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CHAPTER I 

 

BACKGROUND AND RESEARCH OBJECTIVES 

 

Viruses can be thought of as one of both the simplest and most complex entities in nature.  

At their most basic level, viruses contain a genome and a surrounding protein shell.  This 

simplicity also leads to their complexity- because they contain so few components, viruses 

depend heavily on the cell for their own replication, leading to an intricate network of usurped 

pathways in the cell.  Viruses are obligate parasites, meaning they cannot reproduce without 

utilizing the host machinery.  Understanding the ways in which viruses hijack these cellular 

systems can lead to opportunities to target and thwart viral infection through therapeutic design.  

In this dissertation, I describe my investigations into the ability of Human Immunodeficiency 

Virus type 1 (HIV-1) to commandeer one such cellular system, active dynein transport along 

microtubules, for its infection.   

 

A global health crisis 

 HIV-1 is a virus that attacks the host immune system, eventually leading to Acquired 

Immune Deficiency Syndrome (AIDS) and opportunistic infections [14-17].  While antiretroviral 

therapies (ART) have greatly improved longevity and quality of life for many patients, no 

practical cure currently exists.  According to UNAIDS, in 2018, 36.9 million people worldwide 

were living with HIV/AIDS, with 5,000 new infections occurring daily [18].  This health burden 

emphasizes the need for an in-depth understanding of this virus and for new therapeutics.         

Transmission of HIV-1 occurs through sexual, perinatal, and percutaneous routes.  After 
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traversing the epithelial layer, the virus encounters dendritic cells, is phagocytosed, and is 

brought to the peripheral lymph nodes.  The dendritic cells then encounter CD4+ T cells and 

release the captured HIV-1 particles while promoting the activation of T cells.  The transmitted 

virus can continue replicating in the CD4+ T cell population, leading to eventual T cell death and 

immune suppression [19].     

There are three stages of an HIV infection: acute infection, clinical latency, and AIDS 

(Figure 1-1)[7].  Acute infection corresponds to the first 2-4 weeks of infection, with many 

people developing a flu-like illness characterized by fever, swollen glands, sore throat, muscle 

aches, and headache [20].  During acute infection, viral replication is high, leading to high viral 

titers in the body, and causing the CD4 population of cells to decrease rapidly.  Over time, the 

immune system can bring the viral titer back down to a “viral set point” which is maintained.  

CD4 T cells begin to rebound at this point, but the population may not fully recover.  Although 

the immune response can reduce viral levels, HIV-1 infection cannot be entirely cleared by the 

immune system [20].  Therefore, HIV-1 infection is lifelong.   

After acute infection, the disease progresses to the “clinical latency” stage in which a 

person is still infected but may not be showing symptoms.  Viral replication is still occurring at 

low levels.  This stage can be maintained for an average of 10 years without ART treatment.  

With ART treatment, some patients never progress to AIDS.  AIDS occurs when the population 

of CD4 cells falls below 200 cells/mm3 of blood or when an opportunistic illness has developed.  

Symptoms of AIDS may include prolonged fevers, sweats, swollen lymph nodes, weakness, 

weight loss, and diarrhea.  The development of AIDS is often associated with pneumocystis 

pneumonia, cachexia (HIV wasting syndrome), esophageal candidiasis, and recurrent respiratory 

tract infections.  People with AIDS are also more susceptible to certain cancers, including 
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Figure 1-1.  Disease progression during HIV infection.  In the acute phase, the viral load is high 

and CD4 T cell counts begin to decrease.  During the clinical latency phase, a “set point” is 

reached where viral levels are low and T cell populations begin to recover.  Eventually, disease 

progression continues to AIDS, which can result in death if left untreated.  Reprinted from 

Selinger et. al. Curr Op. Vir. (2013) [7]  
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 Kaposi’s sarcoma, Burkitt’s lymphoma, and cervical cancer.   Life expectancy without 

treatment is typically 1-3 years.  With effective ART treatment, however, progression to AIDS 

can be prevented [20].  

 

HIV-1 structure and life cycle 

HIV-1 has unique structural and life cycle features that set it apart from other viruses.  

Structurally, HIV-1 is enveloped by a viral lipid membrane and has an interior capsid shell 

containing the genetic material and associated proteins (Figure 1-2).  The envelope protein (Env) 

is transcribed as a polyprotein and is processed into gp41 and gp120 which form trimers 

protruding through the lipid membrane.  The polyprotein Gag is processed into the structural 

proteins matrix (MA), capsid (CA), nucleocapsid (NC), and p6 [21].  MA associates with the 

plasma membrane and targets viral proteins and RNA to the site of assembly for incorporation 

into the budding virion.  After budding, maturation by proteolytic cleavage enables CA to form a 

fullerene cone shape called the capsid, unique to lentiviruses.  There are about 1500 molecules of 

CA in the capsid which align into repeating hexamer subunits.  To generate the distinctive 

curvature of the cone, 12 pentamers are present in specific locations at the ends of the cone [22-

26].   

Within the capsid, two positive-sense single-stranded copies of viral RNA are present. 

Also present are the proteins reverse transcriptase and integrase, which are important for viral 

replication.  HIV-1, other members of the Retroviridae family, and the Hepadnaviridae family 

are unique among viruses due to their dogma-breaking replication strategy.  Retroviruses utilize 

the enzyme reverse transcriptase to transcribe their single-stranded RNA genome into DNA 

readable by host cellular machinery.  This DNA can then be integrated into the host genome 
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Figure 1-2.  Schematic representation of the HIV-1 virion. The virion is composed of a viral 

envelope (Env) surrounding structural proteins MA, CA, and NC.  The CA protein assembles into 

a repeating hexameric lattice with interspersed pentamers to give a fullerene conical shape.  

Within the cone are two single-stranded RNA copies of viral genome, reverse transcriptase, 

integrase, and other RNA-associated proteins.  Adapted from Pornillos et. al., Nature (2011) and 

Campbell and Hope Nat. Rev. Micro. (2015) [4, 5] 
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 through the actions of integrase.  After integration, viral replication can actively occur, 

or viral latency, in which replication occurs at a low steady-state level.  HIV-1 also encodes 

additional accessory proteins: vif, vpr, vpu, and nef. These proteins aid in infection through 

various mechanisms, either directly, or through effects on host cell machinery or immunity [27-

29].   

 The HIV-1 life cycle can be separated into early events: those happening before 

integration, and late events: those happening post-integration (Figure 1-3).  HIV-1 infection 

begins at the plasma membrane, where the Env glycoprotein binds to the CD4 receptor and the 

chemokine co-receptor CCR5 or CXCR4, resulting in a rearrangement of the Env trimers and 

fusion of the viral and cellular membranes [30-32].  Fusion releases the viral core into the 

cytoplasm of the cell, at which point necessary early events can be completed.   

Reverse transcription is the process by which the viral RNA is converted to double-

stranded DNA.  Reverse transcription begins soon after cell entry and the resulting complex is 

referred to as the reverse transcription complex (RTC) [33].  The process of uncoating occurs 

concurrently with reverse transcription.  Uncoating is the disassembly of the viral capsid.  

Uncoating occurs in a two-step process, with an initial disassembly occurring rapidly (~30 min) 

after fusion, and a slower, secondary break-down occurring during transit to the nucleus [34, 35].  

After reverse transcription completion and uncoating begins to occur, the particle is termed the 

preintegration complex (PIC).  Some CA stays associated with the PIC at least until nuclear entry 

[35].  

A unique aspect of HIV-1 and other lentiviruses is their ability to infect non-dividing 

cells.  Non-mitotic cells have an intact nuclear envelope so transport into the nucleus must occur 

through nuclear pores.  Lentiviruses are too large to passively go through nuclear pores.  Due to  
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Figure 1-3.  The HIV-1 life cycle. HIV binds to the cell membrane through interactions with 

CD4, and CCR5 or CXCR4.  After fusion, the core undergoes uncoating concurrently with reverse 

transcription.  Nuclear import can then occur, followed by integration into the host genome.  

Newly transcribed proteins and polyproteins aggregate at assembly sites on the plasma membrane 

and bud from the producer cell, resulting in immature virions.  Maturation of the virus occurs after 

the viral protease cleaves gag and the HIV-1 core assembles.  Drawing prepared by David 

Dismuke.   
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this, HIV-1 utilizes the nuclear pore complex for entry into the nucleus.  Integrase and 

host DNA repair proteins then direct the integration of the newly formed viral DNA into the host 

genome for replication [36].  

 The late events of the HIV-1 life cycle are centered around new particle production.  As 

replication occurs, the viral proteins Tat, Rev, and Nef are expressed first from the integrated 

DNA and aid in transcription, nuclear export of the HIV-1 transcripts, and downregulation of 

immune response, respectively.  After the Env protein is produced, it is post-translationally 

modified and proteolytically processed into gp41 and gp120.  During assembly, Gag associates 

with the plasma membrane at specialized microdomains and directs the clustering of Env there 

[37].  The NC subunit of Gag interacts with the RNA transcripts, ensuring they are recruited into 

the forming particle.  Once a critical concentration of Gag is reached, the proteins form a 

spherical structure, and budding from the host membrane can occur.  After budding, the viral 

protease cleaves Gag in a process known as maturation, and the HIV-1 capsid can assemble 

around the genome in its mature, fullerene structure [37].  

 

The microtubule network and active transport 

 Viruses, including HIV-1, are adept at hijacking microtubules (MTs) for their 

intracellular transport.  The MT network is the dynamic and complex arrangement of 

microtubules within a cell.  MTs are part of the cell cytoskeleton, which gives the cell structure, 

shape, and in some cell types, polarity.  MTs are made up of repeating alpha and beta tubulin 

heterodimers, which nucleate from gamma tubulin at centrosomes.  Since MTs emanate from 

centrosomes near the nucleus, this area is often called the MT Organizing Center (MTOC).  Due 

to the repeating heterodimer structure of microtubules, they are polarized, with the negative end  
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Figure 1-4.  The microtubule network and motors.  Motor proteins have many transport-related roles 

within the cell.  Some examples are depicted.  1. Retrograde transport of centrosomal components. 2. 

Anterograde and retrograde transport of intermediate filaments. 3. Anterograde and retrograde transport 

of ribonucleoprotein complexes. 4. Myosin, kinesin, and dynein interactions with the microtubule plus-

end complex. 5. Anchorage of dynein at the actin-rich cell cortex. 6. Interaction of a kinesin-like protein 

with actin. 7. Caterin-mediated anchorage of dynein at adherens junctions. Reprinted from Schliwa and 

Woehlke Nat. Insight. Rev. (2003)[8]   
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located at the MTOC, and the positive end extending outward [38].  In a nonpolarized interphase 

cell, this MT polarity results in the positive end of MTs extending toward the cell periphery 

(Figure 1-4).  The polarity of these tracks is important for cargo transport and the directionality 

of microtubule-associated proteins (MAPs), as discussed below.   

 Although most MTs nucleate from centrosomes, MTs can emanate from kinetochores, 

the Golgi apparatus, the nuclear envelope, and other MTs, increasing the complexity of the 

overall network [39].  Adding to the complexity, MTs exhibit a phenomenon called dynamic 

instability, in which they undergo a series of growth and shrinkage events at their plus ends.  

Dynamic instability is influenced by microtubule-associated proteins (MAPs) and is marked by 

post-translational modifications [40, 41].  The adaptable structure of the microtubule network 

allows it to form the mitotic spindle, which is crucial for the search, capture, and separation of 

chromosomes during mitosis.  The fine-tuned regulation of MT stability also influences cargo 

transport during interphase, as MT stabilization or depolymerization by drugs can both alter 

transport by molecular motor proteins [42, 43].  

  Intracellular cargo transport requires the actions of a subset of MAPs which contain motor 

function.  Two types of motor complexes, dynein and kinesins, hydrolyze ATP to move along 

microtubules and transport cellular cargo, including vesicles, organelles, RNA, etc.  In general, 

kinesins walk toward the positive end of microtubules (anterograde movement) to transport cargo, 

and dynein walks toward the negative end of microtubules (retrograde movement) [44, 45].  In 

non-dividing cells, cargo gets transported toward the nucleus predominantly by dynein and away 

from the nucleus by kinesins.  Nonetheless, owing to the dynamics and branching of the 

microtubule network, both types of motors can be involved in the transport of a specific cargo.   

Dynein, a large protein complex, transports vesicles and endosomes within the cytoplasm, 
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and it helps position organelles and the mitotic spindle during cell division [reviewed in [44, 46-

48]].  In contrast to the single dynein complex, there are 15 different kinesin families, termed 

kinesin 1 to kinesin 14B, based on phylogenetic analyses.  Kinesins are variable in form and 

function, but can bind vesicles, organelles, and other microtubules and function in microtubule 

plus end and minus end-directed transport [45].  

 Molecular motors must transport a variety of protein cargos to various destinations 

within the cell, raising the question of how specificity is achieved.  Dynein and kinesins 

interact with numerous cargo-specific adaptor proteins, which connect the molecular motors to 

the various cargoes [49-51]. Adaptors can also activate the motors to move along microtubules: 

recent studies have confirmed this function for BICD2, Hook3, Spindly, and Rab11-FIP3 [52].  

Many adaptors can perform cellular functions other than cargo transport, including nuclear and 

spindle positioning during mitosis.  Kinesin and dynein motors can simultaneously bind to a 

single microtubule, and there is evidence for simultaneous binding of motors to a single cargo 

molecule, suggesting that the net transport of a particular cargo relies on coordination of its 

movement by opposing motors.  Thus, regulation of transport appears to depend on regulation 

of motor activity by adaptors [53-55].  

 

Viral usurpation of the microtubule network 

 In addition to transporting cellular cargoes, kinesin-1 and dynein inadvertently transport 

viruses for infection.  Regardless of whether they replicate in the cytoplasm or nucleus, many 

viruses utilize the MT network and active transport to move to appropriate locations within the 

cell for replication [56].  Viruses can also use microtubule transport to localize virion 

components at the plasma membrane for assembly of viral progeny.  For this bidirectional 
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transport, dynein and kinesin-1 both play roles in many cases [57]. 

 Dynein is utilized by several viruses for transport towards the MTOC, including herpes 

simplex virus [58, 59], HIV-1 [60], circovirus [61], adenovirus [62-64], Zika virus [65], 

influenza A virus [66], and others.  Interestingly, viruses use a variety of mechanisms to engage 

dynein.  For example, adenovirus hexon capsid subunit interacts directly with dynein 

intermediate and light intermediate chains for transport [62] whereas herpes simplex virus 

utilizes both capsid and an internal tegument protein for binding to the dynein intermediate and 

light chains [59, 67-69].  Ecotropic Murine Leukemia Virus, by contrast, utilizes the dynein 

adaptor NudEL for infection [70] 

  In addition to transport after initial cell entry, dynein also plays a role in transport of 

some nascent virions.  Following their exit from the nucleus, herpes simplex virus recruits both 

kinesin-1 and dynein to its capsid for transport to the site of envelopment, and then to the plasma 

membrane.  The mechanism of dynein involvement in this process has not been fully elucidated, 

but dynein promotes both transport and envelopment [57].          

 Kinesin-1 also contributes to the transport of several viruses [57, 71].  Not surprisingly, 

kinesin-1 plays a major role in the transport of viral components for egress and assembly of 

nascent particles.  For example, vaccinia virus utilizes kinesin-1 to transport its intracellular 

enveloped virus to the plasma membrane.  Intracellular enveloped viruses are formed when 

mature virions become wrapped by a double membrane cisternae in the trans-golgi or from 

endosomal membranes [72, 73].  

 Interestingly, kinesin-1 may also play a role in early transport of virions after cell entry.  

For HIV-1, the bidirectional motility of dynein and kinesin-1 is important for overall retrograde 

transport to the nucleus.  When kinesin-1 is knocked down, movement to the nucleus is impaired.  
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The kinesin-1 adaptor FEZ1 acts to bridge the HIV-1 capsid to the dynein complex for transport 

[51].  Other viruses, including vaccinia virus [74], and alpha herpesviruses on axons [75], have 

also been observed to move bidirectionally, suggesting that this phenomenon may be a conserved 

mechanism for viral transport.   

 

Research objectives 

HIV-1 depends on a series of events to productively infect cells and replicate.  The 

microtubule network and its associated proteins are involved in several of the early steps in HIV-

1 infection, including entry [76], reverse transcription [77-79], uncoating [78, 80-82], and 

transport to the nucleus [51, 60, 80, 82-85].  HIV-1 egress and assembly also utilize the 

microtubule network to efficiently assemble particles for budding and spread (reviewed in [86]).  

It was established over a decade ago that the microtubule network is involved in HIV-1 infection, 

but the specific transport machinery and mechanisms involved in the early stage of infection are 

not well understood.  The ability of dynein to have specificity for different cargos in the cell led 

me to the hypothesis that HIV-1 would be utilizing a specific adaptor or subset of adaptors for 

transport.    

I sought to identify the components of the dynein complex that are important for HIV-1 

infection.  I utilized an siRNA-based screen to determine which proteins in the dynein and 

dynactin complex are important.  I also sought to identify the specific adaptor that HIV-1 utilizes 

for transport and infection.  I identified a specific adaptor, BICD2, utilized by HIV-1 for 

transport by the dynein complex.  Furthermore, I determined the mechanism of BICD2 as an 

adaptor for HIV-1 infection, specifically determining its role in transport, and bridging HIV-1 

with the dynein complex.  My work has established an understanding of the mechanism through 
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which HIV-1 is able to usurp the dynein transport pathway for its own infection.    
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CHAPTER II 

 

THE DYNEIN-DYNACTIN-BICD2 COMPLEX IS IMPORTANT FOR HIV-1 INFECTION 

 

A portion of this work was published in: Carnes SK, Zhou J, Aiken C. HIV-1 Engages a 

Dynein-Dynactin-BICD2 Complex for Infection and Transport to the Nucleus. 2018. Journal of 

Virology. 92 (20) e00358-18.  

 

Introduction 

 Following cell penetration, HIV-1 must traverse the cytoplasm from the cell periphery to 

reach the nucleus. The process by which the virus is transported to the nucleus has not been 

thoroughly investigated. Genome-wide siRNA screens have revealed microtubule-associated 

proteins as necessary for HIV-1 infection [85, 87-89].  Recent studies suggest that the cellular 

transport of HIV-1 depends on the microtubule network and on the molecular motor proteins 

dynein and kinesin [51, 83, 84, 90, 91].  

Dynein is a microtubule motor complex that utilizes ATP to walk along microtubules and 

move cargo toward the negative end of microtubules, toward the cell nucleus. Dynein functions 

in vesicle and endosomal transport and helps position organelles and the mitotic spindle during 

cell division [reviewed in [44, 46-48]].  The dynein complex consists of two copies of the heavy 

chain (DYNC1H1 cytoplasmic and DYNC2H1 flagella), which contains the ATPase activity 

required for movement; two intermediate chains (DYNC1I1, DYNC1I2) and two light-intermediate 

chains (DYNC1LI1, DYNC1LI2) that stabilize the structure of the complex (Figure 2-1, Table 2-

1)[10].  The complex also contains multiple copies of various light chains (DYNLT1, DYNLT3, 

DYNLRB1, DYNLRB2, DYNLL1/2) that link dynein to other proteins and to cargo.  Previous 

studies have indicated that dynein light chain 2 in yeast may be involved in HIV-1 integrase  
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Figure 2-1. The dynein-dynactin-adaptor complex.  3D organization of the MT-bound dynein–

dynactin–BICD2N complex. (A-C) Three views of the subtomogram average (gray 

transparent density) of the MT–DDB complex are shown, with fitted atomic models of dynein 

dimer-1 (Dyn-A, yellow), dynein dimer-2 (Dyn-B, light yellow), dynactin (blue), BICD2N 

(red), associated chains (purple, salmon, and magenta), and the BICD2N GFP tag (green) and 

a microtubule model (light green).  Reprinted from Grotjahn et al. (2018) [10] 
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Table 2-1: Dynein and Dynactin Components in HIV-1 Infection 

Dynein and 

Dynactin 

Component 

Known 

Function 

Previous HIV-1 findings Expected siRNA 

effect 

Dynein Heavy Chain 

DYNC1H1 

DYNC2H1 

ATPase 

Activity 

Required for in 

vitro motility 

[93, 94] 

Important for transport, 

uncoating, reverse 

transcription [81, 83, 95] 

 

Decrease HIV 

infection and 

transport to the 

nucleus 

Dynein Intermediate 

Chain 

DYNC1I1 

DYNC1I2 

Regulatory, 

cytoskeletal 

assembly [96] 

None Unknown 

Dynein Light 

Intermediate Chain 

DYNC1LI1 

DYNC1LI2 

DYNC2LI2 

Dynein 

recruitment to 

endosomes, 

spindle 

bipolarity [97-

100] 

Vpr interacts with 

DYNC1L1 [101] 

Unknown 

Dynein Light Chain 

DYNLL1 (LC8) 

DYNLRB1 (LC7) 

DYNLRB2 (LC7) 

DYNLT1 (TCTEX1) 

DYNLT3 

Cargo binding, 

spindle 

assembly [102, 

103] 

Uncoating, reverse 

transcription, integrase 

interacts with DYNLL1 

[77, 92] 

Decrease uncoating, 

reverse 

transcription, 

infection 

Dynactin Complex 

DCTN1 

DCTN2 

DCTN3 

DCTN4 

DCTN5 

DCTN6 

ACTR1A (Arp1) 

CapZ 

ACTR10 

Activates 

dynein, 

increases 

processivity 

[50, 104] 

Uncoating, inhibits viral 

production [81, 84, 95, 

105]  

Decrease uncoating, 

transport, infection 
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transport [92] and that DYNLL1 may interact with HIV-1 capsid and affect HIV-1 reverse 

transcription [77].     

Dynein interacts with dynactin, another multi-subunit adaptor complex that links dynein to 

cargo and acts as a regulator for movement (Figure 2-1, Table 2-1). Engagement of dynactin 

increases dynein’s processivity while walking along microtubules [104, 106-110]. The dynactin 

complex has at five components, including: (1) an Arp1 backbone (ACTR1A) [111, 112]; (2) a 

p150 side-arm (DCTN1) that aids in microtubule processivity [104, 107]; (3) a shoulder complex 

(DCTN2/DCTN3) that attaches the side-arm to the backbone and binds additional interacting 

proteins [113-115]; (4) a pointed end complex (DCTN4, DCTN5, DCTN6) that binds the nuclear 

envelope prior to mitosis [116]; and (5) a barbed end complex (CAPZA and CAPZB) that aids in 

structure stabilization [111]. The function of each of these components depends on 

interactions with the other components.  By contrast to dynein, dynactin proteins do not 

function redundantly.  Together, the five components interact to form the dynactin complex.   

Although there is compelling evidence that HIV-1 infection depends on dynein-dependent 

transport, the role of dynactin and of dynein adaptors in infection is not well understood.  

Owing to the variety of protein cargoes that require cellular motors for movement, the 

cell faces the problem of cargo specificity.  To solve this problem, dynein interacts with 

numerous cargo-specific adaptor proteins (Figure 2-1).  Adaptors link cargo to the dynein 

complex, allowing the proper transport of cargo to the proper locations in the cell.  Adaptor 

proteins also link dynein to dynactin [50, 117, 118], resulting in dynein activation and processive 

walking along microtubules.  Some dynein adaptors also act in specific cellular functions through 

their interactions with dynein, playing roles in interphase transport and organelle and microtubule 

positioning before and during mitosis [119-125].  The number of known dynein adaptor proteins 

has expanded in recent years, with new adaptors being discovered and new functions being 

assigned for previously known adaptors (Table 2-2) [reviewed in [49]].  Some of the best-

characterized adaptors are LIS1, NUDE, and NUDEL, which form complexes between  
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Table 2-2: Adaptors and MAPs in HIV-1 Infection 

Adaptor/MAP Gene Known Function Previous HIV-1 

Findings 

Expected siRNA 

effect 

PAFAH1B1 (Lis1) 

 

Nuclear and spindle 

positioning, organelle 

and mRNA transport 

[120, 121] 

Inhibition of PP2A by 

Lis1 increases Tat-

mediated 

transcription [126] 

Decrease HIV-1 

infection (depletion 

mimics dynein 

depletion) 

NDE1 (NUDE) Microtubule 

organization, dynein 

regulation, transport 

[121] 

None Unknown 

NDEL1 (NUDEL) Cytoskeletal 

organization, 

transport [120, 121] 

None Unknown 

BICD1 

BICD2 

Activates dynein; 

vesicle transport, 

nuclear positioning, 

microtubule 

organization [119, 

122, 127] 

Genome-wide screen; 

depletion reduces 

infection [89] 

Decrease infection 

RAB6a Linkage to vesicles; 

transport in both 

retrograde and 

anterograde [128, 

129] 

Knockdown inhibits 

HIV-1 replication 

Involved in 

membrane fusion by 

gp120/gp41 [87] 

Decrease infection 

KNTC1 (Rod) 

ZW10 

ZWILCH 

Chromosome 

segregation [123, 

124] 

None Unknown 

SPDL1 (Spindly) Spindle Regulation, 

mitotic checkpoints 

[123] 

None Unknown 

CLIP1 

CLIP2 

Recruits Lis1 to MT 

plus ends; recruitment 

of dynein; links 

endocytic vesicles to 

microtubules [130-

132] 

None Unknown 

SPTBN4 

SPTAN1 

Links plasma 

membrane to actin; 

cargo binding 

activation at plus ends 

of MTs [133, 134] 

Cleaved by HIV-1 

protease [135] 

Knockdown inhibits 

HIV-1 replication 

[87] 

Unknown 
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Table 2-2 cont’d: Adaptors and MAPs in HIV-1 Infection 

Adaptor/MAP Gene Known Function Previous HIV-1 

Findings 

Expected siRNA 

effect 

SPF27 (BCAS2, 

NUM1) 

Receptor for dynein 

at plus ends of MTs 

[136] 

None Unknown 

SEC23A/B 

SEC24A/B/C/D 

Cargo binding in 

COPII coat [137, 

138] 

None Unknown 

RILP 

RAB7A 

RAB7B 

Regulation of late 

endocytic traffic [128, 

129] 

Rab7 and RILP direct 

endosome-associated 

Gag towards to the 

MTOC [139] 

Unknown 

MAPK8IP3 (JIP3) Links dynein to 

endosomes [140, 141] 

None Unknown 

CCDC155 (KASH5) 

SUN1 

Forms a transluminal 

linker from the 

nucleus to the 

cytoskeleton [142], 

associates with 

dynactin [143] 

Gp160 physical 

interaction with 

SUN1 and Sad1 [101] 

Sun1 regulates HIV-1 

nuclear import [144] 

Unknown 

RAB11FIP3 Transport vesicles, 

links dynein to Rab11 

positive endosomes 

[145] 

Nef alters endosomal 

trafficking Lck and 

Rac1 [146] 

Unknown 

HOOK1 

HOOK2 

HOOK3 

Links dynein to early 

endosomes, 

organelles [125, 147, 

148] 

None Unknown 

MAP1A 

MAP1S 

MAP1B 

Microtubule assembly 

and stability, 

endocytic vesicle 

trafficking [149] 

MAP1A and MAP1S 

activate HIV-1 

transport [85] 

Decrease infection 

and transport 

TBCB (CKAP1) Regulates 

cytoskeletal 

dynamics, EB1 [150] 

Interacts with HIV-1 

cores in primary 

human macrophages 

[85] 

Unknown 

KPNA2 Nuclear import, 

transport [151] 

Interactions with 

several HIV proteins, 

may assist in nuclear 

import of PIC [152-

154] 

Unknown 
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Table 2-2, cont’d: Adaptors and MAPs in HIV-1 Infection 

Adaptor/MAP Gene Known Function Previous HIV-1 

Findings 

Expected siRNA 

effect 

TTL Posttranslational 

modifications of 

tubulin [155] 

None Decrease HIV-1 

infection and 

transport based on 

Naghavi et al. 

