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Summary

| studied three biological problems in my dissertation research. The problems involved
flow of information into the cells from outside, the regulation of information flow by the
ribosomes in protein synthesis, and the disruption of information flow due to
microsatellite repeat expansions leading to a human disease myotonic dystrophy. In the
first study, | built a conceptual basis for interpreting and understanding the cellular
responses to multiple concurrent stimuli. A gene represents the inherent information of
the cells while a stimulus represents the information outside their boundary. Since a
gene and a stimulus are both packets of information, they can be considered
analogues. Therefore, the concepts of gene interactions can be applied to the study of
modulation of cellular processes by stimuli. This assumption allowed me to define the
concepts of environmental interactions and environmental epistasis in terms of gene
interactions and genetic epistasis. | used proteomic and transcriptomic changes in
Saccharomyces cerevisiae to test the conceptual framework. In the second study, |
designed and performed experiments to test the ribosome filter hypothesis. The
ribosome filter hypothesis says that the amount of information flow from a transcript to a
protein is regulated by the compositions of the subpopulations of ribosomes in a cell.
The composition of a ribosome determines its interactions with the mRNA and
accessory factors, which in turn determine the efficiency of translation of a transcript.
Therefore, to efficiently translate the proteome required for growing in one
environmental condition would require a specific complement of ribosomes with different
compositions. The required complement of ribosomes will be different for a cell growing

in a different environmental condition. A difference in the protein composition of
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ribosomes from cells growing in two different conditions would be evidence supporting
the ribosome filter hypothesis. It would allow identification of candidate ribosomal
proteins, or their post-translation modifications that regulate information flow from
specific transcripts. | used growth of S. cerevisiae with fermentable carbon source,
glucose, and non-fermentable carbon source, glycerol, as two conditions. | used iTRAQ
labeling based quantitative proteomics as well as, in collaboration with the Joachim
Frank lab, cryo-electron microscopy to measure the changes in protein composition of
ribosomes. | used yeast genetics and polysome profiling to measure the effect of loss of
function of a candidate ribosomal protein, Rpl8a or Rpl8b, on translation. In the third
project, | studied the changes introduced in the skeletal muscle proteome of myotonic
dystrophy patients, both type 1 and 2, due to the disruption of information flow by
microsatellite repeat expansions in the non-coding regions of mRNA transcripts. | used
ITRAQ labeling based quantitative proteomics analysis to quantitate the changes in the
skeletal muscle proteome of DM patients compared to healthy volunteers. | identified
differentially present proteins and used pathway analysis to understand their role in the
pathogenesis. | have identified a number of candidate proteins that are interesting
targets for more in depth genetic and biochemical studies including a ribosomal protein
RPL13A, previously implicated in regulating information flow by translational inhibition of
transcripts containing the GAIT sequence motif. In summary, | have studied three

different ways the information content of cells and tissues are affected.
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Chapter |

Introduction

An organism alters its biochemical state in response to the changes in its environment
or the stage in its life cycle. One way it can alter its biochemical state is by regulating its
cellular proteome. Regulation of the cellular proteome is essential for continued survival
of an organism. In my research, | studied three facets of regulation of cellular proteomes
that | will describe in the subsequent chapters. This introduction has been divided into
three parts to reflect the three projects described in my thesis. In the first part, I will
present experimental evidence and model the cellular responses to multiple concurrent
changes in the environmental conditions. | will describe a conceptual framework that
helps understand the biological effects of the concurrent stimuli using changes in the
cellular proteome and transcriptome of Saccharomyces cerevisiae. In the second
project, | will present experimental evidence and discuss the role of ribosome as a
regulatory element in translational control of the cellular proteome in S. cerevisiae. In
the third project, | will dissect the misregulation of the human skeletal muscle proteome
due to the expansion of microsatellite repeat elements in the human genome that leads

to a human disease myotonic dystrophy.

Regulation of the proteome by environmental stimuli.

The interaction of an organism with its environment determines its internal
biochemical state. In turn, the organism modifies the biochemical state of its
environment by secretion of biomolecules or dissipation of chemical energy. The

process by which the organism modifies its biochemical state requires information flow



between the organism and its environment. The information packet could be
biomolecules, such as signaling molecules or nutrients, or physiochemical agents such
as pH and temperature. The organism uses the information stored in its genetic material
as well as its current biochemical state to bring about the required modifications to its
biochemical state. The biochemical state is a reservoir of information and a component
of the information repertoire of a cell. Other components of the information repertoire
include spatial distribution of biomolecules, their chemical structures, and their

conformational states.

The proteome is one of the critical components of the biochemical state. In most
of the biochemical processes, proteins, the building blocks of a proteome, act as
molecular actuators providing essential biochemical activities. The proteome is very
dynamic. New molecules are constantly being synthesized and old molecules degraded.
Not all proteins are present at the same abundance levels. The cell needs to fine tune
its synthesis and degradation machinery to maintain an optimal level of every protein in
the molecule. The optimal levels of different proteins depend upon the external

environmental conditions, or stimuli.

An important motivation for studying the modification of proteome by
environmental stimuli comes from the study of tumors and their microenvironments. The
environmental conditions inside the tumor microenvironments are different from the
physiological conditions at multiple levels (Vaupel, Kallinowski, and Okunieff 1989;
Mbeunkui and Johann Jr 2008; Trédan et al. 2007; Finger and Giaccia 2010; Song
1984, Kessenbrock, Plaks, and Werb 2010; CHUNG et al. 2005; Hazlehurst,
Landowski, and Dalton 2003; Kenny, Lee, and Bissell 2007; Whiteside 2008). Tumor

2



microenvironment has been found to promote tumor growth by activating survival
pathways. It also helps tumor cells escape the host immune response (Whiteside 2008).
The local tumor microenvironment allows cells in the tumor to crosstalk, which might
contribute to continued survival signaling through autocrine loops (Mbeunkui and
Johann Jr 2008). It can promote drug resistance by modulating the delivery of a drug or
its stability (Trédan et al. 2007). The local tumor microenvironment has also been
proposed to provide sanctuaries for subpopulations of tumor cells that facilitates
acquisition of drug resistance (Hazlehurst, Landowski, and Dalton 2003). Essentially the
tumor microenvironment expands the information repertoire of the tumors allowing the

cells in it to escape the host machinery designed to inhibit uncontrolled cell growth.

Another motivation for studying the effect of environmental stimuli comes from
the goal of ensuring food security for an ever growing world population (Hanjra and
Qureshi 2010; Rosegrant and Cline 2003; Fan et al. 2011; Godfray et al. 2010). To
achieve that we need to develop strains of plants that can grow in a wide variety of
stress conditions, such as drought, high salinity, and extreme fluctuations in
temperatures, to name a few. This would require understanding the cellular responses
to environmental stimuli (Chapin Ill, Autumn, and Pugnaire 1993; Apel and Hirt 2004;
W. J. Chen and Zhu 2004; De Angelis and Gobbetti 2004; Mizoguchi, Ichimura, and

Shinozaki 1997).

Microarray based transcriptomic studies: The advent of high throughput
technologies, for example microarrays, heralded a new era in the study of modifications
of the information repertoire of the cells in response to environmental stimuli (Schena et

al. 1995; Lockhart et al. 1996). Due to technological reasons the initial focus of these

3



studies was on the transcriptomic responses. One of the earliest systems level studies
of the transcriptome involved its modulation by environmental stimuli in human cell
culture models. In this study two stimuli were used, heat shock at 43 °C for 4 hours and
growth in the presence of phorbol esters for 4 hours (Schena et al. 1996). . Comparison
of the transcriptomic response to the two stimuli revealed distinct changes specific to
them. The technique was later applied to study transcriptomic changes in cancer. A
pioneering study identified characteristic changes in the transcriptome that

accompanied tumor suppression (J. DeRisi et al. 1996).

Budding yeast Saccharomyces cerevisiae was at the forefront of these studies.
In one of the earliest studies transcriptomic studies, S. cerevisiae was used to study
metabolic reprogramming in response to the changes in the nutrient availability (J. L.
DeRisi, lyer, and Brown 1997). A study with large numbers of stimuli revealed that there
are common genes and pathways that are activated or repressed in response to all
environmental stimuli. The authors called this group of genes the environmental stress
response genes (Gasch et al. 2000). Although these studies provided important insights
into modifications of the information repertoire of the transcriptome in responses to
environmental stimuli, the translation of the insights to the proteome was not straight
forward. Development of new technologies was needed for systems level study of the

information repertoire of proteomes.

Mass spectrometry based proteomics: Mass spectrometry is a very powerful
technique for studying chemical composition and structure of molecules. Its utilization
was initially limited because of the lack of a technique to ionize and get the

biomolecules in gaseous state. Development of matrix assisted laser desorption
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ionization (MALDI) and electrospray ionization (ESI) provided a handle to study
biomolecules. Application of MALDI was first to be reported and was used to analyze
molecules with up to 100 000 m/z (Tanaka et al. 1988). Soon after, the application of
ESI to study oligonucleotides and proteins was reported (Fenn et al. 1989). Earlier the
application of tandem mass spectrometry in sequencing proteins and peptides had been
demonstrated (Hunt et al. 1986). In this study, enzymatic digestion of proteins to yield
smaller peptides followed by liquid chromatography fractionation was used. The
peptides were ionized using liquid secondary ion mass spectrometry (Hunt et al. 1986).
These developments catalyzed rapid explosion in the application of mass spectrometry
for studying large biomolecules, including proteins (Aebersold and Mann 2003; Yates,

Ruse, and Nakorchevsky 2009).

The mass spectrometers used in proteomics studies have also undergone rapid
improvements over the last two decades. It has included improvements in resolution
and mass accuracy as well as improved ion optics and data acquisition speeds (Yates,
Ruse, and Nakorchevsky 2009; Walther and Mann 2010; Smith 2002; X. Han, Aslanian,
and Yates Ill 2008; Michalski et al. 2011; Senko et al. 2013). These improvements are
allowing study of proteomes at ever greater depth (Kim et al. 2014; M. Wilhelm et al.

2014).

A feature of ESI is that ions are generated from a solution. This allows inline
coupling of an ESI source to liquid chromatography systems for separation of peptides.
Liquid chromatography tandem mass spectrometry is the most widely used technology

in proteomics for both protein identification and quantitation (Rudnick et al. 2010).



Quantitative proteomics approaches: In the last decade the focus of mass
spectrometry based proteomics has shifted towards quantitative studies from the
generation of catalogs of protein identifications (Altelaar, Munoz, and Heck 2013; Ong
and Mann 2005; Bantscheff et al. 2007; Bantscheff et al. 2012; Larance and Lamond
2015). A number of technigues have been developed for quantitation using mass
spectrometry. The techniques can be broadly divided into two categories — (1) label free
and (2) labeling based. Alternatively, the techniques can be divided into categories
based upon whether the quantitation is done using precursor ions or the fragment ions.
In this case too there can be two categories — (1) precursor ion based and (2) fragment

ion based.

Label free approaches have been the most popular quantitative approach due to
the ease of sample preparation and a reduced cost of running experiments. Examples
of label free approach include quantitation using area under the curve of precursor ion
intensities, as a peptide is detected during elution from the liquid chromatography
column, and spectral counting (Neilson et al. 2011). Label free approaches have lower
precision and accuracy that led to the development of a number of isotopic labeling
approaches. The isotope labels can be added metabolically as in the stable isotope
labeling by amino acids in cell culture (SILAC) and Neutron encoding stable isotope
labeling by amino acids in cell culture (NeuCode SILAC) (Hebert et al. 2013; Ong et al.
2002). It can also be added chemically as in isobaric tag for relative and absolute
guantitation (iTRAQ), isotope coded affinity tag (ICAT), tandem mass tag (TMT) and
mass-coded abundance tagging (MCAT) (Ross et al. 2004; Gygi et al. 1999; Thompson

et al. 2003; Cagney and Emili 2002).



TMT and iTRAQ are isobaric tagging approaches in which quantitation is done
using the fragment ion intensities (Thompson et al. 2003; Ross et al. 2004). The tags
are designed in such a way that the mass added to the tagged peptides is the same
across the set of samples being analyzed together. This allows co-isolation and
fragmentation of peptides in the mass spectrometers. Peptide fragmentation releases
reporter ions whose masses differ from each other. The reporter ion intensity is
proportional to the amount of peptide in the samples. Since peptides from all the
samples in a set are sampled at the same point in time, comparing the ratios of the
reporter ions provides a measure of relative quantitation of the peptides. If a common
control sample is used in one of the reporter ion channels, any number of samples can
be quantitated relative to a common control (Hoek et al. 2015). Similar experiment
designs have been developed with precursor level quantitation approaches for large

scale quantitative proteomics approaches(Geiger et al. 2010).

The advances in mass spectrometry based quantitative proteomics have been
critical for the systems level studies of the information repertoire of the proteomes.
Information in the proteome is encoded through abundances of proteins, their post-
translational modifications, and spatial localization of the molecules. Mass spectrometry
based proteomics is revolutionizing the research in every aspect of biology (Yates,
Ruse, and Nakorchevsky 2009; Stastna and Van Eyk 2012; Clancy and Hovig 2014;
Choudhary and Mann 2010; Drissi, Dubois, and Boisvert 2013; Gajadhar and White
2014; Y. Zhang et al. 2013; Hennrich and Gavin 2015; Altelaar, Munoz, and Heck 2013;

Breker and Schuldiner 2014).



Studying protein abundance changes: The cellular abundance of proteins is one
feature of the information repertoire encoded through the proteome. The abundances of
specific proteins are changed in response to an environmental stimulus (Feder and
Hofmann 1999; Lindquist 1986; Blokhina, Virolainen, and Fagerstedt 2003; Roth,
Roepenack-Lahaye, and Clemens 2006). Some of the changes lead to synthesis of
proteins that are needed for responding to the stimulus, for example heat-shock
proteins upon heat-shock (Feder and Hofmann 1999). Others might lead to a
downregulation, for example that of pro-inflammatory receptors to avoid tissue damage
(Ohta and Sitkovsky 2001). The goal of systems biology is to understand the
contributions of all the components of an organism towards its continued survival and
adaptation to new environments (Kitano 2002; Kitano 2000; Ideker, Galitski, and Hood
2001). Understanding the global protein level changes is a minimum requirement
towards fulfilling the goals of systems biology. Mass spectrometry based proteomics

has been one of the most widely used approaches in this area.

In one of the earliest applications of quantitative proteomics, ICAT was used to
study the differences between the steady state proteomes of S. cerevisiae cells growing
with either ethanol or galactose as carbon source. The differences in expression of two
isoforms of alcohol dehydrogenase, ADH1 and ADH2 that are 93% identical at the
amino acid sequence level, were determined. These differences were similar to the
predicted differences based upon their distinct functions in carbon metabolism (Gygi et
al. 1999). Soon after another stable isotope labeling approach for quantitation, SILAC,
was used to study muscle differentiation in cell culture using C2C12 myoblasts (Ong et

al. 2002). Quantitative proteomics is also a popular method to study proteomic changes



in cancer (Ong and Mann 2005; Xu et al. 2008; Everley et al. 2004; Hanash, Pitteri, and
Faca 2008; Wulfkuhle, Liotta, and Petricoin 2003). Multiple reaction monitoring
approach has been used to determine the abundances of proteins present in 41 copies

per cell to more than a million copies per cell (Picotti et al. 2009).

In another study, the proteomic changes with either carbon or nitrogen limitation
in S. cerevisiae was assayed using N15 labeling in chemostat cultures. This study
identified 102 differentially expressed proteins; many of those changes were expected
based upon previous studies. The proteins that were upregulated in carbon limitation
showed good correlation with the transcriptomic changes. However, the proteins that
were upregulated in nitrogen limitation did not correlate well with the transcriptomic
changes. This suggested a transcriptional regulation of carbon source limitation
response while the predominant mode of regulation in response to nitrogen limitation

was either translational or degradation controlled (Kolkman et al. 2006).

A perturbation study, where one of the environmental parameter is perturbed
keeping everything else constant, is a powerful technique. It allows us to find the
changes in the biochemical state in response to the perturbation. However, cells in their
native environment are rarely subject to single discrete changes in their environment.
Therefore the application of this approach in modeling complex cellular responses in
native conditions is limited. One way to expand the power of this approach would be to
perform combinatorial perturbation analysis where multiple environmental stimuli are

applied concurrently.



Cellular responses to combinatorial stimuli: Combinatorial effects of compounds
have been an active area of research in toxicology, drug combination therapy, and
environmental science (Greco, Bravo, and Parsons 1995; Altenburger et al. 2013;
Altenburger, Nendza, and Schuidrmann 2003; Altenburger et al. 2012; Altenburger,
Walter, and Grote 2004; Faust et al. 2001; Ankomah and Levin 2012; GARDNER 2002;
Berenbaum 1989; Deneer 2000; Schoen 1996; Hermens, Leeuwangh, and Musch
1985). Most of these studies focused on one aspect of the cellular responses such as
mixture toxicity or therapeutic effect of a combination of drugs. However, there have
been only a limited number of systems level studies of cellular responses to multiple

concurrent stimuli. Most of these have been transcriptomic studies.

In a pioneering study of transcriptomic changes in response to combinatorial
changes in the environmental stimuli, regression analysis was used to interpret the
observed changes. In this study 10 environmental parameters were varied. The total
number of unique conditions was 55 and the total number of experiments was 170.
Combinatorial stimulus was found to have profound effect on the expression pattern
(Knijnenburg et al. 2009). The same analysis approach was also used in a study of
transcriptomic responses of Arabidopsis thaliana liquid cultures to concurrent stimuli. In
this study, the stimuli were high salinity and carbon dioxide concentration (Kanani,
Dutta, and Klapa 2010). Although the regression models were able to explain significant
amount of the statistical variances in the two studies, a biological interpretation was not

straightforward.

In a more recent study, the combinatorial effects of high NaCl and pheromone

signaling was assayed in S. cerevisiae (Vaga et al. 2014). Phosphorylation events were
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used as measures of activation/repression of specific signaling pathways. A set of
ordinary differential equations were used to build logic models describing the integration
of signaling through the high osmolarity and mating signaling pathways. This approach
identified complex interconnections between the two pathways. However, similar to the
regression approach above, a biological interpretation of the data is not straightforward.
This motivated me to explore approaches that can be used to precisely and accurately
model the combinatorial responses and at the same time have a simpler biological

interpretation.

| searched upon the conceptual framework of gene interactions that can be easily
applied to the study of environmental stimuli (P. C. Phillips 1998). As an abstraction a
gene is a packet of information, so is an environmental stimulus. A gene has an effect
on the information repertoire of the cell when the information stored in it is used to build
functional molecules such as regulatory RNAs or proteins. In cells the products of
multiple genes carry the information from their respective genetic loci. The information
from genes travels through the information networks inside cells. The interaction
between the gene products, or sometimes a lack of interaction due to a loss of function,
integrate the information and modify the information repertoire of the cells. The
information for modification comes from within the cells, its genetic material. In the case
of an environmental stimulus, the information from outside the cell travels through the
cellular information network to modify its information repertoire. If multiple stimuli are
present, the information from each of them would be integrated inside the cellular

information network.
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As an abstraction, this integration of information could be similar to the
integration of information from genes through gene interactions. Therefore, the
conceptual framework of gene interactions can be used to study the combinatorial effect
of concurrent environmental stimuli. | called it the concepts of environmental
interactions and environmental epistasis. | defined an environmental interaction as the
interaction between different environmental stimuli that affect the same observable
characteristic or trait. In this schema, environmental epistasis is a special case of
environmental interaction in which the effects of the individual stimuli are not
independent of each other. We have tested the applicability of this approach in studying
the effects of multiple concurrent environmental stimuli in S. cerevisiae (Samir et al.

2015).

Regulation of the proteome by the ribosomes

The information stored in the genome is the template used to build the
information repertoire stored in a proteome. It involves encoding of the information into
an intermediate class of molecules called messenger RNAs (mMRNAs) followed by
translation of the information from mRNAs into amino acid sequences of proteins
through a process called translation. Translation consists of 4 steps: (1) initiation, (2)
elongation, (3) termination, and (4) recycling. A host of proteins and RNAs regulate
these steps (Kapp and Lorsch 2004). The catalytic engine of this process is the
ribosome. The eukaryotic ribosome consists of a 60S large ribosomal subunit and a 40S
small ribosomal subunit. The large subunit has three rRNA molecules (28S, 5.8S and
5S) and 46 ribosomal proteins. The small subunit is made up of a single rRNA (18S)

and 33 ribosomal proteins (Jonathan R Warner 1999; Nakao, Yoshihama, and
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Kenmochi 2004). The catalytically competent fully functional 80S ribosome is a

heterodimeric complex of the small and large subunits.

Ribosomes are assembled inside the nucleus through a process called ribosome
biogenesis. Ribosome biogenesis is one of the most energy intensive processes. In
eukaryotes requires concerted action of hundreds factors, including proteins and small
nucleolar RNAs (snoRNAS) (J. Woolford 2015; J. L. Woolford and Baserga 2013; de la
Cruz, Karbstein, and Woolford Jr. 2015; Turowski and Tollervey 2014; Planta 1997,
Boisvert et al. 2007; J. R. Warner 1989). RNA Pol | transcribes the pre-rRNA whose
endolytic processing generates 28S, 18S, and 5.8S rRNAs. RNA Pol lll transcribes 5S
rRNA (Kressler, Linder, and Cruz 1999; Venema and Tollervey 1999; Granneman and
Baserga 2004; Nazar 2004). During ribosome biogenesis, pre-RNA is processed and
the ribosomal proteins sequentially added (Gamalinda et al. 2014). Once the ribosomal
subunits have been assembled, they are exported out of the nucleus and undergo a
final round of processing before joining the free ribosomal subunit pool primed to start
translation (Johnson, Lund, and Dahlberg 2002; Rouquette, Choesmel, and Gleizes

2005; Zemp and Kutay 2007; van Riggelen, Yetil, and Felsher 2010).

In the first step of translation, translation initiation factors help assemble a
functional ribosome on an mMRNA (Kapp and Lorsch 2004). Eukaryotic mMRNASs contain
5’ cap structure in which a guanosine nucleotide is connected through 5’-5’ bond. This
guanosine is also methylated on position 7. The cap acts as the start beacon, among its
many functions (Shatkin 1976). It helps recruit elF4 initiation factors to the mRNA. The
elF4 complex unwinds the secondary structures on the mRNA and helps recruit the 43S
preinitiation complex (PIC) (Gingras, Raught, and Sonenberg 1999, 4). PIC consists of
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40S ribosomal subunit bound to elF2 and initiator Met-tRNA. elF2 in PIC is bound to
GTP. The 40S subunit scans the mRNA to find the initiation AUG codon. The 40S
ribosome starts scanning the mRNA to find the initiation AUG codon. Once the initiation
codon has been identified, the GTP bound to elF2 is hydrolyzed and elF2 dissociates
from the complex. This paves way for recruitment of the 60S ribosomal subunit leading
to the formation of a fully functional ribosome and translation elongation can begin
(Hinnebusch 2005; Kapp and Lorsch 2004; Sonenberg and Hinnebusch 2009; Gingras,

Raught, and Sonenberg 1999; Korostelev 2014).

The cap-dependent mode of translation initiation discussed above is the
predominant mode of translation initiation. In addition, a cap-independent translation
initiation mechanism can also be employed by some mRNAs (Merrick 2004). In cap
independent translation initiation, the ribosomes are recruited directly to an internal
ribosome entry site (Merrick 2004; Pelletier and Sonenberg 1988; Jang et al. 1988;
Chappell, Edelman, and Mauro 2000). Some viruses exploit this mechanism of
translation by shutting down the cap-dependent translation that shuts down most of the
host protein synthesis. This allows viral protein synthesis to occur using a cap-
independent mechanism (Sk et al. 1989; Firth and Brierley 2012; Boehringer et al. 2005;

Fernadndez et al. 2014).

Once the 80S ribosome is assembled on an mMRNA, translation elongation can
begin (Kapp and Lorsch 2004). This phase of translation requires two elongation
factors, eEF1 and eEF2, and tRNAs charged with cognate amino acids. tRNAs are the
keys for decoding the information from mRNA. They contain three letter anticodon key

that is complementary to the three letter codons on mRNA. The elongation factor eEF1
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facilitates the entry of charged tRNA to the free ribosome acceptor site as well GTP
hydrolysis upon correct anticodon-codon base pairing. Upon correct anticodon-codon
base pairing, a new peptide bond is formed to extend the length of the nascent
polypeptide through peptidyl transferase reaction. The peptidyl transferase catalytic
activity resides in the 28S rRNA component of the 60S large ribosomal subunit, making
ribosome an example of ribozyme. Another molecule of GTP is consumed by eEF2
elongation factor for translocating the ribosome three nucleotides once the peptidyl
transfer reaction has occurred. This ensures that information from the mRNA is
decoded sequentially three nucleotides at a time. GTP hydrolysis helps in reducing the
errors during translation elongation as well as provides directionality (Kapp and Lorsch
2004; G. R. Andersen, Nissen, and Nyborg 2003; Nilsson and Nissen 2005; Nyborg and

Liljas 1998; Frank 2012).

Translation elongation continues till the ribosome encounters one of the stop
codons - UAA, UAG, and UGA. The stop codons mark the end of the message in the
MRNASs. There are no tRNAs for any of the stop codons. Instead, the translation
termination factor eRF1 is recruited to the free acceptor site on the ribosome followed
by the binding of another termination factor eRF3 (Kapp and Lorsch 2004; Dever and
Green 2012). The termination factor eRF1 can recognize all of the three stop codons.
Once it has ensured that the ribosome has reached a stop codon, it catalyzes the
peptide release from the ribosomes. Although peptide release can be catalyzed by
eRF1 alone, presence of eRF3 greatly increases the reaction rate. The cooperative
actions of eRF1 and eRF3 ensure proper and speedy translation termination. After

peptide has been released the complex of tRNA, termination factors, ribosome, and the
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MRNA is known as post-termination complex (Dever and Green 2012; Georges et al.

2014; Inge-Vechtomov, Zhouravleva, and Philippe 2003, -).

The final step in translation is recycling of the ribosomes from the post-
termination complex to start another round of translation. This is also the least
understood phase in translation, especially in eukaryotes. There are two fates possible
for the ribosome bound to the mRNA after termination — (1) it can reinitiate translation at
a downstream start codon, or (2) it can be dissociated from the mRNA making it
available for another round of translation. Both possibilities have been found to be
utilized in cells, albeit the latter being more frequent than the former (NUrenberg and
Tampé 2013; D. J. Young et al. 2015; S. K. Young et al. 2015; Dever and Green 2012;

Jackson, Hellen, and Pestova 2012; Franckenberg, Becker, and Beckmann 2012).

In the traditional model of translational control, all powers to regulate are invested
in the protein and RNA accessory factors, and the ribosomes are considered passive
players. Most studies of translational control have focused on such regulatory
molecules. This effort has led to the identification of the core components of
translational control and a better understanding of this process (Kapp and Lorsch 2004;
Dever and Green 2012; Sonenberg and Hinnebusch 2009; Hinnebusch 2015). In recent
years, the idea that the ribosomes are regulatory elements in gene expression
regulation has been gaining ground. The role of ribosome in the regulation of gene
expression is a very active area of research (Ruggero and Pandolfi 2003; Kondrashov
et al. 2011; Xue et al. 2015; Jonathan R. Warner and Mcintosh 2009; Jonathan R.

Warner 2015; McIntosh and Warner 2007; Komili et al. 2007). This idea was nucleated
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due to the observation of heterogeneity in the ribosomal sub-populations in cellular

slime molds (S. Ramagopal 1992).

Ribosome heterogeneity: Heterogeneity in ribosome composition has been known
since the early work with E. coli ribosomes (Kurland et al. 1969). Soon after studies in
rat revealed the differences between the protein composition of ribosomes from muscle
and liver (Sherton and Wool 1974). Studies in cellular slime mold Dictyostelium
discoideum revealed three modes of heterogeneity (S. Ramagopal 1992). In the first
mode, some ribosomal proteins were found to be exclusively present in the vegetative
or differentiated state. Two of the ribosomal proteins were present only in the vegetative
state, while three only in the differentiated spores (S. Ramagopal 1992; Subbanaidu
Ramagopal and Ennis 1981). In the second mode, some ribosomal proteins were
present in varying stoichiometries in different developmental stages (Subbanaidu
Ramagopal and Ennis 1981; S. Ramagopal 1992). These modes of generating
ribosomal heterogeneity were found to be conserved across several cellular slime mold
species (Subbanaidu Ramagopal and Ennis 1984). A third mode of heterogeneity
generation involved differential post-translational modifications of ribosomal proteins. In
Dictyostelium discoideum, ribosomal proteins were found to be methylated or
phosphorylated. Many of the modifications were specific to vegetative cells or starvation
induced aggregation competent cells (S. Ramagopal 1992; S. Ramagopal 1991). The
fact the heterogeneity was present in growth stage specific manner suggested a

functional significance of heterogeneity.

