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Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from liver 

contributes to atherogenic dyslipidemia that is associated with obesity, diabetes, and the 

metabolic syndrome. Numerous models of obesity are characterized by increased central nervous 

system (CNS) neuropeptide Y (NPY) tone which contributes to positive energy balance and 

obesity. In fact, an acute, single intracerebroventricular (ICV) administration of NPY in lean 

fasted rats elevates hepatic VLDL-TG secretion. Thus, our overarching hypothesis is that 

elevated CNS NPY action contributes to dyslipidemia by activating central circuits that modulate 

liver lipid metabolism. Our studies focused on identifying molecular determinants in the 

hypothalamus and the liver by which increased CNS NPY signaling modulates hepatic 

lipoprotein metabolism. 

First, we sought to determine if the effects of NPY on feeding and/or obesity are 

dissociable from effects on hepatic VLDL-TG secretion. ICV NPY-treated chow-fed rats pair-fed 

to vehicle-treated controls develop hypertriglyceridemia in the absence of increased food intake 

and body fat accumulation. Acute ICV injection of selective Y1, Y2, Y4, and Y5 receptor 

agonists all induced hyperphagia in lean ad-libitum fed rats with the Y2 receptor agonist having 

the most pronounced effect. The NPY Y1 receptor agonist robustly stimulated hepatic VLDL-TG 

secretion, while a Y2 receptor agonist had a modest effect on VLDL-TGs, and no effect was 

observed for Y4 and Y5 receptor agonists in lean fasted rats. These findings raise the possibility 

 
 



that NPY regulates feeding and lipoprotein metabolism partially via separate NPY receptor 

systems and/or mechanisms.  

Lastly, we sought to identify novel regulatory mechanisms in the liver engaged by CNS 

NPY signaling. We observed, in ICV NPY- and Y1 agonist-treated lean fasted rats, that oleic and 

linoleic acid were enriched in the liver phospholipid (PL) pool and secreted into plasma TGs. 

Furthermore, CNS NPY signaling via the Y1 receptor robustly activated key hepatic regulatory 

enzymes, ADP-ribosylation factor-1 and lipin-1, involved in remodeling liver PL into TG for 

VLDL maturation and secretion. Altogether, this body of work has overarching implications in 

further understanding how obesity-related CNS dysfunction contributes to the pathophysiology of 

atherogenic dyslipidemia associated with obesity, diabetes, and the metabolic syndrome. 
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CHAPTER I 

 

INTRODUCTION 

 

Cardiovascular risk factors 

 

Classical cardiovascular risk factors 

With the advent of antibiotics in 1940s and the implementation of public health measures 

to control infectious disease outbreaks, infectious disease mortality declined and human life 

expectancy increased (1, 2). However, as a consequence of these changes, cardiovascular disease 

(CVD) emerged as the main cause of mortality (1). Because very little was known about the 

origin and causes of CVD, the Framingham heart study was founded in 1948 by the United States 

Public Health Service to study the epidemiology and risk factors for CVD (3). The first cohort 

included 5,029 healthy residents between 30 and 60 years of age from the town of Framingham, 

Massachusetts. This study population has been examined biennially to identify common patterns 

related to CVD development (1). Careful analysis of the Framingham study population has led to 

the identification of the following classical cardiovascular risk factors: male sex, family history of 

CVD, hypertension, high cholesterol, and smoking. Clinicians have become increasingly adept at 

treating these classical cardiovascular risk factors, particularly cholesterol, hypertension, and 

smoking (4). For example, the therapeutic effect of statin therapy to lower low-density lipoprotein 

cholesterol (LDL-C) levels has clearly reduced CVD risk and is a public health success. In the 

Heart Protection Study, high risk patients received either statin therapy or placebo to compare the 

relative reduction in CVD events. Lowering LDL-C with a statin produced a substantial 25% 

reduction in major CVD events irrespective of their initial cholesterol concentrations (5). Yet, 

closer inspection reveals that 75% of the CVD risk remained despite statin therapy. One 
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hypothesis to explain this unaddressed risk is that obesity generates additional novel factors for 

CVD beyond those in the Framingham model and beyond absolute LDL-C levels.  

 

Cardiometabolic burden of obesity and diabetes 

Although deaths from CVD plateaued between 1990 and 2000 and dropped considerably 

between 2000 and 2008 (6), death rates for diabetes increased by 45% from 1987 to 2002 (7) and 

declined by about 12% from 2002 to 2010 (2). The alarming rise in diabetes-related deaths is 

primarily due to CVD (6). Thus, CVD remains one of the leading causes of death in the US and 

worldwide (6, 8). Clearly, the landscape for CVD risk has changed. This is thought to be largely 

due to the alarming increase in the prevalence of obesity and diabetes that has reached epidemic 

proportions in the US and worldwide (9). In the US alone, more than 35.7% of adults and 

approximately 17% of children and adolescents aged 2-19 years are obese (10). Obesity confers 

not only an elevated risk of diabetes but also of CVD and other associated co-morbidities (9, 11). 

CVD has a tremendous economic impact on the US, as related healthcare expenditures were 

estimated to be $444 billion in 2011 accounting for 17% of national health care expenditures (12). 

As the population ages, these costs are expected to increase substantially (12). 

 

Metabolic syndrome: Dyslipidemia associated with obesity and diabetes 

Metabolic syndrome, a constellation of cardiovascular risk factors, was first described in 

the 1920s by Kylin, a Swedish physician, as a clustering of hypertension, hyperglycemia, and 

gout (13). Twenty years later in 1947, central obesity associated with diabetes and CVD was 

included in the defining criteria of the metabolic syndrome, at the time known as Syndrome X 

(13). Today, in accordance with the clinical definition by the National Cholesterol Education 

Program Adult Treatment Panel III (NCEP:ATP III), individuals with three or more of the 

following criteria are diagnosed with the metabolic syndrome as shown in Table 1.1: central 

obesity, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-C), hypertension, 
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and impaired fasting glucose (14). These factors are all well-documented risk factors for CVD 

(13, 14). The dyslipidemia associated with obesity and diabetes, and a key component of the 

metabolic syndrome, consists of elevated very low-density lipoprotein-triglyceride (VLDL-TG) 

together with small-dense LDL-C and reduced HDL-C levels (14-16). This form of dyslipidemia 

is an increasingly recognized cardiovascular risk factor (16).  

 

Table 1.1. Clinical identification of the metabolic syndrome 
     Risk factor         Defining level 
Abdominal obesity─ 

          waist circumference 
    Men                       >102 cm (>40 in) 

   Women                  >88 cm (>35 in) 
TG                            ≥150 mg/dl 
HDL-C 

     Men                       < 40 mg/dl                          
   Women                  < 50 mg/dl                          
Blood pressure           ≥130/≥85 mm Hg      
Fasting glucose          ≥110 mg/dl 

Adapted from Ginsberg et al. (14). Abbreviations: high-density 
lipoprotein cholesterol (HDL-C); Triglyceride (TG). 

 

 

Adipose tissue as an energy storage organ 

The primary and classical role of the adipose tissue beyond insulating and cushioning the 

body includes long term energy storage as reviewed in Hajer et al. (17). During the postprandial 

state, free fatty acids (FFA) are taken up by the adipose tissue from the hydrolysis of triglyceride 

(TG)-rich lipoproteins (VLDL-TGs, chylomicrons, and their remnants) by lipoprotein lipase 

(LPL). These FFAs are either oxidized for energy or re-esterified into TG for storage as a lipid 

droplet. During a state of fasting and starvation, mobilization of FFA occurs by the hydrolysis of 

adipocyte TG via hormone sensitive lipase (HSL). HSL is activated by lipolytic hormones (i.e. 

glucagon, catecholamines, cortisol) while insulin is a potent inhibitor of this enzyme. Insulin is 
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also an important activator of LPL, thereby enhancing FFA uptake and TG synthesis in 

adipocytes (17). 

 

Adipose tissue as an endocrine organ: Relevance to the metabolic syndrome 

  The classical view that adipose tissue is a passive storage depot for fatty acids is now 

obsolete. It has been replaced over the past 20 years by the notion that adipose tissue is a complex 

and highly active metabolic and endocrine organ (18). Adipocytes and adipose tissue produce a 

variety of hormones and cytokines involved in glucose metabolism (i.e. adiponectin, resistin), 

lipid metabolism (i.e. FFA, cholesteryl ester transfer protein; CETP), inflammation (i.e. tumor 

necrosis factor-α; TNFα, interleukin-6; IL-6), coagulation (plasminogen activator inhibitor-1; 

PAI-1), blood pressure (angiotensinogen, angiotensin II), and feeding behavior (leptin), as 

illustrated in Figure 1.1 (19). Thus, adipose tissue secreted products affect metabolism and 

function of many organs including muscle, liver, vasculature, and brain (17). It is widely accepted 

that increased adiposity, particularly visceral fat, is associated with marked changes in the 

secretory function of adipocytes and macrophages, which become pro-inflammatory (13, 20). It is 

thought that in obesity, elevated levels of adipocyte-derived proinflammatory cytokines such as 

TNF-α (21, 22), FFAs (23-25), and reductions in the insulin sensitizing adipokine, adiponectin 

(26, 27) can modulate lipoprotein metabolism by virtue of their ability to alter insulin sensitivity. 

Furthermore, visceral adipose tissue volume is inversely correlated with insulin-mediated glucose 

disposal indicating a clear relationship between the degree of adiposity and insulin resistance 

(28). Altogether, central obesity leads to the development of chronic low grade inflammation, as 

well as an increased risk to develop insulin resistance, diabetes, and CVD, all manifestations of 

the metabolic syndrome (17).  
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Figure 1.1. Why obesity is bad: The active adipose tissue. Increased visceral adiposity raises 
cardiometabolic risk, including diabetes and cardiovascular disease (adapted from Roth et al. 
(19)).  
 
 
 

Current model of dyslipidemia associated with obesity and diabetes 

A current model of dyslipidemia in the context of obesity and diabetes suggests that the 

VLDL-TG secretion rate is largely determined by the rate of substrate (FFA) delivery to the liver 

and hepatic insulin sensitivity (23-25). In a stable isotope study, Riches et al. (23) showed that 

hepatic secretion of VLDL-TG directly correlates with the degree of visceral adiposity and 

insulin resistance. A key component of the model is that as visceral fat mass expands, insulin 

resistance at the adipose and liver tissue develops. Adipocyte insulin resistance results in elevated 

adipocyte lipolysis, which is normally potently suppressed by insulin. Lipolysis leads to the 

release of FFA into the circulation, and visceral adipose lipolysis increases the portal FFA 

concentration. These FFAs are efficiently cleared by the liver and re-esterified to generate TG. 

This TG is loaded onto a nascent apolipoprotein B (apoB) particle, ultimately resulting in VLDL 

maturation and secretion (23-25). This process is ordinarily suppressed by integrated hepatic 

insulin action either via the inhibition of apoB translation and/or increased degradation (29, 30). 
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As reviewed by Ginsberg (15), with a rise in VLDL-TG in the circulation, interactions 

between very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) particles in the 

presence of CETP stimulates the exchange of HDL-cholesteryl esters (CE) with TGs from VLDL. 

The resulting TG-rich HDL particle then becomes a good substrate for hepatic lipase (and 

possibly LPL), and the TG is hydrolyzed. This in turn generates a smaller HDL particle leading to 

the dissociation of apoA-I from HDL and thus, facilitates increased clearance of apoA-I by the 

kidney, ultimately lowering HDL-C levels. Functionally, HDL plays an important role in reverse 

cholesterol transport (RCT); whereas in obesity and diabetes, this function is impaired by the 

mechanism just discussed and is posited to contribute to increased risk of CVD. 

Similarly, interactions between VLDL and low-density lipoprotein (LDL) particle allows 

for CETP-mediated exchange of VLDL-TG for LDL CEs. The subsequent hydrolysis generates 

the accumulation of atherogenic, LDL-C particles (reviewed in (15, 31)). Consequently, this 

atherogenic dyslipidemia predisposes insulin resistant individuals to CVD. Elevated levels of 

cholesteryl-enriched VLDL and LDL particles are able to deliver more cholesterol per particle to 

the vessel wall and accumulate in atherosclerotic plaques. Fewer HDL particles translate to 

reduced efflux of excess cholesterol from the peripheral tissues, which is a step in RCT (15). 

Thus, the single effect of delivering FFA to the liver (in the context of insulin resistance) and 

increasing VLDL-TG translates into abnormalities in both HDL-C and LDL-C as illustrated in 

Figure 1.2. While peripheral factors (visceral adiposity and insulin resistance) clearly contribute 

to this disorder, we hypothesized that regulation of lipid homeostasis is normally subject to 

additional central nervous system (CNS) regulatory forces, which we sought to investigate in 

Chapters III and IV.  
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Figure 1.2. Current model of dyslipidemia associated with obesity and diabetes. This model 
suggests that increased visceral fat mass and insulin resistance leads to elevated adipocyte 
lipolysis. In turn, visceral adipose lipolysis increases free fatty acid (FFA) delivery to the liver, 
where it is efficiently cleared, re-esterified to triglyceride (TG) and loaded onto a nascent 
apolipoprotein B (apoB) particle, ultimately resulting in very low-density lipoprotein (VLDL) 
maturation and secretion. Increasing VLDL-TG translates into abnormalities in both high-density 
lipoprotein-cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). Cholesteryl 
ester transfer protein (CETP). Figure from Ginsberg (15). 
 

 

Elevated VLDL-TGs and CVD risk 

Historically, elevated plasma TGs in the form of VLDL-TG have not been directly 

associated with CVD risk. Currently, the extent to which plasma TGs directly contribute to CVD 

risk remains controversial (32). Increasing evidence by a number of case-control and prospective 

studies show a role for hypertriglyceridemia in CVD risk (as reviewed in (33)). A meta-analysis 

of population-based prospective studies in 1996 (34), in addition to current studies (35), show 

evidence that plasma TGs are a risk factor for CVD for both men and women in the general 

population, independent of HDL-C. One example of how insulin resistance and elevated TGs 

affect the risk of CVD events is the Quebec cardiovascular study (36). This study found that with 
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increasing concentration of fasting insulin levels reflecting insulin resistance, the risk for CVD 

increased. However, the increased risk was even more dramatic in the context of elevated VLDL-

apoB levels. In a VA-HIT study, treatment with the fibrate gemfibrozil reduced TG levels up to 

30% and increased HDL-C levels up to 8%, concomitantly decreasing the incidence of CVD 

events by 20 to 30% (37). Nonetheless, even in this case, 70 to 80% CVD event risk remains. 

Thus, a better understanding of the biology behind the regulation of lipoprotein metabolism, 

particularly in novel areas investigating the dyslipidemia associated with obesity and diabetes, 

may lead to fundamentally novel therapeutic treatments aimed at lowering some or all of the 

remaining CVD risk. At this intersection of energy homeostasis and lipid homeostasis biology, it 

is hypothesized future studies will yield additional novel insight. 

 

Energy homeostasis 

 

Key principles of body weight regulation 

The alarming increase in the obesity epidemic in the US and worldwide raises a 

fundamental question: Is body weight physiologically regulated? Indeed, extensive experimental 

evidence indicates that body adiposity is tightly regulated and constrained to a physiological 

range. For example, Sims (38) elegantly demonstrated in “Experimental Obesity in Man” studies, 

key principles of body weight regulation. In these studies, subjects were motivated by a monetary 

incentive to consume excess calories for 25 weeks. At baseline, these subjects were weight stable, 

in which energy intake (1,500 kcal/m2/day) closely matched energy expenditure. Motivated by 

the monetary incentive, these subjects became hyperphagic, doubling their basal food intake to 

~2,500-3,000 kcal/m2/day leading to positive energy balance and a 20% body weight gain. 

Intriguingly, the subject’s higher body weight stabilized between 12 and 22 weeks and thus, it can 

be inferred that energy expenditure nearly doubled from1,500 kcal/m2/day to 2,500-3,000 

kcal/m2/day to maintain weight stability. Once the monetary incentive was discontinued (by 25 
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weeks) and the subjects were allowed to eat freely, they became profoundly hypophagic in which 

their total caloric intake approached zero. This reduction in spontaneous food intake, which lasted 

for 8 or more weeks led to negative energy balance and a rapid loss of body weight. This complex 

human study demonstrates the existence of a body weight regulatory system involving the 

regulation of energy intake and energy expenditure and similar observations are documented in 

rats (39, 40).  

Energy homeostasis can be defined as the physiological process whereby energy intake is 

precisely matched to energy expenditure over time to promote the stability of body adiposity. A 

relatively small mismatch between energy intake to expenditure over time, estimated to be less 

than 0.5% will lead to weight gain or loss (41). Therefore, this regulatory system defends body 

weight, and specifically, body fat against perturbations (42). The concept that body adiposity is 

regulated by a feedback loop in which the status of the body fat is sensed, and a signal is sent to 

the hypothalamus to regulate energy intake and fat storage was first proposed nearly 60 years ago 

by Gordon Kennedy (43). The regulation of body adipose mass, according to currently accepted 

models (Figure 1.3) is by a neuroendocrine feedback loop. This involves the “adiposity negative 

feedback signals,” the pancreatic β-cell-derived hormone insulin and the adipocyte-derived 

hormone leptin, which are long-term regulators of feeding and body weight (reviewed in (44, 

45)). 
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Figure 1.3. Endocrine feedback loop model of body adiposity regulation. The adiposity 
negative feedback signals insulin and leptin are secreted in proportion to body fat stores and 
interact with key regulatory neurons found in the hypothalamus. These primary neurons then 
regulate a series of neural circuits that function in toto to control food intake and energy 
expenditure, ultimately normalizing body fat mass. Figure from Schwartz et al. (45). 
 

 

Adiposity negative feedback signals 

In 1953, Kennedy postulated the existence of a circulating “adiposity signal” that 

communicates to the CNS about the status of body fat stores (43). Conceptually, a circulating 

humoral signal must meet several criteria in order to function as an adiposity signal as reviewed 

in (41). First, the signal(s) should circulate in the bloodstream in proportion to body fat stores. 

Second, the signal must enter and be sensed by the CNS by acting on and regulating the function 

of key homeostatic neuronal subsets (i.e. anabolic and catabolic neurons found in the mediobasal 

hypothalamus (46) and elsewhere (47)). Finally, the acute administration of the putative signal 

should reduce food intake and/or increase energy expenditure in a neuroendocrine feedback loop 
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while deficiency of this signal should promote hyperphagia, positive energy balance and obesity. 

The hormones insulin and leptin, satisfy all of the criteria as adiposity negative feedback signals 

(48).  

 

Insulin 

The concept that insulin functions as an adiposity negative feedback signal to the CNS 

and controls food intake and weight gain was first proposed by Porte and Woods in the late 1970s 

(49, 50). Insulin is secreted in direct proportion to body adiposity in the basal state (51) as well as 

in response to elevated blood glucose levels during and after meals (52). Insulin entry into the 

brain parenchyma and cerebrospinal fluid occurs primarily across the blood-brain barrier (BBB) 

endothelium by a receptor mediated saturable transport process (53, 54). The alternative route for 

insulin access to the brain is via diffusion across the median eminence in the mediobasal 

hypothalamus, a relatively leaky BBB. This facilitates the entry of circulating insulin into the 

arcuate nucleus (ARC), a neuronal region rich in insulin receptors (55). While a prototypical 

anabolic and glucoregulatory hormone in the peripheral tissues, insulin action in the CNS is 

catabolic in the sense that it reduces food intake, weight gain, and adiposity. A number of elegant 

basic science approaches have clarified the role of insulin in energy homeostasis. Insulin 

administered directly into the brain of animals ranging from baboons (56) to rodents (57) lowers 

food intake and body weight. Genetic modifications that reduce insulin signaling in mice, such as 

the disruption of the insulin receptor (IR) or insulin receptor substrate-2 (IRS-2) (58-60), as well 

as mutations in insulin signaling homologues in even more primitive organisms, such as flies and 

nematodes (46), lead to increased fat mass in these organisms. Administration of Wortmannin 

and LY29002, inhibitors of the insulin-phosphatidylinositol 3-kinase (PI3K) signaling pathway 

directly into the third ventricle of the brain inhibits insulin’s ability to suppress food intake (61). 

Thus, insulin signaling through IRS-PI3K pathway in the hypothalamus is a key mediator of 

appetite and weight regulation (61).  
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Leptin 

Positional cloning and sequencing of the ob gene, which encodes leptin, was completed 

by Jeffrey Friedman’s group (62).  Similar to insulin, leptin is secreted in direct proportion to the 

amount of fat stored in adipocytes (63). The importance of leptin as an adiposity signal to the 

brain is revealed by animals that have impaired synthesis of leptin due to mutations in the ob gene 

(ob/ob mice (62)) or that have a genetic mutation in the functional leptin receptor (db/db mice 

(64) and fa/fa Zucker fatty rats (65)). These animals are characterized by hyperphagia and 

extreme obesity (66, 67), and the central administration of microgram amounts of leptin in the 

brain of ob/ob mice but not in db/db mice reverses this syndrome (68).  

 Similarly, rare clinical cases have been reported in children with congenital leptin 

deficiency (69). These children are massively hyperphagic, have excessive weight gain in early 

life, and are morbidly obese (70). Treatment with recombinant leptin replacement therapy in these 

children leads to a suppressive effect on food intake with no alteration in energy expenditure 

resulting in negative energy balance and sustained weight loss (70). Clearly, leptin is a key 

regulator of appetite and body weight in humans and rodents.  

 

Obesity pathogenesis: CNS insulin and leptin resistance 

 Despite the existence of a central homeostatic system that precisely regulates energy 

homeostasis, there is an alarming increase in the prevalence of obesity in the US and worldwide. 

Although there is clearly a heritable component that increases an individual susceptibility to 

obesity such as monogenic and polygenic human obesity (reviewed in (71), it is thought that the 

adoption of the “Western lifestyle” has been the major predisposing factor to the rapid 

development of obesity in human populations (44). The Western lifestyle typically consists of the 

excessive consumption of calorically dense, high-fat, high-carbohydrate foods coupled with an 

inactive life (72, 73). Indeed, the overconsumption of a diet containing a high proportion of 

calories as fat leads to the development of obesity (72). As body fat mass increases, there is a 
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corresponding increase in circulating insulin and leptin levels, which circulate at extremely high 

levels in severely obese humans (41). Yet, food intake and energy expenditure are relatively 

normal, or dramatically abnormal if normalized to the degree of hyperleptinemia and 

hyperinsulinemia (41). This suggests that insulin and leptin are no longer regulating the central 

homeostatic circuits involved in the regulation of feeding and energy expenditure. This indicates 

that these obese individuals have acquired functional CNS insulin and leptin resistance, which in 

turn, contributes to the pathological weight gain (74). Indeed, experimental evidence from our 

laboratory (74) as well as others (75) show that obesity is characterized by both behavioral and 

biochemical CNS insulin and leptin resistance. For example, the injection of insulin or leptin 

directly in the brain via the intracerebroventricular (ICV) route in lean, low-fat fed rats potently 

reduces food intake and robustly activates hypothalamic insulin or leptin signaling pathways (74). 

Conversely, these behavioral and biochemical effects are completely blunted in a high-fat fed 

obese animal (74). Therefore, it is likely that the acquired insulin and leptin resistance in the brain 

characterizes human obesity and drives the defense of a higher body adiposity, which undermines 

the ability to lose weight over time (41). 

 

Hypothalamic arcuate nucleus 

  Situated adjacent to the floor of the third ventricle and the median eminence in the 

mediobasal hypothalamus, is the ARC, which is an elongate collection of neuronal cell bodies 

(reviewed in (76)). The median eminence is a circumventricular organ (CVO), lacking endothelial 

tight junctions and is considered a leaky BBB (77). This allows the ARC access to the third 

ventricle and the hypophysial portal system, which is the vascular link between the median 

eminence and the pituitary gland (76). The CVO allows the diffusional exchange of solutes from 

the blood to the CSF which flows retrograde to the adjacent brain parenchyma, such as the ARC 

(77). Thus, the ARC is uniquely positioned to sample and respond to a wide variety of hormones 

and nutrients in both the blood and cerebrospinal fluid (76).  
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As illustrated in Figure 1.4, neurons found in the ARC are identified by the neuropeptides 

they express and consist primarily of the opposing anabolic Neuropeptide Y (NPY)/Agouti 

Related Peptide (AgRP) neurons and the catabolic Proopiomelanocortin (POMC)/Cocaine- and 

amphetamine regulated transcript (CART) neurons (as reviewed in (78)). These neuronal subsets 

are known as first-order neurons that express a high concentration of leptin and insulin receptors 

and respond directly to fluctuations in the levels of these hormones (55, 79, 80). The first-order 

neurons in the ARC integrate information about body fat stores and then relay this information 

via projections to other brain regions, containing second-order neurons (78). These brain regions, 

which also express leptin (79, 81, 82) and insulin receptors (83), include the paraventricular 

nucleus (PVN), lateral hypothalamic area (LHA), dorsomedial hypothalamic nucleus (DMN), 

ventromedial hypothalamic nucleus (VMN), hindbrain, and others, and are involved in feeding, 

energy expenditure, and autonomic regulation (84).  
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Figure 1.4. Schematic of the arcuate nucleus (ARC) structure located in the mediobasal 
hypothalamus. The neurons found in the ARC consist of the opposing anabolic neuropeptide Y 
(NPY)/agouti related peptide (AgRP) neurons that are suppressed by insulin and leptin, and the 
catabolic proopiomelanocortin (POMC)/Cocaine- and amphetamine regulated transcript (CART) 
neurons that are activated by insulin and leptin. The net activity of circuits regulated by these 
neurons determines food intake, energy expenditure, and ultimately body adiposity. Figure from 
Niswender et al. (44). 
 
 
 

Catabolic/anorexigenic POMC/CART neurons 

Concentrated in the dorsolateral ARC are the catabolic POMC expressing neurons that 

are activated by leptin and insulin and suppressed in states of negative energy balance (fasting, 

starvation) or defective leptin and insulin signaling (obesity, diabetes) (reviewed in (78)). The 

post-translational modification of the POMC polypeptide precursor generates melanocortins such 

as α-melanocyte stimulating hormone (α-MSH) (reviewed in (85)). In response to elevated insulin 

and leptin levels, α-MSH is released from the POMC expressing neurons which exert 

anorexigenic effects via binding to the melanocortin receptor (MCR), MC3R and MC4R found in 
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second order neurons (86). In turn, activation of the melanocortin pathway, inhibits feeding and 

increases energy expenditure, ultimately resulting in decreased adipose stores (87, 88). Thus, 

central administration of the potent MCR agonist, MTII inhibits food intake in mouse models of 

hyperphagia (i.e. fasted C57BL/6J and ob/ob mice) whereas co-administration of the MCR 

antagonist, SHU9119 completely blocks this inhibition (86). Mutations in MC4R produces 

profound obesity in rodents (88) and humans (89), indicating that this pathway is crucial for the 

regulation of energy homeostasis. 

 

Anabolic/orexigenic NPY/AgRP neurons 

Found within the ventromedial ARC and adjacent to POMC neurons are the anabolic 

NPY neurons that co-express AgRP. NPY/AgRP are suppressed by insulin and leptin, and 

activated by negative energy balance (fasting, starvation) or states of defective leptin and insulin 

signaling (obesity, diabetes) (reviewed in (78)). In response to falling insulin and leptin levels, 

these neurons release NPY which activates downstream anabolic circuits to promote positive 

energy balance by increasing food intake and reducing energy expenditure (90). Subsequently, 

these neurons reduce melancortin signaling via the release of AgRP, which competitively 

antagonizes MC3R and MC4R (91).   

 

Neuropeptide Y biology 

 

The NPY family of peptides: Discovery, function, and tissue distribution 

NPY was first isolated and sequenced in 1982 from porcine brain (92). NPY is a member 

of the NPY family that includes peptide YY (PYY) and pancreatic polypeptide (PP) (93). PYY 

and PP share 70 and 50% sequence homology with NPY (Figure 1.5). These peptides are 36 

amino acids long, characterized by a large number of tyrosine residues and are amidated at their 

C-terminal ends. They share a common hairpin like tertiary structure known as a PP fold 
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characterized by a polyproline like helix (residues 1-8 form) and an amphipathic α-helix (residues 

15-30) (94) as illustrated in Figure 1.5. NPY is one of the most conserved peptides known among 

species (95). By contrast, PYY shows greater variability, and PP is the most rapidly evolving 

member of the NPY peptide family with only 50% identity within mammals (95).  

 

Figure 1.5. The NPY family of peptides. On top: the schematic structure of the characteristic 
PP-fold family shown for porcine NPY. Residues 1-8 form a polyproline helix followed by a β-
turn and a α-helix comprised of the residues 15-30. On bottom: Amino acid sequences of human 
(h) neuropeptide Y (NPY), hpeptide YY (hPYY), and hpancreatic polypeptide (hPP). Amino 
acids which are homologous to hNPY are shown in bold. The constant positions among all 
species are underlined for each peptide. Adapted from Cabrele et al. (94). 
 

 

NPY is widely distributed within the peripheral and central nervous system and is one of 

the most abundant neuropeptides in the brain of rodents (96) and humans (97, 98). It is widely 

distributed in the CNS, including the hypothalamic ARC that projects to the DMN, PVN, LHA, 

VMN, and the brainstem; key regions involved in feeding, energy expenditure, and autonomic 

regulation (84). In the periphery, the sympathetic neurons represent the main source of the 

neurotransmitter NPY, where it is co-localized and co-released with norepinephrine (NE) (99). 

Additionally, the adrenal medulla is the primary source of circulating NPY, although it is 

expressed in other peripheral regions, including the liver, heart, spleen, bone marrow, adipocytes, 
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and peripheral blood cells (100). Conversely, PYY is predominately synthesized in the digestive 

tract while PP is found in pancreatic endocrine cells, which are released in response to meals to 

regulate feeding behavior, energy homeostasis, gastric, and pancreatic secretion (reviewed in 

(101, 102)).  

NPY has a significant role in the regulation of a number of biological functions. The 

relative abundance of NPY combined with its widespread distribution, suggests that NPY is 

involved in diverse physiological roles beyond the regulation of food intake. In general, NPY 

participates in the control of neuroendocrine coordination (i.e. hypothalamic-pituitary-adrenal 

axis (HPA)), learning and memory, locomotion, body temperature regulation, sexual behavior, 

emotional behavior, neuronal excitability, cardiovascular function, circadian rhythms, blood 

pressure, and hormone secretion (i.e. pancreatic insulin secretion) and others (reviewed in (99, 

103)).  

 

NPY synthesis and processing  

The biologically active NPY is derived from a 97-amino acid precursor, pre-pro-NPY 

following at least four post-translational events as shown in Figure 1.6. The translational product, 

pre-pro-NPY, is directed into the endoplasmic reticulum (ER) where the signal peptide is cleaved. 

Then, pro-NPY undergoes cleavage by the proconverting enzymes PC1/3 and/or PC2 at a dibasic 

site, which generates NPY 1-39 and the C-flanking peptide of NPY (CPON). Two further 

sequential truncations at the C-terminal end by a carboxypeptidase and the peptidylglycine α-

amidating monooxygenase produce the biologically active amidated NPY 1-36. The mature NPY 

can be further processed by two enzymes, the amino peptidase P and dipeptidyl peptidase IV 

(DPPIV) producing NPY 2-36 and NPY 3-36, respectively (99, 104). 
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Figure 1.6. NPY synthesis and processing. Figure from Pedrazzini et al. (99). 

 

NPY Y receptor biology 

 

Neuropeptide Y receptors: Preferred ligands, distribution, and physiological functions 

The NPY-family peptides elicit numerous physiological responses by the activation of a 

family of five NPY receptor subtypes, Y1, Y2, Y4, Y5 and y6, which have all been cloned from 

mammals (reviewed in (93, 105)). However, the y6 receptor has been established as a mouse and 

rabbit receptor subtype, as it is absent in rats and non-functional in humans (105). The receptors 

all belong to the rhodopsin-like superfamily of G-protein coupled receptors (GPCRs) 

characterized by a seven transmembrane (7-TM) helix structure (105). All NPY Y receptors 

modulate a variety of pathways through the coupling to pertussis toxin-sensitive inhibitory 

heterotrimeric GTP-binding protein (Gi/Go) (94). One of the typical signaling responses of the 

NPY receptor activation is the inhibition of adenylyl-cyclase, thus, mediating the inhibition of 

cyclic adenosine monophosphate (cAMP) accumulation (106-108). The other signal transduction 

pathway that may be triggered is the stimulation of Ca2+ release from intracellular stores by the 

activation of the phospholipase C pathway (inositol phosphate accumulation) (107-109). NPY can 
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also directly hyperpolarize neurons by activating the Y1 receptor subtype coupled to the Gi 

protein signaling pathway and subsequent activation of the G-protein-coupled inwardly rectifying 

potassium channels (GIRK) (110, 111). For example, a study by Chee et al. (110) reports that 

NPY inhibits the excitatory (anorexigenic) outflow between the VMN and ARC POMC neural 

circuitry via the activation of the NPY Y1 receptor subtype in the VMN that couples to the 

activation of GIRK channels and thus, hyperpolarizes VMN neurons. 

The most important properties of the four intensely investigated NPY Y receptor 

subtypes, Y1, Y2, Y4, and Y5, are summarized in Table 1.2. These NPY Y receptor subtypes 

have individual ligand binding profiles for members of the NPY family (Table 1.2). Thus, Y1, 

Y2, and Y5 receptors preferentially bind NPY and PYY whereas the Y4 receptor shows a higher 

binding affinity for PP (105, 109). Both NPY and PYY can be further processed by DPPIV 

resulting in the removal of the first 2 amino acids from the N-terminus producing a shorter 

peptide fragment (i.e. NPY 3-36 and PYY 3-36) which leads to preferential binding affinities to 

the NPY Y2 receptor (112). 

All NPY Y receptors are expressed in the brain and are particularly highly concentrated 

in the hypothalamus (113, 114); the region involved in the regulation of energy homeostasis. 

Additionally, all NPY Y receptors are expressed in the peripheral tissues except for the brain 

specific Y5 receptor (Table 1.2). In the brain, Y2 receptors are found more often pre-synaptically 

expressed and their activation suppresses neurotransmitter release (115). However, Y2 receptors 

have also been found to be post-synaptically expressed on neurons (116). Conversely, the NPY 

Y1, Y4, and Y5 receptors are post-synaptically expressed (117, 118).   

NPY receptors play a role in a plethora of physiological processes in both the central and 

peripheral tissues as shown in Table 1.2. The most predominant effect of NPY is involvement in 

the regulation of feeding and energy homeostasis. For example, ICV administration of Y1 and Y5 

receptor agonists increases food intake in rats (119-122). Conversely, intra-arcuate administration 

of NPY Y2 receptor agonist inhibits food intake (123), although these findings remain 
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controversial (124). Thus, as obesity and CVD is a serious public health threat to the US and 

worldwide, there is special interest in the NPY receptor ligands as a therapeutic treatment for 

human obesity (93). In Chapter III, we will determine whether NPY receptor(s) are an important 

target for treating the dyslipidemia associated with obesity, diabetes, and the metabolic syndrome 

independently of effects on feeding and increased visceral adiposity.   
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Table 1.2. Neuropeptide Y family of receptors, their preferred ligands, receptor distribution, and 
physiological functions 

Receptor 
subtype 

Y1 Y2 Y4 Y5 

Ligand 
binding 
profile 
(agonists) 

NPY ≈ PYY ≈ 
[Leu31,Pro34] 
NPY > NPY2-36 ≈ 
NPY3-36 ≥ PP ≈ 
NPY13-36 

PYY > PYY3-36 ≈ 
NPY3-36 ≈ NPY2-36 
≈ NPY13-36 >> 
[Leu31,Pro34]NPY 

PP ≥ GW1229 > 
PYY ≥ NPY > 
NPY2-36 

NPY ≈ PYY ≈ NPY2-36 
≈ [Leu31,Pro34] NPY > 
hPP >[D-Trp32]NPY > 
NPY13-36 > rPP 

Signal 
transduction 

Gi/o → cAMP↓; 
[Ca2+]↑ 

Gi/o → cAMP↓; 
[Ca2+]↑ 

Gi/o → cAMP↓; 
[Ca2+]↑ 

Gi/o → cAMP↓; 
[Ca2+]↑ 

Receptor 
expression 
(central vs. 
peripheral) 

Central: 
Hypothalamus, 
cerebral cortex, 
hippocampus, 
amygdala, brain 
stem, thalamus 
Peripheral: 
Liver, muscle, 
adipose tissue, 
vascular smooth 
muscle cells, 
immune cells, 
osteoblasts 

Central: 
Hypothalamus, 
hippocampus,  
brainstem  
Peripheral: 
Autonomic nerves, 
gastrointestinal 
tract, endothelial 
cells, adipocytes 
 

Central: 
Hypothalamus, 
hippocampus 
Peripheral: 
Colon, small 
intestine,  prostate,  
heart 

Central: 
Hypothalamus, cerebral 
cortex, hippocampus, 
amygdala, brain stem, 
plexiform cortex of the 
olfactory bulb, 
suprachiasmatic nucleus 

Pre-synaptic 
vs. post-
synaptic 
expression 

Post-synaptic Pre- and post-
synaptic 

Post-synaptic Post-synaptic 

Physiological 
function 
(central vs. 
peripheral) 

Central: 
Regulation of 
energy 
homeostasis, 
anxiolysis 
Peripheral: 
Oxidative fuel 
selection, 
physical activity, 
adipogenesis, 
vasoconstriction, 
regulation of 
neurotransmitter 
release 

Central: 
Regulation of food 
intake, inhibition 
of neurotransmitter 
release, learning 
and memory, 
circadian rhythm 
Peripheral: 
Inhibition of 
norepinephrine 
release, 
angiogenesis, 
adipogenesis 

Central: 
Regulation of food 
intake  
Peripheral: 
Motility of the 
gastrointestinal 
tract, pancreatic 
secretion 
 

Central: 
Regulation of energy 
homeostasis, anti-
epileptic 

Data presented were collected from recent reviews (Hirsch et al. (117), Lindner et al. (105), Shi et 
al. (125), and Chambers et al. (126)) as well as findings from Zhang et al. (127). Abbreviations: 
Cyclic adenosine monophosphate (cAMP); neuropeptide Y (NPY), pancreatic polypeptide (PP); 
peptide YY (PYY). 
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Physiological functions of NPY 

 

NPY in the regulation of food intake and energy homeostasis 

The seminal observation in 1984 that direct injection of NPY into the brain of rats 

elicited an increase in food intake (128-130) was the first demonstration that an endogenous 

peptide is synthesized in the brain and has potent orexigenic effects. This observation precedes 

the discovery of other potent orexigenic neuropeptides (galanin, ghrelin, the orexins, AgRP, and 

melanin-concentrating hormone) (126).  