AGTPBP1 Nuclear localization; 

detyrosinates MTs 

[156] after 

tyrosination occurs by 

TTL 

None Increase HIV-1 

infection and 

transport based on 

Naghavi et al. 

WIPF2 (WIRE) Actin cytoskeleton 

organization [157] 

Interacts with HIV-1 

cores in primary 

human macrophages 

[85] 

Unknown 

FEZ1 Cargo transport as 

kinesin adaptor [158] 

Depletion inhibits 

infection, no net 

movement to nucleus 

[51, 159, 160] 

Decrease in HIV-1 

infection and 

transport 

ARF6 Vesicle transport, 

actin remodeling 

[161] 

Knockdown enhances 

HIV-1 replication in 

human acute 

monocytic leukemia 

cells [162] 

Increase in HIV-1 

infection 

PCNT Centrosome and 

cytoskeleton 

regulation, cell cycle 

checkpoint[163-165] 

Vpr causes 

accumulation of 

centrosome-structures 

in perinuclear region 

[166] 

Unknown 

LAMTOR2 Late endosomal 

transport [167, 168] 

Knockdown inhibits 

HIV replication [89] 

Potential decrease in 

infection 

MAPRE1 (EB1) 

MAPRE2 

Localizes to plus ends 

of MTs, regulates MT 

stability [169-171] 

EB1-mediated MT 

stabilization enhances 

HIV-1 infection [84] 

Decrease in HIV 

infection and 

transport 

CLASP1 

CLASP2 

Regulate MT 

dynamics, endosomal 

targeting [172, 173] 

None Unknown 

BLOC1S6 Interacellular vesicle 

transport [174] 

None Unknown 

CSPP1 Spindle organization, 

cell cycle checkpoint 

[175] 

Knockdown inhibits 

HIV-1 replication 

[87] 

Potential decrease in 

infection 
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themselves and dynein to function in nuclear and spindle positioning, and in organelle and 

mRNA transport.  The adaptors ROD-ZW10-Zwilch and Spindly also interact with dynein to aid in 

docking dynein and other dynein adaptors to the kinetochores.  Bicaudal D has been shown to 

be important for organelle and mRNA transport.  

Because HIV-1 infection depends on efficient traversal of the cytoplasm to the nucleus, I 

hypothesized that the virus exploits one or more specific adaptor proteins and the dynactin 

complex for dynein-dependent transport. I designed an siRNA-based screen to test whether 

components of dynein, dynactin, and known and hypothetical adaptors facilitate HIV-1 infection.  

I show that HIV-1 infection and nuclear import is facilitated by the dynactin backbone and 

shoulder complex (ACTR1A, DCTN2/DCTN3) and the dynein adaptor BICD2.  I also found that 

Murine Leukemia Virus and Simian Immunodeficiency Virus are similarly dependent on the 

dynein-dynactin-BICD2 complex for infection.  This comprehensive analysis of dynein transport 

components leads to a further understanding of the key players involved in HIV-1 transport.   

 

Results 

 

Dynein perturbation reduces HIV-1 infection 

Previous studies have suggested that dynein plays a role in HIV-1 intracellular transit, 

which may be important for infection [51, 83].  To determine if dynein is important for HIV-1 

infection, I utilized a small molecule dynein ATPase inhibitor ciliobrevin D (CBV) to perturb 

dynein-based transport in the cell [176] (Figure 2-2).  TZM-bl cells were pretreated in the 

presence of increasing concentrations of CBV and then inoculated with HIV R9 (A), HIV-GFP 

(VSVG pseudotyped) (B), or HIV NL43-GFP (C).  The extent of infection was analyzed by the 

expression of a luciferase reporter gene in the cells upon infection by HIV-1.  HIV-GFP and HIV  
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Figure 2-2. Dynein perturbation reduces HIV-1 infection.  TZM-bl cells were pretreated 

with the dynein inhibitor Ciliobrevin D for 1 hour, then inoculated with indicated HIV 

strains.  Infectivity after 48 hours was determined by flow cytometry or total luciferase 

emission.  ***p<0.001, **p<0.01 
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NL43-GFP both encode GFP in the place of Nef, and extent of infection can be observed by  

fluorescence intensity within the cells.  These viruses were analyzed by flow cytometry.  For all 

viruses tested, I observed a marked decrease in infection in the presence of increasing 

concentrations of ciliobrevin D, suggesting that dynein is important for HIV-1 infection (Figure 

2-2). 

 

Dynein heavy chain and dynactin component depletion inhibits HIV-1 infection  

 The results from the ciliobrevin experiment in Figure 2-2 suggested that dynein is 

important for HIV-1 infection.  However, this approach inhibited the dynein complex as a whole, 

and did not reveal the specific components of the dynein complex, or the associated dynactin 

complex, that are important for infection.   A systematic analysis of the components of dynein 

and the associated dynactin complex required for HIV-1 infection had not been reported.   

Therefore, to determine the contribution of dynein and dynactin to HIV-1 infection, I 

analyzed the effects of depleting components of the dynein and dynactin complex on cell 

permissiveness to HIV-1 infection.  TZM-bl cells were transfected with pooled siRNAs specific 

to individual genes of the dynein or dynactin complex, or a nontargeting siRNA control, then 

inoculated with the GFP-encoding HIV-1 reporter virus NL43-GFP (Figure 2-3 and 2-4).  An 

siRNA targeting of the HIV-1 cell receptor CD4 was used as a positive control for reduction in 

HIV-1 infection.  Effects on expression of the targeted mRNAs were analyzed by quantitative 

RT-PCR (Figure 2-3B and 2-4B).   

The dynein complex is composed of two heavy chains (cytoplasmic DYNC1H1 or ciliary 

DYNC2H1), two intermediate chains (DYNC1I1, DYNC1I2), two light intermediate chains 

(DYNC1LI1, DYNC1LI2), and multiple sets of light chains (DYNLT1, DYNRB1, DYNRB2,  
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Figure 2-3.   Depletion of DYNC1H1 inhibits HIV-1 infection.  TZM-bl cells were pretreated 

with indicated pooled siRNAs and then inoculated with GFP-expressing HIV-1 (A) or harvested for 

knockdown efficiency by qPCR analysis (B). Infection was assessed by flow cytometry for GFP 

expression. The values shown represent the extent of infection relative to nontargeting siRNA 
treatment (A). Infection results are the means of three independent determinations. Error bars 

represent standard deviations. Statistical significance was calculated by a Student t test for each 

siRNA treatment compared to nontargeting control siRNA treatment. (**, P <0.01; ***, P <0.001; 

****, P< 0.0001). mRNA analyses are from a single experiment.  
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Figure 2-4.   Depletion of some dynactin components inhibits HIV-1 infection. TZM-bl cells 

were pretreated with indicated pooled siRNAs and then inoculated with GFP-expressing HIV-1 

(A) or harvested for knockdown efficiency by qPCR analysis (B). Infection was assessed by flow 

cytometry for GFP expression. The values shown represent the extent of infection relative to 

nontargeting siRNA treatment (A). Infection results are the means of three independent 

determinations. Error bars represent standard deviations. Statistical significance was calculated by 

a Student t test for each siRNA treatment compared to nontargeting control siRNA treatment. (**, 

P< 0.01; ***, P <0.001; ****, P <0.0001).  mRNA analyses are from a single experiment.  
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DYNLT3, DYNLL1) (Figure 2-3).  The various chains in dynein and dynactin can exhibit  

functional redundancy.  I observed that depletion of the dynein heavy chain significantly reduced 

the extent of HIV-1 infection, consistent with previous reports [51, 83]. By contrast, I observed 

no significant effect of depleting other dynein components on HIV-1 infection, despite efficient 

knockdown of most of these components as assessed by mRNA quantification (Figure 2-3).  As 

expected, depletion of cellular CD4 markedly reduced cell permissiveness to HIV-1.  

The dynactin complex associates with dynein, increasing the processivity of dynein movement 

along microtubules [106]. Dynactin can also act as an adaptor for some cargoes.  The dynactin 

complex is composed of the p150 sidearm (DCTN1), dynamitin/shoulder (DCTN2, DCTN3), 

pointed-end complex (DCTN4, DCTN5, DCTN6), Arp1 rod (ACTR1A), and the barbed end 

complex (CAPZA and CAPZB) (Figure 2-4).  Depletion of DCTN2, DCTN3, and ACTR1A 

resulted in decreased HIV-1 infection, consistent with a role for the dynactin complex in HIV-1 

infection.   

To validate these results, I tested the effects of individual siRNAs from the four siRNA 

pools in Figures 2-3 and 2-4 that showed a significant effect on HIV-1 infection (Figure 2-5).  

Each single siRNA also significantly reduced the extent of infection of TZM-bl cells (p<0.0001 

for all samples), thus confirming the results of the pooled siRNAs.  Depletion of the 

corresponding mRNAs was confirmed by RT-PCR (Figure 2-5B).  The observation that each of 

the individual siRNAs had a similar effect as the pooled siRNAs reduces the possibility of off-

target effects being responsible for the observed outcome.  In addition to RT-PCR analysis, 

protein depletion was confirmed by immunoblot analysis of extracts of cells transfected with 

each of two individual siRNAs for four targets for which antibodies were available. (Figure 2-

5C).  Collectively, the results in Figures 2-3, 2-4, and 2-5 indicate that HIV-1 infection depends  
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Figure 2-5.   Individual siRNA depletion of DYNC1H1 and some dynactin components inhibits 

HIV-1 infection. TZM-bl cells were pretreated with indicated siRNAs and then inoculated with GFP-

expressing HIV-1 (A) or harvested for knockdown efficiency by qPCR analysis (B). Infection was 

assessed by flow cytometry for GFP expression. The values shown represent the extent of infection 

relative to nontargeting siRNA treatment (A). Infection results are the means of three independent 

determinations. Error bars represent standard deviations. Statistical significance was calculated by a 

Student t test for each siRNA treatment compared to nontargeting control siRNA treatment. All samples 

had equal significance values (****, P <0.0001).  mRNA analyses are from a single experiment.  (C) 

Immunoblot analysis of the effects of two individual siRNAs for four targets on the corresponding target 

protein levels.  

 



 

  29 

on the dynein heavy chain and on specific components of the dynactin complex.  

 

Analysis of the effects of depletion of dynein adaptors on HIV-1 infection   

Dynein adaptors are host proteins that link dynein to specific cargo and activate dynein 

movement along microtubules.  I hypothesized that HIV-1 exploits one or more dynein adaptors 

for infection and transport to the nucleus.  To identify dynein adaptors utilized during HIV-1 

infection, I screened a panel of host proteins that I considered candidates for HIV dynein 

adaptors.  These included known and putative dynein adaptors, including proteins with both 

dynein and HIV-1 interactions, and other host proteins that had previously been shown to be 

important for HIV-1 transport (Table 2-2).  TZM-bl cells were treated with pooled siRNAs for 

48 h, then challenged with HIV-1.  Targets that had the most pronounced and reproducible effect 

on HIV-1 infection at 48h siRNA treatment were then analyzed under 72h siRNA treatment 

(Table 2-3, 2-4).   

BICD2 depletion consistently reduced HIV-1 infection (Figure 2-6).  To confirm that 

BICD2 depletion reduces cell permissiveness to HIV-1 infection, I repeated the experiments 

using individual siRNA duplexes present in the siRNA pool (Figure 2-6A).  I observed that the 

individual siRNAs also reduced HIV-1 infection.  Knockdown efficiency of the individual 

siRNAs was analyzed by RT-PCR (Figure 2-6B).  To confirm that the siRNAs reduced BICD2 

protein levels, I analyzed extracts of cells transfected with either of two of the individual siRNAs 

by immunoblotting (Figure 2-6C).  I observed a marked decrease in BICD2 protein levels in the 

cell extracts transfected with either of the two BICD2 siRNAs.   
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Table 2-3: Infection and mRNA expression levels of siRNA targets 

  48 hour siRNA treatment 72 hour siRNA treatment 

  
Infectivity  

(% of nontargeting) 

mRNA Expression 

(% of nontargeting) 

Infectivity  

(% of nontargeting) 

mRNA Expression 

(% of 

nontargeting) 

  Expt 1 Expt 2   Expt 1 Expt 2   

BICD2 50 83 86 17 34 36 

NDE1 117 114 70 20 62 8 

SPTBN1 73 71 62 7 31 8 

SEC24C 95 91 10 16 68 2 

RAB11FIP3 94 102 91 11 73 64 

HOOK3 97 93 58 88 36 50 

MAP1A 107 111 83 35 100 50 

MAP1S 115 137 56 28 103 5 

WASF1 101 97 60 66 51 54 

FEZ1 38 84 79 95 80 43 

MAPRE1 118 110 66 72 38 22 

MAPRE2 83 91 35 27 41 11 

CSPP1 106 97 90 24 105 42 

PAFAH1B1 73 80 98 97 68 11 

NDEL1 96 73 20 102 64 8 

BICD1 129 99 89 70 101 10 

ZW10 106 102 42 65 105 19 

CLIP1 116 86 16 144 124 20 

BCAS2 82 87 58 84 103 12 

SEC23A 125 68 54 76 87 15 

SEC23B 120 129 42 111 105 10 

SEC24A 145 116 44 111 119 19 

RILP 133 99 32 68 97 6 

RAB6A 9 51 61 22 60 27 

RAB7A 92 125 90 98 110 10 

MAPK8IP3 120 123 55 61 110 4 

TBCB 124 126 74 56 122 2 

KPNA2 117 122 19 107 110 5 

TTL 116 124 63 56 127 13 

SAP30BP 54 149 94 84 117 11 

SPG20 112 127 76 68 129 14 

PCNT 59 103 88 49 62 89 

LAMTOR2 41 116 65 42 67 23 
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Table 2-3 cont.’d: Infection and mRNA expression levels of siRNA targets 

  48 hour siRNA treatment 72 hour siRNA treatment 

  
Infectivity  

(% of nontargeting) 

mRNA Expression 

(% of nontargeting) 

Infectivity  

(% of nontargeting) 

mRNA 

Expression (% of 

nontargeting) 

  Expt 1 Expt 2   Expt 1 Expt 2   

CLASP1 149 91 53 94 86 16 

MID1IP1 106 113 20 173 138 14 

MAP4 68 112 60 100 104 9 

TTLL8 64 127 18 80 132 76 

 

 

 

Table 2-4: Infection and mRNA expression levels of siRNA targets, poor knockdown 

Adaptor Screen Infection Results, <80% Knockdown, <2 Fold Reduction of Infection 

  48 hour siRNA treatment 72 hour siRNA treatment 

  
Infectivity  

(% of nontargeting) 

mRNA Expression  

(% of nontargeting) 

Infectivity  

(% of nontargeting) 

mRNA Expression  

(% of 

nontargeting) 

  Expt 1 Expt 2   Expt 1 Expt 2   

KNTC1 101 97 82 104 102 57 

ZWILCH 125 88 30 63 108 70 

SPDL1 92 121 58 120 69 22 

CLIP2 105 125 71 123 122 30 

SPTBN4 109 111 78 68 118 46 

SPTAN1 118 103 54 89 82 26 

SEC24B 111 112 80 101 62 24 

SEC24D 126 124 95 92 96 72 

RAB7B 133 109 35 61 96 40 

CCDC155 118 138 77 58 96 65 

SUN1 102 94 86 113 105 21 

HOOK1 121 108 51 146 116 37 

HOOK2 124 82 47 109 126 25 

MAP1B 105 117 95 114 120 76 

AGTPBP1 133 105 90 92 115 22 

WIPF2 117 109 65 61 89 23 

ARF1 87 89 30 80 81 84 
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Table 2-4 cont.’d: Infection and mRNA expression levels of siRNA targets,  

poor knockdown 

Adaptor Screen Infection Results, <80% Knockdown, <2 Fold Reduction of Infection 

  48 hour siRNA treatment 72 hour siRNA treatment 

  
Infectivity  

(% of nontargeting) 

mRNA Expression  

(% of nontargeting) 

Infectivity  

(% of nontargeting) 

mRNA Expression  

(% of 

nontargeting) 

  Expt 1 Expt 2   Expt 1 Expt 2   

ARF6 114 103 75 110 124 42 

RUFY1 138 105 52 81 130 29 

HDAC6 111 122 64 66 113 24 

KAT7 103 96 72 112 75 32 

CLASP2 118 99 95 149 116 42 

BLOC1S6 116 100 92 78 95 22 

FGD6 107 110 33 142 104 24 
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Figure 2-6.  Analysis of the effects of depletion of dynein adaptors on HIV-1 infection.  (A) TZM-

bl cells were pretreated with BICD2 pooled siRNA or individual siRNAs and then inoculated with 

GFP-expressing HIV-1 (A) or harvested for knockdown efficiency by qPCR analysis (B).  After 

infection with an HIV-1 reporter virus, the cells were fixed and analyzed by fluorescence-activated cell 

sorting for GFP expression, and the infectivity relative to nontargeting siRNA treatment was 

determined (A).  The results shown are mean values from three independent determinations.  Error bars 

represent standard deviations.  Statistical significance was calculated by a Student’s T test.  All samples 

had equal significance values (****, P<00001).  (C) Two of the single siRNAs were selected for 

BICD2 protein knockdown analysis by immunoblotting. 
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Depletion of components of the dynein-dynactin-BICD2 complex results in impaired HIV-1 

nuclear import   

After determining that the dynein-dynactin-BICD2 complex is important for HIV-1 

infection, I asked which stage of HIV-1 infection the complex affects.  Before infection occurs, 

HIV-1 must enter at the cell membrane, and traverse the cytoplasm to enter the nucleus for 

integration.  During this period, the virus undergoes reverse transcription and partial uncoating 

[4].  I hypothesized that if the dynein-dynactin-BICD2 complex is important for transport of the 

virus to the nucleus, depletion of the components would result in reduced accumulation of HIV-1 

DNA in the nucleus.  After entry of HIV-1 into the nucleus, a fraction of the viral DNA is not 

integrated but instead forms 2-LTR circles within the nucleus, rendering 2-LTR circles a 

convenient PCR-based readout of nuclear entry. To determine if the dynein-dynactin-BICD2 

complex is important for HIV-1 intracellular transit, I tested the effects of host proteins on the 

levels of accumulated 2-LTR circles.  Two individual siRNAs were chosen for each gene of 

interest. TZM-bl cells were treated with siRNAs and subsequently challenged with GFP-

expressing HIV-1 pseudotyped with VSV-G. 2-LTR circles were quantified, and the reduction 

relative to nontargeting control was determined.  Efavirenz treatment, which blocks reverse 

transcription, and therefore downstream 2-LTR production, was used as a positive control.  

Depletion of the dynein heavy chain, dynactin components, and BICD2 each led to a reduction in 

HIV-1 2-LTR circles (Figure 2-7A), suggesting that HIV-1 does not efficiently reach the nucleus 

when components of the complex are depleted. Prior to nuclear entry, HIV-1 undergoes reverse 

transcription in the cytoplasm.  Because formation of 2-LTR circles depends on viral DNA 

synthesis, a reduction in reverse transcription would be expected to result in a decreased level of 

2-LTR circles.  To test if depletion of the dynein-dynactin-BICD2 complex affects HIV-1  
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Figure 2-7.  Analysis of HIV-1 DNA synthesis and nuclear entry in cells depleted for 

components of the dynein-dynactin-BICD2 complex.  TZM-bl cells were pretreated with 

individual siRNA duplexes for 72h and then inoculated with GFP-expressing HIV-1 

pseudotyped with VSVG.  Cells were harvested for quantitative analysis of 2-LTR circles (A) 

and for analysis of second strand transfer reverse transcripts (B).  The effects relative to 

nontargeting siRNA treatment are shown.  The results shown are mean values from three 

independent determinations.  Error bars represent standard deviations.  Statistical significance 

was calculated by an unpaired parametric t test for each siRNA treatment versus nontargeting 

control siRNA treatment (**, P<0.01; ***, P<0.001; ****, P<0.0001).  No significant effects of 

the siRNAs on late reverse transcripts were observed. 
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reverse transcription, I assayed late reverse transcription products by quantitative PCR using 

virus-specific primers (Figure 2-7B).  Efavirenz treatment was used as a control to confirm that 

the assay signals resulted from bona fide reverse transcription vs. contaminating plasmid DNA.  I 

observed no significant effect of siRNA treatment on the production of late RT products relative 

to the nontargeting siRNA control.  My results are concordant with one, and differ with another, 

previous report of dynein heavy chain function in HIV-1 infection [78, 81]; they are also 

concordant with a recent study of the dependence of HIV-1 infection on BICD2 expression [82].  

My data suggest that the reduction in HIV-1 infection by depletion of the dynein-dynactin-

BICD2 complex results from intracellular transport and/or impaired nuclear entry.   

   

The dynein-dynactin-BICD2 complex facilitates MLV and SIV infection  

Previous studies of MLV infection have suggested that the dynein heavy chain, the 

dynein intermediate chain, the dynein light chain DYNLRB2, and the dynactin component 

DCTN2/p50/dynamitin are involved in MLV infection [70, 177].  Although I did not observe an 

effect of depletion of either dynein intermediate chain (DYNC1I1, DYNC1I2), or DYNLRB2 on 

HIV-1 infection, I did observe that the dynein heavy chain (DYNC1H1), and dynactin DCTN2 

promote infection (Figure 2-3, 2-4, 2-5; Table 2-3).  To determine whether the dependence of 

infection on these proteins extends to other retroviruses, I tested the effect of depletion of 

DYNC1H1, DCTN2, DCTN3, ACTR1A, and BICD2 (Figure 2-8, panels A-E, respectively) on 

cell permissiveness to MLV and SIV infection.  To ensure that the viruses use a common 

mechanism for cell entry, I also employed GFP reporter particles that were pseudotyped with 

VSV-G.  Interestingly, pseudotyping HIV-1 led to a decrease in the effects on infection 

compared to HIV-1 particles bearing native Env for all dynein-dynactin-BICD2 targets.  The  
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Figure 2-8 Effects of depletion of components of the dynein-dynactin-BICD2 complex on MLV 

and SIV infection.  TZM-bl cells were pretreated with individual siRNA duplexes for 72h and then 

inoculated with (NL43-GFP), GFP-expressing HIV-1 pseudotyped with VSVG (HIV-GFP), murine 

leukemia virus (MLV-GFP), or simian immunodeficiency virus (SIV-GFP).  Inoculated cells were 

fixed and analyzed by fluorescent-activated cell sorting for GFP expression, and the extent of 

infection relative to nontargeting siRNA was determined.  The results shown are mean values from 

three independent determinations.  Error bars represent standard deviations.  Statistical significance 

was calculated by an unpaired parametric t test for each siRNA treatment versus nontargeting control 

siRNA treatment (**, P<0.01; ***, P<0.001; ****, P<0.0001).   
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observed effect of VSV-G pseudotyping is consistent with another study of the effects of BICD2 

depletion on HIV-1 infection [82].  As with HIV-1, both MLV and SIV infection were reduced 

when DYNC1H1 (Figure 2-8A) and DCTN2 (Figure 2-8B) were depleted, consistent with a 

previous study of MLV [70]. Similar observations were obtained for the other dynactin 

components DCTN3 (Figure 2-8C) and ACTR1A (Figure 2-8D), which were not previously 

reported to play a role in MLV or SIV infection.  I also observed that BICD2 depletion also 

reduced MLV and SIV infection, though the effect on MLV infection appeared to be less 

pronounced (Figure 2-8E).  Together, my results suggest that the dynein-dynactin-BICD2 

complex is exploited by both MLV and SIV for infection.   

 

DYNC1H1 and BICD2 facilitate HIV-1 infection in multiple cell lines   

To determine whether the dependence of HIV-1 infection on DYNC1H1 and BICD2 

extends to other cell types, I tested the effect of depletion of DYNC1H1 and BICD2 on cell 

permissiveness to infection in Jurkat, A431-CD4, GHOST, and primary human fibroblast 

cultures.  Cells were transfected with two individual siRNAs for DYNC1H1 and BICD2 for 72 h 

before challenge with HIV-1.  For the infection assays, I employed GFP reporter particles that 

had either native HIV-1 envelope (NL43-GFP) or particles that were pseudotyped with VSV-G 

(HIV-GFP).  DYNC1H1 and BICD2 depletion reduced HIV-1 infection in all of the cells (Figure 

2-9A-D).  Interestingly, pseudotyping HIV-1 did not lead to a decrease in the effects on infection 

compared to native HIV-1 env as was previously seen in TZM-bl cells.  To confirm that 

DYNC1H1 and BICD2 were depleted in the siRNA-treated cells, I quantified mRNA levels by 

RT-PCR and protein levels by immunoblotting (Figure 2-9E-H).  Together, my results suggest  
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Figure 2-9 DYNC1H1 and BICD2 facilitate HIV-1 infection in various human cell lines.  Cells 

were pretreated with individual siRNA duplexes and either inoculated with GFP-expressing HIV-1 

(NL43-GFP) or VSVG pseudotyped HIV-1 (HIV-GFP) for infection analysis (A to D) or harvested for 

knockdown efficiency analysis by qPCR or immunoblotting (E to H).  Inoculated cells were fixed and 

analyzed by fluorescence-activated cell sorting for GFP expression, and the extent of infection relative 

to nontargeting siRNA treatment was determined.  The results shown are mean values from three 

independent determinations.  Error bars represent standard deviations.  Statistical significance was 

calculated by an unpaired parametric t test for each siRNA treatment versus nontargeting control siRNA 

treatment (**, P<0.01; ***, P<0.001; ****, P<0.0001).   
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that dynein and BICD2 facilitate HIV-1 for infection in a range of cell types, including the Jurkat 

T cell line. 

 

Discussion 

 

In this study, I performed a systematic analysis of the components of the dynein and 

dynactin complexes and of known dynein adaptors for their effects on HIV-1 infection.  

Consistent with earlier reports [51, 83], I observed that depletion of DYNC1H1 reduced cell 

permissiveness to HIV-1 infection.  In addition to dynein heavy chain, depletion of the dynactin 

components DCTN2, DCTN3, and ACTR1A decreased cell permissiveness to HIV-1 infection, 

indicating that the dynactin complex also facilitates HIV-1 infection.  Finally, I observed that 

BICD2 depletion reduced cell permissiveness to infection. My results suggest that a dynein-

dynactin-BICD2 complex promotes HIV-1 infection (Figures 2-2 through 2-6).   

Analysis of the stage at which infection is inhibited indicates that the dynein-dynactin-

BICD2 complex promotes the intracellular transport of HIV-1 to the nuclear envelope.  

Depletion of DYNC1H1, dynactin components, and BICD2 each resulted in a decrease in the 

levels of nuclear HIV-1 DNA (2-LTR circles) without a reduction in viral DNA levels, 

suggesting that the virus is impaired at or prior to nuclear entry (Figure 2-7).  While an effect of 

dynein depletion on reverse transcription was previously observed in one study [81], another 

study found the opposite [78].  My observation that dynein depletion reduced nuclear HIV-1 

DNA without altering reverse transcription suggested that dynein accelerates HIV-1 transport to 

the nucleus, or nuclear entry itself.  