In a more recent study in A. thaliana, liquid chromatography tandem mass
spectrometry analysis of protein composition of ribosomes revealed changes in
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composition in response to sucrose feeding. Some of the changes in composition
involved paralogous ribosomal proteins. Paralogous ribosomal proteins may have
arisen through gene or whole genome duplications and are nearly identical to each
other. In A. thaliana, 231 ribosomal protein genes code for ribosomal proteins. Each
ribosome contains 79 proteins (Hummel et al. 2012). The presence of paralogs provides
a mechanism of generating ribosomal heterogeneity through a specific use of paralogs

in A. thaliana ribosomes (Nakao, Yoshihama, and Kenmochi 2004).

In S. cerevisiae too there are 59 ribosomal protein paralog pairs (Nakao,
Yoshihama, and Kenmochi 2004). Therefore, the presence of paralog can allow
heterogeneity in the ribosomal populations also in S. cerevisiae. In a study involving
oxidative stress, RPL22A and RPL16B were found to be upregulated in response to
hydrogen peroxide treatment (Chan et al. 2012). A mutational analysis revealed that
loss of rpl22a but not rpl22b leads to sensitivity to the oxidative stress. The other
paralog pair, RPL16A and RPL16B, did not show sensitivity to oxidative stress
suggesting a functional complementation between them (Chan et al. 2012). The lack of
functional complementation between RPL22A and RPL22B suggest a functional role for

paralog mediated ribosomal heterogeneity in translational control.

The ribosome filter hypothesis: The ribosome filter hypothesis was proposed in light
of the observations that some mRNAs contained regions that were similar or
complementary to 18S or 28S rRNAs (Vincent P Mauro and Gerald M Edelman 2007). It
was expanded to include ribosomal protein mediated interactions with the mRNAs. The
underlying idea is that the ribosomes with different compositions translate specific
MRNAs with differing efficiency (Figure 1) (Mauro and Edelman 2002; Vincent P Mauro
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and Gerald M Edelman 2007). There are four basic tenets of the hypothesis that | am
reproducing here — “(1) the ribosome is a regulatory structure that embodies
mechanisms for preferentially translating different subsets of the message population,
(2) ribosomes may display a continuum of regulatory effects, (3) competition for
binding sites in ribosomal subunits may affect the rate of translation of different
MRNAs, and (4) the filter may also be modulated as a result of altering or
masking particular binding sites on ribosomes” (Mauro and Edelman 2002; Vincent P

Mauro and Gerald M Edelman 2007).
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Figure 1 - The ribosome filter hypothesis.

A) A cartoon showing that two ribosomes in differing composition translate a transcript with different
efficiencies. The dark ribosome is more efficient than the light ribosome. B) A cartoon showing the
presence of heterogeneous subpopulations of ribosomes differing in their composition. To efficiently

translate two different proteomes, two different subpopulations of ribosomes are needed.
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The depot hypothesis: The depot hypothesis was proposed to explain the
extra-ribosomal functions of ribosomal proteins (Ray, Arif, and Fox 2007). In one of the
earliest examples of extra-ribosomal function of a ribosomal protein, RPL13A was found
to inhibit translation of ceruloplasmin (Cp) mRNA (Mazumder et al. 2003). RPL13Ais a
component of interferon-Gamma Activated Inhibitor of Translation (GAIT) complex that
binds to GAIT element in the 3'UTR of Cp mRNA (Mazumder et al. 2003; R.
Mukhopadhyay et al. 2009). Under normal conditions, RPL13A remains associated with
the 60S subunit of the ribosomes. It is phosphorylated in response to interferon-Gamma
singling. Phosphorylation is the trigger for its dissociation from the ribosome. The free
phosphorylated protein binds to the GAIT element to inhibit translation of target mMRNAs
(Mazumder et al. 2003). This observation led to the authors “to propose a ‘depot
hypothesis’ in which macromolecular assemblies, while maintaining their ordinary
activity, acquire the non-canonical capability to release component proteins that perform

new functions outside the complex” (Ray, Arif, and Fox 2007).

A number of examples of ribosomal proteins have been described in addition to
the one described above (Jonathan R. Warner and Mcintosh 2009). In mammals, S27-
like and S27 have been found to inhibit MDM2 mediated ubiquitination of p53 (Xiong et
al. 2011). In A. thaliana, phosphorylation of RPL10 causes it to translocate to nucleus
where it is hypothesized to be involved in host defense against virus infection (Carvalho
et al. 2008). These examples suggest a frequent utilization of ribosomal proteins in
functions outside their primary function in translation as predicted by the depot
hypothesis. The ribosome filter and depot hypothesis have a human disease element

too.
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The ribosomopathies: Ribosomopathies have been defined as “a collection of
disorders in which genetic abnormalities cause impaired ribosome biogenesis and
function, resulting in specific clinical phenotypes” (Narla and Ebert 2010). The earliest
example of a ribosomopathy is a human disease Diamond Blackfan Anemia (DBA)
(Jonathan R. Warner 2015; Narla and Ebert 2010). Mutations in RPS19 locus were
found to be associated with DBA. The types of mutation included nonsense, frameshift,
splice site, and missense mutations (Draptchinskaia et al. 1999). Since then mutations
in 11 ribosomal protein genes have been found to be associated with DBA (Aspesi et al.

2014).

Since discovery of mutations in ribosomal proteins in DBA, a number of other
ribosomopathies have identified. One example is X-linked Intellectual Disability caused
by the mutation in RPL10. The mutant protein is still functional and is able to
complement the conditional mutant of RPL10. The missense mutation also led to an
increase in actively translating ribosomes (Zanni et al. 2015). Mutation in RPS20 was
found to cause predisposition to Hereditary Nonpolyposis Colorectal Carcinoma
(Nieminen et al. 2014). The list of ribosomopathies is growing with new mutations and
diseases continuously being found to be associated with each other (Narla and Ebert
2010; Jonathan R. Warner 2015; Yelick and Trainor 2015; Danilova and Gazda 2015;
Amanatiadou et al. 2015; Brooks et al. 2014; Ruggero and Pandolfi 2003; Yang et al.
2015; Martin et al. 2014). These studies are providing added motivation for studying the

regulatory functions of ribosomes.

In this study, | used changes in protein composition of S. cerevisiae ribosomes in
response to a change in carbon source to identify candidate ribosomal proteins that
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might be playing a role in ribosome filter mediated translational control. | used iITRAQ
based quantitative proteomics and cryo-EM, in collaboration with the Joachim Frank lab,
to study the changes in composition of ribosomes both at the population as well as
single particle levels. | identified 11 such proteins that includes a paralog pair, Rpl8a
and Rpl8b, using quantitative proteomics. | am using yeast genetics, biochemistry, and
next-generation sequencing in follow up experiments to dissect the exact mechanism of

ribosome filter mediated translational control.

The proteome in myotonic dystrophy

Myotonic dystrophy (dystrophia myotonica, DM) is an autosomal dominant
progressive multisystemic disorder caused by expansion of microsatellite repeats
(Thornton 2014). It is the most common form of adult muscular dystrophy (Udd and
Krahe 2012). DM was first described by Steinert, Batten and Gibb in 1909 (Schoser and
Timchenko 2010). It was later recognized as a multisystemic disorder with the
observation of a high incidence of cataracts in DM patients (Schoser and Timchenko
2010). DM is characterized by progressive muscle weakness, myotonia, cataracts, and
cardiac conduction defects (Udd and Krahe 2012; Thornton 2014; Machuca-Tzili, Brook,

and Hilton-Jones 2005; Turner and Hilton-Jones 2014).

The causative agent for DM was identified as an expansion of CTG repeat
element in the 3’ untranslated region of dystrophia myotonica-protein kinase (Brook et
al. 1992; Mahadevan et al. 1992; Y. H. Fu et al. 1992). Shortly afterwards, many cases
of DM were described that lacked the CTG expansion (Thornton, Griggs, and Moxley
1994; Ricker K et al. 1995; Ricker et al. 1994; Udd et al. 1997; Meola et al. 1996).

These patients typically had a milder form of the disease. Since the proximal muscles
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are involved in this form of the disease, instead of the distal muscles in the previously
described form, it was named proximal myotonic myopathy. The two forms of the
disease were later renamed as myotonic dystrophy type 1 (DM1) and myotonic
dystrophy type 2 (DM2). DM1 patients had the CTG repeat expansions. DM2 was
subsequently found to be caused by a CCTG tetranucleotide repeat expansion in the

first intron of Znf9 gene.

Myotonic dystrophy type 1 (DM1): DM1 is the classic form of the disease that was
first described more than a hundred years ago. DM1 can present in four different forms:
adult onset, congenital, childhood onset, and late onset oligosympotomatic. The age of
onset negatively correlates with the repeat size. The adult form is the most typical form
while the congenital form is the most severe form of DM1 (Udd and Krahe 2012). DM1
is more prevalent in European populations, where it ranges from 1:1100 in Finland to
1:10700 in other countries (Thornton 2014). It was found to be a rare disease in Taiwan
and sub-Saharan Africa. In Taiwan the disease incidence was found to be 0.46:100000
(Hsiao et al. 2003). Incidences of DM1 in Africa in non-European populations were very
rare. For example, only one DM1 family was identified in Nigeria, when the population of
country was 120 million. The same study revealed that DM1 was more prevalent in
Europe, Japan, Southwest Asia and India. It was less prevalent or extremely rare in
West African, Bantu, Ethiopian, Tunisian Berbers, Southern Chinese, Thai and non-

European Australians (Ashizawa and Epstein 1991).

The molecular basis of DM1 was independently identified by three groups
(Mahadevan et al. 1992; Y. H. Fu et al. 1992; Brook et al. 1992). Interestingly, one of

the studies mistakenly identified the repeat to be a GCT repeat. They were using GCT

24



repeat synthetic oligonucleotides as probes in their experiment. An oligonucleotide with
repeated GCT sequences is virtually identical to a CTG repeat sequence, except the
ends, that confounded their interpretation (Y. H. Fu et al. 1992). Previous studies had
identified the long arm of chromosome 19 to contain the locus that was in linkage
disequilibrium with DM1 (Korneluk et al. 1989; Brunner et al. 1989; Shaw et al. 1986;
Smeets et al. 1990; Aslanidis et al. 1992). Other two studies used a positional cloning
strategy to clone the previously identified DM1 locus and identified the CTG repeat
expansions as the causative agent (Brook et al. 1992; Mahadevan et al. 1992). The
number of repeats in normal individuals was found to vary between 5 and 30. In DM1
patients, the number of repeats exceeded 50 (Brook et al. 1992; Mahadevan et al.

1992).

CTG repeats are highly unstable. In one study only 4 out of 110 cases
were identified where the repeats were passed on unchanged from the parental
generation. In the same study, the repeat expansions by more than 400 in a single
generation were observed (Redman JB et al. 1993). The repeats are also biased
towards expansion (Thornton 2014; Redman JB et al. 1993; Temmerman et al. 2004).
There is also a pronounced maternal expansion bias (Pearson, Edamura, and Cleary
2005). Different mechanisms for expansions have been proposed that include genome
duplication errors, genome maintenance error in quiescent state or recombination

defects during meiosis (Pearson, Edamura, and Cleary 2005).

A high amount of somatic instability in CTG repeat length suggests a prominent
role for errors in genome maintenance or duplications that occur after meiosis (Loreto
Martorell et al. 1997). A comparison between the repeat lengths of identical twins
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showed different patterns of expansion in one of the two pairs (de Munain et al. 1994).
The repeat was also found to expand with time in the same individual (L. Martorell et al.
1995). A number of studies have reported variable length of the repeats in different
tissues of the same individuals (Thornton, Johnson, and Moxley 1994; Shelbourne et al.
1992; Lavedan et al. 1993; G. Jansen et al. 1994). Interestingly, repeat contraction was
reported in a father-son pair with repeat length falling to the normal range for the son
who did not have the disease (Shelbourne et al. 1992). In one of the studies, CTG
repeats were found to be larger in skeletal muscles compared to leukocytes (Thornton,
Johnson, and Moxley 1994). Taken together, it suggests a more prominent role for

errors in genome maintenance during mitosis or quiescence in repeat expansion.

Myotonic dystrophy type 2 (DM2): DM2 was described shortly after identification of
CTG repeat expansion as the cause for classical DM. Although DM1 and DM2 are
similar in their symptoms, and being a RNA dominant disorder, there are important
differences between the two. DM2 is a relatively milder form of DM. DM2 does not
involve a severe central nervous system defect. It is primarily a late onset disease. A
congenital form of DM2 has not been observed. (Thornton 2014; Machuca-Tzili, Brook,
and Hilton-Jones 2005; Turner and Hilton-Jones 2014, -; Cho and Tapscott 2007,
Ulane, Teed, and Sampson 2014; Ranum and Day 2002). The numbers of
tetranucleotide CCTG repeats are below 30 for normal individuals while they vary
between 75 and 11000 in affected individuals making it much larger than the ones
observed in DM1 (Liquori et al. 2001). Surprisingly, the repeat length has not been
found to be associated with the age of onset or severity of the disease (Ranum and Day

2002).
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In normal individuals CCTG repeats are interrupted by GCTG motif, TCTG motif,
or both (Kurosaki et al. 2012; Liquori et al. 2003). The repeat tracks are polymorphic
with the form (TG)n(TCTG)n(CCTG)n(NCTG)n(CCTG)n (Bachinski et al. 2009). In
affected individuals, only the CCTG motif of the repeat expands (Kurosaki et al. 2012;
Day et al. 2003; Liquori et al. 2001; Bachinski et al. 2009). The repeats are very
instable. They can contract as well as expand over generations (Kurosaki et al. 2012;
Day et al. 2003; Ulane, Teed, and Sampson 2014). Nuclear magnetic resonance
spectroscopy showed that the CCTG repeats are prone to forming metastable hairpin
and dumbbell structures. The structures were shown to undergo dynamic
conformational exchange. Both the structures were also found to contain flexible stem
(Lam et al. 2011). In another study, it was found that the DM2 repeats are
recombination hotspots. This process might be driven by DNA repair mechanisms (Dere
and Wells 2006). The repeat itself was proposed to have originated from an insertion of
Alu elements in the ZNF9 gene. The normal repeat structure was found to be conserved

in primates, mouse, and rat (Kurosaki et al. 2012; Liquori et al. 2003).

In contrast to DM1, which has a relatively broader geographical
distribution, DM2 seems to be more prevalent in European Caucasians. DM2 is more
common in Northern European ancestry. Extensive haplotype analysis suggested that
DM2 spread from a common founder (Liquori et al. 2003). More recently, a DM2 patient
was identified in Japan. Haplotype analysis suggested that the DM2 repeat in this
individual originated separately from those in European populations (Saito et al. 2007).
There have been incidences of DM2 in non-European individuals in Morocco, Algeria,

Lebanon, Afghanistan and Sri Lanka (Saito et al. 2007).
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Molecular mechanisms behind DM pathogenesis: DM is classified as a RNA-
dominant disease (Osborne and Thornton 2006). The disease is thought to be caused
by sequestration of essential RNA binding proteins by toxic RNA that contains the
repeat elements in their non-coding region. Although this is now a universally accepted
mechanism with certain modification, it was not always so clear. In an aptly titled review,
“Myotonic dystrophy: will the real gene please step forward! “, Sarah Harris, Colin
Moncrieff, and Keith Johnson expressed the frustrations of researchers in finding the
molecular mechanism of the pathology (Harris, Moncrieff, and Johnson 1996). This was
years after identification of CTG repeat expansion as the disease causing agent. A
number of putative mechanisms had been proposed that explained some aspect of
pathogenesis but not all. In addition, a new type of DM, DM2, had recently been found

that did not contain the CTG repeat expansions.

A number of pathogenic mechanism models have been proposed, many of them
might contribute to the disease (J. E. Lee and Cooper 2009). Shortly after identification
of the repeats, a haploinsufficiency model was proposed. In this model, the decrease in
the amount of DMPK protein leads to pathogenesis. This model was supported by the
observation that DMPK protein and mRNA levels were decreased in DM1 patients (Y.-
H. Fu et al. 1993). Follow up studies in mouse models suggested that although the
decrease in DMPK protein levels might be contributing to the disease; it was not the
sole cause. In one of the study, the mice null for Dmpk had only mild phenotype (Gert
Jansen et al. 1996). In another study, Dmpk null mice developed late onset myopathy,

but did not show all the abnormalities observed in DM1 patients (Reddy et al. 1996).
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Furthermore, a loss of function mutation in DMPK has not yet been identified suggesting

that a decrease in DMPK is not the sole cause of DM1 (J. E. Lee and Cooper 2009).

DMPK locus lies in a very gene rich region of the genome. Using this information
it was proposed that the repeat expansion is affecting the expression of adjacent genes.
In one of the studies condensed chromatin was found downstream of DMPK gene
(Otten and Tapscott 1995). This suggested that the transcription of genes in the vicinity
would be decreased. This was indeed found to be a case where the expression of a
candidate homeodomain gene DMAHP (also known as SIX5) was reduced in DM1
patients. However in a study in mice, knocking out Six5 led to development of cataract
without apparent abnormalities in the skeletal muscles (Klesert et al. 2000). This
suggested that the effect of repeat expansion on the chromatin and transcription of
neighboring genes might be a contributing factor, not the primary one in DM1

pathogenesis.

The failure of other models to explain all the clinical features of DM1 lead to the
proposition of RNA dominance model (Osborne and Thornton 2006). It is also called
RNA gain-of-function and RNA toxicity models (Sicot and Gomes-Pereira 2013; J. E.
Lee and Cooper 2009). Mice models with CTG repeats in the genome displayed the
repeat instability including expansions and contractions in both germline as well as
somatic tissues (Monckton et al. 1997; Gourdon et al. 1997). Transgenic mice with DM1
region of a patient inserted in its genome displayed many of the associated pathological
features. The pathological features included myotonia, progressive weakness of skeletal
muscles, testicular atrophy as well as cognitive dysfunction among others (Seznec et al.
2001). In a cell culture model, expression of DMPK cDNA containing 46 CTG repeats
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inhibited myoblast differentiation (Usuki et al. 1997). These studies strongly suggested a

critical role for RNA in DM1 pathogenesis.

Stronger evidences were provided by experiments in which the CTG repeats
were expressed independent of DMPK. In a cell culture model, expression of CTG
repeat alone was able to inhibit myoblast differentiation (Bhagwati, Shafig, and Xu
1999). In another cell culture experiment, expression of DMPK 3'UTR with expanded
repeats was able to delay myoblast differentiation and the normal DMPK 3'UTR did not
have an effect (Amack, Paguio, and Mahadevan 1999). A transgenic mice model with
250 CTG repeats construct inserted in the first intron of human skeletal actin (HSA-
CTG) was able to reproduce most of the disease features (Mankodi et al. 2000). Further
evidence was provided by the identification of CCTG repeat as the disease causing

agent in DM2.

DM1 and DM2 have similar phenotypes, but are caused by mutations at very
different loci in the genome suggesting an involvement of a common pathway. DMPK
and ZNF9 have not been identified to function in the same molecular pathway. The
mutations in both of the diseases are in the non-coding region of the transcript. Even if
the repeats are assumed to be translated, the resulting proteins will have expansions
containing different amino acids. Combined with the observation that expression of
mutant RNA repeat alone in cell culture models as well as mouse models is able to
replicate many of the clinical features of the diseases, a critical role of RNA gain of

function seems to be beyond doubt.
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Effects of RNA gain-of-function on splicing: The expanded CTG repeat caused a
number of abnormalities including sequestering of RNA binding proteins in the nucleus,
formation foci in the nucleus, changing the methylation state of the surrounding areas,
formation of heterochromatin in the adjoining areas, decreasing transcription of the
adjoining genes, and a decrease in the amount of DMPK protein itself. The diverse
array of the effects of CTG expansion confounded the quest for discovery of molecular
pathogenesis for a long time till unequivocal evidence in favor of RNA gain-of-function

were obtained.

RNA gain-of-function model needs trans acting factors whose misregulation
leads to the splicing defects observed in DM. CUG-BP1 was found to bind to CTG
repeats in in vitro experiments with cytoplasmic and nuclear extracts (L. T. Timchenko
et al. 1996). CUG-BP1 is a member of CELF family of proteins with six members
(Osborne and Thornton 2006; Ranum and Cooper 2006). The EDEN-BP, a Xenopus
homolog CELF homolog, was found to be involved in deadenylation (Paillard 1998). In
another experiment, CUG-BP1 was found to regulate alternative translation initiation in
in vitro experiments with mammalian cell extracts. The use of alternative initiation sites
is one of the mechanisms to generate different isoforms of C/EBP transcription factor
(N. A. Timchenko et al. 1999). CUG-BP1, another CELF family member, was found to
modulate C to U RNA editing in mammalian cell extracts (Anant et al. 2001). In another
study, CELF family members were found to regulate alternative splicing in cell and
developmental stage specific manner (Ladd, Charlet-B, and Cooper 2001). In one
study, CUG-BP2 was found to bind ARE elements in 3' UTR of cyclooxygenase-2

MRNA. The binding of CUG-BP2 stabilized the mRNA, but also inhibited translation (D.
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Mukhopadhyay et al. 2003). These studies suggested that sequestration of CELF family
proteins by the repeat containing toxic RNA could be one mechanism for DM
pathogenesis.

However, two very important observations contradicted the model with CELF
family proteins at the center of DM pathogenesis mechanism. First, binding of CUG-BP
was not found to be proportional to the CUG repeat length (Michalowski et al. 1999).
Second, CUG-BP failed to colocalize with the nuclear RNA foci (Fardaei et al. 2001).
This suggested that although CELF family proteins may be important in DM, they were
not sequestered in the RNA foci and were not the primary splicing regulators important
for pathogenesis. In a recent study, CUG-BP1 was found to be overexpressed in
skeletal muscle biopsies of DM1 patients but not in DM2 patients (Cardani et al. 2013).
This further ruled out CELF family proteins as the common splicing regulator affected in
the two types of DM.

The hunt for splicing regulator sequestered by CUG repeat containing RNAs led
to the muscleblind-like (MBNL) family of proteins. There are three MBNL proteins in
humans (Ranum and Cooper 2006). Muscleblind was identified in Drosophila as
developmentally regulated gene that was important for eye and muscle development
(Begemann et al. 1997; Artero et al. 1998). MBNL was identified as a candidate after it
was found to bind to the larger CUG expansions in vitro. In crosslinking experiments,
MBNL was not found to bind to RNA that had less than 11 CUG repeats (Miller 2000).
This provided a model in which MBNL proteins were not binding to the normal repeats,

but were only binding to the disease causing expanded repeat.
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The expression pattern of MBNL was found to extensively overlap with the
expression DMPK (Kanadia et al. 2003). All of the three MBNL proteins were also found
to colocalize with the nuclear RNA foci in both DM1 and DM2 cells (Fardaei et al. 2002;
Miller 2000; Mankodi et al. 2003). MBNL proteins were found to regulate alternative
splicing of cardiac troponin T (cTNT) and insulin receptor (IR). Interestingly, CELF
family proteins and MBNL promoted different splicing events in cTNT and IR suggesting
that they have distinct roles in DM pathogenesis (Ho et al. 2004).

MBNL sequestration can have wide ranging effects on the biology of the cells. In
embryonic stem cells, MBNL has been found to negatively regulate expression of
pluripotency genes. Knockdown of MBNL led to expression of pluripotency genes that
were under control of FOXP1 transcription factor (H. Han et al. 2013). In Mbnl
knockdown mice, fetal tau isoform expression and Mapt isoform misregulation was
detected suggesting defects leading to mis-expression of developmentally regulated
genes in adults. In DM1 patients there is downregulation of a chloride channel CLCNL1.
This downregulation is caused by introduction of premature stop codons in the open
reading frame (ORF) due to splicing defects (Mankodi et al. 2002; Charlet-B. et al.
2002; Osborne and Thornton 2006). CLCN1 had been shown to be the primary cause of
myotonia (Koch et al. 1992). Interestingly, overexpression of CUG-BP was able to
recapitulate the aberrant splicing defect in CLCN1 (Charlet-B. et al. 2002). Since CELF
family proteins and MBNL proteins have opposite effects on determining the splicing
pattern, could it be that the disruption of equilibrium between the two is the primary

driver behind splicing defects in DM (Charlet-B. et al. 2002; Ho et al. 2004)?
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MBNL1 has also been found to be involved in biogenesis of miR-1 in heart
muscles from DM patients (Rau et al. 2011). In rats, miR-1 defect has been shown to be
involved in heart development and its misregulation leads to heart conduction defect
(Zhao et al. 2007). Regulation of miR-1 biogenesis by MBNL1 explains the heart
conduction defects observed in DM patients.

Transcriptomic studies in mouse models have revealed that the majority of
defects in DM1 can be explained by the loss of MBNLL1 function. In the study, mRNA
expression of three mice strains were compared; (1) a transgenic mice expressing CUG
repeat, (2) Mbnl knockout mice, and (3) a Clcnl null mice (Osborne et al. 2009). In
another study, both CUG-BP1 and MBNL1 were found to bind to the 3'UTR of target
MRNAs and promote mMRNA decay (Masuda et al. 2012). Comparison of mouse models
expressing expanded CUG repeat containing mRNA or defective Mbnl1, revealed that
more than 80% of the splicing defects can be explained by the loss of MBNL1 function
(Du et al. 2010). A study in mouse and Drosophila models has revealed a global role for
MBNL proteins in regulating the localization of mMRNA (Wang et al. 2012). Taken
together, MBNL proteins lie at the center of pathogenesis mechanism in DM.
Differences in mechanism between DM1 and DM2: Pathogenesis mechanism in both
DM1 and DM2 were thought to be solely mediated by RNA gain-of-function. A
contradiction arose with studies in mouse models of DM2. In contrast to Dmpk, loss of
function of ZNF9 led to multisystemic defects in ZNF9 heterozygous mice that was
reminiscent of DM2 (W. Chen et al. 2007). This suggested critical role for ZNF9 protein
in DM2 pathogenesis. In yeast S. cerevisiae, ZNF9 was found to be a constituent of

ITAF complex that regulates cap independent translation (Gerbasi and Link 2007).
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Although the initial studies did not reveal a change in ZNF9 protein and mRNA levels in
DM2 patients, many subsequent studies found a decrease in both ZNF9 protein and
MRNA levels (Udd and Krahe 2012). In myoblasts derived form DM2 pateints, IRES
mediated translation was found to be decreased. ZNF9 was also found to directly bind
the IRES elements in the 5’ UTR of orinithine decarboxylase mRNA and activate cap-
independent translation (Sammons et al. 2010).

These studies have revealed very important insights in the pathogenesis
mechanisms of DM1 and DM2. Transcriptomic studies have shed light on the changes
in MRNA abundances as well as RNA processing. However, the effect on the global
proteome is poorly understood. This study is expected to shed light on the changes in

the proteome of DM patients as well as mouse models.
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Chapter I

Environmental interactions and epistasis are revealed in the

proteomic responses to complex stimuli

Abstract

Ultimately, the genotype of a cell and its interaction with the environment
determine the cell's biochemical state. While the cell's response to a single stimulus
has been studied extensively, a conceptual framework to model the effect of multiple
environmental stimuli applied concurrently is not as well developed. In this study, we
developed the concepts of environmental interactions and epistasis to explain the
responses of the S. cerevisiae proteome to simultaneous environmental stimuli. We
hypothesize that, as an abstraction, environmental stimuli can be treated as analogous
to genetic elements. This would allow modeling of the effects of multiple stimuli using
the concepts and tools developed for studying gene interactions. Mirroring gene
interactions, our results show that environmental interactions play a critical role in
determining the state of the proteome. We show that individual and complex
environmental stimuli behave similarly to genetic elements in regulating the cellular
responses to stimuli, including the phenomena of dominance and suppression.
Interestingly, we observed that the effect of a stimulus on a protein is dominant over
other stimuli if the response to the stimulus involves the protein. Using publicly available
transcriptomic data, we find that environmental interactions and epistasis regulate

transcriptomic responses as well.
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Introduction

In their native environments, cells continuously respond to a complexity of
environmental stimuli. These include ambient temperature fluctuations, nutrient
availability, signaling molecules, and physical forces. In response, cells adjust their
biochemical state through multiple mechanisms including the differential production,
modification, and degradation of transcripts and proteins (Gasch et al. 2000; Gerner et
al. 2002; Pratt et al. 2002; Soufi et al. 2009; Yan et al. 2006). Both extracellular
signaling and the metabolic environment strongly influence a cell’s growth and
responses to therapeutic treatments (Whiteside 2008; Vaupel, Kallinowski, and Okunieff
1989; Trédan et al. 2007; Hazlehurst, Landowski, and Dalton 2003). Model organisms
have been used extensively to study cellular responses to individual and combinations
of environmental stimuli (Gasch et al. 2000; Brauer et al. 2008; Nicola et al. 2007;
Kanani, Dutta, and Klapa 2010; Knijnenburg et al. 2009; Knijnenburg et al. 2007; Murray
et al. 2004; Tai et al. 2005; Vaga et al. 2014). We extend these approaches by
developing and testing a novel conceptual framework to study proteomic responses of
cells to the combinatorial effects of multiple concurrent environmental factors. We have
modeled our analysis of these complex environmental interactions using the concepts of

gene interaction and genetic epistasis.