NPY is a potent orexigenic peptide and when delivered by chronic infusion directly into 

the brain of rats and mice, has been observed to promote hyperphagia, obesity, obesity 

dyslipidemia, and the metabolic syndrome (131, 132), similar to that of the leptin deficient ob/ob 

mouse (62, 67, 133) and the genetically leptin resistant fa/fa Zucker fatty (ZF) rat (65, 66). These 

genetic models of obesity are characterized by high NPY mRNA and peptide levels in the 

hypothalamus, secondary to the absence of negative feed-back regulation by leptin (134-137). In 

Chapter IV, we will utilize the fa/fa ZF rat to investigate the effects of elevated CNS NPY tone 

on liver lipid metabolism independently of hyperphagia and obesity.  

Chronic peripheral administration of leptin to ob/ob (leptin-deficient) but not db/db 

(leptin-resistant) mice reduces food intake, obesity, hyperglycemia, and hypothalamic NPY 

mRNA levels (136, 138). Rodent models of diet-induced obesity (DIO; made obese by feeding a 

highly palatable diet) and streptozotocin (STZ)-induced diabetes (insulin-deficient), which are 

more typical of human diabetes, are also characterized by elevated CNS NPY tone (139, 140). 

ICV administration of insulin in STZ-induced diabetic rats attenuates elevated NPY levels and 

hyperphagia (139). Paradoxically, germline deletion of NPY does not affect food intake and body 

weight in mice (141). However, NPY deficiency does impair the re-feeding response to fasting 

and attenuates DIO and genetic obesity (ob/ob) in mice (141, 142).  
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 Similar to rodent models (139, 140), it has been documented in humans (98, 143, 144) 

that obesity and diabetes are associated with elevated hypothalamic NPY tone with a concomitant 

reduction of  POMC tone. For example, in obese non-diabetic Mexican-American families, a 

significant linkage was found between obesity and the NPY gene (145). However, a study by 

Roche et al. (146), found no evidence for a linkage between NPY, NPY1R, and NPY5R loci and 

obesity in French Caucasian morbidly obese families. Nor did a genome-wide scan for obesity 

genes in Pima Indians detect a linkage between obesity and the NPY gene (147, 148). Although, a 

study by Goldstone et al. (149) found that NPY expression was reduced in the postmortem 

hypothalami of obese human subjects, other studies report that plasma NPY levels are found to be 

the highest in obese hypertensive and diabetic patients (143, 144). Furthermore, a key recent 

study by Saderi et al. (98) found an increase in NPY immunoreactivity in the ARC of diabetic 

human subjects. It is thought that elevated hypothalamic NPY tone results from defects in 

inhibitory feedback signaling to the CNS, including neuronal insulin and leptin resistance, and 

impaired nutrient sensing, leading to impaired ability of these neuronal subsets to sense energy 

excess (74, 75).  

 

NPY Y receptor subtypes in the regulation of food intake and energy homeostasis 

The key brain region where NPY regulates food intake and energy homeostasis is the 

hypothalamus, which expresses all four NPY Y receptor subtypes, Y1, Y2, Y4, and Y5 (113, 114, 

150). The most studied circuits which are NPY-regulated sites are diagrammed in Figure 1.7. The 

ARC and the DMN contain NPY neurons and have axon projections to the PVN, VMN, and the 

LHA areas (126). Of particular interest, the PVN and the VMN are highly sensitive to the 

orexigenic actions of NPY. Bilateral electrolytic lesions of these hypothalamic sites in rats which 

recapitulates a state of elevated NPY tone, leads to hyperphagia and obesity (151, 152). 

Furthermore, direct microinjection of NPY into these hypothalamic sites can stimulate food 

intake and reduce energy expenditure (153-155).  
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Figure 1.7. A unilateral view of the hypothalamus at the level of the ARC. The key brain 
region where neuropeptide Y (NPY) regulates food intake and energy homeostasis is the 
hypothalamus, which expresses all four NPY Y receptor subtypes, Y1, Y2, Y4, and Y5. The 
arcuate nucleus (ARC) and the dorsomedial hypothalamic nucleus (DMN) contain NPY neurons 
and have axon projections to the paraventricular nucleus (PVN), lateral hypothalamic area 
(LHA), and the ventromedial hypothalamic nucleus (VMN). Abbreviations: agouti related peptide 
(AgRP); proopiomelanocortin (POMC). Adapted from Chambers et al. (126). 
 

 

Many studies have focused on identifying the NPY receptor subtype(s) involved in 

mediating the NPY effect on feeding and energy homeostasis. The utilization of highly selective 

receptor subtype agonists and antagonists have revealed that Y1 and Y5 receptor subtypes may be 

the predominant receptors involved in NPY regulation of feeding behavior (93). Both receptors 

have been found to be co-localized and highly expressed within the cortex, hippocampus, 

hypothalamus, amygdala, and brainstem corresponding to major actions of NPY (118). There is a 

reported close physical localization and apparent functional relationship between NPY Y1 and Y2 

receptors in neurons found within the ARC, LHA, DMN, and PVN in contrast to the VMN which 
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contains only Y1 receptor positive neurons (114). This provides compelling evidence that NPY 

may also act through the Y2 receptor to modulate feeding behavior.  

ICV administration of Y1 and Y5 receptor agonists increases food intake in rats (119-

122), whereas the administration of Y1 and Y5 antagonists (156-162) or antisense 

oligonucleotides (163-166) decreases food intake. However, studies investigating the effect of 

NPY, Y1, and Y5 receptor deficiency on energy homeostasis are quite surprising. Germline 

deletion of Y1 or Y5 receptor in mice does not produce a lean phenotype. In fact, Y1 and Y5 

receptor deletion in mice paradoxically leads to the development of late-onset obesity (167, 168). 

Thus, these contrary observations with genetic manipulation suggest that in the absence of Y1 or 

Y5 receptors, compensation may occur during development. However, impaired fasting-induced 

re-feeding is observed in Y1 receptor deficient mice and the NPY-induced hyperphagia is 

abolished in Y5 receptor deficient mice which implicates these receptors as important mediators 

in feeding regulation (167, 169). Previous studies report that Y1 and Y5 receptor deletion 

attenuates DIO or genetic obesity (ob/ob) in mice consistent with findings reported for NPY 

deficiency (141, 142, 170, 171). Although, there has been special interest in the Y1 and Y5 

receptor as a potential therapeutic treatment for human obesity (93), a Y5 receptor antagonist 

failed to induce clinically significant weight loss in overweight and obese humans (172). 

Conversely, the gut-derived PYY 3-36, a Y2 receptor agonist, and the pancreatic-derived, 

PP, a Y4 receptor agonist, dose-dependently inhibits food intake in fasted rodents when 

peripherally injected (123, 173). Notably, this reduction in food intake is entirely mediated via the 

Y2 or Y4 receptor since this effect is completely abolished in Y2 and Y4 receptor null mice, 

respectively (123, 174). Similarly, NPY Y2 receptor null mice are hyperphagic and obese (175) 

whereas, surprisingly, Y4 receptor null mice are lean (176).  

Both Y2 and Y4 receptors are implicated as potential targets for the treatment of obesity 

(176). Crossing the Y2 receptor null mouse onto the ob/ob background attenuated obesity 

whereas the Y4 receptor deficiency on this genetically obese background conferred no beneficial 
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effects (176, 177). Chronic administration of PYY 3-36 or PP in obese rodents significantly 

reduces food intake and body weight (178-180). In humans, peripheral administration of either 

PYY 3-36 or PP to lean (123, 181, 182) or obese (183, 184) subjects significantly reduces 

appetite and food intake. The mechanism involved in the Y2 and Y4 receptor anorexigenic effects 

are thought to be mediated in part, by decreasing hypothalamic NPY and elevating POMC tone 

(123, 180, 185). 

Paradoxically, central (ICV) administration of PYY 3-36 or PP increases food intake in 

ad-libitum fed rodents (124, 173) and intra-arcuate administration of PYY 3-36 inhibits food 

intake in fasted rats (123). Because the inhibitory Y2 receptor is found on both the ARC NPY and 

POMC neurons, this adds an additional layer of complexity to the regulation of the NPY/POMC 

neural circuit, further suggesting that the effect of endogenous and exogenous Y2 ligands on the 

ARC neuronal subsets is context dependent as elegantly described in Ghamari-Langroudi et al. 

(116). For example, in the study by Batterham et al. (123), PYY 3-36 was injected directly into 

the ARC of 24-hour fasted rats characterized by high endogenous NPY tone, and thus the action 

of the exogenously added NPY Y2 ligand on the ARC neurons may result in an anorexigenic 

response to inhibit food intake (suppression of NPY neurons). In contrast, injection of the NPY 

Y2 receptor agonist directly into the third ventricle of ad-libitum fed rats characterized by low 

endogenous NPY tone, may result in an orexigenic response from the action of the NPY Y2 

ligand, resulting in the stimulation of food intake (suppression of POMC neurons) (124). An 

additional consideration is that ICV administration of an Y2 or Y4 receptor agonist may result in 

its dispersion to other hypothalamic and non-hypothalamic regions. Finally, the potential 

activation of the Y5 receptor by PYY 3-36 or PP could also explain the increase in food intake. 

 

NPY in the regulation of glucose metabolism  

It has been shown previously that hypothalamic leptin and insulin signaling are required 

for the inhibition of hepatic glucose production (HGP). Indeed, ICV infusion of insulin or leptin 
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in rodents can potently suppress glucose production whereas antagonism of insulin or leptin 

signaling in the hypothalamus can impair the ability of peripheral insulin to suppress HGP (136, 

186-188).  Evidence suggests that NPY neurons are involved in this process (136) and that ICV 

infusion of NPY can induce hepatic insulin resistance impairing the ability of insulin to suppress 

HGP in rats (189-192). These data clearly suggest the existence of a hypothalamic-hepatic circuit, 

potentially mediated by the sympathetic nervous system (SNS) that is involved in the regulation 

of HGP (189, 192). Thus, under conditions characterized by increased hypothalamic NPY tone 

(fasting, obesity, and diabetes), NPY activates sympathetic outflow to the liver. This, in turn 

induces hepatic insulin resistance to maximize HGP (189, 192) contributing to the dysglycemia 

associated with obesity, diabetes, and the metabolic syndrome (13). 

 

NPY in the regulation of the HPA axis 

The activity of the HPA axis is reportedly increased in obesity and diabetes in humans 

(193-196) and in rodent models of genetic obesity (177, 197), DIO (198), and STZ-induced 

diabetes (199). In normal animals, NPY activates the HPA axis in response to stress resulting in 

the release of corticotropin-releasing hormone (CRH) from the PVN (117). In rats, administration 

of NPY into the ventricles immediately produced an increase in adrenocorticotropic hormone 

(ACTH) and the glucocorticoid (GC), corticosterone (200, 201). GC infusion in rats increases 

hypothalamic NPY expression and upregulates NPY Y1 receptor expression through the type II 

glucocorticoid receptor (GR) whereas this effect can be blocked by the type II selective 

antagonist, RU486 (99). Additionally, Yi et al. (202) demonstrates that local administration of the 

GC, dexamethasone in the ARC but not the PVN under hyperinsulinemic-euglycemic clamp 

conditions in rats induced severe hepatic insulin resistance which was completely prevented by 

either ICV co-administration of Y1 receptor antagonist BIBP3226 or by hepatic sympathetic 

denervation (Sx). Moreover, blockade of the central melanocortin system (which can be 

antagonized by the NPY/AgRP neural circuit) has been shown to regulate hepatic TG synthesis 
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via the upregulation of de novo lipogenic target genes, fatty acid synthase (FASN ) and stearoyl-

CoA desaturase-1 (SCD), an effect that requires a fully functional HPA axis (203). Therefore, 

some of the hormonal and metabolic effects of chronic CNS NPY signaling in normal rats 

depends on circulating corticosterone, since adrenalectomy prevented these NPY-induced effects, 

including hyperphagia, obesity, hyperinsulinemia, and hypertriglyceridemia (201).  Altogether, 

these studies suggest that the effect of CNS NPY on hepatic liver lipid metabolism may be 

dependent on the activation of the HPA axis, which will be further investigated in Chapter IV. 

 

NPY in the regulation of lipid metabolism 

Although NPY is an important regulator of feeding and energy homeostasis, it is 

increasingly recognized as having a role in lipid homeostasis. Elevated hypothalamic NPY tone 

induces hyperphagia and elicits a series of obesogenic changes that ultimately promotes energy 

storage. These hormonal and metabolic changes of obesity elicited by increased central NPY 

signaling include the following: 1) hyperinsulinemia and hypercorticosteronemia (200, 201, 204-

207); 2) reduction in body temperature (208) and brown fat thermogenesis (209), indicating 

decreased energy expenditure; 3) greater glucose utilization for lipid synthesis in adipose tissue 

(201, 207); 4) increased de novo lipogenic activity in liver and adipose tissues, and increased  

clearance of circulating TG mediated by elevated LPL activity (207); 5) increase in respiratory 

exchange ratio, indicative of a higher preference for oxidizing carbohydrate over lipids as a fuel 

source (210). Additionally, Zhang et al. (127) found that Y1 receptor null mice had greater 

utilization of lipid as an oxidative fuel source. This most likely involved increases in liver and 

muscle carnitine palmitoyltransferase-1 (CPT-1) protein levels as well as increases in the activity 

of enzymes involved in β-oxidation, suggesting that Y1-receptor-signaling controls mitochondrial 

capacity for FFA transport and oxidation.  
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NPY in the regulation of lipoprotein metabolism: Dyslipidemia associated with obesity and 

diabetes 

Although the current model of dyslipidemia in the context of obesity and diabetes 

suggests that hepatic VLDL-TG secretion rate is largely determined by the rate of substrate (FFA) 

delivery to the liver and hepatic insulin sensitivity (23-25), we (211) and others (191, 192) clearly 

show that CNS NPY signaling is an important regulator of lipoprotein metabolism. Indeed, Van 

Den Hoek et al. (191) is the first study to show that ICV NPY administration in the context of 

hyperinsulinemia, which would suppress CNS NPY signaling, resulted in impaired suppression of 

hepatic VLDL-TG secretion by insulin. We previously demonstrated that ICV administration of 

NPY directly into the third ventricle of lean, fasted, wild-type rats increases hepatic VLDL-TG 

secretion independently of increased food intake and visceral adiposity (211). Peripherally 

administered NPY had no such effect and taken together, these findings suggest that NPY-

regulated neural circuits may be involved in the regulation of TG metabolism in the liver (211). 

Furthermore, studies in VMN-lesioned rats, which recapitulates a state of elevated NPY 

tone, have elevated plasma TGs (212). Even under pair-feeding conditions to prevent 

hyperphagia, VMN-lesioned rats develop hypertriglyceridemia as early as 10 days 

postoperatively, together with decreased plasma FFA and glucose levels (213). Finally, perfused 

livers from VMN-lesioned rats secrete more TGs than controls (213). Intriguingly, chronic ICV 

infusion of NPY and not the MC4R antagonist HS014 in rats pair-fed to the vehicle-treated 

controls mimicked the effect of VMN-lesions by increasing plasma TGs concomitant with a 

reduction in FFAs (214). These studies suggest that CNS NPY may be a key regulator of liver 

lipid metabolism. 

In the same hypothalamic feeding circuits engaged by NPY, hypothalamic glucose (215) 

and glycine (216) metabolism suppresses VLDL-TG production. Conversely, increased CNS 

resistin (217) and glucocorticoid signaling (202) induces hepatic insulin resistance via 

hypothalamic NPY. The CNS NPY effect on hepatic insulin resistance and VLDL-TG secretion 

30 
 



can be effectively blocked by liver Sx in rats (189, 192, 202). In the context of the findings from 

the aforementioned studies, coupled with our findings (211), provides a compelling argument that 

CNS NPY plays a critical role in the regulation of lipoprotein metabolism. Furthermore, in human 

population studies, screening of the entire coding region of the NPY gene revealed a frequent 

polymorphism (T1128C) that was strongly associated with high serum total cholesterol and LDL-

C levels in obese subjects (218). This single nucleotide polymorphism (SNP), resulting in the 

substitution in the 7th amino acid from leucine to a proline in the signal peptide of pre-pro-NPY, 

leads to an increase in NPY peptide secretion (219).   

The receptor subtype(s) involved in the central NPY regulation of lipoprotein metabolism 

are not well understood. Previous studies show that chronic infusion of an NPY Y5 receptor 

agonist in mice dose-dependently increases adiposity, plasma TGs, and cholesterol levels and this 

effect remained even under pair-feeding conditions (220). Our studies show that an acute ICV 

injection of a selective Y5 receptor agonist can double hepatic VLDL-TG secretion in lean fasted 

rats whereas an antagonist for the Y1 receptor can suppress VLDL-TG secretion (211). 

Therefore, in Chapter III, we sought to determine which of the various NPY receptor subtypes 

(Y1, Y2, Y4, and Y5) are involved in feeding versus VLDL-TG secretion. 

Several studies have investigated the effect of global deletion of the NPY Y1, Y2, Y4, 

and Y5 receptors on the background of the ob/ob mouse model characterized by elevated CNS 

NPY tone and severe hypertriglyceridemia. Unfortunately, these studies only report on the effect 

of this genetic manipulation on energy homeostasis and not on whether deletion of the various 

NPY receptors attenuate hypertriglyceridemia, except for the Y2 receptor which was noted to 

have no effect (167, 170, 176, 177). Intriguingly, a genetic association study conducted in 

severely obese human subjects matched for body mass index (BMI) revealed that those 

individuals with the CC haplotype (relative to the TT/CT polymorphism) of the un-translated 

region of the NPY1R gene had elevated fasting serum TGs and significantly lower HDL-C 

concentrations (221). It is not yet clear if this haplotype correlates with a relative gain of NPY Y1 
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receptor function, but we would hypothesize based upon our findings (211, 222), that the CC 

haplotype is a relatively hyperfunctional allele and thus, would confer increased TGs in the 

setting of obesity. Altogether, further understanding of the biology of individual NPY receptor 

subtypes may lend novel insight into how CNS NPY regulates lipoprotein metabolism.  

 

Lipoprotein metabolism 

 

VLDL assembly and secretion 

In the context of integrated energy homeostasis, short term energy stores are provided by 

glucose and glycogen, while long term needs are met by adipose- and liver-derived lipids. 

Physiologically, TGs are more energy dense (9 kcal/g) than other fuels, such as carbohydrates (4 

kcal/g) and either are stored (adipose tissue) or utilized as an energy source in the peripheral 

tissues, particularly the muscle (223). Since lipids are hydrophobic, one major function of the 

liver and the intestine is to package insoluble lipids (i.e. TGs, cholesterol) into the soluble 

lipoprotein form that can be efficiently transported and delivered to various organs and tissues by 

the circulatory system (224, 225). This function is achieved by the assembly and secretion of  

hepatic-derived VLDL or intestinal-derived chylomicrons consisting of a neutral TG and CE core 

surrounded by a monolayer of amphipathic phospholipids (PL), cholesterol, and apoB (223, 225). 

In humans, apoB-100 is virtually the only form of apoB expressed in the liver, whereas apoB-48, 

which is the truncated form of apoB-100 is synthesized in the intestines and packaged in 

chylomicrons (226). In contrast to humans, the rat produces predominately apoB-48 instead of 

apoB-100 in the liver (227).  
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Figure 1.8. VLDL assembly and secretion. Very low-density lipoprotein (VLDL) is the major 
TG-rich lipoprotein and is assembled in hepatocytes in a complex, two-step process. In the first 
step, lipid is loaded onto apoB as it is translated into the ER lumen by MTP to produce HDL-
sized pre-VLDL lipoprotein. Next, a larger lipid droplet is added to the apoB-containing pre-
VLDL to form the mature VLDL particle in the ER/Golgi lumen. PA, a key substrate that 
provides the TG precursor, DAG for VLDL assembly and secretion can be generated from PL 
remodeling (catalyzed by ARF-1 and PLD) or via the glycerolipid biosynthetic pathway 
(catalyzed by GPAT, AGPAT, and lipin-1). The lipases TGH and AADA are involved in the 
lipolytic mobilization of cytosolic TG stores that are re-esterified by DGATs, which are then 
channeled into the VLDL maturation pathway or recycled back into the cytosolic TG pool. 
Abbreviations: acylglycerol-3-phosphate acyltransferase (AGPAT); ADP-ribosylation factor-1 
(ARF-1); apolipoprotein B (apoB); arylacetamide deacetylase (AADA); diacylglycerol (DAG); 
diacylglycerol acyltransferase (DGAT), glycerol-3-phosphate acyltransferase (GPAT); 
lysophosphatidate (LPA); microsomal triglyceride transfer protein (MTP); phosphatidic acid 
(PA); phospholipid (PL); phospholipase D (PLD); triglyceride (TG); triglyceride hydrolase 
(TGH). Adapted from Gibbons et al. (228) and Sundaram et al. (225). 
 

 

The assembly and secretion of TG-rich VLDL represents a key component of hepatic TG 

homeostasis, which is a tightly regulated and complex two-step process as illustrated in Figure 

1.8 (reviewed in (225, 228)). In the first step, a small quantity of TG is assembled onto the 
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structural protein, apoB-100 during its co-translational translocation through a protein channel in 

the membrane of the rough ER lumen. This process is accompanied by the acquisition of a PL 

monolayer encasing the TG core. The resulting formation of the HDL-sized pre-VLDL 

lipoprotein is dependent on microsomal triglyceride transfer protein (MTP) (228). Mutations 

leading to the loss of MTP activity which is linked to familial abetalipoproteinemia leads to 

impaired VLDL assembly and secretion (229). In the absence of lipid or MTP, apoB translocation 

is halted, and becomes a target for proteasomal degradation (230).  

The second step, which is less well-characterized, involves the fusion of a larger droplet 

of TG with the apoB-containing pre-VLDL to form the mature VLDL particle before exiting from 

the ER (228, 231). This process can be blocked by integrated hepatic insulin action leading to 

enhanced degradation of apoB and suppression of VLDL-TG secretion (29, 30). A number of 

studies suggest that the assembly of VLDL is not completed within the ER but continues en route 

to the Golgi apparatus (232-234). As much as 50% TG and 30% PL may be added to the VLDL 

particle in the Golgi compartment (232). The VLDL maturation process is dependent on the 

activity of ADP-ribosylation factor-1 (ARF-1), a member of the RAS superfamily of GTP 

binding proteins which activates phospholipase D (PLD) (233, 234). Indeed, overexpression of 

ARF-1 or PLD in cultured rat hepatocytes can increase VLDL-TG secretion whereas hepatic 

overexpression of a dominant negative ARF-1 results in a suppressive effect (234). Brefeldin A 

can inhibit the maturation phase of VLDL assembly by blocking the guanine nucleotide exchange 

(GDP to GTP) on ARF-1 without affecting formation of the VLDL precursor (235). Unlike the 

first step of VLDL assembly which is dependent on MTP, there are a plethora of other factors 

involved in the second step of VLDL maturation, which includes diacylglycerol acyltransferase 

(DGAT)-1 and -2, triglyceride hydrolase (TGH), arylacetamide deacetylase (AADA), ARF-1, 

PLD, and lipin-1 as summarized in Figure 1.8.  
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Sources of lipid for VLDL secretion  

VLDL is the chief carrier of TG in the postabsorptive state (236). The TG utilized for 

VLDL assembly and secretion can be derived either from fatty acids produced by hepatic de novo 

lipogenesis (DNL), by the uptake and re-esterification of plasma FFAs, or by the uptake of 

chylomicron and VLDL lipoprotein remnants by the liver (236). Using a combination of stable 

isotope-labeled tracer and indirect calorimetry, Diraison et al. (236) estimated in normal human 

subjects in the postabsorptive state that hepatic re-esterification of plasma FFA accounted for 50-

55% of TG secretion, whereas DNL was a minor contributor. The remaining lipids were 

presumed to be provided by stored lipids (cytosolic TG and PL) or lipoprotein remnants taken up 

by the liver. However, the method by Diraison et al. (236) is semi-quantitative as it does not 

allow for the determination of the overall contribution of these potential lipid sources to TG 

secretion. 

Growing evidence suggest that TG utilized for VLDL assembly and secretion can 

originate from sources other than that arising from hepatic fatty acid synthesized de novo and 

from extracellular FFAs (224). It has been reported that up to 70% of secreted VLDL-TG by the 

liver is attributable to the hydrolysis and re-esterification of pre-existing PL and cytosolic TG 

(224). Clearly, some of the TG which ends up as VLDL is derived from a pool of intracellular 

PL, a novel source of lipid given the current assumption that intracellular membrane PL merely 

plays a structural role in VLDL assembly (224).  

 

Key regulators of hepatic VLDL assembly and secretion 

 

ARF-1, PLD, and lipin-1: Key regulators of PL remodeling 

As summarized in Figure 1.8, key regulatory enzymes involved in the transfer of PL fatty 

acids into TG, otherwise known as PL remodeling, involve PLD which is activated by ARF-1. 

This leads to the production of phosphatidic acid (PA) from the PL, phosphatidylcholine (PC) 
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(228, 233). PA can be additionally generated from the glycerolipid biosynthetic pathway. This 

involves glycerol-3-phosphate acyltransferase (GPAT) which catalyzes the esterification of 

glycerol-3-phosphate with a fatty acyl-CoA (preferably oleic acid; C18:1w9) to produce 

lysophosphatidate (LPA). In turn, LPA is converted by acylglycerol-3-phosphate acyltransferase 

(AGPAT) to the PA substrate (225, 237). PA is then dephosphorylated by the key rate-limiting 

enzyme, lipin-1, a phosphatidic acid phosphatase (PAP) producing the TG precursor, 

diacylglycerol (DAG). The resulting DAG serves as a substrate for the synthesis of TG and the 

PLs, PC and phosphatidylethanolamine (PE) that is required for lipidation of the nascent VLDL 

particle resulting in maturation and secretion as TG-rich VLDL particles by the liver (238). In 

Chapter IV, we will investigate whether CNS NPY utilizes liver PL as the TG precursor for 

VLDL maturation and secretion by robustly activating the key hepatic regulatory enzymes 

involved in PL remodeling, ARF-1 and lipin-1.  

DGATs, which are membrane bound enzymes, complete the final step of TG synthesis 

(239). The ER-localized DGAT-1 converts DAG into TG for VLDL maturation whereas the 

cytosolic-localized DGAT-2 enzyme generates TG destined for lipid storage in cytoplasmic 

droplets (239). The lipases TGH and AADA are involved in the lipolytic mobilization of 

cytosolic TG stores that are re-esterified by DGATs, which are then channeled into the VLDL 

maturation pathway or recycled back into the cytosolic TG pool (228). 

 

The lipin (PAP) protein family: Discovery, structure, function, and tissue distribution 

The molecular identity of mammalian PAP was unknown until it was discovered in 

Saccharomyces cerevisiae in 2006 to be encoded by lipin (240). The Lpin1 gene was first isolated 

through positional cloning in 2001 from the fatty liver dystrophy (fld) mutant mouse strain where 

this null mutation in the Lpin1 gene results in lipodystrophy, insulin resistance, neonatal fatty 

liver, hypertriglyceridemia, and peripheral neuropathy (241-243). The Lpin2 and Lpin3 were 

identified based on their sequence similarities to Lpin1 (243). Although human lipin-1 deficiency 
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is not associated with lipodystrophy, it does lead to recurrent rhabdomyolysis in childhood (244) 

and genetic variants within the Lpin1 and Lpin2 genes are associated with traits of the metabolic 

syndrome (reviewed in (245)). The Lpin1 gene encodes two alternatively spliced isoforms, lipin-

1α and lipin-1β, which although they phenotypically exhibit nuclear and cytoplasmic localization, 

respectively, both proteins show extensive association with microsomal membranes (238, 246).  

All mammalian lipin proteins possess PAP activity that is dependent on Mg2+ and on PA 

as a substrate and exhibit unique but overlapping tissue distributions (247). Lipin-1 is expressed 

at highest levels in brown and white adipose tissue, skeletal muscle, and testis and at lower levels 

in other tissues, including kidney, lung, brain, heart, and liver (243, 247). Lipin-2 is 

predominately expressed in liver whereas lipin-3 is also expressed in this tissue but at low levels 

(247). Lipins are complex, bifunctional proteins and in all species, share two highly conserved 

regions termed the N-terminal lipin (N-LIP) and the C-terminal lipin (C-LIP) domains as 

illustrated in Figure 1.9. The C-LIP domain contains two functional motifs: A DIDGT motif 

which constitutes the catalytic site for PAP-1 enzyme activity (240) and an LXXIL motif that is 

required for the transcriptional co-activator activity to modulate gene transcription (248). Near 

the N-LIP domain, lipin proteins in most species contain a nuclear localization sequence (245). 
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Figure 1.9. Lipin protein structure and functional domains. N-terminal lipin (N-LIP) and C-
terminal lipin (C-LIP) domains are highly conserved evolutionarily across yeast and mammals. 
The alternative splicing of Lpin1 gene generates the lipin-1β region. A DIDGT motif is required 
for PAP-1 enzyme activity to convert phosphatidic acid (PA) to diacylglycerol (DAG) for 
triglyceride (TG) synthesis. An LXXIL motif is required for transcriptional co-activator activity 
to interact with peroxisome proliferator activated receptor -ɣ-coactivator-1α (PGC-1α) and 
peroxisome proliferator activated receptor-α (PPARα) to modulate gene transcription. A nuclear 
localization signal is found in the lipin protein in most species. Figure from Csaki et al. (245). 
 
 

Lipin-1 dual molecular function impacts VLDL assembly and secretion 

Abundant evidence indicates that lipin-1 is the major isoform involved in hepatic VLDL 

assembly and secretion. The subcellular localization and compartmentalization of lipin-1 

determines its dual molecular function as either a glycerolipid biosynthetic enzyme or a 

transcriptional co-activator as shown in Figure 1.10 (reviewed in (249)). Insulin stimulates the 

phosphorylation of lipin-1 at Serine (Ser) 106 which is dependent on PI3K activity and 

mammalian target of rapamycin (mTOR) pathway (250) sequestering it into the cytosol, which 

affects its intrinsic PAP-1 activity (251). Dephosphorylation of lipin-1 occurs in response to fatty 

acids (i.e. oleic acid) and epinephrine leading to its translocation from the cytosol to the ER 

membrane where it performs its PAP-1 activity (252). In turn, this generates the lipid substrates 

(TG, PC, and PE) required for the lipidation of the apoB carrying pre-VLDL precursor required 
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for its maturation and secretion as TG-rich VLDL lipoprotein by the liver (238, 253). Conversely, 

sumoylation of lipin-1 leads to its translocation to the nucleus where it acts as a transcriptional 

co-activator with peroxisome proliferator activated receptor -ɣ-coactivator-1α (PGC-1α) and 

peroxisome proliferator activated receptor-α (PPARα) leading to the induction of genes involved 

in fatty acid oxidation, including PPARA, CPT1A, and acyl-CoA oxidase-1 (ACOX1) (248, 254) 

which would oppose its function as a glycerolipid biosynthetic enzyme. 

 

 

Figure 1.10. Regulation of lipin-1 expression and subcellular localization. Model depicting 
how lipin-1 gene expression, post-translational modification (phosphorylation) and subcellular 
localization determines its dual molecular function as either a glycerolipid biosynthetic enzyme or 
a transcriptional co-activator. Figure from Khalil et al. (249). 
 

 

Recent studies have revealed that lipin-1 is a critical regulator of hepatic lipoprotein 

metabolism. Transient transfection experiments in rat cultured hepatocytes have shown that the 

overexpression of either lipin-1α or lipin-1β isoform in the presence of oleic acid markedly 

increases glycerolipid synthesis and secretion of VLDL-TG (238). Conversely siRNA mediated 
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knockdown of lipin-1 decreases VLDL assembly and secretion even though total cellular PAP 

activity is not altered, presumably due to compensation by lipin-2 and -3 (238). These results are 

inconsistent with findings in primary hepatocytes isolated from 14 day old lipin-1 deficient fld 

mice which have an elevated rate of TG synthesis and secretion (255), concomitant with normal 

PAP activity despite the lack of lipin-1 expression (256). These findings suggest that lipin-2 may 

contribute to a complex regulatory mechanism in the liver (256).  Furthermore, the adenoviral 

overexpression of lipin-1β in adult fld hepatocytes markedly suppressed VLDL-TG secretion 

(255). Intriguingly, it was determined that the overexpression of the lipin-1 mutant (D712E), 

which lacks intrinsic PAP-1 activity, resulted in the suppression of TG secretion in wild-type 

mice (255). In contrast, the overexpression of the lipin-1 mutant (LXXFF) which lacked both 

PAP-1 and transcriptional co-activator activity failed to suppress TG secretion (255). This 

suggests that the transcriptional co-activator regulatory function of lipin-1 may oppose its PAP-1 

activity involved in regulating lipoprotein metabolism.  

Similar to the findings in rodents, the ability of lipin-1 to function as a regulator of VLDL 

assembly and secretion is also controversial in humans. For example, it was found that lipin-1β 

but not lipin-1α in liver and adipose tissue were inversely related to BMI, plasma insulin 

concentration, and insulin resistance in extremely obese human subjects (257). Surprisingly, the 

dramatic weight loss and decrease in hepatic VLDL-TG secretion as an outcome of gastric bypass 

surgery in obese subjects (258) was associated with a marked increase in lipin-1β expression 

(257). Therefore, in the context of these conflicting observations in both rodent and human 

studies, the interplay of various factors that regulate lipin-1 subcellular localization and substrate 

availability may influence the outcome of lipin-1 as a modulator of VLDL secretion. 

 

Regulation of lipin-1 expression and activity 

As illustrated in Figure 1.11, lipin-1 expression and activity is regulated by a variety of 

physiologic and pathological stimuli that are known to influence lipoprotein metabolism. Only 
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lipin-1, but not lipin-2 or -3 expression and activity is upregulated by GCs (259), which act 

through the GR that is bound to the functional glucocorticoid response element (GRE) upstream 

of the Lpin1 promoter region (260). Glucagon through cAMP, synergistically enhances the effect 

of GC on lipin-1 expression and activity and this effect is antagonized by insulin in mouse and rat 

hepatocytes (259). In both un-treated and insulin-treated hepatocytes, the half-life of PAP-1 

activity is 5-7 hours which is increased to 12 hours by glucagon (through cAMP formation) (261). 

Thus, the increase in the half-life of PAP-1 activity is thought to be the underlying cause for the 

synergistic effect of GC and cAMP treatment on lipin-1 expression and activity in hepatocytes 

(259). cAMP may additionally regulate Lpin1 gene transcription via the activation of cAMP 

response element-binding protein (CREB) which in turn, induces Lpin1 expression by binding to 

the cAMP-dependent regulatory elements (CRE) upstream of the Lpin1 promoter (262, 263).  
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Figure 1.11. Transcriptional regulation of the Lpin1 gene. A schematic of Lpin1 gene 
promoter region and the regulatory elements are shown. Conditions known to activate Lpin1 gene 
expression are shown in the upper panel. Negative regulators of Lpin1 gene expression are shown 
in the bottom panel. Abbreviations: cyclic adenosine monophosphate (cAMP); cAMP-dependent 
regulatory elements (CRE); cAMP response element-binding protein (CREB); glucocorticoid 
(GC); glucocorticoid response element (GRE); lipopolysaccharide (LPS); nuclear factor Y (NF-
Y); peroxisome proliferator activated receptor -ɣ-coactivator-1α (PGC-1α); sterol regulatory 
element binding protein (SREBP)-1; sterol response element (SRE); tumor necrosis-α (TNF-α). 
Adapted from Csaki et al. (245). 
 

 

Previous studies (238, 259) report that lipin-1 is responsible for the increase in VLDL 

secretion in response to GC treatment in cultured rat hepatocytes (264-266). Thus, it is 

hypothesized that under conditions that lead to elevated activity of the HPA axis (i.e. starvation, 

diabetes, and obesity) resulting in an increase in circulating GC, the subsequent GC-induced 

increase in lipin-1 activity augments the capacity for the liver to sequester excess FFA as TG for 

VLDL secretion when FFAs are not immediately required for β-oxidation (238, 259). Consistent 

with this hypothesis, there is an elevation in hepatic PAP-1 activity under stress conditions, such 

as partial hepatectomy (267), starvation (268), diabetes (248, 269), obesity (248), and in response 

to dietary fat/carbohydrate or ethanol challenge (270-272).  
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 The expression of hepatic lipin-1 is induced by PGC-1α (248), a transcriptional 

coactivator that is markedly upregulated under conditions of fasting and diabetes and is involved 

in the activation of genes that modulate gluconeogenesis and fatty acid oxidation (248, 273-275). 

Conditions that dictate an increase in mitochondrial fatty acid oxidation, such as fasting and 

diabetes, leads to the upregulation of PGC-1α, which in turn, induces lipin-1 expression (248). 

Thus, lipin-1 becomes an inducible amplifier of the PPARα/PGC-1α pathway to increase hepatic 

capacity for β-oxidation in response to an increase in the influx of FFAs to the liver (248).   

