()

/ r_vir_za, rho_za

halo_pos_21pt = bgc2_halos_21pt[:,halo_pos_cols] * dist_scale

pos_cols] * dist_scale
particle_pos_21pt = bgc2_particles_21lpt[:,particle_pos_cols] * dist_scale
particle_pos_za = bgc2_particles_zal[:,particle_pos_cols] * dist_scale

halo_pos_za = bgc2_halos_zal:,halo_

if wrap_box:
for i in range(3):

if abs(halo_pos_21lpt[i]l - halo_pos_zal[il) > box_size / 2.0:

print "H##H#AHARARAEHARARARARAERARARARARHERA owvrapping halo #HEHHARFHFRAHHARARFRARARHARARARFRAHHE"

if (halo_pos_21pt[i] > halo_pos_zal[il):
halo_pos_zal[i] += box_size

particle_pos_zal:,i]

+= box_size

if (halo_pos_21pt[i] < halo_pos_zal[il):
halo_pos_21pt[i] += box_size
particle_pos_21lpt[:,i] += box_size

else:

print "erroryinywrapping"

sys.exit ()
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center = (halo_pos_21pt + halo_pos_za) / 2.0
halo_pos_21pt = halo_pos_21lpt - center

halo_pos_za = halo_pos_za - center
particle_pos_21pt = particle_pos_21pt - center
particle_pos_za = particle_pos_za - center

if zoom_projections:
plot_lim = zoom_scale
else:
plot_lim = np.append(particle_pos_21lpt, particle_pos_za).max()

r_vir_21pt = bgc2_halos_21lpt[halo_r_col]l * dist_scale
r_vir_za = bgc2_halos_zal[halo_r_col] * dist_scale

if make_stats:
print ’generating,plot...~’
fig = plt.figure(figsize = (9.0, 6.0))
fig = make_projections(fig, 221, halo_pos_21pt, halo_pos_za, particle_pos_21lpt, particle_pos_za, \
r_vir_2lpt, r_vir_za, plot_lim)
ax = fig.add_subplot (223)
ax = draw_density_profile(ax, r_2lpt, rho_21pt, err=rho_err_21pt, color=’blue’, label=’21pt’)
ax = draw_density_profile(ax, r_za, rho_za, err=rho_err_za, color=’red’, label=’za’)

ax = fig.add_subplot (122)
ax = draw_parameters(ax, header, properties_2lpt, properties_za)

fig.tight_layout ()

plot_name = "%s%0.3d_(%d,%d)%s" % (plot_base, itteration, id_21pt, id_za, plot_ext)
plt.savefig(plot_name, bbox_inches=’tight’)

print ’finishedyploty’ + plot_name

if make_projection:
print ’generating,densityyprojection plot...’
fig = plt.figure(figsize = (9.0, 6.0))

if label_projection:
ax = fig.add_subplot (111, aspect=2.0/3.2)
ax = hide_axes (ax)
ax.set_xlabel (proj_xlabel)
ax.set_ylabel (proj_ylabel)

fig = make_projections(fig, 111, halo_pos_21pt, halo_pos_za, particle_pos_2lpt, particle_pos_za, \
r_vir_21pt, r_vir_za, plot_lim)

fig.tight_layout ()

plot_name = "%s%0.3d_(%d,%d)%s%s" % (plot_base, itteration, id_21pt, id_za, proj_name, plot_ext)

plt.savefig(plot_name, bbox_inches=’tight’)

print ’finished_ density projectionplot,,” + plot_name

if make_density_profile:
print ’generating,densityyprofile,plot...~
fig = plt.figure(figsize = (9.0, 12.0))

if label_projection:

72 ax = fig.add_subplot (211, aspect=2.0/3.2)
273 ax = hide_axes (ax)
274 ax.set_xlabel (proj_xlabel)
275 ax.set_ylabel (proj_ylabel)
276
277 fig = make_projections(fig, 211, halo_pos_21lpt, halo_pos_za, particle_pos_2lpt, particle_pos_za, \
278 r_vir_21lpt, r_vir_za, plot_lim)
279
280 ax = fig.add_subplot (212)
281 ax = hide_axes (ax)
282 ax.set_xlabel (prof_xlabel)
283 ax.set_ylabel (prof_ylabel)
284
285 #grid = ImageGrid(fig, 212, nrows_ncols=(2,1), axes_pad=0.24)
286

axl = fig.add_subplot (413)
axl = draw_density_profile(axl, r_21pt, rho_21lpt, err=rho_err_2lpt, color=’blue’)
axl = draw_nfw_profile(axl, nfw_r_21pt, nfw_rho_21lpt, R_s=r_s_21lpt, color=’red’)

ax2 = fig.add_subplot (414)
ax2 = draw_density_profile(ax2, r_za, rho_za, err=rho_err_za, color=’blue’)
ax2 = draw_nfw_profile(ax2, nfw_r_za, nfw_rho_za, R_s=r_s_za, color=’red’)

if equal_profile_axes:
ymin = min(axl.get_ylim() [0], ax2.get_ylim() [0])
ymax = max(axl.get_ylim() [1], ax2.get_ylim() [1])
axl.set_ylim(ymin, ymax)
ax2.set_ylim(ymin, ymax)

xmin = min(axl.get_x1im() [0], ax2.get_xlim() [0])
xmax = max (axl.get_xlim()[1], ax2.get_xlim() [1])
axl.set_xlim(xmin, xmax)
ax2.set_xlim(xmin, xmax)

if print_text:
axl.text(0.95, 0.85, ’2LPT’, color=’black’, horizontalalignment=’right’, verticalalignment=’center’,
transform=ax1l.transAxes)
308 ax2.text (0.95, 0.85, ’ZA’, color=’black’, horizontalalignment=’right’, verticalalignment=’center’,
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def

def

def

transform=ax2.transAxes)

#fig.tight_layout ()

plot_name = "%s%0.3d_(%d,%d)%s%s" % (plot_base, itteration, id_21lpt, id_za, dens_name,

plt.savefig(plot_name, bbox_inches=’tight’)
print ’finished_densityyprofile plot,’ + plot_name

density_profile(halo, particles):

r_vir = halo[halo_r_col] * dist_scale

halo_pos = halo[halo_pos_cols] * dist_scale

#mass = np.ones(particles.shape[0]) * common_mass * mass_scale
mass = particles[:,particle_mass_col] * mass_scale

pos = particles[:,particle_pos_cols] * dist_scale

pos = pos - halo_pos

r_bins, rho, rho_err = calc_density_profile(mass, pos)

mid_bins = 10.0%*(0.5 * (np.loglO(r_bins[1:]) + np.loglO(r_bins[:-11)))

# Don’t pass NaN’s to fitting routine
rho_err_nonan = np.copy(rho_err)
nan_check = np.isnan(rho_err_nonan)
for i in range(len(rho_err_nonan)):
if (mid_bins[i] < res_limit) or (man_check[i] == True):
rho_err_nonan[i] = 1.0e10

return mid_bins, rho, rho_err, r_vir

calc_density_profile(mass, pos):
r = np.sqrt(pos[:,0]**2 + pos[:,1]1*%2 + pos[:,2]%*2)

max_r = r.max()
min_r = res_limit
log_range = np.loglO(max_r) - np.loglO(min_r)
local_nbins = float(nbins + 1)
while True:
bins = np.arange(local_nbins)
bins = max_r * 10.0**(log_range * bins / (local_nbins-1.0) - log_range)
bin_mass, r_bins = np.histogram(r, bins, weights=mass)
if (bin_mass == 0.0).any():
local_nbins -= 1
continue
else:
break

rho = bin_mass / (sphere_vol(r_bins[1:]) - sphere_vol(r_bins[:-1]))
N_bin, blah = np.histogram(r, bins)

rho_err = poisson_error(N_bin) * rho

return r_bins, rho, rho_err

sphere_vol(r):
volume = (4.0 / 3.0) * np.pi * r**3
return volume

poisson_error (N):
err = np.sqrt(N) / N
return err

fit_profile(r, rho, err=None, R_vir=None):

popt, pcov = curve_fit(nfw_profile, r, rho, sigma=err, p0=[0.1, 1.0])
R_s, rho_0 = popt[0], popt[1]

nfw_r = np.linspace(r[0], r[-1], nfit)

nfw_rho = nfw_profile(nfw_r, R_s, rho_0)

return nfw_r, nfw_rho, R_s

nfw_profile(r, R_s, rho_0):
if R_s >= 1.0:

return (R_s - 1.0) * np.exp(r) + rho_0 / (C r / R_s ) * ( 1.0 + r / R_s )*%2)
return rho_ 0 / (C r / R_s ) * ( 1.0 + r / R_s )*%2)

filter_column(x, x_col):

print ’Filtering,data...’

x = x[x !'= -9999]

if x_col in 1lt_cols:
val = 1lt_vals[lt_cols.index(x_col)]
x = x[x <= vall

if x_col in gt_cols:
val = gt_vals[gt_cols.index(x_col)]

x = x[x >= vall

if x_col in eq_cols:
val = eq_vals[eq_cols.index(x_col)]
x = x[x == vall

if x_col in ne_cols:
val = ne_vals[ne_cols.index(x_col)]
x = x[x != vall

return x
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102 def draw_hist(fig, ax, x, x_min=None, x_max=None, use_log=False, color=None, label=None):

403 if use_log:

404 xbins = np.logspace(np.logl0(x_min), np.loglO(x_max), num=nbins+1)

405 ax.set_xscale(’log’)

406 else:

107 xbins = np.linspace(x_min, x_max, num=nbins+1)

108

409 n, bins, patches = ax.hist(x, bins=xbins, histtype=’step’, log=ylog, color=color, label=label)

return fig, ax, n, bins, patches

add_text (fig, ax, textstr):

props = dict(boxstyle=’round’, facecolor=’white’, alpha=0.7)

ax.text (0.02, 0.08, textstr, transform=ax.transAxes, fontsize=14, \
verticalalignment=’top’, bbox=props)

return fig, ax

make_projections (fig, position, halo_posl, halo_pos2, posl, pos2, r_virl, r_vir2, plot_lim):
#grid = ImageGrid(fig, position, nrows_ncols=(2,3), axes_pad=0.05, cbar_mode=’single’)
grid = ImageGrid(fig, position, nrows_ncols=(2,3), axes_pad=0.12, cbar_mode=’single’)
for i, (x, y, hx, hy, r) in enumerate(zip( \
(pos1[:,0], pos1[:,0], posi[:,1], pos2[:,0], pos2[:,0], pos2[:,11), \
(posi[:,1], posi[:,2], posi[:,2], pos2[:,1], pos2[:,2], pos2[:,2]), \

(halo_pos1[0], halo_pos1[0], halo_posi[1], halo_pos2[0], halo_pos2[0], halo_pos2[1]), \
(halo_pos1[1], halo_pos1[2], halo_pos1[2], halo_pos2[1], halo_pos2[2], halo_pos2[2]), \
(r_virl, r_virl, r_virl, r_vir2, r_vir2, r_vir2))):
ax = gridl[i]
draw_projection(ax, x, y, hx, hy, r, plot_lim)
if print_text:
if i == 0:
ax.text (0.05, 0.12, ’2LPT’, color=’white’, horizontalalignment=’left’, verticalalignment=’center’

, transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground=’black’)])

434 if i == 3:

435 ax.text (0.05, 0.12, ’ZA’, color="white’, horizontalalignment=’left’, verticalalignment=’center’
, transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground=’black’)])

437 if i == 0:
438 ax.text(0.95, 0.88, ’XY’, color=’white’, horizontalalignment=’right’, verticalalignment=’center’,
transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground=’black’)])

440 ax.text(0.95, 0.88, ’XZ’, color=’white’, horizontalalignment=’right’, verticalalignment=’center’,
transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground=’black’)])
441 if i == 2:

442 ax.text(0.95, 0.88, ’YZ’, color=’white’, horizontalalignment=’right’, verticalalignment=’center’,
transform=ax.transAxes, path_effects=[patheffects.withStroke(linewidth=3, foreground=’black’)])
443 return fig

446 def draw_projection(ax, x, y, hx, hy, r, plot_lim):

447 limits = [[-plot_lim, plot_lim], [-plot_lim, plot_lim]]

448 z, xedges, yedges = np.histogram2d(x, y, bins=npixels, range=1limits)

149 if log_scale_projections:

450 z[z<1.0] = 0.5

451 #z = np.logl0(z)

452 #z = np.logl0(z)

453 #z[np.isinf(z)] = -0.1

154 plot_norm = mpl.colors.LogNorm(vmin = 1, vmax = z.max(), clip=True)
455 #plot_norm = None

456 else:

457 plot_norm = None

458 if extra_smoothing:

459 z = gaussian_filter(z, smoothing_radius)

460 im = ax.imshow(z.T, extent=(-plot_lim, plot_lim, -plot_lim, plot_lim), \
461 interpolation=’gaussian’, origin=’lower’, cmap=colormap, norm=plot_norm)
462 #interpolation=’gaussian’, origin=’lower’, cmap=colormap)

463 ax.locator_params (nbins=6)

464 if draw_circle:

465 ax.add_patch(Circle((hx, hy), r, fc="None", ec="black", lw=1))

466 if draw_contours:

167 x_midpoints = (xedges[:-1] + xedges[1:]) / 2.0

468 y_midpoints = (yedges[:-1] + yedges[1:]1) / 2.0

469 X, Y = np.meshgrid(x_midpoints, y_midpoints)

470 ax.contour (X, Y, z.T, 2, colors=’black’, linewidths=4)

471 ax.contour (X, Y, z.T, 2, colors=’white’, linewidths=2)

472 if label_colorbar:

473 if log_scale_projections:

474 log_format = mpl.ticker.LogFormatterMathtext (10, labelOnlyBase=False)
475 ax.cax.colorbar (im, format=log_format)

476 else:

7 ax.cax.colorbar (im)

478 else:

479 bar = ax.cax.colorbar(im, ticks=[])

480 bar.ax.set_yticklabels ([])

481 #plt.setp(bar.ax.get_yticklabels (), visible=False)

482

483

184 def draw_density_profile(ax, r, rho, err=None, color=’black’, label=None):
485 im = ax.loglog(r, rho, linestyle=’steps-mid-’, color=color, label=label)
486 linel = ax.axvline(res_limit, color=’black’, linestyle=’:’)
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ax.set_xlim(r[0] - (r[1]-r[0]1), r[-1] + (r[-1]1-r[-21))
#ax.set_xlabel (xlabel_prof)
#ax.set_ylabel(ylabel_prof)

if err != None:
err_bars = ax.errorbar(r, rho, yerr=err,linestyle=’None’,
if label != None:

ax.legend (fontsize=’x-small’)
return ax

def draw_nfw_profile(ax, r, rho, R_s=None, color=’black’):

ax.loglog(r, rho, linestyle=’-’, color=color)
if R_s != None:
line = ax.axvline(R_s, color=’purple’, linestyle=’-.