Gene interaction is defined as the interaction between genes at different loci that
affect the same characteristic or a trait (Pierce 2005). Classically, genetic epistasis is
referred to a type of gene interaction in which a mutation at one locus masks or
suppresses the phenotype of a mutation at a different locus (Pierce 2005; Bateson

1909). To test the independence of the effects of individual genes, genetic epistasis has
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also been defined mathematically as a type of gene interaction in which the combined
effect of two or more mutations is not the sum of the effects of the individual mutations

(Cordell 2002; P. C. Phillips 2008; Fisher 1958).

Conceptually, the problem of studying multiple concurrent environmental stimuli
is similar to the problem of studying the effects of multiple genetic mutations. The
product of a gene functions as part of one or more functional modules in concert with
the products of many genes. The changes in a gene, for example its loss of function or
gain of function, affects the phenotype due to the changes in the activity of the
functional modules. If multiple genetic alterations are present, the total effect is due to
the integration of the effects of the individual alterations through the functional modules.
Similarly, environmental stimuli affect the biochemical state of the cells through specific
sensing, signaling, and response modules. Concurrent application of multiple
environmental stimuli, similar to the genetic alterations, requires the integration of
information from these modules to mount an optimal response. By considering an
environmental stimulus as an analogue of a gene, we hypothesized that the concepts of
gene interaction and epistasis can be extrapolated to devise a conceptual framework for
studying the combined effects of multiple concurrent stimuli. There are several benefits
of using this approach; (1) all the genetic, biochemical, and computational tools and
concepts developed for studying gene interactions would become available for studying
the effects of the environment, (2) it would allow for easier mechanistic interpretation of
the responses to complex environmental stimuli, (3) the contributions of an individual

stimulus to altering biological processes can be more easily elucidated, and (4) it would
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provide a unifying framework for studying gene-gene, gene-environment and

environment-environment interactions.

In this study, we define an environmental interaction as the interaction between
different environmental stimuli that affect the same observable characteristic or trait.
Similar to the statistical definition of genetic epistasis, environmental epistasis is an
environmental interaction in which the effects of the individual stimuli are not
independent of each other (Cordell 2002; Fisher 1958; P. C. Phillips 2008). To test our
hypothesis, we used the yeast S. cerevisiae and grew cells at standard conditions
(glucose, 30°C) and changed growth conditions to either high temperature (37°C, HT
stimulus) or the non-fermentable carbon source glycerol (G stimulus) and concurrently
with both environmental stimuli (glycerol, 37°C, HT+G stimuli) (Figure 2). Using precise
guantitative proteomics of the S. cerevisiae proteome and the changes in protein
abundance as the readouts of the interactions, we show that environmental interactions
and epistasis play central roles in determining the state of the proteome in response to
multiple, concurrent environmental stimuli. We also show that, using the dominance of
one stimulus over another, environmental interactions can be used to identify proteins
that are important for responding to a dominant stimulus. We validated our approach

using an independent publicly available transcriptomic dataset.
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Figure 2 - Experiment design to study environmental interactions and epistasis.

Experimental design workflow used in this study. Two environmental stimuli used were high temperature

and glycerol as the carbon source. Diploid S. cerevisiae cells (BY4743) were grown in rich media under 4
conditions: 1) glucose at 30°C (used as control), 2) glycerol at 30°C (G stimulus), 3) glucose at 37°C (HT

stimulus), and 4) glycerol at 37°C (HT+G stimuli). Three biological replicates were performed for each

condition.
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Materials and Methods
Strains and Media. All experiments used the diploid S. cerevisiae strain BY4743,
which has been previously described (Baker Brachmann et al. 1998). Cells were grown

using standard techniques (Amberg, Burke, and Strathern 2005).

Growth rate analysis. Cells were grown in 96 well plates in 100 pL cultures (10 uL of
starter culture and 90 uL of fresh media) with continuous shaking in a BioTek Synergy™
4 Hybrid Microplate Reader for 10 h. Growth rates were assayed at 8 conditions: (1)
Synthetic complete medium with glucose (ScD) at 30°C, (2) ScD at 37°C, (3) Synthetic
complete medium with glycerol (ScG) at 30°C, (4) ScG at 37°C, (5) Yeast extract,
peptone medium with glucose (YPD) at 30°C, (6) YPD at 37°C, (7) Yeast extract,
peptone medium with glycerol (YPG) at 30°C, and (8) YPG at 37°C. Absorbance was
measured at 660nm at 3 min intervals. Using custom R scripts, the doubling times were
calculated from the linear regression curve through the log growth phase using the log
of the absorbance and time of growth. A two-tailed t-test of independence with
Bonferroni correction for the 11 comparisons (7 comparisons of the control, YPD at
30°C, to the test conditions, 3 comparisons of the observed concurrent double stimuli
effect to the expected sum of individual stimulus effects, and 1 comparison of the
observed concurrent three stimuli effect to the expected sum of the effects of the three
individual stimulus) was used to calculate the statistical significance of a stimulus effect

on the growth rate (Dunn 1961).

Preparation of yeast protein extracts: Five mL of YPD (1% yeast extract, 2%
peptone, 2 % glucose) was inoculated with a single yeast colony from a YPD agar plate
and grown overnight. Three replicates were grown under each growth condition: YPD
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at 30°C and 37°C and YPG at 30°C and 37°C. 50 mL of YPD was inoculated with 50
pL of the overnight culture and grown at 30°C and 37°C. 100 mL of YPG (1% yeast
extract, 2% peptone, and 3% glycerol v/v) was inoculated with overnight cultures and
grown at 30°C and 37°C. The cultures were grown with constant shaking at 175 rpm in
Innova 44 shaker incubators (New Brunswick Scientific). For all four growth conditions,
cells were harvested at mid-log phase as determined by OD600 measurements. Cells
grown in YPD were harvested after 14 h, while cells grown in YPG were harvested after
24 h. All cultures were centrifuged at 2000 rpm for 5 min at 4°C using a Sorvall
HLR6/H600A/HBBG6 rotor in Sorvall RC-3B centrifuge and washed with ice cold
deionized H20. The cell pellets were resuspended in 1 mL ice cold wash buffer (10 mM
Tris pH 8.0, 5 mM beta-mercaptoethanol, 500 mM ammonium chloride, 100 mM
magnesium acetate) and lysed at 4°C using glass beads and a Bead Beater (BioSpec,
Inc) for 10 min as previously described (Browne et al. 2013). The whole cell extracts
(WCE) were clarified by centrifugation at 20,000g for 15 min at 4°C, and a 200 L

aliquot of the cleared WCE was stored at -80 °C.

iTRAQ labeling: The total protein concentration was determined using a Bradford
assay according to the manufacturer’s protocol (Sigma Aldrich). For each growth
condition, 50 ug of total protein was mixed with 50 ng of bovine serum albumin (Thermo
Scientific) as an internal standard. Each protein sample was acetone precipitated and
resolublized in 25 pl iTRAQ dissolution buffer (500 mM triethylammonium bicarbonate,
0.1% sodium dodecyl sulfate). The proteins were reduced with tris(2-
carboxyethyl)phosphine at 60°C for 60 min and the cysteines were derivatized with

methyl methanethiosulfonate at room temperature for 10 min. All samples were
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digested with sequencing-grade modified trypsin (1:50; Promega Corporation) overnight
at 37°C. Equal fractions of the tryptic digests from the three replicates grown in YPD at
30°C were pooled separately and used as a control for the iITRAQ experiments. Fifty
pg of the pooled control and 50 ug of each of the replicates were used for iTRAQ
labeling. The iTRAQ labeling reagents were resolublized in 150 yL anhydrous ethanol
(Sigma Aldrich). 75 pL of iTRAQ reagent solutions were added to each 50 ug sample,
incubated with shaking for 1 h at room temperature on an Eppendorf Thermomixer R,
pooled, frozen, lyophilized, resolublized in 200 uL of buffer A (0.1 % formic acid), and

stored at -80°C.

Liquid chromatography and mass spectrometry: The iTRAQ-labeled samples were
analyzed with MudPIT as previously described (Hoek et al. 2015). Briefly, 11 fractions
corresponding to ammonium acetate pulses of 25mM, 50mM, 75mM, 100mM, 150mM,
200mM, 250mM, 300mM, 500mM, 750mM, and 1M concentrations were analyzed on 2
hour reverse phase gradients. Precursor ions were analyzed in the Orbitrap mass
analyzer followed by four CID fragment ion scans in the ion trap and four HCD fragment
ion scans (normalized collision energy = 45%) in the Orbitrap. Dynamic exclusion was
enabled with exclusion window of 180 seconds. Monoisotopic precursor selection was

enabled.

ITRAQ data analysis: RAW files generated by the MudPIT experiments were searched
using the Sequest HT database search engine running under Proteome Discoverer
v1.4 (Thermo Scientific) against a forward and reverse yeast protein database
(S.cererevisiae_orf_trans_all_SGD.fasta.6718) with appended common contaminant

sequences (Eng et al. 2008; Eng, McCormack, and Yates 1994). The CID and HCD
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spectra were merged using the Spectrum Grouper function in Proteome Discoverer by
setting the retention time window to 0.05 minutes and precursor mass tolerance to
10ppm. Beta-methylthiolation of cysteines, and iTRAQ modification of lysine and N-
terminus were included as constant modifications. Oxidation of methionine and
tryptophan, and deamidation of glutamine and asparagine were used as variable
modifications. Precursor mass tolerance was set to 3 Da and fragment mass tolerance
was set to 0.8 Da. Protein assembly, reporter ion quantitation, and protein fold change
calculations were done using ProteolQ at 5% peptide and protein FDR (Premier
Biosoft). Hierarchical clustering analysis was done using Cluster 3.0 (Eisen et al. 1998).
Heatmaps were generated using Java Treeview (Saldanha 2004). Circos plots were
generated as described in Krzywinski et. al. to visualize the genomic locations of the
guantitated proteins (Krzywinski et al. 2009). For better visualization, only those regions

of the genome that were quantitated in this study are shown.

Environmental interaction analysis: All analyses were performed using R scripts to
parse the fold change expression data to identify proteins that show specific expression
patterns in response to complex environmental stimuli. For each protein, we used linear
regression to test for any association of high temperature or glycerol using a model that
included main effects for glycerol and temperature and the glycerol by temperature
interaction. We used the effect size estimates and ANOVA p-values (3 df) calculated by
the Im function and adjusted the p-values for a 5% FDR using the Benjamini-Hochberg
procedure for finding differentially expressed proteins (Benjamini and Hochberg 1995).
We used the adjusted p-value cut-off of 0.05 to determine statistical significance. If the

overall adjusted p-value was greater than 0.05, we classified the proteins as non-
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responders. The positive and negative signs of the effect size estimates correspond to
upregulation and downregulation, respectively, showing the direction of change. The
remaining proteins were further classified into environmental interaction classes based
upon the effect size estimate p-values and the direction of change. If the p-value of an
estimate was less than 0.05, the protein was considered differentially expressed in

response to that environmental stimulus.

To test if a protein is affected by environmental epistasis, the effect size
estimates for the individual high temperature (HT) and glycerol stimuli (G) were
summed, the combined standard error calculated as the square root of the sum of the
squared standard errors, and a two-sample t-test of independence was used to
compare the summed effect size estimate to the effect size estimate for the concurrent
high temperature and glycerol stimuli (HT+G). If a t-test p-value was less than 0.05, the

protein was assumed to be affected by environmental epistasis.

Environmental interaction analysis of transcriptomic dataset: Normalized
expression data described in Knijnenburg et. al. was downloaded (Knijnenburg et al.
2009). The transcriptomic data were generated using haploid S. cerevisiae
(CEN.PK113-7D MATa) cells grown in chemostat cultures (Knijnenburg et al. 2009). We
chose 4 culture conditions similar to our experimental design for further analysis. The
culture conditions tested were: 1) with ammonium sulfate as the nitrogen source (n=5),
2) with methionine as the nitrogen source (n=3), 3) anaerobic conditions (n=4), and 4)
with methionine as the nitrogen source and anaerobic conditions concurrently (n=3).
Transcriptomic data from the cells grown with ammonium sulfate as the nitrogen source
were used as the baseline control. The fold change was calculated by subtracting the
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average normalized expression data of baseline samples from the individual expression
data. Finally, the genes were classified into various types of environmental interaction

as described above.

Co-expression network analysis: Sparse PArtial Correlation Estimation (SPACE) was
used to build protein co-expression networks and identify the hub genes (Peng et al.
2009). To account for outliers, the data were normalized using probabilistic quotient
normalization and scaled using a generalized logarithmic scaling factor (Dieterle et al.
2006; Durbin et al. 2002). The data were scaled and centered to have a standard
deviation of 1 and mean of 0 to remove any bias in the correlation analysis (Berg et al.
2006). We estimated the partial correlation matrix using the space.dew method
implemented in the SPACE R package (Peng et al. 2009). We selected the default
value of the tuning parameter for constructing the initial network (Peng et al. 2009). The

network was visualized in Cytoscape 3.1.1 (Shannon et al. 2003).

Results

While cells measure and respond to many environmental stimuli, we chose
temperature and carbon source to test our hypothesis. Both stimuli are known to be
important factors for survival and have wide-ranging effects on yeast metabolism
(Gasch et al. 2000). We used growth with glucose at 30°C as the control, and high
temperature and glycerol as the stimuli. The changing growth conditions were: glucose
at 37°C (HT stimulus), glycerol at 30°C (G stimulus), and glycerol at 37°C concurrently
(HT+G stimulus). To precisely measure the proteomic responses of the cell, we used
isobaric tag for relative and absolute quantitation (iTRAQ) labeling followed by multi-
dimensional protein identification technology (MudPIT)-based mass spectrometry to
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guantify the steady state proteomes under the four different growth conditions (Link et
al. 1999; Ross et al. 2004). A total of 1064 proteins were quantitated in the control and
the three test conditions. We filtered the data to focus only on the 466 proteins that were

guantitated in all three independent replicates of all of the three test conditions (Fig. 3A).
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Figure 3 - Proteomic responses to complex environmental stimuli.

Diploid S. cerevisiae (BY4743) cells were grown in rich media under 4 conditions: 1) glucose as the
carbon source at 30°C, 2) glycerol as the carbon source at 30°C, 3) glucose at 37°C, and 4) glycerol at
37°C. Three biological replicates for each growth conditions were performed. Fold changes were
calculated from iTRAQ reporter ion intensities using reporter ion intensities from the pooled replicates of
growth in glucose as the carbon source at 30°C as the baseline. The fold changes were log, transformed
for downstream analysis. The color bar shows the fold change ranges. A) Complete filtered proteomic
dataset for high temperature stimulus (HT), glycerol stimulus (G), and concurrent glycerol and high
temperature stimuli (HT+G) (Red: Up, Green: Down, Black: No change). The heatmap represents the fold
changes of 466 proteins. B) Fold changes of 283 proteins differentially expressed in response to HT

stimulus. C) Bar graph shows the —log g-value of enrichments of the top 5 pathways in the list of proteins
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differentially expressed after the HT stimulus. D) Fold changes of 379 proteins differentially expressed in
response to the G stimulus. E) Bar graph shows the —log g-value of enrichments of the top 5 pathways in

the list of proteins differentially expressed after the G stimulus.
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Figure 4 - Correlation matrix heatmap

Correlation matrix was generated in R. There is a high correlation among replicates showing

reproducibility across experimental replicates (red is high).

Cross-correlation analysis of the filtered data showed high reproducibility among
the replicates (Figure 4). The proteomic changes in the cells grown with the concurrent
stimuli were more similar to the changes induced by glycerol compared to high

temperature (Figure 4).

We defined the response to an environmental factor(s) as the log2-fold change in
protein abundance/expression between the control and experimental conditions. For
this study, we use “fold change” to denote the log2 fold change. We built linear
regression models for each protein using fold changes to estimate the effect sizes of the

stimuli. We used ANOVA for estimating statistical significances since we were
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comparing multiple stimuli. We interpreted the positive or negative sign of the effect size
as either upregulation or downregulation, respectively. The Benjamini-Hochberg
procedure was used to adjust the ANOVA p-values at 5% FDR (Benjamini and
Hochberg 1995). A protein was assumed to be differentially expressed if the adjusted
overall ANOVA p-value was less than 0.05. These proteins were further analyzed and
classified into different environmental interaction classes using the direction of the
change (upregulated or downregulated) and the p-values of the effect size estimates

(Benjamini and Hochberg 1995).

Stimuli-specific expression patterns can be used to identify proteins important
for responding to the stimuli.

We observed 283 proteins differentially expressed with high temperature, 379
proteins differentially expressed in response to glycerol, and 370 proteins were
differentially expressed in concurrent high temperature and glycerol (Fig. 3B and D, and
Table 1), while 41 proteins did not change in response to any of the stimuli. We selected
GeneMANIA Cytoscape plugin for pathway analysis since it extends the input list of
differentially expressed proteins by adding related proteins to enhance sensitivity and
coverage (Montojo et al. 2010; Mostafavi et al. 2008). It also allows using the complete
proteome as the background. This helped to build a more complete picture of
differentially regulated pathways. Pathway analysis of these two differentially expressed
protein groups revealed the same top five pathways; none were specific to either
stimulus (Fig. 3C and E). All of the top five pathways were related to protein synthesis
and translational control, suggesting that the regulation of protein synthesis is an

important step in responding to environmental stimuli. Translation factors are some of
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the most abundant proteins in yeast and our proteomic assays are limited by the
abundance of proteins in the cell. Although this could have confounded pathway
analysis and led to the identification of translation associated pathways as being the
most enriched, using only the differentially expressed proteins suggests that these
pathways are, at the least, being differentially regulated. Furthermore, similar
observations have also been made in previous studies (Gasch et al. 2000; Brauer et al.
2008; Roberts and Hudson 2006). It is noteworthy that the pathways expected to be
important for responding to these stimuli, such as “protein folding” for growth at high
temperature and “TCA cycle” for growth with glycerol were present farther down the list
at numbers 39 and 53, respectively (Tables 2 and 3) (Richter, Haslbeck, and Buchner
2010; Riezman 2004; Schuller 2003). This mirrors a common problem in ‘omics’ studies
that generate large lists of candidate genes, transcripts and proteins. The important
responders are lost in a long list where a majority of differentially expressed genes or
proteins is not directly responding to the stimulus. Therefore, choosing candidates for

an in-depth mechanistic study becomes a challenge.

To address this problem, we devised a methodology using dominance in
environmental interactions to identify proteins and pathways important for responding to
a stimulus. We noticed proteomic expression patterns in which the response to one
stimulus was dominant over the other. We speculated that a protein critical in
responding to a stimulus will respond to that stimulus even when challenged by a
competing stimulus. If this hypothesis is correct, such an environmental interaction
could serve as a filter to select and identify proteins that respond specifically to the

dominant environmental stimulus.
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To test this hypothesis, we classified the list of 466 proteins responding to the
concurrent glycerol and high temperature stimuli based upon their expression patterns.
Two classes of dominant environmental interactions are possible. In one class, a
stimulus reverses an expression change induced by the other stimulus (Fig5A and B,
top panels, rows 1 and 3). In the other class, a stimulus induces a change in
expression, while the other stimulus has no effect on its own and does not change the
response to the concurrent stimulus (Fig. 5A and B top panels, rows 2 and 4). Each
class is represented by two theoretical expression patterns for a total of four expression

patterns for each stimulus (Fig. 5A and B top panels).
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Figure 5 - Dominance of an environmental stimulus used to identify proteins that are important for

responding to the environmental stimulus

The color bar shows the range of fold changes. Pathway analysis was done using the GeneMANIA

Cytoscape plugin. Bar graphs were generated in Graphpad Prism. A) Proteins for which HT stimulus is
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dominant over G stimulus. The theoretical expression patterns are depicted in the top panel (Red,
upregulation; green, downregulation; and black no statistically significant change in expression). The
heatmap of fold changes in expression for 30 proteins for which HT stimulus is dominant over G stimulus
is shown in bottom panel. B) Proteins for which G stimulus is dominant over HT stimulus. The theoretical
expression patterns are depicted in the top panel. The heatmap of fold changes in expressions for 121
proteins for which G stimulus is dominant over HT stimulus is shown in bottom panel. C) Bar graph
shows the —log g-value of enrichments of the top five pathways in the list of proteins for which HT
stimulus is dominant over G stimulus. D) Bar graph shows the —log g-value of enrichments of the top five

pathways in the list of proteins for which G stimulus is dominant over HT stimulus.

For the environmental interactions in which the HT stimulus was dominant over
the G stimulus, the p-values for all of the effect size estimates were less than 0.05. The
changes for the HT and HT+G stimuli were in the same direction and differed from the
G stimulus (Fig. 5A, top panel, rows 1 and 3). Alternatively, the p-values for only the HT
and HT+G stimuli effect size estimates were less than 0.05 and the directions of change
for the HT and HT+G stimuli were the same (Fig. 5A, top panel, rows 2 and 4). In all, we
identified 30 proteins for which the response to the HT stimulus was dominant over the
G stimulus (Fig. 5A and Table 1). We used pathway analysis to identify which protein
classes were responding to the dominant stimulus. The group of proteins for which the
HT stimulus was dominant included the heat shock response proteins HSP10, HSP60,
SSA1, SSA2, and HSP150 (Fig. 5A bottom panel, and Table 1). Pathway analysis of
these 30 proteins showed that the top five enriched pathways included protein folding,
protein refolding, and unfolded protein binding (Fig. 5C, Table 5). These pathways are
expected to be important for growth at higher temperatures (Richter, Haslbeck, and
Buchner 2010; Riezman 2004; Akerfelt, Morimoto, and Sistonen 2010; de Nadal,

Ammerer, and Posas 2011).
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For the environmental interaction in which the G stimulus is dominant, we saw a
similar set of patterns as described above except the G stimulus dominates the HT
stimulus (Fig. 5B, top panel). There are 121 proteins for which the response to the G
stimulus was dominant over the HT stimulus (Fig. 5B, bottom panel and Table 1). The
group of proteins for which the G stimulus was dominant includes metabolic enzymes
such as CDC19, ACO1, and LSC1 (Fig. 5B, bottom panel, and Table 1). Pathway
analysis of these 121 proteins showed that the top five pathways included the oxidation-
reduction process, the generation of precursor metabolites and energy, and the
tricarboxylic acid cycle (Fig. 5D, and Table 6). All of these three pathways are expected
to be important for respiratory growth (Schller 2003; Brisson et al. 2001; Nevoigt and
Stahl 1997). Consistent with our hypothesis, pathway analysis of proteins that respond
to a dominant environmental stimulus reveals a functional relationship to the response
to the stimulus. High temperature has a dominant effect on proteins involved in protein
folding, while glycerol has a dominant effect on proteins involved in respiratory
metabolism. These results show the practical applications of using dominant
environmental interactions to identify proteins that respond to specific stimuli and that

are directly involved in the cell’s response to that stimulus.

Analysis of expression patterns reveals that environmental interactions mirror
gene interactions.

In addition to the dominant interactions of concurrent environmental stimuli, we
observed other classes of environmental interactions that mirror gene interactions.
First, we observed a class of proteins whose abundance either increased or decreased

in response to both the individual stimuli as well as the concurrent stimuli (Fig. 6A). This
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is similar to gene pairs in which both the individual mutants as well as the double mutant
have the same phenotype. We classified these proteins as non-specific environmental
responders. This class is represented by two theoretical expression patterns: activated
or repressed (Fig. 6A, top panel and Table 1). For these non-specific environmental
response modules, the p-values for all the effect size estimates were less than 0.05 and
the directions of change were the same (Fig. 5A, top panel). We identified 175 proteins
that correspond to these patterns, and pathway analysis revealed that they are largely
involved in protein synthesis and translational control (Fig. 5A, bottom panel and 5D,

and Table 7).

We also observed proteomic responses to concurrent environmental stimuli
similar to gene interactions in which the two single mutants are wild-type or have one
phenotype, while the double mutant has a different phenotype (Fig. 6B). This class
includes proteins whose expression was either decreased or unchanged after a single
stimulus but was increased if both stimuli were applied concurrently. The class also
includes proteins whose expression was either increased or unchanged after a single
stimulus but was decreased by the concurrent stimuli. We classified this environmental
interaction group as a discordant class. There are eight theoretical expression profiles in
the discordant environmental interaction class (Fig. 6B, top panel). For the discordant
environmental interaction, the p-value for the HT+G concurrent stimuli effect size
estimate was less than 0.05 and the directions of change for either the HT or G stimuli
were not the same as HT+G. We identified 41 proteins that show discordance (Fig. 6B,
bottom panel and Table 1). They are mainly involved in protein synthesis and metabolic

pathways (Fig. 6E, and Table 8).
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Figure 6 - Proteins in different environmental interaction classes and the corresponding enriched

pathways after concurrent G and HT stimuli

The color bar shows the range of fold changes. Pathway analysis was done using GeneMANIA
Cytoscape plugin. Bar graphs were generated in Graphpad Prism. A) Non-specific environmental
response (NER) proteins to individual and concurrent HT and G environmental stimuli. The theoretical
expression patterns are shown in the top panel. The fold changes of 175 NER proteins are shown as a
heatmap. B) The theoretical expression patterns for discordant environmental interaction are shown in the
top panel. The fold changes of 41 proteins are shown as a heatmap. C) The theoretical expression
patterns for suppression environmental interaction are shown in the top panel. The fold changes of the 58
proteins affected by suppression are shown as a heatmap. D) Bar graph shows the —log g-value of

enrichments for the top 5 pathways for the non-specific environmental response proteins. E) Bar graph
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shows the —log g-value of enrichments for the top 5 pathways in the list of proteins affected by discordant
environmental interaction. F) Bar graph shows the —log g-value of enrichments for the top 5 pathways in

the list of proteins affected by suppression environmental interaction.

Finally, we observed suppression, in which a protein’s abundance changed in
response to a single stimulus, yet the change was suppressed by the simultaneous
application of the second stimulus (Fig. 6C). This class is similar to gene interactions in
which double mutants show the wild-type phenotype (Dixon et al. 2009; St Johnston
2002). The suppression class is represented by eight theoretical expression patterns
(Fig. 3C, top panel). For suppression environmental interactions, the p-value for the
HT+G effect size estimate was more than 0.05, and the p-value for at least one of HT
and G stimuli effect size estimates was less than 0.05. We identified 58 proteins that are
affected by suppression (Fig. 6C, bottom panel and Table 1). Pathway analysis
revealed that metabolic pathways are most affected by suppression (Fig. 6F and Table

9).

A large fraction of the proteome is affected by environmental epistasis.

An important feature of genetic epistasis is that the modulating effects of multiple
genes are not always independent of each other (Cordell 2002; P. C. Phillips 2008;
Fisher 1958; Visser, Cooper, and Elena 2011; Mani et al. 2008). In many cases, non-
independence is diagnostic of a functional relationship between genes (Cordell 2002; P.
C. Phillips 1998; Visser, Cooper, and Elena 2011). Genetic epistasis is used to test if
the effects of genetic elements are independent. Genetic epistasis occurs when the
effects are not independent. We tested if the effects of these two individual

environmental stimuli were independent of each other for individual proteins in the
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proteome. Similar to the mathematical approach to genetic epistasis, we measured the
response of each protein and classified a response as influenced by environmental
epistasis if the sum of the effects of the individual stimuli for a protein was not equal to
the response to the concurrent stimuli (t-test, p-value <0.05) (Cordell 2002; Fisher 1958;
P. C. Phillips 2008). We used log2 fold change as the measure of the effect of a
stimulus. From our list of 466 quantitated proteins, 240 proteins were affected by
environmental epistasis (Table 1). Pathway analysis of these proteins revealed that a
majority of the enriched pathways are involved in protein synthesis and translation
control (Fig. 7A and Table 10). The topmost enriched pathways included cytoplasmic
translation, cytosolic ribosome, and structural constituent of ribosome (Fig. 7A and

Table 11).
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Figure 7 - Environmental epistasis in the proteomic response to concurrent stimuli

Pathway analysis was done using the GeneMANIA Cytoscape plugin. Bar graphs were generated in
Graphpad Prism. A) Bar graph shows the —log g-value of enrichments of the top 10 pathways in the list
of proteins affected by epistasis (purple) and their —log g-value in the list of proteins not affected by
epistasis ( ). B) Bar graph shows the—log g-value of enrichments of the top 10 pathways in the list
of proteins not affected by epistasis ( ) and their —log g-value in the list of proteins affected by

epistasis (purple).
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Pathway analysis of the 226 proteins not affected by environmental epistasis
revealed a large number of metabolic pathways (Fig. 7B and Tables 1 and 10). Itis
interesting to note that the distribution of pathways affected by environmental epistasis
is different from those that are unaffected. Protein synthesis and translational control
seems to be disproportionately affected by environmental epistasis compared to other
pathways. These pathways have previously been found to change in response to the
changes in the growth rate (Regenberg et al. 2006; Slavov and Botstein 2011). If the
effects of the two stimuli on the growth rate are not independent, it could explain the
observed environmental epistasis. To test the independence in the effects of the two
stimuli on the growth rate, we determined the doubling times under the same conditions.
The change in the doubling times was used to measure the effect of a stimulus. Our
data shows that the effects of high temperature and glycerol on the growth rate are
additive and, therefore, independent of each other (Fig. 8). Further studies are required

to elucidate the functional significance of the environmental epistasis.