I also observed that, relative to non-pseudotyped HIV-1, infection by HIV-1 particles 

pseudotyped by VSV-G was less affected by depletion of DYNC1H1, dynactin components, and 
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BICD2 in TZM-bl cells (Figure 2-8).  Similar effects of pseudotyping on BICD2 dependence of 

HIV-1 were also observed in a recent study [82].  Cell entry by HIV-1 infection normally occurs 

via direct fusion at the plasma membrane; by contrast, HIV-1 (VSV-G) enters cells by 

endocytosis and requires the low pH of the endosome for fusion. I speculate that this alters the 

location at which the dynein machinery engages the virus, thereby reducing the requirement for 

the dynein-dynactin-BICD2 complex.  Interestingly, however, this difference in the dependence 

of HIV-1 infection on dynein and BICD2 between pseudotyped and non-pseudotyped viruses 

was not observed in other cell lines tested (Figure 2-9), suggesting that this effect may be 

specific to TZM-bl cells.   

In addition to HIV-1, infection by VSV-G-pseudotyped SIV and MLV was dependent on 

dynein, dynactin, and BICD2 (Figure 2-8), indicating that a common mechanism of dynein 

transport can be utilized by a variety of retroviruses. A previous report showed that infection by 

ecotropic but not amphotropic MLV depends on the adaptor NudEL [70], further suggesting that 

dynein adaptor utilization depends on the cell receptor and/or entry pathway utilized by the virus. 

The apparent broad dependence of diverse retroviruses on BICD2 suggests the possibility that 

convergent virus evolution adopted a common solution for engagement of the intracellular 

transport machinery.  It will be interesting to determine whether nonprimate lentiviruses and 

avian retroviruses also utilize BICD2 for infection.  
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CHAPTER III 

 

BICD2 BINDS THE HIV-1 CAPSID AND PROMOTES HIV-1 TRANSPORT TO THE 

NUCLEUS 

 

A portion of this work was published in Carnes SK, Zhou J, Aiken C. HIV-1 Engages a 

Dynein-Dynactin-BICD2 Complex for Infection and Transport to the Nucleus. 2018. Journal of 

Virology. 92 (20) e00358-18.  

 

Introduction 

 

 My results described in Chapter II indicate that HIV-1 infection depends on the dynein-

dynactin-BICD2 complex.  In cells, this complex is responsible for efficient intracytoplasmic 

transport of cargo.  Adaptors, such as BICD2, are important for the activation of dynein 

movement along microtubules, and therefore active transport.  Therefore, I hypothesized that this 

complex promotes HIV-1 infection by transporting the incoming viral core to the target cell 

nucleus.  To analyze transport of HIV-1 in cells I utilized both fixed cell and live cell 

microscopy.  These methods allowed me to determine the necessity of the dynein-dynactin-

BICD2 complex for transport over a longer timescale (1-2 hours) and the necessity of the 

complex for the kinetics of movement.     

Here, I show that HIV-1 is transported in short bursts that match kinetically to active 

transport by dynein.  I also shown that siRNA depletion of the dynein heavy chain and BICD2 

reduced virion transport toward the nucleus on longer time scales.  Specifically, I observed that 

initiation of transport was thwarted.  BICD2 depletion did not alter the particles that remained 
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mobile in terms of speed of movement or run length.  However, the motile particles did have a 

net reduction in retrograde movement, suggesting they were not trafficked by dynein.   

In order to act as an adaptor for dynein, BICD2 must bind both the dynein-dynactin 

complex, and the cargo it is transporting.  This “bridge” between cargo and dynein activates 

transport.  Therefore, I hypothesized that HIV-1 engages the dynein motor complex via BICD2 

for intracellular transport.  Specifically, I hypothesize that this engagement occurs through the 

HIV-1 capsid, as it acts as a shell around interior viral components, and remains associated with 

the viral PIC through transport to the nucleus.  

There are two homologues of Bicaudal D: BICD1 and BICD2.  Although both can serve 

similar functions in the cell, BICD2 is more abundant.  In cultured mammalian cells, BICD2 

promotes dynein-mediated transport from the ER to the Golgi and within the Golgi via its 

transport RAB6-positive endosomes.  Also, prior to mitotic entry, BICD2 interacts with RANBP2 

at the nuclear pores and recruits dynein and dynactin to ensure proper positioning of the nucleus 

[reviewed in [49]].   

Structurally, BICD2 is a dimer with several regions that can form coiled coil domains and 

has an overall rod-like shape (Figure 3-1A) [111, 178].  The N-terminal region of BICD2 is 

responsible for binding dynein and dynactin [119, 122, 127], and promotes a stable ternary 

complex that activates processive minus-end directed motility.  The C-terminal region of BICD2 

is responsible for binding cargo, including interacting partners Rab6 and RANBP2 [179, 180].  

The C-terminal may also be responsible for the autoinhibition of the protein when cargo is not 

bound (Figure 3-1B)[119, 122, 127, 181].  The C-terminal region binds to the N-terminal region 

until cargo is bound, at which time the N-terminal becomes available for binding with dynein and 

dynactin.  This model is supported by the finding that mutation of the cargo-binding site in the C- 
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Figure 3-1 Schematic structure of BICD2.  A. The structure of human BICD2 contains three 

regions of extensive coiled-coil structure (gray boxes), names CC1, CC2, and CC3.  The N-

terminal region, CC1 has a conserved region (red box) across Drosophila melanogaster and 
Caenorhabditis elegans.  The CC3 region also has a conserved region (blue box) across these same 

organisms, and a conserved region (BD) specific to BICD1 and BICD2.  The N-terminus can bind 

dynein and dynactin, the central region can bind kinesin-1, and the C-terminus can bind cargo, 

including Rab6 and RanBP2 (green lines).  B.  A model in which the C-terminal region of BICD2 

interacts with the N-terminal region, autoinhibiting binding to the dynein complex.  Cargo binding 

of the C-terminal domain relieves this inhibition, allowing the N-terminal region of BICD2 to bind 

to dynein (yellow) and dynactin (green).  Adapted from Hoogenraad and Akhmanova, Trends. 

Cell. Bio. (2016) [12]      
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terminus reduces dynein association [182].  BICD2 is also able to bind kinesin-1 through its 

central coiled-coil region though, complicating the model [183].  It is unclear how autoinhibition 

would be relieved in this case.  In these studies, I sought to determine if HIV-1 interacted with 

BICD2 for transport to the nucleus, and if so, what regions of BICD2 HIV-1 was binding. 

Biochemical studies revealed that dynein components and BICD2 associate with capsid-like 

assemblies of the HIV-1 CA protein in cell extracts and that purified recombinant BICD2 binds  

to CA assemblies in vitro.  Association of dynein with CA assemblies was reduced upon 

immunodepletion of BICD2 from cell extracts. Our results demonstrate that BICD2 is a capsid-

associated dynein adaptor utilized by HIV-1 for transport to the nucleus.  

 

Results 

 

HIV-1 is transported in short bursts 

 Although dynein was hypothesized to be the major HIV transporter toward the nucleus, 

studies had focused on the total distance transported in cells over a longer timeframe (2 

hours)[83].  While this type of analysis suggests active transport, it doesn’t analyze the kinetics 

of movement.  To analyze transport kinetics of cargo transport, studies focus on the run length 

and velocity of events [118, 184].  For dynein, the average reported run length has been reported 

to be 1-5 µm, with an average velocity 0.09-1 µm/second.  I analyzed the movements of HIV-1 

over short timescales of 3 minutes at a time, and determined the run length and velocity of 

moving particles (Figure 3-2).  From these results, I observed a distribution of run lengths from 

0.25-5.25 µm, with the median being at 1 µm.  This range of values suggests that particles are 

being transported by dynein.  For the velocity, I observed a distribution of events from 0.1-2.25  
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Figure 3-2 HIV-1 is transported in short bursts.  TZM-bl cells were inoculated with HIV 

psedotyped with VSV-G, GFP-Vpr and moving particles imaged over the course of two hours.  

The distance and velocity were measured for 67 events.  Imaging assistance by Stephen Norris.        
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µm/second, with the median at 0.5 µm/second.  Interestingly, our result of distribution range is 

higher than the expected range of 0.09-1 µm/second, but the median is within the expected  

range.  My analyses suggested that HIV-1 is transported in short bursts in the cytoplasm.   

 

BICD2 promotes HIV-1 retrograde trafficking to the nucleus  

By definition, a dynein adaptor engages both cargo and dynein and promotes intracellular 

transport[49]. To determine whether BICD2 promotes HIV-1 trafficking to the nucleus, I 

employed fluorescence deconvolution microscopy to analyze the intracellular location of HIV-1 

cores in the target cell cytoplasm in BICD2-depleted cells and in control siRNA-treated cells 

(Figure 3-3).  HIV-1 particles were generated containing two labels: the core-associated marker 

GFP-Vpr and the membrane label mCherry-S15 [185].  Upon fusion of the viral and cell 

membranes, the membrane-bound mCherry-S15 separates from the viral core, thus permitting 

identification of fused particles via loss of the mCherry associated fluorescent signal.  The 

dynein heavy chain, DYNC1H1, was employed as a positive control, as previous studies have 

shown that depletion of this dynein component results in accumulation of HIV-1 particles at the 

cell periphery [51, 83], suggestive of impaired transport function.   

Consistent with those reports, I observed a significant reduction in the average HIV-1 

particle distance traveled toward the nucleus from the cell periphery in cells depleted of 

DYNC1H1 (Figure 3-3A and B left).  BICD2 depletion also significantly increased the average 

HIV-1 distance from the nucleus (Figure 3-3A and B left), suggesting that BICD2 promotes 

HIV-1 movement to the nucleus.  I also analyzed the fraction of HIV-1 particles that reached the 

nucleus within 1 hr in siRNA DYNC1H1- and BICD2-treated cells (Figure 3-3C).  Consistent 

with a previous study [83], the fraction of fused HIV-1 particles that reached the nucleus in  
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Figure 3-3 BICD2 promotes HIV-1 movement to the nucleus.  TZM-bl cells wre pretreated with 

siRNAs and inoculated with VSV-G pseudotyped HIV-1 particles labeled with GFP-Vpr and S15-

mCherry.  (A) Representative images of cells.  (B) Quantitative analysis of HIV-1 particle distance 

from the nucleus.  Each dot represents the measurement of an individual HIV-1 particle.  The results 

shown are from two independent experiements, each with >20 cells analyzed and >400 particles 

analyzed per condition.  A one-way ANOVA was performed for statistical analysis, followed by a 

Dunnett’s multiple-comparison test, and all treatment groups in the fused particle analysis exhibited 

P values of <0001.  No treatment groups in the unfused particle analysis exhibited a significant 

difference compared to nontargeting control.  (C) The average and standard deviation of the fraction 

of HIV-1 particles within 2 µm of the nucleus for each cell were analyzed.  Analysis results for fused 

particles (left) and unfused particles (right) are shown.  Significance was determined by one-way 

ANOVA, as in panel B.  
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DYNC1H1-depleted cells was significantly lower than that in control siRNA-transfected cells.  

Similarly, fewer particles reached the nucleus in BICD2-depleted vs. control cells (Fig. 3-3C  

left), consistent with a role of BICD2 in intracellular HIV-1 trafficking to the nucleus.  For both 

analyses, movement of the unfused particles (Figure 3-3B and C, right panels) was unaffected by  

DYNC1H1 or BICD2 depletion compared to nontargeting control, indicating that the role of 

dynein and BICD2 in transport is specific to the fused viral core. 

To test for a role of DYNC1H1 and BICD2 in the bi-directional motions of HIV-1 

particles, I employed continuous imaging of live cells.  Immediately before movies were 

captured, the mCherry-S15 signal was imaged.  In subsequent analysis, those particles displaying 

mCherry signal were excluded from analysis.  The velocity, net distance travelled, and 

directionality of individual virus particles were analyzed.  In cells depleted of DYNC1H1 or 

BICD2, I observed a high fraction (30-40%) of nonmotile or slow-moving particles (less than 4 

μm total distance over the 2.5-min imaging period), relative to control nontargeting siRNA-

treated cells (~13%) (Figure 3-4A).  Within the population of moving particles, I analyzed the 

net directionality of the particles.  Particles moving toward the nucleus were classified as 

retrograde and particles moving away from the nucleus as anterograde.  Depletion of DYNC1H1 

or BICD2 resulted in a significantly lower fraction of HIV-1 retrograde particles vs control 

siRNA treatment (Figure 3-4B).  These findings suggest that dynein and BICD2 are utilized to 

activate HIV-1 particle movement in the retrograde direction, consistent with BICD2’s function 

as a dynein adaptor.    

Quantification of HIV-1 intracellular velocity also revealed a reduction in DYNC1H1- or 

BICD2-depleted cells relative to control cells (Figure 3-4C), in agreement with a recent report 

[82].  However, when nonmotile particles (described in Figure 3-4A) were excluded from the  
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Figure 3-4 BICD2 promotes retrograde intracellular trafficking of HIV-1.  TZM-bl cells wre 

pretreated with siRNAs and inoculated with VSV-G pseudotyped HIV-1 particles labeled with GFP-

Vpr and S15-mCherry.  (A) Fractin of nonmotile particles per cell.  (B) Fraction of retrograde events 

per each cell for the motile population of particles.  (C) Velocity of particle movement in the entire 

particle population.  (D) Velocity of particle movement in the population of motile particles.  (E) Net 

distance traveled in the entire particle population.  (F) Net distance traveled in the population of motile 

particles.  Results shown are from two independent experiments, each with >20 cells analyzed, and 

>400 particles analyzed per condition.  Shown are the mean values and standard deviations of the 

particle events/cell for the cell population.  Significance was determined by an unpaired parametric t 

test for each siRNA treatment relative to nontargeting control siRNA treatment (*, p<0.05; **, p<0.01; 

***p<0.001; ****p<0.0001).  
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analysis, thus quantifying only moving particles, I observed that the effect of DYNC1H1 or 

BICD2 depletion on velocity was no longer significant (Figure 3-4D).  Comparing the net  

distance of HIV-1 particle movement, I also observed a reduction in cells depleted of DYNC1H1 

or BICD2 (Figure 3-4E).  As with the velocity measurements, this difference was not detected  

when the nonmotile population of HIV-1 particles was excluded from the analysis (Figure 3-4F).  

Taken together, these results indicate that DYNC1H1 and BICD2 promote HIV-1 particle 

movement in the retrograde direction, likely by promoting the initiation of transport.  

 

The HIV-1 capsid binds the dynein-dynactin complex 

For HIV-1 to be transported to the nucleus by dynein, the virus should associate with the 

components of the dynein complex. The HIV-1 capsid encapsulates the internal core 

components, making it the most easily accessible component of HIV-1 for an interaction with 

dynein.  The kinesin-1 adaptor FEZ1 also interacts with the HIV-1 capsid, suggesting that the 

capsid is important for molecular motor engagement [51].  Therefore, I hypothesized that dynein 

interacts with the HIV-1 capsid to facilitate viral intracellular transport.  

To test this, I assayed the ability of dynein components in cell extracts to associate with 

assembled CA tubes in vitro.  The CA protein assembles into a hexameric lattice structure that 

can be stabilized by engineered disulfide crosslinks at amino acid positions 14 and 45 in the CA 

protein or by linking CA to NC.  These assemblies structurally resemble the native capsid lattice 

and are often used as surrogates in capsid-binding assays.  I confirmed the tubular morphology of 

the assemblies by negative-stain electron microscopy (Figure 3-5A, CA; B, CA-NC).  

Assembled tubes can be readily pelleted by low speed centrifugation, thus facilitating the 

detection of proteins that associate with the HIV-1 capsid.  To study capsid binding to dynein  
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Figure 3-5 Association of dynein and dynactin with capsid-like HIV-1 assemblies in vitro.  (A and 

B) Recombinant CA and CA-NC proteins were assembled into tubes and examined by negative-stain 

electron microscopy to confirm tubular assembly.  CA tubes were incubated with 293T cell extracts.  

The reactions were then centrifuged, the pellets washed twice, and the pelleted proteins were analyzed 

by SDS-PAGE and immunoblotting.  Blots were probed with antibodies to dynein heavy chain (C, CA; 

D, CA-NC), dynein intermediate chain (E, CA; F, CA-NC), and dynactin component ACTR1A (G, 

CA; H, CA-NC) or CA (C-H).  Input samples corresponding to 10% of each reaction were removed 

prior to pelleting.  Representative immunoblots from three independent experiments are shown. 
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and dynactin components, I incubated 293T cell extracts with various quantities of CA 

assemblies, pelleted the complexes, and analyzed the associated proteins by immunoblotting  

 (Figure 3-5).  I observed that dynein heavy chain (Figure 3-5C-D), dynein intermediate chain 

(Figure 3-5E-F), and dynactin component ACTR1A (Figure 3-5G-H) were all enriched in pellets  

from reactions containing CA tubes, suggesting that these dynein and dynactin components can 

associate with assembled HIV-1 capsids in vitro.  

 

BICD2 binds the HIV-1 capsid via its CC1 and CC3 domains  

 My results indicated that the dynein complex can associate with the HIV-1 capsid in 

vitro.  I hypothesized that the adaptor protein BICD2 binds to the HIV-1 capsid and functions as 

a capsid-specific dynein adaptor.  To test this, CA (Figure 3-6A) and CA-NC (Figure 3-6B) 

tubes were incubated with cell extracts, pelleted, and proteins in the pelleted complexes were 

separated by SDS-PAGE and analyzed by immunoblotting with antibody to BICD2.  I observed 

that cellular BICD2 associates with both CA and CA-NC tubes in vitro (Figure 3-6, panels A and 

B, respectively).   

I next sought to identify the capsid-binding domain in BICD2.  BICD2 contains two 

major domains: an N-terminal (NT) domain that links dynein to dynactin to activate processive 

movement, and a C-terminal (CT) domain that normally binds to cargo (Figure 3-7A) [119, 127, 

182].  There are three regions in BICD2 containing coiled-coils: CC1 on the N-terminal end, a C-

terminal region (CC3), and a central CC2 region that overlaps the NT and CT domains.  To 

localize the region of BICD2 to which the HIV-1 capsid binds, I ectopically expressed full length 

BICD2 and portions corresponding to the individual NT and CT domains, and a region encoding 

only CC2 as N-terminal HA-tagged proteins in 293T cells. Cell extracts were prepared and  
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Figure 3-6 BICD2 binds to the HIV-1 capsid.  Capsid-like protein assemblies were titrated and 

incubated with 293T cell extracts.  The reactions were then centrifuged, and the pelleted material 

was washed once and subjected to immunoblot analysis.  Endogenous cellular BICD2 was probed 

for interaction with CA (A, CA tubes; B, CA-NC tubes).  Representative immunoblots from three 

independent experiments are shown. 
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Figure 3-7 Analysis of BICD2 regions contributing to capsid binding.  (A) Schematic 

representation of the HA-BICD2 constructs used in panel B.  Coiled-coil regions of the protein are 

represented by x’s.  (B) BICD2-HA proteins were expressed in 293T cells and cell extracts were 

prepared and incubated with assembled CA tubes.  Pelleted material was analyzed by immunoblotting.  

An antibody against HA was used to detect the proteins.  (C) Schematic of GST-BICD2 fusion 

proteins used to study BICD2-capsid interactions.  (D and E) Purified recombinant GST-BICD2 fusion 

proteins and GST were incubated with CA tubes, and then pelleted complexes were analyzed for 

association of the recombinant proteins by immunoblotting with antibody to GST.  Binding reactions 

were performed with 150 mM NaCl (D) or 750 mM NaCl (E).  Input samples corresponding to 10% of 

each reaction were removed prior to pelleting.  Representative immunoblots from three independent 

experiments are shown. 
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utilized in CA tube binding assays (Figure 3-7B).  Surprisingly, I observed that NT and CT 

domain fragments as well as the full-length BICD2 protein cosedimented with assembled CA,  

suggesting that both BICD2 domains can associate with the viral capsid.  However, I observed 

less association of the protein containing only CC2 relative to the NT and CT proteins, consistent  

with recently published results [82].  These results suggest that BICD2 contains two capsid 

binding sites.  

 

Direct binding of BICD2 to the HIV-1 capsid in vitro 

The capsid-binding assays described above were performed with cell extracts; thus, it 

was possible that one or both BICD2 domains bound the CA tubes indirectly, e.g. via association 

with dynactin.  To assess whether both domains can directly bind to CA tubes, I expressed and 

purified the recombinant N-terminal GST-BICD2 fusion proteins from E. coli and tested them 

for capsid binding in vitro.  To further define the binding domain in the NT, I engineered an 

additional construct encoding only CC1, and another protein containing CC1 and approximately 

one half of CC2 (Figure 3-7C).  I also made a GST-CC2 protein (Figure 3-7C).   

Binding assays with the purified recombinant proteins revealed that, at physiological salt 

concentrations (150 mM NaCl), all of the GST-BICD2 fusion proteins copelleted with CA tubes, 

but the GST control protein did not (Figure 3-7D).  The observed association of the GST-CC2 

with CA tubes was surprising, as I had not detected binding with the CC2 in HA-lysates (Figure 

3-7B).  However, the GST-CC2 construct extended beyond the portion of the HA-CC2 (336-595 

vs. 340-539, respectively).  To examine the relative stability of the capsid associations of the 

recombinant proteins, I assayed binding of several of the GST-BICD2 fusions under elevated salt 

conditions (750 mM NaCl). Under these conditions, the capsid association of the GST-BICD2 
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CC1 and CC1-2 fusions was retained, but not that of the GST-CC2 protein (Figure 3-7E).  

Collectively, these results indicate that BICD2 can bind the HIV-1 capsid directly via both its N-

terminal and C-terminal domains, likely utilizing the CC1 and CC3 coiled-coil regions.  

 

BICD2 promotes the association of dynein with capsid-like HIV-1 assemblies in vitro 

If HIV utilizes BICD2 as a dynein adaptor, BICD2 should link dynein to the viral capsid. 

To test this hypothesis, I analyzed the effects of BICD2 depletion on the binding of dynein 

present in cell extracts to capsid-like assemblies in vitro.  I immunodepleted BICD2 from 293T 

cell extracts and incubated the extracts with CA (Figure 3-8A) or CA-NC (Figure 3-8B) tubes.  

The tubes were then pelleted, and proteins in the pelleted complexes were separated by SDS-

PAGE and analyzed by immunoblotting.  I observed reduced binding of the dynein intermediate 

chain (middle) in BICD2-depleted extracts to CA and CA-NC tubes, suggesting that BICD2 

links the HIV-1 capsid to dynein.  Analysis of the input samples demonstrated that BICD2 was 

effectively immunodepleted from the extracts, and that levels of dynein intermediate chain were 

unaltered by BICD2 depletion.  

 

Discussion 

In these analyses I sought to determine the mechanism of BICD2’s action in HIV-1 

infection.  I performed two types of cell imaging analysis, the results of which indicate that the 

dynein-dynactin-BICD2 complex promotes intracytoplasmic movement to the nucleus (Figures 

3-3 and 3-4).  First, using fixed cell imaging, I showed that HIV-1 particles exhibit a greater 

average distance from the nuclear envelope in cells depleted of DYNC1H1 or BICD2.  Second, 

my live imaging studies indicated that of the fraction of virus particles that exhibit movement  
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Figure 3-8 BICD2 facilitates association of dynein with capsid-like protein assemblies in vitro.  (A 

and B) 293T lysates were immunodepleted for BICD2 before incubation with CA tubes (A, CA; B, 

CA-NC).  The reactions were then centrifuged, the pellets washed once, and the proteins were 

separated by SDS-PAGE and analyzed by immunoblotting.  Blots were probed with antibodies to 

BICD2 to test for depletion (top), dynein intermediate chain to test for binding (middle), and CA 

(bottom).  Input samples corresponding to 10% of each reaction were removed prior to pelleting.  

Representative immunoblots from three independent experiments are shown. 
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within the cell was reduced in the depleted cells, and that particles that were moving exhibited 

reduced retrograde motion.  Combined with the viral DNA analysis, these observations indicate 

that the failure of the virus to enter the nucleus can be mainly attributed to a trafficking defect vs. 

a specific impairment in nuclear import.  Nonetheless, I have not excluded a direct effect of the  

dynein complex on HIV-1 nuclear entry.  

 My results indicate that BICD2 interacts directly with the viral capsid.  I observed an 

association of native cellular BICD2 with CA assemblies in vitro, and recombinant purified  

BICD2 also bound to the assemblies.  Using purified GST-BICD2 fusion proteins, I also 

observed that proteins containing only the N-terminal or C-terminal regions of BICD2 associated 

with HIV-1 capsid assemblies (Figures 3-6 and 3-7).  The C-terminal region of BICD2 normally 

is responsible for cargo binding, while the N-terminal region engages dynein-dynactin.  These 

two regions can interact with one another for autoinhibition, and previous models posit that 

BICD2 must interact with cargo before engaging the dynein-dynactin complex, thereby ensuring 

efficient tethering [122].  The presence of capsid binding sites in both the C-terminal and N-

terminal of BICD2 suggests that the capsid may bind in a canonical manner to the BICD2 C-

terminal site, but it can also bind in a non-canonical way to the BICD2 N-terminus.  As the N-

terminal site would not be available for binding naturally until cargo is bound, this suggests that 

the HIV-1 capsid must first hijack transport of a cellular cargo, and binds after the initial cargo 

releases the auto-inhibition of BICD2. 

Dynein adaptors link specific cargo to the dynein-dynactin complex, resulting in dynein 

activation and its processive movement along microtubules.  My data demonstrate that the 

adaptor protein BICD2 is important for HIV-1 infection.  HIV-1 capsid-like assemblies bound to 

dynein chains, the dynactin component ACTR1A, and BICD2 in cell extracts (Figures 3-5, 3-6) 
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and to recombinant BICD2 in vitro (Figures 3-7). These observations suggested that BICD2 links 

the viral capsid to the dynein complex.  Importantly, I also observed that immunodepletion of 

BICD2 in lysates reduced the binding of dynein intermediate chain to HIV-1 capsid-like 

assemblies (Figure 3-8).  This result demonstrates that binding of dynein to the viral capsid 

depends on BICD2, suggesting that BICD2 tethers the viral core to dynein.  BICD2 interacts 

directly with DCTN2/dynamitin [119, 122], and a current model proposes that dynactin links 

BICD2 to dynein and activates movement, thereby promoting cargo recruitment and transport.  It 

will be of interest to characterize the interactions of additional dynein and dynactin components 

with HIV-1 capsid assemblies and to determine whether the associations depend on BICD2.   
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CHAPTER IV 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 HIV-1 infection depends on the virus successfully reaching the nucleus for nuclear 

import and integration.  To get there, HIV depends on the active transport of microtubule motor 

proteins dynein and kinesin-1[51, 60].  When I began this project, little was known about the key 

players in this transport, and even less about the mechanisms.  I chose to focus on identifying the 

components of the dynein-dynactin-adaptor complex required for infection and transport.  My 

first aim was to identify the components of the dynein-dynactin complex and the specific adaptor 

or adaptors required for infection.  My second aim was to identify the mechanism for those 

components in HIV-1 infection.  My work has accomplished these goals by determining the 

dynein heavy chain, components of the dynactin shoulder complex and Arp1 backbone, and 

BICD2 are the important players in HIV-1 infection.   