 Lpin1 gene expression is also controlled by sterol regulatory element binding protein 

(SREBP)-1, which regulates many genes involved in fatty acid and triglyceride biosynthesis 

(276). In response to sterol depletion, SREBP-1 and nuclear factor-Y (NF-Y) acts through an NF-

Y and sterol response element (SRE) binding site in the human Lpin1 promoter to induce Lpin1 

gene expression in human hepatoblastoma cells (277). Conversely, inflammation and sepsis 

appear to suppress Lpin1 gene expression in adipocytes through pro-inflammatory cytokines, 

including TNF-α and lipopolysaccharide (LPS) (278, 279). Finally, in vitro studies in HeLa M 

and 3T3-L1 cells indicate that lipin-1 and -2 may negatively regulate one another (280). 

 

Hepatic insulin signaling 

 

AKT and Rictor/mTORC2: Key mediators of insulin action 

Insulin is a key metabolic regulator of liver glucose and lipid metabolism. Insulin 

regulation of metabolic processes often involves PI3K signaling that is coupled to 

phosphoinositide-dependent kinase-1 (PDK-1) and the Ser/Threonine (Thr) kinase AKT (also 

known as protein kinase B; PKB) (281). AKT is activated via phosphorylation at Ser473 by the 

rictor containing mTOR complex 2 (mTORC2) in addition to PDK1-directed phosphorylation at 

Thr308 (282, 283). AKT2 is the major isoform expressed in liver and mediates many of the 

metabolic actions of insulin (284, 285). Hepatic overexpression of constitutively active AKT in 
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mice results in the development of nonalcoholic fatty liver disease (NAFLD), 

hypertriglyceridemia, and hypoglycemia (286). These effects are phenocopied by the loss of 

hepatic phosphatase and tensin homolog (PTEN), a negative regulator of PI3K-dependent protein 

kinase activity, including AKT (287). The loss of AKT2 effectively negates the effect of PTEN 

deficiency on fatty liver and improved systemic glucose tolerance (288), and similarly, reverses 

hepatic steatosis in obese, insulin resistant mouse models (285). The lipo-regulatory effects of 

hepatic AKT are largely due to the regulation of SREBP-1c and SREBP-2, which modulate many 

genes involved in fatty acid, triglyceride, and cholesterol biosynthesis (276). The effects on 

glycemia are due, in part, to AKT-directed phosphorylation and inhibition of the transcription 

factor Forkhead box protein O1 (FoxO1), leading to its nuclear exclusion and termination of 

transcription of rate controlling enzymes of gluconeogenesis, phosphoenolpyruvate 

carboxykinase (PEPCK) and glucose-6-phosphatase (G6PC), thereby limiting HGP (289). 

mTOR is a Ser/Thr kinase and a key regulator of cell growth and metabolism, activated 

in response to insulin, nutrients, and growth factors (Figure 1.12) (290). mTOR is found in two 

distinct multiprotein complexes that are defined by their subunit composition, rapamycin 

sensitivity, and substrate selectivity (290). The rapamycin sensitive mTOR complex 1 (mTORC1) 

consists of raptor, mLST8, PRAS40 (291) and mTOR, whereas the rapamycin insensitive 

complex, mTORC2, consists of rictor, mSIN1, mLST8, protor, and mTOR (290, 292). The best 

characterized substrates of mTORC1 are p70 ribosomal S6 kinase (S6K) and eukaryotic initiation 

factor 4E-binding protein (4E-BP), which are important in the regulation of protein synthesis 

(292). mTORC2 phosphorylates members of the AGC kinase family, including AKT (282), 

serum- and glucocorticoid-induced protein kinase (SGK) (293), and protein kinase Cα (PKCα) 

(294), and thus, controls cell survival, actin cytoskeleton organization, and other metabolic 

processes.  
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Figure 1.12. AKT and Rictor/mTORC2: Key mediators of insulin action. AKT2 is the major 
isoform expressed in liver and mediates many of the metabolic actions of insulin. In the canonical 
insulin signaling pathway, insulin binding to the insulin receptor (IR) tyrosine kinase is coupled 
to the tyrosine phosphorylation and activation of the scaffolding proteins, such as insulin receptor 
substrate (IRS)-1. In turn, IRS activates phosphatidylinositol 3-kinase (PI3-Kinase) which 
phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to generate phosphatidylinositol-
3,4,5-trisphosphate (PIP3), a reaction that can be reversed by phosphatase and tensin homolog 
(PTEN). Accumulation of PIP3 recruits AKT and PDK-1 to the plasma membrane, where PDK-1 
phosphorylates the activation loop of AKT at Threonine 308. Through an unknown mechanism, 
the IR signaling also activates the rictor containing mammalian target of rapamycin (mTOR) 
complex 2 (mTORC2). Rictor, is the key regulatory protein that directs mTORC2 to 
phosphorylate the hydrophobic motif of AKT at Serine 473 leading to the full activation of this 
serine/threonine kinase. mTORC2 also phosphorylates other AGC family protein kinases, serum- 
and glucocorticoid-induced protein kinase (SGK) and protein kinase Cα (PKCα) and thus is 
poised to regulate multiple metabolic processes. AKT activates mTORC1 through multisite 
phosphorylation of TSC2 within the TSC1-TSC2 complex. The best characterized downstream 
targets of mTORC1 are p70 ribosomal S6 kinase (S6K) and eukaryotic initiation factor 4E-
binding protein (4E-BP), which are important in the regulation of protein synthesis. While 
mTORC1 activity in hepatocytes is important in the regulation of ketogenesis and lipid 
metabolism, genetic deletion of rictor and associated loss of mTORC2 activity in liver has 
revealed that mTORC2 is a key regulator of hepatic glucose, lipid, and cholesterol metabolism. 
Figure from Huang et al. (283). 
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Selective hepatic insulin resistance as the underlying mechanism for the metabolic 

syndrome 

High portal insulin levels prime the liver for rapid alterations in hepatic carbohydrate 

metabolism such as the stimulation of glycogen synthesis, the suppression of gluconeogenesis 

and glycogenolysis (295, 296). Insulin rapidly alters lipid homeostasis via the stimulation of 

lipogenesis and lipoprotein synthesis and the suppression of VLDL-TG secretion (14, 297). In the 

insulin resistant state, insulin fails to suppress gluconeogenesis and thus, hyperglycemia ensues 

while insulin retains its ability to enhance lipogenesis (298). Excessive hepatic lipogenesis can 

contribute to the development of NAFLD and atherogenic dyslipidemia (14, 15). Thus, the 

concept of selective hepatic insulin resistance, as described by Brown and Goldstein (299), could 

account for the pathogenesis of hyperglycemia and dyslipidemia associated with obesity, 

diabetes, and the metabolic syndrome. This concept, as illustrated in Figure 1.13, suggests that 

insulin-signal transduction bifurcates upstream of lipogenesis and gluconeogenesis, where 

regulation of the SREBP-1c driven lipogenic pathway remains intact while the regulation of the 

FoxO1-gluconeogeneic pathway becomes insulin resistant.  

Dissecting the role of insulin-AKT signaling in the complex regulation of liver glucose 

and lipid metabolism is necessary for understanding the pathogenesis of hyperglycemia, 

atherogenic dyslipidemia, and NAFLD associated with obesity, diabetes, and the metabolic 

syndrome. Understanding the molecular mechanism underlying selective insulin resistance in 

liver requires a deeper understanding of how insulin and AKT regulate hepatic glucose and lipid 

metabolism which will be further investigated in Chapter V. 
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Figure 1.13. Selective hepatic insulin resistance. Selective hepatic insulin resistance has been 
hypothesized to generate hyperglycemia and dyslipidemia associated with obesity, diabetes, and 
the metabolic syndrome. It’s characterized by inability of insulin to suppress the transcription 
factor Forkhead box protein O1 (FoxO1) leading to impaired suppression of hepatic glucose 
production (HGP). In parallel, insulin continues to stimulate the transcription factor sterol 
regulatory element binding protein (SREBP)-1c leading to excessive hepatic lipogensis which 
contributes to the development of NAFLD and atherogenic dyslipidemia. The molecular 
mechanism underlying selective insulin resistance in the liver remains elusive. Adapted from 
Brown and Goldstein (299). 
 

 

Rationale and Hypothesis 

  Elevated plasma TG levels contribute to an atherogenic dyslipidemia that is associated 

with obesity, diabetes, and the metabolic syndrome. Numerous models of obesity are 

characterized by increased CNS NPY tone that contributes to excess food intake and obesity. We 

previously demonstrated that ICV administration of NPY in lean fasted rats also elevates hepatic 

production of VLDL-TG. Thus, the overarching hypothesis is that elevated CNS NPY action 

contributes to dyslipidemia by activating central circuits that modulate liver lipid metabolism.  
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This body of work sought to elucidate the molecular mechanisms by which CNS NPY 

signaling leads to rapid increases in hepatic VLDL-TG secretion, specifically focused on the 

molecular determinants in the hypothalamus (Chapter III) and on hepatic-specific mechanisms 

(Chapter IV and V). In Chapter III, we investigated whether the effects of NPY on feeding and/or 

obesity are dissociable from effects on hepatic VLDL-TG secretion. We first asked whether ICV 

NPY administration retains the effect to increase hepatic VLDL-TG secretion when given 

chronically (3 days, twice daily) but when food intake, body weight, and fat mass are matched 

exactly to control levels. Secondly, we sought to determine which of the various NPY receptor 

subtypes (Y1, Y2, Y4 and Y5) are involved in feeding versus VLDL-TG secretion.  Thus, using 

these approaches, we sought to determine whether the effect on feeding versus lipids overlap or 

are dissociable, as this might have structure-function and/or therapeutic implications in obesity 

and the metabolic syndrome.    

Based on the observation in Chapter III that CNS NPY rapidly increases hepatic VLDL-

TG secretion while not altering adipocyte lipolysis (FFA and glycerol), we hypothesized that key 

regulatory steps involved in liver lipid metabolism might be robustly regulated by increased CNS 

NPY signaling. The liver-specific molecular mechanisms by which increased CNS NPY signaling 

rapidly regulates hepatic lipoprotein metabolism are not well understood. Nor is the lipid source 

that generates the TG that is loaded onto the nascent VLDL particle in response to increased CNS 

NPY action currently known. We, therefore, sought to identify the novel regulatory mechanisms 

in the liver engaged by NPY. Our study employed two approaches: first, we determined whether 

liver PL is a novel source of lipid for hepatic VLDL-TG secretion in the fa/fa ZF rat, a rodent 

model characterized by elevated NPY tone and dyslipidemia, independently of hyperphagia and 

obesity; and secondly, we determined whether CNS NPY signaling via the Y1 receptor elevates 

hepatic VLDL-TG secretion by modulating key regulatory enzymes involved in liver PL 

remodeling in lean fasted, metabolically normal rats and whether this is a GC dependent effect. 

We ultimately sought to elucidate the novel regulatory mechanisms in the liver in response to 
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increased CNS NPY action that leads to the modulation of hepatic lipoprotein metabolism in the 

absence of increased visceral adiposity, as this might yield novel insight and therapeutic 

implications for the dyslipidemia associated with obesity, diabetes, and the metabolic syndrome.  

Previous studies (189, 191, 192, 202) show that under conditions characterized by 

increased hypothalamic NPY tone (i.e. fasting, obesity, and diabetes), NPY activates sympathetic 

outflow to the liver. This in turn induces hepatic insulin resistance to impair insulin’s ability to 

suppress HGP and hepatic VLDL-TG secretion, contributing to the dyslipidemia and dysglycemia 

associated with obesity, diabetes, and the metabolic syndrome (13). We hypothesized that CNS 

NPY may induce “selective hepatic insulin resistance” to promote hyperglycemia and 

hyperlipidemia. As described by Brown and Goldstein (299), the concept of selective hepatic 

insulin resistance suggests that the insulin-signal transduction bifurcates upstream of lipogenesis 

and gluconeogenesis, where the regulation of one pathway (lipogenesis) remains intact while 

regulation of the other (gluconeogenesis) is impaired, a mechanism by which hyperglycemia and 

hypertriglyceridemia can ensue. In Chapter V, we generated a mouse model of impaired hepatic 

insulin action targeting the concept of selective hepatic insulin resistance independent of CNS 

NPY signaling. We have impaired the function of mTORC2 in liver by hepatocyte-specific gene 

deletion of Rictor, which is a key mTORC2 regulatory protein. We sought to determine whether 

hepatic rictor directed mTORC2 activity is required for the regulation of liver lipid metabolism.  

The results, interpretations, and the caveats of the experimental studies in this dissertation 

work are summarized in Chapter VI and placed in the context of the proposed integrated model of 

how CNS NPY regulates lipoprotein metabolism independently of increased food intake and 

visceral adiposity. Additionally, Chapter VI includes supportive preliminary data and proposed 

future directions to further delineate the molecular mechanisms by which increased CNS NPY 

signaling regulates liver lipid metabolism, focusing specifically on the molecular determinants in 

the hypothalamus, on the neural-hepatic circuit, and on liver-specific mechanisms. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Ethics statement for experimental mouse and rat studies (Chapters III-V) 

All Study protocols were approved by the Institutional Animal Care and Use Committee 

of the Tennessee Valley Veterans Affairs (VA) Healthcare System and Vanderbilt University 

(Nashville, TN). 

 

Experimental animals: Long-Evans and fa/fa ZF rats (Chapters III and IV) 

 

Animal studies 

Male Long Evans rats (HsdBlu:LE), weighing 250-274 g, were purchased from Harlan 

(Indianapolis, IN). Zucker fatty rats (Crl:ZUC-Leprfa), weighing 300 g, were purchased from 

Charles River laboratories (Wilmington, MA). Rats were maintained under temperature- and 

humidity-controlled conditions with a 12-hour light/dark cycle (lights on at 6AM), and were 

given free access to water and a standard rodent chow diet (5001; 3.02 kcal/g, 58% carbohydrate, 

28.5% protein,13.5% fat; Lab diet, Richmond, IN).  

 

Intracerebroventricular (ICV) cannulation  

Cannulation of the third ventricle in the brain allows infusion of the hypothalamic 

structures lying adjacent to the third ventricle. Placement of third ventricle cannula into Long 

Evans rats were performed using proper sterile technique and under general anesthesia induced 

and maintained by inhalation of isoflurane. Buprenex (0.05 mg/kg body weight) was administered 

postoperatively to mitigate pain and distress. The superior and dorsal aspect of the head and neck 

were shaved and placed into a small animal stereotaxic apparatus (ASI instruments; Warren, MI).  
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The skin was prepared by successive scrubbing with betadine. A 1.5-cm mid-sagittal skin incision 

was made and cleaned with sterile swabs to expose the skull. The skull was leveled and properly 

aligned using lambda and bregma as reference points at the cranial plate junctions. Using a 

battery powered drill, a single, open burr hole was drilled into the skull, 2.2 mm posterior to 

bregma. The superior sagittal sinus was retracted laterally, and a 22-gauge stainless steel guide 

cannula (C313G; Plastics One, Roanoke, VA) was lowered 7.5 mm directly midline, ventral to 

the dura, and then fixed to the skull with anchor screws and dental acrylic. A removable obturator 

(C313DC-SPC; Plastics One) was inserted into the guide cannula to seal and to prevent infection. 

The skin was sutured with sterile 4-0 silk Ethicon sutures. Rats were treated with antibiotic 

(Ceftriaxone, 0.1 g/kg body weight, Intraperitoneal; IP) on the day of the surgery and 2 days post-

operatively. Animals were allowed to recover for 5-7 days after surgery during which body 

weights were monitored. Surgical recovery was defined by steady weight gain and final body 

weight not less than 10% below pre-surgery body weight. 

Correct placement of cannula was verified by an angiotensin II drinking test (300). If the 

cannula is placed correctly, angiotensin II activates the thirst center of the hypothalamus and 

direct administration to the third ventricle stimulates a measurable thirst response (301). For this 

test, rats were injected with a 1 μl of a 10 ng/μl angiotensin II solution via the ICV cannula and 

water consumption was measured over a 1-hour period. Animals that do not drink greater than 5 

ml of water in 1-hour post-treatment were excluded from the study.  

 

Carotid catheter surgery 

Placement of carotid catheter into Long Evans rats were performed using proper sterile 

technique and under general anesthesia induced and maintained by inhalation of isoflurane. 

Buprenex (0.05 mg/kg body weight) was administered postoperatively to mitigate pain and 

distress. The skin on the interscapula and ventral surface of the neck was shaved and sterilized 

with betadine. A small longitudinal incision was made in the skin over the region where the 
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anterior jugular, acromeodeltoid, and cephalic veins join together. The connective tissues 

surrounding this junction were carefully removed. The common carotid artery was separated from 

the vagus nerve and muscle, and two thin threads of 6-0 silk sutures were passed under the artery. 

The cephalic thread was tied to prevent bleeding and then the artery was clamped. A small 

incision was made in the carotid artery just below the ligature, and a sterile MicroRenathane 

catheter (R-CAC-M37-R; Brain Tree Scientific, Braintree, MA) filled with heparinized saline 

(200 U/ml) was inserted into the artery lumen. The clamp was taken off and the catheter was 

threaded into the artery at a pre-determined distance. The catheter was fixed with the cephalic 

thread (previously used to prevent bleeding) and a second thread. The catheter was flushed with 

heparinized saline (200 U/ml) and the tubing was closed with a stainless steel plug. A blunt 

needle (16-gauge) was carefully inserted through the incision on the interscapula and pushed 

subcutaneously until the end comes out through the incision in the neck. The catheter was 

carefully seized and pulled slowly through the needle. The implanted catheter was securely 

sutured in place and all incisions in skin were sutured with sterile 4-0 silk Ethicon sutures. Rats 

were treated with antibiotic (Ceftriaxone, 0.1 g/kg body weight, IP) on the day of the surgery and 

2 days post-operatively. Animals were allowed to recover for 5-7 days after surgery during which 

body weights were monitored. 

 

NPY receptor agonist selectivity and dosing 

The NPY EC50 values as measured in vitro are 2.6, 5.1, 814, and 4.9 nM for the Y1, Y2, 

Y4, and Y5 receptor subtypes, respectively (105). All peptide ligands used in our studies are 

selective compounds for their respective NPY receptor subtypes and bind with sub-nanomolar 

affinity (105). The Y1 selective peptide, [F7, P34]-NPY, has >3,000-fold selectivity for the Y1 

receptor over that of either the Y2 or Y5 receptor (302). For Y2 receptor activation, we used 

hPYY (3-36), which has a 181-, >1,000-, and 5-fold greater affinity for the Y2 receptor than for 

Y1, Y4, and Y5 receptor subtypes, respectively (303). To activate the Y4 receptor, we used hPP 
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that has a 2.2-, >56-, and 1.4-fold greater affinity for the Y4 receptor than for Y1, Y2, and Y5 

receptor subtypes, respectively (105, 109). We also used a Y5 agonist, [Ala31, Aib32]-NPY, which 

has >77-, 12-, and >77-fold selectivity for the Y5 receptor than for the Y1, Y2, and Y4 receptor 

subtypes, respectively (105, 109). The dose of agonist utilized for each receptor subtype was 

estimated based on in vitro receptor potencies relative to NPY (105, 109, 302, 303) for food 

intake and lipid studies. The dosages chosen for ICV treatment were: NPY (1 nmol); Y1 agonist, 

[F7, P34]-NPY (1 nmol); Y2 agonist, hPYY (3-36; 1 nmol); Y4 agonist, hPP (1 nmol); and Y5 

agonist, [Ala31, Aib32]-NPY (2 nmol).  

 

Intracerebroventricular infusions 

 Studies were performed 5-7 days after surgery when body weight curves returned to a 

pre-surgery trajectory. Recombinant NPY and a selective agonist for the Y2 receptor, human 

PYY (3-36, hPYY), were purchased from GenScript (Piscataway, NJ). A selective agonist for the 

Y1 receptor, [F7, P34]-NPY, and the Y5 receptor, [Ala31, Aib32]-NPY, were synthesized (302, 

304). A selective agonist for Y4, human PP (hPP), was purchased from Tocris Bioscience 

(Ellisville, Missouri). All receptor agonists were dissolved in 0.9% normal saline and freshly 

prepared on the day of the study. All ICV compounds were administered in a 2 µl volume over 1 

min.  

 

Chronic NPY pair-feeding study 

Recombinant NPY was administered ICV (1 nmol) twice daily (8AM and 5PM) over 3 

days in rats matched for body weight. To control for the orexigenic effects of NPY, NPY-treated 

rats were pair-fed (PF) to the caloric intake of the ICV vehicle (saline; Veh)-treated control rats. 

Blood collected daily by tail prick was measured for plasma TG and cholesterol levels. At the end 

of the study (day 3), 4-hour fasted rats were given either ICV NPY (1 nmol) or Veh and at 120 

min post injection, animals were euthanized followed by collection of trunk blood. Body weight 
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and body composition using an EchoMRI-700 nuclear magnetic resonance (NMR) spectrometer 

(Echo Medical Systems, Houston, TX) to determine lean and fat mass were measured on study 

day 3. 

 

Food intake studies  

We assessed food intake responses to agonists of each receptor subtype compared to 

vehicle control, 12-hour fasted, and NPY-treated animals. Rats with surgically implanted ICV 

cannulae and matched for body weight, were studied. We administered ICV compounds, NPY (1 

nmol), [F7, P34]-NPY (1 nmol), hPYY (3-36; 1 nmol), hPP (1nmol), [Ala31, Aib32]-NPY (2 

nmol) or Veh (saline) to ad-libitum chow-fed rats at 10AM (lights on at 6AM) and measured 2-

hour food intake post injection.  

 

Tyloxapol (lipid production) experiments  

For lipid production studies, rats with ICV cannulae and carotid catheters were matched 

for body weight and fasted with free access to water from 6 to 10AM. We previously confirmed 

by agarose gel electrophoresis that 4-hour fasted rats on laboratory chow have nearly 

undetectable levels of chylomicrons in the plasma compared with fed rats (211). Indirect 

calorimetry in a separate group of rats confirmed that animals are in a postabsorptive state after a 

4-hour fast (211). Altogether, these findings suggest that chylomicrons do not contribute to the 

observed changes in TGs (211). A baseline blood sample was drawn from the carotid catheter, 

then plasma TG clearance was blocked by an intravenous infusion of tyloxapol (300 mg/kg body 

weight), which at the dosage used, potently inhibits LPL activity (IC50 12.5µM) (305-307). Thirty 

minutes after tyloxapol infusion, ICV compounds or Veh were injected at time 0 min. Also at 0 

min and at 30 min intervals, 200 µl of blood was collected in a tube containing 2 µl 50 mM 

ethylenediaminetetraacetic acid (EDTA) (211). The TG secretion rate was determined as the 

54 
 



slope of the concentration of plasma TGs over time using linear regression analysis (calculated 

from time 0 to 120 min).  

Notably, one caveat of our experimental design was the use of tyloxapol to measure TG 

production rates. Tyloxapol is a non-ionic detergent and has been reported to have non-specific 

physiologic effects related to lipoprotein metabolism (307). Millar et al. (307) reports that over a 

prolonged time period after tyloxapol injection in mice, results in decreased TG production rates 

which appears to be due to a decrease in TG production and not a lack of inhibition of plasma TG 

clearance. Consistent with these findings, tyloxapol is known to accumulate in lysosomes in liver 

which may affect TG trafficking and VLDL-TG secretion and thus, account for the reported 

hepatic TG accumulation in livers of tyloxapol injected mice after 24-hour treatment (307).  

Therefore, to avoid any non-specific effects from the use of tyloxapol during the measurement of 

TG production rates, all experiments which required detailed biochemical analysis were 

conducted in the absence of tyloxapol.  

 

fa/fa ZF rat pair-feeding study 

The leptin resistant fa/fa ZF rat is a genetic model of obesity and is characterized by high 

NPY tone and dyslipidemia (65, 66, 134, 135). To control for hyperphagia and positive energy 

balance in ad-libitum chow-fed ZF rats, the ZF rats were pair-fed to the caloric intake of the 

control lean Zucker rats (fa/-). Body weights were measured daily. At the end of the study (day 

38), 4-hour fasted rats were euthanized followed by collection of trunk blood and liver tissues. 

 

Experimental animals: Mice (Chapter V) 

 

Generation of mice with hepatocyte-specific gene deletion of Rictor 

Mice with alleles in which exon 3 of the Rictor gene is flanked by loxP sites, Rictorflox/flox 

mice (308) were crossed with albumin-Cre transgenic mice (Alb-Cre+/-; strain, B6.Cg-Tg (Alb-
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Cre) 21Mgn/J; The Jackson Laboratory, Bar Harbor, ME) to obtain heterozygous Rictorflox/WTAlb-

Cre+/- offspring (where “WT” and “-”  indicate wild-type alleles). These heterozygous mice were 

then crossed to produce hepatocyte-specific Rictor knockout (HRicKO) mice with genotype 

Rictorflox/floxAlb-Cre+/+ or +/- and age-matched littermate control mice with the following genotypes: 

Rictorflox/floxAlb-Cre-/-, Rictorflox/WTAlb-Cre-/-, RictorWT/WTAlb-Cre+/+, Alb-Cre+/- or Alb-Cre-/-. The 

HRicKO mice were born at expected Mendelian ratios and did not display any apparent defects in 

fertility or maturation (data not shown). Age-matched male HRicKO and control mice were 

studied at 3-5 months of age (young) and when they were greater than 9 months of age (old). 

Genotyping was performed by polymerase chain reaction (PCR) methods using DNA obtained 

from tail clippings with primers specific for the rictor floxed and recombined alleles as previously 

described (308), as well as primers to detect the presence of Alb-Cre: Alb-3’; 5’-

ATGAAATGCGAGGTAAGTATG G-3’; Cre 102; 5’-CGCCGCATAACCAGTGAAAC-3.’ 

Both Rictorflox/flox and Alb-Cre+/- mice used for breeding were fully backcrossed to the C57BL6/J 

strain. The mice were maintained under temperature- and humidity-controlled conditions with a 

12-hour light/dark cycle and were given free access to food and water.  

 

Animals and dietary treatment 

Eight-week old HRicKO and age-matched control mice were either maintained on 

standard chow (5001; Lab diet, Richmond, IN) or placed on a diet containing 45% kcal high-fat 

diet (HFD; D12451, Research diets, New Brunswick, NJ) for 10 weeks. We also studied the 

effects of a micronutrient matched low-fat diet (LFD) and HFD on the phenotype. Ten-week old 

mice were initially placed on a 10% kcal LFD (D01060501, Research diets) for 10 weeks and 

then switched to a micronutrient matched 45% kcal HFD (D01060502, Research diets) for an 

additional 23 weeks. Body composition (whole body, fat mass and lean mass) was measured 

using an NMR spectrometer (Bruker Optics). At the end of these dietary studies, 4-hour fasted 
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mice were euthanized followed by collection of trunk blood in EDTA-coated tubes and tissues 

harvested for analysis.  

 

Body composition analysis (Chapters III and V) 

Body composition was determined by NMR spectroscopy to measure whole body, fat 

mass and lean mass. These measurements were performed using the EchoMRI-700 NMR 

spectrometer (Echo Medical Systems) for rats and the Minispec mq7.5 (Bruker Optics) in the 

Mouse Metabolic Phenotyping Center at Vanderbilt University (Nashville, TN) for mice. 

Animals were weighed immediately prior to collecting body composition measurements 

performed at the same time of day throughout each study to minimize any fluctuations due to 

feeding status of the animals. 

 

Indirect calorimetry 

Energy expenditure (EE) and fat oxidation were assessed by indirect calorimetry in 16-17 

week old control and HRicKO mice after 8-9 weeks of LFD. Mice were housed individually in 

oxymax cages (Columbus Instruments; Columbus, Ohio). VO2 and VCO2 (ml/hour) were 

calculated based on the input and output rates of O2 consumption and CO2 production, which 

were used to determine the respiratory quotient (RQ = VCO2/VO2) and heat (kcal/hour = 

(3.815+1.232xRQ) x (VO2)) using the provided software (ExpeData 1.6.1; Sable Systems, Las 

Vegas, NV). EE data (kcal/12-hour) were normalized to NMR measured lean mass, obtained the 

day mice were placed in the oxymax cages. 

 

Glucose, insulin, and pyruvate tolerance tests  

For glucose tolerance tests (GTT), 4-hour fasted mice were administered glucose, 1 g/kg 

body weight (from 50% dextrose), by IP injection. For insulin tolerance tests (ITT), 4-hour fasted 

mice were administered IP insulin, 0.8 U/kg body weight (Novolin Regular insulin). For pyruvate 
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tolerance test (PTT), mice were fasted overnight then administered 2 g/kg of body weight sodium 

pyruvate by IP injection. Blood glucose concentrations were measured by tail prick using a 

Freestyle handheld glucometer from Abbott labs (Abbott Park, IL) at 30 min before injection 

(baseline), also at 0, 5, 15, 30, 60, and 120 min after the injection. Total area under the blood 

glucose curve (AUC) was calculated for each GTT, ITT, and PTT. 

 

In vivo insulin stimulation study  

After 10 weeks of HFD feeding, 21 week old HRicKO and age-matched littermate 

control mice were fasted for 4-hour and then administered an IP injection of insulin (Novolin 

Regular insulin), 0.6 U/kg body weight, and subsequently euthanized 30 min post injection. 

Trunk blood samples were collected in EDTA-coated tubes and liver samples harvested for 

analysis.  

 

Histology 

Liver sections were embedded in optimal cutting temperature compound (Tissue-Tek) 

and snap frozen for cryosectioning. Sections (4 µM) were stained with Oil Red O (ORO) and 

hematoxylin and eosin (H&E). All histological sectioning and staining were performed by the 

Vanderbilt Translational Pathology Shared Resource Core (Nashville, TN). Images were taken at 

20X magnification using a digital microscope (ScanScope CS; Aperio, Vista, CA).  

 

LXR agonist study  

A LXR agonist T0901317 (Cayman Chemical, Ann Arbor, MI) was dissolved in vehicle 

(10% ethanol/50% polyethylene glycol/0.9% normal saline) to 10 mg/ml before administration. 

After 23 weeks of HFD feeding, 45 week old HRicKO and age-matched control mice were 

treated IP daily (at 6PM) with either 50 mg/kg body weight T0901317 or vehicle. To measure 

plasma lipids and glucose on day 2 of treatment in ad-libitum fed mice, 100 µl of blood was 
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collected by submandibular bleed in EDTA-coated tubes. Blood glucose concentrations were 

measured using a glucometer. After 6 days of treatment, ad-libitum fed mice were euthanized and 

trunk blood samples collected in EDTA-coated tubes, and tissues harvested for analysis. 

 

Molecular and biochemical techniques 

 

Genotyping of mice 

Genotyping of mice for the “floxed” Rictor allele and Albumin-Cre transgene was 

performed by PCR using DNA extracted from tail clippings (1-2 mm) by the Hot Shot method 

(309). Clippings were heated in an alkaline lysis reagent (100 μL, 25 mM NaOH, 0.2 mM EDTA, 

pH 12) in a thermomixer (95 °C; 25 min) with constant shaking (550 rpm), after which 

neutralization reagent (100 µl, 40 mM Tris –HCL, pH 5) was added. PCR was performed with 2 

µL of DNA using 5’ Hotmastermix 2.5 (annealing temperature 60 °C, 40 cycles) and the 

following PCR primers for the floxed and wildtype Rictor allele: PiaT41; 5’-

ACTGAATATGTTCATGGTTGTG-3’; PiaEx3; 5’-GAAGTTATTCAGATGGCCCAGC-3’ as 

well as primers to detect the presence of Alb-Cre: Alb-3’; 5’-ATGAAATGCGAGGTAAGTATG 

G-3’; Cre 102; 5’-CGCCGCATAACCAGTGAAAC-3’and internal control primers were used for 

all Cre PCR screening reactions: MIR015; 5’-CAAATGTTGCTTGTCTGGTG-3’; MIR016; 5’-

GTCAGTCGAGTGCACAGTTT-3’(annealing temperature 60 °C, 40 cycles). The amplified 

DNA was separated by electrophoresis on an agarose gel (Alb-Cre, 1% agarose; Rictor, 2.3% 

agarose, 0.5 µg/ml ethidium bromide (EtBr), 1X Tris-acetate (TAE) composed of 40 mM Tris 

(pH 7.6), 20 mM acetic acid, and 1 mM EDTA) followed by ultraviolet (UV) light detection of 

bands stained with EtBr. Mice were genotyped based on the presence of expected PCR products 

for the Rictor allele; homozygous floxed mutant (554 bp), heterozygotes (554 bp and 466 bp) and 

wild type mice (466 bp). A single band (565 bp) indicated the presence of the Albumin-Cre 

transgene and the internal control was detected at 150 bp. 
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Lipoprotein fractionation  

Plasma samples (150 µl) were size fractionated on a Superose 6 10/300 GL column (17-

5172-01; GE Healthcare Biosciences, Little Chalfont, UK) utilizing the Bio-Rad BioLogic Duo-

Flow HPLC unit and subsequently, 300 μl column fractions were collected in a 96-well plate. All 

lines were flushed with HPLC buffer (5 M NaCl, 0.5 M Na2HPO4, 0.5 M EDTA). The plasma 

samples were centrifuged for 5 min at 10,000 x g at 4 °C to pellet any remaining particulates. 

Using a Hamilton glass syringe (Model 1725 TLL Hamilton Glass Syringe with Slots; 60373-

856; VWR, Radnor, PA) fitted with a 22-gauge needle, 150 µL of centrifuged plasma was slowly 

drawn up and loaded into the port of the AVR7-3 valve. Next, the fractionation was run at a rate 

of 0.5 ml/min and the pressure held constant (~70 psi for a new column). The plasma sample was 

size-fractionated on the Superose 6 10/300 GL column (volume roughly 24 ml). After the sample 

passes through the column, the buffer lines direct the sample to the Bio-Rad BioLogic Bio-Frac 

fraction collector, where it is collected in 300 µL fractions in a 96-well plate. 

 

Plasma hormones, metabolites, and lipid measurements  

For all studies, trunk blood was collected in EDTA-coated tubes and placed on ice. 

Samples were centrifuged at 2000 x g for 13 min at 4 °C, the plasma supernatants were 

transferred to a new tube and stored at -80 °C. Plasma samples were assayed for insulin, 

glucagon, and corticosterone concentrations using a double antibody radioimmunoassay (RIA) 

procedure. The Vanderbilt Diabetes Center Hormone Assay & Analytical Services Core 

(Nashville, TN) conducted these assays using the respective insulin and glucagon RIA kit from 

Millipore (Billerica, MA) and corticosterone ImmuChem Double Antibody RIA kit from MP 

Biomedicals (Solon, OH). Plasma lipids were assayed using an enzymatic colorimetric assay 

conducted in 96-well plate format and absorbance measured spectrophotometrically using the 

following reagent kits: Triglycerides and Total Cholesterol (Raichem, San Diego, CA), Non-

Esterified Fatty Acids (Wako Diagnostics, Richmond, VA), and Glycerol (Sigma-Aldrich, St. 
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Louis, MO). For all lipid assays, samples and standards were run in triplicate. Blood glucose 

concentrations were measured from trunk blood obtained at study termination using a glucometer 

from Roche Diagnostics (Accu-chek advantage, Indianapolis, IN) for rats and a Freestyle 

handheld glucometer from Abbott labs for mice.  

 

Liver, plasma, and fecal lipid fractionation by gas chromatography method 

Of note for Chapter V: Feces were collected over a 48-hour period from 21 week old ad-

libitum fed HRicKO and age-matched littermate control mice fed either LFD or HFD for 10 

weeks. Lipids were extracted from liver, plasma, or feces using the method of Folch-Lees (310).  

The extracts were filtered, and lipids recovered in the chloroform phase. Individual lipid classes 

were separated by thin layer chromatography using Silica Gel 60 A plates developed in petroleum 

ether, ethyl ether, acetic acid (80:20:1) and visualized by rhodamine 6G. Phospholipids, 

diglycerides, triglycerides, and cholesteryl esters were scraped from the plates and methylated 

using BF3/methanol as described by Morrison and Smith (311). The methylated fatty acids were 

extracted and analyzed by gas chromatography. Gas chromatographic analyses were carried out 

on an Agilent 7890A gas chromatograph equipped with flame ionization detectors and a capillary 

column (SP2380, 0.25 mm x 30 m, 0.25 µm film, Supelco, Bellefonte, PA). Helium was used as a 

carrier gas. The oven temperature was programmed from 160 °C to 230 °C at 4 °C/min. Fatty 

acid methyl esters were identified by comparing the retention times to those of known standards.  

Inclusion of lipid standards with odd chain fatty acids permitted quantification of the amount of 

lipid in the sample. Dipentadecanoyl phosphatidylcholine (C15:0), diheptadecanoin (C17:0), 

trieicosenoin (C20:1), and cholesteryl eicosenoate (C20:1) were used as standards. To quantify 

total cholesterol, internal standard (5-a-cholestane) was added to a portion of the lipid extract and 

then saponified at 80 °C in 1 N KOH in 90% methanol for 1-hour. The nonsaponifiable sterol was 

extracted into hexane, concentrated under nitrogen, and then solubilized in carbon disulfide to 

61 
 



inject onto the gas chromatograph. The lipid profiles were performed in the lipid sub-core of the 

Vanderbilt Diabetes Center Hormone Assay & Analytical Services Core (Nashville, TN). 

 

Protein extraction and quantification 

Total protein was extracted from frozen liver, muscle, and adipose tissues. Muscle and 

adipose tissues were pulverized with a tissue pulverizer prior to sonication. Tissues were 

sonicated in cold T-Per Tissue Protein Extraction Buffer (10 µl/mg tissue; Thermoscientific; 

Rockford, IL) containing 1:100 (v:v) of protease inhibitor cocktail and 1:100 (v:v) of phosphatase 

inhibitor cocktail (Sigma; St. Louis, MO) with a Sonicator at setting 8, for less than 5 sec (Virtis 

Virsonic 100 Ultrasonic Cell Disrupter; AN SP Industries Company; Gardiner, NY). Following 

sonication, all samples were clarified by centrifugation at 14,000 x g for 20 min at 4 °C. The 

protein extract (supernatant) was immediately transferred to a clean pre-chilled tube. Next, 

protein concentration of the protein extract was determined in duplicate using a Pierce BCA 

Protein Assay Kit (Thermoscientific) performed according to the manufacturer’s instructions. 