A number of genetic epistasis subtypes have been defined based upon the
mathematical models used to measure the expectation of a phenotype in double
mutants (Visser, Cooper, and Elena 2011; Mani et al. 2008; Gao, Granka, and Feldman
2010; Hallgrimsdéttir and Yuster 2008; Li and Reich 2000). Four most commonly used
definitions are (1) additive, (2) multiplicative, (3) minimum, and (4) log (Mani et al. 2008;
Gao, Granka, and Feldman 2010). Although we used only the additive definition for
developing the concept of the environmental epistasis in this study, future studies can

be performed to compare the results obtained using different definitions.
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Figure 8 - The effect of high temperature and glycerol on yeast doubling times

Doubling times were calculated for growth in control (h=25), high temperature (n=25), glycerol (n=25),
and concurrent high temperature and glycerol (n=24). The difference in doubling times from the control
was used to measure the effect of the stimuli and is plotted on Y-axis. HT leads to a decrease of -11
minutes (sd = 6), G leads to an increase of 137 minutes (sd = 14), and HT+G leads to an increase of 142.
minutes (sd = 22). The expected effect of HT+G was calculated by summing the observed effects of HT
and G (Sum HT+G, increase of 127 minutes with sd of 16). The difference in the means for HT+G and
Sum HT+G was not statistically significant (p-value = 0.1034, two-tailed t-test of independence with

Bonferroni correction for 11 comparisons)
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Environmental interactions and epistasis regulate mRNA levels.

Although, we identified the environmental interactions using quantitative
proteomic data, we speculated that this framework would be applicable to any
guantifiable readout including transcriptomic and phenotypic traits. In pioneering studies
using chemostat cultures of S. cerevisiae, Knijnenburg et al. measured the
transcriptional response of yeast to multiple, concurrent environmental stimuli
(Knijnenburg et al. 2009). They found linear regression models of expression for the
vast majority of genes required a combinatorial interaction term (Knijnenburg et al.
2009). This suggests the change in transcription of most genes cannot be explained by
simply adding the effects of the individual stimuli. Based on our proteomic results, we
hypothesized that environmental epistasis plays a role in determining the state of the

transcriptome as well.

To test if our environmental interaction and epistasis models are observed in the
transcriptomic responses to concurrent stimuli, we analyzed Knijnenburg dataset which
measured the transcriptomic responses of yeast cells growing in carbon limited
chemostat cultures (Knijnenburg et al. 2009). In the experiment, two concurrent stimuli
were applied: (1) a change in nitrogen source from ammonium sulfate to methionine
and (2) a change from aerobic to anaerobic growth (Fig. 9A and Table 12) (Knijnenburg
et al. 2009). The data showed 564 transcripts were affected by environmental epistasis,
while 5987 transcripts were not affected (p-value <0.05) (Table 12). In contrast to our
proteomic analysis, pathway analysis of the transcripts affected by environmental
epistasis revealed enrichment for pathways including microbody, peroxisome, and
phytosteroid metabolic process (Table 13). This could be because of the differences
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between the strains, stimuli, and culture conditions used in the transcriptomic and our
proteomic studies. Similar to our proteomic analysis, we observed dominant
environmental interactions in the expression of the transcripts (Fig. 9B and 9C and
Table 12). Nitrogen source was dominant for 281 transcripts (Fig. 9B and Table 12).
Pathway analysis of these transcripts identified pathways involved in methionine
metabolism such as sulfur amino acid metabolic process, sulfur compound metabolic
process and methionine metabolic process (Fig. 9D and Table 14). Similarly, anaerobic
growth was dominant for 938 transcripts (Fig. 9C and Table 12). Pathway analysis of
these differentially expressed transcripts showed enrichment of pathways involved in
energy production such as cellular respiration, mitochondrial membrane and respiratory
chain (Fig. 9E and Table 15). We also observed the same environmental interaction
classes in their transcriptomic data as in our proteomic data, including non-specific
environmental response, discordance, and suppression (Table 12). These results
strongly suggest that environmental interactions play a significant role in regulating the

biochemical state of cells.
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Figure 9 - Environmental interactions affect transcriptomic profiles as well

Normalized expression data from Knijnenburg et. al. 2009 was used for the analyses. The transcriptomic
data used in the study used haploid S. cerevisiae cells (CEN.PK113-7D MATa) grown in carbon limited
chemostat cultures under 4 conditions — 1) ammonium sulfate as nitrogen source (n=5), 2) methionine as
nitrogen source, NS stimulus (n=3), 3) Anaerobic condition, AN stimulus (h=4), and 4) methionine as
nitrogen source under anaerobic conditions NS+AN stimulus (n=3) (13). Fold changes were calculated
from normalized expression data using average normalized expression data from the five replicates of
growth with ammonium sulfate as the baseline. The color bar shows the range of fold changes. Pathway
analysis was done using GeneMANIA Cytoscape plugin. Bar graphs were generated in Graphpad Prism.
A) A heatmap of fold changes of the complete transcriptomics dataset consisting of 6551 transcripts. B) A
heatmap showing the fold changes for 281 transcripts for which NS stimulus is dominant. C) The —log g-

value of enrichment for the top 5 pathways enriched in the list of transcripts for which NS stimulus is
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dominant. As anticipated, pathways expected to be involved in metabolization of methionine are enriched.
D) A heatmap showing the fold changes for 938 transcripts for which AN stimulus is dominant. E) The —
log g-value of enrichment for the top 5 pathways enriched in the list of transcripts for which AN stimulus is

dominant. As anticipated, pathways expected to be involved in energy production are enriched.

Coexpression network analysis shows community structures are guided by

environmental interaction and epistasis.

Coexpression networks link together proteins whose expression levels are
regulated in the same way (Stuart et al. 2003; B. Zhang and Horvath 2005). As a
consequence, coexpression network analysis can be used to determine if the
abundances of proteins affected by environmental epistasis are regulated differently
than the proteins that are not affected by environmental epistasis. To explore the protein
modules whose expression changes are correlated with each other, we built a
coexpression network using the merged proteomic responses from both individual and
concurrent stimuli using the Sparse PArtial Correlation Estimation approach (SPACE)
(Fig. 2A) (Peng et al. 2009). An edge, representing coexpression, was introduced
between two proteins if the correlation between them was above the average of the
correlation matrix. To validate the network, we first tested the power law structure of the
reconstructed network (Peng et al. 2009; Clauset, Shalizi, and Newman 2009). The
reconstructed network followed the power law distribution. The power law parameter a
was approximately 4, which is close to the empirically observed value of 3.45 (Clauset,

Shalizi, and Newman 2009).
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Figure 10 - Coexpression network based on all the quantified proteins and all conditions

Proteins are depicted as nodes. Nodes that are coexpressed are connected with an edge. The
coexpression network was generated with SPACE algorithm using fold change. Network visualization and
analysis was done in Cytoscape 3.1.1. Bar graphs were generated in Graphpad prism. A) All nodes that
have at least one edge. Nodes affected by environmental epistasis are highlighted in purple. The circular
layout was used to generate the initial network graphics in Cytoscape 3.1.1. Far-flung communities of
inter-connected nodes were manually brought together, while preserving the inner community structure,
for better visualization. B) The largest community in the coexpression network. Most of the proteins
affected by environmental epistasis are members of a subgraph (top circle) that predominantly contains
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other proteins that are also affected by environmental epistasis. A similar trend is observed with the
proteins not affected by environmental epistasis (bottom circle). C) The numbers of three types edges: 1)
both nodes are affected by environmental epistasis (199 edges), 2) neither of the nodes are affected by
environmental epistasis (85 edges), and 3) only one of the nodes is affected by environmental epistasis
(75 edges). Proteins affected by epistasis are predominantly connected to proteins that are also affected
by epistasis. D) Number of edges that connect nodes to other nodes within the same environmental
interaction classes (299) or between the classes (60). Co-regulatory connections between proteins are

predominantly between those of the same class.

Next, we repeatedly reconstructed the network by varying the tuning parameter
around the default value and fitting the network to the power law distribution. We found
that the reconstructed network follows the power law distribution and that the power law
parameter was in the range of 3.75. We identified the sub-graph spanned by the top 1%
of highly connected nodes. We found that the Jaccard similarity score of these highly
connected nodes was 0.83 on the scale of 0 to 1. Therefore, these nodes were
classified as hub nodes, which is one of the characteristic features of power law
networks. There were 7 hub nodes based upon the above criterion. Next, we checked
the significance of the identified hubs using the Wilcox Rank sum test and found that the
hub community is statistically significant (p-value = 0.04) (Kolaczyk and Csardi 2014).
Finally, we compared the reconstructed network with BioGrid protein interaction data
and found that approximately 30% of the edges are previously known interactions and
that these interactions were found in every reconstructed network when we varied the
tuning parameter to estimate the partial correlation matrix (Stark et al. 2006). The final
coexpression network consisted of 329 nodes with at least one neighbor and a total of

359 edges (Fig. 10A).
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The largest community within this network includes 205 nodes and 249 edges,
with two clearly separate sub-graphs connected by a single node (Fig. 10B).
Interestingly, one sub-graph consists predominantly of proteins affected by
environmental epistasis while the second sub-graph consists of proteins not affected by
environmental epistasis. Within the global coexpression network, we observed that
proteins affected by epistasis were more likely to be linked with each other than with
proteins that are not affected by epistasis and vice versa (Fig 10A). There are 199
edges between two proteins affected by epistasis and 85 edges between two proteins
not affected by epistasis. However, only 75 edges involved proteins of both types (Fig.
10C). This structural organization of the coexpression network suggests that the
responses of proteins affected by environmental epistasis are controlled by a different

mechanism than the responses of those not affected by environmental epistasis.

Previous studies indicate that proteins linked in a coexpression network are likely
to function in the same pathway (Stuart et al. 2003). We hypothesized that the grouping
of proteins upon classification into environmental interaction classes might be driven by
their functional associations. If true, we would expect to find more edges in the
coexpression network between proteins within the environmental classes. Indeed, we
found this result in this network. Our data show that 299 of the edges (83%) are
between proteins in the same environmental interaction class, while only 60 are

between proteins in different classes (Fig 10D).

Discussion
Using the concepts of gene interactions and epistasis, we have developed a
unifying conceptual framework to understand the cellular responses to complex
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environmental stimuli. Although, we have only explored the cases with complete
dominance of a stimulus, it is possible that both the stimuli contribute to a change in
expression. It is also possible that many stimuli contribute towards a change. We
speculate that the tools and approaches developed for gene-gene interactions involving
multiple genes can be applied in such cases (Cordell 2009). In addition to linear
regression modeling and ANOVA, we also tested our hypothesis using one sample and
two sample t-tests of independence. The results from both approaches were in good

agreement.

The effect of mixtures of compounds has been actively studied in toxicology,
especially in the context of environmental toxins (Altenburger et al. 2013; Hermens,
Leeuwangh, and Musch 1985; Belden, Gilliom, and Lydy 2007; Altenburger, Nendza,
and Schutrmann 2003; Altenburger et al. 2012; Altenburger, Walter, and Grote 2004;
Berenbaum 1989; Deneer 2000; Greco, Bravo, and Parsons 1995; J.-H. Lee and
Landrum 2006; Schoen 1996; Faust et al. 2001). These studies have led to the
development of three complementary models to predict the combined effects of
compounds in a mixture: (1) in the concentration addition model the total toxicity of a
mixture is the sum of the individual toxicities of the component compounds, (2) in the
independent action model the toxicities of the components of a mixture are independent
of each other, and (3) in the simple interaction model the individual components, at the
concentrations being tested, are not toxic, but are toxic when used together in a
mixture. These models have been successful in predicting the total toxic effects of
mixtures of compounds in many cases (Hermens, Leeuwangh, and Musch 1985;

Belden, Gilliom, and Lydy 2007; Altenburger, Nendza, and Schidrmann 2003;
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Altenburger et al. 2012; Altenburger, Walter, and Grote 2004; Deneer 2000; Faust et al.
2001) . However, it is not immediately clear which one to apply in a specific case

without model fitting (Belden, Gilliom, and Lydy 2007).

Environmental interactions and epistasis can be extrapolated to explain the three
models. For example, the concentration addition model can be the case of incomplete
dominance where many stimuli affect the biological processes under investigation. This
would happen if the compounds in the mixture affect similar biological pathways. If the
actions of the compounds are antagonistic to each other, it may lead to either the
dominance or the suppression interaction. If their actions are not antagonistic, the
combined effect would be the sum of the individual effects which could be observed as

the non-specific environmental response.

The independent action model explains the case where the compounds under
investigation act upon different pathways (Altenburger et al. 2013; Altenburger, Nendza,
and Schutrmann 2003; Altenburger et al. 2012; Altenburger, Walter, and Grote 2004,
Greco, Bravo, and Parsons 1995; Schoen 1996). This is similar to a gene interaction
where two mutations have two unrelated phenotypes and both phenotypes persist in the
double mutant. By applying the logic of environmental interaction to this model, we can
deduce that the changes induced by a mixture that follows the independent action
model would have elements specific to the component compounds of the mixture.
Additionally, the changes important to a specific compound would persist in the
combinatorial condition, which could be used to identify molecules and pathways that

respond to the specific compound in the mixture.
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The simple interaction model explains the cases where the compounds
individually have little or no toxicity, but are toxic when applied together (Berenbaum
1989; Greco, Bravo, and Parsons 1995). In terms of environmental interaction, this
could be a case of the discordance interaction. The effects explained by this model
could also be a special case of environmental epistasis, where the combined effect of
compounds is more than the sum of their individual effects. It is worth noting that
although we discuss only three of the mixture toxicity models, there are a number of
other models that explain the toxicities of compounds in a mixture (Hermens,
Leeuwangh, and Musch 1985; Altenburger et al. 2013; Belden, Gilliom, and Lydy 2007;
Altenburger, Nendza, and Schiidrmann 2003; Altenburger et al. 2012; Altenburger,
Walter, and Grote 2004; Berenbaum 1989; Deneer 2000; Greco, Bravo, and Parsons
1995; J.-H. Lee and Landrum 2006; Schoen 1996; Faust et al. 2001). Environmental
interactions and epistasis provides a conceptual framework unifying the different toxicity
models. The interpretation of results can be made simpler using environmental

interactions and epistasis.

Phenotypic plasticity provides the conceptual framework for studying the
interaction between genotype and environment. Phenotypic plasticity is the ability of an
organism to change its phenotype in response to changes in the environment (Scheiner
1993). It has been used to explain the ability of the same genotype to generate different
phenotypes in different environments (Scheiner 1993). However, phenotypic plasticity
considers the environment as a monolithic entity. It fails to separate the relative
contributions of the different environment components, for example; physical

components such as temperature and pressure, chemical components such as
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nutrients, and signaling molecules that activate different pathways. Applying
environmental interactions and epistasis would help parse out the individual

contributions of the stimuli towards the change in the phenotype.

Similar to genetic epistasis, our data show that the effects of individual
environmental stimuli are not necessarily additive. Proteins affected by environmental
epistasis are distributed throughout the genome and do not appear to be clustered at
specific locations in the genome (Fig. 11). The prevalence of environmental epistasis in
determining the changes in the proteome suggests that epistasis needs to be taken into

account when building mathematical models of gene expression.

Consideration of environmental epistasis is especially important in light of the
recent attempts to build quantitative linear regression models of gene expression in
which the independent variables are the environmental stimuli and the dependent
variable is gene expression (Nagano et al. 2012). Interestingly, in a linear regression
modeling study of transcriptional regulation in rice under native conditions, the
regression model was able to predict gene expression under native conditions even if
the environmental parameters varied slightly from those used for building the model.
However, the predictive power of the regression model was reduced under controlled
laboratory conditions suggesting that there may have been unknown epistatic
interactions in the native conditions absent in the controlled lab conditions (Nagano et

al. 2012).
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Figure 11 - Visualization of S. cerevisiae genomic locations of the proteins quantitated with fold changes
represented as a heatmap using Circos plot

Outermost circle- chromosomes, Second circle-fold changes of proteins with HT stimulus, Third circle-fold

changes of proteins with G stimulus, Fourth circle-fold changes of proteins with HT+G stimuli, innermost

circle-whether affected by epistasis or not (Purple: Affected by environmental epistasis, : Not
affected by environmental epistasis).
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Concurrently applied environmental stimuli behave similarly to genetic elements
in the way they interact to regulate the biochemical states of the cells. The observation
of environmental interactions and epistasis in determining the states of both the
proteome and transcriptome in diverse experimental conditions suggests the prevalence
of this phenomenon in nature. Essentially, environmental interaction in concert with
phenotypic plasticity and gene interactions can be envisaged as a mathematical
operator with three components that determines the changes in the biochemical state of
the cell. The gene interaction component is derived from the effects of the genetic
elements, while the environmental interaction component results from the effects of all
the environmental stimuli. When the gene and environmental interactions are not
independent of each other, phenotypic plasticity accounts for the deviations of the
observed from the expected characteristic or trait. Most studies so far have treated
phenotypic plasticity, gene interactions, and environmental interactions separately due
to a lack of a common unifying framework (Cordell 2002; P. C. Phillips 1998; St
Johnston 2002; Visser, Cooper, and Elena 2011; Mani et al. 2008; Altenburger et al.
2013; Belden, Gilliom, and Lydy 2007; Altenburger, Nendza, and Schitrmann 2003;
Altenburger, Walter, and Grote 2004; Greco, Bravo, and Parsons 1995; Scheiner 1993;
Via and Lande 1985; Carl D. Schlichting and Levin 1984; Gerard, Vancassel, and
Laffort 1993; C. D. Schlichting and Pigliucci 1993; Wilson and Lindow 1993; Tonsor,
Elnaccash, and Scheiner 2013). Our data suggest that as an abstraction, environmental
stimuli can be treated as genes to build a conceptual framework that combines the

effects of genes and stimuli. Environmental interactions and epistasis play a critical role
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in cellular homeostasis as seen in this study’s patterns of change in the proteome and

the transcriptome.

Our data also suggest that a protein or a transcript is more likely to be critical for
responding to a dominant environmental stimulus than to a recessive one. This could
lead to more efficient experiment designs for identifying factors directly affected by an
environmental stimulus. For example, experiments could be designed in which an
unrelated stimulus B is applied concurrently with the stimulus of interest A. The proteins
or transcripts, for which the effect of A is dominant, would be more likely to be directly
affected by stimulus A. We speculate that the same approach may be extended to
genetic perturbations. In this case, an environmental stimulus could be applied in
conjunction with the genetic perturbation. As with two concurrent environmental stimuli,
a transcript or a protein for which the genetic perturbation is dominant may be more
likely to be directly affected by it. Therefore, using dominance, environmental
interactions can also be used to devise studies to identify agents, such as regulatory
RNAs, proteins, or small molecules which are critical for driving a range of biological
processes in health and disease including drug interactions, adaptation in tumor

microenvironment and immune responses.
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Chapter Il

Carbon Source Alters the Protein Composition of Ribosomes for

Translational Control

Abstract

Ribosomes are the catalytic engines that drive protein synthesis. More recently,
the role of ribosome in gene expression regulation has come under increased focus. In
this study, | have explored the role of ribosomal proteins in translational control. | used
iITRAQ labeling followed by liquid chromatography tandem mass spectrometry based
protein quantitation and cryo-electron microscopy single particle classification and
reconstruction to assay the changes in the protein composition of the ribosomes. |
identified Rpl8a and Rpl8b as a candidate paralog pair whose change in abundance on
the ribosomes is important for the ribosome filter mediated translational control. My data
using yeast genetics and polysome profiling shows that Rpl8a and Rpl8b are not
completely interchangeable. | found evidence supporting the presence of
substoichiometric ribosomes and regulation of their proportions in response to changes
in the carbon source.
Introduction

Gene expression can be regulated at multiple levels, including transcription and
translation. Regulation of translation, also known as translational control, is a major
mechanism modulating eukaryotic gene expression. Translation is the process, driven
by ribosomes as the catalytic engines, by which the information encoded in an mRNA is

used to synthesize a protein. Translational control is the regulatory mechanism through
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which the protein synthesis machinery is regulated to control the information flow from
MRNA transcripts to proteins. The protein and RNA accessory factors play an active
role in this process. The ribosomes were initially considered passive players (Kapp and
Lorsch 2004; Dever and Green 2012; Sonenberg and Hinnebusch 2009; Hinnebusch
2015).

In recent years, the idea that the ribosomes are regulatory elements in gene
expression regulation has been gaining ground. The role of ribosome in the regulation
of gene expression is a very active area of research (Ruggero and Pandolfi 2003;
Kondrashov et al. 2011; Xue et al. 2015; Jonathan R. Warner and MclIntosh 2009;
Jonathan R. Warner 2015; MciIntosh and Warner 2007; Komili et al. 2007). Two
complementary mechanisms have been proposed to explain the regulatory functions of
ribosomes. In the first model, ribosomes act as reservoirs of regulatory molecules that
are released upon specific cellular cues. This model is called the depot hypothesis
(Ray, Arif, and Fox 2007; Mazumder et al. 2003). An important example of this mode of
action is the role of RPL13A protein in inflammatory response (Mazumder et al. 2003;

Kapasi et al. 2007).

The second model is based upon the heterogeneity in the protein and rRNA
compositions of the ribosomes. In baker’s yeast Saccharomyces cerevisiae, 138
ribosomal protein genes are present. This includes 59 duplicated paralog pairs. The
amino acid sequences of the paralogs are not identical. There are nearly 150 copies of
rRNA genes in yeast. These copies are not identical (Mcintosh and Warner 2007; Komili
et al. 2007; Jonathan R Warner 1999). Ribosomal proteins have been found to be post-

translationally modified. Post-translational modifications add another level of complexity
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to the ribosomal subpopulations (Martin et al. 2014; S. Ramagopal 1992). Taking these
observations into account, Vincent Mauro and Gerald Edelman proposed the ribosome
filter hypothesis. According to the hypothesis, different ribosomes with differing
composition translate specific mMRNAs more efficiently (Mauro and Edelman 2002;

Vincent P Mauro and Gerald M Edelman 2007).

In addition to the heterogeneity in ribosome composition due to the use of a
specific paralog, a post-translational modification and a difference in the rRNA
sequence, two other potential sources of heterogeneity involving the core components
of the ribosomes are possible. In one model, a ribosomal protein can be present in more
than one copy on the ribosome. We call this the superstoichiometric composition model
in which subpopulations of ribosomes carrying extra copies of a ribosomal protein can
act either as a depot of the regulatory extra copy ribosomal protein, or translate certain
MRNA with higher efficiency. In the second model, a ribosome can be missing
ribosomal protein(s) or sequences of rRNA. We call this the substoichiometric model.
Similar to the superstoichiometric model, these ribosomes might have acted as a depot
of the regulatory missing ribosomal protein(s). Alternatively, the substoichiometric

ribosome can translate specific mMRNAs at a higher efficiency.

The publication of ribosome filter hypothesis has provided a conceptual
framework in which to understand the role of ribosomal heterogeneity, and the ribosome
has received increased attention as a regulatory factor in recent years (Xue and Barna
2012; McIntosh and Warner 2007). The ribosome filter hypothesis has gained support
from many subsequent studies (A. S.-Y. Lee, Burdeinick-Kerr, and Whelan 2013;
Kondrashov et al. 2011; Komili et al. 2007; Xue et al. 2015). A large body of work has

78



concentrated on the rRNAs and suggests that ribosomes are indeed regulatory
elements, and that rRNA heterogeneity arising from multiple copies of rRNA genes
plays an important role in this process (Vincent P Mauro and Gerald M Edelman 2007;

Mauro and Edelman 1997; Owens et al. 2001; Hu et al. 1999).

There is also evidence that suggests the heterogeneity in ribosomal proteins
results in differences in translational efficiency (S. Ramagopal 1992). A comparison of
protein composition of ribosomes from skeletal muscles and liver in rats using 2-
dimensional gel electrophoresis revealed differences between the ribosomes from the
two tissues (Sherton and Wool 1974). This suggested a differential requirement of
ribosomal proteins in different mammalian tissues. Dictyostelium discoideum, ribosomes
from spores and vegetative cells differ in protein composition and posttranslational
modification (S. Ramagopal 1992). This suggested a differential temporal requirement
of ribosomal proteins and their post-translation modifications in organismal
development. In S. cerevisiae, deletion of one of the paralog pairs often results in a
different phenotype from that of the other paralog, indicating that that the different
paralogs have different roles (Komili et al. 2007; Giaever et al. 2002; Breslow et al.
2008). Pamela Silver and co-workers demonstrated that translation of the S. cerevisiae
ASH1 mRNA is more efficient in the presence of particular paralogs (Komili et al. 2007).
Studies in Maria Barna lab has shown that Rpl38 is needed for efficient translation of
specific Hox mRNAs (Xue et al. 2015; Kondrashov et al. 2011). In another study, Rpl40
was found to be required for translation initiation of vesicular stomatitis virus (VSV)
MRNASs (A. S.-Y. Lee, Burdeinick-Kerr, and Whelan 2013). Hyper-phosphorylation of S6

has been implicated in upregulation of protein synthesis (Thomas et al. 1982; Duncan
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and McCONKEY 1982). The phosphorylation of S6 has been proposed to increase the
affinity of the ribosomes for TOP-element containing mRNAs, although there are
conflicting observations in mice (Ruvinsky et al. 2005; Volarevi¢ and Thomas 2000;

Ruvinsky and Meyuhas 2006).

Taken together, these studies have provided strong evidence in support of the
ribosome filter hypothesis. However, the hypothesis is yet to be directly tested. This has
been mainly because of the difficulty in identifying both the ribosomes with a specific
composition and the mRNAs that they translate more efficiently. To identify both the
ribosome and the transcripts, | devised a simple strategy based upon a corollary of the
ribosome filter hypothesis. Cells growing in one growth condition require a specific
proteome that is optimum for that condition. Cells growing in a different condition will
require a different proteome. Therefore, if the ribosome filter hypothesis is correct, the
complement of ribosomes required to synthesize the two proteomes will be different
(Figure 1). Quantification of the ribosomal proteins in the purified ribosomes should
allow identification of the paralogs whose requirements are different. Once a paralog
has been identified, ribosome profiling of null mutants will allow identification of the
transcripts whose translation is affected by specific paralogs. Using this strategy in
yeast cells growing with glucose or glycerol as carbon source, | have identified the
paralog pair Rpl8a and Rpl8b as candidate ribosomal proteins with differential
requirements for specific transcripts. Polysome profile analysis using heterozygous
diploid null mutants, rpl8a and rpl8b, suggests that the functions of Rpl8ap and rpl8bp
are not inter-changeable. Using cryo-electron microscopy in collaboration with the

Joachim Frank lab, | have found evidence in favor of substoichiometric ribosomes. A
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time course experiment coupled with cryo-EM revealed that the proportions of
substoichiometric ribosomes changed in response to change in carbon source from

glucose to glycerol.

Materials and methods
Strains and Media. All yeast media, growth, and genetic manipulation was done using
standard techniques (Amberg, Burke, and Strathern 2005).The diploid strain BY4743

has been previously described (Baker Brachmann et al. 1998).

Preparation of protein extract and ribosome purification: Three biological replicates
were used for each growth conditions tested, YPD at 30 °C and YPG at 30 °C. A 5ml
overnight culture in YPD (1% yeast extract, 2% peptone, 2 % glucose) was inoculated
from a single yeast colony from a YPD agar plate. Fifty ml of YPD at 30 °C was
inoculated with 50 pL of the overnight culture. One hundred ml of YPG at 30 °C (1%
yeast extract, 2% peptone, 3% glycerol) inoculated with 1 ml of the overnight culture.
The twelve cultures were grown side-by-side with constant shaking at 175 rpm in an
Innova 44 shaker incubator (New Brunswick Scientific). For all four growth conditions,
cells were harvested at mid-log phase as determined by OD600 measurements. Cells
growing in YPD were harvested after 14 h, while cells in YPG were harvested after 24
h. All cultures were centrifuged at 2000 rpm for 5 min at 4 °C using a Sorvall
HLR6/H600A/HBBG rotor in Sorvall RC-3B centrifuge and washed with ice cold
deionized H20. The cell pellets were resuspended in 1 mL ice cold wash buffer (10 mM
Tris pH 8, 5 mM beta- mercaptoethanol, 500 mM ammonium chloride, 100 mM
magnesium acetate) and lysed at 4 °C using glass beads and a Bead Beater (BioSpec,
Inc) for 10 min as previously described (Browne et al. 2013). The whole cell extracts
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(WCE) were clarified by centrifugation at 20,0009 for 15 min at 4 oC and a 200 pL
aliquot of the cleared WCE was stored at -80 °C. The remaining cleared WCEs were
overlaid onto a 5/20% discontinuous sucrose gradient prepared in wash buffer. The
gradients were centrifuged at 28,000 RPM using a SW-41 swinging bucket rotor for 18 h
at 4 °C. The supernatant was discarded and the ribosome pellet was resuspended in ice
cold 1 mL standard buffer (10 mM Tris pH 8, 5 mM beta-mercaptoethanol, 50 mM
ammonium chloride, 5 mM magnesium acetate) and centrifuged for 10 min at 10,0009g
at 4 °C. The pellet was discarded and the ribosome suspension was stored at -80 °C.
For cryoEM analysis, ribosomes were purified as above after shifting the cells grown in
glucose to glycerol and taking aliquots at the following time points: OMin, 30Min, 60Min,

120Min, 240Min, and 450Min.

iTRAQ labeling: The total protein concentration of all ribosome suspensions were
determined using Bradford assay according to the manufacturer protocol (Sigma
Aldrich, St. Louis, MO. Catalog # B6916-500ML). Fifty micrograms of total protein from
each growth condition was mixed with 50 ng of bovine serum albumin (Thermo
Scientific, #23209) as an internal standard. Each protein sample was acetone
precipitated and resolublized in 25 puL iTRAQ dissolution buffer (500 mM
triethylammonium bicarbonate, 0.1 % sodium dodecyl sulfate). The proteins were
reduced with tris(2-carboxyethyl)phosphine at 60 °C for 60 min and the cysteines were
derivatized with methyl methanethiosulfonate at RT for 10 min. All samples were
digested with sequencing grade modified trypsin (1:50; Promega Corporation, Catalog #
V5111) overnight at 37 °C. An equal fraction of the tryptic digest of ribosomes from the

3 replicates grown in YPD at 30 °C were pooled separately and used as a control for the
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ITRAQ experiments. Ten ug from each replicate tryptic digested sample and pooled
control were used for iTRAQ labeling. The iITRAQ labeling reagents were resolublized in
150 uL anhydrous ethanol (Sigma Aldrich, St. Louis, MO. Catalog # E7023-500ML).
Seventeen pL of ITRAQ reagents were added to each 10 ug sample and the pooled
control, incubated with shaking for 1 h at room temperature on Eppendorf Thermomixer
R, pooled, frozen, lyophilized, resolublized in X ul of buffer A (0.1 % formic acid in

HPLC-grade water), and stored at -80 oC.