return ax

def draw_parameters(ax, header, paramsl, params2):
strlen = 12

header = [str(item)[:strlen] for item in header]
paramsl = [str(item) [:strlen] for item in paramsi]
params2 = [str(item) [:strlen] for item in params2]
header.insert (0, ’simulation’)

paramsl.insert (0, ’--.2lpty--’)

params2.insert (0, ’---,zag---’)

header = ’\n’.join(header)

paramsl = ’\n’.join(params1)

params2 = ’\n’.join(params2)

ax.text (0.05, 0.5, header, horizontalalignment="1left",
ax.text (0.40, 0.5, paramsl, horizontalalignment="left",
ax.text (0.75, 0.5, params2, horizontalalignment="left",
ax.axis (’off’)

return ax

def hide_axes(ax):
ax.spines[’top’].set_color(’none’)
ax.spines[’bottom’].set_color (’none’)
ax.spines[’left’].set_color (’none’)
ax.spines[’right’].set_color (’none’)
ax.tick_params(labelcolor=’w’, top=’off’, bottom=’off’,
return ax

nhalos = 1
sort_col = 9 # density_profile 21pt halo mass
#sort_col = 47 # rockstar 21pt halo mass (M200c¢)

verticalalignment="center",
verticalalignment="center",
verticalalignment="center",

5¢

SR
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v

n

v

o
o

n

o

© 00T W~

o
Sy

n

n

o
)

nbins = 40

nfit = 100

npixels = 30
#npixels = 100
smoothing_radius =
remove_nonfit_halos
global_filter_halos
column_filter_halos

log_scale_projections

wrap_box = False

True
True
True
= True

label_colorbar = False
label_projection = True

zoom_projections =

True

zoom_scale = 18.0 # kpc

draw_circle = False

draw_contours = True

extra_smoothing = True

label_proj = True

label_21lpt_za = True

equal_profile_axes
print_text = True

True

box_size = 10000.0 # kpc

id_col_21pt = 0
id_col_za =1

print_cols_21lpt =

101, 103, 105,

print_cols_za =

102, 104, 106,

Rvli_col = 53
Rv2_col = 54
Rsl_col = 55
Rs2_col = 56

c_2lpt_col = 17
c_za_col = 18

[43, 57, 6, 9, 17, 23, 31, 47, 51, 59,
107, 111, 163, 201, -2]
[44, 58, 6, 10, 18, 24, 32, 48, 52, 60,
108, 112, 164, 202, -1]

# c_2lpt, c_za, chi2_21pt, chi2_za

lt_cols = [17, 18,

37, 38]
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577 1t_vals = [100.0, 100.0, 10.0, 10.0]

579 # c_21pt, c_za, rho_0_21pt, rho_O_za, chi2_21pt, chi2_za
580 gt_cols = [17, 18, 31, 32, 37, 38]
581 gt_vals = [1.0, 1.0, 0.0, 0.0, 0.0, 0.0]

583 eq_cols = []
584 eq_vals = []

585

586 ne_cols = []

587 mne_vals = []

588

589 # bgc2 halo array columns
590 halo_id_col =0

591 halo_r_col = 4

592 halo_mass_col = 5

593 halo_pos_cols = [6,7,8]
594

595 # bgc2 particle array columns
596 particle_mass_col = 0

597 particle_pos_cols = [1,2,3]
598 particle_vel_cols = [4,5,6]

600 mass_scale = 1.0

601 common_mass = 5.33423e5

602 dist_scale = 1.0e3

603 res_limit = 0.5 #changed from 4.0 to 0.5 to match density_profile.py <-- maybe check why it was 4.07
604 nfit = 500

605
606 dist_units = ’kpc’
607 #xlabel_proj = [r’X Position (%s h$~{-1}$)’> % (dist_units), r’X Position (%s h$-{-1}$)’> % (dist_units), r’Y

Position (%s h$-{-1}$)’ % (dist_units)]

608 #ylabel_proj = [r’Y Position (%s h$~{-1}$)’> % (dist_units), r’Z Position (%s h$-{-1}$)’> % (dist_units), r’Z
Position (%s h$~{-1}$)’ % (dist_units)]

609 proj_xlabel = r’Position,(kpc h$~{-1}$)’

610 proj_ylabel = r’Position,(kpc h$~{-1}$)’

611 prof_xlabel = r’Radiusy(%syh$~{-1}$)’> % (dist_units)

612 prof_ylabel = r’Density, (M$_{\odot}$, %s$ {-3}$,h$"{2}8)> % (dist_units)

613

614 #colormap = ’ocean_r’

615 colormap = ’rainbow’

616 plot_base = ’plots/halo_pair_’

617 proj_name ’_proj’

618 dens_name = ’_dens’

619 plot_ext = ’.eps’

620

621 make_stats = False

622 make_projection = False

623 make_density_profile = True

624

625 plot_dest_type = ’paper’

626 if plot_dest_type == ’paper’:

627 mpl.rcParams[’font.family’] = ’serif’
628 mpl.rcParams[’font.size’] = 16

629 mpl.rcParams[’axes.linewidth’] = 3
630 mpl.rcParams[’lines.linewidth’] = 4
631 mpl.rcParams[’patch.linewidth’] = 4
632 mpl.rcParams [’xtick.major.width’] = 3
633 mpl.rcParams[’ytick.major.width’] = 3
634 mpl.rcParams[’xtick.major.size’] = 8
635 mpl.rcParams[’ytick.major.size’] = 8
636

637

638 if __name__ == ’__main__’:

639 main ()
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Appendix H
Concentration Comparison Code (Python)

#!'/usr/bin/env python

import numpy as np

1

2

3 import sys

1

5 from ipdb import set_trace

def main():

8 # Read in particle files
9 header, halos = read_files(sys.argv[1:], header_line = 3)
10
11 if remove_nonfit_halos:
12 print ’Removing, NaNs...?’
13 halos = halos[np.isfinite(halos[:,c_lpt_coll)]
14 halos = halos[np.isfinite(halos[:,c_za_coll)]
15
16 if global_filter_halos:
17 print ’Filtering,data...’
18 for col, val in zip(glob_lt_cols, glob_lt_vals):
19 halos = halos[halos[:, col] <= val]
20 for col, val in zip(glob_gt_cols, glob_gt_vals):
21 halos = halos[halos[:, col]l >= vall
22 for col, val in zip(glob_eq_cols, glob_eq_vals):
23 halos = halos[halos[:, col] == val]
24 for col, val in zip(glob_ne_cols, glob_ne_vals):
25 halos = halos[halos[:, col] != vall
26
27
28 if sort_col != None:
halos = sort_by_column(halos, sort_col)
if (nhalos != None) or (mhalos != 0):
halos = halos[:nhalos]

#if (nhalos == ’perc25’):

# halos = halos[:len(halos)/10]

if bad_halo_pairs != None:

mask = np.arange (len(halos))

mask = np.inld(mask, bad_halo_pairs)
mask = np.invert (mask)

halos = halos[mask]

c_rockstar_21pt = halos[:, Rvi_coll / halos[:, Rsi_coll]
c_rockstar_za = halos[:, Rv2_col] / halos[:, Rs2_col]
if use_klypin:
mask = (halos[:,4] < 100)
print "changed %dyhalos" % (mask.sum())
print "c_2lptybeforey", c_rockstar_21pt[mask][0]
c_rockstar_21pt[mask] = halos[mask, Rvi_col]l / halos[mask, 79]
print "c_2lpt_klyping", c_rockstar_21pt[mask][0]
mask = (halos[:,5] < 100)
print "changed,%d halos" % (mask.sum())

print "c_za_before, ", c_rockstar_zal[mask][0]

c_rockstar_za[mask] = halos[mask, Rv2_col] / halos[mask, 80]

print "c_za_klyping", c_rockstar_zal[mask][0]
c_diff_21lpt = 2.0 * (c_rockstar_21lpt - halos[:, c_lpt_coll) / (c_rockstar_21lpt + halos[:, c_lpt_coll)
c_diff_za = 2.0 * (c_rockstar_za - halos[:, c_za_coll]) / (c_rockstar_za + halos[:, c_za_coll)

#halos = np.column_stack((halos, c_rockstar_2lpt, c_rockstar_za, c_diff_21lpt, c_diff_za))
#header.append (’c_rockstar’)

#header.append (’c_rockstar’)

#header.append (’c_diff’)

59 #header .append (’c_diff )

60

61 c_diff_21pt = c_diff_21pt[np.isfinite(c_diff_21pt)]

62 c_diff_za = c_diff_zal[np.isfinite(c_diff_za)]

63 c_diff_tot = np.append(c_diff_21lpt, c_diff_za)

64

65 c_diff_21pt_frac = (np.abs(c_diff_za) <= cutoff_diff_frac).sum() / float(len(c_diff_21pt))
66 c_diff_za_frac = (np.abs(c_diff_za) <= cutoff_diff_frac).sum() / float(len(c_diff_za))
67 c_diff_tot_frac = (np.abs(c_diff_tot) <= cutoff_diff_frac).sum() / float(len(c_diff_tot))
68

69 with open(c_diff_file, ’w’) as fd:

70 fd.write ("Yguukguu%g\n" % (c_diff_tot_frac, c_diff_za_frac, c_diff_21lpt_frac))

71

72 print ’Finishedgsnapshot.’

73

74

75 def read_files(files, header_line = None, comment_char = ’#’):

76 header = None

77 data = None

7 if type(files) == str:

79 files = [files]

80

81 if header_line != None:

82 with open(files[0], ’r’) as fd:
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90

92

121
122
123
124
125
126
127
128
129

148

for line in range(header_line):

fd.readline ()

header =
if header [0]

print "Header must,startywithpay,’%s’"

sys.exit
header = hea

header = header.split ()

for file in file

fd.readline ()
!= comment_char:

(4)
der [1:]

s:

print ’Readingyfiley%s...> % (file)

if data == N

data = np.genfromtxt(file,

else:

one:

data = np.append(data, np.genfromtxt(file,

print ’Finished reading files.’

if header_line =
return data
else:

= None:

return header, data

def sort_by_column(h

alos, col):

print ’Sorting,halos...’
mask = np.argsort(halos[:, coll)
mask = mask[::-1]
halos = halos[mask]
return halos
remove_nonfit_halos = False
global_filter_halos = True
use_klypin = False
nhalos = 100
#nhalos = ’perc25’
#sort_col = None
sort_col = 9
cutoff_diff_frac = 0.2
Rvli_col = 53
Rv2_col = 54
Rsl1_col = 55
Rs2_col = 56
c_lpt_col = 17
c_za_col = 18
lt_cols = [17, 18]
lt_vals = [100.0, 100.0]
gt_cols = [17, 18, 31, 32]
gt_vals = [1.0, 1.0, 0.0, 0.0]
eq_cols = []
eq_vals = []
ne_cols = []
ne_vals = []
# global filters
glob_lt_cols = []
glob_1lt_vals = []
glob_gt_cols = [4, 5]
glob_gt_vals = [100, 100]
glob_eq_cols = [109, 110]
glob_eq_vals = [-1, -1]
glob_ne_cols = []
glob_ne_vals = []
bad_halo_pairs = None
c_diff_file = ’stats/c_diff.dat?’
if __name__ == ’__main__’:
main ()

% comment_char

comments=comment_char)

comments=comment_char),
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Appendix I

Differential Histogram Code

I.1 Histogram Generation and Fitting (Python)

#!/usr/bin/env python

import sys

import numpy as np

import matplotlib as mpl

mpl.use (’Agg’)

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec
from scipy import stats

from scipy.special import gamma as gamma_func

from scipy.optimize import curve_fit

import statsmodels.sandbox.distributions.extras as extrastats

from ipdb import set_trace

def main():
# Read in particle files

header, halos = read_files(sys.argvl[1:],

if remove_nonfit_halos:
print ’RemovinggNaNs...?

header_line = 3)

halos = halos[np.isfinite(halos[:,c_lpt_coll)]
halos = halos[np.isfinite(halos[:,c_za_coll)]

if global_filter_halos:
print ’Filteringgdata...’

for col, val in zip(glob_lt_cols,
halos = halos[halos[:, col] <=

for col, val in zip(glob_gt_cols,
halos = halos[halos[:, col] >=

for col, val in zip(glob_eq_cols

halos = halos[halos[:, col]

for col, val in zip(glob_ne_cols,

B

halos = halos[halos[:, col] != val]
if sort_col != None:
halos = sort_by_column(halos, sort_col)
if (nhalos != None) or (nhalos != 0):
halos = halos[:nhalos]
if bad_halo_pairs != None:
mask = np.arange (len(halos))

mask = np.inld(mask, bad_halo_pairs)

mask = np.invert (mask)
halos = halos[mask]

c_rockstar_21pt = halos[:, Rvi_col] / halosl[:,
c_rockstar_za = halos[:, Rv2_col] / halos[:,

if use_klypin:
mask = (halos[:,4] < 100)

print "changed %dyhalos" % (mask.sum())
print "c_2lptybefore,", c_rockstar_21pt[mask][0]

c_rockstar_21pt [mask] = halos[mask,

Rvi_col]l / halos[mask,

glob_1lt_vals):
vall
glob_gt_vals):
vall
glob_eq_vals):
= vall
glob_ne_vals):

Rsl_col]
Rs2_col]

print "c_2lpt,klypin,", c_rockstar_21pt[mask][0]

mask = (halos[:,5] < 100)

print "changed%dyhalos" % (mask.sum())

print "c_zagbefore,", c_rockstar_zal[mask][0]
c_rockstar_za[mask] = halos[mask,
print "c_zayklypiny", c_rockstar_zal[mask][0]
c_diff_21pt = 2.0 * (c_rockstar_21lpt - halos[:,
c_diff_za = 2.0 * (c_rockstar_za - halos[:,
halos = np.column_stack((halos, c_rockstar_21pt,
header.append(’c_rockstar’)
header.append(’c_rockstar’)
header.append (’c_diff’)
header.append (’c_diff’)
if mass_quartiles and len(halos) > 50:
start_fracs = [0.0, 0.25, 0.50, 0.75, 0.0]
end_fracs = [0.25, 0.50, 0.75, 1.0, 1.0]
else:
start_fracs = [0.0]
end_fracs = [1.0]

for start_frac, end_frac in zip(start_fracs,

Rv2_col]l / halos[mask, 80]

79]

c_lpt_coll) / (c_rockstar_21pt + halosl[:,

c_za_col]l) / (c_rockstar_za

c_rockstar_za,

end_fracs):

c_diff_21pt,

alt_end_frac * len(halos)]

halos_to_pass = halos[start_frac * len(halos) end_frac * len(halos)]
if use_alt_frac and (start_frac == 0.0) and (end_frac == 1.0):
alt_halos_to_pass = halos[alt_start_frac * len(halos)
else:
alt_halos_to_pass = None
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81
82
83

def

def

def

if len(halos_to_pass) > O0:
for (lpt_col, za_col,
make_plot (halos_to_pass,

header, use_log=True)
for (lpt_col, za_col,
make_plot (halos_to_pass,
header, use_log=False)

print ’Finishedyallgplots.’

read_files (files,

header = None

data = None

if type(files) == str:
files = [files]

header_line = None,

if header_line != None:
with open(files[0], ’r’) as fd:
for line in range(header_line

fd.readline ()

header = fd.readline ()

if header [0] != comment_char:
print "Header_mustystartywithya,’%s’"
sys.exit (4)

header = header[1:]

header = header.split ()

fancy_x_label)

fancy_x_label)

np.genfromtxt (file,

alt_halos_to_pass, lpt_col, za_col, start_frac, end_frac,
in zip(lpt_cols, za_cols, fancy_x_labels):
alt_halos_to_pass, lpt_col, za_col, start_frac, end_frac,
comment_char = ’#’):

):

for file in files:
print ’Readingyfiley%s...> % (file)
if data == None:
data = np.genfromtxt(file,
else:
data = np.append(data,
print ’Finishedjreading, files.’
if header_line == None:
return data
else:
return header, data

sort_by_column(halos, col):

print ’Sorting halos...’

mask = np.argsort(halos[:, coll)
mask = mask[::-1]

halos = halos[mask]

return halos

comments=comment_char)

in zip(lpt_log_cols,

% comment_char

za_log_cols,

comments=comment_char),

axis=0)

fancy_log_x_labels):

fancy_x_label,

fancy_x_label,

make_plot(halos, alt_halos, 1lpt_col, za_col, start_frac, end_frac, fancy_x_label, header=None, use_log=False)

print ’start,=’, start_frac

print ’end, =’, end_frac
x_lpt = halos[:, 1lpt_coll]
x_za = halos[:, za_coll]
x_lpt, x_za = filter(x_lpt, x_za, lpt_col, za_col)
if alt_halos != None:
alt_x_lpt = alt_halos[:, lpt_coll
alt_x_za = alt_halos[:, za_coll]
alt_x_1lpt, alt_x_za = filter(alt_x_1lpt, alt_x_za,

if header != None:
header_lpt = header[lpt_coll
header_za = header [za_col]

if header_1lpt header_za:

xlabel = header_1lpt

xlabel = xlabel.replace(’/’,
else:

print ’columngmismatch...

set_trace ()

sys.exit (123)
if len(x_lpt) == 0 or len(x_za) == 0:
print
return
#set_trace ()

if perc_diff:
print
x_perc_diff =
perc_diff_file =

(x_lpt -

(perc_diff_base,
stats_ext)
perc_diff_stats(x_perc_diff,

perc_diff_file,

> _over_’)

pexiting?’