Samples were diluted to 1 mg/ml with T-Per buffer containing protease and phosphatase inhibitor 

cocktail and stored at -80 °C until further analyses. 

 

Nuclear-cytoplasmic protein fractionation and quantification 

To prepare nuclear and cytoplasmic extracts of liver tissues, NE-PER Nuclear and 

Cytoplasmic Extraction Reagents (Thermoscientific) were used according to the manufacturer’s 

protocol. Protease and phosphatase inhibitor cocktail was added to CER I and NER at 1:100 (v:v) 

immediately before use. Briefly, frozen liver tissues (60 mg) were added to 600 µl of CER I 

buffer and homogenized to disrupt the cell membrane and release cytoplasmic contents. Next, the 

homogenate was incubated on ice for 10 min followed by the addition of 33 µl of Cold Cer II 

buffer and then centrifuged at 14,000 x g for 5 min. The supernatant containing the cytoplasmic 

extract was immediately transferred to a clean pre-chilled tube. The pellet containing the intact 
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nuclei was lysed with addition of 300 µl of cold NER buffer and then vortexed for 15 sec at the 

highest setting every 10 min for a total of 40 min. The suspended pellet was centrifuged at 14,000 

x g for 10 min to yield the supernatant containing nuclear extract which was transferred to a clean 

pre-chilled tube. Next, protein concentration of the extract was determined in duplicate using a 

Pierce BCA Protein Kit (Thermoscientific) performed according to the manufacturer’s 

instructions. Samples were diluted to 1 mg/ml with the appropriate buffers containing protease 

and phosphatase inhibitor cocktail and stored at -80 °C until further analyses.  

 

Western blot analysis 

Protein samples (1 mg/ml) were mixed with 4X Sample Buffer and 20X Reducing Agent 

(Bio-Rad; Hercules, CA), heated to 85 °C for 10 min, and immediately loaded into a well on a gel 

(10.5 μg total protein per lane) along with a Kaleidoscope Precision Plus Protein Standard (Bio-

Rad). Samples were subjected to denaturing electrophoresis on either a 7% or 4-12% Bis-Tris XT 

gel using the Bio-Rad XT Criterion System (Bio-Rad). Protein samples were transferred to 0.2 

μm nitrocellulose membranes using the Criterion Blotter module, according to the manufacturer’s 

instructions (Bio-Rad). Membranes were blocked in blocking buffer (5% BSA, 0.2% Tween 20) 

for 1-hour at room temperature and then incubated with primary antibodies (diluted 1:1000) in 

blocking buffer at 4 °C with gentle rocking overnight. Blots were washed (3 times for 10 min 

each) at room temperature in TBS-T (Tris Buffered Saline; 150 mM NaCl, 20 mM Tris pH 7.5 

with 0.1% (v/v) Tween 20; Sigma Aldrich; St. Louis, MO). Then, blots were incubated with 

species-specific horseradish peroxidase (HRP)-conjugated secondary antibody (diluted 1:7500) in 

50/50 blocking buffer and Starting Block T20 Blocking buffer (Thermoscientific) for 1-hour at 

room temperature and subsequently, washed in TBS-T (3 times for 10 min). Antibody detection 

was performed with Western Lightening Plus-ECL Enhanced Chemiluminescence Substrate Kit 

(Perkin Elmer) and HyBlot CL Autoradiography Film (Denville Scientific, Metuchen, NJ). Band 
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intensity from X-ray film detection was analyzed by densitometry using ImageJ software from 

the National Institutes of Health.  

Primary antibodies used for immunoblotting are the following: ACC, phosphorylated (p) 

ACC (Ser79), ACL, AKT, AKT (pThr308), AKT (pSer473), FAS, FoxO1 (pSer256), GSK3β 

(pSer9), lipin-1 (pSer106), mTOR, Rictor, Raptor, S6K1 (pThr389), S6K1, β-Tubulin (all from 

Cell Signaling Technology), Actin, ARF-1, Calnexin, GAPDH, GR, GSK3β, HDAC-1, Insig2A, 

IRβ (Tyr1162/1163), lipin-1, MTP, PKCα (pSer657), PKCα, SCD-1, SGK (pSer422), SGK, 

PEPCK (all from Santa Cruz Biotechnology), and LXRα from Abcam; HSP70 was purchased 

from Enzo Life Sciences (Framingdale, NY). The antibody that detects the mature (68KDa) and 

the precursor (125KDa) form of SREBP-1c (312) was kindly provided by Alyssa Hasty 

(Vanderbilt University) and the antibody that detects apolipoprotein B-100/48 (313) was kindly 

provided by Larry Swift (Vanderbilt University). Secondary antibodies used at a 1:7500 dilution 

for immunodetection are the following: donkey anti-goat IgG HRP purchased from Santa Cruz 

Biotechnology; anti-rabbit IgG HRP and anti-mouse IgG HRP conjugate purchased from 

Promega (Madison, WI).  

 

RNA isolation and quantitative real-time (RT)-PCR  

Liver samples were homogenized and RNA isolated using TRIzol reagent (Invitrogen, 

Carlsbad, CA). Sample RNA concentrations were quantified on a Nanodrop 1000 

spectrophotometer (Nanodrop Technologies; Wilmington, DE). RNA integrity was determined 

using a total of 2 μg of RNA by electrophoresis on a agarose gel (1% agarose, 0.5 µg/ml EtBr, 1X 

TAE) followed by UV light detection of 18S and 28S ribosomal RNA bands stained with EtBr. A 

cDNA template was synthesized from equal amounts of each sample of RNA (2 μg) using the 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) and 

performed on the I-Cycler thermal cycler (Biorad). RT-PCR was conducted using standard curves 

in each assay (six-point serial dilution of cDNA synthesized from XpressRefTM rat or mouse 
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universal total RNA; SuperArray Bioscience, Frederick, MD), IQ SYBR Green Supermix, and 

performed in triplicate using the I-Cycler thermal cycler (Biorad) with 1 cycle of 95 °C for 3 min 

followed by 40 cycles of 95 °C for 30 sec, optimal annealing temperature for 30 sec, and 72 °C 

for 30 sec. A standard curve was used to calibrate relative quantification of product in the 

exponential phase of the amplification curve in all experiments at 95-105% amplification 

efficiency. Quantification results for the RNA of interest were normalized to the housekeeping 

gene, ribosomal protein L13a (RPL13A) and for comparative analysis, RNA ratios of the 

treatment group were normalized to the control group. Real time primers were previously 

published or designed using Beacon Designer (Beacon Design Software; Palo Alto, CA) by the 

Vanderbilt Molecular Cell Biology Resource Cores (Nashville, TN). Primer sets used for RT-

PCR are listed in Table 2.1.  

 

Statistical analysis  

Data are presented as mean ± standard error of the mean (SEM). Two-group comparisons 

were performed using Student's t-test (unpaired, two-tailed) and three-group (or more) 

comparisons by one-way analysis of variance (ANOVA) with Bonferroni’s post-test analysis. In 

Chapter III, the main effect of treatment to increase plasma TGs over time was compared by two-

way repeated measures ANOVA with Bonferroni’s post-test analysis. In Chapter IV, the main 

effect of treatment on body weight over time was compared by two-way repeated measures 

ANOVA with Bonferroni’s post-test analysis. In Chapter V, the main effects of HFD and 

genotype on food intake, body weight, fat mass, and lean mass over time were compared by two-

way repeated measures ANOVA with Bonferroni’s post-test analysis. All analyses were 

performed using GraphPad Prism, version 5.04, 2010 (GraphPad Software, San Diego, CA). 

Differences with p<0.05 were considered statistically significant and p≥0.05 but <0.1 reported as 

a trend. 
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Table 2.1. Primer sequences used for quantitative RT-PCR analysis 

Gene Species Forward (5’ to 3’) Reverse (5’ to 3’) 
ACACA 
(ACC-1) 

mouse/rat GGGACTTCATGAATTTGCTGATTCTCAGTT GTCATTACCATCTTCATTACCTCAATCTC 

ACLY 
(ACL) 

mouse GCCAGCGGGAGCACATC CTTTGCAGGTGCCACTTCATC 

ACOX1 mouse/rat CTCTCTATGGGATCAGCCAGAA CCACTCAAACAAGTTTTCATACACA 

ARF1 mouse/rat CGGAACCAGAAGTGAACCAGACC CGTTTGCCACATGAGAGGAAAGC 

CD36 rat CAATGAGTAGGTCTCCAACCG GTTGGCAAGAAGCAAGTGC 

CPT1A mouse/rat GGAGACAGACACCATCCAACATA AGGTGATGGACTTGTCAAACC 

CYP7A1 mouse CCAGGGAGATGCTCTGTGTTC ACCCAGACAGCGCTCTTTGAT 

DGAT1 rat GGATGGTCCCTACTATCCAG CCACCAGTCCCTGTAGAACT 

DGAT2 mouse/rat GGAACCGCAAAGGCTTTGTA AATAGGTGGGAACCAGATCAGC 

FASN 
(FAS) 

mouse/rat AGGATGTCAACAAGCCCAAG ACAGAGGAGAAGGCCACAAA 

FDPS mouse ATGGAGATGGGCGAGTTCTTC CCGACCTTTCCCGTCACA 

G6PC  mouse/rat ATCCGGGGCATCTACAATG TGGCAAAGGGTGTAGTGTCA 

GPAM 
(GPAT) 

mouse/rat CATCCTCTTTTGCCACAACAT ACAGAATGTCTTTGCGTCCA 

HMGCR mouse CTTGTGGAATGCCTTGTGATTG AGCCGAAGCAGCACATGAT 

HMGCS1 mouse GCCGTGAACTGGGTCGAA GCATATATAGCAATGTCTCCTGCAA 

INSIG1 mouse TAGCCACCATCTTCTCCTCC CCAACGAACACGGCAATA 

INSIG2 mouse CCCTCAATGAATGTACTGAAGGATT TGTGAAGTGAAGCAGACCAATGT 

LDLR mouse TCCATCGCAGCTGGGTCTGT TACACTGTGTCACATTGACGC 

LDLR rat CAGTGCGGCGTAGGATTG GGATCACAGACCCGAAATGT 

LPIN1 mouse/rat TCACTACCCAGTACCAGGGC TGAGTCCAATCCTTTCCCAG 

NR1H3 
(LXRα) 

mouse/rat ATCGCCTTGCTGAAGACCTCTG GATGGGGTTGATGAACTCCACC 

PPARA rat TGGAGTCCACGCATGTGAAG CGCCAGCTTTAGCCGAATAG 

PCK1 
(PEPCK) 

mouse/rat CTGGCACCTCAGTGAAGACA TCGATGCCTTCCCAGTAAAC 

RICTOR mouse ATTCGAGGGCGGAATGACAG CTCCCTCAAGTTATCAGAAGGTTC 

RPL13A mouse AGATGCACTATCGGAAGAAGAAG AGTCTTTATTGGGTTCACACCAG 

RPL13A rat TACTCTGGAGGAGAAACGGAAG GCCTGTTTCCTTAGCCTCAA 

SCAP mouse ATTTGCTCACCGTGGAGATGTT GAAGTCATCCAGGCCACTACTAATG 

SCD  
(SCD-1) 

mouse CCCAGTCGTACACGTCATTTT CATCATTCTCATGGTCCTGCT 

SCD rat TGAAAGCTGAGAAGCTGGTG CAGTGTGGGCAGGATGAAG 

SREBF1 
(SREBP1c) 

mouse/rat GGAGCCATGGATTGCACATT CCTGTCTCACCCCCAGCATA 

SREBF2 
(SREBP2) 

mouse GCGTTCTGGAGACCATGGA ACAAAGTTGCTCTGAAAACAAATCA 

FDFT1 
(SS) 

mouse CCAACTCAATGGGTCTGTTCCT TGGCTTAGCAAAGTCTTCCAACT 
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CHAPTER III 

 

CENTRAL NERVOUS SYSTEM NEUROPEPTIDE Y SIGNALING VIA THE Y1 

RECEPTOR PARTIALLY DISSOCIATES FEEDING BEHAVIOR FROM 

LIPOPROTEIN METABOLISM IN LEAN RATS 

 

Adapted from Rojas et al. Am J Physiol Endocrinol Metab 303 (12): E1479-E1488, 2012 

 

Introduction 

Despite the fact that clinicians have become increasingly adept at treating classical 

cardiovascular risk factors (i.e. hypertension, smoking, and cholesterol) (4), cardiovascular 

disease remains one of the leading causes of deaths worldwide (8), potentially due to the parallel 

diabetes and obesity epidemics (9). The dyslipidemia associated with diabetes and obesity 

consists of elevated VLDL-TG together with small-dense LDL-C and reduced HDL-C levels (14-

16), and is an increasingly recognized component of cardiovascular risk, morbidity and mortality 

(16).  

A current model of dyslipidemia associated with obesity and diabetes suggests that 

increased visceral fat mass and insulin resistance leads to elevated adipocyte lipolysis which 

increases FFA delivery to liver, where it is efficiently cleared, re-esterified to TG and loaded onto 

a nascent apoB particle, ultimately resulting in VLDL maturation and secretion (23, 24). This 

process is ordinarily suppressed by integrated hepatic insulin action (29, 30). With a rise in 

VLDL-TG in the circulation, CETP exchanges cholesterol esters from HDL and LDL particles 

with TGs from VLDL, ultimately lowering HDL-C levels and facilitating the accumulation of 

atherogenic, LDL-C particles (reviewed in (15, 31)). 

In the context of integrated energy homeostasis, short term energy stores are provided by 

glucose and glycogen, while long term needs are met by adipose- and liver-derived lipids, a 
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process that is tightly regulated by the CNS. NPY expressing neurons are widely distributed in 

the CNS, concentrated in the mediobasal hypothalamus, important in the regulation of feeding 

and energy homeostasis, and increasingly recognized as having a role in lipid homeostasis (211). 

NPY is a potent orexigenic peptide, and when delivered by chronic infusion directly into the brain 

of rats and mice, has been observed to promote hyperphagia, obesity dyslipidemia, and the 

metabolic syndrome (131, 132), similar to that of the leptin deficient ob/ob mouse (62, 67, 133) 

and the genetically leptin resistant fa/fa ZF rat (65, 66). These genetic models of obesity are 

characterized by high NPY mRNA and peptide levels in the hypothalamus, secondary to the 

absence of negative feed-back regulation by leptin (134-137). Rodent models of DIO (made 

obese by feeding a highly palatable diet) and STZ-induced diabetes (insulin deficient), which are 

more typical of human diabetes, are also characterized by elevated CNS NPY tone (139, 140). 

Positive energy balance and obesity pathogenesis are thought to result from defects in 

inhibitory feedback signaling to the CNS, including neuronal insulin and leptin resistance, and 

impaired nutrient sensing (74, 75). We hypothesized that increases in NPY tone within these 

neural circuits may contribute to dyslipidemia in addition to obesity. We previously demonstrated 

that ICV administration of NPY directly into the third ventricle of lean, fasted, wild-type rats 

increase hepatic VLDL-TG secretion independently of food intake (211). Peripherally 

administered NPY had no such effect, and taken together, these findings suggest that NPY-

regulated neural circuits may be involved in the regulation of TG metabolism in the liver (211).  

NPY is a 36 amino acid neuropeptide member of the NPY family that includes PYY and 

PP (93). NPY affects a wide variety of physiological functions via the activation of a population 

of distinct G-protein-coupled NPY receptor subtypes, Y1, Y2, Y4, and Y5 (93, 105). All NPY 

receptor subtypes are expressed in the hypothalamus (113, 114). The effects of NPY on feeding 

and energy homeostasis are thought to be largely mediated by hypothalamic Y1 and Y5 receptors 

(reviewed in (93)). Y2 receptors, having affinity for both NPY and PYY (105), act in an 

inhibitory manner on both orexigenic NPY as well as anorexigenic POMC neurons in the ARC 
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(116). The hypothalamic Y4 receptor is highly selective for PP over NPY or PYY (105) and is 

thought to mediate anorexigenic effects by decreasing hypothalamic NPY (314). Yet, the receptor 

subtype(s) involved in the central NPY regulation of lipoprotein metabolism are not well 

understood. Nor is the relative effect of a given receptor on feeding versus lipoprotein 

metabolism. In genetic models in which the NPY Y1, Y2, Y4, or Y5 receptor has been deleted on 

an ob/ob background (a rodent model of severe hypertriglyceridemia), the effect on TGs is not 

reported except for the Y2 receptor deletion having no effect (167, 170, 176, 177).  

Our study employed two approaches: first, determining whether CNS NPY retains the 

effect on hepatic VLDL-TG secretion chronically (3 days; twice daily ICV administration) in the 

absence of increased food intake and fat mass; and second, determining whether different CNS 

NPY receptors mediate feeding versus VLDL-TG regulatory effects. We evaluated the effect of 

selective ICV NPY Y1, Y2, Y4, and Y5 receptor agonists on both feeding and hepatic VLDL-TG 

secretion in lean fasted rats in order to determine which receptor subtype(s) are involved in the 

central NPY regulation of lipoprotein metabolism versus feeding. We ultimately sought to 

determine whether the effects on feeding versus lipids overlap or are dissociable as this might 

yield novel structure-function insight and/or therapeutic implications in obesity and the metabolic 

syndrome.   

 

Results 

 

Chronic NPY treatment increases plasma TG levels independently of food intake, positive 

energy balance, and increased body adiposity 

Previously, we demonstrated that ICV administration of NPY into the third ventricle of 

lean rats increases hepatic VLDL-TG secretion independently of feeding, as the animals were 

denied access to food just prior to and during experimental procedures (211). Because exogenous 

administration of NPY to a lean animal can drive the development of obesity and the metabolic 
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syndrome (131, 132), we sought to determine whether a more chronic NPY administration 

increases plasma TGs independently of its orexigenic effects to increase food intake and body 

adiposity. NPY was administered ICV (1 nmol) twice daily over 3 days in chow-fed rats. 

Importantly, to prevent an induction of food intake, we pair-fed NPY-treated rats to the caloric 

intake of Veh-treated controls. At the end of the study (day 3), 4-hour fasted rats were given 

either ICV NPY (1 nmol) or Veh, and trunk blood was collected at study termination (120 min 

post injection). Pair-feeding successfully matched the body composition of NPY-treated rats 

relative to Veh-treated animals, resulting in no differences in body weight, lean mass, and fat 

mass at study termination (Fig. 3.1A). However, we found that chronic NPY injections in pair-fed 

rats resulted in a ~50% increase in plasma TGs by treatment days 2 and 3 (p<0.01; n=6/group; 

Fig. 3.1B) with no observed alteration in total plasma cholesterol levels (p=ns; Table 3.1). The 

effect of chronic NPY treatment to increase plasma TG over time was dependent on the treatment 

(F (1, 22) =7.99, p<0.01).  
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Figure 3.1. Chronic NPY treatment induces hypertriglyceridemia independently of positive 
energy balance. A: The effects of chronic ICV NPY treatment (3 days, twice daily; 1 nmol) in 
chow-fed rats pair-fed (NPY-PF; black bars) to the caloric intake of ICV vehicle (Veh; white 
bars) treated rats (n=6/group) on body weight (BW), lean mass (LM) and fat mass (FM) are 
illustrated. Data are presented as mean ± SEM and were analyzed by Student's t-test (unpaired, 
two-tailed), p=ns for NPY-PF vs. Veh comparisons. B: Daily plasma TG levels (% of Veh 
control) from blood collected by tail prick of NPY-PF (black bars) and Veh-treated (white bars) 
rats are shown. Data are presented as mean ± SEM and were analyzed by two-way repeated 
measures ANOVA with Bonferroni’s post-test analysis; *p<0.01 for NPY-PF vs. Veh 
comparisons. The effect of chronic NPY treatment to increase plasma TG over time was 
dependent upon treatment (F (1, 22) =7.99, p<0.01). C: The TG content of FPLC fractions of 
sized-fractionated individual plasma samples from NPY-PF (black circles) and Veh-treated (clear 
squares) rats as measured on study day 3 are illustrated for comparison of fractions 10-20, the 
size range corresponding to VLDL.  
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The changes in TGs observed with chronic NPY treatment in pair-fed rats (p<0.05; Table 

3.1) were not due to elevated adipocyte lipolysis, as we did not observe any changes in FFA or 

glycerol at study termination (p=ns; Table 3.1), consistent with our previous findings (211). 

Although glucagon levels were significantly elevated in comparison to Veh treatment (p<0.05; 

Table 3.1), insulin levels only trended higher (p=0.09; Table 3.1). Individual plasma samples 

were sized-fractionated by FPLC and quantified for TG content. As previously observed with an 

acute injection of ICV NPY in lean fasted rats, chronic NPY treatment in pair-fed rats increased 

TG content in VLDL containing fractions (fractions 10-20; Fig. 3.1C).  

 

Table 3.1. Effects of chronic NPY administration to pair-fed chow-fed rats at 120 min 
post ICV injection on glucoregulatory hormones and metabolites 

  Veh NPY-PF 
TG (mg/dl) 80.5±5.0 156±32* 
Cholesterol (mg/dl) 97.6±10.0 83.8±3.6 
FFA (mmol/l) 0.31±0.03 0.23±0.02 
Glycerol (mg/dl) 10.4±1.8 15.6±4.7 
Insulin (ng/ml) 1.04±0.10 2.09±0.50 
Glucagon (pg/ml) 63.1± 4.4 107±14* 

Data are presented as mean ± SEM (n=6/group) and were analyzed by Student's t-test 
(unpaired, two-tailed). *p<0.05 for NPY-PF vs. vehicle (Veh) comparisons.  

 

 

Selective activation of NPY receptor subtypes induces hyperphagia in lean ad-libitum chow-

fed rats  

We first sought to identify an ICV dosage of NPY that would lead to a physiologically 

relevant feeding response. Lean ad-libitum chow-fed rats were given either ICV NPY (1 nmol) or 

Veh, and the 2-hour feeding response post injection was compared to the 2-hour refeeding 

response of 12-hour fasted rats. As expected, both ICV NPY treatment and 12-hours of fasting 

potently induced hyperphagia in comparison to Veh treatment (Fig. 3.2). We found that 1 nmol 

NPY given ICV induced the same 2-hour feeding response as observed after a 12-hour fast 

72 
 



(p=ns; Fig. 3.2). All of the selective NPY receptor agonists, Y1 ([F7, P34]-NPY; 1 nmol), Y2 

(hPYY 3-36; 1 nmol), Y4 (hPP; 1 nmol), and Y5 ([Ala31, Aib32]-NPY; 2 nmol) induced 

hyperphagia in ad-libitum chow-fed rats relative to Veh (Fig. 3.2). Therefore, all of the selective 

receptor agonists (Y1, Y2, Y4, and Y5) induced a 2-hour feeding response similar in magnitude 

to 12 hours of fasting (p=ns; Fig. 3.2). Of particular note, the Y2 receptor agonist, at a dose 

equivalent to NPY (1 nmol), stimulated feeding above all the other compounds except for the Y5 

agonist (Fig. 3.2). Collectively, these data confirm that we used physiologically relevant doses (1-

2 nmol) of each selective receptor agonist for our food intake and lipid studies.   

 

 

Figure 3.2. Effects of CNS administered NPY receptor subtype agonists on 2-hour food 
intake. Food intake was measured in lean ad-libitum chow-fed rats for 2-hours after receiving an 
ICV injection of Veh (n=13), NPY (1 nmol; n=4), or a selective NPY receptor subtype agonist for 
Y1 ([F7, P34]-NPY; 1 nmol), Y2 (hPYY 3-36; 1 nmol), Y4 (hPP; 1 nmol), or Y5 ([Ala31, Aib32]-
NPY; 2 nmol) (n=4-6/group). These 2-hour food intake measurements are shown in comparison 
with a 2-hour refeeding response of a 12-hour fasted lean rat (Fast/refed; n=3). Data are presented 
as mean ± SEM and were analyzed by one-way ANOVA. Significant differences (p<0.05), as 
tested with Bonferroni’s post-test, are indicated by *for comparisons relative to Veh and #for 
comparisons relative to Y2 receptor agonist. 
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A Y1 receptor agonist increases plasma TG levels to the greatest extent relative to other 

NPY receptor subtype agonists 

In corroboration with our previous findings (211), NPY significantly increased the 

hepatic TG production rate (6.4±0.5 mg/dl/min for NPY (n=5) vs. 3.5±0.1 mg/dl/min for Veh 

(n=26), p<0.0001; Fig. 3.3A and E). We found that the Y1 receptor agonist, [F7, P34]-NPY (1 

nmol), also increased hepatic TG production rate to a similar extent (6.7±0.4 mg/dl/min for Y1 

(n=7) vs. Veh, p<0.0001; Fig. 3.3B and E). The Y2 receptor agonist, hPYY (3-36; 1 nmol), 

stimulated TG production by 1.5-fold (5.1±0.3 mg/dl/min for Y2 (n=7) vs. Veh, p<0.01; Fig. 

3.3C and E) and was less potent than the Y1 receptor agonist (Y1 vs. Y2, p<0.01; Fig. 3.3E). 

Neither the Y4, hPP (1 nmol), nor Y5, [Ala31, Aib32]-NPY (2 nmol), receptor agonists increased 

the rate of hepatic TG production beyond that of Veh treatment (p=ns; Fig. 3.3D and E). The 

ability of NPY, and its Y1 and Y2 receptor agonists, to increase TG production over time was 

treatment dependent (F (6, 50) =11.75, p<0.0001). Collectively, our results suggest that while Y1 

and Y2 receptor agonists both regulate plasma TG levels and food intake, an NPY signal 

mediated through a Y1 receptor more potently increases hepatic TG production, while one 

mediated through the Y2 receptor has a greater effect on food intake (compare Fig. 3.2 and 3.3E).   
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Figure 3.3. Effect of each CNS NPY receptor subtype (Y1, Y2, Y4, and Y5) on hepatic TG 
production. A-D: Plasma TG levels after an intra-arterial injection of tyloxapol (at time -30 min), 
and then at time 0 min, ICV injections of (A) NPY (1 nmol; black circles) or Veh (clear squares); 
or (B) Y1 receptor agonist ([F7, P34]-NPY, 1 nmol; black triangles) or Veh (clear squares); or 
(C) Y2 receptor agonist (hPYY 3-36, 1 nmol; black diamonds) or Veh (clear squares); or (D) Y4 
receptor agonist (hPP, 1 nmol; black circles) or Y5 receptor agonist ([Ala31, Aib32]-NPY, 2 nmol; 
clear diamonds) or Veh (clear squares); were administered to lean 4-hour fasted rats (NPY, n=5; 
NPY receptor agonists, n=4-7/group; Veh, n=26). Data are presented as mean ± SEM and 
significant differences (*p<0.05) for treatment vs. Veh were determined by two-way repeated 
measures ANOVA (A-D). The ability of NPY, and its Y1 and Y2 receptor agonists, to increase 
TG production over time was treatment dependent (F (6, 50) =11.75, p<0.0001). E: Depicts the 
TG production rates calculated from the change in plasma TG levels over time after ICV 
treatment of either NPY or NPY receptor agonists (Y1, Y2, Y4, and Y5) compared to Veh in lean 
4-hour fasted rats. Data are presented as mean ± SEM and statistical significance, as determined 
by one-way ANOVA with Bonferroni’s post-test analysis (p<0.05), is designated by either a *for 
comparisons relative to Veh or a #for the receptor agonist comparison of Y1 relative to Y2.  

75 
 



ICV administered Y1 receptor agonist enhances hepatic secretion of TGs in the form of 

VLDL-lipoprotein 

Since Y1 and Y2 receptor agonists both increased hepatic TG production, we next 

confirmed that modulation of CNS NPY signaling via these receptor subtypes increase TGs in the 

VLDL fraction. In order to avoid any non-specific effects from the use of tyloxapol during the 

measurement of TG production rates, we performed these experiments in the absence of 

tyloxapol. NPY (1 nmol), Y1 receptor agonist (1 nmol), Y2 receptor agonist (1 nmol), or Veh 

were given ICV and, then trunk blood was collected at study termination (120 min post injection). 

Of note, each receptor subtype agonist was tested in a separate cohort of animals, and each cohort 

was matched to its own Veh control group. NPY increased plasma TGs by ~200% (NPY vs. Veh, 

p<0.001, n=6-13/group; Fig. 3.4A). Similarly, the Y1 receptor agonist recapitulated the NPY 

effect by doubling plasma TG levels (Y1 receptor agonist vs. Veh, p<0.001, n=6-13/group; Fig. 

3.4A), whereas the Y2 receptor agonist had no effect on plasma TGs in the absence of tyloxapol 

(Y2 receptor agonist vs. Veh, p=ns, n=6-13/group; Fig. 3.4A). Pooled plasma samples were 

sized-fractionated by FPLC and TG content was quantified in each column fraction. NPY 

treatment increased TG content in column fractions (10-20) that corresponded in size to that of 

VLDL (Fig 3.4B); consistent with our previous findings (211). Similarly, the Y1 receptor agonist 

increased TG content in these fractions (Fig. 3.4B), whereas the Y2 receptor agonist had little 

effect (Fig. 3.4B). Neither treatment with NPY nor the agonists for Y1 or Y2 receptor subtypes 

altered total plasma cholesterol levels (data not shown).  
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Figure 3.4. Effects of CNS NPY receptor subtypes, Y1 and Y2, on hepatic VLDL-TG 
secretion. A and B: NPY (1 nmol), Veh or receptor agonists for either Y1 ([F7, P34]-NPY, 1 
nmol) or Y2 (hPYY 3-36, 1 nmol) were given ICV in the absence of tyloxapol to 4-hour fasted, 
lean rats (n=6-13/group), and trunk blood was collected at 120 min post injection. Each receptor 
subtype agonist was tested in a separate cohort of animals, and each cohort was matched to its 
own Veh control group, so plasma TG levels of each treatment group were normalized to their 
matched Veh controls. A: Plasma TG levels of each treatment group (% of Veh control) are 
shown. Data are presented as mean ± SEM and statistical significance (p<0.05), as determined by 
one-way ANOVA with Bonferroni’s post-test analysis, is indicated by a *for all comparisons 
relative to Veh. B: The TG content of FPLC fractions after size fractionation of pooled plasma 
samples is illustrated. Column fractions 10-20, the size range corresponding to VLDL, are 
illustrated to allow comparisons between the different ICV treatment groups: Veh (clear squares), 
NPY (black circles), Y1 receptor agonist (black triangles), and Y2 receptor agonist (black 
diamonds).  
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Increased CNS NPY Y1 or Y2 receptor signaling did not alter markers of adipocyte 

lipolysis or glucoregulatory hormones 

Current models suggest that increased adipocyte lipolysis during states of fasting or 

insulin resistance leads to increased substrate (FFA and glycerol) delivery to the liver for greater 

VLDL-TG secretion (23, 24, 315). Thus, we sought to determine whether CNS NPY signaling via 

the Y1 or Y2 receptor increases lipolysis. Extending our previous findings (211), as well as those 

of others (192), ICV NPY did not activate markers of lipolysis, FFA and glycerol, nor did ICV 

Y1 or Y2 receptor agonists (p=ns; Table 3.2).  

ICV infusion of NPY influences glucose metabolism and sensitivity to insulin in fasted 

rats (189-192); therefore, we determined whether CNS NPY signaling via either the Y1 or Y2 

receptor alters glucoregulatory hormones. The Y2 receptor agonist increased plasma glucose 

levels by 13% (p<0.05; Table 3.2); whereas neither NPY nor Y1 receptor agonist had any effect 

on glucose concentration (p=ns; Table 3.2). ICV administered NPY, Y1 and Y2 receptor agonists 

did not alter plasma insulin and glucagon levels (p=ns; Table 3.2).  

 

Table 3.2. Effects of CNS NPY and agonists for Y1 and Y2 receptor subtypes at 120 min post 
ICV injection on glucoregulatory hormones and metabolites 

       NPY       Y1 agonist       Y2 agonist 
 Veh NPY Veh Y1 Veh Y2 
FFA (mmol/l) 0.33±0.03 0.39±0.05 0.26±0.04 0.25±0.02 0.30±0.04 0.37±0.02 

Glycerol (mg/dl) 10.0±0.8 11.4±0.3 14.9±2.2 16.9±1.4 10.2±2.2 6.2±1.2 

Insulin (ng/ml) 1.1±0.2 1.5±0.3 2.6±0.4 3.8±0.9 3.7±0.3 3.8±0.2 

Glucagon (pg/ml) 79±7 76±4 77±10 76±6 76±11 86±12 

Blood glucose (mg/dl) 137±5 145±6 150±5 159±6 135±4 152±4* 

Data are presented as mean ± SEM (n=6-7/group) and were analyzed by Student's t-test 
(unpaired, two-tailed); *p<0.05 for ICV treatment vs. vehicle (Veh) comparisons.  
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CNS NPY signaling via the Y1 receptor modulates liver stearoyl-CoA desaturase-1 mRNA 

levels 

Hypothalamic signaling via several hormones (especially leptin) and metabolites 

regulates hepatic stearoyl-CoA desaturase-1 gene expression (203, 215, 216, 316, 317); thus, liver 

expression of SCD-1 is a robust marker of known hypothalamic-liver regulatory pathways. First, 

we investigated whether increased CNS NPY signaling via the Y1 receptor modulated relevant 

liver regulatory targets. Lean, 4-hour fasted rats were given either ICV NPY (1 nmol), the Y1 

receptor agonist (1 nmol), or Veh, and at either 60 or 120 min post injection, trunk blood and 

liver samples were collected. Of note, NPY and the Y1 receptor agonist were tested in a separate 

cohort of animals, and each cohort was matched to its own Veh control group. Similar to our 

findings at 120 min post ICV injection (Fig. 3.4A), we found at 60 min post ICV injection that 

treatment with either NPY or the Y1 receptor agonist doubles plasma TG levels with respect to 

Veh (NPY 256±60% vs. Veh 100±11%, p<0.01; Y1 receptor agonist 171±21% vs. Veh, p<0.01, 

n=5-11/group). We then quantified expression levels of key lipid metabolic markers involved in 

VLDL assembly and secretion. At both 60 and 120 min, neither NPY nor the Y1 receptor agonist 

altered levels of phosphorylated-acetyl-CoA carboxylase (ACC; Ser79), ACC, FAS, hepatic 

apoB-48 or MTP (p=ns, n=5-7/group; Fig. 3.5A and B) consistent with our previous findings 

(211). CNS NPY did induce SCD-1 mRNA levels relative to Veh by 4-fold (p<0.05, n=5/group; 

Fig. 3.5C), while the Y1 receptor agonist increased SCD-1 mRNA levels by 5-fold (p<0.01, n=5-

6/group; Fig. 3.5D). Thus, signaling via the Y1 receptor recapitulates CNS NPY regulation of 

hepatic SCD gene expression, which is a known marker of hypothalamic-hepatic metabolic 

regulation, and whose gene product is involved in lipid metabolism.  
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Figure 3.5. CNS NPY signaling via the Y1 receptor induces hepatic SCD-1 mRNA 
expression. A and B: Representative immunoblots of key lipid metabolic markers involved in 
VLDL assembly and secretion are shown. Protein extracts prepared from livers of 4-hour fasted 
lean rats (n=5-7/group) isolated 60 or 120 min after ICV injection of (A) NPY (1 nmol) or Veh, 
or (B) Y1 receptor agonist ([F7, P34]-NPY, 1 nmol) or Veh, were immunoblotted to detect levels 
of phosphorylated-ACC (Ser79), ACC, FAS, apoB-48, and MTP. Western blots were analyzed by 
densitometry (normalized to Veh control) for (A) ICV NPY treatment at 60 (white bars) and 120 
min (black bars) post injection and (B) ICV Y1 receptor agonist treatment at 60 (white bars) and 
120 min (gray bars) post injection. Densitometry results were corrected relative to those of the 
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protein loading control glyceraldehyde 3-phosphate dehydrogenase (GAPDH), actin, or heat 
shock protein 70 (HSP70). C and D: RNA were isolated from livers of 4-hour fasted rats that 
were obtained 60 or120 min after treatment with (C) ICV NPY (black bars) or Veh (white bars), 
or (D) ICV Y1 receptor agonist (gray bars) or Veh (white bars), and were assessed by quantitative 
RT-PCR for changes in SCD-1 mRNA levels. SCD-1 mRNA levels, normalized to the reference 
RNA RPL13a, are shown. For comparative analysis, RNA ratios were normalized to the Veh 
control. Data are presented as mean ± SEM and were analyzed by Student's t-test (unpaired, two-
tailed); *indicates a significant difference (p<0.05) between ICV treatment and Veh. 
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Discussion 

Atherogenic dyslipidemia characterized in part by elevated plasma TG levels is the major 

lipid abnormality associated with obesity, diabetes, and the metabolic syndrome (14-16). While 

peripheral factors (visceral adiposity and insulin resistance) clearly contribute to this disorder 

(23, 24), we hypothesized that increased CNS NPY action contributes both to the pathogenesis of 

obesity and obesity dyslipidemia. We sought to determine if the effects of NPY on feeding and/or 

weight gain are dissociable from the effects on hepatic VLDL-TG secretion. We employed two 

approaches: first, asking whether NPY retains the effect on hepatic VLDL-TG secretion 

chronically in the absence of increased food intake and weight gain; and second, whether 

different NPY receptors mediate effects on feeding versus hepatic VLDL-TG secretion. We 

found that chronic (3 days) ICV injections of NPY in animals pair-fed to Veh-treated controls in 

order to maintain identical body composition also led to hypertriglyceridemia, which suggests 

that hyperphagia and accumulation of excess adiposity are not required for this effect. Moreover, 

using selective NPY receptor agonists, we demonstrate, within the limits of our model, that 

central NPY signaling via the Y1 receptor predominantly regulates effects on hepatic lipoprotein 

production. The Y2 receptor agonist modestly stimulated VLDL-TG production albeit at a dose 

that had a profound effect on feeding. Neither the Y4 nor the Y5 agonist had an effect on plasma 

TGs. Conversely, all agonists stimulated feeding, with the NPY Y2 receptor agonist having a 

more robust effect on feeding than TG production. In contrast, at the same dose used for the NPY 

Y2 receptor agonist, the NPY Y1 receptor agonist had a greater effect on TG production than 

feeding. Thus, we postulate that NPY regulates feeding and lipoprotein metabolism partially via 

separate NPY receptor systems and/or mechanisms.  