Liquid chromatography and mass spectrometry: The iTRAQ labeled samples were
analyzed with MudPIT as previously described (Browne et al. 2013). Precursor ions
were analyzed in the Orbitrap mass analyzer followed by 4 CID fragment ion scans in
the ion trap and 4 HCD fragment ion scans (normalized collision energy = 45%) in the

Orbitrap.

ITRAQ data analysis: The data analysis workflow essentially mirrored the workflow
described in Chapter II. Briefly, RAW files generated by the MudPIT experiments were
searched using the Sequest database search engine running under Proteome
Discoverer v1.4 (Thermo Scientific) against a forward and reverse yeast protein
database (S.cererevisiae_orf _trans_all_SGD.fasta.6718) with appended common
contaminant sequences (Eng et al. 2008; Eng, McCormack, and Yates 1994). Protein
assembly and reporter ion quantitation and statistical analysis were done using
ProteolQ (Premier BioSoft Inc). Principal component analysis was done using princomp
function in R and the PCA plot was generated using Scatterplot3d package (R Core
Team 2015; Ligges and Méachler 2003). Boxplots were generated in RStudio. All python
and R scripts used in this study will be made available on request.
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Multiple Reaction monitoring: Proteotypic peptides were selected for targeted
guantitation from a database of identified peptides in the MudPIT experiments.
Transitions for unscheduled scout experiments were selected based upon NIST and
GPM spectral libraries. Fifty pg of the purified ribosomes were digested with sequencing
grade modified trypsin (1:50; Promega Corporation, Catalog # V5111) and desalted
essentially as described (Browne et al. 2013). Peptides were eluted using an elution
buffer composition of 50% Acetonitrile, 0.1% Trifluoroacetic acid. Peptides were
analyzed using a 90 min scheduled SRM analysis. Briefly, peptides were autosampled
onto a 200 mm by 0.1 mm (Jupiter 3 micron, 300A), analytical column coupled directly
to an TSQ-Vantage (ThermoFisher) using a nanoelectrospray source and resolved
using an aqueous to organic gradient (1-45% Buffer B) at X ul/min flow rate. Using
series of unscheduled scout runs to determine retention times and transitions to
monitor, a scheduled instrument method encompassing a 10 min window around each
retention time along with calculated collision energies was created using Skyline
(MacLean et al. 2010).Q1 peak width resolution was set to 0.7, collision gas pressure
was 1 mTorr, and utilized an EZmethod cycle time of 5 s. The resulting RAW instrument
files were imported into Skyline for peak-picking and quantitation (MacLean et al. 2010).
The peak areas of the transitions were exported and further analysis done in Microsoft
Excel. Sum of the peak areas of all the transitions of a given peptide, peptide peak area,
was used as the quantitative measure of abundance for the peptide. The average of
peptide peaks areas of all the peptides from a given protein, protein peak area, was
used as the quantitative measure of abundance of the protein. The average protein

peak areas of single copy ribosomal protein RPL5 was used as control. For differential
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analysis, in the first step a ratio of peak area of the test protein to the peak area of the
control was calculated across all samples. In the next step, two sample t-test with alpha
level 0.05 was performed with the ratios to test for statistical significance. Finally, fold
change was calculated by ratioing the average of ratios. The calculated was fold

changes were log2 transformed.

Cryoelectron Microscopy (in collaboration with the Joachim Frank lab): For each
specimen of the time series, ribosome samples were applied to Holey carbon-coated
Quantifoil copper grids, freeze-plunged using the Vitrobot Mark IV freeze-plunger (FEI,
Portland, Oregon), and then visualized in an FEI Tecnai F20 electron microscope at 200
kV acceleration voltage and 5,000x magnification, using a 4k x 4k CCD camera (Gatan,
Pleasanton, CA) and automated data collection employing the programs Leginon and
Appion (Grassucci, Taylor, and Frank 2008; Suloway et al. 2005). Each pixel
corresponds to 2.25A on the object scale. A total number of 260,440 particles were
selected from 2,661 micrographs. Of these, 159,654 were verified using a work-flow
written in Arachnid, and processed using the program RELION, which combines
maximum likelihood-based classification with reconstruction, as well as a novel
convergence analysis that finalizes the classification results (Bo Chen, Shen, and Frank
2014; Scheres 2012). For a comprehensive analysis of the time series, all data were
pooled together so that increase and decrease of each sub-population could be
effectively studied, and the maximum number of particles was available for the 3D

reconstruction of each class.

GOzilla: GOzilla is a custom Python script. It uses GO Slim database from

Saccharomyces cerevisiae Genome Database (SGD) (Cherry et al. 1998; Christie et al.
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2004). In the first step COMPzilla creates a dictionary with GO terms as the keys and
the proteins that have the given GO term associated with them in the GO Slim database
as the values. In the next step, GOzilla creates a dictionary in which GO terms are still
the keys, but values are fold changes corresponding to the proteins that were mapped
to GO terms in the first step. In the third step, GOzilla creates a list all the fold changes
in the experiment that will be considered the population of fold changes for statistical
testing. Finally, GOzilla compares the fold change distribution associated with the GO
terms with population fold change distribution using two sample t-test of independence
and two sample Kolomogorv-Smirnov test. GOzilla exports the results of the two tests in
separate tab delimited text files, in which first column contains the GO terms, the
second column t-statistics or ks-statistics, and the third column contains the

corresponding p-value (Source code in Appendix R).

COMPzilla: COMPzilla is a custom Python script. It uses CYC2008 2.0, a manually
curated database of biomolecular complexes in yeast to identify complexes that are
differentially present (Pu et al. 2007; Pu et al. 2009). In the first step COMPZzilla creates
a dictionary with complex names as keys and the proteins that constitute the complex
as values. In the next step, COMPzilla creates a dictionary in which complex names are
still the keys, but values are mapped fold changes of the proteins that constitute the
complex. In the third step, COMPzilla creates a list all the fold changes in the
experiment that will be considered the population of fold changes for statistical testing.
Finally, COMPzilla compares the fold change distributions associated with protein
complexes with population fold change distribution using two sample t-test of

independence and two sample Kolomogorv-Smirnov test. COMPzilla exports the results
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of the two tests in separate tab delimited text files, in which first column contains the
complex names, the second column t-statistics or ks-statistics, and the third column

contains the corresponding p-value. (Source code in Appendix S)

Results

Ribosomal proteins abundances are regulated in response to environmental
stimuli but the abundances of all RPs do not change to the same extent.

To investigate the regulation of abundances of ribosomal proteins in response to
environmental stress, we reanalyzed our previously published dataset using Python
scripts GoZilla.py and CompZilla.py ((Source codes in Appendices R and S). The whole
cell extract analyzed in this study were the sources for the purified ribosomes for this
study (Samir et al. 2015). GoZilla identifies the Gene Ontology terms that are either
downregulated or upregulated in a gene expression data. It uses the Go Slim database
downloaded from Saccharomyces genome database for looking up GO terms (Cherry et
al. 1998; Christie et al. 2004). CompZilla identifies the differentially regulated
biomolecular complexes in gene expression data. It uses a manually curated database
of yeast biomolecular complexes to lookup their constituents (Pu et al. 2007; Pu et al.

2009).

In the three stimuli used in the previous study, most of the proteins with structural
constituent of ribosome GO terms were downregulated (Fig. 12A). Similarly most of the
components of 60S and 40S ribosomal subunits were downregulated too (Fig. 12B).
However, the log, transformed fold changes were not consistent for all of the ribosomal

proteins. This suggested that at least some of the ribosomal proteins were being
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differentially regulated compared to others. This is in agreement with the predictions of
both ribosome filter hypothesis and the depot hypothesis (Mauro and Edelman 2002;
Ray, Arif, and Fox 2007; Mazumder et al. 2003). However, this does not exclude the
possibility that the changes in ribosomal protein abundances were independent of the

changes in the protein composition of ribosomes themselves.
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Figure 12 - : Analysis of whole cell extract quantitative protoemics data using GoZilla and CompZilla.

A) A boxplot showing the fold change distribution of proteins with structural constituent of ribosome GO
term. GoZilla was used to generate the fold change distribution. Boxplots were generated in RStudio. B)
Fold change distributions of 40S and 60S subunit proteins. CompZilla was used to generate the fold

change distribution. Boxplots were generated in RStudio.
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Quantitative proteomics analysis of protein abundances in purified ribosomes.

To directly measure the changes in the protein composition of ribosomes, we
focused on two environmental stimuli — (1) growth in rich media with glucose as carbon
source at 30 °C, and (2) growth in rich media with glycerol as carbon source at 30 °C.
We purified the ribosomes using a discontinuous sucrose gradient centrifugation. We
analyzed the samples using iTRAQ labeling followed by liquid chromatography tandem
mass spectrometry. We identified 135 ribosomal proteins, 131 of which were
guantitated in the three replicates. Since the ribosomes were purified from the same
whole cell extracts used in the previous study, we compared the fold changes of
ribosomal proteins in purified ribosomes to that in the whole cell extracts (Samir et al.
2015). Surprisingly, a correlation matrix analysis revealed that there was no correlation
between the two fold changes (Fig. 13A-D). There was good correlation in the ribosomal
protein levels between the replicates, both in whole cell extracts and purified ribosomes
(Fig. 14A-F). This suggested that the lack of correlation was not due to a noisy data with

high variance.
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Figure 13 — Correlation analysis between the changes in whole cell extracts and purified ribosomes

There are three replicates each corresponding to WCE and purified ribosomes. A) CrossOcorrelation
matrix, numbers represent Pearson’s R, W# represent whole extracts, R# represent purified ribosomes.
B-D) Scatter plots showing relationship between fold changes in whole cell extract (X-axis) and purified

ribosomes (Y-axis) Three replicates are depicted.
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Figure 14 - Scatterplots showing reproducibility among replicates of whole cell extracts and purified

ribosomes

Sctterplots were generated in RStudio. A-C) Scatterplots of whole cell extracts. Replicate 1 vs Replicate
2, Replicate 1 vs Replicate 3, and Replicate 3 vs Replicate 2. D-F) Scatterplots of purified ribosomes.

Replicate 1 vs Replicate 2, Replicate 1 vs Replicate 3, and Replicate 3 vs Replicate 2.
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Figure 15 — Quantitation of ribosomal proteins in purified ribosomes using quantitative mass spectrometry

A) 45 ribosomal proteins quantitated using at least one unique peptides in iTRAQ experiments. B) 11
Differentially present ribosomal proteins in purified ribosomes identified using t-test p-value less than
0.05. C) The amounts of RPL8A and RPL8B were validated using multiple reaction monitoring approach

in three independently purified ribosomes. These were different samples from the ones used in iTRAQ.

To identify differentially present ribosomal proteins, we used t-test of
independence with alpha level of 0.05. Since there are minimal sequence differences

between the paralogs, to reliably quantify the paralog specific changes we reanalyzed
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the mass spectrometry data to use only the unique peptides for quantitation. We
guantitated 45 ribosomal proteins with at least one unique peptide, 11 of which were
differentially present in the purified ribosomes (Fig. 15A-B). This included a paralog pair,
Rpl8a and Rpl8b (Fig. 15C). We validated the iTRAQ data using multiple reaction

monitoring.

Using CryoEM to detect changes in the ribosomal protein composition over time.

Quantitative proteomics is a population based technique that could not address
superstoichiometric and substoichiometric models for changes in the protein
composition of ribosomes. To determine the changes in the protein composition of
ribosomes consistent with superstoichiometric and substoichiometric models, we used
cryoEM in collaboration with the Joachim Frank lab at Columbia University. We focused
on the changes in 80S ribosomes. We identified 3 populations of ribosomes, (1) a
population of complete 80S ribosomes that has the full complement of ribosomal
proteins, (2) a population of 80S ribosomes missing Rpl10 (AuL16), and (3) a population
of ribosomes missing both Rpl10 and Rps1 (AuL16 AeS1) electron densities (Fig. 16A).
We did not observe ribosomes with superstoichiometric composition of ribosomal

protein(s) in our data.
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Figure 16 - Cryo-EM analysis

A) Electron densities corresponding to Rpl10 (uL16) and Rpsl (eS1) in cryo-EM structures.
Substoichiometric ribosomes lacking these proteins were identified. B) Time-course analysis to measure

the dynamic changes in the proportions of ribosomes missing uL16 or both uL16 and eS1.
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To study the kinetics of change in the composition of 80S ribosomes, we
performed a time-course experiment to track the proportions of these sub-populations.
The cells were grown in with glucose as the carbon source. At time O minutes, the cells
were spun down and resuspended in media containing glycerol as the carbon source.
We aliquoted cells at 0, 30, 60, 120, 240, and 450 minutes after shifting from glucose to
glycerol. We purified ribosomes from these cells and used cryo-EM to determine the
relative proportions of the three structures (Fig. 16B). The proportion of complete
ribosomes decreased sharply within the first 30 minutes of the shift. There was a similar
increase in the proportion of AuL16 AeS1 ribosomes in the same time frame. After 60
minutes, the proportion of complete ribosomes started to recover with a concomitant
decrease in the AuL16 AeS1 ribosomes. However, the proportions of complete and
AuL16 AeS1 ribosomes never recovered to the initial level in the time frame used in this
study. The proportion of AuL16 ribosomes continued to steadily increase throughout our
experiment. However, the rate of increase was minimal. The substoichiometric
composition is consistent with both the depot hypothesis and the ribosome filter

hypothesis.

Paralog specific roles of Rpl8a and Rpl8b in translation using null mutants.

We used polysome profile analysis to study the paralog specific roles of Rpl8a
and Rpl8b in global translational control. We used the rpl8a and rpl8b null mutants that
had been previously described (Winzeler et al. 1999). We used the diploid wild type
(BY4743) and null mutant strains (Baker Brachmann et al. 1998; Winzeler et al. 1999).
Similar to the proteomics analysis, we grew cells with either glucose or glycerol as
carbon source (Fig. 17 and 18). Polysome profiles of rpl8a cells showed a large
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increase in 40S peak and shoulders on the 80S and polysome peaks (Fig. 17B). The
shoulder defect was rescued by either adding back Rpl8a or overexpressing Rpl8b from
their native promoters (Fig. 17B, 17D, 17E). However, the 40S peak defect was rescued
only by adding back Rpl8a (Fig. 17B, 17D, 17E). Polysome profiling of rpl8b cells did
not show a difference from wild type (Fig. 17C). When the cells were grown with
glycerol, rpl8a cells showed a very prominent 40S peak, which was rescued by adding
back Rpl8a (Fig. 18B, 18D). This defect was not rescued by overexpression of Rpl8b
(Fig. 18E). In glycerol, rpl8b cells too showed a larger 40S peak that was rescued by

Rpl8b but not by RpI8A (Fig. 18C, 18F, 18G).

97



A B
— BY4743 e Arpl8a
15004 1500+

1000+ 1000+

l
5004 5004
o r r T 1 0 T T
(0] 5 10 15 2 0 5 10 15

C D
s Arpl8b ol Arpl8a + Rpl8A
1000 1000+
E Co !l; 1'0 1'5 Z.) F cO 5 “IlO 15 20
1500+

Arpl8a + Rpl8B 2500-

o

I Arpl8b + Rpl8A
1000+
N (\J\I\NWN p
5 10 15 20 ' y

0

G

1500+

Arpl8b + Rpl8B

1000+

0

T T T T 1
0 5 10 15 20 25

Figure 17 — Polysome profiles with glucose as carbon source
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A) Polysome profile of WT diploid strain BY4743. B) Polysome profile of rpl8a diploid null mutant. C)
Polysome profile of rpl8b diploid null mutant. D) Polysome profile of rpl8a diploid null mutant with Rpl8a
on a plasmid expressing from native promoter. E) Polysome profile of rpl8a diploid null mutant with Rpl8b
on plasmid expressing from native promoter. F) Polysome profile of rpl8b diploid null mutant with Rpl8a
on a plasmid expressing from native promoter. E) Polysome profile of rpl8b diploid null mutant with Rpl8b

on plasmid expressing from native promoter.
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Figure 18 — Polysome profiles with glycerol as carbon source

A) Polysome profile of WT diploid strain BY4743. B) Polysome profile of rpl8a diploid null mutant. C)

Polysome profile of rpl8b diploid null mutant. D) Polysome profile of rpl8a diploid null mutant with Rpl8a
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on a plasmid expressing from native promoter. E) Polysome profile of rpl8a diploid null mutant with Rpl8b
on plasmid expressing from native promoter. F) Polysome profile of rpl8b diploid null mutant with Rpl8a
on a plasmid expressing from native promoter. E) Polysome profile of rpl8b diploid null mutant with Rpl8b

on plasmid expressing from native promoter.
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Figure 19 — Quantification of peak areas ratios of polysome profiles

A) Ratio of 40S:60S peak areas. B) Ratio of 80S:Polysome peak areas. D is BY4743, AD is rpl8a diploid
null, AAD is rpl8a diploid null with Rpl8a, ABD is rpl8a diploid null with RpI8b on a plasmid, BD is rpl8b

diploid null, BBD is rpl8b diploid null with RpI8b, BAD is rpl8b diploid null with Rpl8a on a plasmid.

We further analyzed the polysome profiles quantitatively by measuring the peak
areas of the 40S, 60S, 80S, and polysome peaks. We used two parameters — (1) the
ratio of 40S:60S peak areas (40/60 ratio), and (2) the ratio of 80S:Polysome peak areas

(80/Poly ratio) (Fig. 19). Both rpl8a and rpl8b cells showed elevated 40/60 ratios with
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either glucose and glycerol as carbon sources (Fig. 19A). In rpl8a cells. the ratios were
rescued to the wild type levels by adding back Rpl8a (Fig. 19A). Although the
overexpression of Rpl8b decreased the ratios, but it did not reach the wild type levels
(Fig. 19A). In rpl8b cells too showed a similar pattern, with adding back Rpl8b rescuing
the defect (Fig. 19A). Overexpression of Rpl8a was only able to partially rescue the

defect (Fig. 19A).

Analysis of 80S/Poly ratios showed no defectin either rpl8a or rpl8b cells when
grown in glucose (Fig. 19B). Overexpression of Rpl8a or Rpl8b in the mutant cells did
not lead to a defect either (Fig. 19B). When cells were grown in glycerol, there was an
elevation in the ratio for rpl8b cells but not for the rpl8a cells (Fig. 19B). The elevated
80S/Poly ratio defect was rescued by adding back Rpl8b but not by overexpression of
Rpl8a (Fig. 19B). Taken together, the polysome profile analysis suggested paralog
specific roles for Rpl8a and Rpl8b proteins. This is consistent with the ribosome filter

hypothesis.

Discussion

Presence of ribosomes with substoichiometric composition of ribosomal proteins
presents intriguing possibilities. In E. coli, ribosomes lacking a 43 nucleotide segment
on the 3’ end of the 16S rRNA selectively translates leaderless mRNA. This would be
an example of a ribosome with substoichiometric composition, in this case a rRNA,
acting as a filter for translating a specific class of mMRNA. Do the ribosomes missing
Rpl10, Rps1, or both translate a special class of MRNAS? It is also possible that Rpl10
and Rpsl have extra-ribosomal functions similar to RPL13A in GAIT complex. There

dissociation from the ribosome to perform their extra-ribosomal function may leave
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behind ribosomes lacking their electron densities. Another intriguing possibility is that
the dissociation of Rpl10 and/or Rpsl acts as a break. This is consistent with the
observation that the proportion of ribosomes missing either of the two proteins
increases rapidly immediately after shifting the carbon source (Fig. 16B). Since cells
have to adapt to a new environment, they may pause for a time before making new
proteins. Furthermore, the proportion of complete ribosomes never recovers to the pre
shift stage during the time frame of this study. Since yeast cells grow very slowly with
glycerol as carbon source compared to glucose, the ribosomes lacking one or both of
the ribosomal proteins may be part of a non-translating reserve pool. Although we
cannot differentiate between the three possibilities, the very presence of
substoichiometric ribosomes suggests alternative biological models that would need to

be addressed in future studies.

Although the change in composition of ribosomes with the changes in the growth
condition was not completely unexpected, we provide experimental evidence that it
does occur, at least in S. cerevisiae. The paralog specific roles of Rpl8a and Rpl8b
observed in the polysome profiles provide direct evidence in favor of the ribosome filter
hypothesis. In planned follow up experiments, we are using ribosome footprint profiling
with the wild type and mutant cells to identify the mRNAs whose translation is
differentially affected by either of the paralogs (Ingolia 2014). It would be very
interesting to see if there are sequence features on the mRNAs under paralog specific
translational control. A recent study in mouse has found RNA secondary structures in 5’
UTRs of a subset of Hox mMRNAs (Xue et al. 2015). These RNA structures resemble

internal ribosome entry sites required for the cap-independent translation initiation
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mechanism. They are expected to recruit ribosomes to the mRNA through a mechanism

dependent upon Rpl38 (Xue et al. 2015).

A number of single copy ribosomal proteins are differentially present in the
purified ribosome samples in the proteomics experiment but not in the cryo-EM
experiments focused on 80S ribosomes. There could be three possibilities that can
explain these observations — (1) confounding of the mass spectrometry quantitation by
impurities, unassociated 40S and 60S subunits, biogenesis or degradation
intermediates, in the sample prep, (2) cofounding of the mass spectrometry quantitation
by unidentified post-translational modifications, and (3) the changing composition in free

40S and 60S subunits that were excluded from cryo-EM analysis.

In our experiments, we pelleted down all of the ribosomes including 40S, 60S,
and 80S. Our protocol would also have pelleted the ribosomes in the intermediate
stages of biogenesis or degradation. We cannot differentiate between the tryptic
peptides coming from the different sources in the sample. Each of these peptides
contributes to quantification and potentially confounds our results. In cryo-EM, we
focused only on the 80S ribosomes. We were able to filter out all the other sources of
variation from our analysis. Therefore, cryo-EM provides a cleaner data for the single
copy ribosomal proteins. However, cryo-EM cannot differentiate between the different
paralogs at the resolutions routinely achieved through this approach. This makes
guantitative proteomics and cryo-EM complementary techniques to address these

different questions.
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A second reason for the changes detected in the single copy ribosomal proteins
could be the confounding by the unidentified post-translational modifications. Ribosomal
proteins are known to be post-translationally modified (Ohn et al. 2008; Spence et al.
2000; W. M. Anderson, Grundholm, and Sells 1975; Kruiswijk et al. 1978; Kaerlein and
Horak 1976; Arragain et al. 2010; Nesterchuk, Sergiev, and Dontsova 2011; Xirodimas
et al. 2008; Arnold et al. 1999; Thomas et al. 1982). The post-translational modification
of peptides confounds mass spectrometry based quantitation if the modified peptides
have been not been identified in the experiment. This is because the modification
changes the mass as well as the retention time for a chromatography run. This leads to
absence of signal that can be misinterpreted as differential presence. To minimize this
possibility, use of two or more peptides for quantitation is recommended because the
probability of both peptides being modified simultaneously is considered lower than an
individual peptide. Although these precautions can minimize the chances of errors in

guantitation due to post-translational modifications, it cannot completely rule them out.

A third reason for the changes in the single copy ribosomal protein could be that
the proportions of ribosomes missing these ribosomal proteins are changing between
the two growth conditions. Although we did not observe the 80S structures missing
these ribosomal proteins in cryo-EM analysis, they might be present in the ribosomal

subunits or intermediates of biogenesis or degradation.

In conclusion, we have showed the changing protein compositions of ribosomes
using two complementary approaches. Paralog specific changes are consistent with the
ribosome filter hypothesis. The changes in the single copy ribosomal proteins observed
in the quantitative proteomics study and cryo-EM are consistent with both the depot
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hypothesis and the ribosome filter hypothesis. The planned future studies are expected

to shed light on the functional significance of the changing compositions.
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Chapter IV

Quantitative Proteomics Analysis of Human Myotonic Dystrophy
Skeletal Muscles Reveals Specific and Common Modules of

Differentially Expressed Proteins.

Abstract

Myotonic dystrophy, a form of muscular dsystrophy, is an autosomal dominant
multi-systemic disorder caused by the expansion of nucleotide repeats. There are two
types of myotonic dystrophy. Myotonic dystrophy type 1 (DM1) is cause by a CTG
trinucleotide repeat expansion in the 3’ untranslated region of dystrophia myotonica-
protein kinase (DMPK) gene. Myotonic dystrophy type 2 (DM2) is caused by a CCTG
tetranucleotide repeat expansion in the first intron of zinc finger 9 (ZNF9) gene. The
expression of the repeat expansions in both cases lead to the nuclear accumulation of
RNA granules, which sequester RNA processing factors. This RNA toxicity is thought to
be the cause of the disease symptoms. However, the effect of the repeat expansions on

the proteome is poorly understood.

To address this, we quantified the proteomes of the skeletal muscles of myotonic
dystrophy patients and healthy volunteers to identify differentially regulated proteins. We
used iTRAQ labeling followed by liquid chromatography tandem mass spectrometry for
protein quantitation. Skeletal muscles from 5 healthy volunteers, 7 DM1 patients and 6
DM2 patients were used in this study. We quantitated 3575 proteins across all the
samples. We used one way ANOVA, with the Benjamini Hochberg procedure for

controlling false discovery rate in multiple comparisons, to identify differentially
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regulated proteins. We identified 30 proteins upregulated and 4 proteins downregulated
in both DM1 and DM2. We found 154 proteins to be upregulated and 218 proteins to
downregulated uniquely in DM1 patients. Pathway analysis of these proteins revealed

biochemical pathways that appear to be affected by the repeat expansions.

Introduction

Myotonic dystrophy (DM) is an autosomal dominant multi-systemic disorder
caused by the expansion of CTG or CCTG repeat elements in DMPK or ZNF9 genes,
respectively. DM caused by the expansion CTG repeat in the 3'untranslated region of
DMPK gene is called myotonic dystrophy type 1 (DM1) (Brook et al. 1992; Y. H. Fu et
al. 1992; Mahadevan et al. 1992). It is also called Steinert’s disease and congenital
myotonic dystrophy (Machuca-Tzili, Brook, and Hilton-Jones 2005). It is the more
severe form of DM. DM caused by the expansion of CCTG repeat in the first intron of
ZNF9 gene is called myotonic dystrophy type 2 (DM2) (Ranum et al. 1998; Liquori et al.
2001). It is also called the proximal myotonic dystrophy (PROMM). This is a relatively
mild form of DM (Machuca-Tzili, Brook, and Hilton-Jones 2005). DM1 and DM2 are
thought to be caused by accumulation of toxic RNA (J. E. Lee and Cooper 2009;
Osborne and Thornton 2006; Thornton 2014). DM symptoms include myotonia,

cataracts, neurological disorders and heart conduction defects.

DM1 was first described more than hundred years ago (Machuca-Tzili, Brook,
and Hilton-Jones 2005). It was the third example of a disease caused by repeat
expansions in 1992 (Thornton 2014; Brook et al. 1992; Mahadevan et al. 1992; Y. H. Fu
et al. 1992). The number of CTG repeat in general human population is variable. The
number of repeats in healthy individuals lies between 5 and 37 (Thornton 2014). In DM1
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patients the number of repeats exceeds 50 and can even be more than 3000 (Thornton
2014). The number of repeats correlates with the degree of severity of the disease. It
also negatively correlates with the age of onset, the larger of number of repeats being
associated with an earlier age of onset (Redman JB et al. 1993; Temmerman et al.
2004). DM1 can present in either congenital or adult onset form. This depends on the

number of repeats in an individual.