 The observations presented here suggest a model in which the HIV capsid binds BICD2, 

through either its N-terminal or C-terminal domain, thereby relieving the autoinhibition of 

BICD2.  BICD2 can then bind the dynein-dynactin complex.  The dynactin shoulder complex 

and ARP1 backbone have been shown to be important for linking BICD2 to dynein [111].  I 

found that this region of dynactin was important for HIV-1 infection, suggesting that BICD2 

binding to dynein through this region is critical for infection.  After HIV-1 capsid-BICD2 is 

linked to the dynein-dynactin complex, BICD2 can activate dynein movement in the retrograde 

direction.  This transport is critical for HIV-1 to reach the nucleus for infection.   
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 Although my data support the binding of BICD2 to the HIV-1 capsid, there is still much 

to be learned in this area.  The finding that both the N-terminal and C-terminal regions of BICD2 

can bind the capsid was surprising, as the N-terminal is canonically thought to bind dynein and 

dynactin, and the C-terminal cargo [12].  Since HIV-1 is a foreign cargo usurping the transport 

pathway, it may not act in canonical ways when it utilizes transport machinery.  

 For adaptor mediated transport, binding between the adaptor and cargo must occur [49].  

Although I have seen that BICD2 is important for transport and binds the HIV-1 capsid, the link 

between the two observations has not yet been established.  To do this, ideally, I would identify 

either a BICD2 or HIV capsid mutant that was unable to bind.  I could then assess transport and 

infection defects in the presence of this mutant.  In order to determine a BICD2 mutant, I will 

need to further define the specific region or regions on BICD2 that are important for the binding 

to the HIV-1 capsid.  Smaller constructs can be designed and analyzed for their binding to the 

capsid until a region of several amino acids is determined.  From there, specific site substitutions 

may lead to an inhibition of binding.  This mutant could then be added back into BICD2 knock-

down cells to determine if HIV-1 transport or infection was impaired.  This will determine if the 

specific binding regions found in vitro contribute to the binding in vivo, and if those binding 

interactions are biologically relevant.   

 Identifying an HIV-1 capsid mutant that fails to bind BICD2 may prove to be less 

straightforward due to a loss of assembly and function with truncated versions of CA.  The 

oligomeric state of CA required for binding BICD2 has not yet been determined.  Several 

constructs of CA exist that allow for the formation of monomer, dimer, pentamer, and hexameric 

structures, in addition to the lattice tubes used in these assays.  Binding assays with these 

proteins would reveal the type of binding occurring between the capsid and BICD2, which may 
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begin to inform where a capsid mutant would be.  Additionally, structural-based analysis 

between BICD2 and the capsid may reveal specific amino acid interactions.  Finally, there are 

several HIV-1 mutant viruses that have unexplained infection and/or nuclear import defects that 

need to be screened for their dependence on BICD2 for infection.  If a mutant was found that 

was unaffected by BICD2 knockdown, it may suggest that it had an impairment to binding.  The 

corresponding amino acid substitutions would then be engineered into the capsid tubes, and the 

binding assessed in vitro.     

These proposed studies would link the binding of BICD2 to the HIV-1 capsid to transport 

and infection, therefore solidifying the role of BICD2 as an adaptor of HIV-1.  Further 

determining the specific regions of interaction between BICD2 and HIV-1 capsid would be 

useful to not only understand the biology of the system, but also for therapeutic design.  By 

disrupting the necessary binding interactions, transport can potentially be inhibited, reducing 

infection.  

 My findings indicate that the dynein-dynactin-BICD2 complex is required for transport 

to the nucleus.  But are these the only components involved in the active transport of HIV-1?  

Several dynein adaptors can work in concert with other adaptors for their function.  BICD2 can 

work with another adaptor Lis1 for transport [119].  In my initial studies, Lis1 was not important 

for HIV-1 infection, but BICD2 could be utilizing another unknown protein for its activity.  To 

analyze the sufficiency of the dynein-dynactin-BICD2 complex for HIV-1 transport, a newly-

developed reconstituted in vitro transport system could be used, in which the protein complexes 

are made recombinantly, and trafficking is reconstituted on microtubules attached to coverslips 

[118].  This approach would allow determination of all of the cellular components that are 

necessary for transport.   
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BICD2 is also known to bind Rab6a for vesicle transport, making it another viable target 

for a transport requirement [186].  Interestingly, my results for HIV-1 dependence on Rab6a 

were varied, with a range of infectivity from 9-60% depending on the knockdown conditions.  

Rab6a could be providing a direct binding partner to HIV-1 through the capsid or another viral 

protein, or may be serving in another role for transport.  The importance of Rab6a in infection 

may also indicate that HIV-1 transport is piggy-backing on another cellular cargo transport in the 

cell, specifically Rab6a-based vesicle transport.  HIV-1 piggy-backing on another cargo’s 

transport would allow the virus to circumvent the need to relieve BICD2 autoinhibition and 

activation of the dynein complex.  It may also explain how HIV-1 can utilize the N-terminal 

region of BICD2: i.e., if the C-terminal region is being utilized by Rab6a-vesicle binding, HIV-1 

may need to utilize an unblocked region. 

To determine if Rab6a is involved in HIV-1 transport, fixed and live cell imaging can be 

done to determine HIV-1 total movement and transport kinetics in cells depleted of Rab6a.  

Additionally, capsid binding analysis can be done to determine if Rab6a is able to bind from 

lysates indirectly, or recombinant protein directly.  This will begin to determine the role of 

Rab6a in transport, and if HIV is binding Rab6a or piggybacking off other cargo transport.  If 

these analyses suggest that piggybacking is occurring, other vesicle markers can be utilized in 

the cell to determine if HIV-1 localizes to vesicles during transport.   

In addition to dynein being important for HIV-1 transport, recent studies have implicated 

kinesin-1 as being involved.  Kinesin-1 interacts with the HIV-1 capsid through the adaptor 

FEZ1, and is important for overall retrograde movement to the nucleus, and infection [51].  This 

finding is surprising since kinesin-1 transport is in the anterograde direction, or towards the cell 

periphery in non-dividing cells.  My research, and that of others, have determined that HIV-1 is 
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transported in short bursts, and that these events are often in “non-productive” directions, or 

making oscillatory movements [51, 83].  This phenotype may be due to the complexity of the 

microtubule network, or it may be important for HIV-1 transport.  How the mechanism of 

bidirectional transport affects HIV-1 infection is not well understood.  Along these lines, the way 

in which kinesin-1 and dynein work together for transport of HIV-1 is also poorly understood.  

Are they both bound simultaneously to the virion?  Is there communication occurring between 

the motors, or is a tug-of-war ensuing?  These questions are currently being answered in the 

motor transport field for cellular cargo, with findings supporting both models.  The currently 

favored model suggests that some communication is occurring between the motors to activate 

each motor at specified times, potentially through the influence of adaptors [53, 54].  However, it 

is unknown whether HIV-1 would act in the same way as a cellular cargo for bidirectional 

transport.   

 My research strongly suggests that the HIV-1 capsid is an important binding partner for 

BICD2 for transport.  As it traverses the cytoplasm, the HIV-1 capsid undergoes a disassembly 

process called uncoating, in which CA protein is shed.  Current models suggest that an uncoating 

event occurs rapidly after virion entry into cells (~30 minutes), and subsequent loss of CA later 

before nuclear entry [34].  Some CA is still associated with the PIC upon nuclear entry [35, 187, 

188].  Whether the remaining CA is enough for BICD2 to bind is not established.  BICD2 may 

remain associated with the HIV PIC to transport all the way to the nucleus, but if it isn’t able to 

bind, another mechanism may need to take over.  I demonstrated that BICD2 binds to the HIV-1 

capsid, but BICD2 may also bind other viral proteins that remain associated with the PIC.  

Binding between BICD2 and integrase or Vpr needs to be assessed, as these components remain 

associated with the PIC as well.   
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Alternatively, another set of adaptor-viral protein interactions could occur for late 

transport.  These may not include either BICD2 or the HIV-1 capsid.  For instance, an interaction 

between the dynein light chain and integrase has been reported to be important for HIV-1 

infection, reverse transcription, and delays uncoating [77].  The interaction has not been assessed 

for its role in transport, but may represent a mechanism for binding after CA is lost.  

Understanding the interactions occurring in transport after uncoating will enrich my knowledge 

of the HIV-1 lifecycle and may reveal new targets for therapeutic design.   

In summary, my work has revealed a new mechanism for HIV-1 transport.  The dynein-

dynactin-BICD2 complex is important for transport to the nucleus, and infection.  BICD2 

interacts with the HIV-1 capsid, suggesting this interaction is important to link the virion to the 

complex for transport.  While I have some understanding of the HIV-1 transport process, much is 

still to be learned.  Cellular transport is a complicated process, and understanding motor 

activation and bidirectional transport for cellular cargo will aid in understanding of HIV-1 

transport, and whether HIV-1 “follows the rules” set forth by cellular cargo.            
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CHAPTER V 

 

MATERIALS AND METHODS 

 

Plasmids. HIV-GFP is an Env-defective HIV-1 proviral construct encoding the green fluorescent 

protein (GFP) in place of nef [32].  Plasmid NL43-GFP was constructed by replacing the SalI-

BamHI region of HIV-GFP with that from pNL4-3, restoring the Env open reading frame. The 

VSV-G expression plasmid pHCMV-G was provided by Dr. Jane Burns (University of 

California, San Diego) [189].  The plasmids GFP-Vpr and S15-mCherry were obtained through 

the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH from Dr. Thomas Hope [185].  

The plasmid psPAX2 was obtained through the NIH AIDS Reagent Program from Dr. Didier 

Trono.  The plasmid pVPack-GP was obtained from Agilent Technologies. The SIV plasmid SIV 

239IG, encoding GFP, was provided by Paul Bieniasz [190].  The MLV transfer vector construct 

pBABE-EGFP was constructed by inserting a BamHI-EcoRI fragment from pHR’-CMV-GFP 

[191] into pBABEpuro [192].  

 

A cDNA encoding human BICD2 (Dharmacon) was cloned into EGFP-C1 (Clontech) via 

Gibson assembly at sites EcoR1 and Kpn1 to make EGFP-C1-BICD2.  This plasmid was a gift 

from Dr. Ryoma Ohi.  For construction of CMX-HA, an oligonucleotide duplex encoding the 

influenza virus hemagglutinin (HA) epitope tag sequence YPYDVPDYA was inserted into the 

CMX-PL1 plasmid at the KpnI and NheI sites.  BICD2, BICD2-NT, BICD2-CT, and BICD2-

CC2 sequences, encoding amino acids 1-824, 1-580, 485-824, and 340-539 respectively, were 

PCR-amplified from EGFP-C1-BICD2 and inserted into the CMX-HA plasmid at the EcoRI and 
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KpnI sites in frame with the hemagglutinin epitope tag sequence.  GST-BICD2 fusion proteins 

were constructed as follows: GST-BICD2 encoding full length BICD2 (1-824); GST-NT (1-

580); GST-CT (485-824); GST-CC1 (1-271); GST-CC1.5 (1-468); GST-CC2 (336-595). GST-

BICD2 fusion proteins were PCR amplified from BICD2-CMX-PL1 and inserted into pGEX-6X 

at the BamHI and EcoRI sites.  Oligonucleotide sequences used for cloning are listed in 

Appendix Table 1. 

 

The recombinant mutant CA 14C/45C was made by introduction of cysteine mutations into 

pET21a(+) HIV-1 CA at positions 14 and 45 [193].  The HIV-1 CA-NC expression plasmid 

WISP-98-68 [6] was a kind gift from Wes Sundquist.   

 

Cells and viruses.  TZM-bl cells (1), Jurkat cells (2), and GHOST CXCR4+ CCR5+ cells (3) 

were obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH, from 

Dr. John C Kappes, Dr. Xiaoyun Wu, and Tranzyme Inc (1) [194-198]; Dr. Arthur Weiss (2) 

[199]; and Dr. Vineet N. KewalRamani and Dr. Dan R. Littman respectively (3) [200].  A431-

CD4 cells were generated from A431 cells (ATCC) by retroviral transduction with pBABE-CD4 

and selection in puromycin.  Primary human fibroblasts were purchased from Advanced 

BioMatrix, Inc.  293T cells were purchased from ATCC.  293T, A431-CD4, GHOST CXCR4+ 

CCR5+, primary human fibroblasts and TZM-bl cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU/ml 

penicillin and 100 µg/ml streptomycin.  Jurkat cells were cultured in Roswell Park Memorial 

Institute (RPMI) medium supplemented with 10% fetal bovine serum (FBS), 100 IU/ml 

penicillin and 100 µg/ml streptomycin.  Viruses for fixed cell imaging studies were produced by 
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cotransfection of HIV-GFP (8 µg) with pHCMV-G (2 µg), GFP-Vpr (2 µg), and S15-mCherry (1 

µg).  Viruses for use in live cell imaging studies were produced by cotransfection of psPAX2 

with pHCMV-G, GFP-Vpr, and S15-mCherry.  HIV-1 stocks were clarified through 0.45 µm 

pore-sized filters, assayed for p24 antigen using an enzyme-linked immunosorbent assay 

(ELISA) and stored at -80°C until use.  Murine leukemia reporter virus (MLV-GFP) was 

produced by cotransfection of pVPack-GP (Agilent Technologies) with pBABE-EGFP and 

pHCMV-G.  SIV-GFP was produced by cotransfection with SIV 239IG and pHCMV-G.     

 

Recombinant proteins.  GST-BICD2 fusion proteins, recombinant HIV-1 CA protein encoding 

substitutions of Cys for positions 14 and 45 (14C/45C), and recombinant HIV-1 CA-NC were 

expressed in E. coli using induction by isopropyl β-D-1 thiogalactopyranoside (IPTG 1 mM, 

GoldBiotechnology).  Cells were lysated by sonication, using the Sonic Dismembrator 

Ultrasonic Processor, and lysates cleared by centrifugation for 1 hr at 15,000 rpm at 4°C.  GST-

BICD2 constructs were purified by batch method on glutathione agarose beads as recommended 

by the bead manufacturer (Pierce).  CA and CA-NC proteins were purified by anion exchange 

chromatography as previously described [6, 193].  

 

siRNA transfection and knockdown efficiency screening.  All siRNAs were purchased from 

Dharmacon (ON-TARGETplus siRNAs).  Pools of four individual siRNA duplexes 

(SMARTpool) were used for initial screening of targets, and specific targets were verified using 

the four individual siRNA duplexes from the pool.  The siRNA sequences are listed in Appendix 

Table 2.  TZM-bl cells were transfected with 40 nM siRNA and Dharmafect 1 transfection 

reagent and washed after 16 hours.  Cells were cultured for either 48 h (only in initial screening) 
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or 72 h before virus inoculation or cell harvesting for knockdown efficiency analysis.  To 

quantify mRNA levels, cDNA was synthesized (Applied Biosystems), and SYBR green qPCR 

was performed for each gene of interest and standardized against non-targeting siRNA control, 

with GAPDH levels quantified as an internal control.  The primers used for mRNA 

quantification analysis are listed in Appendix Table 3.  For protein expression analysis, 

cytoplasmic extracts were prepared by lysing cells in NP-40 buffer (150 mM NaCl, 50 mM Tris-

HCl, pH 8.0, 1% NP40) containing protease inhibitor cocktail (Roche) for 30 min on ice.  

Samples were centrifuged at 19,000 xg for 5 min at 4°C to remove nuclei, and proteins in the 

supernatants were separated by SDS-PAGE on 4-20% gradient gels (Genscript) and analyzed by 

immunoblotting.  

 

Infection assays. Cells were seeded in a 96-well plate at 10,000 cells per well.  Following one 

day of culture, cells were inoculated with GFP-encoding virus (native Env HIV-1, 200 ng/well; 

VSV-G pseudotyped viruses 0.5 ng/well +8 ug/ml polybrene) and cultured for 48 h.  No 

polybrene treatment was utilized with native enveloped HIV-1 in order to ensure that the route of 

viral entry was not affected.  Cells were detached with trypsin-EDTA (100 µl) and fixed with an 

equal volume of 4% paraformaldehyde.  The extent of infection was assayed by flow cytometry 

for GFP expression using an Accuri C6 flow cytometer.  At least 7,000 cells were analyzed for 

each sample.  For infections including the dynein inhibitor ciliobrevin D, cells were pretreated 

with indicated amounts of ciliobrevin D (Sigma) for 1 hour, then inoculated.  Cells were treated 

as before for flow cytometry analysis.  For luciferase analysis, cells were washed once in PBS 

and lysed in 30μl TBS (50mM Tris-HCl [pH 7.8], 130mM NaCl, 10mM KCl, 5mM MgCl2), 

containing 0.5% Triton X-100.  Luminescence was determined using an Lmax luminometer 
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(Molecular Devices) for 5 seconds after injection of 200ul Solution 1 (75mM Tris-HCl [pH 8], 

8.3mM MgOAc, 4mM ATP) and 80ul Solution 2 (1mM D-Luciferin (GoldBio)).  Infectivity 

values were determined as the ratio of Arbitrary Light Units (ALU) per ng p24 at doses of virus 

corresponding to the linear range of luciferase signals from each assay.   

   

PCR quantitation of nuclear entry and reverse transcription in target cells.  TZM-bl cells 

were transfected with siRNA for 72 hours then inoculated with 40 ng of DNase I-treated HIV-1 

pseudotyped with VSV-G.  Cells were harvested 8 h after infection for second strand-transfer 

analysis, or 24 hours after infection for 2-LTR circle analysis.  For harvesting, cells were washed 

with 1X PBS then treated with qPCR lysis buffer (50 mM KCl, 1.5 mM MgCl2, 1.5 mM Tris-

HCl pH 8.0, 0.45% NP40, and 0.45% Tween-20) containing proteinase K (1 mg/ml) for 1 h at 

57°C.  Samples were then incubated at 95°C for 15 min to inactivate proteinase K, and stored 

at -80°C.  HIV-1 DNA in the samples was quantified by real-time PCR with SYBR green 

detection on a Stratagene MX3000p instrument.  GAPDH DNA levels quantified by real-time 

PCR were used to normalize the total DNA in sample values.  To control for possible 

contaminating plasmid DNA in the virus inocula, the reverse transcriptase inhibitor Efavirenz (1 

µM) was added to some cultures at the time of infection.   

  

Trafficking Analysis, fixed-cell imaging and live-cell imaging.  TZM-bl cells were transfected 

for with 40 nM siRNA and cultured for 72 h prior to virus inoculation.  One day before infection, 

cells were detached with trypsin, reseeded onto coverslips (fixed cell) or MatTek dishes (live 

cell) and allowed to adhere overnight.  For fixed cell analysis, the cells were spinoculated with 

HIV-GFP(VSV-G) dual-labeled with GFP-Vpr and S15-mcherry at 800 xg for 30 minutes at 
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15°C to allow virus adhesion but not entry.  After spinoculation, media on the cells was replaced, 

and the cultures were incubated for an additional 1 h at 37°C.  Cells were washed and fixed with 

methanol at -20°C for 10 min and stained with 500 nM 4’,6-diamidino-2-phenylindole (DAPI) to 

visualize nuclei.  Stained cells were mounted in Gelvatol [13.3 mg/ml polyvinyl alcohol, 0.67 M 

Tris-HCl pH 8.6, 0.33 mg/ml glycerol, 2.5% 1,4-diazabicyclo[2.2.2]octane (DABCO)].  Images 

were acquired with a DeltaVision Elite image restoration system (GE Healthcare) equipped with 

a 60X 1.4 numerical aperture lens (Olympus) and a Cool SnapHQ2 charge-coupled device 

camera (Photometrics).   Z-sections spaced 200 nm apart were acquired and deconvolved with 

SoftWorx (GE Healthcare).  Maximum intensity z-projections were generated with Fiji [201], 

and distance of particles from the nucleus was measured.  Particles exhibiting detectable 

mCherry fluorescence were omitted from analysis.       

Two independent experiments were performed, each with >20 cells/condition analyzed, 

and >400 particles analyzed per condition.  For live cell analysis, cells were spinoculated with 

psPax2 VSVG dual-labeled with GFP-Vpr and S15-mcherry for 30 min and then cultured at 

37°C for 20 min before imaging.  Live cell imaging was performed in the presence of CO2 at 

37°C in FluoroBrite DMEM medium (ThermoFisher) supplemented with 10% FBS and 7 mM 

Hepes-KOH, pH 7.7, using the DeltaVision Elite system.  Images were captured every 0.5 s for a 

period of 2.5 min. Images to test for mCherry particle signal were taken immediately before the 

2.5 min time frame.  Particles displaying mCherry signal were considered to be unfused and 

were excluded from track analysis.  Additionally, any particles that were not present at the start 

of imaging were excluded because their fusion status could not be determined.  Images were 

taken of various individual cells over the course of one hour.  Tracking was analyzed by 

TrackMate [202] in Fiji, and tracks were classified as retrograde or anterograde trajectories.  The 
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distances of these trajectories and the number of trajectories were used for analysis.  Two 

independent experiments were performed, each with >20 cells/condition analyzed, and >300 

tracks analyzed for each condition.  I observed efficient virion labeling efficiency, with 95-99% 

of particles containing both labels, and an average of 98%.  At the 1 h timepoint, a fusion rate 

(loss of S15-mCherry signal) of 44-68% was observed, with no significant fusion differences 

occurring between the nontargeting and knockdown conditions.   

   

In vitro binding assay.  To prepare protein extracts, 293T cells were detached with trypsin-

EDTA, resuspended in complete medium, washed in PBS, and resuspended in 5x volume 

hypotonic buffer (10 mM Tris-HCl pH 7.5, 5 mM MgCl2, 10 mM NaCl), dounce homogenized 

with 25 strokes with the tight pestle, and precleared by centrifugation for 15 minutes at 4°C in a 

microfuge (18,800 xg).  Extracts were stored at -80°C until further use.  HIV-1 CA (14C/45C) 

protein was assembled under high salt conditions (1 M NaCl, 50 mM Tris-HCl, pH 8), as 

previously described [203]. HIV-1 CA-NC was assembled by dilution to 0.3 mM concentration 

at 37°C for 1 h (500 mM NaCl, 50 mM Tris-HCl, pH 8, 60 µM TG50 (purchased from IDT). 

Crosslinked recombinant CA assemblies were incubated with cell extracts or purified GST 

proteins in CA tube binding buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 5 mM MgCl2, 0.5 mM 

EDTA) or CA-NC tube binding buffer (50 mM Tris, pH 8.0, 500 mM NaCl, 5 mM MgCl2, 0.5 

mM EDTA) for 1 h at room temperature. The higher salt concentration was required to prevent 

CA-NC tube disassembly.  Reactions were then centrifuged for 5 min at 10,000 xg, and the 

pellets were rinsed once with binding buffer to remove unbound proteins.  Pelleted proteins were 

separated by SDS-PAGE and analyzed by immunoblotting. 
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Immunodepletion of BICD2 from cell extracts.  Protein A-Agarose (Santa Cruz 

Biotechnology) (40 µl packed beads) was washed twice in 3x volume binding buffer (10 mM 

Tris-HCl pH 7.5, 5 mM MgCl2, 10 mM NaCl) and centrifuged for 5 min at 10,000 xg.  Beads 

were resuspended in 1x volume of binding buffer and bound to BICD2 antibody (15 µg) for 1 hr 

rotating at 4°C or unbound beads as a negative control.  Beads were then washed two more times 

in binding buffer to remove unbound antibody.  Freshly prepared 293T cell extract (2.5 mg total 

protein) was then incubated with the BICD2 antibody-bound beads or beads alone for mock 

depletion overnight at 4°C with rotation.  Beads were pelleted for 5 min at 10,000 xg and the 

supernatant recovered for use in binding reactions.  The BICD2-depleted extracts were analyzed 

for BICD2 and dynein by immunoblotting.  

 

Visualization of CA tube assembly by electron microscopy.  Crosslinked recombinant CA 

assemblies were visualized by negative stain electron microscopy to check for tube assembly.  

Samples were stained with 0.7% uranyl formate and visualized on a FEI Morgagni electron 

microscope at 100 kV at a magnification of 22000X.  Images were recorded on an ATM 

1000x1000 CCD camera. 

 

Antibodies and immunoblotting.  To the binding assay pellets, an equal volume 2x Laemmli 

buffer was added followed by heating at 100°C for 5 min.  Samples were loaded onto a 4-20% 

polyacrylamide gel (GenScript) for SDS-PAGE.  After separation, the proteins were transferred 

to nitrocellulose membranes (Perkin Elmer) and probed with the following antibodies: BICD2 

(Abcam 117818; 5 µg/ml), DYNC1H1 (Sigma D1667; 1:1000 dilution), DIC (Abcam 23905; 1 

µg/ml), ACTR1A (Abcam 227425; 1:2000 dilution), HA (Sigma 3F10; 200 ng/ml), GST 
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(Abcam 3416; 1:5,000 dilution), and CA (183-H12-5C, NIH AIDS Research and Reference 

Reagent Program; 1:5,000 dilution).  For protein expression analysis, the same antibodies as 

above were used, as well as dynamitin/DCTN2 (Abcam 133492; 1:2000 dilution), DCTN3 

(Abcam 124674; 1:2000 dilution), and GAPDH (Thermo Fisher A21994; 5 ug/ml).  Antibody 

complexes were detected with the appropriate IR dye-conjugated secondary antibodies (LI-COR 

Biosciences) and detected by scanning with a LI-COR Odyssey imaging system.   

 

Statistical analysis. Statistical significance was assessed by Student’s t test when compared 

individual targets to the non-targeting siRNA control.  Results are represented as mean values 

and standard deviations.  A one-way ANOVA was performed for statistical analysis of the 

imaging results, followed by a Dunnett’s multiple comparisons test.  Statistical analysis was 

performed with GraphPad Prism software.  