’Finding,percent difference stats...’
x_za) / x_
"%s%s%0.3d%s%0.3d%s%s_(4hs-%s)hs" %

za

>(’, 1lpt_col, 7,°

print ’done.’
x = 2.0 * (x_1lpt - x_za) / (x_lpt + x_za)
x[np.logical_and(x_1lpt == 0, x_za == 0)] = 0

if alt_halos != None:
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B
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end_frac,
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169 alt_x = 2.0 * (alt_x_lpt - alt_x_za) / (alt_x_lpt + alt_x_za)

170 alt_x[np.logical_and(alt_x_1lpt == 0, alt_x_za == 0)] = 0
171
172 # set_trace ()
173
174 if x_lim == None:
175 #x_max = max(abs(x.max()), abs(x.min()))
176 if lpt_col == 47T:
177 x_max = x.mean() + x.std() * 1.5
178 x_min = x.mean() - x.std() * 1.5
179 else:
180 x_max = np.std(x) * 3.0
181 Xx_min = -x_max
182 else:
183 x_max = x_lim
184 x_min = -x_lim
185
186 # get stats
187 data_mean = x.mean ()
188 data_stdev = x.std()*x2
189 data_skew = stats.skew(x)
190 data_kurt = stats.kurtosis(x)
191 data_rms = np.sqrt(np.mean (x**2))
192 data_gt_epsilon = float(len(x[np.abs(x) >= 0.1]1)) / float(len(x))
193
194 # Generate plot
195 print ’generating’, xlabel, ’plot...~
196 fig = plt.figure(figsize=(9.0, 6.0))
197 if add_residuals_panel:
198 grid = gridspec.GridSpec(2, 1, height_ratios=[1,4])
199 ax = fig.add_subplot(grid[1])
200 else:
201 ax = fig.add_subplot (111)
202 ax, n, bins, patches = draw_hist(ax, x, x_min=x_min, x_max=x_max, \
203 use_log=use_log, color=’blue’, fill=None)
204
205 p0 = [1.0, data_mean, data_stdev, 2.0]
206 ax, fit_height, fit_mean, fit_stdev, fit_skew, fit_kurt, fit_height_err, fit_mean_err, fit_stdev_err,
fit_skew_err, fit_kurt_err, chi2, pval = draw_fit(ax, n, bins, pO)
207
if draw_data_fit:
ax = draw_data_gaussian(ax, x, n, bins)
if alt_halos != None:
ax, n_alt, bins_alt, patches_alt = draw_hist(ax, alt_x, x_min=x_min, x_max=x_max, \
use_log=use_log, color=’green’, £ill="0.75")
#ax = draw_fit(ax, n, bins)

#ax.grid(color=’gray’, linestyle=’dashed’)

ax.set_xlim([x_min, x_max])

#ax.set_xlabel(’(’> + xlabel + ’_21lpt - > + xlabel + ’_za) / °> + xlabel + ’_avg’)

#ax.set_ylabel (ylabel)

if label_axes:
ax.set_xlabel (fancy_x_label, fontsize="xx-large")
ax.set_ylabel(fancy_y_label, fontsize="xx-large")

#ax.legend ()

NN

if add_residuals_panel:
ax = fig.add_subplot(grid[0])
ax = draw_residuals(ax, n, bins, fit_height, fit_mean, fit_stdev, fit_kurt)
ax.tick_params (axis=’x’, labelbottom=’off’)

SEN)

S

o
2: fig.tight_layout ()
28 plot_name = "%s%s%0.3d%s%0.3d%s%s_(%s-%s)%s" % \

< (plot_base, ’(’, 1lpt_col, ’,’, za_col, ’)_’, xlabel, start_frac, end_frac, plot_ext)

fig.savefig(plot_name, bbox_inches=’tight’)

if save_stats:
statsfile = "%s%s%0.3d%s%0.3d%s%s_(%s-%s)%s" % \
(stats_base, ’(’, lpt_col, ’,’, za_col, ’)_’, xlabel, start_frac, end_frac, stats_ext)
with open(statsfile, ’w’) as fd:
if bin_test:
for ntestbins in range(nbins_min, nbins_max+1, 5):
fit_mean, fit_stdev = rebin_stats(ntestbins, x, x_min=x_min, x_max=x_max, use_log=use_log)
fd.write ("%du%gukgu%egu%g\n" % (ntestbins, data_mean, data_stdev, fit_mean, fit_stdev))
else:
fd.write ("%duuukguhgulhguhguunkguigulkguhgubguhguhguhguhguhguuubguhguuukguhg\n" % \
(nbins, data_mean, data_stdev, data_skew, data_kurt, \
fit_height, fit_height_err, fit_mean, fit_mean_err, fit_stdev, fit_stdev_err, fit_skew,
fit_skew_err, fit_kurt, fit_kurt_err, \

24 data_rms, data_gt_epsilon, chi2, pval))
2

249 print ’finishedplot,’ + plot_name

250 return

251

252

253 def perc_diff_stats(x, filename, use_log=False):
254 data_mean = x.mean ()

255 data_stdev = x.std()*x2

256 data_skew = stats.skew(x)

257 data_kurt = stats.kurtosis(x)

258 data_rms = np.sqrt(np.mean (x**2))
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259 data_gt_epsilon = float(len(x[np.abs(x) >= 0.1]1)) / float(len(x))

261 if x_lim == None:

262 x_max = min((x.mean() + x.std() * 3.0), x.max())
263 x_min = max((x.mean() - x.std() * 3.0), x.min())
264 else:

265 x_max = x_lim

266 X_min = -x_max

267

268 global nbins

269 if nbins <= 0:

270 nbins = np.sqrt(len(x))

271 if nbins % 2 == 0:

272 nbins = nbins - 1

27¢ if nbins < nbins_min:

27 nbins = nbins_min

275 elif nbins > nbins_max:

276 nbins = nbins_max

if use_log:
xbins = np.logspace(np.logl0(x_min), np.loglO0(x_max), num=nbins+1)
mid_bins = 10.0**(0.5 * (np.logl0(xbins[1:]) + np.logl0(xbins[:-11)))
else:
xbins = np.linspace(x_min, x_max, num=nbins+1)
mid_bins = 0.5 * (xbins[1:] + xbins[:-1])

hist, bin_edges = np.histogram(x, bins=xbins)
x_peak = mid_bins[hist == hist.max()][0]
x_sorted = np.sort(x)

n_halos = len(x_sorted)

x_vals = []

for frac in fractions:
x_vals.append(x_sorted[len(x_sorted)*frac])

x_vals = np.array(x_vals)
sum_frac_halos = []
for diff_val in diff_vals:
n_gt_val = (x_sorted >= diff_val).sum()
sum_frac_halos.append(float(n_gt_val) / float(n_halos))
sum_frac_halos = np.array(sum_frac_halos)
doublesum_frac_halos = []

for right_diff_val in diff_vals:
left_diff_val = (1.0 / (right_diff_val + 1.0)) - 1.0

n_gt_val = (x_sorted >= right_diff_val).sum() + (x_sorted <= left_diff_val).sum()
doublesum_frac_halos.append(float(n_gt_val) / float(n_halos))
doublesum_frac_halos = np.array(doublesum_frac_halos)

with open(filename, ’w’) as fd:
fd.write ("%duuuhguuuhsuuuhsuuuhsuuuhguhguhgubguuuhguhg\n” %\

(nbins, x_peak,

’y?.join("%g" % x for x in x_vals), \

’y?.join("%g" % x for x in sum_frac_halos), \

'y’ .join("%g" % x for x in doublesum_frac_halos), \
data_mean, data_stdev, data_skew, data_kurt, \
data_rms, data_gt_epsilon))

return

find_frac_bounds (hist, start_bin, frac):
n_tot = hist.sum()
n_sum = hist[start_bin]

left_tot = hist[:start_bin].sum() + hist[start_bin]/2.0
right_tot = hist[start_bin+1:].sum() + hist[start_binl]/2.0

if float(left_tot) / float(n_tot) <= frac / 2.0:
right_only = True

if float(right_tot) / float(n_tot) <= frac / 2.0:
left_only = True

left_bound = start_bin

right_bound = start_bin

while (float(n_sum) / float(n_tot) < frac):
pass

return left_bound, right_bound

filter (x_lpt, x_za, lpt_col, za_col):

mask = np.isfinite(x_1lpt)
x_1lpt = x_lpt[mask]

x_za = x_zal[mask]
mask = np.isfinite(x_za)
x_1lpt = x_lpt[mask]
x_za = x_zalmask]

if column_filter_halos:
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x_1lpt, x_za = filter_columns(lpt_col, x_lpt, x_za)

x_za, x_lpt = filter_columns(za_col, x_za, x_lpt)
354 return x_lpt, x_za
355
356
357 def filter_columns(x_col, x1, x2):
358 print ’Filtering,data...’
mask = np.isfinite(x1)

x1 = x1[mask]
x2 = x2[mask]

mask = (x1 != -9999)
x1 = x1[mask]
x2 = x2[mask]

if x_col in 1lt_cols:
val = 1lt_vals[lt_cols.index(x_col)]
mask = (x1 <= val)
x1 = x1[mask]
x2 = x2[mask]
if x_col in gt_cols:
val = gt_vals[gt_cols.index(x_col)]
mask = (x1 >= val)
x1 = x1[mask]
x2 = x2[mask]
if x_col in eq_cols:
val = eq_vals[eq_cols.index(x_col)]
mask = (x1 == val)
x1 = x1[mask]
x2 = x2[mask]
if x_col in ne_cols:
val = ne_vals[ne_cols.index(x_col)]
mask = (x1 != val)
x1 = x1[mask]
x2 = x2[mask]
return x1, x2

draw_hist(ax, x, x_min=None, x_max=None, use_log=False, color=None, fill=None, label=None):
global nbins
if nbins <= 0:

nbins = np.sqrt(len(x))

if nbins % 2 == 0:

nbins = nbins - 1

if nbins < nbins_min:

nbins = nbins_min
elif nbins > nbins_max:

nbins = nbins_max

if use_log:

xbins = np.logspace(np.logl0(x_min), np.logl0(x_max), num=nbins+1)
ax.set_xscale(’log’)
else:
xbins = np.linspace(x_min, x_max, num=nbins+1)
if fill == None:
type=’step’
else:

type=’stepfilled’

n, bins, patches = ax.hist(x, bins=xbins, histtype=type, facecolor=fill, normed=hist_normed, cumulative=
hist_cumulative, log=ylog, edgecolor=color, label=label)
return ax, n, bins, patches

draw_fit(ax, hist, bin_edges, p0):
bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.0

if ignore_central_bin:
mask = (np.abs(bin_centers) > 0.000001)
bin_centers = bin_centers[mask]
hist = hist[mask]

hist[hist==0] = 1 #fix devide by zero error

try:
if poisson_weight:
sigma=np.sqrt (hist)/hist
sigma = sigma / float(hist.max())
else:
sigma=None

if fit_in_log:
#if sigma != None:
# sigma = np.loglO(sigma)

coeffs, var_matrix = curve_fit(log_generalized_normal, bin_centers, np.loglO(hist/float(hist.max())),
p0=p0, sigma=sigma)

440 coeffs [0] = coeffs [0]x*2
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var_matrix [0,0] = var_matrix [0,0]**2
else:

coeffs, var_matrix = curve_fit(generalized_normal, bin_centers, hist/float(hist.max()),

sigma)

if prevent_small_shape_param and coeffs[3] < 1.0:
coeffs[3] = 1.0 / coeffs[3]
print ’coeffs =’, coeffs

except RuntimeError:
print #x*kx*xxcurve_fit, failed!’
return ax, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan,

height, mean, stdv, skew, kurt = coeffs[0] #* hist.max(), coeffs[1], coeffs[2], 0.0, coeffs[3]
height_err, mean_err, stdv_err, skew_err, kurt_err = np.sqrt(var_matrix[0,0]l*hist.max()), np.sqrt(var_matrix

[1,11), np.sqrt(var_matrix[2,2]), 0.0, np.sqrt(var_matrix[3,3])

fit_x = np.linspace(bin_edges[0], bin_edges[-1], nfitpoints+1)

hist_fit = generalized_normal(fit_x, height, mean, stdv, kurt)
ax.plot(fit_x, hist_fit, color=’red’, linestyle=’--’)
chi2_fit = generalized_normal(bin_centers, height, mean, stdv, kurt)

chi2, pval = stats.chisquare(hist / hist.max(), chi2_fit / hist.max())

return ax, height, mean, stdv, skew, kurt, height_err, mean_err, stdv_err, skew_err,

draw_residuals (ax, hist, bin_edges, fit_height, fit_mean, fit_stdev, fit_kurt):
bin_centers = (bin_edges[:-1] + bin_edges[1:]1) / 2.0

fit = generalized_normal(bin_centers, fit_height, fit_mean, fit_stdev, fit_kurt)
ratio = (hist - fit) / hist.max()

#ax.plot (bin_centers, ratio, linestyle=’steps-mid-’)

ax.plot(bin_centers, ratio, linestyle=’steps-mid-’)

return ax

draw_data_gaussian(ax, x, hist, bins):
bin_centers = (bins[:-1] + bins[1:]) / 2.0

x_min = bins [0]

x_max = bins[-1]

mean = np.mean(x)

stdv = np.std(x)**2

skew = stats.skew(x)
kurt = stats.kurtosis(x)

print "dataystats:yumeany=g%guustdvy=ylkguuskewy=y%guukurty=y%g" % (mean, stdv, skew,

coeffs, var_matrix = curve_fit(gaussian_height (mean, stdv, skew, kurt), bin_centers,
height = coeffs[0]

fit_x = np.linspace(x_min, x_max, nfitpoints+1)

hist_fit = gaussian(fit_x, height, mean, stdv, skew, kurt)
ax.plot(fit_x, hist_fit, color=’0.25’, linestyle=’-.’)
return ax