DM2 was first described in 1994 as the myotonic dystrophy that lacked the CTG
repeat expansion described two years earlier (Thornton, Griggs, and Moxley 1994). A
number of DM patients were soon found to lack the CTG expansion (Ricker K et al.
1995; Ricker et al. 1994; Meola et al. 1996; Udd et al. 1997). This form of the disease
was initially called proximal myotonic myopathy because of the involvement of proximal
muscles, in contrast to the distal muscles in the previously described form of DM (Udd
et al. 1997; Moxley Il 1996; Ricker et al. 1994). It was later renamed as DM2 to signify
the form of DM that lacked CTG repeat expansion. DM2 is an adult onset disease. A
congenital form of DM2 has not been identified. DM2 was subsequently found to have a

CCTG tetranucleotide expansion in the first intron of Znf9 gene(Liquori et al. 2001).

The expression of RNA with the DM repeat expansions leads to the formation of
RNA foci in the nucleus. It has been proposed that important RNA processing factors
bind to the repeat containing RNA and are sequestered in these foci. This leads to the
misregulation of RNA processing, including defects in splicing and polyadenylation. As
such DM has been characterized as a RNA toxicity disease (Thornton 2014; Cho and

Tapscott 2007; Turner and Hilton-Jones 2014; Machuca-Tzili, Brook, and Hilton-Jones
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2005; J. E. Lee and Cooper 2009; Osborne and Thornton 2006; Douglas and Wood

2011).

There is a large body of literature describing the alterations in the RNA
processing machinery (Osborne and Thornton 2006; Douglas and Wood 2011).
However, the effect of the defect in RNA processing on the proteome is poorly
understood. In this study, we used quantitative proteomics analysis to determine the

changes in the proteomes of the skeletal muscles of DM patients.

Materials and Methods
Patient details: Muscular biopsies were kindly provided by Dr. Bjarne Udd from

University of Helsinki, Finland.

ITRAQ quantitation of the proteome: Protein extract was prepared by ultrasonicating
the skeletal muscle tissue in lysis buffer (50% Trifluoroethanol 50 mM HEPES). The
amountsl protein in the samples were determined using BCA assay. 10 g of protein
was aliquoted out, reduced by tris(2-carboxyethyl)phosphine, cysteine blocked by
Methyl methanethiosulfonate, and digested with trypsin (1:50 :: trypsin:protein)
overnight. The peptides were desalted using solid phase extraction with reverse phase
microtrap coloum (Michrom Bioresources) as described in Link and La Baer. The
peptides were resolublized in 7 ul 500 mM triethylammonium bucarbonate (TEAB). 85 ul
of isopropyl alcohol was added to iTRAQ reagents. 12 pL of iTRAQ reagents were
added to the samples, incubated with shaking for 2 hours, pooled, frozen, lyophilized,
resolublized in buffer A (5% acetonitrile, 0.1 % formic acid in HPLC grade water) and

stored at -80 OC. The iTRAQ labeled samples were analyzed by MudPIT essentially as
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described with one change (Browne et al. 2013). The precursor ions were analyzed in
the Orbitrap followed by 4 CID fragment ion scans in the ion trap to identify the peptides
followed by 4 HCD fragment ion scan of the same precursors as in CID to get obtain the

reporter ion intensities in the orbitrap.

Mass spectrometry data processing and analysis: Mass spectrometry data
processing was done as described in (Samir et al. 2015). RAW files generated by LC-
MS/MS experiments were searched using Sequest database search engine running
under proteome Discoverer v1.4 (Thermo Scientific) to identify the peptides (Eng et al.
2008; Eng, McCormack, and Yates 1994). Sequest searches were done against an
ENSEMBL database of human protein sequences. Protein assembly and reporter ion
guantitation and statistical analysis were done using ProteolQ (Premier BioSoft). Log,
transformed fold change against a common control prepared from lysates of wild type
myoblasts (PromoCell) was used as the measure of abundance. Correlation plot was

generated in R (R Core Team 2015).

Differential expression and pathway analysis: One way ANOVA was used to identify
differentially expressed proteins using in R using a modified version of a previously
described script (Samir et al. 2015; R Core Team 2015). The modification allowed using
data from control patients as covariates. Pathway analysis using the differentially
expressed proteins was done using the GeneMANIA Cytoscape plugin (Montojo et al.
2010; Mostafavi et al. 2008). Cytoscape was used to visualize the network diagrams

(Shannon et al. 2003). Bar graphs were generated in MS Excel.

112



Results

Proteomic analysis of myotonic dystrophy skeletal muscle biopsies.

We analyzed the proteome of skeletal muscle biopsies from 5 control subjects, 7
DML1 patients, and 6 DM2 patients. We used iTRAQ labeling followed by MudPIT
analysis for the quantitation (Ross et al. 2004; Link et al. 1999). We quantitated 3575
proteins across the three groups (fig. 20A). We analyzed the list of quantitated proteins
using GeneMANIA Cytoscape plugin to identify the list of overrepresented pathways in
the list (Montojo et al. 2010). GeneMANIA generated network had 801 nodes and 64138
edges (fig.20B). A smaller number of nodes in the network compared to the input list of
proteins represent the redundancies in the protein list due to the presence of multiple
isoforms. The overrepresented pathways included a number of pathways expected to
be involved in muscle physiology. The top 5 pathways enriched the list were contractile
fiber part, muscle filament sliding, actin-myosin filament sliding, contractile fiber, and
muscle system process (fig. 20C). In addition to muscle related pathways, energy
production and translational control pathways were also enriched the list of quantitated
proteins. This was expected based upon the cellular abundances of translational control

proteins and metabolic enzymes.
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Figure 20 — Quantitative proteomics analysis of skeletal muscles from DM patients

A) Heatmap showing the expression ratioed against the common control. B) Network interactions
generated using GeneMANIA. C) Top 6 enriched pathways in the list of proteins identified across all the
experiments. CF1 is control female 1, CF1 is control female 2, CML1 is control male 1, CM2 is control male
2, CM3 is control male 3, DM1F1 is DM1 patient female 1, DM1F2 is DM1 patient female 2, DM1F3 is
DM1 patient female 3, DM1M1 is DM1 patient male 1, DM1M2 is DM1 patient male 2, DM1M3 is DM1

patient male 3, DM1M4 is DM1 patient male 4, DM2F1 is DM2 patient female 1, DM2F2 is DM2 patient
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female 2, DM2F3 is DM2 patient female 3, DM2F4 is DM2 patient female 4, DM2M1 is DM2 patient male

1, DM2M2 is DM2 patient male 2.

Closer analysis of the GeneMANIA generated network revealed that all but two
nodes were part of a subnetwork spanning rest of the nodes. The two nodes were zinc
finger 788 (ZNF788) and proline rich basic protein-1 (PROB1). They were not
connected to any other node in the network. ZNF788 belongs to krueppel c2h2 type
zinc finger protein family (The UniProt Consortium 2015). No disease mutation in
ZNF788 has been reported (Peterson et al. 2010). PROB1 has been found to be

mutated in human cancers (Wu et al. 2014).

Protein downregulated in both DM1 and DM2

Proteins products of three genes, RPL13A, P4HB, and MYH7B, were found to be
downregulated in both DM1 and DM2 (Figure 21A-C). RPL13A is a ribosomal protein
with diverse functions in translational control (The UniProt Consortium 2015). It has not
been associated with a disease in DMDM database (Peterson et al. 2010). It has been
found to be mutated in human cancers, which might be reflecting its polymorphism (Wu
et al. 2014). RPL13A was found to have extraribosomal function in translational control
of interferon regulated mRNAs. This led to the proposition of the depot hypothesis
(Mazumder et al. 2003; Ray, Arif, and Fox 2007). According to ENSEMBL database
(Ensembl release 82) RPL13A pre-mRNA contains 8 exons and 7 introns (Cunningham
et al. 2015). A number of transcripts with retained introns have been reported. These
transcripts are not translated into proteins (Cunningham et al. 2015). Since aberrant
splicing is a common defect in DM1 and DM2, it provides a mechanism by which

RPL13A protein levels might be downregulated in both DM1 and DM2.
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GeneMANIA based pathway analysis to find pathways that might be affected by
changes in RPL13A levels revealed translational control as the main pathway. Most of
the proteins in the resulting network were ribosomal proteins (Fig. 21A). One of the
members of the RPL13A network is Mago-Nashi Homolog (MAGOH), which is a
member of exon junction complex (The UniProt Consortium 2015). MAGOH regulates
neural stem cell division. A haploinsufficiency in Magoh leads to reduced brain size in

mouse (Silver et al. 2010).

Second protein downregulated in both DM1 and DM2 is prolyl 4-hydroxylase,
beta polypeptide (P4HB) (Fig. 21B). P4HB belongs to protein disulfide isomerase family
of proteins (The UniProt Consortium 2015). P4HB has not been found to be associated
with a human disease, but it has been found to be mutated in human cancers that might
be reflecting its polymorphism (Peterson et al. 2010; Wu et al. 2014). P4HB pre-mRNA
contains 11 exons and 10 introns. Similar to RPL13A, a number of transcripts with
retained introns have been described. These transcripts are not translated into proteins
suggesting a mechanism of downregulation dependent upon aberrant splicing
(Cunningham et al. 2015). GeneMANIA analysis of a network generated from P4HB

revealed association with metabolic enzymes (Fig. 21B).
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Figure 21 — Network of interactions of the three genes downregulated in both DM1 and DM2

Networks were generated using GeneMANIA Cytoscape plugin. The gene corresponding to the identified
protein is colored green. Grey nodes were inferred from by GeneMANIA. A) Network of interactions of

ribosomal protein RPL13A. B) Network of interactions of PAHB. C) Network of interactions of MYH7B.
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The third and final protein downregulated in both DM1 and DM2 was Myosin heavy
chain 7B (MYH7B) (Figure 21C). MYH7B has 9 transcripts that are generated by
alternative splicing (Cunningham et al. 2015). The largest protein coding isoform has 43
exons and 42 introns. The smallest protein coding isoform has 4 exons and 3 introns.
There is a transcript with retained intron that does not code for a protein (Cunningham
et al. 2015). MYh7B has been associated with left ventricular noncompaction disease
(Cunningham et al. 2015). The large numbers of introns in MYH7B pre-mRNA makes it
very susceptible to defects in splicing machinery. GeneMANIA analysis of a network
generated from MYH7B revealed interactions with other myosins as well as other

cytoskeletal components (Fig. 21C).

Protein upregulated in both DM1 and DM2

Protein products of three genes were found to upregulated in both DM1 and DM2
(Fig. 22A-C). The first gene is ATPase, Ca++ transporting, cardiac muscle, fast twitch 1
(ATP2A1). ATP2A1 is an ATP dependent calcium ion transporter responsible for
reuptake of Ca++ ions into the sarcoplasmic reticulum in striated muscles. A mutation in
ATP2A1 has been found to be associated with Brody disease (Odermatt et al. 2000).
Brody disease is a rare inherited myopathy characterized by delayed skeletal muscle
relaxation and silent cramps (Voermans et al. 2012). This is similar to myotonia
observed in DM, in which patients have difficulty relaxing their muscles. Brody disease
is associated with a loss of Calcium uptake function of ATP2A1. The significance of an
upregulation of ATP2A1 in both DM1 and DM2 is not immediately clear. GeneMANIA
analysis of the network generated from ATP2AL1 revealed its associations with a number

of cytoskeleton components (Fig. 22A).
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Figure 22 —

Networks were generated using GeneMANIA Cytoscape plugin. The gene corresponding to the identified
protein is colored red. Grey nodes were inferred from by GeneMANIA. A) Network of interactions of

ribosomal protein ATP2A1. B) Network of interactions of RAP1A. C) Network of interactions of RAP1B.

The other two proteins upregulated are Ras-related protein Rap-1A (RAP1A) and
Ras-related protein Rap-1b (RAP1B) (Fig. 22B-C). They are paralogous proteins with

similar sequences. They have been reported because it was not possible to distinguish

Kc(ram @) B

PLN KIDINS220
Q
FRS2 NS
O PRKD1
O ACTNZO O o SPw
YGM @) O RALGDSWHAB 7ok
O SIN. © DOK4 RAPGEF1
s B @) © FARP2
ATP2A1 RAPGEF4
RAP1A
55 MYBRGT. @ Twﬁcz N
o MYOZ © RASSF5
o © RAPGEF5
MYH1 TPM3 @) RAPGEF3ppg1|p CDC42
O MYBPC2
TNNIZ ©
o MYLPF @) Tcens
KIAA0195 ARAP3
@) O
RANBP10 RANBPY
O O
cDC42 FQPZ EXOC6

U%)C O O

PTK2
. RGL2
(©] RASSRAPGEF3
RAP1B. RAP1A
@]
EIF5 @) o
O SIPA1 RASGRP1
RAP1GAP
RAPGEF4
(0]
GARNL3

Network of interactions of the three genes upregulated in both DM1 and DM2

119



between the two based upon the identified proteins. They are members of RAS
oncogene family. RAP1A has 4 transcripts generated from alternative splicing, while
RAP1B has 33 transcripts. Neither protein has been found to be associated with an
inherited human disease (Peterson et al. 2010). GeneMANIA network generation and
analysis using RAP1A and RAP1B individually revealed associations with signaling
pathways as well as translation initiation factor. RAP1B was found to associate with

translation initiation factor elF5 as well ubiquitin.

Proteins downregulated in DM1

GeneMANIA network generation and pathway analysis revealed muscle function
related pathways to be overrepresented in the list of proteins downregulated only in
DML1 (Fig. 23A-B). There are 56 downregulated gene products in the GeneMANIA
network (Fig. 23A). The downregulated proteins included critical components of
muscles including Titin (TTN), myosin light chains, and myosin heavy chain. It also
included energy producing metabolic enzymes such as Phosphoglycerate kinase 1
(PGK1) and Fructose-bisphosphate aldolase A (ALDOA). Both of the proteins have
been associated with neuromuscular diseases (The UniProt Consortium 2015). Top 5
misregulated pathways in the list of proteins downregulated in DM1 are muscle filament
sliding, actin-myosin filament sliding, actin-mediated cell contraction, actin filament-

based movement, and muscle contraction (Fig. 23B).
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Figure 23 — Pathway analysis of proteins downregulated in DM1

Networks were generated using GeneMANIA Cytoscape plugin. The nodes corresponding to the
identified proteins are colored green. Grey nodes were inferred from by GeneMANIA. A) The network

interactions generated using GeneMANIA. B) Top 5 enriched pathways in the list.
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Another protein downregulated in DM1 is Superoxide dismutase (SOD1). A
number of mutations in SOD1 has been found to be associated with inherited familial
amyotrophic lateral sclerosis (ALS) (Nakano et al. 1994; Rosen et al. 1993; Kostrzewa,
Burck-Lehmann, and Muller 1994; P. M. Andersen et al. 2003). ALS shares many
similarities with DM (Robberecht and Philips 2013). Misregulation of SODL1 is an

interesting candidate event that could explain the similarities between ALS and DM.

Heat shock 70kDa protein 8 (HSPABS) is also downregulated in DM1. HSPA8 is a
multifunctional protein involved in activation of transcription, protein quality control and
bacterial lipopolysaccharide response in immune cells (Matsumura, Sakai, and Skach
2013; Triantafilou, Triantafilou, and Dedrick 2001; Yahata et al. 2000). Although HSPAS8
has not been implicated in inherited human diseases, as part of PRP19-CDC5L
complex it binds to all the core components of spliceosomes (Makarova et al. 2004). A

downregulation of HSPA8 might contribute to the splicing anomalies observed in DM1.

Proteins upregulated in DM1

The analysis of proteins upregulated in DM1 revealed protein products of 39
genes (Fig. 24). The network generated in GeneMANIA contains the 39 query genes
and 20 associated genes (Fig. 24A). Top five enriched pathways in the list are positive
regulation of mitochondrial membrane permeability involved in apoptotic process,
mitochondrial outer membrane permeabilization, protein insertion into mitochondrial
membrane involved in apoptotic signaling pathway, regulation of mitochondrial outer
membrane permeabilization involved in apoptotic signaling pathway, and regulation of
protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
(Fig. 24B).
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One protein upregulated in DM1 is Elongation factor 1-alpha 2 (EEF1A2).
EEF1AZ2 is a translation elongation factor belonging to TRAFAC class translation factor
GTPase superfamily and EF-Tu/EF-1A subfamily. It contains one tr-type G (guanine
nucleotide-binding) domain (The UniProt Consortium 2015). EEF1A2 has two
transcripts generated from alternative splicing. Both of the transcripts code for a 463
amino acid protein. One of the mMRNAs is made 8 exons, 7 of which constitute the
coding region while the other consists of 7 exons all of which are coding (Cunningham
et al. 2015). EEF1A2 has been found to be associated with Epileptic encephalopathy,
early infantile, 33 (Veeramah et al. 2013; de Ligt et al. 2012). EEF1A2 has also recently
been found to be associated with Mental retardation, autosomal dominant 38 (Nakajima
et al. 2015). Given the neurological symptoms of DM1, the aberrant function EEF1A2 in

DM1 seems to be one of the contributing factors in DM1 (de Ledén and Cisneros 2008).
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Networks were generated using GeneMANIA Cytoscape plugin. The nodes corresponding to the
identified proteins are colored red. Grey nodes were inferred from by GeneMANIA. A) The network

interactions generated using GeneMANIA. B) Top 5 enriched pathways in the list.

Another translational control protein upregulated in DM1 is ribosomal protein
S27a (RPS27A). RPS27A contains ubiquitin on its N-Terminus. It has 10 transcripts, 4
of which are protein coding (Cunningham et al. 2015). The largest protein coding
transcript consists of 6 exons, 5 which of which are coding exons. The smallest protein
coding transcript consists of 5 exons with 4 coding exons. Six non-coding transcripts
generated from RPS27A gene contain retained introns (Cunningham et al. 2015).
RPS27A has not been found to associated with an inherited human disease (Peterson
et al. 2010). RPS27A is one of the major contributors to the ubiquitin pool in the cells
(Bianchi et al. 2015). It is also involved in regulation of p53 level through degradation of
its regulator MDM2. Overexpression of RPS27A was shown to stabilize and increase
the amount of p53 (Xiong et al. 2011). It has been shown that DM1 muscles undergo an
increased rate of apoptosis (Loro et al. 2010). An increase in the amount of of RPS27A,
which might lead to an increase in p53 and apoptosis, provides a putative mechanism

for explaining this observation.

Discussion

A common theme in the proteins whose expression is altered in both DM1 and
DM2 is the presence of alternative splicing in their mMRNA maturation. This is in
agreement with the previous studies that showed a central role for aberrant splicing in
DM pathogenesis. In addition to supporting the previous studies, we have identified a

number of candidate proteins pathways that are attractive targets for follow up studies.
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Formation of cataracts is a common symptom in both DM1 and DM2. This was
initially thought to be caused by a decrease in expression of SIX5 gene in DM1 (Klesert
et al. 1997; Klesert et al. 2000; Sarkar et al. 2000). The decrease in SIX5 expression is
attributed to the changes in the heterochromatin around the DMPK locus. Since ZNF9
locus is not on the same chromosome, this suggested that the decrease in SIX5 protein
may not be the common mechanism behind cataract formation. It was also noted that
the type of cataracts observed in mouse deficient in Six5 and DM patients were different
(Rhodes et al. 2012). To identify candidate causal agents, a microarray study was done
on lens from DM patients (Rhodes et al. 2012). The study revealed differential
expression of interferon responsive genes. These genes might be activated in response
to double stranded RNA (dsRNA) in the cells (Rhodes et al. 2012). An important feature
of immune response is the temporal regulation of gene expression so that the
probability of a runaway immune response leading death of the host is reduced (R.

Mukhopadhyay et al. 2009).

A critical player in regulating the inflammatory response is the GAIT complex (R.
Mukhopadhyay et al. 2009). GAIT complex is heterotetrameric complex consisting of
IFN-y-activated inhibitor of translation (GAIT) complex comprising glutamyl-prolyl tRNA
synthetase (EPRS), NS1-associated protein 1 (NSAP1), RPL13A, and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH). GAIT complex is maintained in an inactive state
in which RPL13A is not present. RPL13A phosphorylation on the ribosome triggers its
release from the ribosome. Its subsequent binding to the inactive GAIT complex
activates it. The activated GAIT complex binds to the 3'UTR of target mMRNAs and

inhibits translation initiation (R. Mukhopadhyay et al. 2009). A decrease in RPL13A
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protein levels can cause failure of activation of GAIT complex. This might lead to a
decrease in the resolution of inflammation and can explain the observation of differential

expression of immune responsive genes in DM eyes (Rhodes et al. 2012).

A number of other candidate genes have been identified in this study that can
contribute to the different symptoms observed, especially in DM1. Surprisingly, no DM2
specific changes in the protein levels were observed. This could be because of the
milder phenotype of DM2. Since we solely relied on the statistical significance obtained
from our linear regression analysis, a technical reason could be the high variance in the
proteomic expression patterns of DM2 patients. Nevertheless, this study provides an

important resource and catalog of proteins differentially expressed in DM1 and DM2.

Studies in mouse models of DM2 had suggested a key requirement for ZNF9
protein, whose loss was able to recapitulate some of the symptoms of DM2 (W. Chen et
al. 2007). This suggested that loss of function of a protein was at least contributing to
DM pathogenesis in DM2. It became imperative to find the molecular function of ZNF9
protein. Previous studies in the Link lab had suggested a role for translational control in
DM2 pathogenesis due to the molecular function of ZNF9 protein. ZNF9 was found to
be involved in IRES mediated translation in yeast as well as cell culture models of DM1
(Gerbasi and Link 2007; Sammons et al. 2010). Another common theme in this study
was the misregulation of many translational control proteins. It provides further evidence

for the critical role of translational control in health and disease.
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Chapter V

Conclusions and Future Directions

In my graduate research, | studied three problems of the regulation of biochemical state
and the information repertoire of cells and tissues. The first problem involved studying
the regulation of biochemical states by the information from outside the cellular
boundary. | built a conceptual basis for interpreting complex cellular responses to
multiple concurrent environmental stimuli. The second problem involved testing the
ribosome filter hypothesis. A ribosome filter is a ribosome mediated regulatory element
that controls the amount of information flow from specific mMRNA transcripts to proteins.
The third and final problem was to investigate the proteomic changes in the skeletal
muscles of myotonic dystrophy patients. These proteomic changes might have been
caused by the disruption of information flow due to microsatellite repeat expansions in

the genomes of the patients.

Cellular responses to environmental stimuli

The complement of molecules contained in a cell, including the cell surface,
constitutes its biochemical state. The biochemical state is a reservoir of information. The
genetic material of an organism, its DNA or RNA, contains the template information
which is used to synthesize all of the necessary molecules, or in some cases the
molecules that can make or modify those molecules. The flow of information from the
genetic material to the functional molecules, for example RNAs or Proteins, is known as
the central dogma (Crick 1970). An organism uses the information flow to respond to
and modify its environment. This flow of information, however, is not linear. The DNA

bases can be covalently modified that affects the information flow through transcription
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(Suzuki and Bird 2008; Robertson 2005; T. Phillips 2008). Similarly, RNAs have been
found to be extensively edited or modified, which also modifies their information content
(Nishikura 2010). In most of these processes, the class of molecules responsible for the
function, the molecular actuators, are the proteins. Although the backbone of the protein
can be synthesized solely based upon the information content in the genetic material,
with the notable exception of those synthesized from edited mRNA templates, they
themselves can be covalently modified after synthesis. The covalent modifications can
have many functions that include altering the biochemical activity of the proteins,
modulating sub-cellular localization or binding to cofactors, and targeting or protecting
for degradation (Wells, Whelan, and Hart 2003; P. Anderson and Kedersha 2009; Wold
1981; Lodish 1981; Nussinov et al. 2012; Vucic, Dixit, and Wertz 2011; Beltrao et al.
2013; Terman and Kashina 2013). This adds another layer of information content.
There are two fold consequences of this added layer: (1) it allows the living beings to
store more information (increase in information repertoire) that it can use to respond to
a wider range of environments, and (2) the prior biochemical state, including its
complement of proteins and their covalent modifications, determines the exact cellular

response.

The information repertoire of the cells, therefore, is dependent upon two factors;
(1) the information in the genetic material, and (2) the information in the environmental
stimuli, including the prior stimuli they had been exposed to. Extrapolating this logic,
since genes and stimuli are just packets of information that cells use for their continued

survival, as an abstraction they can be thought to be the same. There is a very
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important consequence of this assumption, viz. the tools used for studying genes can

be applied for stimuli.

The information flow from genes has been a well-studied problem. Consequently,
there is a large body of work and a well-defined conceptual basis associated with it. The
conceptual basis for studying information flow and integration of information from
multiple genes is called gene interactions. It provided, in many cases, an easy
interpretation of observed changes in the characteristics or traits upon alterations in
genes. It has also been used to decipher the order in biochemical and signaling
pathways making it a very valuable tool for research (St Johnston 2002). With the
abstraction that stimuli are analogous to genes, most of these concepts and tools can

become available for studying the effects of multiple concurrent stimuli.

| used one of the abstractions, the dominance in gene interactions, as a tool to
identify proteins and transcripts that are important for responding to specific stimulus in
S. cerevisiae. The assumption here was that if a protein or transcript contains the
information important for responding to a stimulus, the effect of the stimulus would be
dominant over the effects of an unrelated stimulus. There is a caveat associated with
this approach that makes using absolute dominance fraught with false negative results.
If a biomolecule contains information for responding to multiple stimuli among the set
under investigation, dominance will not observed. This would lead to a false negative

result. To address this caveat and further refine the idea follow up studies are needed.
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Follow up studies about environmental interactions and epistasis
The follow up studies on environmental interactions and epistasis can be
classified into two categories — (1) showing the general applicability of the ideas, and (2)

understanding the mechanistic basis behind the interactions.

The validity of the concepts of environmental interactions and epistasis has been
shown only in S. cerevisiae with the transcriptomic and proteomic changes (Samir et al.
2015). Paucity of published datasets in other organisms makes it difficult to test the
general validity of the concept. There is a published dataset in which liquid cultures of A.
thaliana cells were used to study the effects of carbon dioxide concentrations and high
salinity on the transcriptome as well as the metabolome (Kanani, Dutta, and Klapa
2010; Dutta et al. 2009). This dataset is ready resource to test the validity of the
conceptual basis in plants. The post-translational modifications data in the study of high
osmolarity or pheromone signaling provides a resource for testing the hypothesis with a

different cellular response, albeit still in S. cerevisiae (Vaga et al. 2014).

HelLa cells could be used to test the hypothesis in mammalian systems. The
stimuli used could be increasing concentrations of two inhibitors that target different
signaling pathways. Rapamycin can be used to inhibit the mTOR pathway while one of
the “inhibitors of Wnt response” compounds (Law 2005; Baozhi Chen et al. 2009).
Transcriptomic responses can be measured by RNA-Seq and the proteomic responses
can be measured by iTRAQ labeling liquid chromatography tandem mass spectrometry
(Ross et al. 2004; Cloonan et al. 2008; Lister et al. 2008; Nagalakshmi et al. 2008; B. T.
Wilhelm et al. 2008; Mortazavi et al. 2008). Phosphoproteomics analysis can be used to
assay the changes in phosphorylation states of the target proteins (Winter et al. 2012).
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Mouse models of T-cell and B-cell activation can be used to test the validity in
mammalian systems in vivo. An ovalbumin specific transgenic mouse, OT-1 can be
used as the model system. This strain of mice contains T-cell receptor that is specific to
a peptide antigen generated from ovalbumin (Hogquist et al. 1994; Clarke et al. 2000).
The stimuli used can be different concentrations of the antigenic peptide and the
adjuvants. The transcriptomic and proteomic responses can be assayed in peripheral
blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN). Metabolomic
changes can be assayed in blood plasma. An important feature of this study design is
the use of different concentrations of the stimuli. A multiple linear regression model built
with the different concentrations can help identify the molecules that are important for

responding to multiple stimuli if their response is dose dependent.

The second aspect, to identify a mechanistic basis for the observed phenomenon
can be done in S. cerevisiae using the same stimuli as before with quantitative
proteomics analysis. In this study, a time course experiment would be needed. The
order of application of the second stimuli would need to be changed. This experiment
design would allow assay of kinetics of modulation of the proteome. The biomolecular
complexes, or their components, that are differentially regulated in the kinetics
experiments can be the candidates, with an assumption that they are involved in the
modulation information flow, for pursuing more in depth biochemical and genetic

analyses.

Regulation of proteome by the ribosome filter
In this study, | used two complementary techniques, quantitative mass

spectrometry and cryo-EM (in collaboration with the Joachim Frank lab), to test the
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ribosome filter hypothesis by measuring changes in the protein composition of the
ribosomes. The ribosome filter provides a mechanism for the ribosomes to regulate
information flow through translational control. It can act through the use of specific

paralogs for translating specific mMRNAs more efficiently.

| identified 11 ribosomal proteins whose abundances in the purified ribosomes
were changing. The list included a paralog pair, Rpl8a and Rpl8b. Polysome profiling
with the null mutants of either Rpl8a or Rpl8b suggested that their functions are not
redundant. | identified 80S ribosomes with substoichiometric protein compositions using
cryo-EM. A time course experiment after shifting cells from a glucose containing media
to a glycerol containing media followed by ribosome purifications cryo-EM analysis
showed that the proportions of the substoichiometric ribosomes were changing. This

suggested the cells dynamically regulate their ribosome composition.