 
  



 

  76 

APPENDIX 

 
 

 

 

 

  

Table A-1 Oligonucleotides used in cloning procedures 

Construct: EGFP-C1-BICD2 

For 5’-GACTCAGATCTCGAGCTCAAGCTTCGAATTCGATGTCGGCGCCGTCA-3’ 

Rev 5’-TAGATCCGGTGGATCCCGGGCCCGCGGTACCCTAATCACAGTAAATGCTGTG-3’ 

 
 

Construct: CMX-HA 

For 5’-GGCTACCCATACGATGTTCCAGATTACGCTTAGATCGATG-3’  
  

Rev 5’-CTAGCATCGATCTAAGCGTAATCTGGAACATCGTATGGGTAGCCGGTAC-3’ 
 

 

Construct: BICD2 CMX-HA 
 

For 5'-ATAGGATCCGGCATGTCGGC-3'  
 

Rev 5'-ATAGGTACCATCACAGTAAATGCTGT-3' 
 

 

Construct: BICD2 NT (1-580) CMX-HA 

For 5'-ATAGGATCCGGCATGTCGGC-3'  
 

Rev 5'-ATAGGTACCCCGGCCACG-3' 
 

 

Construct: BICD2 CT (485-824) CMX-HA 

For 5'-ATAGGATCCGGATGGTCTCCCTG-3' 
 

Rev 5'-ATAGGTACCATCACAGTAAATGCTGT-3' 
 

 

Construct: BICD2 CC2 CMX-HA 

For 5'-CTAGGATCCGGCATGCTCAGTGAGCTCAACATCTCTG-3' 
 

Rev 5'-CTAGGTACCGGCCAGCTCCTCACTGAAG-3' 
 

 

Construct: GST-BICD2 

For 5’-ATGGATCCTCGGCGCCGTC-3’ 
 

Rev 5’-GGGAATTCCTAATCACAGTAAATGCTG-3’ 
 

 

Construct: GST-BICD2 NT 

For 5’-ATGGATCCTCGGCGCCGTC-3’ 
 

Rev 5’-AAGAATTCCTACCGGCCACGCGC-3’ 
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Table A-1 cont’.d 

Construct: GST-BICD2 CT 

For 5’-ATGGATCCGTCTCCCTGCTAGAGAAG-3’ 
 

Rev 5’-GGGAATTCCTAATCACAGTAAATGCTG-3’ 
 

 

Construct: GST-BICD2 CC1 

For 5’-ATGGATCCTCGGCGCCGTC-3’ 
 

Rev 5’-GGGAATTCCTAGAAGGAGTCATTGATGC-3’ 
 

 

Construct: GST-BICD2 CC1 + ½ CC2 

For 5’-ATGGATCCTCGGCGCCGTC-3’ 
 

Rev 5’-GGGAATTCCTACTGGGCCTCACG-3’ 
 

 

Construct: GST-BICD2 CC2 

For 5’-ATGGATCCGTCTCCGACCTACTCAGT-3’ 
 

Rev 5’-AAGAATTCCTACGGCCCGCCTCAG-3’ 
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Table A-2 Sequences of siRNAs from Dharmacon  

Pool Catalog 

Number 

Duplex 

Catalog 

Number 

Gene 

Symbol 

Gene 

Accession 

GI Number Sequence 

L-006828-00 J-006828-05 DYNC1H1 NM_001376 33350931 GAUCAAACAUGACGGAAUU 

L-006828-00 J-006828-06 DYNC1H1 NM_001376 33350931 CAGAACAUCUCACCGGAUA 

L-006828-00 J-006828-07 DYNC1H1 NM_001376 33350931 GAAAUCAACUUGCCAGAUA 

L-006828-00 J-006828-08 DYNC1H1 NM_001376 33350931 GCAAGAAUGUCGCUAAAUU 

L-026503-01 J-026503-09 DYNC2H1 XM_931085 89034274 GGGUAUAGUUCUACGAAGA 

L-026503-01 J-026503-10 DYNC2H1 XM_931085 89034274 GAGGCUAGUAGUCGAAUUA 

L-026503-01 J-026503-11 DYNC2H1 XM_931085 89034274 UUACCAAGCAGUACGGCAA 

L-026503-01 J-026503-12 DYNC2H1 XM_931085 89034274 GAAGAUGACACACGAGGUA 

L-019799-00 J-019799-05 DYNC1I1 NM_004411 4758177 GGAAGGCACUGUUGAGUUA 

L-019799-00 J-019799-06 DYNC1I1 NM_004411 4758177 GGAAAUUCGUGCUAACAGA 

L-019799-00 J-019799-07 DYNC1I1 NM_004411 4758177 CAAGGGAAGUAGUGUCCUA 

L-019799-00 J-019799-08 DYNC1I1 NM_004411 4758177 CGGGAGACGUCAAUAACUU 

L-012574-00 J-012574-05 DYNC1I2 NM_001378 24307878 GUAAAGCUUUGGACAACUA 

L-012574-00 J-012574-06 DYNC1I2 NM_001378 24307878 GAUGUUAUGUGGUCACCUA 

L-012574-00 J-012574-07 DYNC1I2 NM_001378 24307878 GCAUUUCUGUGGAGGGUAA 

L-012574-00 J-012574-08 DYNC1I2 NM_001378 24307878 GUGGUUAGUUGUUUGGAUU 

L-021045-01 J-021045-09 DYNC1LI1 NM_016141 7705852 ACGAGAUAGCGUCGGGCAA 

L-021045-01 J-021045-10 DYNC1LI1 NM_016141 7705852 CUAAACCACCUGUUCGAAA 

L-021045-01 J-021045-11 DYNC1LI1 NM_016141 7705852 GAAGAAAUACUGCGUCACA 

L-021045-01 J-021045-12 DYNC1LI1 NM_016141 7705852 CGGAAUAUGCUAAGAAAAC 

L-020110-00 J-020110-05 DYNC1LI2 NM_006141 38505264 CACGAGAGCUUCUGAAUCU 

L-020110-00 J-020110-06 DYNC1LI2 NM_006141 38505264 CCUCAUGACUAAACUACAA 

L-020110-00 J-020110-07 DYNC1LI2 NM_006141 38505264 UGUGAAACCUCCCGUGAGA 

L-020110-00 J-020110-08 DYNC1LI2 NM_006141 38505264 GAAAUGGGCUAGUGUUUUA 

L-005281-00 J-005281-06 DYNLL1 NM_003746 83267869 GUUCAAAUCUGGUUAAAAG 

L-005281-00 J-005281-07 DYNLL1 NM_003746 83267869 GAAGGACAUUGCGGCUCAU 

L-005281-00 J-005281-08 DYNLL1 NM_003746 83267869 GUACUAGUUUGUCGUGGUU 

L-005281-00 J-005281-09 DYNLL1 NM_003746 83267869 CAGCCUAAAUUCCAAAUAC 
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L-010586-00 J-010586-06 DYNLRB1 NM_014183 29570778 CGAAUAAGCCACUCUCUUG 

L-010586-00 J-010586-07 DYNLRB1 NM_014183 29570778 CGUGAACACAGAAGGCAUU 

L-010586-00 J-010586-08 DYNLRB1 NM_014183 29570778 GAUCUCACCUUCCUUCGAA 

L-010586-00 J-010586-09 DYNLRB1 NM_014183 29570778 CACCAGAUAAAGACUAUUU 

L-015304-00 J-015304-05 DYNLRB2 NM_130897 18702322 GCACAGUUCGUGAUAUUGA 

L-015304-00 J-015304-06 DYNLRB2 NM_130897 18702322 GAAGGUAUUCCCAUCCGAA 

L-015304-00 J-015304-07 DYNLRB2 NM_130897 18702322 GAAUAUCUUCUGAUCGUCA 

L-015304-00 J-015304-08 DYNLRB2 NM_130897 18702322 GAACUAUGGUUGUAAAUGC 

L-019964-00 J-019964-05 DYNLT1 NM_006519 5730084 GAAGUGAGCAACAUUGUAA 

L-019964-00 J-019964-06 DYNLT1 NM_006519 5730084 GACCUGCAGUCCAGCCUAU 

L-019964-00 J-019964-07 DYNLT1 NM_006519 5730084 CAAUUGGUGGUAACGCUUA 

L-019964-00 J-019964-08 DYNLT1 NM_006519 5730084 AAAGUGAACCAGUGGACCA 

L-019957-01 J-019957-09 DYNLT3 NM_006520 5730086 GAUGGAACCUGUACCGUAA 

L-019957-01 J-019957-10 DYNLT3 NM_006520 5730086 AGGAAUAAGCUUAGCGUUA 

L-019957-01 J-019957-11 DYNLT3 NM_006520 5730086 GGUCCAGAAGAGCGCAUAU 

L-019957-01 J-019957-12 DYNLT3 NM_006520 5730086 AUACAUAUAGAGAGCGGAA 

L-012874-00 J-012874-05 DCTN1 NM_023019 13259507 CUGGAGCGCUGUAUCGUAA 

L-012874-00 J-012874-06 DCTN1 NM_023019 13259507 GAAGAUCGAGAGACAGUUA 

L-012874-00 J-012874-07 DCTN1 NM_023019 13259507 GCUCAUGCCUCGUCUCAUU 

L-012874-00 J-012874-08 DCTN1 NM_023019 13259507 CGAGCUCACUACUGACUUA 

L-012218-00 J-012218-05 DCTN2 NM_006400 34335254 UUAUGAAACUAGCGACCUA 

L-012218-00 J-012218-06 DCTN2 NM_006400 34335254 UCUCAGAUCGUAUUGGAAA 

L-012218-00 J-012218-07 DCTN2 NM_006400 34335254 GGACAAUACCACCCUCUUG 

L-012218-00 J-012218-08 DCTN2 NM_006400 34335254 GAGGACAGGAUAUGAAUCU 

L-012365-00 J-012365-05 DCTN3 NM_007234 22165423 GGUGAAGAUUCUCUACAAA 

L-012365-00 J-012365-06 DCTN3 NM_007234 22165423 UAGCAGAGGAGCAGUUUAU 

L-012365-00 J-012365-07 DCTN3 NM_007234 22165423 GAGGAAUACAACAAGACUA 

L-012365-00 J-012365-08 DCTN3 NM_007234 22165423 GGACAGUGCUCACAUCAAA 

L-015395-00 J-015395-05 DCTN4 NM_016221 19923450 GAAACUGGCACGACGUAGA 

L-015395-00 J-015395-06 DCTN4 NM_016221 19923450 ACAAACAUCUUCUGAUCAA 

L-015395-00 J-015395-07 DCTN4 NM_016221 19923450 GAAUUUAACCCAACGUCAA 

L-015395-00 J-015395-08 DCTN4 NM_016221 19923450 GAAGUGAGAAUCAUGUCAA 

L-014901-01 J-014901-09 DCTN5 NM_032486 34147426 UGUAAGAGUUGGACGUCAU 
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L-014901-01 J-014901-10 DCTN5 NM_032486 34147426 GCACAUGAGCCUUCGCCUU 

L-014901-01 J-014901-11 DCTN5 NM_032486 34147426 GUGCUGAUGUAUUCGAAGA 

L-014901-01 J-014901-12 DCTN5 NM_032486 34147426 GAAAAGUCGUAGUGUCAUA 

L-012302-01 J-012302-09 DCTN6 NM_006571 18426895 AGAUGUAACUAUCGGACCU 

L-012302-01 J-012302-10 DCTN6 NM_006571 18426895 GCAUAGACUAAACUGAAUA 

L-012302-01 J-012302-11 DCTN6 NM_006571 18426895 AAGCAUAUGUAGGCAGAAA 

L-012302-01 J-012302-12 DCTN6 NM_006571 18426895 AUAAAUGCUUACCCAGAUA 

L-012074-00 J-012074-05 ACTR1A NM_005736 13325058 GUAAGGAGGGCUACGACUU 

L-012074-00 J-012074-06 ACTR1A NM_005736 13325058 GACAACGGAUCCGGUGUGA 

L-012074-00 J-012074-07 ACTR1A NM_005736 13325058 GUACUCAGCCUUUACGCUA 

L-012074-00 J-012074-08 ACTR1A NM_005736 13325058 GGAACGAGCUGCCGAAGUU 

L-012212-00 J-012212-05 CAPZA1 NM_006135 5453596 CACUAACUGUUUCGAAUGA 

L-012212-00 J-012212-06 CAPZA1 NM_006135 5453596 GACGUUCGGCUACUACUUA 

L-012212-00 J-012212-07 CAPZA1 NM_006135 5453596 GAUGGGCAACAGACUAUUA 

L-012212-00 J-012212-08 CAPZA1 NM_006135 5453596 UCUGUACUGUUUAUGCUAA 

L-011990-00 J-011990-05 CAPZB NM_004930 4826658 GGAGUGAUCCUCAUAAAGA 

L-011990-00 J-011990-06 CAPZB NM_004930 4826658 GAAGUACGCUGAACGAGAU 

L-011990-00 J-011990-07 CAPZB NM_004930 4826658 CAAAGGAUAUCGUCAAUGG 

L-011990-00 J-011990-08 CAPZB NM_004930 4826658 CACCAUGGAGUAACAAGUA 

L-010330-00 J-010330-06 PAFAH1B1 NM_000430 6031206 CAAUUAAGGUGUGGGAUUA 

L-010330-00 J-010330-07 PAFAH1B1 NM_000430 6031206 UGAACUAAAUCGAGCUAUA 

L-010330-00 J-010330-08 PAFAH1B1 NM_000430 6031206 GGAGUGCCGUUGAUUGUGU 

L-010330-00 J-010330-09 PAFAH1B1 NM_000430 6031206 UGACAAGACCCUACGCGUA 

L-020625-00 J-020625-05 NDE1 NM_017668 8923109 GGACCCAGCUCAAGUUUAA 

L-020625-00 J-020625-06 NDE1 NM_017668 8923109 GCGCAGACCAAAGCCAUUA 

L-020625-00 J-020625-07 NDE1 NM_017668 8923109 GCUGAAGCCUGUUCUUGGU 

L-020625-00 J-020625-08 NDE1 NM_017668 8923109 GCAGCACUCUGAAGGCUAC 

L-018571-00 J-018571-05 NDEL1 NM_030808 71284428 GAGACUUGCAGGCUGAUAA 

L-018571-00 J-018571-06 NDEL1 NM_030808 71284428 GGACCAAGCAUCACGAAAA 

L-018571-00 J-018571-07 NDEL1 NM_030808 71284428 GAAGCUAGAGCAUCAAUAU 

L-018571-00 J-018571-08 NDEL1 NM_030808 71284428 GCUAGGAUAUCAGCACUAA 

L-019496-00 J-019496-06 BICD1 NM_001003398 51093829 GCAAAGAGCCAAUGAAUAU 

L-019496-00 J-019496-07 BICD1 NM_001003398 51093829 GCAACUGUCUCGUCAAAGA 
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L-019496-00 J-019496-08 BICD1 NM_001003398 51093829 GGGAGCAGAUCGCCACAUU 

L-019496-00 J-019496-09 BICD1 NM_001003398 51093829 GGACUUAGAGUUUGACCAU 

L-014060-00 J-014060-05 BICD2 NM_015250 51479169 AGACGGAGCGCGAACAGAA 

L-014060-00 J-014060-06 BICD2 NM_015250 51479169 UAAAGAAGGUGAGCGACGU 

L-014060-00 J-014060-07 BICD2 NM_015250 51479169 GCAAGUACCAUGUGGCUGU 

L-014060-00 J-014060-08 BICD2 NM_015250 51479169 GGAAGGUGCUAGAGCUGCA 

L-006829-00 J-006829-05 KNTC1 NM_014708 41327744 GUAAAUAACUUGCGAGAGU 

L-006829-00 J-006829-06 KNTC1 NM_014708 41327744 GAUAAAGCAUGGCAGAAUU 

L-006829-00 J-006829-07 KNTC1 NM_014708 41327744 CUCAAGAGAUGCUGAAUUA 

L-006829-00 J-006829-08 KNTC1 NM_014708 41327744 GGAGCUAGCCCUAAGAUUU 

L-003948-00 J-003948-07 ZW10 NM_004724 17136150 GCAAUAUGAUUAGCAAGAA 

L-003948-00 J-003948-08 ZW10 NM_004724 17136150 GAUCAGACUGGUACUAGAA 

L-003948-00 J-003948-09 ZW10 NM_004724 17136150 CGUAUCAACCGGUGAAUUU 

L-003948-00 J-003948-10 ZW10 NM_004724 17136150 UAAUGGAACUCGCCUAUCA 

L-019377-00 J-019377-05 ZWILCH NM_017975 33300636 GGUAAGAUGUGACAGUUCA 

L-019377-00 J-019377-06 ZWILCH NM_017975 33300636 CCAUAGACCAUCUGAAUUU 

L-019377-00 J-019377-07 ZWILCH NM_017975 33300636 UCUACAACGUGGUGAUAUA 

L-019377-00 J-019377-08 ZWILCH NM_017975 33300636 GCUCACAAUCCUAAUAUGA 

L-016970-00 J-016970-05 SPDL1 NM_017785 21361652 GGGAGAAGUUUAUCGAUUA 

L-016970-00 J-016970-06 SPDL1 NM_017785 21361652 GAAAGGGUCUCAAACUGAA 

L-016970-00 J-016970-07 SPDL1 NM_017785 21361652 GGAUAAAUGUCGUAAUGAA 

L-016970-00 J-016970-08 SPDL1 NM_017785 21361652 CAGGUUAGCUGCUGAAUCA 

L-005294-00 J-005294-05 CLIP1 NM_198240 38044111 GAAGAUGCCAUGCAGAUAA 

L-005294-00 J-005294-06 CLIP1 NM_198240 38044111 CAGUAUAACUAGUGCCUUA 

L-005294-00 J-005294-07 CLIP1 NM_198240 38044111 GCUCAAUAAUCAGUUGUUA 

L-005294-00 J-005294-08 CLIP1 NM_198240 38044111 CGACGAAACCUUCUGAUGA 

L-013511-00 J-013511-05 CLIP2 NM_032421 14702161 CCAAGAAGACCAAGCGUAU 

L-013511-00 J-013511-06 CLIP2 NM_032421 14702161 GUAAGUCAGGCGAGAAGAA 

L-013511-00 J-013511-07 CLIP2 NM_032421 14702161 CGUAUCGGCUUCCCAUCUA 

L-013511-00 J-013511-08 CLIP2 NM_032421 14702161 GCAAUUCCGGUUCUGCAAA 

L-014609-02 J-014609-21 SPTBN4 NM_025213 115430238 GGACAAGGGCAAGGACGAA 

L-014609-02 J-014609-22 SPTBN4 NM_025213 115430238 CGUGGAGAACUACGAGGAA 

L-014609-02 J-014609-23 SPTBN4 NM_025213 115430238 GCCUGUACGUGGCGCUCAA 
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L-014609-02 J-014609-24 SPTBN4 NM_025213 115430238 GUGGAUGAGCUGAUCGAGU 

L-018149-01 J-018149-09 SPTBN1 NM_178313 30315657 CCUGAAAGUGAGCGCAUUA 

L-018149-01 J-018149-10 SPTBN1 NM_178313 30315657 CCGCAUACGAGGAGCGUGU 

L-018149-01 J-018149-11 SPTBN1 NM_178313 30315657 GGACAUGUCUUACGAUGAA 

L-018149-01 J-018149-12 SPTBN1 NM_178313 30315657 GUGACAAGGCCGACGAUAU 

L-009933-00 J-009933-05 SPTAN1 NM_003127 4507190 CAACAGAGGUAAGGAUUUA 

L-009933-00 J-009933-06 SPTAN1 NM_003127 4507190 GAGACUAUCAGUUGGAUUA 

L-009933-00 J-009933-07 SPTAN1 NM_003127 4507190 CGGGAGGCCUUCUUGAAUA 

L-009933-00 J-009933-08 SPTAN1 NM_003127 4507190 GCAAUUUAAUCGCAAUGUU 

L-012708-00 J-012708-05 BCAS2 NM_005872 49472833 GCAGAUACCGACCUACUAA 

L-012708-00 J-012708-06 BCAS2 NM_005872 49472833 GCAUCAAGCAGUUAGAAUU 

L-012708-00 J-012708-07 BCAS2 NM_005872 49472833 UGGAUGCGCUGCCGUAUUU 

L-012708-00 J-012708-08 BCAS2 NM_005872 49472833 GAGAUUGAACGGACUAUUG 

L-009582-01 J-009582-09 SEC23A NM_006364 38202213 GGGCUUUGGUGGUACGCUA 

L-009582-01 J-009582-10 SEC23A NM_006364 38202213 CGAGAUGGAGUCCGAUUUA 

L-009582-01 J-009582-11 SEC23A NM_006364 38202213 CCAUAUAUUUUGAGGUUGU 

L-009582-01 J-009582-12 SEC23A NM_006364 38202213 GGAGAAUGGUUCAGGUUCA 

L-009592-01 J-009592-09 SEC23B NM_032986 66932900 CGUAAAGACCUCUCGGGAA 

L-009592-01 J-009592-10 SEC23B NM_032986 66932900 GAAAGAUAAUGCACGAUUC 

L-009592-01 J-009592-11 SEC23B NM_032986 66932900 CAGGUUGAUUAUCGAGCAA 

L-009592-01 J-009592-12 SEC23B NM_032986 66932900 GGUGAAUCAACCUGCCGAA 

L-024405-01 J-024405-05 SEC24A NM_001252231 356582354 GGACGUACAUCAAUCCUUU 

L-024405-01 J-024405-06 SEC24A NM_001252231 356582354 CCAAGAAGGUAUUACAUCA 

L-024405-01 J-024405-08 SEC24A NM_001252231 356582354 GUGGUUACCUCCAGUACAA 

L-024405-01 J-024405-14 SEC24A NM_001252231 356582354 CAGUAGUUACGACGAGAUU 

L-008299-02 J-008299-18 SEC24B NM_001042734 112382213 CUUCAGAGACCUAACGCAA 

L-008299-02 J-008299-19 SEC24B NM_001042734 112382213 CCAGAUUCAUUUCGGUGUA 

L-008299-02 J-008299-20 SEC24B NM_001042734 112382213 CUUCAUUGAUCAACGUAGA 

L-008299-02 J-008299-21 SEC24B NM_001042734 112382213 GCUAUAGAGUAAACGAUGU 

L-008467-02 J-008467-19 SEC24C NM_198597 38373670 GCACAGAGAUCCCGGUACA 

L-008467-02 J-008467-20 SEC24C NM_198597 38373670 UGGCUGAUCUAUAUCGAAA 

L-008467-02 J-008467-21 SEC24C NM_198597 38373670 CCUUUCAGGUGGAGAACGA 

L-008467-02 J-008467-22 SEC24C NM_198597 38373670 CCUGGAUCAUACCGGCAAA 
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L-008493-01 J-008493-09 SEC24D NM_014822 7662658 GGUAAAUCACGGCGAGAGU 

L-008493-01 J-008493-10 SEC24D NM_014822 7662658 GAUCUCAACUGAUGAACGA 

L-008493-01 J-008493-11 SEC24D NM_014822 7662658 UUGAAGGUCAUCCGGGAAA 

L-008493-01 J-008493-12 SEC24D NM_014822 7662658 CGUUAGAUGUCAAGAGUAC 

L-008787-01 J-008787-09 RILP NM_031430 93204880 GGCCUAUGGUAUCGGGGUA 

L-008787-01 J-008787-10 RILP NM_031430 93204880 UGAAGGUGGCUGUCCGGAA 

L-008787-01 J-008787-11 RILP NM_031430 93204880 UGGCCUACUUCCAGCGGGA 

L-008787-01 J-008787-12 RILP NM_031430 93204880 AAUAAAGAACUGCCCGUAA 

L-010388-00 J-010388-05 RAB7A NM_004637 40807361 CUAGAUAGCUGGAGAGAUG 

L-010388-00 J-010388-06 RAB7A NM_004637 40807361 AAACGGAGGUGGAGCUGUA 

L-010388-00 J-010388-07 RAB7A NM_004637 40807361 GAUGGUGGAUGACAGGCUA 

L-010388-00 J-010388-08 RAB7A NM_004637 40807361 GGGAAGACAUCACUCAUGA 

L-018225-00 J-018225-05 RAB7B NM_177403 38490536 GUAGGGCUCUGUCGAGGUA 

L-018225-00 J-018225-06 RAB7B NM_177403 38490536 GAAACUCAUUAUCGUCGGA 

L-018225-00 J-018225-07 RAB7B NM_177403 38490536 UCAAUGUGGUGCAAGCGUU 

L-018225-00 J-018225-08 RAB7B NM_177403 38490536 GGAAGUAGCUCAAGGCUGG 

L-003596-00 J-003596-06 MAPK8IP3 NM_033392 41350322 GCAUGGCUGUUGUGUACGA 

L-003596-00 J-003596-07 MAPK8IP3 NM_033392 41350322 CAAGAACUAUGCCGAUCAG 

L-003596-00 J-003596-08 MAPK8IP3 NM_033392 41350322 GCAGAGCGCAGUCACAUCA 

L-003596-00 J-003596-09 MAPK8IP3 NM_033392 41350322 CGAGUGGUCUGAUGUUCAA 

L-015777-01 J-015777-09 CCDC155 NM_144688 40255068 ACAUCACAUCUGCGGGAAA 

L-015777-01 J-015777-10 CCDC155 NM_144688 40255068 AGAUCUUGGCUCUGCGUAA 

L-015777-01 J-015777-11 CCDC155 NM_144688 40255068 CCACUGUUGCGCAGGCUUA 

L-015777-01 J-015777-12 CCDC155 NM_144688 40255068 CGAGCGGGAUGGAGUGAAA 

L-025277-00 J-025277-05 SUN1 NM_025154 51100963 GGUAACUGCUGGGCAUUUA 

L-025277-00 J-025277-06 SUN1 NM_025154 51100963 GGUACCAGUUUGUUACUUU 

L-025277-00 J-025277-07 SUN1 NM_025154 51100963 GCGCUCAGUUCCAGCUAUU 

L-025277-00 J-025277-08 SUN1 NM_025154 51100963 GAAAAGACCCGACGACACA 

L-021079-02 J-021079-17 RAB11FIP3 NM_014700 41281455 CGGACGAGUUCGAUGACUU 

L-021079-02 J-021079-18 RAB11FIP3 NM_014700 41281455 GAUUAAAGCUGUUACUGCA 

L-021079-02 J-021079-19 RAB11FIP3 NM_014700 41281455 GCUUUAAUUCCCCGAGAAA 

L-021079-02 J-021079-20 RAB11FIP3 NM_014700 41281455 AGGCCAACAUUGAGCGUCU 

L-016845-01 J-016845-09 HOOK1 NM_015888 34147678 CUAAUUGAGCAGCGUGAUA 
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L-016845-01 J-016845-10 HOOK1 NM_015888 34147678 GCAGCUUGGUUUAACGAAU 