#def gaussian(x, A, mu, sigma, skew, kurtosis):
# pdf_function = extrastats.pdf_mvsk([mu, sigma, skew, kurtosis])
# return A * pdf_function(x)

def double_gaussian(x, A, mu, sigma, skew, kurtosis, A2, mu2, sigma2, skew2, kurtosis2):
return gaussian(x, A, mu, sigma, skew, kurtosis) + gaussian(x, A2, mu2, sigma2, skew2,

def gaussian_height(mu, sigma, skew, kurtosis):
def func(x, A):
pdf_function = extrastats.pdf_mvsk([mu, sigma, skew, kurtosis])
return A * pdf_function(x)
return func

#def log_gaussian(x, A, mu, sigma, skew=0.0, kurtosis=0.0):
def log_gaussian(x, A, mu, sigma):

A = Ax%2 # remember to also square fit value for A
y = gaussian(x, A, mu, sigma)
#y = gaussian(x, A, mu, sigma, skew, kurtosis)
if (y <= 0.0).any():
#yly<=0] = -yly<=0] + 1

yly<=0] = (y[y<=0] + 0.0001)*%2
return np.logl0(y)

pO=[hist.max()])

#def log_double_gaussian(x, A1, mul, sigmal, skewl, kurtosisl, A2, sigma2, skew2, kurtosis2):

mean

#def log_double_gaussian(x, A1, mul, sigmal, skewl, kurtosisl, A2, mu2, sigma2, skew2, kurtosis2):

def log_double_gaussian(x, A1, mul, sigmal, A2, mu2, sigma2):

#mu2 = mul # for common mean
Al = A1*%2 # remember to also square fit value for A
A2 = A2%x2

skewl = 0.0
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skew2 = 0.0
kurtosisl = 0.0
kurtosis2 = 0.0

y = double_gaussian(x, Al, mul, sigmal, skewl, kurtosisl, A2, mu2, sigma2, skew2, kurtosis2)

53 if (y <= 0.0).any():
535 #yly<=0] = -yly<=0] + 1
536 yly<=0]1 = (yly<=0] + 0.0001) **2
537 return np.logl0(y)
538
539
540 def gaussian(x, A, mu, sigma):
541 return A * np.exp(-(x - mu)**2 / (2.0 * sigmax*2))
542
543
544 def generalized_normal(x, A, mu, alpha, beta):
545 if prevent_small_shape_param and beta < 1.0:
546 beta = 1.0 / beta
547 return A * ( beta / (2.0 * alpha * gamma_func(1.0 / beta)) ) * np.exp(-(np.abs(x - mu)/alpha)**beta)
548
549
550 def log_generalized_normal(x, A, mu, alpha, beta):
551 A = Axx2
552 y = generalized_normal(x, A, mu, alpha, beta)
553 if (y <= 0.0).any():
554 #y[y<=0] = -yly<=0] + 1.0
555 yly<=0]1 = (yly<=0] + 0.0001) **2
556 return np.logl0(y)
557
558
559 def add_text(fig, ax, textstr):
560 #props = dict(boxstyle=’round’, facecolor=’white’, alpha=0.25)
561 props = dict(edgecolor=’none’, facecolor=’none’)
562 ax.text (0.02, 0.16, textstr, transform=ax.transAxes, fontsize=14, \
563 verticalalignment=’top’, bbox=props)
564 return fig, ax
565
566
567 def rebin_stats(ntestbins, x, x_min=None, x_max=None, use_log=False):
568 if use_log:
569 xbins = np.logspace(np.loglO(x_min), np.loglO(x_max), num=ntestbins+1)
570 else:
571 xbins = np.linspace(x_min, x_max, num=ntestbins+1)
572
573 hist, bin_edges = np.histogram(x, bins=xbins)
574

5

bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.0
if ignore_central_bin:
mask = (np.abs(bin_centers) > 0.000001)
8 bin_centers = bin_centers[mask]
hist = hist[mask]
#p0 = [hist.max(), 0.0, 0.2]

)~

1 p0 = [hist.max (), hist.mean(), hist.std(), stats.skew(hist), stats.kurtosis(hist)]

2 hist[hist==0] = 1 #fix devide by zero error
33 try:

A if poisson_weight:
85 coeffs, var_matrix = curve_fit(gaussian, bin_centers, hist, p0O=p0, sigma=(np.sqrt(hist)/hist))
6 else:

7 coeffs, var_matrix = curve_fit(gaussian, bin_centers, hist, p0=p0)

except RuntimeError:
print ’**x**x*xxcurve_fit failed!’
return np.nan, np.nan

mean, stdev = coeffs[1], coeffs[2]

return mean, stdev

nbins = 35
#nbins = 25

#nbins = -1
nbins_min = 15
nbins_max = 200

#nbins_max = 200

nfitpoints = 100
remove_nonfit_halos = False
global_filter_halos = True
column_filter_halos = True
use_klypin = False
label_axes = True
ignore_central_bin = False
save_stats = True

bin_test = False
poisson_weight = True
fit_in_log = True
draw_data_fit = False
mass_quartiles = False
prevent_small_shape_param = False
add_residuals_panel = False
perc_diff = True

hist_normed = False

hist_cumulative = False
ylog = False
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622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

ylabel= ’Number of Halos’

# v v v
fractions = [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99]
diff_vals = [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00, 2.00, 4.00]
# - ~ -~
#nhalos = 100

nhalos = None

sort_col = 9

#lpt_log_cols = [ 9, 23, 31, 47, 51, 57]

#za_log_cols = [10, 24, 32, 48, 52, 58]

#1lpt_cols = [17, 77, 91, 93, 97, 99, 107, 111, -4, -2]
#za_cols [18, 78, 92, 94, 98, 100, 108, 112, -3, -1]
lpt_log_cols (1

za_log_cols [1

#1lpt_cols = [-4, 47, 91, 107, 111]

#za_cols = [-3, 48, 92, 108, 112]

#1lpt_cols = [-4, 31, 47, 91, 107, 111]

#za_cols = [-3, 32, 48, 92, 108, 112]

#1lpt_cols = [-4, 31, 47, 91, 111]

#za_cols = [-3, 32, 48, 92, 112]

lpt_cols = [-4, 47, 91, 93, 107]

za_cols = [-3, 48, 92, 94, 108]

# conentration, mass, x_off, v_off, T/|U]|

fancy_log_x_labels
#fancy_x_labels =
#
#
#
#

fancy_x_labels = [

=0
[r"$\mathrm{\frac{c_{2LPT} - c_{ZA}}{c_{avgl}}}s$",

r"$\mathrm{\frac{\rho_{0, 2LPT} - \rho_{0, ZA}}{\rho_{0, avgl}}}$",
r"$\mathrm{\frac{M_{vir, 2LPT} - M_{vir, ZA}}X{M_{vir, avgl}}$",
r"$\mathrm{\frac{X_{off, 2LPT} - X_{off, ZA}}{X_{off, avgl}}$",
r"$\mathrm{\frac{N_{subs, 2LPT} - N_{subs, ZA}}{N_{subs, avg}}}s$"]

r"$\mathrm{\frac{c_{2LPT} -uc_{ZA}}{c_{avg}}}$",
r"$\mathrm{\frac{M_{vir, ,2LPT},-uM_{vir, ZA}}{M_{vir, avg}}}$",
r"$\mathrm{\frac{X_{off, ,2LPT}, -, X_{off, ZA}}{X_{off, avg}}}$",
r"$\mathrm{\frac{V_{off, ,2LPT},-,V_{off, ZA}}{V_{off, avg}}}$",
r"$\mathrm{\frac{(T/|UI) _{2LPT},-,(T/I1UI) _{ZA}}I{(T/IUI) _{avg}}}$"]

fancy_y_label = r"$\mathrm{N_{halos}}$"
Rvli_col = 53

Rv2_col = 54

Rsl_col = 55

Rs2_col 56

c_lpt_col = 17

c_za_col = 18

# c_2lpt, c_za, chi2_21pt, chi2_za
#1t_cols = [17, 18, 37, 38]

#1t_vals = [100.0, 100.0, 10.0, 10.0]
lt_cols = [17, 18]

1t_vals = [100.0, 100.0]

# c_21lpt, c_za, rho_0_21lpt, rho_O_za, chi2_21pt, chi2_za
#gt_cols = [17, 18, 31, 32, 37, 38]
#gt_vals = [1.0, 1.0, 0.0, 0.0, 0.0, 0.0]
gt_cols = [17, 18, 31, 32]

gt_vals = [1.0, 1.0, 0.0, 0.0]
eq_cols [1

eq_vals [1

ne_cols (1

ne_vals (1

# global filters

glob_lt_cols = []

glob_1lt_vals = []

glob_gt_cols = [4, 5]

glob_gt_vals = [100, 100]
glob_eq_cols = [109, 110]
glob_eq_vals = [-1, -1]

glob_ne_cols = []

glob_ne_vals = []

use_alt_frac = True

alt_start_frac = 0.75

alt_end_frac = 1.0
#x_1lim = 0.5
#x_lim = 1.0
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1
2
3
4
5
6
7
8

x_lim =

bad_halo
#bad_hal

perc_dif
#statsfi
stats_ba
stats_ex
plot_bas
plot_ext

plot_des
if plot_
mpl.
mpl.
mpl.
mpl.
mpl
mpl.
mpl.
mpl.
mpl.

if __nam

None

None
[o,

_pairs =
o_pairs =

f_base =
le =
se =
t =
e =

T.txt?
= ’.eps’

t_type =
dest_type ==

28,

’plots/hist_

’paper’
’paper’:
rcParams [’ font.family’] =

39,

>

rcParams[’font.size’]
rcParams[’axes.linewidth’] = 3

rcParams[’lines.
.rcParams [’patch.
rcParams [’xtick.
rcParams [’ytick.
rcParams [’xtick.
rcParams [’ytick.

e__ ==

’__main__

linewidth?’] =
linewidth?’] =
major.
major.
major.
major.

5.

51, 59, 95]

’plots/perc_diff_’
’plots/stats.txt’
’plots/stats_’

’serif’
= 16

I

width?]
width?’] = 3
size’] = 8
size’] = 8

main ()

I.2 PBS Submission Script (Bash)

#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae

#PBS -1 nodes=1:ppn=1

#PBS -1 pmem=40000mb

#PBS -1 mem=4000mb

#PBS -1 walltime=1:00:00
#PBS -o out.log

#PBS -j oe

minsnap=0
maxsnap=61

# Change to working directory

echo $PBS_NODEFILE

cd $PBS_O_WORKDIR

for ((snap=$minsnap; snap<=$maxsnap; snap++)); do

if [ $snap -1t 10 1;
j=00$snap

elif [ $snap -1t 100 ]1;
j=0$snap

then
then
fi
new_plot_dir=snap${j}_plots

if [ ! -e plots_all_snaps/${new_plot_dir} J]; then

mkdir plots_all_snaps/${new_plot_dir}
fi

echo "Startingubox${il} snap${j}..."

./hist.py ~/projects/simulations/rockstar/box{1,2,3}/crossmatch/snap${j}/halos.dat > plots/out.log 2>&1

mv plots/* plots_all_snaps/${new_plot_dir}/.

echo "Finished_snap${j}"
done
wait
# -

end of script

I.3 PBS Submission Script - Individual Boxes (Bash)

#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae

#PBS -1 nodes=1:ppn=1

#PBS -1 pmem=40000mb

#PBS -1 mem=4000mb

#PBS -1 walltime=2:00:00
#PBS -o out.log

#PBS -j oe

minsnap=0
maxsnap=61

minbox=1
maxbox=3
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17 # Change to working directory
18 echo $PBS_NODEFILE
19 cd $PBS_O_WORKDIR

20

21

22 for ((box=$minbox; box<=$maxbox; box++)); do

23

24 new_box_dir=plots_all_snaps_box${box}

25 if [ ! -e ${new_box_dir} 1; then

26 mkdir ${new_box_dir}

27 fi

28

29 for ((snap=$minsnap; snap<=$maxsnap; snap++)); do

if [ $snap -1t 10 ]; then
j=008$snap

elif [ $snap -1t 100 ]; then
j=08snap

fi

new_plot_dir=snap${j}_plots

if [ ! -e ${new_box_dir}/${new_plot_dir} ]; then
mkdir ${new_box_dir}/${new_plot_dir}
fi

echo -n "Starting box${box},snap${j}t...ou"

./hist.py “/projects/simulations/rockstar/box${box}/crossmatch/snap${j}/halos.dat > plots/out.log 2>&1
mv plots/* ${new_box_dir}/${new_plot_dir}/.

echo "Finished_snap${j}"

done
done

51 # - end of script

I.4 Statistics Collection Script (Bash)

1 #!/usr/bin/env bash

2

3 if [ "$#" -ne 1 ]; then

4 echo "Pleaseyprovidejapdirectoryasgyangyargument."
5 exit -1

6 fi

8 parent_dir=$1

10 for stats_path in $parent_dir/snap061_plots/{stats_x*,perc_diff_x}; do

11 stats_file=$(basename "$stats_path")

12 out_file=${stats_file/_\(/_allsnaps_\(}

13 echo "Mergingystatsyfor $stats_file..."

14

15 for snap_dir in $parent_dir/snap*_plots; do
16 if [ -e $snap_dir/$stats_file ]; then
17 snap_num=$ (basename "$snap_dir")

18 echo -n "${snap_num:5:2} "

19 cat $snap_dir/$stats_file | cut -d’ ’ -f 2-
20 fi

21 done | column -t > $parent_dir/$out_file

22

23 echo "Stats_written,to_$out_file..."