In conclusion, | have used two techniques to assay the changing composition of
ribosomes. These changes support the ribosome filter hypothesis. Follow up
experiments are needed to identify the transcripts affected by Rpl8a/b mediated

ribosome filter as well the underlying mechanism.

Follow up studies on ribosome mediated translational control

| have identified a candidate paralog pair, Rpl8a and Rpl8b, which might have
specific functions in translation. They might be required for translation of specific
transcripts. However, the identity of the transcripts is not known. Ribosome footprint
profiling after RNAse treatment can be used to identify such transcripts. Once the

transcripts have been identified, two complementary approaches can be used to
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decipher the mechanism through which RPL8A or RPL8B helps translate specific
transcripts. In the first approach, a bioinformatics search can be performed to find
sequence motifs overrepresented in transcripts that need a specific paralog. Reporter
assays can be done to check the effects of the sequence motifs on translation. In the
second approach, in vitro translation reactions using the ribosomes from the null
mutants can be used to directly assay the rate of translations of the identified
transcripts. The transcripts will need to be in vitro transcribed to ensure quality control

across experiments.

After testing the ribosome filter hypothesis in yeast, it could be tested in
mammalian cell culture system using a similar approach. In this case, HeLa cells can be
used as the model system because they are one of the most well characterized

mammalian cell culture systems.

Another question that arises from this study deals with the exact mechanism(s) of
change in the composition. There can be three models that explain the changes in the
composition. In the first model, there are free floating ribosomal protein paralogs in the
cytoplasm or nucleus. Upon specific signaling cues, the paralog on the ribosome is
exchanged for the free floating one. The advantage of this model for the cell is that the
kinetics of changing composition will be the fastest. However, the cells would need to
synthesize proteins that they do not need at any given time. This will mean expenditure
of energy to keep the system primed. Since translation is the most energetically costly
process in the cells, and translation of ribosomal proteins constitutes a very large chunk
of the total expenditure, the energetic cost for the cell will be very high. In the second
model, new ribosomes are synthesized with specific paralogs in response to signaling
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cues. In this model, there is less expenditure of energy as cells synthesize only the
ribosomal proteins and rRNASs that they need at any given time. However, a
disadvantage of this model for the cell is that the response time might be very high. This
is because the biogenesis of ribosomes requires multiple steps. In the third model, the
cells degrade the ribosomes that contain the paralogs that they do not need. The short
term energy cost of this model is the least because it does not require synthesis of new
ribosomes. However, the long-term energy cost of this model might be the highest
because it does not involve synthesis of ribosomes only with the paralog that is needed.
This means the cells will have to continuously spend energy on making ribosomes that
it does not need and then degrade it. To decipher the exact mechanism, labeling with

stable isotopes followed by mass spectrometry quantitation can be used.

Regulation of proteome by RNA repeat expression in myotonic dystrophy

RNA repeat expansion disrupts the information flow by sequestering important
RNA binding factors that regulate the transfer and modification of information from
genome to proteins. | have identified several candidate proteins that might have roles in
DM pathogenesis. This included RPL13A, P4HB, and MYH7B. This study is a starting
point for further studies with these candidate proteins to dissect the mechanism of

disruption in information repertoire that leads to DM.

Follow up studies about the proteomic changes in myotonic dystrophy

A number of interesting candidate proteins were identified that might play roles in
DM pathogenesis. Since | am interested in translational control, especially the
regulation by ribosomes, | think RPL13A is a very interesting candidate. A previous
transcriptomic study had identified misregulation of inflammatory response genes in eye
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lenses of DM patients. Since RPL13A protein has been shown to regulate inflammation
in a temporal manner, it might be playing a role. Inflammation inside the eye has been
found to be associated with cataract formation (Hodge, Whitcher, and Satariano 1994;
Durrani et al. 2004). Since RPL13A inhibits translation of proinflammatory proteins as
part of GAIT complex, its loss of function can cause persistent inflammation. This could
explain the observation of cataracts in DM patients. The function of RPL13A can be

studied in mouse models.

Since ZNF9 has been found to be involved in IRES mediated translation, it would
be informative to find its in vivo targets. RNA-pulldown experiments followed by RNA-
Seq can be used to identify its targets. An attractive alternative is the PAR-CLIP for
identification of RNA binding sites for candidate RNA binding proteins on the transcripts.
An unrelated RNA binding protein, such as PABP can be used as a control in this
experiment. Once the targets have been identified, their regulation in DM2 patients can
be studied. Yeast, cell culture and mouse models can be used to study the effect of
their loss of function. X-Ray crystallography can be used to determine the structural

basis for Znf9 binding to mMRNAs.

136



Appendix A — Table 1: Proteins Quantitated in Environmental

Interactions Study

https://drive.google.com/open?id=0BxmfH2AgA HkO2NnTTZ5eGZQa3M

Appendix B — Table 2. GeneMANIA pathway analysis output

for HT stimulus

https://drive.google.com/open?id=0BxmfH2AgA HKkRTZNZGROeTE1Z1k

Appendix C — Table 3. GeneMANIA pathway analysis output

for G stimulus

https://drive.google.com/open?id=0BxmfH2AgA HkOQ3h3WFFVcF9vZ2c

Appendix D — Table 4. GeneMANIA pathway analysis output

for HT+G stimulus

https://drive.google.com/open?id=0BxmfH2AgA HkbzFZMmMRSRGJEYmc

Appendix E — Table 5: GeneMANIA pathway analysis output

for HT stimulus dominance

https://drive.google.com/open?id=0BxmfH2AgA Hkd2VEdOtkdHUtT28
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Appendix F — Table 6: GeneMANIA pathway analysis output

for G stimulus dominance

https://drive.google.com/open?id=0BxmfH2AgA HkOnE3M1ZwalpwTOE

Appendix G — Table 7: GeneMANIA pathway analysis output
for non-specific environmental response in protein

expression

https://drive.google.com/open?id=0BxmfH2AgA HkcGc4bXhSOVF3V2c

Appendix H - Table 8: GeneMANIA pathway analysis output

for discordance in protein expression

https://drive.google.com/open?id=0BxmfH2AgA HkVFdiMW4xbGdaQzA

Appendix | — Table 9: GeneMANIA pathway analysis output

for suppression in protein expression

https://drive.google.com/open?id=0BxmfH2AgA HkeHJ4bWJvTzBISEE
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Appendix J — Table 10: GeneMANIA pathway analysis output

for environmental epistasis in protein expression

https://drive.google.com/open?id=0BxmfH2AgA HkRTI2aWdZNUsyWDA

Appendix K — Table 11: GeneMANIA pathway analysis output

for no environmental epistasis in protein expression

https://drive.google.com/open?id=0BxmfH2AgA HKOEhOUTZiIUGpRaws8

Appendix L — Table 12: Complete data matrix of transcripts

https://drive.google.com/open?id=0BxmfH2AgA HKkMTF5dzdwM1NLUM8

Appendix M — Table 13: GeneMANIA pathway analysis output

for environmental epistasis in transcript expression

https://drive.google.com/open?id=0BxmfH2AgA HkaGJiIUXNLTOV|N2c

Appendix N — Table 14: GeneMANIA pathway analysis output

for dominance of NS

https://drive.google.com/open?id=0BxmfH2AgA Hkbzg00Q1IMYyl0OVms
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https://drive.google.com/open?id=0BxmfH2AgA_Hkbzg0Q1lMYy1QVms

Appendix O — Table 15: GeneMANIA pathway analysis output

for dominance of AN

https://drive.google.com/open?id=0BxmfH2AgA HkUWdSbm5KclIF5YWM

Appendix P — Table 16: Doubling times under the 8 growth

conditions

https://drive.google.com/open?id=0BxmfH2AgA HkbkdCVGp2WWJIOQOMIk

Appendix Q — R source codes for the analysis in

environmental interactions analysis

https://drive.google.com/open?id=0BxmfH2AgA HkdmplZG1STIYZkU

https://drive.google.com/open?id=0BxmfH2AgA HkZIpOOGNJTU16N0Ok

https://drive.google.com/open?id=0BxmfH2AgA HKMUMySWxOWmdNSXc

https://drive.google.com/open?id=0BxmfH2AgA HkMHozNjZ4ANDA50OUU

Appendix R — Python source code for GoZilla

https://drive.google.com/open?id=0BxmfH2AgA HKMIpiINTBOSUVZMkU
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https://drive.google.com/open?id=0BxmfH2AgA HKOTRGSVdsOWMOLVU

https://drive.google.com/open?id=0BxmfH2AgA HkZ1h4bkxMellCUTqg

https://drive.google.com/open?id=0BxmfH2AgA HkemJCX2puNmYiSW8

Appendix S — Python source code for CompZilla

https://drive.google.com/open?id=0BxmfH2AgA HkVnF2WkVKdy1PWUU

https://drive.google.com/open?id=0BxmfH2AgA HkanRTLWdDeEUyXzA

https://drive.google.com/open?id=0BxmfH2AgA HkzZUZ6SDM2LWxwWmM

Appendix T — Table 17: Purified ribosomes quantitative

proteomics dataset.

https://drive.google.com/open?id=0BxmfH2AgA HkOHZacmIOWFcwcFU

Appendix U — Table 18: Myotonic dystrophy quantitative

proteomics datasets.

https://drive.google.com/open?id=0BxmfH2AgA HkRUwwciO5UOFFaGs

141


https://drive.google.com/open?id=0BxmfH2AgA_HkOTRGSVdsOWM0LVU
https://drive.google.com/open?id=0BxmfH2AgA_HkZ1h4bkxMellCUTg
https://drive.google.com/open?id=0BxmfH2AgA_HkemJCX2puNmYtSW8
https://drive.google.com/open?id=0BxmfH2AgA_HkVnF2WkVKdy1PWUU
https://drive.google.com/open?id=0BxmfH2AgA_HkanRTLWdDeEUyXzA
https://drive.google.com/open?id=0BxmfH2AgA_HkZUZ6SDM2LWxwWmM
https://drive.google.com/open?id=0BxmfH2AgA_HkOHZacmI0WFcwcFU
https://drive.google.com/open?id=0BxmfH2AgA_HkRUwwci05U0FFaGs

Appendix V — Manuscript — 1: Environmental Interactions and
Epistasis Are Revealed in the Proteomic Responses to
Complex Stimuli

142



G PLOS | one

chck for updates

aOPEN ACCESS

Citation: Samir P, Rahul, Slaughter JC, Link AJ
(2015) Environmental Interactions and Epistasis Are
Revealed in the Prel Rest to Complex

Stimuli. PLoS ONE 10{8): €0134099. doi:10.1371/
journal pone. 0134099

Editor: Ben Lehner, CRG, SPAIN
Received: May 19, 2015
Accepted: June 26, 2015
Published: August 6, 2015

Copyright: © 2015 Samir el 2l This is an cpen
access arficle distributed under the terms of the
Creative Commecns Altribulion License, which permits
unrestricled use, distribution, and reproduction in any
medium, provided the original author and scurce are
credited.

Data Availability Statement: Dala have been
depasited o Proteome Exchange: PXD002371.

Funding: AJL and PS were supported by NIH grant
GM0B4779 and Vanderbit University School of
Medicine IDEAS Program grant 1-04-066-9530 to
AL

Competing Interests: The aulhors have declared
Ihat no compeling inleresls exisl

RESEARCH ARTICLE

Environmental Interactions and Epistasis Are
Revealed in the Proteomic Responses to
Complex Stimuli

Parimal Samir’, Rahul?, James C. Slaughter®, Andrew J. Link"*5*

1 Department of Biochemistry, Vanderbilt University School of Medicine, Mashville, Tennessee, United
States of America, 2 Department of Applied Mathematics, University of Wateroo, Waterloo, Ontanio,
Canada, 3 Depariment of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee,
United States of America, 4 Depariment of Pathology, Microbiology and Immunology, Vanderbilt University
School of Medicine, Nashville, Tennessee, United States of America, 5 Department of Chemistry, Vanderbilt
University, Nashville, Tennessee, United States of America

* andrew.link @ vanderbilt.edu

Abstract

Ultimately, the genotype of a cell and its interaction with the environment determine the
cell's biochemical state. While the cell's response to a single stimulus has been studied
extensively, a conceptual framework to model the effect of multiple environmental stimuli
applied concurrently is not as well developed. In this study, we developed the concepts of
environmental interactions and epistasis to explain the responses of the S. cerevisiae prote-
ome to simultaneous environmental stimuli. We hypothesize that, as an abstraction, envi-
ronmental stimuli can be treated as analogous to genetic elements. This would allow
maodeling of the effects of multiple stimuli using the concepts and tools developed for study-
ing gene interactions. Mirroring gene interactions, our results show that environmental inter-
actions play a critical role in determining the state of the proteome. We show that individual
and complex environmental stimuli behave similarly to genetic elements in regulating the
cellular responses to stimuli, including the phenomena of dominance and suppression.
Interestingly, we observed that the effect of a stimulus on a protein is dominant over other
stimuli if the response to the stimulus involves the protein. Using publicly available transcrip-
tomic data, we find that environmental interactions and epistasis regulate transcriptomic
responses as well.

Introduction

In their native environments, cells continuously respond Lo a complexily of environmental sti-
muli. These include ambient temperature fluctuations, nutrient availability, signaling mole-
cules, and physical forces. In response, cells adjust their biochemical state through multiple
mechanisms including the differential production, modification, and degradation of transcripts
and proteins [1,2,3,4,5]. Both extracellular signaling and the metabolic environment strongly
influence a cell's growth and responses to therapeutic treatments [6,7,8,9]. Model organisms
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have been used extensively to study cellular responses to individual and combinations of envi-
ronmental stimuli [1,10,11,12,13,14,15,16,17]. We extend these approaches by developing and
testing a novel conceptual framework to study proteomic responses of cells to the combinato-
rial effects of multiple concurrent environmental factors. We have modeled our analysis of
these complex environmental interactions using the concepts of gene interaction and genetic
epistasis.

Gene interaction is defined as the interaction between genes at different loci that affect the
same characteristic or a trait [ 18]. Classically, genetic epistasis is referred to a type of gene
interaction in which a mutation at one locus masks or suppresses the phenotype of a mutation
ata different locus [18,19]. To test the independence of the effects of individual genes, genetic
epistasis has also been defined mathematically as a type of gene interaction in which the com-
bined effect of two or more mutations is not the sum of the effects of the individual mutations
[20,21,22].

Conceptually, the problem of studying multiple concurrent environmental stimuli is similar
to the problem of studying the effects of multiple genetic mutations. The product of a gene
functions as part of one or more functional modules in concert with the products of many
genes. The changes in a gene, for example its loss of function or gain of function, affects the
phenotype due to the changes in the activity of the functional modules. If multiple genetic
alterations are present, the total effect is due to the integration of the effects of the individual
alterations through the functional modules. Similarly, environmental stimuli affect the bio-
chemical state of the cells through specific sensing, signaling, and response modules. Concur-
rent application of multiple environmental stimuli, similar to the genetic alterations, requires
the integration of information from these modules Lo mount an optimal response. By consider-
ing an environmental stimulus as an analogue of a gene, we hypothesized that the concepls of
gene interaction and epistasis can be extrapolated to devise a conceptual framework for study-
ing the combined effects of multiple concurrent stimuli. There are several benefits of using this
approach; (1) all the genetic, biochemical, and computational tools and concepts developed for
studying gene interactions would become available for studying the effects of the environment,
(2) it would allow for easier mechanistic interpretation of the responses to complex environ-
mental stimuli, (3) the contributions of an individual stimulus to altering biological processes
can be more easily elucidated, and (4) it would provide a unifying framework for studying
gene-gene, gene-environment and environment-environment interactions.

In this study, we define an environmental interaction as the interaction between different
environmental stimuli that affect the same observable characteristic or trait. Similar to the sta-
tistical definition of genetic epistasis, environmental epistasis is an environmental interaction
in which the effects of the individual stimuli are not independent of each other [20,21,22].

To test our hypothesis, we used the yeasl S. cerevisiae and grew cells al standard conditions
(glucose, 30°C) and changed growth conditions Lo either high temperature (37°C, HT stimulus)
or the non-fermentable carbon source glycerol (G stimulus), and concurrently with both envi-
ronmental stimuli (glycerol, 37°C, HT+G stimuli) (S1 Fig). Using precise quantilative proteo-
mics of the 5. cerevisiae proteome and the changes in protein abundance as the readouts of the
interactions, we show that environmental interactions and epistasis play central roles in deter-
mining the state of the proteome in response to multiple, concurrent environmental stimuli.
We also show that, using the dominance of one stimulus over another, environmental interac-
tions can be used to identify proteins that are important for responding to a dominant stimu-
lus. We validated our approach using an independent publicly available transcriptomic dataset.
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Experimental Procedures
Strains and Media

All experiments used the diploid S. cerevisiae strain BY4743, which has been previously
described [23]. Cells were grown using standard techniques [24].

Growth rate analysis

Cells were grown in 96 well plates in 100 pL cultures (10 pL of starter culture and 90 pL of
fresh media) with continuous shaking in a BioTek Synergy 4 Hybrid Microplate Reader for

10 h. Growth rates were assayed in 8 conditions: (1) Synthetic complete medium with glucose
(ScD) at 30°C, (2) ScD al 37°C, (3) Synthetic complete medium with glycerol (SeG) at 30°C,
(4) ScG at 37°C, (5) Yeast extract, peptone medium with glucose (YPD) at 30°C, (6) YPD al
37°C, (7) Yeast extract, peptone medium with glycerol (YPG) at 30°C, and (8) YPG at 37°C.
Absorbance was measured at 660nm at 3 min intervals. Using custom R scripts, the doubling
times were calculated from the linear regression curve through the log growth phase using the
log of the absorbance and time of growth. A two-tailed -test of independence with Bonferroni
correction for the 11 comparisons (7 comparisons of the control, YPD at 30°C, to the test con-
ditions, 3 comparisons of the observed concurrent double stimuli effect to the expected sum of
individual stimulus effects, and 1 comparison of the observed concurrent three stimuli effect to
the expected sum of the effects of the three individual stimulus) was used to calculate the statis-
tical significance of a stimulus effect on the growth rate [25].

Preparation of yeast protein extracts

Five mL of YPD (1% yeast extract, 2% peptone, 2% glucose) was inoculated with a single yeast
colony from a YPD agar plate and grown overnight. Three replicates were grown under each
growth condition: YPD at 30°C and 37°C and YPG at 30°C and 37°C. Fifty mL of YPD was
inoculated with 50 pL of the overnight culture and grown at 30°C and 37°C. One hundred mL
of YPG (1% yeast extract, 2% peplone, and 3% glycerol viv) was inoculated with overnight cul-
tures and grown at 30°C and 37°C. The cultures were grown with constant shaking at 175 rpm
in Innova 44 shaker incubators (New Brunswick Scientific). For all four growth conditions,
cells were harvested at mid-log phase as determined by ODygpy measurements. Cells grown in
YPD were harvested after 14 h, while cells grown in YPG were harvested after 24 h. All cultures
were centrifuged at 2000 rpm for 5 min at 4°C using a Sorvall HLR6/H600A/HBB6 rotor in
Sorvall RC-3B centrifuge and washed with ice cold deionized H,0. The cell pellets were resus-
pended in 1 mL ice cold wash buffer (10 mM Tris pH 8.0, 5 mM beta-mercaptoethanol,

500 mM ammonium chloride, 100 mM magnesium acelate) and lysed al 4°C using glass beads
and a Bead Beater (BioSpec, Inc) for 10 min as previously described [26]. The whole cell
extracts (WCE) were clarified by centrifugation at 20,000g for 15 min at 4°C, and a 200 pL
aliquot of the cleared WCE was stored at -80°C.

Isobaric tag for relative and absolute quantitation (iTRAQ) labeling

The total protein concentration was determined using a Bradford assay according to the manu-
facturer’s protocol (Sigma Aldrich). For each growth condition, 50 pg of total protein was
mixed with 50 ng of bovine serum albumin (Thermo Scientific) as an internal standard. Each
protein sample was acetone precipilated and resolublized in 25 pl iTRAQ dissolution buffer
(500 mM triethylammonium bicarbonate, (.1% sodium dodecyl sulfate). The proteins were
reduced with tris(2-carboxyethyl)phosphine at 60°C for 60 min and the cysteines were deriva-
tized with methyl methanethiosulfonate at room temperature for 10 min. All samples were
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digested with sequencing-grade modified trypsin (1:50; Promega Corporation) overnight at
37°C. Equal fractions of the tryptic digests rom the three replicates grown in YPD at 30°C
were pooled separately and used as a control for the iTRAQ experiments. Fifty pg of the pooled
control and 50 pg of each of the replicates were used for iTRAQ labeling. The iTRAQ labeling
reagents were resolublized in 150 uL anhydrous ethanol (Sigma Aldrich). 75 uL of iTRAQ
reagent solutions were added to each 50 pg sample, incubated with shaking for 1 h at room
temperature on an Eppendorf Thermomixer R, pooled, frozen, lyophilized, resolublized in

200 pL of buffer A (0.1% formic acid), and stored at -80°C.

Liquid chromatography and mass spectrometry

The iTRAQ-labeled samples were analyzed with MudPIT as previously described [27]. Precur-
sor ions were analyzed in the Orbitrap mass analyzer followed by four CID fragment ion scans
in the ion trap and four HCD fragment ion scans (normalized collision energy = 45%) in the
Orbitrap.

iTRAQ data analysis: RAW files generated by the MudPIT experiments were searched
using the Sequest HT database search engine running under Proteome Discoverer v1.4 (Thermo
Scientific) against a forward and reverse yeast protein database (S.cererevisiae_orf_trans_all_SGD.
fasta.6718) with appended common contaminant sequences [28,29]. Beta-methylthiolation and
iTRAQ modifications were included as constant modifications. Oxidalion of methionine and
tryptophan, and deamidation of glutamine and asparagine were used as variable modifications.
Precursor mass tolerance was set to 3 Da and fragment mass tolerance was sel to 0.8 Da. Protein
assembly, reporter ion quantitation, and protein fold change calculations were done using Pro-
teolQ at 5% peplide and protein FDR (Premier Biosoft). Hierarchical clustering analysis was done
using Cluster 3.0 [30]. Heatmaps were generated using Java Treeview [31]. Circos plots were
generated as described in Krzywinski et. al. to visualize the genomic locations of the quantitated
proteins [32]. For better visualization, only those regions of the genome that were quantitated in
this study are shown. The mass spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the dataset identifier PXD002371
(33].

Environmental interaction analysis

All analysis was performed using R scripts to parse the fold change expression data to identify
proteins that show specific expression patterns in response to complex environmental stimuli.
For each protein, we used linear regression to test for any association of high temperature or
glycerol using a model that included main effects for glycerol and temperature and the glycerol
by temperature interaction. We used the effect size estimates and ANOVA p-values (3 degrees
of freedom) calculated by the Im function and adjusted the p-values for a 5% FDR using the
Benjamini-Hochberg procedure for finding differentially expressed proteins [34]. We used
the adjusted p-value cut-off of 0.05 to determine statistical significance. If the overall adjusted
p-value was greater than 0.05, we classified the proteins as non-responders. The positive and
negative signs of the effect size estimates correspond to upregulation and downregulation,
respectively, showing the direction of change. The remaining proteins were further classified
into environmental interaction classes based upon the effect size estimate p-values and the
direction of change. If the p-value of an estimale was less than 0.05, the prolein was considered
differentially expressed in response to that environmental stimulus,

To test if a protein is affected by environmental epistasis, the effect size estimates for the
individual high temperature (HT) and glycerol stimuli (G) were summed, the combined
standard error calculated as the square root of the sum of the squared standard errors, and a
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two-sample f-test of independence was used to compare the summed effect size estimate Lo the
effect size estimate for the concurrent high temperature and glycerol stimuli (HT+G). If a t-test
p-value was less than 0.05, the protein was assumed Lo be affecled by environmental epistasis.

Environmental interaction analysis of transcriptomic dataset

Normalized expression data described in Knijnenburg et. al. was downloaded [13]. The tran-
scriptomic dala were generaled using haploid S. cerevisiae (CEN.PK113-7D MATa) cells
grown in chemostal cultures [13]. We chose 4 culture conditions similar to our experimental
design for further analysis. The culture conditions tested were: 1) with ammonium sulfate as
the nitrogen source (n = 5), 2) with methionine as the nitrogen source (n = 3), 3) anaerobic
conditions (n = 4), and 4) with methionine as the nitrogen source and anaerobic conditions
concurrently (n = 3). Transcriptomic data from the cells grown with ammonium sulfate as the
nitrogen source were used as the baseline control. The fold change was calculated by subtract-
ing the average normalized expression data of baseline samples from the individual expression
data. Finally, the genes were classified into various types of environmental interactions as
described above.

Co-expression network analysis

Sparse PArtial Correlation Estimation (SPACE) was used to build protein co-expression net-
works and identify the hub genes [35]. To account for outliers, the data were normalized using
probabilistic quotient normalization and scaled using a generalized logarithmic scaling factor
[26,37]. The data were scaled and centered to have a standard deviation of 1 and mean of 0 to
remove any bias in the correlation analysis [38]. We estimated the partial correlation matrix
using the space.dew method implemented in the SPACE R package [35]. We selecled the
default value of the tuning parameler for constructing the initial network [35]. The network
was visualized in Cyloscape 3.1.1 [39].

Results

While cells measure and respond to many environmental stimuli, we chose lemperature and
carbon source to test our hypothesis. Both stimuli are known to be important factors for sur-
vival and have wide-ranging effects on yeast metabolism [1]. We used growth with glucose at
30°C as the control, and high temperature and glycerol as the stimuli. The changing growth
conditions were: glucose at 37°C (HT stimulus), glycerol at 30°C (G stimulus), and glycerol at
37°C concurrently (HT+G stimulus). To precisely measure the proteomic responses of the cell,
we used isobaric tag for relative and absolute quantitation (iTRAQ) labeling followed by multi-
dimensional protein identification technology (MudPIT)-based mass spectrometry to quantify
the steady state proteomes under the four different growth conditions (51 Fig) [40,41]. A total
of 1064 proteins were quantitated in the control and the three test conditions. We filtered the
data to focus only on the 466 proteins that were quantitated in all three independent replicates
of all of the three test conditions (Fig 1A, S1 ‘Table). Cross-correlation analysis of the filtered
data showed high reproducibility among the replicates (S2 Fig). The proteomic changes in the
cells grown with the concurrent stimuli were more similar to the changes induced by glycerol
compared to high temperature (52 Fig).

We defined the response Lo an environmental factor(s) as the log,-fold change in protein
abundance/expression between the control and experimental conditions. For this study, we
used “fold change” to denote the log; fold change. We buill linear regression models for each
protein using fold changes to estimate the effect sizes of the stimuli. We used ANOVA for esti-
mating statistical significances since we were comparing multiple stimuli. We interpreted the
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Fig 1. Proteomic responses to complex environmental stimuli. Diploid S. cerevisiae (BY4743) cells were grown in rich media under 4 conditions: 1)
glucose as the carbon source at 30°C, 2) glycerol as the carbon source at 30°C, 3) glucose at 37°C, and 4) glycerol at 37°C. Three biological replicates for
each growth conditions were performed. Fold changes were calculated from iTRAQ reporter ion intensities using reporter ion intensities from the pooled
replicates of growth in glucose as the carbon source at 30°C as the baseline. The fold changes were log, transformed for downstream analysis. The color bar
shows the fold change range. A} Complete filtered proteomic dataset for high temperature stimulus {HT}, glycerol stimulus (G), and concurrent glycerol and
high temperature stimuli (HT+G) (Red: Up, Green: Down, Black: No change). The heatmap represents the fold changes of 466 proteins. B) Fold changes of
283 proteins differentially expressed in response to HT stimulus. C) Bar graph shows the—-og g-value of enrichments of the top 5 pathways in the list of
proteins differentially expressed after the HT stimulus, D) Fold changes of 379 proteins differentially expressed in response to the G stimulus, E) Bar graph
shows the—log g-value of enrichments of the top 5 pathways in the list of proteins differentially expressed after the G stimulus.

doi:10.1371/journal.pone.0134099.9001

positive or negative sign of the effect size as either upregulation or downregulation, respec-
tively. The Benjamini-Hochberg procedure was used to adjust the ANOVA p-values at 5%
FDR [34]. A protein was assumed to be differentially expressed if the adjusted overall ANOVA
p-value was less than 0.05. These proteins were further analyzed and classified into different
environmental interaction classes using the direction of the change (upregulated or downregu-
lated) and the p-values of the effect size estimates [34].

Stimuli-specific expression patterns can be used to identify proteins
important for responding to the stimuli.