L-016845-01 J-016845-11 HOOK1 NM_015888 34147678 GAAUGAACGUAUUGAGGAA 

L-016845-01 J-016845-12 HOOK1 NM_015888 34147678 GCACGUACACAAUUAGAAA 

L-020408-02 J-020408-18 HOOK2 NM_001100176 154354986 GGGCCAUGGAGGAGCGAUA 

L-020408-02 J-020408-19 HOOK2 NM_001100176 154354986 AGAAGAAGGACGCGGACUU 

L-020408-02 J-020408-20 HOOK2 NM_001100176 154354986 UCACCUGGUUACAGACGUU 

L-020408-02 J-020408-21 HOOK2 NM_001100176 154354986 GCUCCAGGGCAUCUCGGAA 

L-013558-01 J-013558-09 HOOK3 NM_032410 33356164 CGUGGAAGAUUUAACGAAU 

L-013558-01 J-013558-10 HOOK3 NM_032410 33356164 CCAAAGAUGAUUAUCGAAU 

L-013558-01 J-013558-11 HOOK3 NM_032410 33356164 CCAAGAAGGUUCGGACAAU 

L-013558-01 J-013558-12 HOOK3 NM_032410 33356164 GAUAAUUGGAGGCUAAAGA 

L-013482-00 J-013482-05 MAP1A NM_002373 45580726 CCACUGAGCAUGUCUCUUA 

L-013482-00 J-013482-06 MAP1A NM_002373 45580726 GGAGGAGACAGCAAACGUA 

L-013482-00 J-013482-07 MAP1A NM_002373 45580726 GAUAAGCCAUUCCCUCUAG 

L-013482-00 J-013482-08 MAP1A NM_002373 45580726 GUAAGACCCUCUAUAAAGC 

L-016881-00 J-016881-05 MAP1S NM_018174 50428934 CGAAAGAGGCAUCCGGUCU 

L-016881-00 J-016881-06 MAP1S NM_018174 50428934 CCACCGUGCUCUUCGAGAA 

L-016881-00 J-016881-07 MAP1S NM_018174 50428934 ACGCAAGACUGAGAAAGAA 

L-016881-00 J-016881-08 MAP1S NM_018174 50428934 CCUGCAAGGUGGAGUUCUA 

L-010348-00 J-010348-07 MAP1B NM_032010 14165455 AGAAGUAGAUCUCCCGAUU 

L-010348-00 J-010348-08 MAP1B NM_032010 14165455 CCAGAGAUAUGUCCUUAUA 

L-010348-00 J-010348-09 MAP1B NM_032010 14165455 GUACAAAGACCAAGUCAUC 

L-010348-00 J-010348-10 MAP1B NM_032010 14165455 GCUGAGAGGUCCCUUAUGU 

L-020186-01 J-020186-09 TBCB NM_001281 50428924 GGGAAACGCUACUUCGAAU 

L-020186-01 J-020186-10 TBCB NM_001281 50428924 CUACGGGUUGGACGAGAUA 

L-020186-01 J-020186-11 TBCB NM_001281 50428924 UGUAUGGAGUUGACGACAA 

L-020186-01 J-020186-12 TBCB NM_001281 50428924 CUGGAUUGGUGUCCGCUAU 

L-004702-00 J-004702-07 KPNA2 NM_002266 62388891 GCAUGUGGCUACUUACGUA 

L-004702-00 J-004702-08 KPNA2 NM_002266 62388891 GAAUUGGCAUGGUGGUGAA 

L-004702-00 J-004702-09 KPNA2 NM_002266 62388891 GCAUAAAUAGCAGCAAUGU 

L-004702-00 J-004702-10 KPNA2 NM_002266 62388891 GAAAUGAGGCGUCGCAGAA 

L-009837-01 J-009837-09 TTL NM_153712 42734436 AGACAUGGGCACCGGAGUA 

L-009837-01 J-009837-10 TTL NM_153712 42734436 AAAGAAAGGCAACUCGCAA 
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L-009837-01 J-009837-11 TTL NM_153712 42734436 GAGAAAAUUCAGUGACGUA 

L-009837-01 J-009837-12 TTL NM_153712 42734436 UGUAAACAGACACGAAAUU 

L-014059-00 J-014059-05 AGTPBP1 NM_015239 7662451 UAUCAUAGAUCGUGUGGUA 

L-014059-00 J-014059-06 AGTPBP1 NM_015239 7662451 GCUUAUCACUAUCCAUAUA 

L-014059-00 J-014059-07 AGTPBP1 NM_015239 7662451 AUACAAGGGUUUACAGAUU 

L-014059-00 J-014059-08 AGTPBP1 NM_015239 7662451 UGAAAGGAACGUUGGAAUA 

L-017591-01 J-017591-09 WIPF2 NM_133264 75812910 CAUCAAAAUAUCACGAGUA 

L-017591-01 J-017591-10 WIPF2 NM_133264 75812910 CAACAUUAAUGAUCGGAGU 

L-017591-01 J-017591-11 WIPF2 NM_133264 75812910 CAUCAAAACCACACGCAAA 

L-017591-01 J-017591-12 WIPF2 NM_133264 75812910 AAGGAUAACUUUAACCGAA 

L-011557-00 J-011557-05 WASF1 NM_001024936 68161503 AAACAAGACCUCAGACAUA 

L-011557-00 J-011557-06 WASF1 NM_001024936 68161503 CAACUAAGUAGCCUAAGUA 

L-011557-00 J-011557-07 WASF1 NM_001024936 68161503 UAGAUUGGUUGGAGUAAGA 

L-011557-00 J-011557-08 WASF1 NM_001024936 68161503 CCAUCAACCCUACCUGUAA 

L-013010-00 J-013010-05 FEZ1 NM_005103 17105402 GAACCUAGCUCCCGUGAAG 

L-013010-00 J-013010-06 FEZ1 NM_005103 17105402 GAGUCUGGAUGAAGAGUUU 

L-013010-00 J-013010-07 FEZ1 NM_005103 17105402 CCGAAAUAAUCAGCUUCAA 

L-013010-00 J-013010-08 FEZ1 NM_005103 17105402 UUUCGGAACUACAACGCCA 

L-011580-00 J-011580-05 ARF1 NM_001658 66879658 UGACAGAGAGCGUGUGAAC 

L-011580-00 J-011580-06 ARF1 NM_001658 66879658 CGGCCGAGAUCACAGACAA 

L-011580-00 J-011580-07 ARF1 NM_001658 66879658 ACGAUCCUCUACAAGCUUA 

L-011580-00 J-011580-08 ARF1 NM_001658 66879658 GAACCAGAAGUGAACGCGA 

L-004008-00 J-004008-05 ARF6 NM_001663 6996000 CGGCAUUACUACACUGGGA 

L-004008-00 J-004008-06 ARF6 NM_001663 6996000 UCACAUGGUUAACCUCUAA 

L-004008-00 J-004008-07 ARF6 NM_001663 6996000 GAGCUGCACCGCAUUAUCA 

L-004008-00 J-004008-08 ARF6 NM_001663 6996000 GAUGAGGGACGCCAUAAUC 

L-016355-00 J-016355-05 RUFY1 NM_025158 22095370 GAACUUAACCGGCACUUGA 

L-016355-00 J-016355-06 RUFY1 NM_025158 22095370 CAUCAGAUAUAGCGACUAG 

L-016355-00 J-016355-07 RUFY1 NM_025158 22095370 GAAAGAUGACGAAGCGACA 

L-016355-00 J-016355-08 RUFY1 NM_025158 22095370 AUAAACAUCUCUUAAGCGA 

L-016834-00 J-016834-05 SAP30BP NM_013260 47834346 GCAAGUGGGAUUCGGCUAU 

L-016834-00 J-016834-06 SAP30BP NM_013260 47834346 GAGAAAGGCGGAUUGGUAU 

L-016834-00 J-016834-07 SAP30BP NM_013260 47834346 CCAGAAGCUUUAUGAACGA 
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L-016834-00 J-016834-08 SAP30BP NM_013260 47834346 CCAACUACCCAAAGGAUAU 

L-015681-00 J-015681-05 SPG20 NM_015087 40806197 UAACAAAGGUCUGAAUACA 

L-015681-00 J-015681-06 SPG20 NM_015087 40806197 GGAUGUACGUCAUAAAGGA 

L-015681-00 J-015681-07 SPG20 NM_015087 40806197 CUAAAUGCAUCGUUAACAA 

L-015681-00 J-015681-08 SPG20 NM_015087 40806197 UGAAUUAGGUCAGAAGGAA 

L-003499-00 J-003499-05 HDAC6 NM_006044 13128863 GGGAGGUUCUUGUGAGAUC 

L-003499-00 J-003499-06 HDAC6 NM_006044 13128863 GGAGGGUCCUUAUCGUAGA 

L-003499-00 J-003499-07 HDAC6 NM_006044 13128863 GCAGUUAAAUGAAUUCCAU 

L-003499-00 J-003499-08 HDAC6 NM_006044 13128863 GUUCACAGCCUAGAAUAUA 

L-017668-00 J-017668-05 KAT7 NM_007067 34222309 GAACCGAAGAUUCCGAUUU 

L-017668-00 J-017668-06 KAT7 NM_007067 34222309 GAGGGAAGCAACAUGAUUA 

L-017668-00 J-017668-07 KAT7 NM_007067 34222309 UAGGACACCUUACAGGAAA 

L-017668-00 J-017668-08 KAT7 NM_007067 34222309 GGCAAGAUGCUUAUUGAUU 

L-012172-00 J-012172-05 PCNT NM_006031 81295808 GGACGAAGCUUGCUCACUU 

L-012172-00 J-012172-06 PCNT NM_006031 81295808 GCAUGAAACUCGUCUGAAG 

L-012172-00 J-012172-07 PCNT NM_006031 81295808 CAGCACAGGUUGUCAGGAA 

L-012172-00 J-012172-08 PCNT NM_006031 81295808 CGAAACGGCUCCACAGAGU 

L-020556-00 J-020556-05 LAMTOR2 NM_014017 7661727 CCAAGUGGCGGCAUCUUAA 

L-020556-00 J-020556-06 LAMTOR2 NM_014017 7661727 GAUCACUGCUGGCCUACUC 

L-020556-00 J-020556-07 LAMTOR2 NM_014017 7661727 UCAAAUUCAUCCUCAUGGA 

L-020556-00 J-020556-08 LAMTOR2 NM_014017 7661727 CCAAGGAGACCGUGGGCUU 

L-006824-00 J-006824-05 MAPRE1 NM_012325 6912493 GGAAAGCUACGGAACAUUG 

L-006824-00 J-006824-06 MAPRE1 NM_012325 6912493 AAACGACCCUGUAUUGCAG 

L-006824-00 J-006824-07 MAPRE1 NM_012325 6912493 UGACAAAGAUCGAACAGUU 

L-006824-00 J-006824-08 MAPRE1 NM_012325 6912493 AGAUGAAGGCUUUGUGAUA 

L-012501-00 J-012501-05 MAPRE2 NM_014268 10346134 GAACAGGUACAUUCAUUAA 

L-012501-00 J-012501-06 MAPRE2 NM_014268 10346134 GAAUGGCGGUCAAUGUGUA 

L-012501-00 J-012501-07 MAPRE2 NM_014268 10346134 GAACGUUGAUAAGGUAAUU 

L-012501-00 J-012501-08 MAPRE2 NM_014268 10346134 GGAGUAUGAUCCUGUAGAG 

L-006831-00 J-006831-05 CLASP1 NM_015282 31563536 GGACAGCUCUGGAUAACAA 

L-006831-00 J-006831-06 CLASP1 NM_015282 31563536 GCACUGGCGUUAAGAGUUU 

L-006831-00 J-006831-07 CLASP1 NM_015282 31563536 GCCAAGAACUGAUAGACUA 

L-006831-00 J-006831-08 CLASP1 NM_015282 31563536 GGCCACAUCUGGUGUUGUA 
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L-023462-00 J-023462-06 CLASP2 NM_015097 57863300 GCACUUAAACUUUCAGCUA 

L-023462-00 J-023462-07 CLASP2 NM_015097 57863300 CAAAUGGUCUACAGCAAAU 

L-023462-00 J-023462-08 CLASP2 NM_015097 57863300 CAAUUAAUCUGGCUGCAAU 

L-023462-00 J-023462-09 CLASP2 NM_015097 57863300 UCAGAACGCUCCUAUAGUU 

L-009637-01 J-009637-09 BLOC1S6 NM_012388 38505202 CAAAAGAGGCAGCGUGAUA 

L-009637-01 J-009637-10 BLOC1S6 NM_012388 38505202 CAAAGGUAGUACAGCGUUU 

L-009637-01 J-009637-11 BLOC1S6 NM_012388 38505202 CAAACAAACAAACAACGUA 

L-009637-01 J-009637-12 BLOC1S6 NM_012388 38505202 GAACCAAGUUGUAUUGUUA 

L-016485-01 J-016485-09 CSPP1 NM_024790 50355983 UGAGAAAUGAGGAACGAAU 

L-016485-01 J-016485-10 CSPP1 NM_024790 50355983 UGAAGAGCAUAUUCGGUUA 

L-016485-01 J-016485-11 CSPP1 NM_024790 50355983 GAAUACGGUUGGACAGAAU 

L-016485-01 J-016485-12 CSPP1 NM_024790 50355983 GCGUACAGCCUGCAGCUUA 

L-015884-01 J-015884-09 MID1IP1 NM_021242 39725681 UCUCGAAACUCACGCGCAA 

L-015884-01 J-015884-10 MID1IP1 NM_021242 39725681 CAGCACUGUCUGUCGGUAA 

L-015884-01 J-015884-11 MID1IP1 NM_021242 39725681 UGUGUGAAGUAUUUCGAAU 

L-015884-01 J-015884-12 MID1IP1 NM_021242 39725681 GGAGAUCGGCUUCGGCAAU 

L-011724-01 J-011724-13 MAP4 NM_030885 197276597 GGAGUAGAAGGGAGCGAUA 

L-011724-01 J-011724-14 MAP4 NM_030885 197276597 GGAGAGAUAAAGCGGGACU 

L-011724-01 J-011724-15 MAP4 NM_030885 197276597 GAUGAUGUUGUGGGAGAAA 

L-011724-01 J-011724-16 MAP4 NM_030885 197276597 GAGUCAAAGAAGAAACCGU 

L-026895-00 J-026895-05 FGD6 NM_018351 55742696 GAAGGGACCGGUUUUAUAA 

L-026895-00 J-026895-06 FGD6 NM_018351 55742696 GAAUUCCGAGUCUAAAGUA 

L-026895-00 J-026895-07 FGD6 NM_018351 55742696 CUAAGCAGCUCAAAUUAAC 

L-026895-00 J-026895-08 FGD6 NM_018351 55742696 GCUCGUCUGUUACGCCAAA 

L-024646-02 J-024646-09 TTLL8 XM_003403494 397139792 UGCUGAACCACUACGCAAA 

L-024646-02 J-024646-12 TTLL8 XM_003403494 397139792 AGGAGUACCUGCAGCGCCA 

L-024646-02 J-024646-19 TTLL8 XM_003403494 397139792 GAGCAUGAGGACAUCGACA 

L-024646-02 J-024646-20 TTLL8 XM_003403494 397139792 GAGAGUUACUUGCGGUUCU 

L-005234-00 J-005234-06 CD4 NM_000616 21314613 GAACUGACCUGUACAGCUU 

L-005234-00 J-005234-07 CD4 NM_000616 21314613 GAGCGGAUGUCUCAGAUCA 

L-005234-00 J-005234-08 CD4 NM_000616 21314613 UAACUAAAGGUCCAUCCAA 

L-005234-00 J-005234-09 CD4 NM_000616 21314613 GCAAAGGUCUCGAAGCGGG 

D-001810- D-001810- ON-TARGETplus Non-targeting 0 UGGUUUACAUGUCGACUAA 
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10 01 Control 

D-001810-

10 

D-001810-

02 

ON-TARGETplus Non-targeting 

Control 

0 UGGUUUACAUGUUGUGUGA 

D-001810-

10 

D-001810-

03 

ON-TARGETplus Non-targeting 

Control 

0 UGGUUUACAUGUUUUCUGA 

D-001810-

10 

D-001810-

04 

ON-TARGETplus Non-targeting 

Control 

0 UGGUUUACAUGUUUUCCUA 
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Table A-3 Sequences of primers used for quantification of mRNA levels by qPCR 

Name Sequence 5'->3' 

DYNC1H1-F TCGGTAACCCCCTTCTGGTC 

DYNC1H1-R GGTGGGAACTCGACAGTTGG 

DYNC2H1-F ACCTGTTTGGAAGAATGGACC 

DYNC2H1-R GCACACTCGACTCCATGATTTC 

DYNC1I1-F AGCGCAAAAAGCAGCGCTTAG 

DYNC1I1-R AGCGGCTGCACTAGAGGC 

DYNC1I2-F TGGAACGTAAGAAGCAGCGA 

DYNC1I2-R GGGGATTCTGGAGTTAGCCC 

DYNC1LI1-F TGGGTGCGGATACACTTACAC 

DYNC1LI1-R GTGCTGCACCATACTGTAAAC 

DYNC1LI2-F TTCTGAGCGAAGTGTCCACC 

DYNC1LI2-R CGCGTGTGATCATCTCGGT 

DYNLL1-F CCGCGCCTCAGTTTCTCTCT 

DYNLL1-R CCTTTCGGTCGCACATGGTT 

DYNLRB1-F TACCGGATCGGTCGGAAATG 

DYNLRB1-R TGGGAATGCCTTCTGTGTTCA 

DYNLRB2-F TTGGGCGAACCTCAGGCAG 

DYNLRB2-R TCACGAACTGTGCTTTTGGC 

DYNLT1-F CTGCGGAGGAGACTGCTTT 

DYNLT1-R TGCATAATTACACAGGTCACGA 

DYNLT3-F GCCACTGCGACGAGGTTG 

DYNLT3-R TCCACTATGCTTGCAGTCCAC 

DCTN1-F ATCTTTGTGCGCCAGTCCC 

DCTN1-R TGTCGGTGCCTTCTTAGGCTTC 

DCTN2-F CACGAGCAAGCCATGCAGTTT 

DCTN2-R TCCCAGCTTCTTCATCCGTTC 

DCTN3-F TATCCTTTCCCAGGTTGCACTC 

DCTN3-R ATTTCCACACACTGGTCCTGCT 

DCTN4-F GTGGGCATGGCAGACAAATC 

DCTN4-R AGTATGTTGCGAAAAAGCCAGA 

DCTN5-F ATCGAGACGGCATCTGGGAA 

DCTN5-R TGGGCTCAGGAAAACAGAAATG 
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DCTN6-F AGTGATTGGCGAAGGGAACC 

DCTN6-R ATGGCTTGGGAATAACAGCC 

ACTR1A-F TACGATGTGATCGCCAACCAG 

ACTR1A-R TCGGCCCACATAGTTTGGAAAG 

CAPZA1-F AACTTCTGGAATGGTCGTTGG 

CAPZA1-R CCTTGGCAGTTTGGGCTTCA 

CAPZB-F CGACCTGGTCCCCAGTCTAT 

CAPZB-R ATCCTCCAAGGGAGGGTCAT 

PAFAH1B1-F GCAAGCTTCTGGCTTCCTGT 

PAFAH1B1-R CACAGTAGCCAGTTTGCACTT 

NDE1-F GGGAGACCTACTGCGGAAAG 

NDE1-R TCGTGTCCAACCCCTTATCAC 

NDEL1-F TGCAAAGGACCAAGCATCAC 

NDEL1-R CCGTTTACTGCCCCATGAAC 

BICD1-F ACCGTGGCTCCACCAGATTG 

BICD1-R TGAAGACTAGGGGTGAGGAGG 

BICD2-F GCAGGACTACTCGGAACTGG 

BICD2-R CTGGCTGTTGAGGTACTCGG 

KNTC1-F GCAGACCATCGAATCCTGCT 

KNTC1-R CGTTTTTCGTCCTGCGATGG 

ZW10-F ACCAGTAGTGATCAATGTGCTG 

ZW10-R GGGCAAGACGCAATCTGAAC 

ZWILCH-F GCAGTTCAGTTTGGCGGTTC 

ZWILCH-R ACATCAGCCTCATAGAGAAATGGG 

SPDL1-F TGCAGAGGTGGAAGATCGAA 

SPDL1-R CTCCAACATGGCAAGCAACC 

CLIP1-F CAGAGTATTGGTTGGTGGCA 

CLIP1-R TTGTGGACAGGAGCGAACAA 

CLIP2-F GAGAATTAGCGGACAACAGGCTGA 

CLIP2-R GGACCCGAGTGCAACAGG 

SPTBN4-F AACTACGAGGAAAGCATCGC 

SPTBN4-R AGTACTGCTGTTCCAGAGCCA 

SPTBN1-F TCTCCACGGATGGCAGAAAC 

SPTBN1-R CTGGGTTCTGGCTGGTAAGG 
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SPTAN1-F CCCACCAACATCCAGCTTTC 

SPTAN1-R TTGCCCATGTCGATAACCCC 

BCAS2-F GCCCCGGATTATTCTGCCTT 

BCAS2-R GGCTGGAAGCTCATATCGTTT 

SEC23A-F ATGTGCTTAGGTGGCTGGAC 

SEC23A-R TGAAACATAAACTGTGGATAAAGGG 

SEC23B-F TGCAGCAGGCCAACTTGTAA 

SEC23B-R TGAGCACCTCGCTGTATCAC 

SEC24A-F CTCACGCCCCTGACATCATC 

SEC24A-R GGTGTTGCCAATAAGCCACC 

SEC24B-F AGCCCAGATTCATTTCGGTGT 

SEC24B-R ATACGTTCGACAGGATCGGC 

SEC24C-F CCTGGGAGCCTTGACGTTAG 

SEC24C-R GATCTCACCTTATCAGACAGTGAT 

SEC24D-F AGGGTTTGACGTGGCAGTTC 

SEC24D-R AAAAGAAGTCTGTTCCCGCTCC 

RILP-F GCGGAATGAACTCAAAGCCAA 

RILP-R CAGCCTCATCCTCACTGCTCTC 

RAB7A-F GGCCGCGTTTGAAGGATGAC 

RAB7A-R CACCATCACCTCCTTGGTCAG 

RAB7B-F CCATGGTGTTGTTGGGGAAC 

RAB7B-R TGCTCTGGTACCTCGACAGAG 

MAPK8IP3-F CCTCATCCACTGCTACGACG 

MAPK8IP3-R TGAATTTCTCCTCCGCCTGCC 

CCDC155-F TTCGTGGATGTCCGTTGTGT 

CCDC155-R CGGAGGTACATTTCCGCAGT 

SUN1-F GGCCCGTGTCGAGAGTTTATT 

SUN1-R GCCTTCCCTGGAGCAACC 

RAB11FIP3-F TCCGAGCCGTGTTCGATG 

RAB11FIP3-R GCCATCAGGATCTCCGTTTCT 

HOOK1-F GGAGCAACAGCTTAAAAGAGCC 

HOOK1-R AGAGCCATCCAACTGGTCAAG 

HOOK2-F GTGCTGAACCAGATAGACCCC 

HOOK2-R CTTCTGACACAGGATGCGCC 



 

  92 

HOOK3-F AGTTAAGAAAGGCCAACGCA 

HOOK3-R TTTCTGTTCTCAGCCTGTCCTT 

MAP1A-F AGTTAAGAAAGGCCAACGCA 

MAP1A-R TTTCTGTTCTCAGCCTGTCCTT 

MAP1S-F GACCTGGCGTTTCATTGCAT 

MAP1S-R AGACCGGATGCCTGTGTTGG 

MAP1B-F GTTCTACTTGCTGGTGGTCGT 

MAP1B-R GGATCTTTTGTCCTGGGACTTCA 

TBCB-F CATCGCTGAGTTCAAGTGTAAA 

TBCB-R TCATACTCACCAAGGCGGG 

KPNA2-F GGTGGACCCTTTGAACGCAG 

KPNA2-R GACGCCTCATTTCTGTACTGTCT 

TTL-F GGAGAGGGCAACGTTTGGAT 

TTL-R CAAGACCCAGCTTCGGATGT 

AGTPBP1-F CCTGAGCCGCCTTACCAATA 

AGTPBP1-R TCCTGTAGAACCTTTGGCTGTC 

WIPF2-F TCACCACTGTCCGGTCTTTC 

WIPF2-R CGGGCAGCTCGGTTTGTTT 

WASF1-F CGATGTTTGTGAACAGCCTCC 

WASF1-R ATTTTTCTGCTTCTGCTTCCTCT 

FEZ1-F CCTCTCCTCCCTCAGTGGAA 

FEZ1-R TAGGTAGGGCAGAGCACTTT 

ARF1-F GTTTGCTGTGAAGACGGTGTC 

ARF1-R AGAGGATCGTGGTCTTCCCT 

ARF6-F GCGGCATTACTACACTGGGA 

ARF6-R CCTGGATCTCGTGGGGTTTC 

RUFY1-F ACTGAAAAAGGAGTTGCGGGA 

RUFY1-R CCTACAGTGTGTCGCTTCGT 

SAP30BP-F TGAGGAGAAAGGCGGATTGG 

SAP30BP-R TGTGCCGAGCTTCTCCTTTG 

SPG20-F GCAGCAAGTAGTGTTCAAGGATT 

SPG20-R GCCAACATTGACCGCAGAAT 

HDAC6-F CTGGTGCTTCCCATTGCCTA 

HDAC6-R AGCCACCCTCTAGGATAAGGA 
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KAT7-F TGCCGCGAAGGAAGAGGAAT 

KAT7-R GCAGATTTCGAACAGGACTGGA 

PCNT-F TCACAAAGGAGTGTGAACAAGA 

PCNT-R CAATGCCGTCTCCTTCTCCTT 

LAMTOR2-F GCACCCTGCTGCTGAATAACG 

LAMTOR2-R GCCACTCGGGTGATGGCTAC 

MAPRE1-F TTTGAACGAGACGAAGACGGAA 

MAPRE1-R GCAGCCCCTGAGCACAACT 

MAPRE2-F ACGGGACCATCATTCCTTTCC 

MAPRE2-R AATAGGCCGCTCCTGAACAA 

CLASP1-F GCTCTCAGGCGCTCTTACTC 

CLASP1-R TCGCGGGACACAATATCACA 

CLASP2-F CGAGCAACTACCGGGTATCA 

CLASP2-R TCTCGAACCTTGTCTTTGGCA 

BLOC1S6-F AAGGCGGTTGATGGTGAAGC 

BLOC1S6-R CTTGGTTCTGTGTGAGTTCCTG 

CSPP1-F AGTCAACAGACCAGGGGTTC 

CSPP1-R TCAACCTTTCCTGAGTAAGATAACG 

MID1IP1-F CAACATGGACCAGACGGTGA 

MID1IP1-R GCTGTACATGTCCCGAGAGG 

MAP4-F ACCGTGCTCAGAAACTAGCC 

MAP4-R TGGAGACCCTGTAGTATCGCT 

FGD6-F ATTTGAGATGAGCCCTCGCTG 

FGD6-R ATGGTGTCATTGGCGTGGTT 

TTLL8-F GATCCAAACCAGCTAAATGCG 

TTLL8-R TTCAATGTTCGGCGGGAGA 

CD4-F CAAGAAAGACGCAAGCCCAG 

CD4-R GACTCCCCGGTTCATTGTGG 

GAPDH-F GACAGTCAGCCGCATCTT 

GAPDH-R TGGAACATGTAAACCATGTAGTTG 
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Abstract 

 Microtubules and microtubule-associated proteins are critical for cargo transport throughout the 

cell.  Many viruses are able to usurp these transport systems for their own replication and spread.  HIV-1 

utilizes these proteins for many of its early events post-entry, including transport, uncoating and reverse 

transcription.  The molecular motor proteins dynein and kinesin-1 are the primary drivers of cargo 

transport, and HIV-1 utilizes these proteins for infection.  In this review, I highlight recent developments 

in the understanding of how HIV-1 hijacks motor transport, the key cellular and viral proteins involved, 

and the ways that transport influences other steps in the HIV-1 lifecycle.  Studying these processes and 

interactions is critical for the development of antivirals targeting HIV-1 transport. 
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Introduction  

The cytoplasm of cells is an aqueous solution that is crowded by organelles, proteins, and RNA 

that restrict passive diffusion of cargo to its required destinations within the cell.  Crowding with 

macromolecules makes it necessary for cargo to use active transport along microtubules (MTs) by 

molecular motor proteins, specifically dynein and kinesins [204-206].  Viruses, including HIV-1, are 

adept at hijacking MTs for their intracellular transport.  HIV-1 depends on a series of events to 

productively infect cells.  The microtubule network and its associated proteins are involved in several of 

the early steps in HIV-1 infection, including entry [76], reverse transcription [77-79], uncoating [78, 80-

82], and transport to the nucleus [51, 60, 80, 82-85].  HIV-1 egress and assembly also utilize the 

microtubule network to efficiently assemble particles for budding and spread (reviewed in [86]).  It was 

established over a decade ago that the microtubule network is involved in HIV-1 infection, but only 

recently has research begun to define the transport machinery and mechanisms involved in the early stage 

of infection, which will be the focus of this review.   