24

25 done
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Appendix J

Redshift Trends Code (Python)

#!'/usr/bin/env python

import sys

import os

5 import numpy as np

6 import matplotlib as mpl

mpl.use(’Agg’)

8 import matplotlib.pyplot as plt

9 from scipy.special import gamma as Gamma
10 from scipy.special import psi as digamma
11 from ipdb import set_trace

12

13

14 def main():

15 #for filenum, file in enumerate(sys.argv[1:]):

16 if (len(sys.argv[1:]) == 4):

17 datal = read_files(sys.argv[1], header_line = None)

18 data2 = read_files(sys.argv[2], header_line = None)

19 data3 = read_files(sys.argv[3], header_line = None)

20 rsnap_data = read_files(sys.argv[4], header_line = None)

21 else:

22 print ’need 4, files’

23 sys.exit (15)

24

25 if fit_mean_trend:

26 with open(statsfile, ’w’) as fd:

27 fd.write("#plot,slopeslope_erryinterceptyintercept_err\n")

28

29 if skew_err_boxes:

30 skew_errl = get_skew_err(sys.argv[1])

31 skew_err2 = get_skew_err(sys.argv[2])

32 skew_err3 = get_skew_err(sys.argv([3])

33

34 if minsnap > O:

35 #for data in datal, data2, data3:

36 # data = dataldatal:,0] >= minsnap]

37 datal = datal[datal[:,0] >= minsnap]

38 data2 = data2[data2[:,0] >= minsnap]

39 data3 = data3[data3[:,0] >= minsnap]

40 if skew_err_boxes:

41 skew_errl = skew_erri[-len(datal):]

42 skew_err2 = skew_err2[-len(data2):]

43 skew_err3 = skew_err3[-len(data3):]

44

45 if skew_err_col == -2:

46 datal = np.column_stack((datal, skew_errl))

47 data2 = np.column_stack((data2, skew_err2))

48 data3 = np.column_stack((data3, skew_err3))

49

50 #if (mean_err_col == -2) or (var_err_col == -2) or (skew_err_col == -2) or (kurt_err_col == -2):

51 # fake_err = np.zeros(len(datal))

52 # datal = np.column_stack((datal, fake_err))

53 # data2 = np.column_stack((data2, fake_err))

54 # data3 = np.column_stack((data3, fake_err))

55

56 z = 1.0 / rsnap_datal:,1] - 1.0

57 if (len(datal) == len(data2)) and (len(datal) == len(data3)):

58 z = z[-len(datal):]

59 else:

60 sys.exit (16)

61

62 datal = np.column_stack((datal, z))

63 data2 = np.column_stack((data2, z))

64 data3 = np.column_stack((data3, z))

65

66 #datal[:,-1] = datall[:,-1] - 0.12

67 #data2[:,-1] = data2[:,-1] + 0.12

68

69 for data in [datal, data2, data3]:

70 if expand_error:

71 mask = (np.abs(datal:,data_mean_col] - datal:,mean_col]) > datal:,mean_err_col])

72 data[mask ,mean_err_col] = np.abs(datal[mask,data_mean_col] - datal[mask,mean_coll])

73 if transform_variance:

74 datal[:,var_col] = datal:,var_coll#**2 * Gamma (3.0 / datal:,beta_col]) / Gamma (1.0 / datal:,beta_coll)

75 datal[:,var_err_col] = datal:,var_err_coll**2 % Gamma(3.0 / datal:,beta_col]) / Gamma(1.0 / datal:,
beta_coll)

76 if transform_kurtosis:

77 #datal:,kurt_col] = ( Gamma(5.0 / datal:,kurt_coll]) * Gamma(1.0 / datal:,kurt_coll]) / Gamma(3.0 /
datal:,kurt_coll]) ) - 3.0

78 beta = datal[:,beta_col]

79 beta_err = datal:,beta_err_col]

80 kurtosis = ( Gamma(5.0 / beta) * Gamma(1.0 / beta) / Gamma(3.0 / beta) ) - 3.0
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kurtosis_err = beta_err * (1.0 / betax*2) #* (kurtosis + 3) * (6.0 * digamma(3.0/beta) - 5.0 * digamma

(5.0/beta) - digamma(1.0/beta))

datal[:,kurt_col] = kurtosis[:]

datal[:,kurt_err_col] = kurtosis_err[:]
datal:,var_col] = np.sqrt(datal:,var_col]) # var to stdev
datal:,var_err_col] = np.sqrt(datal:,var_err_coll])

if save_transformed_data:
for data, path in zip([datal, data2, data3], sys.argv[1:4]):
fname = transform_file_base + os.path.basename(path)
with open(fname, ’w’) as fd:
fd.write(transformed_data_header)
np.savetxt (fd, np.column_stack((z, data)), fmt=’%g’)

# var to stdev

2 #
# make mean and stdv plots #
2 #

for (data, ylabel, color, label, name) in zip([datal, data2, data3],
print "Makingy%suplot..." % (name)
fig = plt.figure(figsize=(9.0, 6.0))
ax = fig.add_subplot (111)

ylabelsl, colors, labelsl, names):

ax = make_plot(ax, datal:,z_col]l, datal:,mean_col]l, err = datal[:,mean_err_col], color = ’blue’, marker=’o
’, label=label)

ax = make_plot(ax, datal:,z_coll, datal:,mean_col] + datal:,var_col]l, color = ’black’, linestyle=’--’)

ax = make_plot(ax, datal:,z_coll, datal:,mean_col] - datal:,var_col]l, color = ’black’, linestyle=’--’)

if add_rms_line:
ax = make_plot(ax, datal:,z_col], datal:,data_rms_col], color

if fit_mean_trend:
ax, slope, slope_err, intercept, intercept_err = add_fit(ax,
datal[:,mean_err_col]l, color=’red’)

datal[:,z_col],

’green’, linestyle=’:’)

save_fits(statsfile, name, slope, np.sqrt(slope_err), intercept, np.sqrt(intercept_err))

#ax.legend(loc=’lower right’)
ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
#ax.invert_xaxis ()

ax.set_xlabel (xlabel, fontsize=’x—large’)
ax.set_ylabel(ylabel, fontsize=’x-large’)

fig.tight_layout ()

fig.savefig(plot_base + ’mean_stdev_’ + name + plot_ext, bbox_inches=’tight’)
[ e #
# make skew and kurtosis plots #
2 #
#datal[:,-1] = + 0.12
#data2[:,-1] = - 0.12

datal[:,mean_col],

err=

for (data, ylabel_kurt, ylabel_skew, color, name, ylim_lowl, ylim_highl, ylim_low2, ylim_high2) in zip([datal
, data2, data3], ylabels2_kurt, ylabels2_skew, colors, names, [-10.0,

[-0.2, -1.5, -0.4], [0.5, 8.5, 0.1]):
print "Making%suplot..." % (name)
fig = plt.figure(figsize=(9.0, 6.0))
ax = fig.add_subplot (111)

#ax = make_plot(ax, datal:,z_col]l - offset, datal:,kurt_coll, err
marker=’0’, linestyle=’-’, label=’Kurtosis?’)

#ax = make_plot(ax, datal:,z_col] + offset, datal:,skew_coll, err
marker=’0’, linestyle=’-’, label=’Skew’)

ax = make_plot(ax, datal:,z_col] - offset, datal:,kurt_coll], err
marker=’0’, linestyle=’:’, label=’Kurtosis?’)

legend_lines1l, legend_labelsl = ax.get_legend_handles_labels ()
ax.set_xlabel(xlabel, fontsize=’x-large’)
ax.set_ylabel(ylabel_kurt, fontsize=’x-large’)
ax.set_ylim(ylim_lowl, ylim_highl)

if separate_skew_axes:

ax = ax.twinx()
ax = make_plot(ax, datal:,z_col] + offset, datal[:,skew_col], err
marker=’o’, linestyle=’:’, label=’Skew’)

legend_lines2, legend_labels2 = ax.get_legend_handles_labels()

ax.set_ylabel(ylabel_skew, fontsize=’x-large’)

-10.0, -1.01, [20.0, 20.0, 1.5],

datal[:,kurt_err_col], color
datal[:,skew_err_col]l, color

datal[:,kurt_err_col], color

datal[:,skew_err_col], color

ax.legend(legend_linesl + legend_lines2, legend_labelsl + legend_labels2, loc=’lower_ right?’)

ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
ax.set_ylim(ylim_low2, ylim_high2)
#ax.invert_xaxis ()

fig.tight_layout ()

fig.savefig(plot_base + ’skew_kurtosis_’ + name + plot_ext, bbox_inches=’tight’)

177

‘red’,

>blue’,

’red’,

’blue’,



print ’Finishedjall_ plots.’

make_plot(ax, x, y, err=None, color=’black’, marker=’None’, linestyle=’None’, label=None):
if err == None:

if label == None:
ax.plot (x, y, color=color, marker=marker, linestyle=linestyle)
else:
ax.plot(x, y, color=color, marker=marker, linestyle=linestyle, label=label)
else:
if label == None:
ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle)
else:

ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle, label=label)
return ax

add_fit(ax, x, y, err=None, color=’red’):
from scipy.optimize import curve_fit
p0 = [0.0, 0.0]
try:
coeffs, pcov = curve_fit(linear, x, y, sigma=err, p0=p0)
except RuntimeError:
print J#xkkxkkxk Curve fit failed  **k*kkkxk’
return np.nan, np.nan
xmin, xmax = ax.get_xlim()
x_fit = np.linspace(xmin, xmax, 20)
y_fit = linear(x_fit, coeffs[0], coeffs[1])
ax.plot(x_fit, y_fit, color=color, linestyle=’--7)
return ax, coeffs[0], pcov[0,0], coeffs[1], pcov[1,1]

linear(x, slope, intercept):
return slope * x + intercept

read_files(files, header_line = None, comment_char = ’#’):
header = None
data = None
if type(files) == str:
files = [files]

if header_line None:
with open(files[0], ’r’) as fd:
for line in range(header_line):
fd.readline ()
header = fd.readline ()
if header [0] != comment_char:
print "Header must,start withpa,’%s’" % comment_char
sys.exit (4)
header = header[1:]
header = header.split ()

for file in files:
print ’Reading.file %s...’ % (file)

if data == None:
data = np‘genfromtxt(file, comments=comment_char)
else:
data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)

print ’Finished reading, files.’
if header_line == None:

return data
else:

return header, data

get_skew_err(filebase):

z = None

skew = None

for i in range(3):
filename = filebase.replace(’plots_all_snaps’, ’plots_all_snaps_box’+str(i+1))
data = read_files(filename, header_line = None)
if i == 0:

min_length = len(data)
elif len(data) < min_length:
min_length = len(data)

if z == None:
z = datal[-min_length:,snap_col]

z = np.column_stack((z[-min_length:], datal-min_length:,snap_coll))

if skew == None:
skew = datal-min_length:,skew_col]
else:
skew = np.column_stack ((skew[-min_length:], datal-min_length:,skew_coll))
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if (z[:,0] '= z[:,11).a11() or (z[:,0] != z[:,2]).al1Q):
print ’Needymatching, snapshotsyfor skewyerror from individual boxes.’
print z

sys.exit (-1)

skew_err = np.std(skew, axis=1) / np.sqrt(3.0)
return skew_err

def save_fits(file, name, slope, slope_err, intercept, intercept_err):
with open(file, ’a’) as fd:
fd.write ("%syu%gu%gukgukg\n" % (name, slope, slope_err, intercept, intercept_err))

plot_dest_type = ’paper’

if plot_dest_type == ’paper’:
mpl.rcParams[’font.family’] = ’serif’
mpl.rcParams[’font.size’] = 16
mpl.rcParams[’axes.linewidth’] = 3
mpl.rcParams[’lines.linewidth’] =
mpl.rcParams[’patch.linewidth’] =
mpl.rcParams [’xtick.major.width’]
mpl.rcParams[’ytick.major.width’] = 3
mpl.rcParams [’xtick.major.size’] = 8
mpl.rcParams[’ytick.major.size’] = 8

I
w

#colors = [’red’, ’green’, ’blue’]

colors = [’black’, ’black’, ’black’]

labelsl = [r’$c$’, r’$M_{\mathrm{vir}}$’, r’$X_{\mathrm{off}}$’]

names = [’c_rockstar’, ’Mvir’, ’Xoff’]

xlabel = ’Redshift?’

ylabelsl = [r’$\mu$_and $\sigma$ for $\Delta c$’, r’$\mu$ and $\sigma$ for $\Delta M_{\mathrm{vir}}$’, r’$\mus,
and_ $\sigma$ for $\Delta, X_{\mathrm{off}}$°’]

ylabels2_kurt = [r’Kurtosisyfor_ $\Delta,c$’, r’Kurtosis, for_ $\DeltayM_{\mathrm{vir}}$’, r’Kurtosis, for_$\Delta X_
{\mathrm{off}}$’]

ylabels2_skew = [r’Skew, for $\Delta,c$’, r’Skewyfor $\DeltayM_{\mathrm{vir}}$’, r’Skew, for_ $\Delta X_{\mathrm{off

}3$°]
plot_base = ’plots/’
plot_ext = ’.eps’
statsfile = ’plots/stats.dat’
transform_file_base = ’plots/’
transformed_data_header = ’#z,snap,data_meanyydata_stdevydata_skewyydata_kurtyufit_height y+/-erryufit_meanyy,

+/-erryyfit_stdevyu+/-erryufit_skew,y+/-erryfit_kurtyu+/-errydata_rmsydata_gt_epsilonyychi2yypvalyy
skew_err,,z\n’

z_col = -1
snap_col =0
mean_col =7
mean_err_col = 8
var_col =9
var_err_col = 10
skew_col =3
skew_err_col = -2
#skew_col =7
#skew_err_col = 8
#kurt_col =4
#kurt_err_col = -2
kurt_col = 13
kurt_err_col = 14
beta_col = 13
beta_err_col = 14
data_mean_col =
data_rms_col = 15
#z_col = -1
#snap_col =0
#mean_col =1
#mean_err_col = -2
#var_col =2
#var_err_col =
#skew_col =3
#skew_err_col = -2
#kurt_col =4
#kurt_err_col = -2

offset = 0.06
#offset = 0.0

minsnap = 39

#minsnap = None
transform_variance = True
transform_kurtosis = True
expand_error = True
fit_mean_trend = True
separate_skew_axes = True
skew_err_boxes = True
add_rms_line = True
save_transformed_data = True

179



343

344

345 if __name__ == ’__main__’:
346 main ()
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Appendix K
Mass Trends Code

K.1 Mass and Concentration vs. Mass (Python)

#!/usr/bin/env python

3 import sys

4 import numpy as np

5 import matplotlib as mpl

6 mpl.use(’Agg’)

import matplotlib.pyplot as plt

8 from matplotlib import cm

9 from scipy import interpolate

10 from scipy.ndimage.filters import gaussian_filter
11 from scipy.optimize import curve_fit

12 #from ipdb import set_trace

1

1

16 def main():
1 # Read in particle files
1

8 header, halos = read_files(sys.argv[1:], header_line = 3)
19

20 if c_source == ’density_profile’:

21 print ’len(halos),=_’, len(halos)

22 halos = halos[np.isfinite(halos[:,c_21pt_coll)]
23 halos = halos[np.isfinite(halos[:,c_za_coll)]
24 print ’len(halos) =y’, len(halos)

25

26 print ’Filteringgdata...’

27 for col, val in zip(lt_cols, 1lt_vals):

28 halos = halos[halos[:, col] <= val]

29 for col, val in zip(gt_cols, gt_vals):

halos = halos[halos[:, col]l >= vall
for col, val in zip(eq_cols, eq_vals):

halos = halos[halos[:, col] == vall
for col, val in zip(me_cols, ne_vals):

34 halos = halos[halos[:, col] != vall

1o}

36 m_avg = (halos[:,47] + halos[:,48])/2.0

37 halos = np.column_stack((halos, m_avg))

38 header = np.append(header, ’M_avg’)

39

40 if x_min_lim > O:

41 print ’nhalos_=’, len(halos)

42 mask = (m_avg >= x_min_lim)

43 halos = halos[mask]

14 print ’nhalos_,=’, len(halos)

45

46 if c_source == ’rockstar’:

A7 cl = halos[:, Rvi_col]l / halos[:, Rsl_coll]

A8 c2 = halos[:, Rv2_col]l / halos[:, Rs2_coll]

19 if use_klypin:

50 mask = (halos[:,4] < 100)

51 cl[mask] = halos[mask, Rvl_col] / halos[mask, 79]

52 mask = (halos[:,5] < 100)

53 cl[mask] = halos[mask, Rv2_col] / halos[mask, 80]

54 if c_source == ’density_profile’:

55 cl = halos[:, c_21lpt_coll]

56 c2 = halos[:, c_za_col]

57

58 dc = 2.0 * (c1 - c2) / (c1l + c2)

59 #dc = cl - c2

60

61 ml = halos[:,47]

62 m2 = halos[:,48]

63 dm = 2.0 * (m1 - m2) / (ml + m2)

64

65 for x_col, xlabel in zip(x_cols, xlabels):

66 make_plot (halos[:, x_coll, dm, x_col, header[x_col], xlabel, ylabel_m, plot_base_m, stats_file_m, y_lim_m
, use_log=False)

67 make_plot (halos[:, x_coll, dc, x_col, header[x_col], xlabel, ylabel_c, plot_base_c, stats_file_c, y_lim_c
, use_log=False)

68 for x_col, xlabel in zip(x_log_cols, xlabels_log):

69 make_plot (halos[:, x_coll, dm, x_col, header[x_coll, xlabel, ylabel_m, plot_base_m, stats_file_m, y_lim_m
, use_log=True)

70 make_plot(halos[:, x_col]l, dc, x_col, header[x_col], xlabel, ylabel_c, plot_base_c, stats_file_c, y_lim_c
, use_log=True)

71

72 print ’Finishedjallgplots.’