While our study, and others (124, 318), reveal that central administration of the NPY Y2 

receptor agonist, PYY 3-36, stimulates feeding under some conditions, Batterham et al. (123) 

reported that this Y2 receptor agonist has an inhibitory effect on food intake when administered 

by direct intra-arcuate injection or via peripheral administration. Because the inhibitory Y2 

82 
 



receptor is found on both the ARC NPY and POMC neurons this adds an additional layer of 

complexity to the regulation of the NPY/POMC neural circuit by Y2 agonists. Both endogenous 

and exogenous Y2 agonist action in the ARC is context dependent as elegantly described in 

Ghamari-Langroudi et al. (116). An additional consideration is that ICV administration of the Y2 

agonist may result in its dispersion to other hypothalamic and non-hypothalamic regions. Finally, 

the potential activation of the Y5 receptor by PYY 3-36 could also explain the increase in food 

intake. 

A strength of our study was that we matched test compounds for potency on feeding 

behavior (similar to a 12-hour fast), with the exception of the Y2 receptor agonist. A weakness is 

that we utilized only a single dosage of each test compound. It is conceivable that, at significantly 

higher or lower doses, opposite and/or differential effects on feeding relative to VLDL-TG 

secretion may have been observed. Indeed a “U-shaped” curve, as well as exquisite dose-

dependency of the effects of several neuropeptides has been noted (319, 320). Thus, this study 

does not reveal whether dose-response effects of NPY Y1 receptor signaling on feeding resemble 

or differ from those on VLDL-TG secretion.  

We previously reported that the NPY Y5 receptor agonist, BWX-46, increased VLDL-

TG secretion in lean fasted rats (211), a finding not replicated here using [Ala31, Aib32]-NPY (Fig. 

3.3D and E). However, the NPY Y5 receptor agonist [Ala31, Aib32]-NPY (2 nmol ICV) employed 

in our current study has greater than 77-fold selectivity for the Y5 than for the Y1 receptor (105, 

109), whereas BWX-46 (12 nmol ICV) employed in our previous study has less Y5 selectively 

and greater cross reactivity with the Y1 receptor (321). Thus, at the dose used in our previous 

study (211), it appears likely that BWX-46 activated both the NPY Y1 and Y5 receptor resulting 

in the observed increase in VLDL-TG production. 

Elevated hypothalamic NPY tone with a concomitant reduction of POMC tone is 

associated with obesity and diabetes in rodent models (139, 140) and humans (98, 143, 144), 

likely due to defects in inhibitory feedback signals to the CNS i.e. insulin and leptin resistance 
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(74, 75). Because we show that Y1 receptor activation has a greater effect than activation of the 

Y2 receptor on lipoprotein metabolism, it informs of potential structure-function relationships of 

the NPY-regulated neural circuitry involved. There is reportedly a close physical localization and 

apparent functional relationship between NPY Y1 and Y2 receptors in neurons found within the 

ARC, the LHA, the DMN, and the PVN, whereas the VMN contains only Y1 receptor positive 

neurons (114). Furthermore, a study by Chee et al. (110) reports that NPY inhibits the excitatory 

(anorexigenic) outflow between the VMN and ARC POMC neural circuitry via the activation of 

the Y1 receptor subtype in the VMN. Moreover, studies in VMN-lesioned rats, which 

recapitulates a state of elevated NPY tone, have elevated plasma TGs (212), even as early as 10 

days postoperatively, together with decreased plasma FFA and glucose levels (213). Finally, 

perfused livers from VMN-lesioned rats secrete more TGs than controls (213). Altogether, these 

data suggest that the VMN is a potential hypothalamic site in which NPY may regulate 

lipoprotein metabolism via selective activation of the Y1 receptor. Of course, our initial studies 

reported here, employing ICV injections cannot localize the effect. Future studies, thus will 

involve selective inhibition of the Y1 receptor in PVN compared to VMN with microinjection 

techniques in an obese, hypertriglyceridemic rodent model characterized by elevated NPY tone 

(i.e. fa/fa Zucker fatty rat). Collectively, these findings may lend plausibility that the brain is a 

potential therapeutic target to treat obesity dyslipidemia. 

Our finding that the NPY Y1 receptor is most robustly coupled to lipoprotein metabolism 

is consistent with the conclusions from a genetic association study in severely obese human 

subjects matched for body mass index, in which those individuals with the CC haplotype (relative 

to the TT/CT polymorphism) of the un-translated region of the NPY1R gene had elevated fasting 

serum TGs and significantly lower HDL-C concentrations (221). It is not yet clear if this 

haplotype correlates with a relative gain of NPY Y1 receptor function, but we would hypothesize 

in the context of our findings that the CC haplotype is a relatively hyperfunctional allele and thus, 

would confer increased TGs in the setting of obesity.  
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Several studies have investigated the effect of global deletion of the NPY Y1, Y2, Y4, 

and Y5 receptors on the background of the ob/ob mouse, which is a leptin deficient, obese rodent 

model characterized by elevated CNS NPY tone and severe hypertriglyceridemia. Unfortunately, 

these studies only report on the effect of this genetic manipulation on energy homeostasis and not 

on whether deletion of the various NPY receptors attenuate hypertriglyceridemia, except for the 

Y2 receptor which was noted to have no effect (167, 170, 176, 177). Because all of the NPY 

receptor subtypes are expressed both centrally and peripherally (except for the brain specific Y5 

receptor) (105), it would be interesting to determine whether brain specific deletion of the Y1 

receptor in the obese ob/ob mouse would attenuate hypertriglyceridemia.  

Current models suggest that increased adipocyte lipolysis during states of fasting or 

insulin resistance leads to increased substrate (FFA and glycerol) delivery to liver, which can 

increase hepatic VLDL-TG secretion (23, 24). The observation that increased NPY signaling via 

the Y1 receptor doubled VLDL-TGs, while plasma FFA and glycerol levels were unchanged, 

suggests that adipocyte lipolysis was not increased, and thus would not account for the NPY 

stimulated increase in hepatic VLDL-TG production. Moreover, we observed this same effect in 

rats given chronic NPY treatments under pair-fed conditions leading to the doubling of VLDL-

TG secretion independent of changes in adipocyte lipolysis. Although CNS Y2 receptor signaling 

did not alter markers of adipocyte lipolysis, the Y2 receptor agonist surprisingly had no effect on 

plasma TGs in the absence of tyloxapol (Fig. 3.4A and B). Given that the Y2 receptor agonist did 

increase VLDL-TG secretion modestly in the presence of tyloxapol (Fig. 3.3C and E), suggests 

that Y2 receptor activation may also have an effect to enhance TG clearance perhaps through the 

modulation of adipose tissue LPL activity (322).   

SCD-1 catalyzes the desaturation of palmitic and stearic acids to palmitoleic and oleic 

acids and its expression is known to be regulated by CNS leptin (316, 317), glucose (215) and 

melanocortin action (203) in the same hypothalamic feeding circuits engaged by NPY. Whereas 

leptin suppresses SCD-1 (and NPY tone (136)), we have observed a robust induction of hepatic 
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SCD-1 expression in response to CNS NPY treatment. This effect is recapitulated by Y1 receptor 

activation, providing further evidence that NPY signaling via the Y1 receptor is mechanistically 

involved in hepatic lipid metabolism.   

Provision of oleic acid or modulation of SCD-1 activity changes VLDL production rate 

by increasing triglyceride loading in the late maturation phase (215, 316). Presently, we 

demonstrate that the elevation in hepatic VLDL-TG secretion by increased CNS NPY signaling 

via the Y1 receptor is associated with a rapid (within 60 min) induction of hepatic SCD gene 

expression, which would suggest that SCD-1 activation may contribute to changes in VLDL-TG 

secretion. This is supported by previous findings in which hypothalamic glucose (215) and 

glycine (216) metabolism reduced hepatic SCD-1 mRNA and inhibited hepatic VLDL-TG 

secretion. Although the definitive mechanistic link between hepatic SCD-1 and the alteration of 

VLDL-TG secretion by CNS NPY signaling remains to be determined, changes in the formation 

rate of hepatic oleic acid may be an important mediator (215).  

Our results show that neither the NPY nor the Y1 agonist influenced the level of key de 

novo lipogenic enzymes, phospho-ACC (Ser79), ACC and FAS. Hepatic apoB is an essential 

component of liver-derived VLDL, if lipid is not loaded by MTP, apoB becomes a target for 

proteasomal degradation (230). In contrast to humans, the rat produces predominately apoB-48 

instead of apoB-100 in the liver (227). Our results show that there were no significant changes in 

hepatic tissue levels of apoB-48 detectable by Western blot from increased CNS NPY and Y1 

receptor signaling (Fig. 3.5A and B), although this method is not as sensitive as radiolabeling 

methods. Similarly, we found that MTP, which plays a pivotal role in VLDL maturation and 

secretion of triglyceride-rich lipoproteins (230, 323), was unaltered by NPY and Y1 receptor 

agonist treatment (Fig. 3.5A and B). Collectively, these data suggest that CNS NPY acts 

primarily via the Y1 receptor to increase plasma TGs and likely does so by altering the late 

maturation step of VLDL assembly and secretion. 
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In conclusion, we demonstrate, within the limits of our model, that the effects of NPY on 

feeding and/or weight gain are relatively dissociable from the effects on hepatic VLDL-TG 

secretion. Three days of twice daily ICV NPY injections, in animals pair-fed to Veh-treated 

controls to maintain identical caloric intake and body composition, led to hypertriglyceridemia. 

CNS NPY signaling via the Y1 receptor predominantly regulates effects on hepatic lipoprotein 

production, whereas the activation of the Y2 receptor has a greater effect on feeding. Altogether, 

these findings raise the possibility that NPY regulates feeding and lipoprotein metabolism 

partially via separate NPY receptor systems and/or mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87 
 



CHAPTER IV 

 

CENTRAL NERVOUS SYSTEM NEUROPEPTIDE Y PROMOTES HEPATIC LIPIN-1 

MEDIATED PHOSPHOLIPID REMODELING ELEVATING VLDL-TRIGLYCERIDE 

SECRETION 

 

Manuscript in preparation 

 

Introduction 

Concomitant with the parallel obesity and diabetes epidemics (9), an increasing 

healthcare burden is due to the complications of hyperlipidemia such as CVD, cerebrovascular 

disease, and peripheral vascular disease. Elevated VLDL-TG production from liver contributes to 

atherogenic dyslipidemia consisting of small-dense LDL-C and reduced HDL-C levels (14-16) 

associated with obesity and diabetes. Hypertriglyceridemia is a key component of the metabolic 

syndrome (14-16), which is an increasingly recognized component of cardiovascular risk, 

morbidity and mortality (16).  

A current model of dyslipidemia associated with obesity and diabetes suggests that 

increased visceral fat and relative insulin resistance in adipose leads to increased substrate (FFA) 

delivery to the liver concomitant with hepatic insulin resistance, leading to increased production 

of VLDL-TG (23, 24). While peripheral factors clearly contribute to this disorder (23, 24), we 

hypothesized that regulation of lipid homeostasis is normally subject to CNS regulatory forces. 

CNS NPY expressing neurons, concentrated in the mediobasal hypothalamus as well as numerous 

other brain regions, are an important regulator of feeding and energy homeostasis, and 

increasingly recognized as having a role in lipid homeostasis (211, 222).  

Elevated hypothalamic NPY tone with a concomitant reduction of POMC tone is 

associated with obesity and diabetes in rodent models (139, 140) and humans (98, 143, 144). This 
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is thought to result from defects in inhibitory feedback signaling to the CNS, including neuronal 

insulin and leptin resistance, and impaired nutrient sensing, leading to impaired ability of these 

neuronal subsets to sense energy excess (74, 75). We hypothesized that increases in NPY tone 

within these neural circuits may contribute to dyslipidemia independent of positive energy 

balance and increased visceral adiposity. In Chapter III, we demonstrated that ICV NPY 

administration directly to the third ventricle of the brain can double hepatic VLDL-TG secretion 

in lean fasted rats (211, 222), and does so, in large part, via the CNS NPY Y1 receptor (222). 

Moreover, as shown in Chapter III, NPY rapidly increases VLDL-TG secretion from liver while 

plasma FFA and glycerol levels were unchanged, suggesting that adipocyte lipolysis was not 

increased, and thus would not account for the NPY-induced hypertriglyceridemia (211, 222). We, 

therefore, hypothesized that key regulatory steps involved in liver lipid metabolism might be 

robustly regulated by increased CNS NPY signaling.   

VLDL is the chief carrier of TG in the postprandial state (236). The assembly and 

secretion of TG-rich VLDL represents a key component of hepatic TG homeostasis, which is a 

tightly regulated and complex two-step process (reviewed in (228)). In the first step, a small 

quantity of TG is assembled onto the structural protein, apoB-100 during its co-translational 

translocation through the rough ER lumen and this process is catalyzed by MTP to form an HDL-

sized VLDL precursor lipoprotein (228). If lipid is not loaded by MTP, apoB becomes a target for 

proteasomal degradation (230). 

The second step, which is less well-characterized, involves the fusion of a larger droplet 

of TG with the apoB-containing VLDL precursor to form the mature VLDL particle before 

exiting from the ER (228, 231). This process can be blocked by integrated hepatic insulin action 

leading to enhanced degradation of apoB and suppression of VLDL secretion (29, 30). VLDL 

maturation is dependent on the key regulatory enzymes ARF-1 and PLD (233), which can be 

effectively blocked by Brefeldin A (235).  
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  Evidence suggest that TG utilized for VLDL assembly and secretion can originate from 

sources other than that arising from hepatic fatty acid synthesized de novo and from extracellular 

FFAs (224). It has been reported that up to 70% of secreted VLDL-TG by liver is attributable to 

the hydrolysis and re-esterification of pre-existing PL and cytosolic TG (224). Clearly, some of 

the TG which ends up as VLDL is derived from a pool of intracellular PL, a novel source of lipid 

given the current assumption that intracellular membrane PL merely plays a structural role in 

VLDL assembly (224).  

Key regulatory enzymes involved in the transfer of PL fatty acids into TG, otherwise 

known as PL remodeling, involve PLD which is activated by ARF-1 leading to the production of 

PA from the phospholipid, PC. PA is then dephosphorylated by the key rate-limiting enzyme, 

PAP-1 producing the TG precursor, DAG. The resulting DAG serves as a substrate for the 

synthesis of TG and PLs, PC and PE that is required for lipidation of the nascent VLDL particle 

resulting in maturation and secretion as TG-rich VLDL particles by the liver (238).  

Mammalian PAP-1 is encoded by the Lpin gene family consisting of Lpin1, Lpin2, and 

Lpin3. All lipin isoforms contain PAP-1 activity and are expressed in the liver (reviewed in 

(324)). The subcellular localization and compartmentalization of lipin-1 determines its dual 

molecular function as either a glycerolipid biosynthetic enzyme or a transcriptional co-activator 

(reviewed in (249)). Insulin stimulates the phosphorylation of lipin-1 at Ser106 which is 

dependent on PI3K activity and mTOR pathway (250) sequestering it into the cytosol, which 

affects its intrinsic PAP-1 activity (251). Dephosphorylation of lipin-1 occurs in response to fatty 

acids (i.e. oleic acid) leading to its translocation from the cytosol to the ER membrane where it 

performs its PAP-1 activity (252), generating the lipid substrates (TG, PC, and PE) required for 

VLDL assembly and secretion (238, 253). Conversely, lipin-1 in the nucleus acts as a 

transcriptional co-activator with PGC-1α and PPARα leading to the induction of genes involved 

in fatty acid oxidation, including CPT1A (248, 254).  
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Only lipin-1 but not lipin-2 or -3 expression and activity is upregulated by GCs (259), 

which act through the GR bound to functional GRE upstream of the Lpin1 promoter region (260), 

an effect that is synergized by glucagon through cAMP formation and antagonized by insulin in 

mouse and rat hepatocytes (259). Thus, it is hypothesized that under conditions that lead to 

elevated activity of the HPA axis such as stress, starvation, and diabetes, resulting in an increase 

in circulating GC, the subsequent GC induced increase in lipin-1 activity augments the capacity 

for the liver to sequester excess FFA as TG for VLDL secretion when FFAs are not immediately 

required for β-oxidation (238, 259).  

The activity of the HPA axis is reportedly increased in obesity and diabetes in humans 

(193-196) and in rodent models of genetic obesity (177, 197), DIO (198), and STZ-induced 

diabetes (199). These rodent models of obesity and diabetes are characterized by high NPY 

mRNA and peptide levels in the hypothalamus, secondary to the absence of negative feed-back 

regulation by insulin and leptin (134-137, 139, 140). Chronic ICV NPY infusion has been shown 

to activate the HPA axis in normal animals leading to elevated circulating GC, corticosterone 

(200, 201). Therefore,  some of the hormonal and metabolic effects of chronic CNS NPY 

signaling in normal rats depends on circulating corticosterone, since adrenalectomy prevented 

these NPY-induced effects, including hyperphagia, obesity, hyperinsulinemia, and 

hypertriglyceridemia (201).   

The hepatic-specific molecular mechanisms by which increased CNS NPY signaling 

rapidly regulates hepatic lipoprotein metabolism are not well understood. Nor is the lipid source 

that generates the TG that is loaded onto the nascent VLDL particle in response to increased CNS 

NPY action currently known. We, therefore, sought to identify the novel regulatory mechanisms 

in the liver engaged by NPY. Our study employed two approaches: first, we determined whether 

liver PL is a novel source of lipid for hepatic VLDL-TG secretion in the fa/fa ZF rat, a rodent 

model characterized by elevated NPY tone and dyslipidemia, independently of hyperphagia and 

obesity; secondly, we determined whether CNS NPY signaling via the Y1 receptor elevates 
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hepatic VLDL-TG secretion by modulating key regulatory enzymes involved in liver PL 

remodeling in lean fasted, metabolically normal rats and whether this is a GC dependent effect.  

We ultimately sought to elucidate the novel regulatory mechanisms in the liver in response to 

increased CNS NPY action that leads to the modulation of hepatic lipoprotein metabolism in the 

absence of increased visceral adiposity as this might yield novel insight and therapeutic 

implications for the dyslipidemia associated with obesity, diabetes, and the metabolic syndrome. 

 

Results 

 

Liver PL as a novel source of lipid for hepatic VLDL-TG secretion in the fa/fa Zucker fatty 

rat 

The leptin resistant fa/fa ZF rat is a genetic model of obesity and is characterized by high 

NPY tone and dyslipidemia (65, 66, 134, 135). To control for hyperphagia and positive energy 

balance in ad-libitum chow-fed ZF rats, the food intake of the PF ZF rats were carefully matched 

to the caloric intake of the control lean Zucker rats (fa/-). Ad-libitum fed ZF rats rapidly 

developed obesity (Fig. 4.1A) whereas pair-feeding successfully matched the body weight of the 

ZF rats to that of control animals (Fig. 4.1A). At the end of the study (day 38), ad-libitum fed ZF 

rats developed severe hypertriglyceridemia and hypercholesterolemia (Fig. 4.1B and C). 

Intriguingly, pair-feeding normalized the plasma TG and not the cholesterol levels in the ZF rats 

to that of control levels (Fig. 4.1B and C). Although pair-feeding altered plasma TG 

concentrations in the ZF rat (Fig. 4.1B), it had no effect on liver TG content (Fig. 4.1D) whereas 

liver PL content was completely normalized to control levels (Fig. 4.1E). Remarkably, PL (r=0.9; 

p<0.0001; Fig. 4.1F) and not TG (r=0.4; p=ns; Fig. 4.1G) content in liver tightly correlated with 

plasma TG levels. These data collectively suggest that in a rodent model characterized by 

elevated NPY tone, liver PL stores may provide a novel source of lipid for hepatic VLDL-TG 

secretion. 
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Figure 4.1. Liver PL as a novel source of lipid for hepatic VLDL-TG secretion in the fa/fa 
Zucker fatty rat. A: The food intake of the pair-fed (PF) chow-fed fa/fa Zucker fatty (ZF) rats 
(black triangles) was calorically matched to that of the lean ZF (fa/-) controls (white circles) and 
the effect on daily body weight (BW; n=5/group) are illustrated in comparison to the ad-libitum 
(ad-lib) fed ZF rats (black squares). Data are presented as mean ± SEM and were analyzed by 
two-way repeated measures ANOVA with Bonferroni’s post-test analysis; *p<0.05 for control vs. 
ZF ad-lib comparisons. The main effect of genotype to increase BW over time was dependent on 
the treatment [BW: (F (2,12) =12.09, p=0.0013]. B-E: Plasma and livers were collected from 4-
hour fasted ad-lib fed ZF (black bars), PF ZF (hatched bars), and lean control (white bars) rats to 
measure plasma triglyceride (TG; B) and cholesterol (C) as well as liver TG (D) and phospholipid 
(PL; E). Data are presented as mean ± SEM and were analyzed by one-way ANOVA with 
Bonferroni’s post-test analysis; *p<0.05 for all comparisons. F. Correlational analysis of plasma 
TG versus liver PL levels in all groups. G. Correlational analysis of plasma TG versus liver TG 
levels in all groups.  
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TG loaded onto VLDL in response to CNS NPY signaling may be generated from liver FFA 

and/or intrahepatic PL and not TG stores in lean fasted rats  

In Chapter III, we demonstrated that ICV administration of NPY or an NPY Y1 receptor 

agonist into the third ventricle of lean rats rapidly increases hepatic VLDL-TG secretion 

independent of feeding (211, 222). We found that NPY and the Y1 receptor agonist did not 

activate the markers of adipocyte lipolysis, in the form of FFA and glycerol to increase VLDL-

TG production at 60 min post injection (Table 4.1), which is in corroboration with our findings at 

120 min post injection (as shown in Chapter III (222)). Thus, we sought to test the hypothesis that 

TG loaded onto VLDL particle in response to CNS NPY signaling is generated from intrahepatic 

PL and not TG stores.  

 
 
Table 4.1. Effects of the CNS NPY and agonist for Y1 receptor subtype at 60 min post ICV 
injection on glucoregulatory hormones and metabolites 

 NPY  Y1 agonist 
 Veh NPY Veh Y1 

FFA (mmol/l) 0.32±0.03 0.32±0.03 0.27±0.05 0.21±0.05 
Glycerol (mg/dl) 12.5±1.22 15.5±1.12 17.3±3.44 24.5±1.50 
Insulin (ng/ml) 0.80±0.2 1.18±0.2 2.99±0.5 5.45±0.4* 
Glucagon (pg/ml) 101±13 120±13 100±10 108±5.3 
Blood glucose (mg/dl) 127±6.0 130±9.2 153±2.6 152±4.0 

Data are presented as mean ± SEM (n=6-7/group) and were analyzed by Student's t-test 
(unpaired, two-tailed); *P<0.01 for the ICV treatment vs. vehicle (Veh) comparison. 
 
 
 

We investigated the impact of ICV injection of NPY and the Y1 agonist on hepatic 

lipoprotein metabolism at an early (60 min) versus latter (120 min) time point. In this study, lean 

4-hour fasted rats were given either ICV NPY (1 nmol), the Y1 receptor agonist ([F7, P34]-NPY; 

1 nmol), or saline vehicle (Veh), and at either 60 or 120 min post injection, trunk blood and liver 

samples were collected at study termination. Of note, NPY and the Y1 receptor agonist were 

tested in a separate cohort of animals, and each cohort was matched to its own Veh control group. 

We found that at 60 min post ICV injection, both NPY and the Y1 receptor agonist increased 
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plasma TG content by 2-fold (Fig. 4.2A and B) with no change in plasma FFA content (Fig. 4.2A 

and B). Similarly, at 120 min, ICV NPY agonist increased plasma TG content by 2-fold (Fig. 

4.2A). To determine whether changes in plasma TG observed are a result of changes in 

intrahepatic TG and/or PL stores, we measured hepatic lipid content. We found that at 60 min 

post injection, ICV NPY induced a small but not statistically significant reduction (24%) of 

hepatic TG content (Fig. 4.2C) concomitant with elevated hepatic FFA levels (Fig. 4.2C) and no 

alteration in PL content in liver (Fig. 4.2D). Remarkably, at a longer fasting time of 120 min post 

injection, liver PL levels dropped by 16% in ICV Veh-treated rats relative to 60 min post 

injection (Fig. 4.2D). Conversely, ICV NPY treatment at 120 min post injection prevented the fall 

in liver PL content (Fig. 4.2D) with no alteration in hepatic TG and FFA content (Fig. 4.2C). 

These findings suggest that the TG source for sustained VLDL-TG secretion by central NPY 

signaling may be derived either from liver FFA and/or intrahepatic PL and not TG stores.  
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Figure 4.2. TG loaded onto VLDL in response to CNS NPY signaling may be generated 
from liver FFA and/or intrahepatic PL and not TG stores in lean fasted rats. Lean fasted rats 
(n=5-6/group) were given either ICV NPY (1 nmol; black bars) or the Y1 receptor agonist ([F7, 
P34]-NPY; 1 nmol; gray bars) or saline vehicle (Veh; white bars) at 60 min post injection. In 
comparison, lean fasted rats (n=5-6/group) were treated with either ICV NPY (hatched bars) or 
Veh (striped bars) at 120 min post injection. Trunk blood and liver samples were collected at 
study termination to measure the following: plasma TG and FFA content in ICV NPY- (A) and 
Y1 agonist- (B) treated rats as well as liver TG, FFA, and PL in ICV NPY-treated rats versus Veh 
controls (C and D). Data are presented as mean ± SEM and were analyzed by Student's t-test 
(unpaired, two-tailed); *indicates a significant difference (p<0.05) between ICV treatment and 
Veh; #indicates a significant difference (p<0.05) between ICV Veh treatment at 60 min versus 
120 min. 

 
 
 

CNS NPY signaling promotes an increase in oleic and linoleic acid content in liver PL and 

not TG pool  

Because the monounsaturated fatty acid (MUFA), oleate (C18:1w9) derived either from 

dietary fat or synthesized de novo in liver has been shown to markedly regulate the final steps in 

the assembly of VLDL particles in hepatocytes (215), we next asked whether NPY administered 

ICV in lean fasted rats rapidly elevates levels of C18:1w9 content in both liver and plasma TG. 

Surprisingly, we found that ICV NPY increased both C18:1w9 and the dietary-derived 
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polyunsaturated fatty acid (PUFA), linoleic acid (C18:2w6) content in the liver early on (60 min; 

Fig. 4.3A). Furthermore, we found that C18:1w9 and C18:2w6 content was increased in liver PL 

and not TG at both 60 min and 120 min post injection by ICV NPY treatment (Fig. 4.3B and C).  

 

 

Figure 4.3. CNS NPY signaling promotes an increase in oleic and linoleic acid content in 
liver PL and not TG pool. Trunk blood and liver samples were collected at study termination in 
lean fasted rats (n=5-6/group) treated with either ICV NPY (1 nmol; black bars) or the Y1 
receptor agonist ([F7, P34]-NPY; 1 nmol; gray bars) or vehicle (Veh; white bars) at 60 min post 
injection and from lean fasted rats (n=5-6/group) treated with either ICV NPY (hatched bars) or 
Veh (striped bars) at 120 min post injection to measure the following: In ICV NPY- vs. Veh-
treated rats, liver FFA (A), TG (B), PL (C) in addition to plasma TG (D) and FFA (E); In ICV Y1 
agonist- vs. Veh-treated rats, plasma TG (F) and FFA (G). Data are presented as mean ± SEM 
and were analyzed by Student's t-test (unpaired, two-tailed); *indicates a significant difference 
(p<0.05) between ICV treatment and Veh. 
 
 

Because this data suggest that these unsaturated long chain fatty acids (LCFA) are being 

utilized for the synthesis of liver PL, which can generate TG for hepatic VLDL secretion, we next 
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determined whether this leads to a corresponding increase in C18:1w9 and C18:2w6 content in 

plasma TGs. Indeed, ICV NPY treatment increased C18:1w9 and C18:2w6 content in plasma 

TGs at both 60 min and 120 min post injection (Fig. 4.3D) and the ICV Y1 agonist recapitulated 

this effect at 60 min (Fig. 4.3F). Additionally, both NPY and the Y1 agonist treatment increased 

saturated LCFA, palmitic acid (C16:0) in plasma TG (Fig. 4.3D and F) which appears to be 

derived from liver PL and not TG (Fig. 4.3B and C). As expected, we observed with ICV NPY 

and Y1 agonist treatment no changes in FFA composition in plasma FFAs at 60 min post 

injection (Fig. 4.3E and G) indicating that adipocyte lipolysis is not increased and thus, does not 

contribute to the observed changes in plasma TGs. Furthermore, we found in the ICV NPY-

treated group, that both C18:1w9 and C18:2w6 enriched in liver PL and not the TG and FFA pool 

correlated positively with plasma TG levels (C18:1w9, PL: r=0.6; p=0.0031; C18:2w6, PL: r=0.4; 

p=0.045; Fig. 4.4A and B). However, there was no observed correlation for C16:0 either enriched 

in liver PL, TG, or FFA with plasma TG (Fig. 4.4C). Altogether, this data suggest that increased 

CNS NPY signaling promotes an accumulation of oleic and linoleic acid early on (60 min) and 

that these FFAs are being utilized for the synthesis of liver PL and not TG which in turn, may 

generate the lipid source for NPY-induced hepatic VLDL-TG secretion.   

 

 

Figure 4.4. Oleic and linoleic enriched liver PL (and not TG and FFA) correlates with 
plasma TGs. Correlational analysis of liver PL, TG, or FFA enriched with oleic (18:1; A), 
linoleic (18:2; B), or palmitic acid (16:0; C) versus plasma TG levels in ICV NPY- vs. Veh-
treated rats at 60 and 120 min post injection. 
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Effects of CNS NPY signaling via the Y1 receptor on key enzymes involved in liver lipid 

metabolism, VLDL-TG assembly and secretion 

We next investigated the underlying cause for the accumulation of oleic and linoleic in 

the livers of lean fasted rats treated with either ICV NPY or Y1 agonist which may be due to 

impaired liver FFA oxidation, increased hepatic FFA uptake and/or increased hepatic de novo 

synthesis of oleic acid. Consistent with previous studies (127, 192), we found that both ICV NPY 

and the Y1 receptor agonist reduced the mRNA expression of CPT-1α by 40 to 50% at 60 min 

post injection (Fig. 4.5A and C). CPT-1α is the key rate limiting mitochondrial transmembrane 

enzyme that transports LCFAs, such as oleic and linoleic acid into the mitochondria for β-

oxidation (325). The mRNA expression of other enzymes involved in oxidative metabolism, 

PPARα and ACOX1 were unaltered by ICV NPY treatment (Fig. 4.5A). Additionally, ICV NPY 

treatment did not alter mRNA expression of the key enzymes involved in hepatic uptake of 

LCFAs and apoB containing lipoproteins, Cluster of Differentiation 36 (CD36) (326) and LDL 

receptor (LDLR) (327), respectively (Fig. 4.5A).  

 Next, we examined the effect of ICV NPY and Y1 agonist treatment on the hepatic 

mRNA expression of enzymes involved in DNL, VLDL assembly and secretion at 60 min post 

injection. Remarkably, we found that ICV NPY significantly induced mRNA expression of the 

master transcriptional regulator of lipogenesis, SREBP-1c and the mRNA expression of its 

downstream target genes, ACC-1, FAS, and SCD-1 (328) by 3- to 4-fold (Fig. 4.5B). Conversely, 

mRNA expression of DGAT-1 and -2, enzymes involved in TG synthesis for cytoplasmic droplet 

or for VLDL formation (239) remained unchanged (Fig. 4.5B). Surprisingly, ICV Y1 agonist 

induced only SCD-1 mRNA expression (and not ACC-1 and FAS) independent of SREBP1c 

expression (Fig. 4.5C).   
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Figure 4.5. Effects of CNS NPY signaling via the Y1 receptor on key enzymes involved in 
liver lipid metabolism, VLDL-TG assembly and secretion. RNA was isolated from livers of 4-
hour fasted rats that were obtained 60 min after treatment with ICV NPY (black bars), ICV Y1 
receptor agonist (gray bars) or vehicle (Veh; white bars), and were assessed by quantitative RT-
PCR. A and B: In ICV NPY- vs. Veh-treated rats (n=5-6/group), mRNA levels of enzymes 
involved in fatty acid oxidation (PPARα, ACOX-1, and CPT-1α) and hepatic uptake of LCFA 
and apoB containing lipoproteins (CD36 and LDLR), de novo lipogenesis (SREBP1c, ACC-1, 
FAS, and SCD-1) and TG synthesis for cytoplasmic droplet or for VLDL formation (DGAT-1 
and -2). C: In ICV Y1 agonist- vs. Veh-treated rats (n=6-7/group), mRNA levels of enzymes 
involved in de novo lipogenesis (SREBP1c, ACC-1, FAS, and SCD-1) and fatty acid oxidation 
(CPT-1α). mRNA levels of genes were normalized to the reference RNA RPL13A. For 
comparative analysis, RNA ratios were normalized to the Veh control. D and E: Desaturation 
index (16:1+18:1/16:0+18:0) of (D) liver TG, FFA, and PL in addition to (E) plasma TG and 
FFA in fasted NPY- (black bars) vs. Veh-treated (white bars) rats at 60 min post ICV injection. F: 
Desaturation index (16:1+18:1/16:0+18:0) of plasma TG and FFA in fasted Y1 agonist- (gray 
bars) vs. Veh-treated (white bars) rats at 60 min post ICV injection. Data are presented as mean ± 
SEM and were analyzed by Student's t-test (unpaired, two-tailed); *indicates a significant 
difference (p<0.05) between ICV treatment and Veh. 
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CNS NPY signaling via the Y1 receptor modulates liver SCD-1 activity  

SCD-1 is responsible for desaturating saturated fatty acids (SFA), palmitate (C16:0) and 

stearate (C18:0) to MUFA, palmitoleate (C16:1) and oleate (C18:1w9), which serve as major 

constituents for synthesis of liver TGs, CEs, and lipoproteins (329, 330). SCD-1 is also known to 

be a target of leptin (316, 317) and glucose action (215) in the same hypothalamic feeding 

circuits. Therefore, we assessed the impact of CNS NPY signaling via the Y1 receptor on liver 

SCD-1 activity. An excellent estimate of in vivo hepatic SCD-1 activity is the calculation of the 

desaturation index, which is the ratio of the SCD-1 product (C16:1+C18:1) to the precursor 

(C16:0+C18:0) (215, 330). Remarkably, we found that ICV NPY significantly induced the 

hepatic desaturation index in liver TG, FFA, and PL at 60 min post injection (Fig. 4.5D) resulting 

in an increase in the desaturation index in plasma TG (Fig. 4.5E) while not altering the adipose-

derived plasma FFAs (Fig. 4.5E). Similarly, ICV Y1 agonist recapitulated the effect of NPY 

resulting in an increase in the desaturation index in plasma TG with no alteration in FFAs (Fig. 

4.5F). Altogether, these data suggest that increased CNS NPY signaling via the Y1 receptor 

increases oleic acid content in liver by modulating hepatic SCD-1 activity and suppressing fatty 

acid oxidation.  

 

CNS NPY signaling promotes hepatic PL remodeling via ARF-1 and lipin-1 to induce 

hypertriglyceridemia  

The key regulatory enzymes involved in liver PL remodeling to generate the TG 

precursor for VLDL maturation are ARF-1 (233, 234) and lipin-1 (238). We found that ICV NPY 

and Y1 agonist promoted an increase in ARF-1 mRNA expression by 2-fold at 60 min post 

injection (Fig. 4.6A). By 120 min post injection, ARF-1 protein expression was increased 3-fold 

by ICV NPY treatment (Fig. 4.6C and D). Remarkably, lipin-1 mRNA expression was induced by 

ICV NPY treatment at 60 min post injection (Fig. 4.6B). Both ICV NPY and Y1 agonist 

increased lipin-1 mRNA and protein expression by 2- to 3-fold at 120 min (Fig. 4.6B, E and F). 
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Furthermore, lipin-1 mRNA levels positively correlated with plasma TGs for both ICV NPY and 

the Y1 agonist treatment relative to Veh (NPY: r=0.5; p=0.03; Y1: r=0.7; p=0.03; Fig. 4.6G). 

Collectively, these data suggest that increased CNS NPY signaling via the Y1 receptor may 

promote liver PL remodeling via ARF-1 and lipin-1 and thus, generates the TG precursor to 

rapidly increase hepatic VLDL-TG secretion. 