 

The Microtubule Network 

 The microtubule (MT) network is the dynamic and complex arrangement of microtubules within 

a cell.  MTs are part of the cell cytoskeleton, which gives the cell structure, shape, and in some cell types, 

polarity.  MTs are made up of repeating alpha and beta tubulin heterodimers, which nucleate from gamma 

tubulin at centrosomes.  Since MTs emanate from centrosomes near the nucleus, this area is often called 

the MT Organizing Center (MTOC).  Due to the repeating heterodimer structure of microtubules, they are 

polarized, with the negative end located at the MTOC, and the positive end extending outward [38].  In a 

nonpolarized interphase cell, this MT polarity results in the positive end of MTs extending toward the cell 

periphery.  The polarity of these tracks is important for cargo transport and the directionality of 

microtubule-associated proteins (MAPs), as discussed below.   

 Although most MTs nucleate from centrosomes, MTs can emanate from kinetochores, the Golgi 

apparatus, the nuclear envelope, and other MTs, increasing the complexity of the overall network [39].  
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Adding to the complexity, MTs exhibit a phenomenon called dynamic instability, in which they undergo a 

series of growth and shrinkage events at their plus ends.  Dynamic instability is influenced by 

microtubule-associated proteins (MAPs) and is marked by post-translational modifications [40, 41].  The 

adaptable structure of the microtubule network allows it to form the mitotic spindle, which is crucial for 

the search, capture, and separation of chromosomes during mitosis.  The fine-tuned regulation of MT 

stability also influences cargo transport during interphase, as MT stabilization or depolymerization by 

drugs can both alter transport by molecular motor proteins [42, 43].  

  

Microtubule Motor Proteins 

Intracellular cargo transport requires the actions of a subset of MAPs that exhibit motor function.  

Two types of motor complexes, dynein and kinesins, hydrolyze ATP to move along microtubules and 

transport cellular cargo, including vesicles, organelles, RNA, etc.  In general, kinesins walk toward the 

positive end of microtubules (anterograde movement) to transport cargo, and dynein walks toward the 

negative end of microtubules (retrograde movement) [44, 45].  In non-dividing cells, cargo gets transported 

toward the nucleus predominantly by dynein and away from the nucleus by kinesins.  Nonetheless, owing to 

the dynamics and branching of the microtubule network, both types of motors can be involved in the 

transport of a specific cargo.   

Dynein, a large protein complex, transports vesicles and endosomes within the cytoplasm, and it 

helps position organelles and the mitotic spindle during cell division [reviewed in [44, 46-48]].  Dynein is 

composed up of several proteins with distinct functions.  The dynein complex is composed of two copies 

of a heavy chain containing the ATPase activity required for movement, two intermediate chains that 

stabilize the structure of the complex, and two light intermediate chains that link cargo to the complex.  

The complex also contains multiple copies of various light chains that link dynein to other proteins and to 

cargo.  

Dynein interacts with dynactin, a multi-subunit complex that links dynein to some cargo and 

increases dynein’s processivity while walking along microtubules [104, 109, 110].  The dynactin complex 
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consists of at least five polypeptides: (1) an Arp1 backbone [111, 112]; (2) a p150 side-arm that aids in 

microtubule processivity [104, 107]; (3) a shoulder complex that attaches the side-arm to the backbone and 

binds additional interacting proteins [115]; (4) a pointed end complex that binds the nuclear envelope prior 

to mitosis [116]; and (5) a barbed end complex that aids in structure stabilization [111].  Together, the 

five components interact to form the dynactin complex.  The interactions between dynactin and dynein 

result in increased speed and processivity of cargo transport [111, 118].     

In contrast to the single dynein complex, there are 15 different kinesin families, termed kinesin 1 

to kinesin 14B, based on phylogenetic analyses.  Kinesins are variable in form and function, but all contain 

two heavy chains and two light chains which form two globular head motor domains and a coiled-coil tail 

allowing heavy chain dimerization. The kinesin families can be grouped based on the position of their 

motor domain in the molecule, with N-kinesins having a motor domain in the amino-terminal region, M-

kinesins in the middle, and C-kinesins in the carboxy-terminal region.  Most N- and C-kinesins bind 

vesicles, organelles, and other microtubules and function in microtubule plus end and minus end-directed 

transport, and M-kinesins function to depolymerize microtubules, which is critical for mitotic spindle 

arrangement [45].  For the purposes of this review, I will primarily focus on kinesin-1, a plus-end directed 

microtubule motor implicated in HIV-1 transport.                 

 Molecular motors must transport a variety of protein cargos to various destinations within the 

cell, raising the question of how specificity is achieved.  Dynein and kinesins interact with numerous 

cargo-specific adaptor proteins, which connect the molecular motors to the various cargoes [49-51].  

While some adaptors are in protein families, (e.g. Hook family, Bicaudal D proteins, etc.) there is no 

common sequence across all adaptors.  Interestingly, several adaptors have a similar structural coiled-

coil region which has been hypothesized to bind to the dynactin complex, and may represent a 

conserved binding mechanism across adaptors.  Adaptors can also activate the motors to move along 

microtubules: recent studies have confirmed this function for BICD2, Hook3, Spindly, and Rab11-FIP3 

[52].  Many adaptors can perform cellular functions other than cargo transport, including nuclear and 

spindle positioning during mitosis.  Kinesin and dynein motors can simultaneously bind to a single 
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microtubule, and there is evidence for simultaneous binding of motors to a single cargo molecule, 

suggesting that the net transport of a particular cargo relies on coordination of its movement by 

opposing motors.  Thus, regulation of transport appears to depend on regulation of motor activity by 

adaptors [53-55].  

  

HIV and Microtubule Stabilization 

 In early studies, treatment of cells with nocodazole and other MT depolymerizing agents did 

not substantially affect their susceptibility to infection, suggesting that HIV-1 infection does not depend 

on the MT network [207].  However, HIV-1 pre-integration complexes, which deliver the reverse-

transcribed viral DNA for integration into the host genome, were shown to be associated with the MT 

network.  This association suggested that HIV-1 utilizes MTs for transport [83].  Recent studies have 

reconciled these seemingly contradictory findings by revealing that HIV-1 transport depends on a 

subset of MTs that are resistant to nocodazole [84, 208].   

 Microtubule stabilization can occur through the action of a subset of MAPs termed “MT plus-end 

tracking proteins (+TIPs).  They are called MT +TIPs because they accumulate at the plus end of MTs, 

and move with the plus end even during MT shrinkage events.  Interestingly, +TIPs can function to 

increase or decrease MT stabilization.  For +TIPs involved in stabilization, most act to reduce MT 

shrinkage events or assist in the addition of tubulin to the MT, either through direct binding to the MT or 

through the recruitment of other proteins [209].  Post-translational modifications of tubulin, including 

detyrosination or acetylation, mark long-lived MTs and are recognized by specific kinesins for 

transport routes.  Some post-translational modifications can also influence MT stability by recruiting 

MAPs with stabilizing or destabilizing functions [210].    

HIV-1 particles can induce MT stabilization: entry of HIV-1 increases the formation of 

acetylated and detyrosinated MTs, both markers of stabilized MTs [84].  The mechanism of 

stabilization is thought to occur through the actions of EB1, a +TIP, and its binding partner Kif4, as 

depletion or inhibition of either protein prevented the virus-induced stabilization of MTs and 
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suppressed infection.  Kif4 binds the HIV-1 matrix protein, potentially recruiting EB1 to the incoming 

virion (Figure A-1).  Whether the matrix protein is involved in the downstream signaling for MT 

stabilization, or if it acts only to tether Kif4 to the HIV-1 capsid is not well understood.  Downstream 

of this interaction, the EB1-Kif4 complex stabilizes MTs by recruiting other +TIP proteins, including 

the diaphanous-related formins 1 and 2 (Dia1 and Dia2), which also promote HIV-1-induced MT 

stabilization and virus intracellular transport [80].  Whether Dia1 and Dia2 are the only +TIPs activated 

by EB1, or if others are involved in the MT stabilization process, has yet to be determined.  

In addition to EB1-induced MT stabilization, the MAP1 family proteins MAP1A and MAP1S 

were also reported to stabilize MTs upon HIV-1 infection, and their depletion reduced infection [85].  

MAP1 proteins stabilize MTs by promoting growth at the MT + ends [211].  It is unknown whether the 

activity of MAP1 proteins is a direct result of EB1-induced activation or whether MAP1 proteins are 

activated by a separate signaling pathway.  Interestingly, MAP1 depletion also reduced the association 

of HIV cores with both dynamic and stable MT subsets.  MAP1 interacts with HIV-1 cores in vitro and 

in cells via binding of the HIV-1 capsid to MAP1 light chain LC2.  Together, these findings suggest 

that MAP1 proteins may facilitate HIV-1 infection by tethering the viral core to MTs before active 

transport begins (Figure A-1).   

 

Bidirectional Transport of HIV-1 by Dynein and Kinesin-1 

 For an incoming HIV-1 particle to utilize the microtubule network to reach the nucleus, the motor 

proteins dynein and kinesin are key.  An early study suggested that dynein is responsible for the transport, 

as microinjection of antibodies against the dynein intermediate chain abolished HIV-1 pre-integration 

complex localization to MTOCs [83].  More recently, siRNA depletion of the dynein heavy chain, or 

dynein inhibition by ciliobrevin D treatment, was shown to reduce viral DNA accumulation in the nucleus 

and inhibit HIV-1 infection [51, 60, 78]. The reduction in infection appeared to result, at least in part, from 

impaired intracytoplasmic trafficking [60, 78, 83].  Live cell imaging analysis of cytoplasmic HIV-1 

particles suggested that dynein depletion decreased the overall movement of the virus and specifically 
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decreased its movement in the retrograde direction [60] (Figure A-2). Hence, the net effect of dynein  

  

Figure A-1. HIV and Microtubule Stabilization.  Upon cell entry, HIV-1 induces microtubule 

stabilization.  The HIV-1 matrix protein binds the Kif4-EB1 complex, resulting in the recruitment of 

microtubule-stabilizing proteins, including Dia1 and Dia2.  The MAP1 family of proteins also 

stabilize microtubules and may act to tether the HIV-1 capsid to microtubules before transport. 

 



 

  102 

depletion was an increase in the net distance of HIV-1 particles from the nucleus. 

Each subset of dynein components (light chains, intermediate chains, etc) can have overlapping 

functions, allowing them to be interchangeable and leading to variability in the protein composition of each 

dynein complex, depending on the cargo being transported.  The specificity for cargo suggests that HIV-1 

may utilize a subset of dynein proteins for its transport and infection.  Employing a targeted siRNA 

screening-based approach, I showed that the dynein heavy chain is important for HIV-1 infection and 

transport.  The experiments did not reveal other components of the core dynein complex to be necessary 

for HIV-1 infection, but this may be due to the redundant functions of the proteins or to insufficient siRNA 

depletion.  By contrast to dynein, the experiments identified multiple components of the dynactin complex 

as important for HIV-1 infection, including the Arp1 backbone and the shoulder complex (containing both 

DCTN2 and DCTN3 proteins) [60].  Additionally, using in vitro capsid-binding assays with cell extracts, I 

observed that the dynein heavy chain and the dynactin complex interacted with capsid-like tubular 

assemblies in vitro.  These observations were noteworthy because the dynactin shoulder complex is critical 

for linking dynein adaptors to the dynein complex, suggestive of a role for a dynein adaptor in HIV-1 

transport and infection.  

 Dynein adaptors are important for cargo specificity and to activate motor protein movement along 

microtubules.  The dynein adaptor, bicaudal D 2 (BICD2), was recently demonstrated to promote HIV-1 

transport [60, 82]. BICD2 is one of two homologues of bicaudal D and is important for organelle and 

mRNA transport [127].  BICD1 and BICD2 have similar functions in the cell, but BICD2 is expressed at 

higher levels.  In cultured mammalian cells, BICD2 facilitates dynein-mediated cargo transport from the 

ER to the Golgi and within the Golgi by moving RAB6-positive endosomes.  BICD2 is also important for 

proper cell division: prior to mitotic entry, BICD2 interacts with RANBP2 at nuclear pore complexes and 

recruits dynein and dynactin to ensure proper positioning of the nucleus [reviewed in [12, 49]].  

 BICD2 was initially found to play a role in HIV-1 infection in a genome-wide siRNA screen of 

host factors [89].  Recently, I and others (Dharan et al.,[82]) confirmed the initial infection results and 

further explored the mechanism of BICD2-mediated HIV-1 transport [60, 82].  Depletion of cellular 
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BICD2 via siRNA or CRISPR disruption of the gene resulted in an impairment to HIV-1 transport and a 

build-up of particles near the cell periphery akin to the effect of dynein depletion.  Experiments using live 

cell imaging of intracellular HIV-1 particles suggested that the peripheral accumulation of the virus 

resulted from decreased particle movement in the retrograde direction.  Dharan et al. also reported a 

decrease in HIV-1 particle speed and run length in BICD2 knockout cells [82].  In cells depleted of 

BICD2 by siRNA, I observed that the number of particles moving at any given time was decreased but 

motile particles acted normally in terms of speed and run length [60].  Regardless of the specific 

trafficking defect, the combined observations establish that BICD2 promotes HIV-1 movement to the 

nucleus (Figure A-2).   

 BICD2 was observed to associate with HIV-1, both in vivo in a proximity ligation assay, and in 

vitro to capsid tubular assemblies [60, 82]; this association is in line with its proposed function as an 

adaptor for HIV-1.  Specific BICD2 domains were also tested for binding to HIV-1 capsid tubes.  In both 

types of analyses, I observed that the canonical cargo binding domain of BICD2 (CC3) bound the capsid 

tubes.  Interestingly, I observed that the BICD2 domain that links BICD2 to dynein (CC1) also bound the 

capsid, suggesting there may be an additional domain that HIV-1 employs to recruit BICD2 for transport.  

In order to determine if BICD2 links the HIV-1 capsid to the dynein-dynactin complex, I immunodepleted 

BICD2 from cell extracts and tested them for binding of dynein to HIV-1 capsid-like tubes in vitro.  

BICD2 depletion resulted in reduced binding of dynein to the tubes, suggesting that BICD2 promotes 

interation of the dynein complex to the HIV-1 capsid in vitro. Together, my findings and those of Dharan 

et al. indicate that BICD2 functions as an adaptor for dynein-dependent HIV-1 transport.  

 HIV-1 infection appears to involve bidirectional transport.  In addition to HIV-1 requiring the 

retrograde action of dynein, anterograde movement by kinesin-1 also contributes to HIV-1 infection and 

transport to the nucleus (Figure A-2).  Specifically, the kinesin-1 heavy chain Kif5B was shown to be a 

critical component of kinesin for HIV-1 transport.  Kinesin-1 has been proposed to affect dynein cargo 

transport by redistributing dynein to MT + ends.  The dependence of HIV-1 transport and infection on  
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Figure A-2. Bidirectional Transport of HIV-1 by Dynein and Kinesin-1.  The dynein-dynactin-

BICD2 complex transports the HIV-1 core toward the nucleus.  Paradoxically, kinesin-1 also plays a 

role in this transport, although it moves towards the positive end of microtubules.  The host cell 

protein kinase MARK2 activates the kinesin adaptor FEZ1 by phosphorylation, enabling it to form a 

bridge between kinesin-1 and the HIV-1 capsid. 
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kinesin-1 was not attributed to an effect on dynein, as kinesin-1 depletion did not affect dynein levels or 

intracellular distribution [51, 160].  Thus, it appears that kinesin-1 acts directly to transport the virus.  

This finding may seem counterintuitive, as kinesin-1 would be expected to move HIV-1 away from the 

nucleus, but this view is oversimplistic.  The MT network is complex, and while the majority of 

microtubules radiate from the MTOC near the nucleus, others can nucleate from other MTs and the golgi 

apparatus, thereby changing the direction of the polarity of MTs in the cell.  Thus, anterograde movement 

by kinesin is potentially necessary for HIV-1 to make the turns required for proper routing through the 

cytoplasm.  The mechanisms by which kinesin-1 and dynein activities are coordinated to transport cargo 

are an ongoing area of research [53, 54].        

Similar to dynein, kinesins can utilize adaptor molecules for transporting cargo.  The results of 

depletion experiments suggest that kinesin-1 facilitates HIV-1 transport through the kinesin adaptor 

protein Fasiculation and Elongation Factor zeta 1 (FEZ1), which was also shown to be important for early 

HIV-1 infection [51].  FEZ1 was initially observed to influence HIV-1 infection in a study focused on the 

resistance of a chemically mutagenized cell line to infection by the murine leukemia virus [159], in which 

overexpression of FEZ1 inhibited the accumulation of 2-LTR circles (a marker of nuclear entry). The 

effect appears particularly strong in neuronal cells, in which FEZ1 is expressed in high levels.  

Overexpression of FEZ1 and the depletion of it from cells both reduce HIV-1 infection, suggesting that 

the interactions of FEZ1 with kinesin must be properly balanced.  This necessary balance emphasizes the 

regulatory role that bidirectional movement may play in HIV-1 infection.  These effects may also be due 

to differences in cell types, possibly owing to differences in FEZ1 levels or to neuron-specific transport 

machinery components.   

Consistent with its established function as an adaptor for kinesin-1, FEZ1 associates with kinesin-

1 via KIF5B and binds recombinant capsid-like assemblies in vitro, suggesting that it links the HIV-1 

core to kinesin-1 [51].  FEZ1 activation and binding to kinesin-1 is regulated by the cellular protein 

kinase MT affinity-regulating kinase 2 (MARK2) which phosphorylates FEZ1.  Interestingly, HIV-1 

cores have been reported to bind MARK2, and upon HIV-1 cellular entry, FEZ1 phosphorylation by 
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MARK2 is specifically localized to FEZ1 near HIV-1 cores.  In this way, MARK2 acts to activate FEZ1 

for its role as an adaptor between kinesin-1 and HIV-1 cores [160] (Figure A-2).  Depletion of FEZ1 

resulted in inhibition of HIV-1 infection and a reduction of net particle movement toward the nucleus, 

although virus particles still exhibited bidirectional motility, suggesting there may be more to the 

mechanism [51].  Together, the observed effect of FEZ1 on HIV-1 transport and the linkage of kinesin-1 

to the HIV-1 capsid suggests that HIV-1 exploits FEZ1 as a kinesin-1 adaptor for transport and infection.   

 

Effects of MT-Dependent Transport on HIV-1 Uncoating 

 In addition to their transport function, MAPs may also play a role in HIV-1 uncoating.  Uncoating 

is the disassembly of the HIV-1 capsid that occurs during the post-entry phase of infection. Although 

uncoating is an active area of study, it appears to be necessary for the genetic material to enter the cell 

nucleus, as an intact HIV-1 core is too large (~40 x 100 nm) to traverse the nuclear pore.  Recent studies 

have suggested that uncoating in the cytoplasm is a two-step process, with a fast, initial uncoating event 

within 30 min after fusion, with partial retention of CA protein through nuclear import [34].  The rate of 

uncoating has been studied by various approaches.  Uncoating can be analyzed in vitro by quantifying the 

release of soluble capsid protein from purified HIV-1 cores [212].  Additionally, in microscopy based in 

situ systems, the loss in mean fluorescent intensity of the viral particle is determined over time, with 

innovations on the approach being developed [34, 35, 187, 188, 213].  Another cell-based system, the 

fate-of-capsid assay, allows infection to proceed for several hours, after which cells are lysed and 

uncoating assayed by quantifying the levels of pelletable and soluble capsid protein [214].   

Finally, the cyclosporine A (CsA) washout assay exploits the ability of the capsid-targeting host 

factor TRIMCyp to inhibit HIV-1 infection.  TRIMCyp binds to the intact HIV-1 capsid and inhibits 

infection, making its ability to restrict infection a good readout of an intact capsid.  The drug cyclosporine 

A (CsA) inhibits the binding of TRIMCyp to the HIV-1 capsid, rendering it unable to restrict infection.  

In the assay, TRIMCyp-expressing cells are inoculated with HIV-1 in the presence of CsA, and CsA is 

washed out at various times post-infection.  The rate at which HIV-1 escapes restriction by TRIMCyp is 
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interpreted as a measure of the rate of uncoating [215].  

Although the intrinsic stability of the viral capsid can be influenced by mutations and by 

pharmacological inhibitors, the MT network and motor proteins may also play a role in uncoating.  

Treatment of cells with nocodazole resulted in delayed HIV-1 uncoating as determined by an in situ 

fluorescence microscopy assay, the fate-of-capsid assay, and the CsA-washout assay [81].  These results 

are interesting because they suggest that uncoating requires both unstable and stable MTs, instead of only 

the stable, nocodazole-resistant subset that appears to be important for transport and infection [84].  The 

microtubule-associated proteins Dia1 and Dia2 appear to promote uncoating, as deduced using an in situ 

microscopy based assay and the fate-of-capsid assay [80] (Figure A-3).  The effect of the Dia proteins on 

uncoating was genetically separable from their MT-stabilizing activity: genetic analysis mapped the two 

functions to distinct domains in the proteins, revealing a mutation that inactivated MT stabilization but 

not the uncoating activity.  Although the mechanism is still unclear, the effect on Dia proteins on 

uncoating may be direct, as they have been reported to bind to capsid-like assemblies in vitro [80].  

The dynein complex also appears to be important for HIV-1 uncoating. Depletion of the dynein 

heavy chain by siRNA, pharmacological inactivation of dynein, and loss-of-function perturbations by 

overexpression of the dynactin component dynamitin (DCTN2) all delayed HIV-1 uncoating [78, 81].  

These analyses were performed using an in situ fluorescence-based system, the CsA washout assay, and 

the fate-of-capsid assay, respectively.  Additionally, depletion of the dynein adaptor BICD2 reduced the 

rate of uncoating in an in situ fluorescence-based system, suggesting BICD2 has a role in promoting 

uncoating [82] (Figure A-3).  In vitro, BICD2 can bind the HIV-1 capsid and link the capsid to dynein 

[60], but whether these interactions are important for uncoating is not known.   

Interestingly, one of the dynein light chains, DYNL1, appears to act oppositely to the rest of the 

dynein complex.  Depletion of DYNL1 increased the levels of pelletable CA, as determined by the fate-

of-capsid assay [77].  This suggests that DYNL1 delays uncoating (Figure A-3).  The mechanism for this 

delay is not well understood, but an interaction between DYNL1 and HIV-1 integrase was critical for the 

effect.  DYNL1 was not observed to bind the capsid directly, suggesting that the effect on uncoating may  
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Figure A-3. Effects of MT-Dependent Transport on HIV-1 Uncoating.  The breakdown of the 

HIV-1 capsid, termed uncoating, is influenced by the dynein-dynactin-BICD2 complex and kinesin-1-

FEZ1 in a poorly understood mechanism.  Additionally, Dia1 and Dia2 promote uncoating by a 

mechanism distinct from their role as microtubule stabilizers.  By constrast, the dynein light chain 

delays uncoating, acting oppositely from the rest of the dynein complex.   
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be indirect.  Whether its ability to delay uncoating is important for regulating the initiation or 

location of HIV-1 uncoating in cells has yet to be determined.  

Similar to the dynein complex, kinesin-1 depletion by siRNA also delayed HIV-1 uncoating 

(Figure A-3).  The effect of kinesin-1 on uncoating relies on the same machinery and processes as it does 

for transport: specifically, MARK2 activation of FEZ1 on cores, which activates binding of FEZ1 to the 

kinesin heavy chain KIF5B.  Depletion of FEZ1, and the perturbation of binding to kinesin-1, both 

slowed HIV-1 uncoating as determined by the fate-of-capsid assay [160].       

Overall, the importance of dynein and kinesin in HIV-1 uncoating is currently murky.  The role 

that dynein and kinesin play in bidirectional transport suggests that these proteins transport the HIV-1 

core to a location in the cytoplasm conducive to uncoating.  New studies indicate that uncoating is a two-

stage process involving an early loss of CA protein followed by a further dissociation of CA just prior to 

nuclear entry [34, 35].  Whether uncoating is only temporally controlled or there is also spatial control 

depends on transport, remains to be determined.    

Because BICD2 and FEZ1 both bind to the viral capsid, it is plausible that these proteins affect 

uncoating by directly influencing the stability of the capsid.  On the other hand, the roles in transport and 

capsid binding of these motors suggest a possible secondary model: simultaneous pulling by motors in 

opposite directions may rupture the capsid by brute force.  However, it is unclear whether the forces 

exerted by motor proteins are sufficient to fracture the capsid [216-218].  Adenovirus uncoating is known 

to be influenced by the forces applied by kinesin-1.  After adenovirus binds to the nuclear pore through 

Nup214, kinesin-1 is recruited and also binds to the capsid.  As it moves back toward the plus end of 

MTs, the “tug of war” between kinesin-1 and Nup214 for the capsid results in its partial rupture [219].  

This suggests that a similar mechanism for HIV-1 could be at play.  Since the primary HIV-1 uncoating 

event occurs early in the cytoplasm, this may suggest that dynein and kinesin are the opposing forces in 

this “tug of war” type model.     

Although initial models of cargo transport suggested that the number of each opposing motors 

determined the directionality of transport, newer reports suggest that there may be more regulation to the 
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transport.  Specifically, cross-talk between the opposing motors and the activation or inactivation of 

motors depending on the directionality is now thought to occur [55].  Concerted transport would argue 

against a mechanism where dynein and kinesin physically pull the capsid apart.  However, whether a 

foreign cargo like the viral core would activate these regulatory mechanisms is unknown.  Further 

understanding of the regulatory mechanisms of bidirectional transport will aid in an understanding of 

HIV-1 uncoating.  

  

Reverse Transcription and Microtubule-Associated Proteins (MAPs) 

 Reverse transcription is the process by which retroviruses convert their RNA genome into a 

double-strand DNA provirus.  Although MTs and motor proteins appear to participate in HIV-1 

uncoating, the link between these components and reverse transcription is less clear.  MT depletion by 

nocodazole treatment did not alter reverse transcription [81], although one study reported that depletion of 

MAP4, which stabilizes MTs, suppressed reverse transcription and infection [79] (Figure A-4).  Together, 

these findings suggest that the stable subset of MTs is important for reverse transcription, potentially 

suggesting a role for active transport along these tracks for components necessary for reverse 

transcription.  A role for EB1 in HIV-1 reverse transcription has not been reported at this time.  

Alternatively, MAP4 may play a separate role beyond MT stabilization in promoting reverse 

transcription.  

By contrast to uncoating, the role that motor proteins and active transport play in HIV-1 reverse 

transcription is unclear.  A role for kinesin-1 in HIV-1 reverse transcription has not been reported, making 

this an attractive area for research.  The role of dynein in reverse transcription has been examined but a 

clear picture has not yet emerged.  One study reported that depletion of the dynein heavy chain resulted in 

a slight delay in reverse transcription with the levels of viral DNA accumulation recovering 24 hours after 

virus inoculation [78].  I also found no significant difference in reverse transcription in dynein 

knockdown cells by 8 hours post infection [60]. Similarly, depletion of BICD2 or dynactin components 

that are important for HIV-1 infection did not affect reverse transcription [60, 82].  These observations  
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Figure A-4. Hypothetical Role of MAPs in HIV-1 Reverse Transcription.  The roles of MAPs in 

HIV-1 reverse transcription are not well understood.  The dynein-dynactin-BICD2 complex does not 

seem to play a role in this process, but the dynein light chain itself promotes reverse transcription 

through binding to the viral integrase protein.  The microtubule-stabilizing protein MAP4 also 

promotes reverse transcription, but it is unclear whether this is a direct effect or is a consequence of its 

microtubule-stabilizing activity.      
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suggest that active transport mediated by dynein is not necessary for HIV-1 reverse transcription.   