73

74

75 def read_files(files, header_line = None, comment_char = ’#’):

7

header = None
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77 data = None

78 if type(files) == str:

79 files = [files]

80

81 if header_line != None:

82 with open(files[0], ’r’) as fd:

83 for line in range(header_line):

84 fd.readline ()

85 header = fd.readline ()

86 if header [0] != comment_char:

87 print "Header_ mustystartywithpa,’%s’" % comment_char

88 sys.exit (4)

89 header = header [1:]

90 header = header.split ()

91

92 for file in files:

93 print ’Reading filey¥%s...’> % (file)

94 if data == None:

95 data = np.genfromtxt(file, comments=comment_char)

96 else:

97 data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)
98

99 print ’Finished reading, files.’

100 if header_line == None:

101 return data

102 else:

103 return header, data

104

105

106 def make_plot(x, y, x_col, header, xlabel, ylabel, plot_base, stats_file, y_lim, use_log):
107 print ’generating plot...~>

108 fig = plt.figure(figsize=(9.0,6.0))

109 ax = fig.add_subplot(1,1,1)

110 ax = draw_hist2d(ax, x, y, y_lim)

111 if fit_to_data:

112 ax = draw_data_fit(ax, x, y, x.min(), x.max(), use_log=use_log)
113 if fit_to_binned_data:

114 mid_bins, mean, stdev, n = get_bin_avgs(x, y, use_log=use_log)
115 ax = draw_bin_fit(ax, mid_bins, mean, stdev/np.sqrt(n), x.min(), x.max(), stats_file, use_log=use_log)
116 ax = draw_bin_avgs(ax, mid_bins, mean, stdev, n, use_log=use_log)
117

118 ax.set_xlim([x.min (), x.max (1)

119 #ax.set_yscale ("log")

120 ax.set_xlabel (xlabel, fontsize="x-large")

121 ax.set_ylabel(ylabel, fontsize="x-large")

122

123 fig.tight_layout ()

124 header = header.replace("/", "over")

125 plot_name = "%s%s%0.3d%s%s%s" % (plot_base, ’(’, x_col, ’)_’, header, plot_ext)
126 plt.savefig(plot_name, bbox_inches=’tight’)

127 print ’finishedplot,’ + plot_name

draw_hist2d(ax, x, y, y_lim):
if use_log:
xbins = np.logspace(np.loglO(x.min()), np.loglO(x.max()), num=nbins+1)

1 else:

134 xbins = np.linspace(x.min(), x.max(), num=nbins+1)

13F

136 ybins = np.linspace(y.min(), y.max(), num=nbins+1)

137

138 if use_log:

139 ax.set_xscale("log")

140 im = my_hist2d(ax, x, y, bins=[xbins, ybins], zorder=-50)

141 else:

142 im = ax.hist2d(x, y, bins=[xbins, ybins], cmap=colormap, zorder=-50)
143

144 if y_lim > 0.0:

145 ax.set_ylim([-y_lim, y_liml)

146

147 line = ax.plot([x.min(), x.max()], [0.0, 0.0], color=’0.65’, linestyle=’--’, linewidth=1, zorder=-20)
148 return ax

149

150

151 def my_hist2d(ax, x, y, bins=10, range=None, normed=False, weights=None,
152 cmin=None, cmax=None, **kwargs):

153 import matplotlib as mpl

154

155 bin_range = range

156 range = mpl.axes.__builtins__["range"]

157 h, xedges, yedges = np.histogram2d(x, y, bins=bins, range=bin_range,
158 normed=normed, weights=weights)
159

160 if cmin is not Nome:

161 h[h < cmin] = None

162 if cmax is not None:

163 h[h > cmax] = None

164

165 if z_log:

166 h[h<1.0] = 0.5

167 h = np.logl0(h)

168
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169 h = gaussian_filter(h, len(h) / 75.0)

171 pc = ax.imshow(h([:,::-1].T, cmap=colormap, extent=[x.min(), x.max(), y.min(), y.max()], interpolation=’
gaussian’, **kwargs)

2 ax.set_xlim(xedges [0], xedges[-1])

3 ax.set_ylim(yedges [0], yedges[-11)

1 return h, xedges, yedges, pc

D

176
177 def get_bin_avgs(x, y, use_log):
178 if use_log:
79 fit_bins = np.logspace(np.loglO(x.min()), np.loglO(x.max()), num=nfit_bins+1)
180 else:
181 fit_bins = np.linspace(x.min(), x.max(), num=nfit_bins+1)
182
183 mid_bins = (fit_bins[:-1] + fit_bins[1:]1) / 2.0
184
185 mean = np.array([])
186 stdev = np.array([])
187 n = np.array([])
188 for xmin, xmax in zip(fit_bins[:-1], fit_bins[1:]):
189 mask = np.logical_and(x > xmin, x <= xmax)
190 if mask.sum() > O:
191 mean_el = y[mask].mean ()
192 #stdev_el = y[mask].std() / np.sqrt(len(y))
193 stdev_el = yl[mask].std()
194 #stdev_el = stdev / np.sqrt(len(yl[mask]))
195 n_el = len(y[maskl])
196 else:
197 mean_el = 0.0
198 stdev_el = -1.0
199 n_el =0
200 mean = np.append(mean, mean_el)
201 stdev = np.append(stdev, stdev_el)
202 n = np.append(n, n_el)
203
204 mask = (n > 0)
205 mean = mean[mask]
206 stdev = stdev[mask]
207 n = nl[mask]
mid_bins = mid_bins [mask]

return mid_bins, mean, stdev, n

draw_bin_avgs(ax, mid_bins, mean, stdev, n, use_log):
ax.errorbar (mid_bins, mean, yerr=stdev/np.sqrt(m), fmt=’0’, color=’black’, linewidth=2)

if draw_stdev_lines:
ax.plot(mid_bins, mean + stdev, color=’black’, linestyle=’:’, linewidth=3, zorder=-15)
ax.plot(mid_bins, mean - stdev, color=’black’, linestyle=’:’, linewidth=3, zorder=-15)
return ax

draw_bin_fit (ax, mid_bins, mean, stdev, x_min, x_max, stats_file, use_log):

stdev[stdev == 0.0] = 0.1
#fit data
225 if use_log:
226 #coefs, res, rank, singvals, rcond = np.polyfit(np.loglO(mid_bins), mean, 1, full=True)
227 coefs, pcov = curve_fit(linear, np.loglO(mid_bins), mean, sigma=stdev, p0=[0.0, 0.0])
228 else:
229 #coefs, stats = np.polynomial.polynomial.polyfit(mid_bins, mean, 1, full=True)
230 coefs, pcov = curve_fit(linear, mid_bins, mean, sigma=stdev, p0=[0.0, 0.01)
231 print ’coefs,=_’, coefs
32
233
234 m = coefs[0]
235 b = coefs[1]
236 m_err = pcov[0,0]
237 b_err = pcov[1,1]
238
239 if use_log:
240 x = np.logspace(np.logl0(x_min), np.loglO(x_max), 100)
241 y = m * np.logl0o(x) + b
242 else:
243 x = np.linspace(x_min, x_max, 100)
244 =m*x + b
245 #y = x**m + b
246 #line = ax.plot(x, y, color=’white’, linewidth=8) # to avoid blending with colormap background
247 line = ax.plot(x, y, color=’magenta’, zorder=-10)
248
249 if print_fit_params:
250 if use_log:
251 textstr = ’$y,=umu\loguxyu+ub$\ndmu=_%g$\nsb,=1%g$’> % (m, b)
252 else:
253 textstr = ’$y =umuxy+ub$\ndmy=_%g$\nsb=%g$’> % (m, Db)
254 props = dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.5)
255 ax.text (0.75, 0.95, textstr, transform=ax.transAxes, fontsize=14,
256 verticalalignment=’top’, bbox=props)
257
258 if save_fit_params:
259 with open(stats_file, "a") as fd:
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314
315
316

345
346
347
348
349
350
351

fd.write ("kguukguukguukg\n" % (m, m_err,
return ax
def linear(x, slope, intercept):
return slope * x + intercept
def draw_data_fit(ax, x, y, x_min, x_max, use_log):
if remove_zero_strip:
mask = (np.abs(y) >= y_epsilon)
x = x[mask]
y = ylmask]
#fit data
if use_log:
coefs, residual, rank, singular_values, rcond
# coefs, stats = np.polynomial.polynomial.polyf
# coefs, res, rank, singvals, rcond = np.polyfi
else:
coefs, residual, rank, singular_values, rcond
# coefs, stats = np.polynomial.polynomial.polyf
# coefs, stats = np.polynomial.polynomial.polyf
print ’coefs,=’, coefs, ’+/-’, residual
m = coefs[0]
b = coefs[1]
if use_log:
x = np.logspace(np.logl0(x_min), np.loglO(x_m
y = m * np.logl0(x) + b
else:
x = np.linspace(x_min, x_max, 100)
=m*x +b
#y = x*xm + b
line = ax.plot(x, y, color=’red’)
if print_fit_params:
if use_log:
textstr = ’$y,=um,\logux,+ub$\n$m,=,%g$\n
else:
textstr = ’$y =umuxo+ub$\n$mu=%g$\n$b =
props = dict(boxstyle=’round’, facecolor=’whe
ax.text (0.75, 0.95, textstr, transform=ax.tra
verticalalignment=’top’, bbox=props)
if save_fit_params:
with open("fits_to_data.dat", "a") as fd:
fd.write ("%gu%gu%g\n" % (m, b, residual))
return ax
use_log = True
#use_log = False
z_log = True
#fit_bins = True
#fit_data = True
print_fit_params = False
save_fit_params = True
use_klypin = True
remove_zero_strip = False
y_epsilon = 0.01
y_lim_m = 0.5
y_lim_c = 1.0
x_min_lim = 5.33e5 * 100
#if use_log:
# x_cols = [4, 5, 6, 9, 10, 23, 24, 31, 32, 47, 48,
#else:
# x_cols = [17, 18, 77, 78, 91, 92, 93, 94, 97, 98,
x_cols (]
x_log_cols = [-1]
#x_log_cols = [47, 48, -1]

xlabels 01
xlabels_log =

#xlabels_log =

[r"$M_{\mathrm{vir,avg}},\,u\mathrm{(M_
[r"$\mathrm{M_{2LPT} (M_{\odot})}$",

# r"$\mathrm{M_{ZA} (M_{\odot})}s$",
# r"$\mathrm{M_{avg} (M_{\odot})}$"]
#ylabel = r"$\mathrm{(M_{2LPT} - M_{ZA}) / M_{avgl}}$"
ylabel_m = r"$(M_{\mathrm{vir,2LPT}},\,u-u\,uM_{\math
ylabel_c¢ = r"$(c_{\mathrm{2LPT}},\, -u\,uc_{\mathrm{Z

b, b_err))

= np.polyfit(np.logl0(x), y, 1, full=True)
it(np.logl0(mid_bins), mean, 1, w=1.0/stdev,
t(np.loglO(mid_bins), mean, 1, full=True)

= np.polyfit(x, y, 1, full=True)

it (mid_bins, mean, 1, w=1.0/stdev, full=True)
it (mid_bins, mean, 1, full=True)

ax), 100)

$bu=u%g$’ % (m, b)

%g$’ % (m, b)
at’, alpha=0.5)
nsAxes, fontsize=14,

51, 52, 57, 58] # logl0 columns

99, 100, 107, 108, 111, 112] # nolog columns

{\odot})}$"]

rm{vir,ZA}}) u\,u/u\,uM_{\mathrm{vir,avg}}$"
AYP)u\,u/u\,uc_{\mathrm{avg}}$"
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#c_source =
c_source =

’density_profile’
’rockstar’

plot_base_m = ’plots/diff_M_-_vs_-_’
plot_base_c = ’plots/diff_c_-_vs_-_’
plot_ext = ’.eps’

>fits_to_bins_m.dat’
>fits_to_bins_c.dat’

stats_file_m =
stats_file_c =

362 #plot_name = ’test.eps’

363 #plot_name = ’c_v_M200c_21lpt.eps’

364 fit_to_binned_data = True

365 fit_to_data = False

366 draw_stdev_lines = True

367

368 Rvi_col = 53

369 Rv2_col = 54

370 Rsl_col = 55

371 Rs2_col = 56

372

373 c_21lpt_col = 17

374 c_za_col = 18

375

376 nbins = 100

377 nfit_bins = 10

378

379 ## c_2lpt, c_za, chi2_21pt, chi2_za

380 #1t_cols = [17, 18, 37, 38]

381 #1lt_vals = [100.0, 100.0, 10.0, 10.0]

382 #

383 ## c_2lpt, c_za, chi2_21pt, chi2_za

384 #gt_cols = [17, 18, 37, 38]

385 #gt_vals = [1.0, 1.0, 0.0, 0.0]

386

387 1lt_cols (1

388 1lt_vals (1

389

390 gt_cols [4, 5]

391 gt_vals [100, 100]

392

393 eq_cols = [109, 110]

394 eq_vals = [-1, -1]

395

396 ne_cols ]

397 ne_vals ]

398

399 #colormap cm.PuBuGn

400 #colormap = cm.cubehelix_r

401 #colormap = cm.ocean_r

402 #colormap = cm.rainbow

403 #colormap = cm.gnuplot2_r

404 #colormap = cm.CMRmap_r

405

406 def add_white(orig_map, num):

407 temp_cmap = cm.get_cmap(orig_map, num)
408 vals = temp_cmap (np.arange (num))

409 nfade = num / 7

410 vals[:nfade,0] = np.linspace(l., vals[nfade-1,0], nfade)
411 vals [:nfade,1] = np.linspace(1l., vals[nfade-1,1], nfade)
412 vals [:nfade,2] = np.linspace(l., vals[nfade-1,2], nfade)
413 #vals[:nfade ,3] = np.linspace(0., vals[nfade-1,3], nfade)
414 #vals([0] = [t.0, 1.0, 1.0, 1.0]

415 #vals[1] = (vals[i1] + [t.0, 1.0, 1.0, 1.0]) / 2.0
416 newcmap = mpl.colors.LinearSegmentedColormap.from_list("custom_1", vals)
417 return newcmap

418

419 colormap = add_white(’rainbow’, 30)

420

421 plot_dest_type = ’paper’

422 if plot_dest_type == ’paper’:

423 mpl.rcParams[’font.family’] = ’serif’
424 mpl.rcParams[’font.size’] = 16

425 mpl.rcParams[’axes.linewidth’] = 3
426 mpl.rcParams[’lines.linewidth’] = 4
127 #mpl.rcParams[’lines.linewidth’] = 3
428 mpl.rcParams [’patch.linewidth’] = 4
429 #mpl.rcParams [’patch.linewidth’] = 3
430 mpl.rcParams[’xtick.major.width’] = 3
431 mpl.rcParams[’ytick.major.width’] = 3
432 mpl.rcParams[’xtick.major.size’] = 8
433 mpl.rcParams[’ytick.major.size’] = 8
434 mpl.rcParams [’xtick.minor.width’] = 2
435 mpl.rcParams[’ytick.minor.width’] = 2
436 mpl.rcParams[’xtick.minor.size’] = 4
437 mpl.rcParams[’ytick.minor.size’] = 4
438 #mpl.rcParams[’lines.antialiased’] = True
439

440

441 if __name__ == ’__main__’:

442 main ()
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K.2 PBS Submission Script (Bash)