 

Figure 4.6. CNS NPY signaling promotes hepatic PL remodeling via ARF-1 and lipin-1 to 
induce hypertriglyceridemia. RNA from livers of 4-hour fasted lean rats (n=5-7/group) were 
obtained 60 or 120 min after treatment with ICV NPY (black bars), ICV Y1 receptor agonist 
(gray bars) or vehicle (Veh; white bars), and were assessed by quantitative RT-PCR. A and B: 
mRNA of key regulatory enzymes involved in PL remodeling, ARF-1 (A) and lipin-1 (B). C-F: 
Protein extracts prepared from livers of 4-hour fasted lean rats isolated 120 min after ICV 
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injection of NPY (black bars), Y1 receptor agonist (gray bars) or Veh (white bars) were 
immunoblotted to detect levels of ARF-1 (C and D) and lipin-1 (E and F). Images of Western 
blots were analyzed by densitometry and data shown are relative to levels of Veh controls after 
normalization to total β-Tubulin or GAPDH. G: Correlational analysis of lipin-1 mRNA and 
plasma TG levels in ICV NPY- (black circles) and Y1 agonist- (gray squares) treated rats at 60 
and 120 min post injection. H and I: Plasma corticosterone levels in 4-hour fasted ICV NPY- 
(black bars; H) and Y1 receptor agonist- (gray bars; I) treated rats at 60 and 120 min post 
injection relative to Veh treatment (white bars). J: Correlational analysis of lipin-1 mRNA and 
plasma corticosterone levels in ICV NPY- (black circles) and Y1 agonist- (gray squares) treated 
rats at 60 and 120 min post injection. Data are presented as mean ± SEM and were analyzed by 
Student's t-test (unpaired, two-tailed); *indicates a significant difference (p<0.05) between ICV 
treatment and Veh. 
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Increased CNS NPY signaling via the Y1 receptor leads to elevated circulating 

corticosterone levels  

Because ICV infusion of NPY influences glucose metabolism and sensitivity to insulin in 

fasted rats (189-191) in addition to regulating the activity of the HPA axis (200, 201), we next 

sought to determine whether NPY signaling via the Y1 receptor alters glucoregulatory hormones 

and circulating corticosterone levels early on (60 min). In corroboration with our previous 

findings at 120 min post ICV injection in Chapter III (222), there was no effect of ICV NPY on 

altering plasma insulin, glucagon and blood glucose levels at 60 min post injection (Table 4.1). 

Although ICV Y1 agonist did not alter plasma glucagon and blood glucose levels, plasma insulin 

levels were increased by 2-fold at 60 min post injection (Table 4.1). Remarkably, we found that 

plasma corticosterone levels were markedly elevated by both ICV NPY and Y1 agonist treatment 

at 60 and 120 min post injection (Fig. 4.6H and I) in lean fasted rats.  

 

CNS NPY signaling promotes hepatic lipin-1 expression and subcellular localization via a 

GC dependent mechanism  

Glucocorticoids act through GRα bound to the GRE site upstream of the Lpin-1 promoter 

region to induce gene transcription (260). Because GCs have been shown previously to stimulate 

hepatic lipin-1 expression and activity (259), we next investigated whether CNS NPY signaling 

via the Y1 receptor is dependent on circulating corticosterone levels to induce Lpin1 gene 

expression. Indeed, we found that lipin-1 mRNA expression positively correlates with 

corticosterone levels at both 60 and 120 min post ICV NPY injection relative to Veh (r=0.7, 

p=0.0003; Fig. 4.6J). Surprisingly we did not observe this correlation with the Y1 agonist 

treatment (Y1 vs. Veh: r=0.2, p=ns; Fig. 4.6J).  

Because the association of lipin-1 with the ER governs the lipid substrate availability for 

VLDL assembly and secretion (238), we next examined lipin-1 protein expression in subcellular 

fractions of livers from lean fasted rats treated with either ICV NPY or Veh at 60 or 120 min post 
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injection. Of note, we found that the ER-membrane proteins were enriched in only the nuclear 

and not the cytoplasmic fraction; thus, we denoted this fraction as nuclear/ER (compare Fig. 4.7A 

and B). Interestingly, lipin-1 protein was significantly increased in the nuclear/ER fraction at 60 

and 120 min post ICV NPY injection (Fig. 4.7A and C) whereas there was either a small 

reduction or no change in cytoplasmic lipin-1 protein levels relative to Veh treatment, 

respectively (Fig. 4.7B and C). Similarly, GRα protein expression showed a similar pattern as 

lipin-1, with highest expression in the nuclear/ER fraction (Fig. 4.7A, B, and D). Additionally, we 

show that nuclear/ER GRα protein expression positively correlates with both lipin-1 mRNA 

(r=0.5; p=0.01; Fig. 4.7E) and nuclear/ER protein expression (r=0.5, p=0.04; Fig. 4.7E). These 

data collectively suggest that increased CNS NPY signaling promotes hepatic lipin-1 expression 

and association with the ER where it performs its PAP-1 activity via a GC dependent mechanism 

in order to modulate hepatic VLDL-TG secretion.  
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Figure 4.7. CNS NPY signaling promotes hepatic lipin-1 expression and subcellular 
localization via a GC dependent mechanism. A-D: Western blot analysis of nuclear/ER (A) and 
cytoplasmic (B) fractions from livers of 4-hour fasted lean rats (n=5-6/group) isolated 60 or 120 
min after ICV injection of NPY (black bars) or vehicle (Veh; white bars) and were 
immunoblotted to detect levels of lipin-1 (A-C) and GRα (A, B, and D). Calnexin, Histone 
deacetylase 1 (HDAC1), and β-Tubulin were used as marker proteins of ER membrane, nuclear, 
and cytoplasmic fractions, respectively. Of note, ER-membrane proteins were found only in the 
nuclear fraction and thus, this fraction is denoted as nuclear/ER (A). Western blots were analyzed 
by densitometry and data shown are relative to levels of Veh controls after normalization to β-
Tubulin or HDAC1. E: Correlational analysis of lipin-1 mRNA (white squares) or lipin-1 
nuclear/ER membrane protein (black circles) expression versus nuclear/ER GRα protein 
expression in ICV NPY-treated rats at 60 and 120 min post injection. Data are presented as mean 
± SEM and were analyzed by Student's t-test (unpaired, two-tailed); *indicates a significant 
difference (p<0.05) between ICV treatment and Veh. 
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Discussion 

Hypertriglyceridemia and overproduction of VLDL-TG are key components of the 

metabolic syndrome (14-16) and atherogenic dyslipidemia, which is an increasingly recognized 

component of cardiovascular risk (16). While hepatic VLDL-TG secretion can be regulated by 

peripheral factors (visceral adiposity and insulin resistance), we hypothesized that increased 

CNS NPY signaling contributes to the pathogenesis of obesity dyslipidemia independently of 

positive energy balance and increased fat mass. The key observation of our previous studies in 

Chapter III (211, 222) is that increased CNS NPY signaling via the Y1 receptor doubled hepatic 

VLDL-TG production while not altering plasma FFA and glycerol levels. This data suggest that 

increased adipocyte lipolysis does not account for the NPY-induced hypertriglyceridemia. This is 

also corroborated by other studies (192). We, therefore, sought to determine the source of TG 

utilized for VLDL assembly and secretion in response to increased CNS NPY action, which must 

originate from sources other than that arising from extracellular FFAs. We postulated that liver 

PL might be the novel lipid source because our results show the following: 1) ICV NPY treatment 

in lean fasted rats doubled plasma TGs in the absence of significant changes in liver TG content 

at 60 and 120 min post injection; and 2) the obese, ZF rat model of severe hypertriglyceridemia 

indicated changes in hepatic PL content. Intriguingly, we found that ZF rats pair-fed to the lean 

ZF controls to maintain identical body composition, altered the plasma TG concentrations, which 

surprisingly had no effect on liver TG content. However liver PL content tightly correlated with 

plasma TG levels. Both of these observations suggest the possibility that the additional lipid 

loaded onto VLDL in response to CNS NPY signaling via the Y1 receptor is generated from PL 

stores and involves modulating the activities of key regulatory enzymes involved in PL 

remodeling. Our study ultimately sought to identify the novel regulatory mechanisms in the liver 

engaged by NPY.  

Our study found that CNS NPY Y1 receptor is coupled to the suppression of liver CPT-

1α transcript, which encodes the rate limiting mitochondrial transmembrane enzyme that 
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transports LCFAs, such as oleic and linoleic acid into the mitochondria for β-oxidation (325). 

Remarkably, our observation is consistent with the study by Zhang et al. (127) that found greater 

utilization of lipid as an oxidative fuel source in Y1 receptor null mice. This most likely involved 

increases in liver and muscle CPT-1 protein levels as well as increases in activity of enzymes 

involved in β-oxidation, suggesting that Y1-receptor-signaling controls mitochondrial capacity 

for FFA transport and oxidation. Similarly, a previous study showed that administration of ICV 

Y1 agonist in mice led to an increase in the respiratory exchange ratio, indicative of reduced lipid 

oxidation, suggesting involvement of the CNS Y1 receptor in the regulation of oxidative fuel 

selection (210). 

 The likelihood that central NPY signaling suppresses liver FFA oxidation via the 

inhibition of CPT-1α is further confirmed by Bruinstroop et al. (192), who reported that ICV 

NPY decreases CPT-1α mRNA expression via the SNS in lean fasted rats and this NPY effect 

was completely abolished by Sx. Because NPY is co-localized with NE in hepatic nerves, this 

raises the possibility that NPY released with NE on sympathetic nerve stimulation may activate 

Y1 receptors on hepatic blood vessels or on hepatocytes to modulate blood flow, and thereby, 

directly or indirectly modulate substrate availability in the form of extracellular FFAs for lipid 

oxidation (127). Clearly, the CNS NPY effect to suppress lipid oxidation via the SNS is in direct 

competition with the peripheral effects of fasting, which normally promote an increase in liver β-

oxidation (192).  

It is hypothesized that when oxidation is inhibited, this potentially augments the capacity 

of the liver to sequester excess FFA as TG for VLDL secretion (238, 259). Consistent with this 

hypothesis, we found that the suppression of CPT-1α expression with ICV NPY treatment 

coincided with a corresponding accumulation of the MUFA, oleate and the PUFA, linoleate in 

liver. However, only one study reported in lean 12-hour fasted mice that acute pharmacologic 

inhibition of hepatic CPT-1 with TDGA increased MUFAs with a corresponding decrease in 

SFAs and PUFAs in liver (331). Therefore, it would be interesting to determine whether the 
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changes in individual hepatic FFAs in response to an acute inhibition of liver CPT-1 in fasted rats 

recapitulates our findings in liver with ICV NPY treatment.  

SCD-1 is the enzyme responsible for desaturating palmitic and stearic acids to 

palmitoleic and oleic acids, respectively, and is known to be a target of CNS leptin (316, 317), 

glucose (215) and melanocortin action (203) in the same hypothalamic feeding circuits engaged 

by NPY. Provision of oleic acid or modulation of SCD-1 activity changes VLDL production rate 

by increasing TG loading in the late maturation phase (215, 316). Indeed, we observed a robust 

induction of hepatic SCD-1 expression and activity (as measured by the desaturation index (215, 

330)) in response to CNS NPY treatment and this effect was recapitulated by Y1 receptor 

activation (222). Therefore, changes in the formation rate of hepatic oleic acid (215) is most 

likely mechanistically linked to the modulation of hepatic SCD-1 activity and lipid oxidation 

(CPT-1α) by increased CNS NPY tone, which in turn may contribute to changes in hepatic 

VLDL-TG secretion. 

The other possibility that may promote an accumulation of oleic and linoleic acid in the 

liver is the increased hepatic uptake of extracellular FFAs. However, we found that ICV NPY 

treatment did not alter adipocyte lipolysis in the form of plasma FFA and glycerol in lean fasted 

rats. Nor did ICV NPY treatment alter mRNA expression of CD36 (326) and LDLR (327), key 

enzymes involved in hepatic uptake of LCFA and apoB containing lipoproteins (i.e. chylomicron 

and VLDL remnants). Moreover, we previously confirmed that 4-hour fasted rats are in a post-

absorptive state and thus, TG carrying chylomicrons derived from the gut do not contribute to the 

observed changes in plasma TGs (211, 222).  

Entry of LCFAs into the liver are immediately activated by acyl-CoA synthetase to form 

a LCFA-acyl-CoA that if not immediately utilized for β-oxidation will enter the glycerolipid 

biosynthetic pathway for the generation of liver TG and PLs (237). Contrary to the normal effects 

of fasting, in which oleic and linoleic acid are preferentially oxidized (332-334), we found 

preferential incorporation of these LCFAs into liver PL and not into TGs in response to ICV NPY 
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treatment in lean fasted rats at 60 and 120 min post injection. In support of our findings, a study 

by Lin et al. (335) found that supplementation of Hep G2 cells with linoleic acid strongly 

increased cellular PL synthesis whereas supplementation with oleic acid had a lesser effect; this 

study indicates that unsaturated LCFAs can be selectively incorporated into the liver PL pool.  

The key finding of our study is the observed corresponding increase of oleic and linoleic 

acid content in plasma TG in both ICV NPY- and Y1 agonist-treated rats at 60 and 120 min post 

injection. Moreover, FFAs enriched in liver PL (and not TG and FFA) positively correlated with 

plasma TGs. Therefore, this data suggest the possibility that these FFAs enriched in liver PL 

provided the TG precursor that was loaded onto the nascent VLDL particle and was secreted as 

VLDL-TG. This finding, that some of the TG which ends up as VLDL, is derived from a pool of 

intracellular PL in response to central NPY action is novel. We, therefore, postulate that increased 

CNS NPY tone may determine the rate of PL “turnover” or “availability” for TG synthesis and 

VLDL production by altering the activities of key regulatory enzymes involved in PL remodeling.  

We herein report, for the first time to our knowledge that CNS NPY and the Y1 agonist 

robustly increased the mRNA and protein expression of key regulatory enzymes involved in liver 

PL remodeling, ARF-1 (which activates PLD) and lipin-1 in lean fasted rats. We postulate that 

NPY modulates ARF-1 to increase PLD activity. In turn, PLD catalyzes the production of PA, 

derived from the much larger PL pool, instead of the intracellular TG pool as this pathway is 

implicated by several studies to be involved in VLDL maturation (224, 233, 234). Indeed, 

overexpression of ARF-1 or PLD in cultured rat hepatocytes can increase VLDL secretion 

whereas hepatic overexpression of a dominant negative ARF-1 results in a suppressive effect 

(234). However, to demonstrate the involvement of ARF-1 and PLD in the CNS NPY response 

would require additional studies to determine whether selective hepatic ARF-1 or PLD inhibition 

using either a pharmacologic and/or genetic approach will block the effect of central NPY 

signaling on hepatic VLDL-TG production.  
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Our finding that CNS NPY increases liver oleic acid content in lean fasted rats early on 

(60 min post injection) increases the likelihood that oleic acid may promote lipin-1 translocation 

from the cytosol to the ER membrane to modulate VLDL assembly and secretion (238, 253). 

Consistent with this observation, we found that lipin-1 protein expression was robustly elevated 

in the ER membrane containing nuclear and not the cytoplasmic fraction in the livers of lean 

fasted rats treated with ICV NPY at 60 min and 120 min post injection. These data suggest the 

possibility that lipin-1 may be closely associated with the microsomal membrane where it 

performs its PAP-1 activity. In turn, we speculate that this resulted in the conversion of PL-

derived PA into DAG which serves as a substrate for the synthesis of TG and PL that is then 

assembled onto the nascent VLDL particle leading to VLDL maturation and secretion (238). 

Indeed, overexpression of lipin-1 in cultured rat  hepatocytes in the presence of oleic acid 

markedly increases TG synthesis and secretion whereas siRNA mediated knockdown of lipin-1 

decreased VLDL assembly and secretion (238). In support our findings, we additionally show 

that lipin-1 mRNA expression positively correlates with plasma TGs in both ICV NPY- and Y1 

agonist-treated rats, further implicating lipin-1 as a major mediator in central NPY modulation of 

hepatic lipoprotein metabolism. 

Intriguingly, our finding that lipin-1 protein levels are simultaneously elevated in the 

nuclear fraction raises the possibility that nuclear localized lipin-1 may also be acting as a 

transcriptional coactivator with PGC-1α and PPARα to upregulate genes involved in β-oxidation 

(248, 254); this would oppose its function as a glycerolipid biosynthetic enzyme. However, our 

findings that the mRNA expression of oxidative genes, were either suppressed (CPT-1α) or not 

altered (PPARα and ACOX-1) with ICV NPY treatment lessens this possibility. Nevertheless, to 

demonstrate whether NPY-induced hypertriglyceridemia is dependent on liver lipin-1 will require 

additional studies, such as investigating whether adenoviral overexpression of a hepatic lipin-1 

mutant with impaired PAP-1 activity in lean fasted rats will abolish NPY-induced hepatic VLDL-

TG secretion.  
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Elevated CNS NPY tone and increased activity of the HPA axis is associated with obesity 

and diabetes in rodent models (139, 140, 177, 197-199) and humans (143, 144, 193-196). Chronic 

central NPY infusion has been shown to activate the HPA axis in normal animals leading to the 

elevation in the circulating GC, corticosterone (200, 201). Herein, our study shows that an acute 

ICV administration of NPY or the Y1 agonist in lean fasted rats robustly elevates circulating 

corticosterone levels at 60 and 120 min post injection. Of particular interest is that some of the 

hormonal and metabolic effects of central NPY infusion in rats are dependent on circulating 

corticosterone as these NPY-induced effects can be prevented by adrenalectomy, including 

hypertriglyceridemia (201).  

Previous studies (238, 259) report that lipin-1 is responsible for the observed increase in 

VLDL secretion upon GC treatment in cultured rat hepatocytes (264-266). We, therefore, 

hypothesize in the context of these findings, that central NPY regulation of liver lipin-1 to 

modulate hepatic lipoprotein metabolism may be dependent on liver GC action. Both in vitro 

(259) and in vivo (248) studies in mouse and rat hepatocytes show that the synthetic GC, 

dexamethasone stimulates the expression and activity of liver lipin-1, but not lipin-2, and -3, by 

acting through the GR that is bound to functional GRE upstream of the Lpin1 promoter region 

(260). In support of this hypothesis, GRα shows a similar pattern as lipin-1 with highest protein 

expression in the nuclear/ER fraction in the livers of ICV NPY-treated rats. Furthermore, we 

found that nuclear/ER GRα protein expression positively correlates with mRNA and nuclear/ER 

protein expression of lipin-1. This increases the likelihood that GRα is bound to the Lpin1 

promoter region (260) in response to an elevation in circulating corticosterone levels induced by 

CNS NPY. This NPY effect results in the GC mediated induction of lipin-1 expression and 

activity (259), and subsequent elevation in VLDL-TG secretion. However, further studies will be 

required to demonstrate this hypothesis and would involve investigating whether the CNS NPY 

effect on hepatic lipin-1 and VLDL-TG secretion can be blocked by either a highly selective 

liver-specific GR antagonist and/or by adrenalectomy in lean fasted rats. 
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 It is of particular interest to our study that NE activation of adrenergic signaling in rat 

liver via the α1-adrenergic receptor is coupled to the activation of the protein kinase C 

(PKC)/CREB pathway (336). In turn, CREB may induce Lpin1 gene transcription by binding to 

CRE upstream of the Lpin1 promoter as reported in previous studies (262, 263). Moreover, 

abundant evidence by Bruinstroop et al. (192), as well as other studies (189, 202), indicate that 

increased CNS NPY tone during fasting increases sympathetic outflow to the liver, ultimately 

inducing hepatic insulin resistance and elevating hepatic VLDL-TG secretion. Therefore, in the 

context of our findings, it is hypothesized that pathological elevations in CNS NPY tone in obesity 

and diabetes contributes to the associated increase in both the activity of the HPA axis and 

sympathetic outflow to the liver. Ultimately, this may result in increased GC and NE signaling in 

the liver and thus, these metabolites may synergize to upregulate hepatic lipin-1 expression and 

its PAP-1 activity. In turn, this may impair the ability of insulin to suppress lipin-1 leading to 

increased VLDL-TG secretion. Given the current limitations of our study, future studies to 

investigate this hypothesis will involve determining whether the CNS NPY effect on hepatic 

lipin-1 and VLDL-TG secretion can be blocked by Sx and whether the concomitant treatment of a 

highly selective liver specific GR antagonist will synergistically attenuate the NPY effect.  
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CHAPTER V 

 

HEPATIC RICTOR/MTORC2 IS REQUIRED FOR HIGH-FAT DIET-INDUCED LIVER 

STEATOSIS AND DYSLIPIDEMIA 

 

Adapted from Rojas et al. Submitted to J. Lipid Res 2012 (under revision) 

 

Introduction 

The availability of mice with genetic deletion of raptor (mTORC1) and rictor (mTORC2) 

in insulin responsive tissues (337-342) has provided new insights into mTOR function as a 

regulator of mammalian metabolism. mTORC1 activity in hepatocytes is important in the 

regulation of ketogenesis (343) and lipid metabolism (344-346). Conversely, genetic deletion of 

rictor and associated loss of mTORC2 activity in liver (347, 348) revealed that mTORC2 

regulates hepatic glucose, lipid, and cholesterol metabolism. Key studies (347, 348) showed that 

hepatic mTORC2 deficiency impairs insulin-AKT signaling through FoxO1 and glucokinase, 

leading to dysregulation of glycolysis and gluconeogenesis while impairing the ability of AKT to 

stimulate hepatic lipogenesis and cholesterogenesis through SREBP-1c and SREBP-2. However, 

it is not clear on the details of the molecular mechanism of how defective hepatic mTORC2 

activity impairs the induction and/or processing of SREBPs and liver lipid metabolism and 

whether this is partially independent of AKT and/or mTORC1 signaling. A better understanding 

of these molecular mechanisms is critical for the development of new approaches to treat 

disorders of liver lipid metabolism such as NAFLD (349, 350) and atherogenic dyslipidemia (14, 

15) associated with obesity, diabetes, and the metabolic syndrome. 

Insulin regulation of metabolic processes often involves PI3K signaling, that is coupled 

to PDK-1 and the Ser/Thr kinase AKT (281). AKT is activated via phosphorylation at Ser473 by 

rictor containing mTORC2 in addition to PDK1-directed phosphorylation at Thr308 (282, 283). 
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AKT2 is the major isoform of AKT expressed in liver and mediates many of the metabolic 

actions of insulin (284, 285). Hepatic overexpression of constitutively active AKT leads to the 

development of NAFLD, hypertriglyceridemia, and hypoglycemia (286). These effects are 

phenocopied by loss of hepatic PTEN, a negative regulator of PI3K-dependent protein kinase 

activity, including AKT (287). The loss of AKT2 effectively negates the effect of PTEN 

deficiency on fatty liver and improved systemic glucose tolerance (288), and similarly, reverses 

hepatic steatosis in obese, insulin resistant mouse models (285). These effects on glycemia are 

due, in part, to AKT directed phosphorylation and inhibition of the transcription factor FoxO1. 

Phosphorylation of FoxO1 by AKT leads to its nuclear exclusion resulting in the termination of  

transcription of its target genes involved the regulation of gluconeogenesis, PEPCK and G6PC 

thereby limiting HGP (289). 

The liporegulatory effects of insulin-AKT signaling in the liver involve both SREBP-1c 

and SREBP-2, which regulate many genes involved in fatty acid, triglyceride, and cholesterol 

biosynthesis (276). The molecular mechanisms underlying AKT regulation of these two distinct 

SREBP isoforms remain unclear (351). It is known that insulin signaling increases transcription 

and proteolytic processing of SREBPs from an inactive precursor to an active nuclear 

transcriptional regulator (reviewed in (328, 351)). While insulin regulation of SREBP-1c (344, 

346, 352-355) and SREBP-2 (345, 346, 356) involves mTORC1-dependent signaling, we sought 

to expand our understanding of mTORC1-independent mechanisms involved.  

The precise mechanism by which insulin induces SREBP-1c transcription is likewise 

unclear, but may involve Liver X receptor-α (LXRα) and one of the nuclear SREBP isoforms, 

producing a feed forward stimulation (357). LXRα (NR1H3) is a nuclear hormone receptor with 

high hepatic expression that transcriptionally regulates SREBP-1c via an RXR/LXR DNA 

responsive element (LXRE) in the SREBF1 (SREBP-1c) promoter (358), and is activated by 

oxysterol ligands, derivatives of cholesterol (359-361). Animals lacking LXRα have reduced 

basal expression of SREBP-1c and its downstream lipogenic target genes, ACACA (ACC), FASN 
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(FAS), and SCD (SCD-1) (360, 362), which also contain LXREs and can be directly regulated by 

LXRs (363-365). A high cholesterol diet causes both an inhibition of sterol responsive SREBP-2 

and the activation of LXRα, resulting in increased SREBP-1c mRNA and nuclear protein 

expression concomitant with increased expression of SREBP-1c lipogenic target genes and 

lipogenesis (360, 362). Treatment with a synthetic LXR agonist replicates these effects (360, 

366). Thus, LXRα is thought to couple the regulation of cholesterol and fatty acid metabolism in 

liver.  

Because AKT is also regulated by other inputs (PDK-1), and is a major mediator of 

insulin’s effect on metabolic processes, we sought to determine whether hepatic rictor directed 

mTORC2 activity is required for the regulation of liver lipid metabolism. We show here that 

hepatocyte-specific deletion of the Rictor gene, which encodes a key mTORC2 regulatory protein 

in mice (HRicKO), leads to protection from HFD-induced hepatic steatosis and dyslipidemia, but 

are glucose intolerant. Furthermore, we have uncovered a novel aspect of mTORC2/AKT 

signaling that leads to SREBP-2 activation of cholesterol biosynthesis, full LXRα activation, and 

concomitant activation of SREBP-1c. This rictor/mTORC2 dependent pathway facilitates the 

cooperative interaction of LXRα and insulin signaling to fully induce SREBP-1c mediated 

lipogenesis, which leads to hepatic steatosis and dyslipidemia in HFD-induced obesity. 

 

Results 

 

Loss of hepatic rictor reduced serine phosphorylation of mTORC2 target proteins   

Alb-Cre mediated excision of floxed alleles for exon 3 within the Rictor gene in HRicKO 

mice led to a 90 to 96% reduction in rictor mRNA (Fig. 5.1A) and protein levels (Fig. 5.1B), 

respectively in liver. Expression of this mTORC2 specific component was not altered in other 

tissues examined (Fig. 5.1C and D). The expression of mTOR and an mTORC1 specific 

component raptor were not altered (Fig. 5.1B-D). Loss of hepatic rictor resulted in reduced 
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mTORC2 activity in liver as illustrated by reduced phosphorylation of mTORC2 target proteins, 

AKT-Ser473, PKCα-Ser657, and SGK-Ser422 in liver (Fig. 5.1B) but not in other tissues (Fig. 

5.1C and D).   

 

Figure 5.1. Loss of rictor expression and mTORC2 activity in liver of HRicKO mice. A: 
mRNA levels of rictor from livers of 12 week old chow-fed HRicKO (black bars; n=3) and 
control mice (white bars; n=6) normalized to levels of control mice. B-D: Protein extracts from 
12 week old chow-fed HRicKO (black bars; n=3) and control mice (white bars; n=6) were 
prepared from liver (B), muscle (C), and adipose tissue (D) and immunoblotted for rictor, raptor, 
mTOR, and phosphorylated (p) Ser473 AKT, pSer657 PKCα, and pSer422 SGK. Images of 
Western blots were analyzed by densitometry and data shown are relative to levels of control 
mice after normalization to levels of total AKT, PKCα, SGK, or GAPDH. Data are expressed as 
mean ± SEM and were analyzed by Student's t-test (unpaired, two-tailed); *indicates a significant 
difference (p<0.05) from control mice.  
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Loss of hepatic rictor prevented the development of diet-induced obesity  

Chow-fed HRicKO mice developed normally and at 12 weeks of age were comparable to 

littermate controls in body weight, fat mass, and lean mass (Fig. 5.2A). Indirect calorimetry 

revealed that LFD-fed HRicKO mice with similar fat and lean mass exhibited higher EE than 

their littermate controls throughout the day (Table 5.1). When normalized to lean mass, HRicKO 

mice exhibited significantly higher EE only during the dark (feeding) and not during the light 

(postprandial) cycle (Table 5.1). HRicKO mice exhibited lower RQ during the light period, 

indicating that HRicKO mice oxidize more fat than controls (Table 5.1). Therefore, we examined 

whether these phenotypical differences would confer resistance to HFD-induced obesity. 

 

Table 5.1. Energy homeostasis analysis in HRicKO and control mice on low-fat diet 

  Control HRicKO 
 FM (g) 2.26±0.10 2.53±0.16 
 LM (g) 18.0±0.39 19.0±0.40 

EE  Light 3.5±0.1 3.9±0.1* 
(kcal) Dark 4.4±0.1 4.9±0.2* 
EE  Light 0.196±0.005 0.204±0.005 
(kcal/g LM) Dark 0.243±0.006 0.259±0.005* 
RQ Light 0.91±0.02 0.85±0.01* 
(VCO2/VO2) Dark 0.93±0.01 0.94±0.01 

Energy expenditure (EE) and respiratory quotient (RQ) were measured over 24-hour by 
indirect calorimetry in individually housed control and HRicKO mice after 8-9 weeks on 
low-fat diet (n=10/group). Values for EE (kcal/12-h) were also normalized to NMR 
measured lean mass (LM), obtained the day mice were placed in the oxymax cages. Data 
are expressed as mean ± SEM and were analyzed by Student's t-test (unpaired, two-
tailed); *indicates a significant difference (p<0.05) from control mice. Fat mass (FM). 

 
 

On a HFD, HRicKO mice had no alteration in lean mass, but gained substantially less 

body weight (34%) and fat mass (57%) than HFD-fed controls despite having similar food intake 

(Fig. 5.2B-F). Liver (Fig. 5.2G) and epididymal fat pad weights (Fig. 5.2H) were reduced by 36% 

and 50%, respectively, whereas pancreas tissue weights were unaltered (Fig. 5.2I) in HFD-fed 
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HRicKO mice relative to HFD-fed controls. These results indicate that loss of hepatic rictor 

prevents HFD-induced obesity without altering food intake.    

 

Figure 5.2. Loss of hepatic rictor prevented the development of diet-induced obesity. A: 
Body weight (BW), fat mass (FM), and lean mass (LM) were measured in 12 week old chow-fed 
HRicKO (black bars) and control mice (white bars). B-E: HRicKO (black squares, n=7) and 
control mice (white circles, n=9) were placed on a high-fat diet (HFD) at 8 weeks of age and food 
intake (Kcal) (B), BW (C), FM (D), and LM (E) were measured weekly for 10 weeks. Data are 
presented as mean ± SEM and were analyzed by two-way repeated measures ANOVA with 
Bonferroni’s post-test analysis; *p<0.05 for control vs. HRicKO comparisons. The main effect of 
genotype to reduce BW and FM over time was dependent on HFD [BW: (F (1, 14) =5.77, 
p=0.0308); FM: (F (1, 14) =17.49, p=0.0009)]. (F) BW, FM, and LM gain were measured after 
10 weeks of HFD feeding in HRicKO (hatched bars) and control mice (striped bars). G-I: 
Weights of liver (G), epididymal fat pad (H) and pancreas (I) were measured in 4-hour fasted 
HRicKO (hatched bars) and control mice (striped bars) on 10 weeks of HFD. Data are expressed 
as mean ± SEM and were analyzed by Student's t-test (unpaired, two-tailed); *indicates a 
significant difference (p<0.05) from control mice.  
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HFD-fed HRicKO mice are protected from the development of hepatic steatosis and 

dyslipidemia 

HFD-fed HRicKO mice had a 23% and 57% reduction, respectively in fasting plasma TG 

and cholesterol levels (Fig. 5.3A and B). There were no differences in plasma TG and cholesterol 

in the chow-fed HRicKO mice (Fig. 5.3A and B). Feeding control mice a HFD led to a 2.5-fold 

increase in plasma cholesterol levels relative to chow-fed control mice (Fig. 5.3B) while HRicKO 

mice fed a HFD did not develop hypercholesterolemia (Fig. 5.3B). Both chow- and HFD-fed 

HRicKO mice had significantly higher fasting plasma FFA levels compared to the control mice 

(Fig. 5.3C).  

Consistent with hypolipidemia, HFD-fed HRicKO mice have a 42% reduction in liver 

TG and cholesterol content relative to HFD-fed controls (Fig. 5.3D and E). HFD-fed control and 

HRicKO mice had significantly higher liver TG content relative to the chow-fed mice (Fig. 

5.3D). While HFD-fed controls had significantly higher liver cholesterol content than chow fed 

controls, the HFD-fed HRicKO mice trended towards greater liver cholesterol content relative to 

chow-fed HRicKO mice (p=0.051, Fig. 5.3E). Liver FFA content was significantly higher in 

HRicKO mice on both chow and HFD relative to control mice (Fig. 5.3F). The decrease in 

hepatic TG content in HFD-fed HRicKO mice was corroborated by the absence of large, 

intracellular lipid droplets using H&E and ORO staining (Fig. 5.3G).  

Intestinal lipid absorption contributes to whole-body energy and lipid homeostasis; 

therefore, it was imperative to determine if this was impaired in HRicKO mice by measuring 

fecal lipid content in animals on LFD and HFD. There was less TG content in feces (collected 

over a 48-hour period) from the HFD-fed HRicKO mice relative to HFD-fed controls (Fig. 5.3H). 

Cholesterol levels were similar between groups (Fig. 5.3I) as was fecal FFA content, which was 

similar in HRicKO relative to control mice on LFD and HFD (Fig. 5.3J). These results suggest 

that the protection from HFD-induced hepatic steatosis and dyslipidemia found in HRicKO mice 

did not result from reduced intestinal lipid absorption or increased excretion.  
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Figure 5.3. HFD-fed HRicKO mice are protected from the development of hepatic steatosis 
and dyslipidemia. A-F: Plasma and livers were collected from 4-hour fasted 12 week old chow-
fed HRicKO (black bars) and control (white bars) mice (n=3-6/group) and from 4-hour fasted 18 
week old HRicKO (hatched bars) and control (striped bars) mice on HFD for 10 weeks (n=7-
9/group) to measure plasma triglyceride (TG; A), cholesterol (B), and free fatty acid (FFA; C) as 
well as liver TG (D), cholesterol (E) and FFA (F). G. Representative images of hematoxylin and 
eosin (H&E) and Oil Red O (ORO) staining from livers of 4-hour fasted HRicKO and control 
mice after 10 weeks of HFD; original magnification, 20X. H-J: Feces were collected from paired 
(2 mice/cage) ad-libitum fed 21 week old HRicKO (black bars) and control (white bars) mice on 
a low-fat diet (LFD; n=4/group) vs. 21 week old HRicKO (hatched bars) and control (striped 
bars) mice on HFD (n=6/group), after 10 weeks on diet, to measure fecal TG (H), cholesterol (I) 
and FFA (J) content. K and L: Liver FFA (% of total FFA; K) and liver desaturation index 
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(C18:1w9/C18:0; L) of TG and cholesteryl esters (CE) in 4-hour fasted chow-fed (n=3-6/group) 
HRicKO (black bars) and control mice (white bars) and HFD-fed (n=7-9/group) HRicKO 
(hatched bars) and control mice (striped bars). Data are expressed as mean ± SEM and were 
analyzed by Student's t-test (unpaired, two-tailed); *indicates a significant difference (p<0.05) 
from control mice. #indicates a significant difference (p<0.05) from chow-fed or LFD-fed mice of 
the same genotype. 
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HFD-fed HRicKO mice have reduced SCD-1 activity 

SCD-1 is responsible for desaturating saturated FFA, palmitate (C16:0) and stearate 

(C18:0), to MUFA, palmitoleate (C16:1) and oleate (C18:1w9), which serve as major constituents 

for synthesis of liver TGs, CEs, and lipoproteins (329, 330). Interestingly, livers of the HFD-fed 

HRicKO mice have significantly reduced C16:1 and C18:1w9 and higher C18:0 levels relative to 

HFD-fed control mice (Fig. 5.3K). The SCD-1 desaturation index, which is a ratio of the SCD-1 

product (C18:1w9) to the precursor (C18:0) is an excellent estimate of in vivo SCD-1 activity 

(215, 330) was found to be significantly reduced in liver TG and CE fractions in HFD-fed 

HRicKO mice relative to HFD-fed control mice (Fig. 5.3L). These data suggest that loss of 

hepatic rictor results in lower SCD-1 activity that in turn, reduces the synthesis of MUFA 

substrates necessary for TG and CE biosynthesis in liver. 

 

HRicKO mice on HFD are hyperinsulinemic, glucose intolerant, and insulin resistant 

On both chow and HFD (12-18 weeks of age), blood glucose levels were similar in fasted 

HRicKO mice relative to control mice (Fig. 5.4A). However, fasted plasma insulin levels were 

increased by ~2- and 3-fold respectively in HRicKO mice on chow and HFD compared to the 

control mice (Fig. 5.4B). Given that the HRicKO mice are hyperinsulinemic, we tested glucose 

tolerance. HRicKO mice on LFD developed mild glucose intolerance (Fig. 5.4C); whereas HFD 

feeding led to greater glucose intolerance in HRicKO mice compared to HFD-fed controls (Fig. 

5.4D). Older (>9 months) HRicKO mice fed a HFD for 17 weeks were severely glucose 

intolerant (Fig. 5.4E). Insulin sensitivity was assessed by insulin tolerance test. After 10 weeks of 

diet, LFD-fed HRicKO mice remained insulin tolerant (Fig. 5.4F). Conversely, HFD-fed HRicKO 

mice developed mild insulin resistance (Fig. 5.4G). Collectively, these data indicate that loss of 

hepatic rictor potentiates hyperinsulinemia, glucose intolerance, and insulin resistance in DIO. 
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Figure 5.4. Hepatic mTORC2 deficiency potentiates glucose intolerance and insulin 
resistance in HFD-fed mice. A and B: Blood glucose (A) and plasma insulin (B) levels were 
measured in 4-hour fasted 12-18 week old HRicKO (black bars) and control (white bars) mice 
either on chow-diet (n=3-6/group) or HFD for 10 weeks (n=7-9/group). C and D: Glucose 
tolerance tests (GTT) were performed after intraperitoneal (IP) injection of glucose (1g/Kg BW) 
in 4-hour fasted 11-25 week old HRicKO (black squares) and control (white circles) mice either 
on a LFD (n=8-10/group; C) or HFD (n=10/group; D) for 4 weeks. E: Additional GTT on 38 
week old HRicKO (black squares) and control (white circles) mice after 17 weeks of HFD (n=8-
10/group). Blood glucose levels were measured at the indicated time points. Bar graphs to the 
right show the calculated area under the curve (AUC) of glucose levels. F and G: Insulin 
tolerance test (ITT) were performed after IP injection of insulin (0.8U/Kg BW) in 4-hour fasted 
20-30 week old HRicKO (black squares) and control (white circles) mice either on a LFD (n=3-
5/group; F) or HFD (n=9-10/group; G) for 10 weeks. Blood glucose levels were measured at the 
indicated time points. Results are expressed as % of baseline (100%; time = -30 min) blood 
glucose levels. Bar graphs to the right show the calculated inverse AUC of glucose levels. Data 
are expressed as mean ± SEM and were analyzed by Student's t-test (unpaired, two-tailed); 
*indicates a significant difference (p<0.05) from control mice. #indicates a significant difference 
(p<0.05) from chow-fed mice of the same genotype. 
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Proximal insulin signaling 

To investigate the signaling events underlying altered glycemic and lipogenic control, we 

harvested livers from basal and insulin-treated HFD-fed HRicKO and control mice. While 

insulin-stimulated phosphorylation of AKT Ser473 was measurable in control mice (Fig. 5.5A 

and C), AKT Ser473 phosphorylation was not increased in HRicKO mice (Fig. 5.5A and C). 