Interestingly, knockdown of the cytoplasmic dynein light chain, DYNL1 did inhibit HIV-1 

reverse transcription (Figure A-4).  DYNL1 was found to interact with integrase at positions Q53 and 

Q252, and mutations to alanines at these residues abolished integrase binding to DYNL1.  This integrase 

mutant was also defective in reverse transcription, suggesting that the role of DYNL1 in reverse 

transcription requires binding to integrase.  DYNL1 depletion also resulted in increased HIV-1 uncoating 

measured in the fate-of-capsid assay [77].  Therefore, the attenuated reverse transcription observed may 

be a consequence of premature uncoating, as observed for capsid-destabilizing mutations in the CA 

protein. The axonemal dynein light chain, DNAL1, which is expressed in lymphoblastoid cells, also 

promotes HIV-1 reverse transcription and infection, further supporting a role of dynein light chains in 

reverse transcription [79].  The apparent lack of an effect on reverse transcription from depletion studies 

of the dynein motor domain and dynactin [60, 78], suggests that the light chain’s effect on reverse 

trancription is independent of the active dynein complex. 

 

 

Future Perspectives 

 Recent advances in the understanding of HIV-1 and the MT network have revealed mechanisms 

by which HIV-1 usurps cellular processes to promote its replication, both through direct and indirect 

means.  The findings suggest an overall model for transport and uncoating as depicted in Figure A-5.  

Upon entry, HIV-1 utilizes stabilized tracks to be transported by MT motor protein complexes dynein-

dynactin-BICD2 and kinesin-FEZ1 [51, 60, 78, 82, 83].  Interestingly, HIV-1 induced MT stabilization is 

promoted by MA.  An understanding of the mechanism of MA activation of MT stabilization may render 

MA a promising therapeutic target to thwart HIV-1 transport and infection.  Additionally, since kinesin-1 

transport is primarily toward the cell periphery, understanding the requirement for kinesin-1 in HIV-1 

transport is an intriguing future direction.  The role of kinesin-1 in transport will likely be unveiled as the 

understanding of bidirectional motility of cellular cargoes and the interplay between dynein and kinesin  
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Figure A-5. MAPs Influence Many HIV-1 Early Events.  The microtubule network and its 

associated proteins influence many aspects of HIV-1 infection.  These include: 1. microtubule 

stabilization, 2. transport, 3. uncoating and 4. reverse transcription.  Mechanisms by which HIV-1 

exploits MAPs for many of its functions represent attractive areas for future research.   
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are further understood.                             

Studies have also uncovered surprising interactions between the mechanism of HIV-1 transport 

and other steps in the viral lifecycle, namely uncoating and reverse transcription (Figure A-5).  The roles 

that motor complexes play in uncoating have yet to be fully elucidated, but may represent a model in 

which the oppositional forces from their “walking” in differing directions aids in physically breaking 

apart the capsid.  This tug-of-war model is reminiscent of the mechanism of adenovirus uncoating by 

kinesin pulling the capsid apart after binding at the nuclear pore complex [219].  The role of transport in 

uncoating may also result from indirect effects on the viral capsid, such as positioning it at a particular 

location in the cell or transporting other cellular proteins and components needed for uncoating.  

Interestingly, the dynein light chains DYNL1 (cytoplasmic) and DNAL1 (axonemal) promote reverse 

transcription as well as uncoating and infection [77, 79] but may be working outside the dynein complex.  

The mechanism of the light chain’s action in HIV-1 reverse transcription is unclear, and whether it is 

functioning through a direct effect on the core, or is having a secondary effect on other cellular 

components required for reverse transcription is unknown.                

A stage of the viral lifecycle that is poorly understood is the end of transport along MTs and the 

“pass-off” of HIV pre-integration complex (PIC) from the MT network to the nucleus (Figure A-5).  

Whether the interactions between the motor complexes and the HIV-1 capsid are maintained throughout 

the transport process, or these connections are lost as the core begins to uncoat, are not well understood.  

It is known that some CA protein remains associated with the PIC throughout this process, but whether 

this amount is enough to sustain transport has not been shown.  As discussed above, other viral proteins, 

including integrase, have been shown to interact with dynein complex components, and these interactions 

may provide a secondary mode of contact for transport of the PIC. It has not been determined whether 

integrase is important for transport, and especially transport after uncoating begins.  

While microtubules can originate from the nuclear envelope, the majority begin at the MTOC.  

This leads to the question then, of how the viral PIC is transferred from the ends of MTs (at the MTOC) 

to the nucleus for entry (Figure A-5).  Cargo movement along MTs is not a simple direct process: 
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transport can start and stop along the MT many times before cargo is delivered to its destination.  It is 

possible that the PIC naturally detaches from the MT in one of these pauses, and is close enough to the 

nucleus to finish its transfer by diffusion alone.  Another possible mechanism involves transport by 

kinesin-1.  With the MTOC being the nucleation site for many MTs pointed in different directions, the 

polarity of some of these can be directed toward the nucleus.  This may represent an opportunity for 

transport by kinesin-1 with MT positive-end walking in the direction of the nucleus.  Studies have yet to 

reveal the way in which this transfer between MTs would occur, and the necessary signaling to switch 

transport. 

With kinesin transport toward the nucleus, the virus still must be transferred to the nuclear 

envelope.  It is possible that additional MAPs assist in this transfer.  For instance, BICD2 anchors MTs at 

the nucleus during some phases of the cell cycle.  Such moonlighting functions of motor-associated 

proteins are common and may suggest other ways in which the MT network and proteins can be exploited 

by HIV-1. This aspect of the viral lifecycle represents an opportunity for research and further exploration.  

With the current resolution and time-scale of live-cell microscopy, studies would likely be able to image 

this type of event. Capturing enough events at the moment of virion transfer to draw convincing 

conclusions might be challenging: at any given time, the majority of HIV-1 particles are nonmotile, with 

trafficking events occurring in short bursts.  Advances in imaging techniques seem likely to overcome this 

limitation.  While many details of the transport process remain to be worked out, it is clear that HIV-1 

exploits the MT transport machinery to accomplish the early steps in infection.     

The important roles that dynein, kinesins, and the MT network play in cell division and 

homeostasis suggest these specific components will be challenging targets for antiviral therapy.  

Targeting specific interactions of the adaptors BICD2 and FEZ1 may be easier, as these components, 

while still important, are not universally required for transport.  Specifically, understanding the 

interactions occurring between these adaptors and the HIV-1 capsid may prove useful for the design of 

small molecules that selectively target the viral capsid and disrupt the interactions.  Targeting the capsid 

to prevent BICD2 and FEZ1 binding would lessen the potential for off-target effects on cellular transport.  
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The potential for therapeutic targeting would be greatly enhanced with a further understanding of the 

mechanisms of HIV-1 transport, including initiation, active movement before and after uncoating, and the 

pass-off from the MT network to the nucleus.  The importance of transport on other viral steps in the 

lifecycle, including uncoating and reverse transcription, also represents a promising area of future 

research.   
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Purpose of review 

To summarize recent advances in the discovery of chemical inhibitors targeting the HIV capsid and 

research on their mechanisms of action. 

 

Recent findings 

HIV infection is critically dependent on functions of the viral capsid. Numerous studies have reported the 

identification of a variety of compounds that bind to the capsid protein; some of these inhibit reverse 

transcription and nuclear entry, steps required for infection. Other capsid-targeting compounds appear to 

act by perturbing capsid assembly, resulting in noninfectious progeny virions. Inhibitors may bind to 

several different positions on the capsid protein, including sites in both protein domains. However, the 

antiviral activity of many reported capsid-targeting inhibitors has not been definitively linked to capsid 

binding. Until recently, the low-to-moderate potency of reported capsid-targeting inhibitors has precluded 

their further clinical development. In 2017, GS-CA1, a highly potent capsid inhibitor, was described that 

holds promise for clinical development. 

 

Summary 

Small molecules that bind to the viral capsid protein can be potent inhibitors of HIV infection. Capsid-

targeting drugs are predicted to exhibit high barriers to viral resistance, and ongoing work in this area is 

contributing to an understanding of the molecular biology of HIV uncoating and maturation. 
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Introduction 

 

  Infection by HIVs remains a global public health threat. Although advances in antiretroviral 

therapy have been instrumental in reducing the spread and severity of HIV/AIDs, there remains no 

effective vaccine. Moreover, treatment is not curative; consequently, patients must be treated for their 

entire lives. Poor adherence to therapy leads to viral resistance to existing drugs, resulting in a continuing 

need for new therapeutics, preferably against new drug targets. In this review, I highlight recent research 

efforts aimed at identifying inhibitors that directly target the HIV-1 capsid and determining their antiviral 

mechanisms. Although there are currently no capsid-targeting compounds approved for clinical use, a 

potent capsid-targeting inhibitor recently reported holds promise for therapeutic development. 

 The HIV-1 capsid is a conical protein shell composed of a repeating hexameric lattice of the viral 

CA protein.  Within the capsid are housed the viral RNA genome and associated proteins, including the 

enzymes reverse transcriptase and integrase. The capsid and its contents are collectively referred to as the 

viral core. The capsid is composed of an assembly of CA protein subunits, each consisting of two 

domains (N-terminal and C-terminal domains, or NTD and CTD respectively) connected by a flexible 

linker (Figure A-6)[1, 9, 13].  The capsid is organized into hexameric and pentameric rings of CA, and the 

overall lattice is stabilized by several types of CA-CA interactions (Figure A-7)[2].  The hexamers 

contain a central ring formed by CA-NTD interactions as well as an external ring formed by CA-

CTD/CA-NTD interactions. Hexamers are connected by CTD-CTD interactions at two- and three-fold 

symmetry axes in the lattice [reviewed in [25]].  Of the 1200 or so CA subunits in the capsid, the majority 

are hexamers, but the capsid also contains 12 CA pentamers that result in closure of the lattice according 

to the principles of fullerene geometry.  The presence of CA pentamers in the capsid of native HIV-1 

particles has recently been confirmed by cryo-EM [2].  The placement of the pentamers determines the 

shape of the capsid, which is generally conical but can also be tubular or spherical.  
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Figure A-6. Structure of the HIV-1 CA protein.  CA is shown as the conformation present within 

the X-ray crystal structure of the CA hexamer (4xfx.pdb)[1].  Shown are the N-terminal domain 

(NTD), the flexible linker and the C-terminal domain (CTD).  The structure was rendered with UCSF 

Chimera [9]as provided by SBGRID[13].  CA, capsid protein.  
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Figure A-7. Structures of the HIV-1 CA hexamer and pentamer. The hexamer represents the X-

ray crystal structure of the wild-type CA hexamer (4xfx.pdb coordinates), and the pentamer was 

rendered from the electron tomographic structure of the native viral capsid (5mcy.pdb) [2].  The 

structures were rendered with Chimera’s Multiscale Models tool.  CA, capsid protein.   
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The HIV capsid is a metastable structure: mutations that either stabilize or destabilize it generally 

result in low viral infectivity.  Following penetration into target cells, HIV must undergo reverse 

transcription (copying the viral RNA into DNA), intracytoplasmic transport, nuclear entry, and 

integration.  All of these functions appear to depend on the viral capsid.  During these early post-entry 

steps in infection, the capsid undergoes a stepwise disassembly process known as uncoating [34, 188, 

212, 213, 220-224]. Perturbations in HIV capsid stability can result in premature uncoating; this 

frequently results in attenuated reverse transcription and a failure to establish productive infection.  

During its journey to the nucleus, the HIV capsid interacts with several host proteins that determine both 

the efficiency of nuclear entry and the distribution of integration sites in the host genome.  Most of these 

interactions promote infection, but the noteworthy capsid-binding host proteins TRIM5  and MxB 

inhibit HIV infection, further demonstrating the critical role of the of the viral capsid during infection.  

Small molecule inhibitors that bind to the capsid can perturb the stability balance of the capsid and 

compete for host factor binding, thereby interfering with infection.   

 In the late phase of the HIV-1 life cycle, the capsid must assemble and mature into its final 

conical structure [225].  CA is formed by proteolytic cleavage of the viral Gag structural polyprotein 

during virus maturation.  The CA region of Gag is critical for both HIV particle assembly and maturation 

(core formation); therefore, CA-targeting small molecule inhibitors may act at early as well as late stages 

of replication.  The many critical functions of CA make it highly attractive as a pharmacologic target.  

HIV is highly sensitive to mutations in CA, thus explaining its high sequence conservation relative to 

other HIV proteins. [13, 226, 227].   For these reasons, I expect that HIV resistance to CA-targeting drugs 

will require mutations that compromise the fitness of the virus, thus resulting in a high barrier to 

resistance and excellent therapeutic durability.   

 

Old and New CA-targeting Inhibitors 

CAP-1: The first report of a CA-targeting HIV inhibitors appeared in 2003, when Summers and 

coworkers identified N-(3-chloro-4-methylphenyl)-N’-{2-[({5-[dimethylamino)-methyl]-2-furyl}-
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methyl)-sulfanyl]ethyl}urea) (CAP-1) via a computational search for small molecules that bound to the 

CA-NTD.  CAP-1 reduced HIV-1 replication by 95% at a concentration of 100 µM.  The compound binds 

to CA at the base of the NTD, near the linker region (Figure A-8).  NMR spectroscopy and X-ray 

crystallography studies have shown that CAP-1 binding alters the conformation of the NTD; Phe32 is 

displaced from a buried position, opening a deep hydrophobic cavity where CAP-1 resides [3].  The 

compound inhibits the ability of CA to self-assemble in vitro, and results in virus particles of altered size 

and core morphology. CAP-1 does not inhibit infection at an early step, and does not appear to affect 

assembled capsid complexes in vitro [228].  Rather, it acts late during particle maturation, resulting in a 

defective core and thus noninfectious particles [229].  HIV resistance to CAP-1 have not been reported, 

leaving open the formal possibility of a functional target other than CA.  Identification of more potent 

inhibitors targeting the CAP-1 binding site on CA would be helpful for further mechanistic studies.  

 

PF74: PF-3450074 (PF74), first reported in 2010, exhibits broad spectrum inhibition of HIV isolates, 

with submicromolar potentcy (EC50 = 8-640 nM) [230-232].  High concentrations of PF74 interfere with 

early and late events in the virus lifecycle by destabilizing the HIV-1 capsid, resulting in premature 

uncoating and loss of reverse transcription and infection in early stages, and later, disrupting particle 

formation [232-234].  Interestingly, PF74 also stabilizes preassembled CA-NC tubes and stimulates the 

rate of capsid self-assembly in vitro [228, 235].  This may be due to the dual effects exhibited by PF74; at 

concentrations lower than 2 µM, the compound competes for host protein binding to the capsid, but at 10 

µM it induces premature uncoating, resulting in impaired reverse transcription [236-238].  PF74 occupies 

a pocket in CA at the NTD-CTD intersubunit interface, at which the host proteins CPSF6 and Nup153 

also bind (Figure A-8) [239, 240].  CPSF6 and Nup153 are two of many host proteins that enhance HIV 

infection by facilitating nuclear entry and/or integration [reviewed in [241]].  PF74’s antiviral activity is 

also influenced by another CA-binding host factor, cyclophilin A.  Cyclophilin A binds the HIV-1 capsid 

and promotes HIV infection, but its precise mechanism is not well understood.  Inhibition of CypA 

binding to capsid in target cells reduces the antiviral activity of PF74, likely by modulating capsid  
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Figure A-8. HIV-1 CA binding sites for three antiviral compounds and one peptide.  C1, PF74, 

and CAP-1 occupy distinct sites on the NTD; the stapled peptide ligand NYAD-13, an analogue of 

CAI, binds to the CTD dimer interface.  This figure illustrates several known binding sites for CA-

targeting HIV inhibitors and is a composite generated using the CA monomer from 4xfz.pdb 

[1]with the ligand coordinates aligned from 2jpr.pdb [3], 4e91.pdb[6], and 216e.pdb [11].  CA, 

capsid protein. 
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structure and/or other host protein interactions with the capsid [236].  The weight of evidence suggests 

that a major antiviral mechanism of PF74 is to perturb the binding of host factors to the incoming HIV 

capsid.   

 HIV resistance to PF74 is complex, requiring multiple of substitutions at or near the binding 

pocket, which lies at the NTD-CTD intersubunit interface (Figure A-8) [240].  High level resistance 

requires at least three amino acid changes in this region of CA [242].  Intriguingly, a substitution outside 

the PF74 binding site (E45A) that does not inhibit binding to PF74 also conferred resistance.  The E45A 

mutant alters dependence of HIV-1 on specific host proteins involved in nuclear entry, including Nup153 

and TNPO3 [233].  Another PF74-resistant mutant (4Mut), encoding four amino acid substitutions in CA, 

showed moderately reduced binding to PF74, and its replication was actually dependent on the inhibitor.  

The 4Mut virus encodes two amino acid substitutions each in CA-NTD and the CA-CTD within the 

PF74-binding pocket. Like the 5Mut virus, the dependence of 4Mut on Nup153, Nup358, and TNPO3 

was also reduced, further supporting the view that PF74 acts by perturbing host factor binding and/or 

dependence [243]. 

 

BI Compounds: BI-1 and BI-2 are pyrrolopyrazolones that were discovered from a screen for HIV-1 

replication inhibitors that stabilize capsid complexes [244].  Although they both block replication in 

single and multiple round infections, BI-2 is more potent (EC50 values are 8.2 µM and 1.8 µM, 

respectively).  As observed for PF74, BI-2 appears to destabilize the HIV-1 core, yet it promotes the self-

assembly of capsid-like complexes of recombinant CA-NC protein in vitro [228, 234, 244].  BI-2 does not 

result in impaired HIV reverse transcription in target cells, but it inhibits HIV nuclear entry.  BI-2 binds to 

the same site in the NTD as PF74; the compound is smaller, and does not make contacts with the CTD of 

the adjacent CA subunit [240].  Like PF74, BI-2 can influence the binding of CPSF6 and Nup153 to the 

viral capsid [234, 240].  Substitutions in the binding pocket (A105 and T107) conferred resistance to both 

BI-1 and BI-2 [244], confirming CA as the antiviral target.  Overall, BI-2 appears to inhibit HIV infection 

by a mechanism similar to that exhibited at low concentrations of PF74.   
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Peptide Inhibitors: CAI (CA inhibitor), first reported in 2005,  is a CA-binding 12-mer peptide that was 

discovered in a phage display library screen [245].  CAI inhibits assembly of HIV-1 CA as well as a 

longer Gag fragment in vitro; it inhibits capsid self-assembly by interacting with a conserved hydrophobic 

groove at the CA dimerization interface (Figure A-8), altering the structure of CA in this region.  CTD 

substitutions in this region reduce the affinity for CAI and impair the maturation of particles, resulting in 

reduced HIV infectivity.  Like many peptides, CAI cannot penetrate cell membranes [228, 245, 246], thus 

precluding its use as an antiviral.  To improve its cell penetration, hydrocarbon stapling was utilized to 

convert CAI into a cell-penetrating peptide (named NYAD-1).  NYAD-1 disrupts the assembly of 

immature and mature-like virus particles in in vitro assembly assays; it also reduces particle formation 

and inhibits HIV-1 maturation in cell culture.  Remarkably, NYAD-1 can also target the incoming HIV 

capsid and inhibits infection at an early postentry stage.  NYAD-1 shows broad-spectrum HIV-1 infection 

inhibition at low micromolar potency (IC50 4-15 µM), making it attractive for therapeutic development 

[247].   

 CAC-1 is another peptide that was binds to and promotes dissociation of the CTD dimer [248, 

249]. In addition, CAC-1 inhibits particle production.  Initial solubility and aggregation limitations 

prompted the design of the related peptides CAC1-M and CAC1-C with improved solubility but lower 

CA-binding affinities than CAC-1.  These peptides exhibit limited antiviral activity but worked additively 

with other CA binding peptides to reduce infection by 80%-90%.  Hydrocarbon stapling was employed to 

improve their cellular uptake, resulting in NYAD-201 and NYAD-202, which inhibit CTD dimerization 

and particle production, and exhibit antiviral activity at a post-entry stage [248, 250].   

 

C-A1: The gyrase B inhibitor coumermycin A1 (C-A1) was observed to inhibit HIV-1 infection 

in a focused screen of known inhibitors targeting ATP-dependent DNA motors.  CA-1 appears to 

have dual antiviral effects: it inhibits viral gene expression by targeting Hsp90, but it also 
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inhibits HIV integration.  C-A1 had no effect on nuclear entry or reverse transcription, indicating 

that it acts between nuclear entry and integration.  C-A1 binds the capsid directly, resistance to 

the compound is conferred by a point mutation at CA position 105, suggesting that C-A1-

mediated inhibition may be partially due to a capsid-based mechanism.  The capsid mutant 

N74D is also resistant to C-A1; this mutant exhibits altered dependence on specific host factors 

involved in nuclear entry, suggesting a functional connection between C-A1 and HIV 

interactions with the nuclear pore complex.  Interestingly, C-A1 also promotes the binding of 

CPSF6 to the capsid; CPSF6, normally a nuclear protein, blocks HIV-1 infection when it is 

mislocalized to the cytoplasm and may hyperstabilize the HIV-1 core, thus perturbing normal 

HIV uncoating.  In the nucleus, however, CPSF6 aids in HIV-1 integration.  These findings 

suggest a potential model in which C-A1 prevents capsid dissociation/PIC dissociation from 

CPSF6 in the nucleus, therefore blocking movement and integration.  This coorelates with the 

finding that N74D, which is independent of capsid for nuclear entry, is resistant to C-A1  [251, 

252].   

 

CK026, I-XW-053, and compound 34: The compound CK206 emerged from a virtual (i.e. in silico) 

screen of 3 million small molecules aimed at designing inhibitors of the CA-NTD/CA-NTD interface.  It 

was found to inhibit HIV replication in single and multiple round replication of many cell types, but had 

no effect on PBMCs.  To ameliorate this, I-XW-053 was designed based on CK026, which broadly 

inhibited HIV infection in PBMCs.  I-XW-053 was found to interact with CA at a novel site on the NTD-

NTD interface and decrease late reverse transcription products [253].  There is no impact on stability of 

HIV-1 CA-NC complexes in vitro, but these studies have not been performed in cells.  Two CA mutants, 

Ile37Ala and Arg173Ala were determined to reduce binding of I-XW-053 to the capsid, and also showed 

a dramatic decrease in HIV-1 infection.  Compound 34 was optimized from I-XW-053 to improve 
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antiviral potency by 11 fold (EC50 = 14.2 +/- 1.7 µM).  It binds the same region in the CA-NTD/CA-NTD 

that I-XW-053 does [254].  

 

C1: Boehringer-Ingelheim compound 1 (C1) was initially discovered as a novel inhibitor of CA assembly 

in vitro [255].  C1 binds to a unique site of the CA-NTD, near the base of the CypA-binding loop (Figure 

A-8).  It inhibits HIV-1 replication by acting at a late step to disrupt proper assembly of the mature viral 

capsid, without altering Gag processing.   C1 is inactive at the time of virus infection of target cells, 

indicating that the compound does not affect HIV-1 early events.  C1 exhibits moderate antiviral activity 

(IC50 =57 µM); HIV-1 resistance can result from a single amino acid substitution within the compound 

binding site [6, 256], thus confirming that CA is the bona fide antiviral target of the compound. Though 

the antiviral mechanism is not fully understood, C1 may act by perturbing the kinetics of CA assembly in 

the maturing particle, or may promote an off-target CA assembly pathway. Further exploration of this CA 

target should prove informative.  

 

Ebselen- The small molecule ebselen was recently discovered by a novel screening approach employing a 

time-resolved fluorescence resonance energy transfer assay to identify inhibitors of CA dimerization 

[257].  This assay was used to screen a library of 1280 in vivo active drugs. Ebselen is an efficient 

inhibitor of CA dimerization in vitro and, and was shown to inhibit HIV infection in a dose-dependent 

manner with moderate potency (EC50 = 3.37 µM).  Ebselen inhibited HIV reverse transcription in target 

cells; it also resulted in impaired uncoating based on the fate-of-capsid assay, but these results could be 

due to aggregation of the CTD in the presence of ebselen, which was seen with NMR. Particle assembly 

and maturation were not affected, indicating that ebselen acts during early stages of infection.  Whether 

CA is the bona fide antiviral target of ebselen remains to be determined.  

 

Antibodies- Recently, monoclonal antibody research to inhibit viral infection within cells has flourished.  

Plagued by the same issue of poor cellular penetration that some peptide inhibitors face, monoclonal 
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antibodies are now being conjugated to cell-penetrating peptides to generate cell-internalizing antibodies.  

A recent antibody against CA was discovered to reduce HIV-1 replication up to 73% and 49% in T 

lymphocytes and PBMCs, respectively, at a concentration of 10 ug/ml.  Pretreatment of cells with the 

antibody was more efficient at reducing HIV replication than adding antibody after viral incubation had 

begun, suggesting the antibody may be working at an early stage in infection.  Together, these findings 

support that this approach has valuable promise for future therapeutic development [258].  

 

GS-CA1- A new CA-targeting HIV inhibitor from Gilead Sciences, Inc. was recently described at 

scientific meetings and corporate press releases.  The compound, currently named GS-CA1, exhibits 

highly antiviral potency in human peripheral blood mononuclear cells (EC50 = 140 pM) with broad 

spectrum inhibition across all HIV clades.  GS-CA1 binds to the same broadly conserved site occupied by 

with PF74, lying at the NTD-CTD intersubunit interface within CA hexamers.  Like PF74, GS-CA1 

exhibits a dual antiviral mechanism: it acts late to reduce HIV-1 particle infectivity (presumably via 

perturbation of maturation); it also targets the incoming mature viral capsid to inhibit infection.  GS-CA1 

also binds to the same location on CA as CPSF6 and NUP153. Overall, the current unpublished 

descriptions of the compound’s mechanism indicates that it acts like PF74, but with much greater 

potency.  In vitro resistance selection experiments identified 5 amino acid substitutions in the GS-CA1 

binding pocket that independently conferred resistance. However, a recent study found that none of those 

mutations were actively circulating or found among 132 sample patients.  Studies in rats indicate that a 

single subcutaneous injection maintains plasma concentrations of GS-CA1 well above the plasma-

binding—adjusted effective concentration required to inhibit HIV replication by 95% (paEC95 ) for 

greater than 10 weeks, suggesting the efficacy of long-acting treatment. Gilead Sciences has announced 

plans to begin Investigational New Drug-enabling toxicology studies and Phase 1 clinical trials in 2018, 

with the goal of developing a long-acting injectable formulation [259, 260].  
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Perspective 

 

Efforts to identify capsid-targeting HIV inhibitors date back 15 years, with a variety of approaches and 

types of molecules being described.  In the past few years, this area has gained momentum, though with 

setbacks resulting from two major pharmaceutical companies (Pfizer and Boehringer-Ingelheim) 

discontinuing their HIV antivirals research efforts.  Renewed optimism in this area has been stimulated by 

structural and mechanistic information from basic research, and there is hope that a clinically useful HIV 

capsid inhibitor will be licensed for therapy within the next several years.  
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