#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae

#PBS -1 nodes=1:ppn=1

#PBS -1 pmem=40000mb

#PBS -1 mem=4000mb

#PBS -1 walltime=1:00:00
#PBS -o out.log

#PBS -j oe

minsnap=0
maxsnap=61

# Change to working directory
echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

[ -e fits_to_bins_m.dat ] && rm -v fits_to_bins_m.dat
[ -e fits_to_bins_c.dat ] && rm -v fits_to_bins_c.dat
#rm -v fits_to_data.dat

echo "#snap,,slopeyyslope_erryintercept yintercept_err" > fits_to_bins_m.dat
echo "#snap.,slopeyyslope_erryintercept yintercept_err" > fits_to_bins_c.dat

for ((snap=$minsnap; snap<=$maxsnap; snap++)); do

if [ $snap -1t 10 ]; then
j=00$snap

elif [ $snap -1t 100 ]1; then
j=0$snap

fi

new_plot_dir=snap${j}_plots

if [ ! -e plots_all_snaps/${new_plot_dir} 1; then
mkdir plots_all_snaps/${new_plot_dir}

fi

{

echo "Starting,snap${jl}..."

echo -n "${j}Luuu" >> fits_to_bins_m.dat

echo -n "${j}uLuu" >> fits_to_bins_c.dat

./mass_plot.py ~/projects/simulations/rockstar/box{1,2,3}/crossmatch/snap${j}/halos.dat > plots/out.log
2>&1

mv plots/* plots_all_snaps/${new_plot_dir}/.

echo "Finished_snap${j}"

done

# - end of script

K.3 Fit Slopes vs. Redshift (Python)

#!/usr/bin/env python

import sys

import os

import numpy as np

import matplotlib as mpl

mpl.use (’Agg’)

import matplotlib.pyplot as plt

from scipy.special import gamma as Gamma
from scipy.special import psi as digamma
from ipdb import set_trace

def main():
#for filenum, file in enumerate(sys.argv[1:]):

if (len(sys.argv[1:]) == 3):
datal = read_files(sys.argv[1], header_line = None)
data2 = read_files(sys.argv[2], header_line = None)
rsnap_data = read_files(sys.argv[3], header_line = None)
else:

print ’need 3, files’
sys.exit (15)

if fit_trend:
with open(statsfile, ’w’) as fd:
fd.write("#plotslope,slope_errinterceptintercept_err\n")

if minsnap > O:
#for data in datal, data2, data3:
# data = dataldatal:,0] >= minsnap]
datal = datall[datall[:,0] >= minsnap]
data2 = data2[data2[:,0] >= minsnap]

z = 1.0 / rsnap_datal:,1] - 1.0
if (len(datal) == len(data2)):
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36 z = z[-len(datal):]

37 else:

38 sys.exit (16)

39

40 datal = np.column_stack((datal, z))

41 data2 = np.column_stack((data2, z))

42

43 for data in [datal, data2]:

44 datal[:,slope_err_col] = np.sqrt(datal:,slope_err_coll) # var to stdev

45 datal[:,intercept_err_col]l = np.sqrt(datal:,intercept_err_coll) # var to stdev

46

47 BT T T T T T T T e e ey #

48 # plots #

49 - 2atetatetiet #

50

51 for (data, ylabel, color, label, name) in zip([datal, data2], ylabelsl, colors, labelsl, names):

52 print "Making_%syuplot..." % (name)

53 fig = plt.figure(figsize=(9.0, 6.0))

54 ax = fig.add_subplot (111)

55

56 ax = make_plot(ax, datal:,z_col] - offset, datal:,slope_col]l, err = datal:,slope_err_col]l, color = ’blue’
, marker=’0’, label=label)

57

58 if plot_intercept:

59 if separate_axes:

60 ax = ax.twinx ()

61 ax = make_plot(ax, datal:,z_col]l + offset, datal[:,intercept_coll, err = datal:,intercept_err_coll,
color = ’red’, marker=’o’, label=label)

62

63 if fit_trend:

64 ax, slope, slope_err, intercept, intercept_err = add_fit(ax, datal:,z_coll, datal[:,slope_coll, err=
datal[:,slope_err_coll, color=’red’)

65 save_fits(statsfile, name, slope, np.sqrt(slope_err), intercept, np.sqrt(intercept_err))

66

67 #ax.legend (loc=’lower right’)

68 ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)

69 #ax.invert_xaxis ()

70

71 ax.set_xlabel(xlabel, fontsize=’x-large’)

72 ax.set_ylabel(ylabel, fontsize=’x-large’)

73

74 fig.tight_layout ()

75 fig.savefig(plot_base + ’mean_stdev_’ + name + plot_ext, bbox_inches=’tight’)

76

77 i taiaiaieiiaiataiaiaieiaiattaieieieieiattaiataieietatataiatetetetetatataiaieteiafatatatatetetatatataietetetetatat ettt #

78 # make skew and kurtosis plots #

79 - atetatatiatie #

80

81 39

82 Luuufory(data, ylabel_kurt, ylabel_skew, color, name,_ ylim_lowl,, ylim_highl, ylim_low2,,ylim_high2),in,zip([datal
,udata2, data3], ylabels2_kurt, ylabels2_skew, colors, names,_ [-10.0,,-10.0,,-1.0],,[20.0,,20.0,,1.5],
[-0.2,,-1.5,,-0.4],,[0.5,,3.5,,0.1]):

83 Luuuuuuwuprinty"Makingy%syplot..." %y (name)

84 Luuuuuuwufigu=uplt.figure(figsize=(9.0,,6.0))

85 Luuuuwuuuaxy=ufig.add_subplot (111)

86

87 Luuuuuuuaxy=ymake_plot (ax, datal:,z_col]l - offset, datal:,kurt_coll, err =pdatal:,kurt_err_coll, colory=,’red’,
marker=’0’,,linestyle=":’, ,label="Kurtosis’)

88 LLuuuuuulegend_linesl, legend_labelsl, =, ax.get_legend_handles_labels ()

89

90 Luuuuwuuwuax.set_xlabel(xlabel, fontsize=’x-large’)

91 Luuuuwuuuax.set_ylabel (ylabel _kurt, fontsize=’x-large’)

92 Luuuuwuuuax.set_ylim(ylim_lowl,,ylim_highil)

93

94 Luuuuwuuuifyseparate_axes:

95 Luuuuuuuuuuuaxy=pax.twinx ()

96 Luuuuwuuuaxy=ymake_plot (ax, datal:,z_coll + offset, datal:,skew_coll, err,=_datal:,skew_err_coll, colory=,’blue’,
marker=’0’, linestyle=’:’, ,label="Skew’)

97 Luuuuuuulegend_lines2,legend_labels2,=_ax.get_legend_handles_labels ()

98

99 Luuuuuuuax.set_ylabel(ylabel_skew, fontsize=’x-large’)

100 Luuuuuuuax.legend(legend_linesl +,legend_lines2,_ legend_labelsl + ,legend_labels2, loc=’lower right’)

101 Luuuuwuowax.set_x1lim(z[0],+,1.0,42[-114-41.0)

102 Luuuuwuouax.set_ylim(ylim_low2,,ylim_high2)

103

104 Luuuuuuufig.tight_layout ()

105 yuuuuuuufig.savefig(plot_basey+,’skew_kurtosis_’+ name,+, plot_ext , bbox_inches=’tight’)

106

107 Loww’??

108 [ aieaiaataiaiaieiataiataiaieiaiaiattaieieieieiatataiataieietatataiatetetetatatataieteietatatataiateietatatatatatetetetatat ettt #
109

110 print ’Finishedjallplots.’

111

112

113 def make_plot(ax, x, y, err=None, color=’black’, marker=’None’, linestyle=’None’, label=None):
114 if err == None:

115 if label == None:

116 ax.plot(x, y, color=color, marker=marker, linestyle=linestyle)

117 else:

118 ax.plot(x, y, color=color, marker=marker, linestyle=linestyle, label=1label)
119 else:

120 if label == None:
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121 ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle)
122 else:

123 ax.errorbar(x, y, yerr=err, color=color, marker=marker, linestyle=linestyle, label=1label)
124 return ax

125

126

127

128 def add_fit(ax, x, y, err=None, color=’red’):

129 from scipy.optimize import curve_fit

130 p0 = [0.0, 0.0]

131 try:

132 coeffs, pcov = curve_fit(linear, x, y, sigma=err, p0=p0)
133 except RuntimeError:

134 print kxsskkkkkk Curveyfitfailed  **kxkskkkx’

135 return np.nan, np.nan

136 xmin, xmax = ax.get_xlim()

137 x_fit = np.linspace(xmin, xmax, 20)

138 y_fit = linear(x_fit, coeffs[0], coeffs[1])

139 ax.plot(x_fit, y_fit, color=color, linestyle=’--’)

140 return ax, coeffs[0], pcov[0,0], coeffs[1], pcov[1,1]

141
142
143 def linear(x, slope, intercept):

144 return slope * x + intercept

145

146

147 def read_files(files, header_line = None, comment_char = ’#7):
148 header = None

149 data = None

150 if type(files) == str:

151 files = [files]

152

153 if header_line != None:

154 with open(files[0], ’r’) as fd:

155 for line in range(header_line):

156 fd.readline ()

157 header = fd.readline ()

158 if header [0] != comment_char:

159 print "Header_ mustgstartywithya,’%s’" % comment_char
160 sys.exit (4)

161 header = header[1:]

162 header = header.split ()

163

164 for file in files:

165 print ’Readingy.filey¥s...”> % (file)

166 if data == None:

167 data = np.genfromtxt(file, comments=comment_char)
168 else:

169 data = np.append(data, np.genfromtxt(file, comments=comment_char), axis=0)
170

171 print ’Finishedjreading files.’

172 if header_line == None:

173 return data

174 else:

175 return header, data

176

177

178 def save_fits(file, name, slope, slope_err, intercept, intercept_err):
179 with open(file, ’a’) as fd:

180 fd.write ("%syu%gu%gu%gukg\n" % (name, slope, slope_err, intercept, intercept_err))
181

182

183 plot_dest_type = ’paper’

184 if plot_dest_type == ’paper’:

185 mpl.rcParams[’font.family’] = ’serif’

186 mpl.rcParams[’font.size’] = 16

187 mpl.rcParams[’axes.linewidth’] = 3

188 mpl.rcParams[’lines.linewidth’] = 4

189 mpl.rcParams [’patch.linewidth’] = 4

190 mpl.rcParams[’xtick.major.width’] = 3

191 mpl.rcParams[’ytick.major.width’] = 3

192 mpl.rcParams[’xtick.major.size’] = 8

193 mpl.rcParams[’ytick.major.size’] = 8

194

195 #colors = [’red’, ’green’, ’blue’]

196 colors = [’black’, ’black’]

197 labelsl = [r’$c$’, r’$M_{\mathrm{vir}}$’]

198 names = [’c_rockstar’, ’Mvir’]

199 xlabel = ’Redshift’

200 ylabelsl = [r’$\Delta,c$,Slope $((\log(M_{\odot}))~"{-1})$’, r’$\Delta M_{\mathrm{vir}}$, Slope $((\log(M_{\odot}))
~{-11$°1]

201 ylabels2_kurt = [r’Kurtosisyfor $\Deltayc$’, r’Kurtosisyfor $\DeltayM_{\mathrm{vir}}$’]

202 ylabels2_skew = [r’Skew,for_ $\Delta,c$’, r’Skew,for $\Delta M_{\mathrm{vir}}$’]

203 plot_base = ’plots/’

204 plot_ext = ’.eps’

205

206 statsfile = ’plots/stats.dat’
207

208 z_col = -1

209 snap_col
210 slope_col =1
211 slope_err_col = 2
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212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

intercept_col
intercept_err_c

data_mean_col =
data_rms_col =

#z_col

#snap_col =
#mean_col =
#mean_err_col =
#var_col =
#var_err_col =
#skew_col =
#skew_err_col =
#kurt_col =
#kurt_err_col =

offset = 0.06
#offset = 0.0

minsnap = 39
#minsnap = None
fit_trend =

separate_axes =
plot_intercept

if __name__ ==
main ()

ol =4

True
True
= False

> __main__"7:
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62

65
66

Appendix L

Alternate Differential Distribution Redshift Trends Code (Python)

#!'/usr/bin/env python

import sys

import numpy as np

import matplotlib as mpl

mpl.use(’Agg’)

import matplotlib.pyplot as plt

from scipy.special import gamma as Gamma
from scipy.special import psi as digamma
from ipdb import set_trace

def main():

if (len(sys.argv[1:]) == 4):
datal = read_files(sys.argv[1], header_line = None)
data2 = read_files(sys.argv[2], header_line = None)
data3 = read_files(sys.argv[3], header_line = None)
rsnap_data = read_files(sys.argv[4], header_line = None)
else:

print ’needy 4 files’
sys.exit (15)

if fit_mean_trend:
with open(statsfile, ’w’) as fd:
fd.write("#plot,slope,slope_err interceptyintercept_err\n")

if minsnap > O0:
datal = datall[datall[:,0] >= minsnap]
data2 = data2[data2[:,0] >= minsnap]
data3 = data3[data3[:,0] >= minsnap]

z = 1.0 / rsnap_datal:,1] - 1.0

if (len(datal) == len(data2)) and (len(datal) == len(data3)):
z = z[-len(datal):]

else:
sys.exit (16)

datal = np.column_stack((datal, z))
data2 = np.column_stack((data2, z))
data3 = np.column_stack((data3, z))

2 #
# make mean and stdv plots #
e #

for (data, ylabel, label, name) in zip([datal, data2, data3], ylabelsl, labelsl, names):
print "Making,%suplot..." % (name + ’_xvals’)
fig = plt.figure(figsize=(9.0, 6.0))
ax = fig.add_subplot (111)

ax = make_plot(ax, datal:,z_col]l, datal:,peak_col]l, err = None, color = ’black’, marker=’o’, linestyle=’-

>, label=None)

for (x_val_col, color) in zip(x_val_cols, colorsl)

ax = make_plot(ax, datal:,z_col], datal:,x_val_col], err = None, color = color, marker=’o’, linestyle

=’_--7, label=None)

#if add_rms_line:
# ax = make_plot(ax, datal:,z_col]l, datal:,data_rms_col], color = ’green’, linestyle=’:’)

#if fit_mean_trend:

# ax, slope, slope_err, intercept, intercept_err = add_fit(ax, datal:,z_col], datal:,mean_col],
datal[:,mean_err_col], color=’red’)
# save_fits(statsfile, name, slope, np.sqrt(slope_err), intercept, np.sqrt(intercept_err))

#ax.legend (loc=’lower right?’)
ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
#ax.invert_xaxis ()

ax.set_xlabel(xlabel, fontsize=’x-large’)
ax.set_ylabel(ylabel, fontsize=’x-large’)

fig.tight_layout ()
fig.savefig(plot_base + name + ’_xvals’ + plot_ext, bbox_inches=’tight’)

for (data, ylabel, label, name) in zip([datal, data2, data3], ylabels2, labelsl, names):
print "Making%suplot..." % (name + ’_sumfrac’)
fig = plt.figure(figsize=(9.0, 6.0))
ax = fig.add_subplot (111)
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def

def

def

plot_dest_type =
if plot_dest_type

for (sum_frac_col,

color) in zip(sum_frac_cols,

colors2):

ax = make_plot(ax, datal:,z_col]l, datal:,sum_frac_col], err = None, color = color, marker
linestyle=’-’, label=None)
for (doublesum_frac_col, color) in zip(doublesum_frac_cols, colors2):
ax = make_plot(ax, datal:,z_col], datal:,doublesum_frac_col], err = None, color = color,
linestyle=’--’, label=None)

ax.set_xlabel (xlabel,

ax.set_ylabel(ylabel, fontsize=’x-large’)
ax.set_xlim(z[0] + 1.0, z[-1] - 1.0)
ax.set_yscale(’log’)

fig.tight_layout ()
fig.savefig(plot_base + name +

print ’Finished,all,plots.’