Basal phosphorylation of AKT Thr308 was increased in HRicKO mice (Fig. 5.5A and D), but 

insulin stimulation failed to significantly increase the already elevated basal levels (Fig. 5.5A and 

D). The pattern of AKT Thr308 phosphorylation levels among the different groups corresponded 

to an identical pattern of insulin receptor-β (IRβ) Tyr1162/Tyr1163 phosphorylation with 

elevated basal and lack of a significant increase in insulin-induced levels of phosphorylation (Fig. 

5.5A and B), which is potentially consistent with their hyperinsulinemia (Fig. 5.4B). 

 

Hepatic mTORC2 deficiency leads to differential coupling of AKT to downstream 

substrates 

We next determined whether impaired hepatic mTORC2 activity (as reflected by reduced 

AKT Ser473 phosphorylation) modifies AKT specificity for downstream substrates as observed 

in previous studies (282, 342, 367-369). Basal FoxO1 Ser253 phosphorylation levels were 

increased relative to controls (Fig. 5.5A and E), but failed to increase in response to insulin 

treatment in HRicKO mice, in contrast to controls (Fig. 5.5A and E). Conversely, basal and 

insulin-stimulated phosphorylation of the downstream AKT substrate, Ser9 of glycogen synthase 

kinase 3β (GSK3β), was intact in both control and HRicKO mice (Fig. 5.5A and F). We also 

assessed phosphorylation of Thr389 of S6K, which is a target of AKT-mTORC1 activity. Basal 

and insulin-stimulated phosphorylation of S6K at Thr389, were similar in control and HRicKO 

mice (Fig. 5.5A and G). Likewise, insulin and mTORC1-dependent phosphorylation of lipin-1 on 

Ser106 was intact in both control and HRicKO mice (Fig. 5.5A and H). Thus, hepatic mTORC2 
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deficiency in HRicKO mice fed a HFD leads to impaired transduction of the insulin-AKT signal 

to the glucoregulatory FoxO1 axis but intact transduction to GSK3β and mTORC1.  

 

Figure 5.5. Hepatic mTORC2 deficiency in mice fed a HFD leads to impaired transduction 
of the insulin-AKT signal to the glucoregulatory FoxO1 axis but intact transduction to 
GSK3β and mTORC1. A-H: Representative Western blots (A) of liver extracts prepared from 4-
hour fasted 18-21 week old non-insulin-treated (white bars) and insulin-treated (black bars) mice 
(n=6/group) on 10 weeks of HFD are shown and were immunoblotted with antibodies to levels of 
(B) pTyr1162/pTyr1163 IRβ, (C) pSer473 AKT, (D) pThr308 AKT, (E) pSer253 FoxO1, (F) 
pSer9 GSK3β, (G) pThr389 S6K, and (H) pSer106 lipin-1. Four-hour fasted mice were injected 
with insulin as described in materials and methods. Western blots were analyzed by densitometry 
and data shown are relative to levels of non-insulin-treated control mice after normalization to the 
corresponding levels of total protein for each phosphorylated protein or to the level of GAPDH. 
Data are expressed as mean ± SEM and were analyzed by Student's t-test (unpaired, two-tailed); 
*indicates a significant difference (p<0.05) from non-insulin-treated mice. #indicates a significant 
difference (p<0.05) from control mice of the same treatment. 
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Hepatic mTORC2 deficiency leads to gluconeogenic dysregulation on exposure to HFD 

Consistent with reduced insulin-stimulated phosphorylation of FoxO1in livers of HFD-

fed HRicKO mice (Fig. 5.5A and E), expression of the key enzymes involved in gluconeogenesis, 

PEPCK and G6PC were not reduced in response to insulin in HRicKO mice, unlike controls (Fig. 

5.6A). HFD-fed HRicKO mice showed moderately higher blood glucose levels compared to 

controls during a pyruvate tolerance test (Fig. 5.6B). These data suggest HRicKO mice have a 

higher functional capacity for HGP (348). 

 

Figure 5.6. Loss of hepatic rictor leads to inability of insulin to suppress the gene expression 
of key enzymes involved in gluconeogenesis in HFD-fed mice. A: mRNA levels of key 
enzymes involved in gluconeogenesis, G6PC and PEPCK, from livers of non-insulin-treated 
HRicKO (black bars; n=6) and control mice (white bars; n=6) as well as insulin-treated livers of 
HRicKO (hatched bars; n=7) and control mice (striped bars; n=9) after 10 weeks of HFD feeding. 
Results are normalized to levels of non-insulin treated control mice. Four-hour fasted mice were 
injected with insulin as described in materials and methods. B: Pyruvate tolerance test (PTT) 
were performed after IP injection of pyruvate (2 g/Kg BW) in overnight fasted 16 week old 
HRicKO (black squares) and control (white circles) mice on HFD for 8 weeks and blood glucose 
levels were measured at the indicated time points. Results are expressed as % of baseline (100%; 
time -30 min) blood glucose levels. Bar graphs to the right show the calculated AUC of the blood 
glucose curve (n=8-10/group). Data are expressed as mean ± SEM and were analyzed by 
Student's t-test (unpaired, two-tailed); *indicates a significant difference (p<0.05) from control 
mice and #indicates a significant difference (p<0.05) from non-insulin-treated mice of the same 
genotype. 
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Hepatic mTORC2 deficiency in HFD-fed HRicKO mice leads to impaired regulation of 

insulin-stimulated de novo fatty acid and cholesterol biosynthesis in liver 

To investigate the role of mTORC2 signaling in the regulation of SREBP-1c in HFD-fed 

mice, we examined SREBP-1c activation at the transcriptional and post-translational levels. The 

mRNA levels of key lipogenic transcription factors, LXRα and SREBP-1c, as well as the 

SREBP-1c target gene, SCD-1, were robustly up-regulated in HFD-fed control mice relative to 

chow-fed controls (Fig. 5.7A). In contrast, HFD-fed HRicKO mice had mRNA levels of SREBP-

1c and SCD-1 similar to those of chow-fed HRicKO mice, whereas LXRα mRNA levels were 

above chow-fed levels but significantly lower than HFD-fed controls (Fig. 5.7A). Additionally, 

other SREBP-1c lipogenic targets, ATP citrate lyase (ACL), FAS, and DGAT-2, were all 

significantly lower by ~50 to 70% in livers of HFD-fed HRicKO mice compared to HFD-fed 

controls, whereas no significant changes were detected for mRNA levels of ACC-1 and GPAT 

(Fig. 5.7B).  

SREBP proteins are synthesized as inactive, membrane bound precursor proteins that 

become associated with the SREBP cleavage activating protein (SCAP). Insulin-induced gene 

(Insig) proteins reside in the ER and bind to SCAP, and thus retain the SCAP/SREBP-1c complex 

in the ER, preventing SREBP-1c proteolytic processing to generate an active transcription factor 

(370). Insulin increases degradation of the Insig-2a transcript (344, 371), which is the major liver 

transcript observed in fasted animals (372). We found a significant reduction in Insig-2a 

transcript in livers of HFD-fed HRicKO mice (Fig. 5.7B), whereas no alterations in SCAP mRNA 

levels were observed compared to HFD-fed controls (Fig. 5.7B). However, consistent with 

reduced mRNA levels of SREBP-1c, both the precursor and the mature nuclear form of SREBP-

1c were reduced by ~50% in livers of HFD-fed HRicKO mice (Fig. 5.7C and D). Also consistent, 

protein levels of the SREBP-1c target gene, SCD-1, were significantly reduced in HRicKO 

compared to control mice fed a HFD (Fig. 5.7E).  
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 Figure 5.7. Hepatic mTORC2 deficiency in HFD-fed HRicKO mice leads to impaired 
regulation of insulin-stimulated de novo fatty acid and cholesterol biosynthesis in liver. A: 
mRNA levels of key transcription factors involved in lipid biosynthesis, LXRα, SREBP-1c, 
SREBP-2, and the SREBP-1c target lipogenic gene, SCD-1 from livers of 4-hour fasted 12 week 
old chow-fed HRicKO (black bars; n=3) and control (white bars; n=6) mice and from livers of 4-
hour fasted 18 week old HRicKO (hatched bars; n=7) and control (striped bars; n=9) mice after 
10 weeks of HFD feeding. Results are normalized to levels of chow-fed control mice. B: mRNA 
levels of enzymes involved in SREBP-1c processing (INSIG-2A and SCAP) and enzymes 
involved in fatty acid and triglyceride synthesis (ACL, ACC-1, FAS, GPAT, and DGAT-2) from 
livers of 4-hour fasted 18 week old HFD-fed HRicKO (black bars) and control (white bars) mice. 
Results are normalized to levels of control mice. C and D: SREBP-1c processing was analyzed by 
Western blot analysis of nuclear and cytoplasmic fractions from livers of 4-hour fasted 18 week 
old HRicKO (KO; black bars; n=7) and control (Con; white bars; n=9) mice after 10 weeks of 
HFD feeding. The precursor form was detected in cytoplasmic fractions and the mature form of 
SREBP-1c was detected in nuclear fractions. β-Tubulin and HDAC1 were used as marker 
proteins of cytoplasmic and nuclear fractions, respectively. Western blots were analyzed by 
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densitometry and data shown are relative to levels of control mice after normalization to β-
Tubulin or HDAC1. E: Protein levels of SREBP-1c target gene, SCD-1, were analyzed in whole 
cell liver extracts from 12-18 week old HRicKO and control mice either on chow-diet (CW; n=3-
6/group) or after 10 weeks of HFD (HF; n=7-9/group) relative to the normalization control, actin. 
F: Correlational analysis of LXRα mRNA expression versus liver cholesterol levels in HRicKO 
and control mice either on chow or HFD. G: mRNA levels of enzymes involved in SREBP-2 
processing (INSIG-1) and cholesterol biosynthesis, HMGS-1, HMGR, SS, FDPS, and LDLR 
from livers of 4-hour fasted 18-week old HFD-fed HRicKO (black bars; n=7) and control (white 
bars; n=9) mice. Results are normalized to levels of control mice. Data are expressed as mean ± 
SEM and were analyzed by Student's t-test (unpaired, two-tailed); *indicates a significant 
difference (p<0.05) from control mice. #indicates a significant difference (p<0.05) from chow-fed 
mice of the same genotype.  
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The mechanism for reduced SREBP-1c expression might be transcriptional rather than 

translational or post-translational. We hypothesized that reduced LXRα action in combination 

with reduced nuclear SREBP-1c in livers of HFD-fed HRicKO mice may impair the ability of 

insulin to fully induce SREBP-1c in a feed forward manner, and thereby fail to induce lipogenesis 

(357). Interestingly, we found that LXRα mRNA levels positively correlated with liver 

cholesterol content in both chow and HFD-fed mice (r=0.7; p=0.0003; Fig. 5.7F). In addition, 

HFD-fed HRicKO mice have significantly reduced liver cholesterol levels compared to HFD-fed 

controls (Fig. 5.3E) and the oxidized form of cholesterol (oxysterol) is known to act as an 

activating ligand for LXRα (359-361). These correlations raised the possibility that in addition to 

reduced LXRα expression, there may also be a failure to activate existing LXRα protein. We, 

therefore, quantified markers of cholesterol biosynthesis, which ultimately generate LXRα 

agonists. 

As expected (360, 362), feeding HFD, which contains 0.1% cholesterol (0.95mg/g), to 

HRicKO and control mice led to a robust reduction in mRNA levels of liver SREBP-2 relative to 

chow-fed mice (Fig. 5.7A). However, mRNA levels of many of the target genes of SREBP-2, 

including the cholesterogenic enzymes HMG-CoA synthase-1 (HMGS-1), squalene synthase 

(SS), farnesyl diphosphate synthase (FDPS) and the LDLR, but not HMG-CoA reductase 

(HMGR) were lower by ~40 to 60% in the HFD-fed HRicKO livers compared to HFD-fed 

controls (Fig. 5.7G). Surprisingly, we did not detect lower SREBP-2 mRNA levels in HFD-fed 

HRicKO mice, but found levels similar to those of HFD-fed control mice (Fig. 5.7A). Likewise 

unexpected, mRNA levels of the sterol responsive Insig-1, which regulates SREBP-2 processing 

(370), were also significantly reduced in livers of HFD-fed HRicKO mice (Fig. 5.7G). 

Collectively, these data support a working model whereby hepatic rictor and mTORC2 activity is 

required to maintain elevated expression of SREBP-2 target genes, thereby increasing cholesterol 

levels in HFD-fed control mice. In HRicKO mice with reduced cholesterol, LXRα ligands 
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(oxysterols) necessary for LXRα activation may be lacking, thereby blocking the cooperative 

interaction of insulin and LXRα activity to fully induce SREBP-1c mediated lipogenesis.  

 

Activation of hepatic LXRα rescues glycemic and lipogenic, but not cholesterol biosynthetic 

defects in HFD-fed HRicKO mice  

Given that our model centers upon a defect in LXRα activation, we sought to determine if 

treatment with a selective LXR agonist, T0901317 (366), would rescue the altered glucose and 

lipid metabolism observed in the HFD-fed HRicKO mice. HFD-fed control and HRicKO mice 

were treated daily with IP injections of T0901317 (50 mg/kg body weight) or vehicle, and then 

studied for effects on glucose and lipid metabolism in the ad-libitum fed state on day 2 and 6 of 

treatment. On day 2, the LXR agonist-treated group had reduced blood glucose levels in both 

control and HRicKO mice; although the effect was of greater magnitude in HRicKO mice given 

their initially higher glucose levels (Table 5.2). Plasma TG levels were increased by 4- and 8-fold 

in HRicKO and control mice, respectively, with LXR agonist treatment (Table 5.2). Markers of 

adipocyte lipolysis, FFA and glycerol, were elevated in both LXR agonist-treated control and 

HRicKO mice (Table 5.2). Elevated lipolysis may have supplied substrate for enhanced liver 

lipoprotein synthesis and the resulting hypertriglyceridemia (23, 24, 315). LXR agonist did not, 

however, increase plasma cholesterol levels in HRicKO mice to those of control levels by day 2 

of treatment (Table 5.2).  

On day 6 of LXR agonist treatment, blood glucose levels remained significantly reduced 

and elevated plasma insulin levels in HRicKO mice were normalized (Table 5.2). Elevated 

plasma TG found on day 2 of LXR agonist treatment was attenuated by day 6 (Table 5.2), 

consistent with previous findings (373), and is thought to be due to reduced lipolysis and 

increased lipoprotein lipase activity in liver (374). Elevated plasma cholesterol levels were 

significantly reduced in LXR agonist-treated control mice, whereas no changes in cholesterol 

levels were seen in the HRicKO mice (Table 5.2). 
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Table 5.2. Metabolic parameters measured on day 2 and 6 in ad-libitum high-fat diet-fed control 
and HRicKO mice treated intraperitoneal (IP) daily with either a selective LXR agonist 
T0901317 or vehicle 

After 23 weeks of feeding a high-fat diet, HRicKO and control mice at 45 weeks of age were 
treated IP daily with either a selective LXR agonist T0901317 (50 mg/kg BW) or vehicle for a 
total of 6 days. On day 2 of treatment, blood was collected by submandibular bleed in ad-libitum 
fed LXR agonist-treated and vehicle-treated mice to measure plasma hormone and metabolite 
levels (n=5/group). On day 6 of treatment, blood and epididymal (epid) fat pads were collected 
from euthanized ad-libitum fed LXR agonist-treated (n=3-5/group) and vehicle-treated mice 
(n=5/group) to measure plasma hormone and metabolite levels, as well as, epid fat pad weights. 
Data are expressed as mean ± SEM and were analyzed by Student's t-test (unpaired, two-tailed); 
*indicates a significant difference (p<0.05) from vehicle-treated mice. #indicates a significant 
difference (p<0.05) from control mice of the same treatment. 

 

 

Consistent with elevated adipocyte lipolysis, the epididymal fat pad weights were 

significantly reduced in LXR agonist-treated control mice, whereas the LXR agonist treatment 

did not further reduce fat pad weights in the HRicKO mice (Table 5.2). LXR agonist increased 

liver weights by 1.3- and 1.5-fold in control and HRicKO mice, respectively (Fig. 5.8A). These 

LXR-treated livers were engorged with medium- to large-sized intracellular lipid droplets relative 

to vehicle-treated mice (Fig. 5.8E), indicating enhanced lipogenesis. Consistent with this 

histology, LXR agonist treatment in control and HRicKO mice increased liver TG content by 5- 

 Control HRicKO 
  Vehicle T0901317 Vehicle T0901317 

Glucose Day 2 130±5 98±5* 241±29# 104±4* 
mg/dl Day 6 168±9 74±11* 160±12 106±4*,# 
Triglyceride Day 2 72.8±4.7 552±58* 48.7±2.9# 191±39*,# 
mg/dl Day 6 74.6±7.0 122±22* 68.0±3.3 73.1±8.4# 
Free Fatty acid Day 2 0.36±0.04 1.01±0.11* 0.33±0.03 0.70±0.02*,# 
mmol/l Day 6 0.27±0.04 0.57±0.13* 0.24±0.04 0.31±0.01# 
Glycerol Day 2 52.7±2.8 102±9* 53.9±2.5 73.9±6.5*,# 
mg/dl Day 6 54.9±3.6 59±14 56.0±6.0 64.9±7.5 
Cholesterol Day 2 238±10 230±16 127±19# 158±13# 
mg/dl Day 6 215±9 155±11* 139±16# 172±8 
Insulin Day 2 - - - - 
ng/ml Day 6 3.6±0.7 2.8±1.9 15.3±3.9# 4.4±0.6* 
Epid Fat pad Day 2 - - - - 
weight (g) Day 6 2.3± 0.2 1.6±0.1* 1.2±0.2# 1.1±0.1# 
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and 12-fold, respectively (Fig. 5.8B). In contrast, liver cholesterol content decreased by 47% and 

67% in control and HRicKO mice, respectively (Fig. 5.8C). LXR agonist-treated control and 

HRicKO mice had elevated liver FFA content (Fig. 5.8D). Collectively, these data demonstrate 

that chronic LXRα activation ameliorates the dysglycemia while restoring hepatic steatosis and 

hypertriglyceridemia in HFD-fed HRicKO mice. 

 

Figure 5.8. Activation of hepatic LXRα rescues glycemic and lipogenic, but not cholesterol 
biosynthetic defects in HFD-fed HRicKO mice. After 23 weeks of feeding a HFD, HRicKO 
and control mice at 45 weeks of age were treated intraperitoneal (IP) daily with either a selective 
LXR agonist (T0901317, 50 mg/kg BW) or vehicle for a total of 6 days. A-E: On day 6 of 
treatment, liver tissues were collected from euthanized ad-libitum fed HRicKO and control mice 
treated with ether LXR agonist (black bars; n=3-5/group) or vehicle (white bars; n=5/group) to 
measure the following: (A) liver weights and hepatic content of (B) TG, (C) cholesterol and (D) 
FFA. E: Representative images of H&E and ORO staining from livers of ad-libitum fed HRicKO 
and control mice treated with either the LXR agonist T0901317 (T09) or vehicle for 6 days; 
original magnification, 20X. Data are expressed as mean ± SEM and were analyzed by Student's 
t-test (unpaired, two-tailed); *indicates a significant difference (p<0.05) from vehicle-treated 
mice. #indicates a significant difference (p<0.05) from control mice of the same treatment.  
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Hepatic LXRα activation suppresses PEPCK while robustly stimulating SREBP-1c   

We investigated whether the effects of LXRα activation on glucose and lipids correlated 

with changes in relevant gluco- and lipo-regulatory LXRα target genes. SREBP-1c mRNA levels 

were induced by ~2- and 3-fold in livers of LXR agonist-treated ad-libitum HFD-fed control and 

HRicKO mice, respectively (Fig. 5.9A). Hepatic SCD-1 mRNA levels, a gene target of LXRα 

and SREBP-1c, were robustly upregulated by 14- and 60-fold in control and HRicKO mice, 

respectively (Fig. 5.9B). ACL mRNA levels, a lipogenic gene target of SREBP-1c, was 

upregulated by 2-fold in livers of HRicKO mice (Fig. 5.9C).  

LXR agonist treatment induced a significant increase in mature (transcriptionally active) 

and precursor forms of SREBP-1c protein in HRicKO livers (Fig. 5.10A-C). In contrast, in LXR 

agonist-treated control mice, the level of the mature form of SREBP-1c was significantly 

increased (Fig. 5.10A and C) with no alteration in the level of the precursor form relative to 

vehicle treatment (Fig. 5.10A and B). Interestingly, the LXR agonist induced Insig-2 expression 

(Fig. 5.10A and D), which is involved in inhibiting the cleavage of SREBP-1c. LXR agonist 

treatment induced protein levels of the lipogenic enzymes, ACC and SCD-1 in HRicKO livers 

similar to those of LXR-treated controls (Fig. 5.10A, E and G). Conversely, FAS and ACL were 

significantly induced only in LXR agonist-treated HRicKO livers (Fig. 5.10A, F and H).  
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Figure 5.9. Analysis of mRNA levels of direct target genes of LXRα from livers of HRicKO 
mice treated with either LXR agonist or vehicle. A-H: mRNA levels of direct target genes of 
LXRα from livers of 45 week old HFD-fed HRicKO and control mice either treated daily IP with 
the LXR agonist T0901317 (black bars; n=3-5/group) or vehicle (white bars; n=5/group) for 6 
days. The gene expression levels for (A) SREBP-1c, (B) SCD-1, (C) ACL, (D) SREBP-2, (E) 
HMGS-1, (F) LDLR, (G) CYP7A1, and (H) PEPCK were analyzed. Results were normalized to 
levels of vehicle-treated control mice. Data are expressed as mean ± SEM and were analyzed by 
Student's t-test (unpaired, two-tailed); *indicates a significant difference (p<0.05) from vehicle-
treated mice and #indicates a significant difference (p<0.05) from control mice of the same 
treatment. 

 
 
 

Remarkably, the transcript levels of genes associated with cholesterol biosynthesis, 

SREBP-2, HMGS-1, and LDLR were consistently reduced in vehicle-treated ad-libitum HFD-fed 

HRicKO mice relative to vehicle-treated controls (Fig. 5.9D-F). Treatment with LXR agonist 

reduced SREBP-2 and expression of its target genes in control mice, whereas LXR agonist 
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treatment did not further reduce expression of these genes in the HRicKO livers (Fig. 5.9D-F). 

Conversely, a direct target of LXRα, cholesterol 7a-hydroxylase-1 (CYP7A1), which is a rate 

limiting enzyme in the synthesis of bile acids from cholesterol (362), was upregulated by 9- and 

13-fold in livers of LXR-treated control and HRicKO mice, respectively (Fig. 5.9G).  

In contrast to increased expression of lipogenic genes, PEPCK expression in both control 

and HRicKO mice was dramatically downregulated at both mRNA (Fig. 5.9H) and protein levels 

(Fig. 5.10A and I), confirming results of previous work that showed T0901317 decreased hepatic 

gluconeogenesis in db/db mice (375, 376). Thus, chronic LXRα activation with a selective LXR 

agonist, T0901317, in HFD-fed HRicKO mice ameliorates hyperglycemia, likely via suppressing 

expression of the key gluconeogenic enzyme, PEPCK, while stimulating a SREBP-1c mediated 

lipogenic program in liver.  
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Figure 5.10. Hepatic LXRα activation suppresses PEPCK while robustly stimulating 
SREBP-1c. A-I: Western blot analysis of proteins (A) that are direct target genes of LXR in 
whole cell liver extracts from 45 week old HFD-fed HRicKO and control mice either treated IP 
daily for 6 days with the LXR agonist T0901317 (black bars; n=3-5/group) or vehicle (white bars; 
n=5/group): the precursor form (p in A and B) and mature form (m in A and C) of SREBP-1c, 
(D) Insig-2, (E) ACC, (F) FAS, (G) SCD-1, (H) ACL, and (I) PEPCK. Western blots were 
analyzed by densitometry and data shown are relative to levels of vehicle-treated control mice 
after normalization to GAPDH or β-Tubulin. Data are expressed as mean ± SEM and were 
analyzed by Student's t-test (unpaired, two-tailed); *indicates a significant difference (p<0.05) 
from vehicle-treated mice. #indicates a significant difference (p<0.05) from control mice of the 
same treatment.  
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Discussion 

The gluco- and lipo-regulatory effects of hepatic AKT are largely due to the suppression 

of the FoxO1-gluconeogenic pathway and the regulation of the SREBPs, respectively. Because 

AKT is also regulated by other inputs (PDK-1), and is a major mediator of insulin’s effect on 

metabolic processes, we sought to determine whether hepatic rictor directed mTORC2 activity is 

required for the regulation of liver lipid metabolism. Specifically, we hypothesized that hepatic 

rictor directed mTORC2 activity is required to regulate SREBP-2 mediated cholesterogenesis in 

order to fully stimulate SREBP-1c mediated lipogenesis through oxysterol dependent activation 

of LXRα. In the absence of hepatic mTORC2 regulatory protein, rictor, there is a dramatic 

decrease in mTORC2 mediated phosphorylation of AKT Ser473 in response to insulin. Although 

hepatocyte mTORC2 deficiency in chow-fed HRicKO mice confers little effect, we observed that 

HFD-feeding amplified hyperglycemia, insulin resistance, and hyperinsulinemia in HRicKO 

mice. Yet, paradoxically, these mice are lean on HFD and are protected from diet-induced hepatic 

steatosis and hyperlipidemia as previously reported (347, 348). Resistance to fat mass gain may 

be due to an increase in energy expenditure and fat oxidation, an effect independent of DIO, as 

this was observed in lean LFD-fed HRicKO mice (Table 5.1).  

In agreement with prior observations, hepatic mTORC2 deficiency affects signaling 

through AKT and FoxO1 leading to impaired inhibition of the FoxO1-gluconeogenic pathway 

(347, 348). Defective regulation of FoxO1 and glucoregulatory genes would explain the glucose 

intolerance and compensatory hyperinsulinemia observed in the HFD-fed HRicKO mice. Yet, 

HRicKO mice failed to develop hepatic steatosis and dyslipidemia on exposure to HFD; they had 

lower triglyceride and cholesterol levels in both plasma and liver. We ruled out a contribution of 

impaired intestinal lipid absorption, since fecal lipid contents were not different among the mice. 

The lack of impaired lipid absorption or increased excretion, therefore, suggested that defects in 

regulation of hepatic lipid biosynthesis were likely in the absence of mTORC2 signaling. In 

support of this hypothesis, hepatic mTORC2 deficiency led to lower hepatic SCD-1 activity (215, 
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330), which in turn, contributes to the reduced availability of MUFAs that are necessary for TG 

and CE biosynthesis (329, 330).  

In addition to reduced fatty acid desaturation, we also observed failure of a HFD to 

induce mRNA levels of SREBP-1c, SREBP-2 and their target genes involved in fatty acid, 

triglyceride, and cholesterol biosynthesis in HRicKO mice in corroboration with previous 

findings (347, 348). Interestingly, while hepatic FFA content was slightly elevated in both chow 

and HFD-fed HRicKO mice, a marker of adipocyte lipolysis in the form of plasma FFA was 

similarly elevated suggesting that the source of these excess FFA are derived from the periphery 

rather than from hepatic DNL. Additional support of the gene expression data is the concomitant 

finding of reduction in both the precursor and the mature form of the master transcriptional 

regulator of lipogenesis, SREBP-1c (347, 348).  

Our data agree with previous observations that AKT2 is required for hepatic lipid 

accumulation in obese, insulin resistant mouse models (285). Indeed, in the study by Hagiwara et 

al. (348), the restoration of AKT2 signaling in rictor deficient hepatocytes rescued SREBP-1c and 

DNL. However, this study did not report whether restoration of AKT2 rescued SREBP-2 

mediated cholesterol biosynthesis. Thus, we sought to extend this work in an effort to identify a 

molecular mechanism underlying the reduced activation of SREBP-1c and lipogenesis in 

HRicKO livers which may be coupled to cholesterol metabolism in liver and partially 

independent of AKT and mTORC1 signaling. 

Recent cell culture and animal based studies suggest that activation of SREBP-1c and 

lipogenesis by AKT requires mTORC1 (344, 346, 352-355). One of the mechanism by which 

mTORC1 activates SREBP-1c is by the phosphorylation and nuclear exclusion of lipin-1, 

preventing lipin-1 mediated downregulation of nuclear SREBP-1c protein (346). Furthermore, 

loss of mTORC1 regulation of lipin-1 by hepatocyte specific deletion of raptor led to a resistance 

to hepatic steatosis and hypercholesterolemia in HFD-fed mice, and this phenotype was largely 

reversed by the adenoviral shRNA depletion of hepatic lipin-1 (346). Similarly, this defect was 
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reported by Yuan et al. (347) in hepatocyte specific rictor knockout mice concluding that 

lipogenesis requires mTORC2 to fully and independently activate both mTORC1 and AKT. 

However, this is contrary to our findings in which we observed intact mTORC1 mediated 

phosphorylation of lipin-1 in response to insulin in HRicKO livers, suggesting that the loss of 

mTORC1 regulation of SREBP-1c may not be the primary underlying mechanism, at least in our 

animals. Moreover, activation of mTORC1 either by hepatocyte-specific deletion of TSC1 or 

following a high carbohydrate meal in hepatic AKT2 knockout mice demonstrate that mTORC1 

is insufficient to stimulate SREBP-1c mediated lipogenesis in the absence of AKT2 signaling 

(344, 377, 378). Thus, as also observed by Hagiwara et al. (348), intact mTORC1 activity in the 

context of genetically impaired mTORC2 leads to reduced SREBP-1c activation and defective 

lipogenesis, suggesting that activation of SREBP-1c may be partially independent of mTORC1. 

An mTORC1 independent mechanism by which insulin-AKT2 signaling activates 

SREBP-1c is via the inhibition and degradation of Insig-2a transcript, while reciprocally 

augmenting Insig-1 gene expression (371). Thereby, this stimulates the ER-to-Golgi transport of 

the SCAP/SREBP-1c complex, ultimately stimulating SREBP-1c proteolytic processing to 

generate an active transcription factor (344, 371). Knockdown of Insig-2a expression mimics 

insulin-induced SREBP-1c proteolysis whereas exogenous expression of Insig-2a in hepatocytes 

blocks this effect (371).  However, the observed reduction in both Insig-1 and Insig-2a transcripts 

in livers from HFD-fed HRicKO mice in our study did not translate to the expected greater levels 

of mature SREBP-1c. Thus, this implicates the possibility of increased degradation of mature 

SREBP-1c protein levels in HRicKO livers. 

 AKT prevents the degradation of mature SREBP-1c by the phosphorylation and 

inhibition of GSK3α/β preventing GSK3 mediated activation of the ubiquitin-proteasome 

pathway (379-381). Indeed, Hagiwara et al. (348) observed this defect in the livers of the 

hepatocyte specific rictor knockout mice concluding that constitutively active GSK3 and 

enhanced degradation of mature SREBP-1c may be the underlying mechanism for impaired 
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SREBP-1c activation. However, our observation that insulin-induced phosphorylation of GSK3β 

is intact in the HRicKO livers further suggest that GSK3 mediated degradation of SREBP-1c is 

not the underlying mechanism in our animals. Clearly, our data shows that hepatic rictor directed 

mTORC2 activity and subsequent AKT Ser473 phosphorylation is not required for the regulation 

of Insig-2a, GSK3β, and mTORC1, all mechanisms involved in the regulation of SREBP-1c. 

Thus, we sought to identify a novel, underlying defect in SREBP-1c activation in mTORC2 

deficient hepatocytes that may occur partially independent of AKT. 

A clue to a potential mechanism was revealed by the finding of significantly lower levels 

of plasma and liver cholesterol in HFD-fed HRicKO mice. SREBP-2 is a master regulator of liver 

cholesterol biosynthesis and its expression is significantly lower in livers of ad-libitum HFD-fed 

HRicKO mice. SREBP-2 positively regulates the expression of numerous genes involved in 

cholesterol biosynthesis, all of which were reduced in the livers of HRicKO mice. Unfortunately, 

commercially available antibodies were not of sufficient quality to detect SREBP-2 by Western 

blot analysis, so mRNA levels of target genes were assessed. 

Connecting reduced SREBP mediated fatty acid and cholesterol biosynthesis is the 

knowledge that derivatives of cholesterol biosynthesis, oxysterols, serve as agonists for the 

nuclear transcription factor, LXRα, which in turn, positively regulates SREBP-1c expression 

(359-361). Consistent with the fact that oxysterols stimulate LXRα activity, is the observation in 

our mice that liver cholesterol content is strongly correlated with LXRα mRNA levels. Thus, we 

hypothesized that reduced liver cholesterol content leads to reduced LXRα agonist levels 

(presumably oxysterol), which would lower LXRα transcriptional activity, and thus attenuate 

SREBP-1c expression and target gene activation. Indeed, both LXRα and the nuclear form of 

SREBP-(1c and 2) bind regulatory sites (LXRE and SRE) on the SREBF1 promoter to fully 

induce its transcription in response to insulin-AKT signaling in a feed forward fashion (357).   

To test this hypothesis, we asked whether a selective LXRα agonist would rescue 

SREBP-1c expression, processing, transcriptional regulation, and lipogenesis. The selective 
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LXRα agonist, T0901317, has been shown both in vitro and in vivo to regulate LXR target genes 

(366, 373, 375, 382). Indeed, in our HRicKO mice, the LXR agonist rescued SREBP-1c 

expression, processing, and target gene expression. Functionally, LXR agonist treatment 

increased liver weight, liver triglyceride content, and potently enhanced steatosis in both control 

and HRicKO mice. Thus, the impaired induction of cholesterol biosynthesis resulting from Rictor 

gene deletion and reduced mTORC2 signaling appears to have resulted in attenuated LXRα 

transcriptional activity, and ultimately explaining the defects in SREBP-1c expression and 

function. 

Interestingly, LXR agonist treatment paradoxically induced Insig-2 protein levels (an 

inhibitor of SREBP-1c processing) in both control and HRicKO mice. This observation can be 

reconciled by other published work, which suggests that concurrent induction of Insig-2 by LXRα 

may act to provide a readily available pool of SREBP-1c precursor that is primed for immediate 

cleavage by insulin-induced mechanisms (383). Of note, the marked decrease in liver cholesterol 

content in both LXR agonist-treated control and HRicKO mice was most likely due to the 

suppressive effects of the LXR agonist on SREBP-2 mediated cholesterol biosynthesis together 

with increased CYP7A1 directed cholesterol catabolism in liver, as reported by previous studies 

(362, 366).    

Our data collectively supports a model (Fig. 5.11) where HFD-induced obesity, a state 

characterized by hyperinsulinemia and nutrient overload, requires hepatic rictor directed 

mTORC2 activity to stimulate SREBP-2 mediated cholesterol biosynthesis. Thus, cholesterol 

derived either from the diet or synthesized de novo, may provide the oxysterol agonists of LXRα 

necessary for activation. This ultimately enables the cooperative interaction of LXRα and insulin-

AKT signaling to fully induce SREBP-1c mediated lipogenesis. As a result, HFD feeding in wild-

type mice leads to the development of hepatic steatosis and dyslipidemia.  
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Figure 5.11. Model for the role of rictor directed mTORC2 activity in the regulation of 
hepatic lipid metabolism in high-fat diet-induced obesity. 
 
 
 

Additionally, high-fat diet feeding in wild-type mice results in the accumulation of sterol 

metabolites, including cholesterol and oxysterols, and these metabolites tightly regulate 

cholesterol homeostasis in liver by binding to SCAP and/or Insig-1 to promote ER retention of 

SCAP/SREBP-2 complex as a negative feedback inhibition of SREBP-2 mediated cholesterol 

biosynthetic pathway (384). Concomitantly, oxysterol dependent activation of LXRα promotes 

the feed-forward induction of cholesterol catabolism in liver (362).  

Our study did not definitively address whether hepatic rictor directed mTORC2 activity 

regulates SREBP-2 mediated cholesterol biosynthesis independently of AKT and/or other 

pathways. Other studies report that multiple molecular pathways are involved in the regulation of 

SREBP-2 and cholesterol metabolism, including mTORC1, PI3K/AKT, and MAP-kinase 

pathways in brain and liver (345, 346, 356, 385). Furthermore, hepatocyte specific deletion of 

AKT2 alone or in hepatic PTEN null mice leads to a robust reduction in SREBP-2 expression 

indicating that SREBP-2 regulation requires AKT2 (288). Therefore, to delineate the role of 
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rictor/mTORC2 in SREBP-2 regulation, future studies may involve investigating whether the 

overexpression of rictor in AKT2 null hepatocytes will restore SREBP-2 and cholesterol 

biosynthesis whereas expression of constitutively active AKT2 in rictor deficient hepatocytes 

may abolish this effect.  

Another intriguing finding of our study is that hepatic rictor/mTORC2 mediated AKT 

Ser473 (and not Thr308) phosphorylation may be coupled to the regulation of SREBPs. To 

further investigate this observation, future studies would involve the genetic deletion of rictor in 

hepatocyte specific PTEN null mice to determine whether the attenuation of Ser473 in the 

presence of constitutively active Thr308 will phenocopy the loss of fatty liver observed in the 

double mutant PTEN/AKT2 null mice (288). The confirmation that Ser473 AKT is coupled to 

liver lipid metabolism may reveal novel therapeutic approaches to treat NAFLD and atherogenic 

dyslipidemia via the selective modulation of mTORC2 kinase activity.  

In summary, we show loss of hepatic rictor and mTORC2 deficiency uncouples insulin 

regulation of glucose from lipid homeostasis on exposure to HFD leading to impaired suppression 

of the FoxO1-gluconeogenic pathway and failure to stimulate SREBP mediated fatty acid, 

triglyceride, and cholesterol biosynthesis. Our data suggest the intriguing possibility that selective 

modulation of mTORC2 kinase activity could lead to the suppression of the liporegulatory branch 

(LXRα, SREBP-1c and/or SREBP-2) while maintaining the glucoregulatory branch (FoxO1) 

resulting in the protection against the development of dysglycemia and hyperlipidemia associated 

with obesity, diabetes, and the metabolic syndrome. 
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CHAPTER VI 

 

SUMMARY AND FUTURE DIRECTIONS  

 

Overview 

CVD remains one of the leading causes of death in the US and worldwide (6, 8). In an 

effort to curb this epidemic, clinicians have become increasingly adept at identifying and treating 

the classical cardiovascular risk factors, particularly hypercholesterolemia, hypertension, and 

smoking (4). For example, in the Heart Protection Study, the therapeutic effect of statin therapy to 

lower LDL-C levels in high risk patients produced a substantial 25% reduction in major CVD 

events and is a public health success (5). Yet, closer inspection reveals that 75% of the CVD risk 

remained despite statin therapy. One hypothesis to explain this unaddressed risk is that the 

parallel obesity and diabetes epidemics (9) have generated additional novel factors for CVD 

beyond those in the Framingham model and beyond absolute LDL-C levels.  

An increasing healthcare burden is due to the complications of hyperlipidemia, such as 

CVD, cerebrovascular disease, and peripheral vascular disease. Elevated VLDL-TG secretion 

from liver contributes to atherogenic dyslipidemia consisting of small-dense LDL-C and reduced 

HDL-C levels (14-16) associated with obesity and diabetes. Hypertriglyceridemia and 

overproduction of VLDL-TG are key components of the metabolic syndrome (14-16) and 

atherogenic dyslipidemia, which is an increasingly recognized component of cardiovascular risk 

(16). Thus, a better understanding of the biology behind the regulation of lipoprotein metabolism, 

particularly in novel areas investigating the dyslipidemia associated with obesity and diabetes, 

may lead to fundamentally novel therapeutic treatments aimed at lowering some or all of the 

remaining CVD risk.  

A current model of dyslipidemia in the context of obesity and diabetes, suggests that the 

VLDL-TG secretion rate is largely determined by the rate of substrate (FFA) delivery to the liver 
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and hepatic insulin sensitivity (23-25). Thus, a key component of the model is that as visceral fat 

mass expands, insulin resistance at the adipose and liver tissue develops. Adipocyte insulin 

resistance results in elevated adipocyte lipolysis, which is normally potently suppressed by 

insulin. Lipolysis leads to the release of FFA and glycerol into the portal circulation which are 

efficiently cleared by the liver and re-esterified to generate TG. This TG is loaded onto a nascent 

apoB particle, ultimately resulting in increased production of VLDL-TG (23-25), a process that is 

ordinarily suppressed by integrated hepatic insulin action (29, 30).  

While peripheral factors clearly contribute to this disorder (23, 24), we hypothesized that 

regulation of lipid homeostasis is normally subject to additional CNS regulatory forces. CNS 

NPY expressing neurons, concentrated in the mediobasal hypothalamus as well as numerous 

other brain regions, are an important regulator of feeding and energy homeostasis, and 

increasingly recognized as having a role in lipid homeostasis (211, 222). Elevated hypothalamic 

NPY tone with a concomitant reduction of POMC tone is associated with obesity and diabetes in 

rodent models (139, 140) and humans (98, 143, 144), likely due to defects in inhibitory feedback 

signals to the CNS, i.e. insulin and leptin resistance (74, 75). We (211, 222) and others (191, 192) 

clearly show that CNS NPY signaling is also an important regulator of lipoprotein metabolism. 

We previously demonstrated that ICV administration of NPY directly into the third ventricle of 

lean, fasted, wild-type rats increases hepatic VLDL-TG secretion independently of increased food 

intake and visceral adiposity (211, 222). Peripherally administered NPY had no such effect and 

taken together, these findings suggest that NPY-regulated neural circuits may be involved in the 

regulation of TG metabolism in the liver (211, 222). Thus, the overarching hypothesis is that 

elevated CNS NPY action contributes to dyslipidemia by activating central circuits that modulate 

liver lipid metabolism.  

This body of work is focused on identifying the mechanisms by which increased CNS 

NPY modulates hepatic lipoprotein metabolism, which involves the investigation of the 

molecular determinants in the hypothalamus (Chapter III) and hepatic-specific mechanisms 
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(Chapter IV). Numerous pharmacologic and genetic studies have investigated the role of CNS 

NPY receptor subtype(s), Y1, Y2, Y4, and Y5 in mediating the central NPY effect on feeding 

behavior and energy homeostasis (reviewed in (93, 386)). Yet, the receptor subtype(s) involved in 

the central NPY regulation of lipoprotein metabolism are not well understood. Nor is the relative 

effect of a given receptor on feeding versus lipoprotein metabolism. We designed the experiments 

in Chapter III to determine whether the effects of CNS NPY receptor subtype(s), Y1, Y2, Y4, and 

Y5 on feeding behavior versus VLDL-TG secretion overlap or are dissociable in lean rats. 

Ultimately, this work might provide insight into structure-function relationships within NPY-

regulated neural circuits that not only control energy balance, but also lipoprotein metabolism. 

The hepatic-specific molecular mechanisms by which increased CNS NPY signaling 

rapidly regulates hepatic lipoprotein metabolism are not well understood. Nor is the lipid source 

that generates the TG that is loaded onto the nascent VLDL particle in response to increased CNS 

NPY action currently known. In Chapter IV, we sought to identify the novel regulatory 

mechanisms in the liver engaged by NPY. Altogether, this work has overarching implications in 

further understanding how obesity-related CNS dysfunction contributes to the pathophysiology of 

the metabolic syndrome.  

 

The role of CNS NPY receptor subtype(s) on feeding behavior versus lipoprotein 

metabolism 

The studies in Chapter III were designed to determine if the effects of CNS NPY on 

feeding and/or weight gain are dissociable from the effects on hepatic VLDL-TG secretion. We 

employed two approaches: first, asking whether NPY retains the effect on hepatic VLDL-TG 

secretion chronically in the absence of increased food intake and weight gain; and second, 

whether different NPY receptor subtype(s), Y1, Y2, Y4, and Y5 mediate effects on feeding 

versus hepatic VLDL-TG secretion. First of all, results from these studies demonstrate that 

chronic ICV NPY injections in rats pair-fed to vehicle-treated controls develop 
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hypertriglyceridemia in the absence of increased food intake and body fat accumulation. Next, we 

found that an acute ICV injection of selective Y1, Y2, Y4, and Y5 receptor agonists all induced 

hyperphagia in lean ad-libitum fed rats with the Y2 receptor agonist having the most pronounced 

effect. Lastly, we found at equipotent doses for food intake, NPY Y1 receptor agonist robustly 

stimulated hepatic VLDL-TG secretion, while a Y2 receptor agonist had a modest effect on 

VLDL-TGs, and no effect was observed for Y4 and Y5 receptor agonists in lean fasted rats. As 

summarized in Table 6.1, our results collectively suggest that while Y1 and Y2 receptor agonists 

both regulate plasma TG levels and food intake, an NPY signal mediated through a Y1 receptor 

more potently increases hepatic TG production, while one mediated through the Y2 receptor has a 

greater effect on food intake. Altogether, these findings raise the possibility that NPY regulates 

feeding and lipoprotein metabolism partially via separate NPY receptor systems and/or 

mechanisms. Ultimately, these findings may lend plausibility that the brain is a potential 

therapeutic target to treat obesity dyslipidemia.  

 

Table 6.1. Summary of the effects of NPY receptor subtype agonists on feeding behavior versus 
effects on hepatic VLDL-TG secretion in lean rats 
 

 

 

However, there a number of caveats to our experimental design in Chapter III. One major 

caveat is whether a single ICV injection of NPY is producing a physiologic effect or if it is 

merely producing a non-specific pharmacologic effect. Moreover, we currently do not know the 
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local concentrations of NPY in the relevant brain regions. A single injection of ICV NPY could 

conceivably result in elevated concentrations and, therefore, produce non-specific or off-target 

signaling events in the CNS. Another caveat is the location of administration whereby ICV NPY 

injection could disperse to other non-hypothalamic regions. To address these caveats, we 

identified an ICV dosage of NPY that produced a physiologic response. Indeed, we show that 

ICV NPY treatment (1 nmol) produced a similar 2-hour feeding response in an ad-libitum fed 

lean rat as observed in the 12-hour fasted rat (characterized by high endogenous NPY tone). 

Furthermore, we matched the NPY receptor subtype agonists (Y1, Y2, Y4, and Y5) for potency 

on feeding behavior (similar to a 12-hour fast), with the exception of the Y2 receptor agonist. 

Thus, we generated approximately equipotent doses (1-2 nmol) for our food intake and lipid 

studies.    

An additional caveat of our experimental design is that we utilized only a single dosage 

of each test compound. It is conceivable that, at significantly higher or lower doses, opposite 

and/or differential effects on feeding relative to VLDL-TG secretion may have been observed.  

Indeed a “U-shaped” curve, as well as exquisite dose-dependency of the effects of several 

neuropeptides has been noted (319, 320). For example, we previously reported that the NPY Y5 

receptor agonist, BWX-46, increased VLDL-TG secretion in lean fasted rats (211), a finding not 

replicated in our current study using [Ala31, Aib32]-NPY (Fig. 3.3D and E). Given that BWX-46 

in our previous study (211), was used at a higher dose (ICV 12 nmol) and has less Y5 selectively 

and greater cross reactivity with the Y1 receptor (321), it appears likely that BWX-46 activated 

both the NPY Y1 and Y5 receptor resulting in the observed increase in VLDL-TG production. 

Thus, future studies would involve running multiple doses to reveal whether dose-response 

effects of NPY Y1 receptor signaling on feeding resemble or differ from those on VLDL-TG 

secretion.  
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Structure-function relationships of the NPY-regulated neural circuitry involved in hepatic 

lipoprotein metabolism 

An important finding of our studies in Chapter III is that the activation of the Y1 receptor 

has a greater effect than the Y2 receptor on hepatic lipoprotein metabolism, which informs us of 

potential structure-function relationships of the NPY-regulated neural circuitry involved. 

Intriguingly, there is reportedly a close physical localization and apparent functional relationship 

between NPY Y1 and Y2 receptor in the ARC, LHA, DMN, and PVN whereas the VMN 

contains only Y1 receptor positive neurons (114). In the context of these findings, we hypothesize 

that the VMN is the potential hypothalamic site in which NPY may regulate lipoprotein 

metabolism via the selective activation of the Y1 receptor subtype. In support of this hypothesis, 

VMN-lesioned rats, which recapitulates a state of elevated NPY tone, have elevated plasma TGs 

(212), even as early as 10 days postoperatively, together with decreased plasma FFA and glucose 

levels (213). In addition, perfused livers from VMN-lesioned rats secrete more TGs than controls 

(213). Thus, future studies to test this hypothesis will focus on delineating the hypothalamic 

site(s) involved in the CNS NPY effect on hepatic VLDL-TG secretion by utilizing 

microinjection techniques to localize the effect. For example, it would be interesting to determine 

whether microinjection of a selective Y1 receptor agonist in the VMN versus the PVN will 

recapitulate the NPY effect on hepatic VLDL-TG secretion in lean 4-hour fasted rats 

characterized by low endogenous CNS NPY tone. Conversely, it would be interesting to 

investigate whether microinjection of a selective Y1 receptor antagonist in the VMN versus the 

PVN in an obese, hypertriglyceridemic rodent model characterized by elevated NPY tone (i.e. 

fa/fa ZF rat) would attenuate dyslipidemia.  

Given the limitations of our pharmacological approach, future studies would additionally 

involve genetic manipulation of the Y1 versus Y2 receptor subtype in the brain to determine 

whether NPY acts predominately via the Y1 receptor to modulate hepatic lipoprotein metabolism. 

Although previous studies report the effect of genetic deletion of NPY Y1, Y2, Y4, or Y5 
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receptor on an ob/ob background (a rodent model of severe hypertriglyceridemia) on energy 

homeostasis, the effect on plasma TGs is not reported except for the Y2 receptor deletion having 

no effect (167, 170, 176, 177). Therefore, future studies would involve investigating whether  

hypothalamic specific (i.e. VMN versus PVN) gene deletion of the Y1 versus Y2 receptor 

utilizing adenoviral or Cre-loxP methodology would attenuate hypertriglyceridemia in a mouse 

model characterized by elevated NPY tone and dyslipidemia (i.e. DIO or genetic obesity (ob/ob 

mouse)).  

 

The role of CNS NPY Y1 receptor and downstream GIRK channels in mediating the NPY 

effect on hepatic VLDL-TG secretion  

An important and unanswered question from our studies in Chapter III is the following: 

What are the neuronal signaling events and/or pathways downstream of the CNS NPY receptor 

subtype(s) that are involved in mediating the NPY effect on hepatic lipoprotein metabolism? 

Previous publications report that the inhibitory effect of NPY on ARC POMC neurons are 

mediated by the activation of the postsynaptic Y1 and Y2 receptor on the surface of POMC 

neurons (116, 387). NPY additionally suppresses POMC neuronal activity via the inhibition of 

the excitatory (anorexigenic) outflow between the VMN and ARC POMC neural circuitry by the 

activation of the Y1 receptor subtype and subsequent downstream GIRK channels in the VMN 

(110). Furthermore, neuronal GIRK channels have been implicated in the postsynaptic inhibition 

of VMN neurons, although the subunit composition(s) (GIRK1-4) remains unknown (388). We 

hypothesize that the restoration of POMC tone by blocking the Y1 receptor or selective inhibition 

of downstream GIRK channel activity in the VMN will attenuate NPY-induced 

hypertriglyceridemia (Figure 6.1). 
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Figure 6.1. Proposed model suggesting that CNS NPY activates Y1 receptor and subsequent 
GIRK channels in the VMN to increase hepatic VLDL-TG secretion. It is hypothesized that 
blocking the Y1 receptor with a selective Y1 receptor antagonist or inhibition of the downstream 
GIRK channels with TPN-Q in the VMN will attenuate NPY-induced hypertriglyceridemia. 
Abbreviations: central nervous system (CNS); G-protein-coupled inwardly rectifying potassium 
channels (GIRK); neuropeptide Y (NPY); tertiapin-Q (TPN-Q); ventromedial nucleus (VMN). 
 
 
 

In support of this hypothesis, preliminary data from our lab shows that selective 

inhibition of the GIRK1/4 channel with ICV injection of a high infinity inhibitor, tertiapin-Q 

(TPN-Q; 1 μg (389)) trends to attenuate NPY-induced hypertriglyceridemia in lean 4-hour fasted 

rats at 120 min post injection (Figure 6.2). Indeed, mice lacking GIRK1 and GIRK2 exhibit a lean 

phenotype whereas GIRK4 knockout mice exhibit a predisposition to late-onset obesity (388, 

390). This implicates GIRK1/2 as potential candidates for the NPY effect which warrants further 

investigation. Future studies would test whether the microinjection of a selective GIRK1/2 

channel blocker in the VMN of the obese ZF rat would attenuate hypertriglyceridemia in this 

dyslipidemic model.  
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Figure 6.2. TPN-Q attenuates CNS NPY-induced hypertriglyceridemia. Fasted lean rats 
(n=6/group) were pretreated with either ICV vehicle (Veh) or the GIRK1/4 channel blocker, 
TPN-Q (1 μg) followed by ICV NPY (1 nmol) or Veh treatment. Abbreviations: central nervous 
system (CNS); G-protein-coupled inwardly rectifying potassium channels (GIRK); neuropeptide 
Y (NPY); tertiapin-Q (TPN-Q). 
 
 
 
Liver phospholipid as the novel TG source for VLDL assembly and secretion in response to 

increased CNS NPY action 

Although the current model of dyslipidemia associated with obesity and diabetes suggest 

that substrate (FFA) delivery to the liver contributes to the rate of VLDL-TG production (23-25), 

the key observation of our studies in Chapter III is that increased CNS NPY signaling via the Y1 

receptor doubled hepatic VLDL-TG production while not altering plasma FFA and glycerol 

levels. Therefore, this data suggest that increased adipocyte lipolysis does not account for the 

NPY-induced hypertriglyceridemia. This is also corroborated by other studies (192). Despite 

these findings, to definitively proof the absence for a role of adipocyte lipolysis in NPY-induced 

hepatic VLDL-TG secretion will require tracer techniques. We, therefore, sought to determine the 

source of TG utilized for VLDL assembly and secretion in response to increased CNS NPY 

action, which must originate from sources other than that arising from extracellular FFAs. We 

postulated that liver PL might be the novel lipid source because our results show the following: 1) 

ICV NPY treatment in lean fasted rats doubled plasma TGs in the absence of significant changes 

in liver TG content; and 2) obese, ZF rats pair-fed to the lean ZF controls to maintain identical 

body composition altered the plasma TG concentrations with no effect on liver TG content. 
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However, the liver PL content of the pair-fed ZF rats tightly correlated with plasma TG levels. 

Both of these observations suggest the possibility that the additional lipid loaded onto VLDL in 

response to CNS NPY signaling via the Y1 receptor is generated from PL stores and involves 

modulating the activities of key regulatory enzymes involved in PL remodeling.   

The observed accumulation of oleic and linoleic acid in the liver in response to ICV NPY 

treatment in lean fasted rats suggests that these LCFAs were not preferentially oxidized, which is 

contrary to the normal effects of fasting (332-334). Thus, an important finding in Chapter IV is 

that that these LCFAs were preferentially incorporated into liver PL and not the TG pool. 

Furthermore, we found a corresponding elevation of oleic and linoleic acid content in plasma TGs 

in response to ICV NPY treatment in lean fasted rats at 60 and 120 min post injection, an effect 

recapitulated by the Y1 agonist treatment. Therefore, this data suggest the possibility that these 

FFAs enriched in the liver PL pool provided the TG precursor that was loaded onto the nascent 

VLDL particle and was secreted as VLDL-TG. This finding, that some of the TG which ends up 

as VLDL, is derived from a pool of intracellular PL in response to central NPY action is novel. 

We, therefore, postulate that increased CNS NPY tone may determine the rate of PL “turnover” 

or “availability” for TG synthesis and VLDL production by altering the activities of key 

regulatory enzymes involved in PL remodeling.  

We additionally hypothesized that the observed increase in the hepatic formation of oleic 

acid in response to CNS NPY is mechanistically linked to SCD-1 activity and the suppression of 

lipid oxidation (CPT-1α) in liver which in turn, may contribute to changes in VLDL-TG secretion. 

In support of this hypothesis, we demonstrated in Chapters III and IV that the elevation in hepatic 

VLDL-TG secretion by increased CNS NPY signaling via the Y1 receptor is associated with a 

rapid (within 60 min) induction of hepatic SCD-1 gene expression and activity, which would 

suggest that SCD-1 activation may contribute to changes in VLDL-TG secretion. Indeed, SCD-1 

is a key enzyme responsible for desaturating palmitic and stearic acids to palmitoleic and oleic 

acids, respectively and is a known target of CNS leptin (316, 317), glucose (215) and 
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melanocortin action (203) in the same hypothalamic feeding circuits engaged by NPY. 

Furthermore, provision of oleic acid or modulation of SCD-1 activity changes VLDL production 

rate by increasing TG loading in the late maturation phase (215, 316). Future studies that would 

further delineate the role of liver SCD-1 and oleic acid formation in the NPY response would 

involve investigating whether ICV injection of NPY in mice lacking hepatic SCD-1 (391) may 

abolish the NPY effect on hepatic lipoprotein metabolism.  

 

CNS NPY modulates key liporegulatory enzymes involved in PL remodeling elevating 

hepatic VLDL-TG secretion 

We herein report, for the first time to our knowledge, that CNS NPY and the Y1 agonist 

robustly increased expression of key regulatory enzymes involved in liver PL remodeling, ARF-1 

(which activates PLD) and lipin-1 in lean fasted rats. We postulate that NPY modulates ARF-1 to 

increase PLD activity. In turn, PLD catalyzes the production of PA, derived from the much larger 

PL pool, instead of the intracellular TG pool, as this pathway is implicated by several studies to 

be involved in VLDL maturation (224, 233, 234). For example, the overexpression of ARF-1 or 

PLD in cultured rat hepatocytes can increase VLDL secretion whereas hepatic overexpression of 

a dominant negative ARF-1 results in a suppressive effect (234). Notably, we only show changes 

in ARF-1 expression and not activity with ICV NPY treatment which is a major limitation of our 

study. Therefore, additional studies would be required to demonstrate the involvement of ARF-1 

and PLD in the CNS NPY response and would involve the following experiments in lean fasted 

rats: 1) Determine whether selective hepatic PLD inhibition using either a pharmacologic and/or 

genetic approach would block the effect of central NPY signaling on hepatic VLDL-TG 

production; 2) Investigate whether the overexpression of a dominant negative ARF-1 would 

attenuate the effect of CNS NPY-induced hypertriglyceridemia. 

A novel and important finding in Chapter IV is that lipin-1 protein expression was 

robustly elevated in the ER membrane containing nuclear and not the cytoplasmic fraction in the 
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livers of lean fasted rats treated with ICV NPY at 60 and 120 min post injection. This data 

suggest the possibility that the oleic acid generated from increased CNS NPY signaling promoted 

lipin-1 translocation from the cytosol to the ER membrane where it performs its PAP-1 activity. 

In turn, we speculate that this resulted in the conversion of PL-derived PA into DAG which 

serves as a substrate for the synthesis of TG and PL that is then assembled onto the nascent 

VLDL particle leading to VLDL maturation and secretion (238, 253). Indeed, previous studies 

report that the overexpression of lipin-1α or -1β isoform in cultured rat hepatocytes in the 

presence of oleic acid markedly increases glycerolipid synthesis and secretion of VLDL-TG 

whereas siRNA mediated knockdown of lipin-1 decreases VLDL assembly and secretion (238). 

Because the subcellular localization of lipin-1 determines its function as either an ER-localized 

glycerolipid biosynthetic enzyme or a nuclear-localized transcriptional coactivator of fatty acid 

oxidation genes, the following studies would be required to determine whether CNS NPY 

modulation of VLDL-TG secretion is dependent on the function of liver lipin-1 in lean fasted 

rats: 1) Determine whether the adenoviral overexpression of a lipin-1 mutant with impaired PAP-

1 activity in liver abolishes the NPY effect on hepatic VLDL-TGs; 2) Test whether adenoviral 

overexpression of lipin-1 with a mutation in the transcriptional coactivator domain yet intact 

PAP-1 activity in liver results in hypertriglyceridemia in response to CNS NPY signaling. 

 

Central NPY regulation of hepatic lipin-1 to modulate lipoprotein metabolism may be 

dependent on liver GC action 

Previous studies (238, 259) report that lipin-1 is responsible for the increase in VLDL 

secretion in response to GC treatment in cultured rat hepatocytes (264-266). Coupled with this 

observation, some of the hormonal and metabolic effects of central NPY infusion in rats are 

dependent on circulating GC, corticosterone as these NPY-induced effects can be prevented by  

adrenalectomy, including hypertriglyceridemia (201). Furthermore, chronic central NPY infusion 

has been shown to activate the HPA axis in normal animals leading to the elevation in the 
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circulating GC, corticosterone (200, 201). We, therefore, hypothesize, in the context of these 

findings, that central NPY regulation of hepatic lipin-1 to modulate lipoprotein metabolism may 

be dependent on liver GC action. In support of this hypothesis, we also found that GRα protein 

levels were also increased in the nuclear/ER fraction showing a similar protein pattern as lipin-1 

in the livers of ICV NPY-treated rats. This increases the likelihood that GRα is bound to the 

Lpin1 promoter region (260) in response to elevations in circulating corticosterone levels induced 

by increased central NPY signaling. In turn, this may lead to the GC dependent induction of lipin-

1 expression and activity (259) and subsequent elevation in VLDL-TG secretion. However, in the 

previously reported in vitro studies (264-266) investigating the modulation of VLDL-TG 

secretion by GCs, these studies focused on the chronic effects of GC action in cultured rat 

hepatocytes, which poses as a caveat to our acute experimental paradigm. Therefore, the 

counterargument for our study is that the potential acute effects of GCs on modulating VLDL-TG 

secretion may be mediated via non-genomic effects. Nevertheless, future studies to investigate 

this hypothesis would involve determining whether the CNS NPY effect on hepatic lipin-1 and 

VLDL-TG secretion can be blocked by either a highly selective liver-specific GR antagonist 

and/or by adrenalectomy in lean fasted rats.  

 

The key autonomic nervous system signaling determinants involved in the neural-hepatic 

circuit that modulates hepatic VLDL-TG secretion in response to CNS NPY signaling  

Although Chapter III and IV reveal important molecular mechanisms in the CNS NPY 

response at the level of the hypothalamus and the liver that leads to increased hepatic VLDL-TG 

secretion, a key and important remaining question is the following: What are the key autonomic 

nervous system signaling determinants involved in the neural-hepatic circuit that modulates 

hepatic VLDL-TG secretion in response to CNS NPY signaling? A recent study by Bruinstroop et 

al. (192) reveals that increased hypothalamic NPY signaling during fasting increases hepatic 

VLDL-TG secretion via sympathetic inputs to the liver. Intriguingly, this study (192) also reports 
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that ICV NPY decreases CPT-1α and induces ARF-1 mRNA expression via the SNS in lean 

fasted rats and this NPY effect was completely abolished by Sx, an observation consistent with 

our findings in Chapter IV.  

Through our collaboration with Eveline Bruinstroop and Andries Kalsbeek, we sought to 

determine whether CNS NPY modulates key liporegulatory enzymes involved in PL remodeling 

via sympathetic inputs to the liver by conducting the following study in the absence of tyloxapol: 

Investigating whether CNS NPY infusion in fasted Wistar rats with selective liver Sx abolishes 

the NPY effect on key liporegulatory enzymes and thus, attenuates hepatic VLDL-TG secretion. 

So far, our preliminary data (Figure 6.3) from this study shows that ICV NPY treatment in 

hepatic sham-denervated control rats, robustly elevates SCD-1 mRNA and lipin-1 protein 

expression by ~2- to 3-fold, repectively. Remarkably, this NPY effect is completely abolished in 

the liver of Sx rats. 
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Figure 6.3. Hepatic Sx abolishes the stimulatory effect of ICV NPY on liver SCD-1 and 
lipin-1 expression compared to hepatic sham rats. To determine whether ICV NPY stimulates 
hepatic VLDL-TG secretion by modulating key liver liporegulatory enzymes via the sympathetic 
nervous system, male Wistar rats (n=7-8/group) were implanted with a third ventricle cannula 
and a jugular vein catheter. Subsequently, the animals received either a control sham-denervation 
(sham) or sympathetic denervation (Sx) of the liver. After recovery to pre-surgery body weight, 
rats were connected to a metal collar for adaptation the day before the surgery. The next morning 
at 8AM, food was removed. At 12PM, ICV NPY (Bachem; 1µg/µl; black bars) or vehicle (Veh; 
purified water; Milli-Q; white bars) was infused for 2-hours (bolus 5 µl/5 min, followed by 5 
µl/hour). At study termination, animals were euthanized, trunk blood and liver tissues were 
collected. (A) Relative gene expression in the liver is shown for stearoyl-CoA desaturase-1 (SCD-
1) RNA which was assessed by quantitative RT-PCR and normalized to the reference RNA 
ribosomal protein L13a (RPL13A). For comparative analysis, RNA ratios were normalized to the 
Veh control. (B) Protein extracts prepared from livers were immunoblotted to detect levels of 
lipin-1 and normalized to loading control, heat shock protein 70 (HSP70). Western blots were 
analyzed by densitometry (normalized to Veh control). Data are presented as mean ± SEM and 
were analyzed by one-way ANOVA with Bonferroni’s post-test analysis; *p<0.05, ** p<0.01, 
**** p<0.0001. 
 
 
 

In support of our preliminary data (Figure 6.3) and findings in Chapter IV, a previous 

study reports that NE activation of adrenergic signaling in rat liver via the α1-adrenergic receptor 

is coupled to the activation of the PKC/CREB pathway (336). In turn, CREB may induce Lpin1 

gene transcription by binding to CRE upstream of the Lpin1 promoter as reported in previous 

studies (262, 263). Therefore, this raises the possibility that pathological elevations in CNS NPY 

tone in obesity and diabetes contributes to the associated increase in both the activity of the HPA 

axis and sympathetic outflow to the liver. Ultimately, this may result in increased GC and NE 

signaling in the liver and thus, these metabolites may synergize to upregulate hepatic lipin-1 
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expression and its PAP-1 activity. This effect may impair the ability of insulin to suppress lipin-1 

leading to increased hepatic VLDL-TG secretion.  

Intriguingly, SCD-1, ARF-1, and CPT-1α all contain putative CRE sites in their 

promoters as determined by the CREB Target Gene Database by the Salk Institute 

(http://natural.salk.edu/CREB/). Therefore, it is hypothesized that CREB may induce the 

expression and activity of ARF-1 and SCD-1 while simultaneously suppressing the expression 

and activity of CPT-1α in the livers of ICV NPY-treated rats. Consistent with this hypothesis, a 

study by Vankoningsloo et al. (392) reports that treatment of 3T3-L1 adipocytes with antimycin 

A, which triggers CREB activation, resulted in the upregulation of SCD-1 and the 

downregulation of CPT-1α expression leading to TG accumulation in these cells. However, 

CREB has been also described in mouse liver to suppress lipogenesis while upregulating fatty 

acid oxidation by repressing PPARɣ and by inducing PGC-1α (393).  

Finally, the important and remaining question is what accounts for the rapid changes in 

plasma TGs in response to increased CNS NPY signaling even earlier than 60 min post ICV 

injection as shown in Figure 3.3A-C? Clearly, this effect must be mediated by a rapid 

posttranslational event and not dependent on long-term transcriptional and translational changes. 

It is possible that the SNS in the form of increased liver NE signaling may mediate the short-term 

NPY effect on plasma TGs potentially by promoting the dephosphorylation of lipin-1 as reported 

previously (252). In turn, this leads to lipin-1 translocation and association with the ER to rapidly 

modulate VLDL-TG assembly and secretion through its PAP-1 activity. In parallel, increased 

liver GC signaling may be responsible for the long-term transcriptional and translational changes 

with increased CNS NPY signaling. Liver GC action may account for the observed upregulation 

in the expression of key liporegulatory enzymes, SCD-1, lipin-1, and ARF-1 at 60 and 120 min 

post ICV NPY injection. Clearly, future studies are warranted to determine whether the effect of 

CNS NPY on hepatic VLDL-TG secretion is dependent on either increased NE and/or GC action 

in liver.            
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Conclusions 

 

An integrated model of how CNS NPY modulates hepatic lipoprotein metabolism 

An integrated model (as shown in Figure 6.4) will be described next for how CNS NPY 

modulates hepatic lipoprotein metabolism based upon the individual findings presented in this 

dissertation (Chapter III and IV) and discussed in this Chapter. 1) The pathological elevation in 

CNS NPY signaling in obesity and diabetes results in the activation of the NPY Y1 receptor 

which contributes to the associated increase in both the activity of the HPA axis and sympathetic 

outflow to the liver. Ultimately, this may result in increased GC and NE signaling in the liver. 2) 

The adrenergic neurotransmitter, NE, binds to the α1-adrenergic receptor which in turn leads to 

the activation of the PKC/CREB pathway (336). 3) In turn, CREB and GC may synergize to 

induce Lpin1 gene expression and activity via the CRE (262, 263) and GRE (260) upstream of the 

Lpin1 promoter. Because SCD-1, ARF-1, and CPT-1α all contain CRE sites in their promoter 

sequence, CREB may induce the expression and activity of ARF-1 and SCD-1 while 

simultaneously suppressing the expression and activity of CPT-1α. 4) Therefore, the 

corresponding suppression of fatty acid oxidation leads to the accumulation of oleic (C18:1w9) 

and linoleic (C18:2w6) acid which are channeled into the PL pool (and incidentally, oleic acid is 

a product of SCD-1 activity). 5) The oleic acid generated from SCD-1 promotes the translocation 

of lipin-1 to the ER where it performs its PAP-1 activity. 6) This results in the conversion of PA-

derived from the PL pool into DAG which then can be converted by DGAT-1 to TG for VLDL 

maturation. 7) In parallel, PL remodeling by ARF-1 mediated activation of PLD generates 

additional PA substrate. 8) Thus, the lipin-1-derived DAG generates the TG substrate which is 

assembled onto an apoB carrying pre-VLDL precursor leading to the maturation and secretion of 

VLDL-TG by the liver. 
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Figure 6.4. Proposed model in which CNS NPY via the Y1 receptor promotes hepatic lipin-1 
mediated PL remodeling elevating VLDL-TG secretion via the SNS. Abbreviations: ADP-
ribosylation factor (ARF-1); α1-adrenergic receptor (α1-AR); apolipoprotein B (apoB); carnitine 
palmitoyltransferase-1α (CPT-1α); cAMP-dependent regulatory elements (CRE); phosphorylated 
cAMP response element-binding protein (p-CREB); central nervous system (CNS); 
diacylglycerol (DAG); diacylglycerol acyltransferase-1 (DGAT-1); glucocorticoid (GC); 
glucocorticoid receptor (GR); glucocorticoid response element (GRE); neuropeptide Y (NPY); 
norepinephrine (NE); phosphatidic acid (PA); phospholipase D (PLD); phospholipid (PL); protein 
kinase C (PKC); stearoyl-CoA desaturase-1 (SCD-1); sympathetic nervous system (SNS); 
triglyceride (TG); very low-density lipoprotein-triglyceride (VLDL-TG). 
 

 

The studies in this dissertation raise a very intriguing and important question: Why is 

lipoprotein metabolism additionally regulated by neuronal inputs and does this effect confer an 

evolutionary advantage? Clearly, NPY tone is elevated during states of energy deficiency, such 

fasting and starvation leading to food seeking behavior and energy conservation. However, in the 

absence of a reliable food supply in which starvation ensues, the mobilization of liver lipids in the 

form of VLDL-TG by increased CNS NPY signaling may provide a reliable energy source for the 

163 
 



peripheral tissues and thus, confers a survival advantage. In the context of human evolution, the 

NPY effect may have evolved during the time when humans were living under conditions of 

chronic caloric deprivation (i.e. hunters and gatherers) to confer a selective survival advantage by 

optimizing lipid metabolism as a reliable fuel source. Intriguingly, it is also speculated that 

increased CNS NPY signaling during fasting may promote the hepatic esterification of 

intracellular pro-inflammatory long chain fatty acyl-CoAs (i.e. palmitoyl-CoA, stearoyl-CoA) 

into the neutral TG form. Subsequently, the assembly of TG onto the nascent VLDL lipoprotein 

particle then can be exported as a neutral (non-toxic) lipid form to the peripheral tissues which 

may confer a protective effect against insulin resistance. Indeed, it is well-documented that the 

accumulation of long chain fatty acyl-CoAs and/or metabolites (i.e. DAG, ceramides) has been 

implicated in the pathogenesis of central and peripheral insulin resistance triggered by the 

activation of intracellular inflammatory signals (74, 394).  

 Today, in the 21st-century, humans in the US and worldwide are adapted to the current 

“Western lifestyle” characterized by the exposure and consumption of a surplus food supply in 

the form of calorically dense foods coupled with a sedentary life. Therefore, it is postulated that 

this evolutionary advantage of NPY may become dysfunctional in the current environment. 

Indeed, obesity is associated with elevated NPY tone and a reduction in POMC tone due to the 

manifestation of CNS insulin and leptin resistance. Consequently, this results in impaired CNS 

sensing of nutrient status in obese subjects leading to the perception of energy deprivation despite 

the presence of an excess in nutrients and enlarged, energy storage depot. We, therefore, 

hypothesize, that the CNS NPY response to fasting may be required for optimal lipid metabolism 

but becomes dysfunctional in obesity and diabetes, contributing to the pathophysiology of the 

metabolic syndrome in the form of atherogenic dyslipidemia.   

In conclusion, this body of work has extended previous studies in our laboratory and others 

that implicates CNS NPY as an important regulator of hepatic lipoprotein metabolism beyond its 

effects on feeding and energy homeostasis. Most importantly, our studies demonstrate, within the 
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limits of our model, that the effects of NPY on feeding and/or weight gain are dissociable from 

the effect on hepatic VLDL-TG secretion. Therefore, the clinical implications of our studies are 

that while NPY and NPY receptors are recognized as therapeutic targets for the treatment of 

obesity, they are also an important target for treating dyslipidemia associated with obesity and 

diabetes independently of effects on feeding and increased visceral adiposity. However, it is 

clearly evident that more work is required to delineate the molecular mechanisms and/or 

pathways activated in the CNS and in the liver in response to elevated CNS NPY signaling that 

leads to the modulation of hepatic lipoprotein metabolism. Further elucidation of these 

mechanisms involved in the CNS NPY effect on hepatic VLDL-TG secretion will provide further 

insight into the pathophysiology of the metabolic syndrome potentially revealing novel and 

effective therapeutic interventions for the treatment of atherogenic dyslipidemia associated with 

obesity, diabetes, and the metabolic syndrome. 
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