make_plot(ax, x, y, err=None, color=’black’,
if err == None:
if label == None:
ax.plot(x, y, color=color,
else:
ax.plot (x, y, color=color,
else:
if label == None:
ax.errorbar(x, y, yerr=err,
else:
ax.errorbar(x, y, yerr=err,
return ax
add_fit(ax, x, y, err=None, color=’red’):

from scipy.optimize import curve_fit
p0 = [0.0, 0.0]
try:
coeffs, pcov = curve_fit(linear,
except RuntimeError:
print
return np.nan, np.nan
xmin, xmax = ax.get_xlim()
x_fit = np.linspace(xmin, xmax,
y_fit = linear(x_fit, coeffs[0],
ax.plot(x_fit, y_fit, color=color,
return ax, coeffs[0], pcov[0,0], coeffs[1],

X, ¥

20)
coeffs[1])

linear(x, slope, intercept):
return slope * x + intercept

read_files(files, header_line = None,
header = None

data = None

if type(files) == str:

files = [files]

if header_line != None:
with open(files[0], ’r’) as fd:
for line in range(header_line):
fd.readline ()

fontsize=’x-large’)

> _sumfrac’

marker=’None’,

marker=marker ,

marker=marker ,

color=color,

color=color,

sigma=err,

comment_char =

+ plot_ext,

marker=marker ,

marker=marker ,

p0=p0)

dkkkkkkkxk  Curve fit failed ***xkkkkk’

linestyle=’--’)
pcov [1,1]

#)

% comment_char

header = fd.readline ()
if header [0] != comment_char:
print "Header must,start_ with_a,’%s’"
sys.exit (4)
header = header[1:]
header = header.split ()
for file in files:
print ’Reading filey%s...’> % (file)
if data == None:
data = np.genfromtxt(file, comments=comment_char)
else:
data = np.append(data, np.genfromtxt(file,
print ’Finishedyreading files.’

if header_line == None:

return data

linestyle=’None’,

linestyle=linestyle,

comments=comment_char),

bbox_inches=’tight’)

linestyle=1linestyle)

label=1label)

linestyle=1linestyle)

linestyle=linestyle,

axis=0)

else:

return header, data
save_fits(file, name, slope, slope_err, intercept, intercept_err):
with open(file, ’a’) as fd:

fd.write("%sy %gu%gubgubg\n" % (name, slope, slope_err,

’paper’
’paper’:
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intercept_err))

label=None):

label=label)

=207,

marker=’o’,



170 mpl.rcParams[’font.family’] = ’serif’

171 mpl.rcParams[’font.size’] = 16

172 mpl.rcParams[’axes.linewidth’] = 3
173 mpl.rcParams[’lines.linewidth’] = 4
174 mpl.rcParams [’patch.linewidth’] = 4
175 mpl.rcParams [’xtick.major.width’] = 3
176 mpl.rcParams[’ytick.major.width’] = 3
177 mpl.rcParams[’xtick.major.size’] = 8
178 mpl.rcParams[’ytick.major.size’] = 8
179

180 #colors = [’red’, ’green’, ’blue’]

181 colors = [’black’, ’black’, ’black’]

182 labels1l = [r’$c$’, r’$M_{\mathrm{vir}}$’, r’$X_{\mathrm{off}}$’]

183 names = [’c_rockstar’, ’Mvir’, ’Xoff’]

184 xlabel = ’Redshift?’

185 ylabelsl = [r"$\Delta’,c(f_{h},z)$ and $\Delta’ c_{\mathrm{peak}}$", r"$\Delta’ M_{\mathrm{vir}}(f_{h},z)$ and $\
Delta’ M_{\mathrm{vir,_ peak}}$", r"$\Delta’ X_{\mathrm{off}}(f_{h},z)$ and $\Delta’ X_{\mathrm{off, peak}}$"

]

186 ylabels2 = [r"$f_{h}(\Delta’,c,z)$", r"$f_{h}(\Delta’ M_{\mathrm{vir}},z)$", r"$f_{h}(\Delta’ X_{\mathrm{off}},z)
$"]

187 plot_base = ’plots/’

188 plot_ext = ’.eps’

189

190 statsfile = ’plots/stats.dat’

191

192 z_col = -1

193 snap_col =0

194 mean_col =7
195 mean_err_col = 8
196 var_col =9
197 var_err_col = 1
198 skew_col =3

199 skew_err_col = -2

200 #skew_col =7

201 #skew_err_col = 8

202 #kurt_col = 4

203 #kurt_err_col = -2
204 kurt_col = 13

205 kurt_err_col = 14

206 beta_col = 13

207 beta_err_col = 14

208

209 data_mean_col = 1

210 data_rms_col = 15
211

212

213

214 peak_col =1

215 x_val_cols = np.array([4, 6, 8]) + 2
216 sum_frac_cols = np.array([2, 4, 6, 8]) + 2 + 9

217 doublesum_frac_cols = sum_frac_cols + 9

218

219 colorsl = [’red’, ’green’, ’blue’]

220 colors2 = [’blue’, ’green’, ’red’, ’black’]
221

222 offset = 0.06
223 #offset = 0.0

224

225 minsnap = 39

226 #minsnap = None

227

228 fit_mean_trend = False
229 add_rms_line = False
230

231

232 if __name__ == ’__main__"’:
233 main ()
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Appendix M
Miscellaneous Scripts

M.1 Directory Structure Setup (Bash)

#!/usr/bin/env bash

minsnap=0
maxsnap=61

minbox=1
maxbox=3

for ((i=$minbox; i<=$maxbox; i++)); do

if [ ! -e ../box$i ]; then
mkdir -v ../box$i

fi

if [ ! -e ../box$i/21pt ]; then
mkdir -v ../box$i/21pt

fi

if [ ! -e ../box$i/za ]; then
mkdir -v ../box$i/za

fi

if [ ! -e ../box$i/crossmatch ]; then
mkdir -v ../box$i/crossmatch

fi

cp -v run_x*.pbs ../box$i/.
cp -v postprocess.sh ../box$i/.

for ((snap=$minsnap; snap<=$maxsnap; snap++)); do
if [ $snap -1t 10 ]; then
j=00$snap
elif [ $snap -1t 100 ]; then
j=0$snap
fi

if [ ! -e ../box$i/21pt/snap$j 1; then
mkdir -v ../box$i/21pt/snap$j

fi

if [ ! -e ../box$i/za/snap$j 1; then
mkdir -v ../box$i/za/snap$j

fi

cp -v -r proto/* ../box$i/21pt/snap$j/.
cp -v -r proto/* ../box$i/za/snap$j/.

In -v -s ~“/projects/data/21lpt/box$i/21pt_512_2z300_PM_$j ../box$i/21pt/snap$j/particles/21pt_512_z300_PM_$j
In -v -s ~“/projects/data/za/box$i/za_512_z300_PM_$j ../box$i/za/snap$j/particles/za_512_z300_PM_$j

echo /home/sissomdj/projects/simulations/rockstar/box$i/21pt/snap$j/particles/21pt_512_z300_PM_$j > ../box$i
/21pt/snap$j/particles/snapnames.lst

echo /home/sissomdj/projects/simulations/rockstar/box$i/za/snap$j/particles/za_512_z300_PM_$j > ../box$i/za/
snap$j/particles/snapnames.lst

echo "BGC2_SNAPNAMES_,=_\"/home/sissomdj/projects/simulations/rockstar/box$i/21pt/snap$j/particles/snapnames.
1st\"">> ../box$i/21pt/snap$j/onenode.cfg

echo "BGC2_SNAPNAMES_,=_,\"/home/sissomdj/projects/simulations/rockstar/box$i/za/snap$j/particles/snapnames.lst
\"">> ../box$i/za/snap$j/onenode.cfg

echo "FILENAME_=_\"21pt_512_2z300_PM_$j\"" >> ../box$i/21lpt/snap$j/onenode.cfg

echo "FILENAME_,=_\"za_512_z300_PM_$j\"" >> ../box$i/za/snap$j/onenode.cfg

done

done

M.2 CrossMATCH Setup (Bash)

#!/usr/bin/env bash

minsnap=0
maxsnap=61

minbox=1
maxbox=3

for ((i=$minbox; i<=$maxbox; i++)); do

if [ ! -e ../box$i/crossmatch ]; then
mkdir -v ../box$i/crossmatch

fi

cp -v run_crossmatch.pbs ../box$i/.

for ((snap=$minsnap; snap<=$maxsnap; snap++)); do
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17 if [ $snap -1t 10 ]; then

18 j=00$snap

19 elif [ $snap -1t 100 ]; then

20 j=0$snap

21 £i

22

23 if [ ! -e ../box$i/crossmatch/snap$j 1; then

24 mkdir -v ../box$i/crossmatch/snap$j

25 fi

26

27 cp -v -r crossmatch_proto/* ../box$i/crossmatch/snap$j/.

28

29 echo "OUTPUT_DIR,yuuuuuu/home/sissomdj/projects/simulations/rockstar/box$i/crossmatch/snap$j" >> ../box$i/
crossmatch/snap$j/rockstar_21pt.param

30 echo "FIRST_GROUPDIR../home/sissomdj/projects/simulations/rockstar/box$i/21pt/snap$j/halos" >> ../box$i/
crossmatch/snap$j/rockstar_21pt.param

31 echo "SECOND_GROUPDIR,,u/home/sissomdj/projects/simulations/rockstar/box$i/za/snap$j/halos" >> ../box$i/

crossmatch/snap$j/rockstar_21lpt.param

echo "OUTPUT_DIR,yuuuuuu/home/sissomdj/projects/simulations/rockstar/box$i/crossmatch/snap$j" >> ../box$i/
crossmatch/snap$j/rockstar_za.param

34 echo "FIRST_GROUPDIR,./home/sissomdj/projects/simulations/rockstar/box$i/za/snap$j/halos" >> ../box$i/
crossmatch/snap$j/rockstar_za.param
35 echo "SECOND_GROUPDIR, . /home/sissomdj/projects/simulations/rockstar/box$i/21pt/snap$j/halos" >> ../box$i/

crossmatch/snap$j/rockstar_za.param

37 done
38
39 done

M.3 Individual Snapshot ROCKSTAR Run Script (Bash)

#!/bin/bash
echo "Cleaning,old, files..."
if [ -e out.log ]; then

mv -v out.log out.log.bak

TUA W N

6 fi

7 if [ -e server.out ]; then

8 mv -v server.out server.out.bak
9 fi

10 if [ -e clients.out ]; then
11 mv -v clients.out clients.out.bak

12 fi

13 if [ -e auto-rockstar.cfg ]; then

14 rm -v auto-rockstar.cfg

15 fi

16 if [ $(1s halos/* 2> /dev/null | wc -1) != "0" ]; then
17 rm -rv halos/*

18 fi

20 echo "Submittingyrungscript...
21 echo "gsubyrun_rockstar.pbs"
22 qgsub run_rockstar.pbs

M.4 All Snapshots ROCKSTAR 2LPT PBS Submission Script (Bash)

1 #!/usr/bin/env bash

3 #PBS -M djsissom@gmail.com
4 #PBS -m bae

5 #PBS -1 nodes=1:ppn=10

6 #PBS -1 pmem=3000mb

7 #PBS -1 mem=30000mb

8 #PBS -1 walltime=6:00:00

9 #PBS -o out_21pt.log

10 #PBS -j oe

12 echo $PBS_NODEFILE
13 cd $PBS_O_WORKDIR

15 for snapdir in 21lpt/*; do

16 # Change to working directory
echo Working on $snapdir...
18 cd $PBS_O_WORKDIR/$snapdir

20 # Start the server

21 rockstar -c onenode.cfg &> server.out &

22

23 # Wait for auto-rockstar.cfg to be created

24 perl -e ’sleep 1 while (!(-e "halos/auto-rockstar.cfg"))’
25 mv halos/auto-rockstar.cfg

# Execute the reader processes
mpiexec -verbose -n 1 rockstar -c auto-rockstar.cfg >> clients.out 2>&1 &
sleep 20

# Execute the analysis processes
mpiexec -verbose -n 8 rockstar -c auto-rockstar.cfg >> clients.out 2>&1
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# - end of script
done

M.5 All Snapshots ROCKSTAR zA PBS Submission Script (Bash)

#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae

#PBS -1 nodes=1:ppn=10
#PBS -1 pmem=3000mb

#PBS -1 mem=30000mb

#PBS -1 walltime=6:00:00
#PBS -o out_za.log

#PBS -j oe

echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

for snapdir in za/*; do
# Change to working directory
echo Working on $snapdir...
cd $PBS_O_WORKDIR/$snapdir

# Start the server
rockstar -c onenode.cfg &> server.out &

# Wait for auto-rockstar.cfg to be created
perl -e ’sleep 1 while (!(-e "halos/auto-rockstar.cfg"))’
mv halos/auto-rockstar.cfg

# Execute the reader processes
mpiexec -verbose -n 1 rockstar -c auto-rockstar.cfg >> clients.out 2>&1 &
sleep 20

# Execute the analysis processes
mpiexec -verbose -n 8 rockstar -c auto-rockstar.cfg >> clients.out 2>&1

# - end of script
done

M.6 All Snapshots ROCKSTAR Post-Process Script (Bash)

#!/usr/bin/env bash
startdir=‘pwd ‘¢

for snapdir in {21pt,zal}/*; do
echo Working on $snapdir...
cd $startdir/$snapdir

./postprocess
done

# - end of script

M.7 All Snapshots CROSSMATCH PBS Submission Script (Bash)

#!/usr/bin/env bash

#PBS -M djsissom@gmail.com
#PBS -m bae

#PBS -1 nodes=62:ppn=1
#PBS -1 pmem=3000mb

#PBS -1 mem=186000mb

#PBS -1 walltime=1:00:00
#PBS -o out_crossmatch.log
#PBS -j oe

echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

for snapdir in crossmatch/#*; do
# Change to working directory
echo Working on $snapdir...
cd $PBS_O_WORKDIR/$snapdir

{
mpiexec -verbose -n 1 crossmatch rockstar_2lpt.param > out_2lpt_first.log 2>&1
mpiexec -verbose -n 1 crossmatch rockstar_za.param > out.za_first.log 2>&1
echo "Finished_ $snapdir"
} &
done
wait
# - end of script
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M.8 All Snapshots Density Profile PBS Submission Script (Bash)

#!/usr/bin/env bash

#PBS -M djsissom@gmail.com

#PBS -m bae

#PBS -1 nodes=124:ppn=1

#PBS -1 pmem=4000mb

#PBS -1 mem=496000mb

#PBS -1 walltime=1:00:00

#PBS -o out_density_profile.log
#PBS -j oe

echo $PBS_NODEFILE
cd $PBS_O_WORKDIR

for snapdir in {21lpt,za}/snap*/halos; do
# Change to working directory
echo Working on $snapdir...
cd $PBS_O_WORKDIR/$snapdir

{
mpiexec -verbose -n 1 density_profile halos_0.*.bgc2 > density_profile_out.log 2>&1
echo "Finished_ $snapdir"
} &
done
wait

# - end of script
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