We observed 283 proteins differentially expressed with high temperature, 379 proteins differ-
entially expressed in response to glycerol, and 370 proteins were differentially expressed in con-
current high temperature and glycerol (Fig 1B and 1D, and S1 Table), while 41 proteins did not
change in response to any of the stimuli. We selected GeneMANIA Cytoscape plugin for path-
way analysis since it extends the input list of differentially expressed proteins by adding related
proteins to enhance sensitivity and coverage [42,43]. It also allows using the complete prote-
ome as the background. This helped to build a more complete picture of differentially regulated
pathways. Pathway analysis of these two differentially expressed protein groups revealed the
same top five pathways; none were specific to either stimulus (Fig 1C and 1E). All of the top
five pathways were related to protein synthesis and translational control, suggesting that the
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regulation of protein synthesis is an important step in responding to environmental stimuli.
Translation factors are some of the most abundant proteins in yeast and our proteomic assays
are limited by the abundance of proteins in the cell. Although this could have confounded
pathway analysis and led to the identification of translation associated pathways as being the
most enriched, using only the differentially expressed proteins suggests that these pathways
are, at the least, being differentially regulated. Furthermore, similar observations have also
been made in previous studies [1,10,44]. [t is noteworthy that the pathways expected to be
important for responding to these stimuli, such as “protein folding” for growth at high temper-
ature and “TCA cycle” for growth with glycerol were present farther down the list at numbers
39 and 53, respectively (S2 and S3 Tables) [45,46,47]. This mirrors a common problem in
‘omics’ studies that generate large lists of candidate genes, transcripts and proteins, The impor-
tant responders are lost in a long list where a majority of differentially expressed genes or pro-
teins is not directly responding to the stimulus. Therefore, choosing candidates for an in-depth
mechanistic study becomes a challenge.

To address this problem, we devised a methodology using dominance in environmental
interactions to idenlify proteins and pathways important for responding to a stimulus. We
noticed proteomic expression patterns in which the response to one stimulus was dominant
over the other. We speculated that a protein critical in responding to a stimulus will respond to
that stimulus even when challenged by a competing stimulus. If this hypothesis is correct, such
an environmental interaction could serve as a filter to select and identify proteins that respond
specifically to the dominant environmental stimulus.

To test this hypothesis, we classified the list of 466 proteins responding to the concurrent
glycerol and high temperature stimuli based upon their expression palterns. Two classes of
dominant environmental interactions are possible. In one class, a stimulus reverses an expres-
sion change induced by the other stimulus (Fig 2A and 213, top panels, rows 1 and 3). In the
other class, a stimulus induces a change in expression, while the other stimulus has no effect on
its own and does not change the response Lo the concurrent stimulus (I'ig 2A and 2B top pan-
els, rows 2 and 4). Each class is represented by two theoretical expression patlerns for a total of
four expression patterns for each stimulus (Fig 2A and 2B top panels).

For the environmental interactions in which the HT stimulus was dominant over the G
stimulus, the p-values for all of the effect size estimates were less than 0.05. The changes for the
HT and HT+G stimuli were in the same direction and differed from the G stimulus (Fig 24,
top pancl, rows 1 and 3). Alternatively, the p-values for only the HT and HT+G stimuli effect
size estimates were less than 0.05 and the directions of change for the HT and HT+G stimuli
were the same (Fig 2A, top panel, rows 2 and 4). In all, we identified 30 proteins for which the
response to the H'T' stimulus was dominant over the G stimulus (Fig 2A and 51 Table), We
used pathway analysis Lo identily which prolein classes were responding Lo the dominant stim-
ulus. The group of proteins for which the HT stimulus was dominant included the heat shock
response proleins HSP10, HSP60, SSA1, SSA2, and HSP150 (Fig 2A bottom panel, and 51
Table). Pathway analysis of these 30 proteins showed that the top five enriched pathways
included protein folding, protein refolding, and unfolded protein binding (lig 2C, 55 Table).
These pathways are expected Lo be important for growth at higher temperatures [45,46,48,49].

For the environmental interaction in which the G stimulus is dominant, we saw a similar set
of patlerns as described above except the G stimulus dominates the HT stimulus (Fig 2B, top
panel). There are 121 proteins for which the response to the G stimulus was dominant over the
HT stimulus (Fig 2B, bottom panel and S1 Table). The group of proteins for which the G stim-
ulus was dominant includes metabolic enzymes such as CDC19, ACO1, and LSC1. (Fig 2B,
bottom panel, and 51 Table). Pathway analysis of these 121 proteins showed that the top five
pathways included the oxidation-reduction process, the generation of precursor metabolites
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Fig 2. Dominance of an environmental stimulus used to identify proteins that are important for responding to the environmental stimulus. The
color bar shows the range of fold changes. Pathway analysis was done using the GeneMANIA Cytoscape plugin [42]. Bar graphs were generated in
Graphpad Prism. A) Proteins for which HT stimulus is dominant over G stimulus. The theoretical expression pattems are depicted in the top panel (Red,
upregulation; green, downregulation; and black no statistically significant change in expression). The heatmap of fold changes in expression for 30 proteins
for which HT stimulus is dominant over G stimulus is shown in bottom panel. B) Proteins for which G stimulus is dominant over HT stimulus. The theoretical
expression patterns are depicted in the top panel. The heatmap of fold changes in expressions for 121 proteins for which G stimulus is dominant over HT
stimulus is shown in bottom panel. C) Bar graph shows the—log g-value of enrichments of the top five pathways in the list of proteins for which HT stimulus is
dominant over G stimulus. D) Bar graph shows the—log g-value of enrichments of the top five pathways in the list of proteins for which G stimulus is dominant
over HT stimulus.

doi:10.1371/journal.pone.0134099.9002

and energy, and the tricarboxylic acid cycle (Fig 2D, and 56 Table). All of these three pathways
are expected to be important for respiratory growth [47,50,51]. Consistent with our hypothesis,
pathway analysis of proteins that respond to a dominant environmental stimulus reveals a
functional relationship to the response to the stimulus. High temperature has a dominant effect
on proteins involved in protein folding, while glycerol has a dominant effect on proteins
involved in respiratory metabolism. These results show the practical applications of using dom-
inant environmental interactions to identify proteins that respond to specific stimuli and that
are directly involved in the cell’s response to that stimulus.

Analysis of expression patterns reveals that environmental interactions
mirror gene interactions.

In addition to the dominant interactions of concurrent environmental stimuli, we observed
other classes of environmental interactions that mirror gene interactions. First, we observed a
class of proteins whose abundance either increased or decreased in response to both the indi-
vidual stimuli as well as the concurrent stimuli (Fig 3A). This is similar to gene pairs in which
both the individual mutants as well as the double mutant have the same phenotype. We
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Fig 3. Proteins in different environmental interaction classes and the corresponding enriched pathways after concurrent G and HT stimuli. The
color bar shows the range of fold changes. Pathway analysis was done using GeneMANIA Cytoscape plugin[42). Bar graphs were generated in Graphpad
Prism. A) Non-specific environmental response {NER) proteins to individual and concurrent HT and G environmental stimuli. The theoretical expression
patterns are shown in the top panel. The fold changes of 175 NER proteins are shown as a heatmap. B) The theoretical expression patterns for discordant
environmental interaction are shown in the top panel. The fold changes of 41 proteins are shown as a heatmap. C) The theoretical expression patterns for
suppression environmental interaction are shown in the top panel. The fold changes of the 58 proteins affected by suppression are shown as a heatmap. D)
Bar graph shows the—log g-value of enrichments for the top 5 pathways for the non-specific environmental response proteins. E) Bar graph shows the—log g-
value of enrichments for the top 5 pathways in the list of proteins affected by discordant environmental interaction. F) Bar graph shows the—log g-value of
enrichments for the top 5 pathways in the list of proteins affected by suppression environmental interaction.

doi:10.1371/journal.pone.0134099.g003

classified these proteins as non-specific environmental responders. This class is represented by
two theoretical expression patterns: activated or repressed (Fig 3A, top panel and S1 Table).
For these non-specific environmental response modules, the p-values for all the effect size esti-
mates were less than 0.05 and the directions of change were the same (Fig 3A, top panel). We
identified 175 proteins that correspond to these patterns, and pathway analysis revealed that
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they are largely involved in protein synthesis and translational control (Iig 3A, bottom panel
and 3D, and 57 Table).

We also observed proleomic responses o concurrent environmental stimuli similar to gene
interactions in which the two single mutants are wild-type or have one phenotype, while the
double mutant has a different phenotype (Fig 3B). This class includes proteins whose expres-
sion was either decreased or unchanged after a single stimulus but was increased if both stimuli
were applied concurrently. The class also includes proteins whose expression was either
increased or unchanged after a single stimulus but was decreased by the concurrent stimuli.
We classified this environmental interaction group as a discordant class. There are eight theo-
retical expression profiles in the discordant environmental interaction class (Fig 3B, top panel).
lor the discordant environmental interaction, the p-value for the H1T+G concurrent stimuli
effect size estimate was less than 0.05 and the directions of change for either the H'T or G sti-
muli were nol the same as H1+G. We identified 41 proteins that show discordance (Fig 3B,
botlom panel and S1 Table). They are mainly involved in protein synthesis and metabolic path-
ways (Fig 3E, and S8 Table).

Finally, we observed suppression, in which a protein’s abundance changed in response to a
single stimulus, yet the change was suppressed by the simultancous application of the second
stimulus (Fig 3C). This class is similar to gene interactions in which double mutants show the
wild-type phenotype [52,53]. The suppression class is represented by eight theoretical expres-
sion patterns (Fig 3C, top panel). For suppression environmental interactions, the p-value for
the HT+G effect size estimate was more than 0.05, and the p-value for at least one of HT and
G stimuli effect size estimates was less than 0.05. We identified 58 proteins that are affected by
suppression (Fig 3C, bottom panel and S1 Table). Pathway analysis revealed that metabolic
pathways are mosl affecled by suppression (Iig 3I' and S9 Table).

A large fraction of the proteome is affected by environmental epistasis

An important feature of genetic epistasis is that the modulating effects of multiple genes are
nol always independent of each other [20,21,22,54,55]. In many cases, non-independence is
diagnostic of a functional relationship between genes [20,22,54]. Genelic epistasis is used to

test if the effects of genetic elements are independent. Genetic epistasis occurs when the effects
are not independent. We tested if the effects of these two individual environmental stimuli
were independent of each other for individual proteins in the proteome. Similar to the mathe-
matical approach to genetic epistasis, we measured the response of each protein and classified a
response as influenced by environmental epistasis if the sum of the effects of the individual sti-
muli for a protein was not equal to the response to the concurrent stimuli (f-test, p-value
<0.05) [20,21,22]. We used log; fold change as the measure of the effect of a stimulus. From
our list of 466 quantitated proteins, 240 proteins were affected by environmental epistasis

(51 Table). Pathway analysis of these proteins revealed that a majority of the enriched pathways
are involved in protein synthesis and translational control (I'ig 4A and S10 Table). The topmost
enriched pathways included cytoplasmic translation, cytosolic ribosome, and structural con-
stituent of ribosome (Fig 4A and S11 Table).

Pathway analysis of the 226 proteins nol affected by environmental epistasis revealed a large
number of metabolic pathways (I'ig 4B and S1 and S10 Tables). It is interesting to note that the
distribution of pathways affected by environmental epistasis is different from those that are
unalffected. Protein synthesis and translational control seem Lo be disproportionalely affected
by environmental epistasis compared to other pathways. These pathways have previously been
found to change in response Lo the changes in the growth rate [56,57]. If the effects of the two
stimuli on the growth rate are not independent, it could explain the observed environmental
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Fig 4. Environmental epistasis in the proteomic response to rent stimuli. Pathway lysis was
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¢oi:10.1371/journal.pene. 41340999004

epistasis. To test the independence in the effects of the two stimuli on the growth rate, we deter-
mined the doubling times under the same conditions. The change in the doubling times was
used to measure the effect of a stimulus. Our data shows that the effects of high temperature
and glycerol on the growth rate are additive and, therefore, independent of each other (54 Fig).
Further studies are required to elucidate the functional significance of the environmental
epislasis.

A number of genelic epistasis subtypes have been defined based upon the mathematical
models used to measure the expectation of a phenotype in double mutants [54,55,58,59,60].
Four most commonly used definitions are (1) additive, (2) multiplicative, (3) minimum, and
(4) log [55,58]. Although we used only the addilive definition for developing the concepl of the
environmental epistasis in this study, future studies can be performed Lo compare the resulls

obtained using different definitions.

Environmental interactions and epistasis regulate mRNA levels.

Although, we identified the environmental interactions using quantitalive proteomic data, we
speculaled that this framework would be applicable to any quantifiable readout including tran-
scriptomic and phenotypic traits. In pioneering studies using chemostat cultures of S. cerevi-
siae, Knijnenburg et al. measured the transcriptional response of yeasl lo mulliple, concurrent
environmental stimuli [13]. They found linear regression models of expression for the vast
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majority of genes required a combinatorial interaction term[13]. This suggests the change in
transcription of most genes cannot be explained by simply adding the effects of the individual
stimuli. Based on our proteomic resulls, we hypothesized that environmental epistasis plays a
role in determining the stale of the transcriptome as well.

To test if our environmental interaction and epistasis models are observed in the transcrip-
tomic responses to concurrent stimuli, we analyzed Knijnenburg dataset which measured the
transcriptomic responses of yeast cells growing in carbon limited chemostat cultures [13]. In
the experiment, two concurrent stimuli were applied: (1) a change in nitrogen source from
ammonium sulfate to methionine and (2) a change from acrobic to anaerobic growth (Fig 5A
and 512 Table) [13]. The data showed 564 transcripts were affected by environmental epistasis,
while 5987 transcripts were not affected (p-value <0.05) (S12 Table). In contrast to our proteo-
mic analysis, pathway analysis of the transcripts affected by environmental epistasis revealed
enrichment for pathways including microbody, peroxisome, and phytosteroid metabolic pro-
cess (513 Table). This could be because of the differences between the strains, stimuli, and cul-
ture conditions used in the transcriptomic and our proteomic studies. Similar to our proteomic
analysis, we observed dominant environmental interactions in the expression of the transcripts
(Fig 5B and 5C and S12 Table). Nitrogen source was dominant for 281 transcripts (Fig 5B and
§12 Table). Pathway analysis of these transcripts identified pathways involved in methionine
metabolism such as sulfur amino acid metabolic process, sulfur compound metabolic process
and methionine metabolic process (Fig 5D and S14 Table). Similarly, anaerobic growth was
dominant for 938 transcripts (Fig 5C and §12 Table). Pathway analysis of these differentially
expressed transcripts showed enrichment of pathways involved in energy production such as
cellular respiration, mitochondrial membrane and respiratory chain (Fig 5E and 515 Table).
We also observed the same environmental interaction classes in their transcriplomic dala as in
our proteomic data, including non-specific environmental response, discordance, and suppres-
sion (S12 Table). These results strongly suggest that environmental interactions play a signifi-
cant role in regulating the biochemical state of cells.

Coexpression network analysis shows community structures are guided
by environmental interaction and epistasis.

Coexpression networks link together proteins whose expression levels are regulated in the
same way [61,62]. As a consequence, coexpression network analysis can be used to determine
if the abundances of proteins affected by environmental epistasis are regulated differently than
the proteins that are not affected by environmental epistasis. To explore the protein modules
whose expression changes are correlated with each other, we built a coexpression network
using the merged proteomic responses from both individual and concurrent stimuli using the
Sparse PArtial Correlation Estimation approach (SPACE) (Fig 1A) [35]. An edge, representing
coexpression, was introduced between two proteins if the correlation between them was above
the average of the correlation matrix. To validate the network, we first tested the power law
structure of the reconstructed network [35,63]. The reconstructed network followed the power
law distribution. The power law parameter o was approximately 4, which is close to the empiri-
cally observed value of 3.45 [63]. Next, we repeatedly reconstructed the network by varying the
tuning parameler around the default value and fitling the network to the power law distribu-
tion. We found that the reconstrucled network follows the power law distribution and that the
power law parameter was in the range of 3.75. We identified the sub-graph spanned by the top
1% of highly connected nodes. We found that the Jaccard similarity score of these highly con-
necled nodes was 0.83 on the scale of 0 to 1. Therefore, these nodes were classified as hub
nodes, which is one of the characteristic features of power law networks. There were 7 hub

PLOS ONE | DOI:10.1371/journal pone. 0134099  August 6, 2015 12/22

154



o~ ®
@ ’ PLOS | ONE Environmental Interactions and Epistasis

A B C
— N O - Nm —N®
H H H oM H H
NogEig Nogix% £%%
— by — = —
ERRESSITES ERRREERITTT EREREHEIFEE
NONZZZZNDW NDNNNZZZZUNWDW NDNNZZZZNDADW
ZZZ2ILACCLCZ222 ZZZILALCCZZ22 ZZZLLLLZZ2Z
2.00
1.33
0.67
0.00
0.67
1.33
2.00
D E
== Sulfur compound metabolic process B \itochondrial membrane
mm Sulfur amino acid metabolic process Bm Hydrogen ion transmembrane transporter activity
Sulfate assimilation = Monovalent inorganic cation transmembrane transporter activity
207 = Methionine metabolic process 207 wm Cellular respiration
Sulfur compound biosynthetic process Respiratory chain

-log g-value

157
@
3
T
& 109
(=2
ko)
] l
o 0-
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bar shows the range of fold changes. Pathway analysis was done using GeneMANIA Cytoscape plugin[42). Bar graphs were generated in Graphpad Prism.
A) A heatmap of fold changes of the complete transcriptomics dataset consisting of 6551 transcripts. B) A heatmap showing the fold changes for 281
transcripts for which NS stimulus is dominant. C) The—log g-value of enrichment for the top 5 pathways enriched in the list of transcripts for which NS stimulus
is dominant. As anticipated, pathways expected to be involved in metabolization of methionine are enriched. D) A heatmap showing the fold changes for 938
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is dominant. As anticipated, pathways expected to be involved in energy production are enriched.

doi:10.1371/journal.pene.0134099.9005

nodes based upon the above criterion. Next, we checked the significance of the identified hubs
using the Wilcox Rank sum test and found that the hub community is statistically significant
(p-value = 0.04) [64]. Finally, we compared the reconstructed network with BioGrid protein
interaction data and found that approximately 30% of the edges are previously known interac-
tions and that these interactions were found in every reconstructed network when we varied
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the tuning parameter to estimate the partial correlation matrix [65]. The final coexpression
network consisted of 329 nodes with at least one neighbor and a total of 359 edges (I'ig 6A).

The largest community within this network includes 205 nodes and 249 edges, with two
clearly separate sub-graphs connected by a single node (Fig 6B). Interestingly, one sub-graph
consists predominantly of proteins affected by environmental epistasis while the second sub-
graph consists of proteins not affected by environmental epistasis. Within the global coexpres-
sion network, we observed that proteins affected by epistasis were more likely to be linked with
cach other than with proteins that are not affected by epistasis and vice versa (Fig 6A). There
are 199 edges between two proteins affected by epistasis and 85 edges between two proteins not
affected by epistasis. However, only 75 edges involved proteins of both types (Fig 6C). This
structural organization of the coexpression network suggests that the responses of proteins
affected by environmental epistasis are controlled by a different mechanism than the responses
of those not affected by environmental epistasis.

Previous studies indicate that proteins linked in a coexpression network are likely to func-
tion in the same pathway [61]. We hypothesized that the grouping of proteins upon classifica-
tion into environmental interaction classes might be driven by their functional associations. If
true, we would expect to find more edges in the coexpression network between proteins within
the environmental classes. Indeed, we found this result in this network. Our data show that 299
of the edges (83%) are between proteins in the same environmental interaction class, while
only 60 are between proteins in different classes (Fig 6D).

Discussion

Using the concepts of gene interactions and epistasis, we have developed a unifying conceptual
framework to understand the cellular responses to complex environmental stimuli. Although,
we have only explored the cases with complete dominance of a stimulus, it is possible that both
the stimuli contribute to a change in expression. It is also possible that many stimuli contribute
towards a change. We speculate that the tools and approaches developed for gene-gene interac-
tions involving multiple genes can be applied in such cases [66]. In addilion Lo linear regression
modeling and ANOVA, we also Lested our hypothesis using one sample and two sample t-Lests
of independence (data not shown). The results from both approaches were in good agreement.

The effect of mixtures of compounds has been actively studied in toxicology, especially in
the context of environmental toxins [67,68,69,70,71,72,73,74,75,76,77,78). These studies have
led to the development of three complementary models to predict the combined effects of com-
pounds in a mixture: (1) in the concentration addition model the total toxicity of a mixture is
the sum of the individual toxicities of the component compounds, (2) in the independent
action model the toxicities of the components of a mixture are independent of each other, and
(3) in the simple interaction model the individual components, at the concentrations being
tested, are not toxic, but are toxic when used together in a mixture. These models have been
successful in predicting the total toxic effects of mixtures of compounds in many cases
[67,69,70,71,72,74,78]. However, it is not immediately clear which one to apply in a specific
case without model fitting [69].

Environmental inleractions and epistasis can be extrapolated to explain the three models.
For example, the concentration addilion model can be the case of incomplete dominance
where many stimuli affect the biological processes under investigation. This would happen il
the compounds in the mixture affect similar biological pathways. If the actions of the com-
pounds are antagonistic to each other, it may lead to either the dominance or the suppression
interaction. If their actions are not antagonistic, the combined effect would be the sum of the
individual effects which could be observed as the non-specific environmental response.
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The independent action model explains the case where the compounds under investigation
act upon different pathways [68,70,71,72,75,77]. This is similar to a gene interaction where two
mulations have two unrelated phenolypes and both phenotypes persist in the double mutant.
By applying the logic of environmental interaction to this model, we can deduce that the
changes induced by a mixture that follows the independent action model would have elements
specific to the component compounds of the mixture. Additionally, the changes important to a
specific compound would persist in the combinatorial condition, which could be used to iden-
tify molecules and pathways that respond to the specific compound in the mixture.

The simple interaction model explains the cases where the compounds individually have
little or no toxicity, but are toxic when applied together [73,75]. In terms of environmental
interaction, this could be a case of the discordance interaction. The effects explained by this
model could also be a special case of environmental epistasis, where the combined effect of
compounds is more than the sum of their individual effects. It is worth noting that although we
discuss only three of the mixture toxicity models, there are a number of other models that
explain the loxicities of compounds in a mixture [67,68,69,70,71,72,73,74,75,76,77,78]. Envi-
ronmental interactions and epistasis provides a conceptual framework unifying the different
toxicity models. The interpretation of results can be made simpler using environmental inter-
actions and epistasis.

Phenotypic plasticity provides the conceptual framework for studying the interaction
between genotype and environment. Phenotypic plasticity is the ability of an organism to
change its phenotype in response to changes in the environment [79]. It has been used to
explain the ability of the same genotype to generate different phenotypes in different environ-
ments [79]. However, phenotypic plasticity considers the environment as a monolithic entity.
It fails Lo separate the relative contributions of the dilferent environment components, for
example; physical components such as temperature and pressure, chemical components such
as nutrients, and signaling molecules that activate different pathways. Applying environmental
interactions and epistasis would help parse out the individual contributions of the stimuli
towards the change in the phenotype.

Similar to genetic epistasis, our data show that the effects of individual environmental sti-
muli are not necessarily additive. Proteins affected by environmental epistasis are distributed
throughout the genome and do not appear to be clustered at specific locations in the genome
(S3 Fig). The prevalence of environmental epistasis in determining the changes in the proteome
suggests that epistasis needs to be taken into account when building mathematical models of
gene expression.

Consideration of environmental epistasis is especially important in light of the recent
attempls to build quantitative linear regression models of gene expression in which the inde-
pendent variables are the environmental stimuli and the dependenl variable is gene expression
[80]. Interestingly, in a linear regression modeling study of transcriptional regulation in rice
under native conditions, the regression model was able Lo predict gene expression under native
conditions even if the environmental parameters varied slightly from those used for building
the model. However, the predictive power of the regression model was reduced under con-
trolled laboratory conditions suggesting that there may have been unknown epistatic interac-
tions in the native conditions absent in the controlled lab conditions [50].

Concurrently applied environmental stimuli behave similarly to genetic elements in the way
they interact to regulate the biochemical states of the cells. The observation of environmental
interactions and epistasis in determining the states of both the proteome and transcriptome in
diverse experimental conditions suggests the prevalence of this phenomenon in nature. Essen-
tially, environmental interaction in concert with phenotypic plasticity and gene interactions
can be envisaged as a mathematical operator with three components that determines the
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changes in the biochemical state of the cell. The gene interaction component is derived from
the effects of the genetic elements, while the environmental interaction component results
from the effects of all the environmental stimuli. When the gene and environmental inlerac-
tions are not independent of each other, phenotypic plasticily accounts for the deviations of
the observed from the expected characteristic or trait. Most studies so far have treated pheno-
typic plasticity, gene interactions, and environmental interactions separately due to a lack of a
common unifying framework [20,22,53,54,55,68,69,70,72,75,79,81,82,83,84,85]. Our data sug-
gest that as an abstraction, environmental stimuli can be treated as genes to build a conceptual
framework that combines the effects of genes and stimuli. Environmental interactions and
epistasis play a critical role in cellular homeostasis as seen in this study’s patterns of change in
the proteome and the transcriptome.

Qur data also suggest that a protein or a transcript is more likely to be critical for responding
to a dominant environmental stimulus than Lo a recessive one. This could lead to more efficient
experiment designs for identifying factors directly affected by an environmental stimulus. For
example, experiments could be designed in which an unrelated stimulus B is applied concur-
rently with the stimulus of interest A. The proteins or transcripts, for which the effect of A is
dominant, would be more likely to be directly affected by stimulus A. We speculate that the
samie approach may be extended to genetic perturbations. In this case, an environmental stim-
ulus could be applied in conjunction with the genetic perturbation. As with two concurrent
environmental stimuli, a transcript or a protein for which the genetic perturbation is dominant
may be more likely to be directly affected by it. Therefore, using dominance, environmental
interactions can also be used to devise studies to identify agents, such as regulatory RN As, pro-
teins, or small molecules which are critical for driving a range of biological processes in health
and disease including drug interaclions, adaplalion in lumor microenvironment and immune
responses.

Supporting Information

S$1 Fig. Experimental design workflow used in this study. Two environmental stimuli used
were high lemperature and glycerol as the carbon source. Diploid S. cerevisiae cells (BY4743)
were grown in rich media under 4 conditions: 1) glucose at 30°C (used as control), 2) glycerol
at 30°C (G stimulus), 3) glucose at 37°C (HT stimulus), and 4) glycerol at 37°C (HT+G sti-
muli). Three biological replicates were performed for each condition.

(EPS)

$2 Fig. Correlation matrix heatmap (red is high). Correlation matrix was generated in

R. There is a high correlation among replicates showing reproducibility across experimental
replicates.

(EPS)

$3 Fig. Visualization of §. cerevisiae genomic locations of the proteins quantitated with
fold changes represented as a heatmap using Circos plot (Red: Up, Green: Down, Black: No
change)[32]. Outermost circle- chromosomes, Second circle-fold changes of proteins with HT
stimulus, Third circle-fold changes of proteins with G stimulus, Fourth circle-fold changes of
proteins with HT+G stimuli, innermost circle-whether affected by epistasis or not (Purple:
Affected by environmental epistasis, Orange: Not affected by environmental epistasis).

(EPS)

$4 Fig. The effect of high temperature and glycerol on yeast doubling times. Doubling times
were calculated for growth in control (n = 25), high temperature (n = 25), glycerol (n = 25),
and concurrent high temperature and glycerol (n = 24). The difference in doubling times from
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the control was used to measure the effect of the stimuli and is plotted on Y-axis. HT leads to a
decrease of -11 minutes (sd = 6), G leads to an increase of 137 minutes (sd = 14), and HI+G
leads Lo an increase of 142. minutes (sd = 22). The expected effect of HT+G was calculated by
summing the observed effects of HT and G (Sum HT+G, increase of 127 minutes with sd of
16). The difference in the means for HT+G and Sum HT+G was not statistically significant
(p-value = 0.1034, two-tailed t-test of independence with Bonferroni correction for 11 compari-
sons)

(EPS)

S1 Table. Complete data matrix of proteins.

(TXT)

$2 Table. GeneMANIA pathway analysis output for HT stimulus.
(XLSX)

§3 Table. GeneMANIA pathway analysis output for G stimulus.
(XLSX)

54 Table. GeneMANIA pathway analysis output for HT+G stimulus.
(XLSX)

55 Table. GeneMANIA pathway analysis output for HT stimulus dominance.

(XLSX)

$6 Table. GeneMANIA pathway analysis output for G stimulus dominance.

(XLSX)

§7 Table. GeneMANIA pathway analysis output for non-specific environmental reponse in

protein expression.
(XLSX)

S8 Table. GeneMANIA pathway analysis output for discordance in protein expression.
(XLSX)

59 Table. GeneMANIA pathway analysis output for suppression in protein expression.
(XLSX)

$10 Table. GeneMANIA pathway analysis output for environmental epistasis in protein
expression.
(XLSX)

S11 Table. GeneMANIA pathway analysis output for no environmental epistasis in protein
expression,

(XLSX)

512 Table. Complete data matrix of transcripts

(TXT)

$13 Table. GeneMANIA pathway analysis output for environmental epistasis in transcript

expression.
(XLSX)

514 Table. GeneMANIA pathway analysis output for dominance of N§
(XLSX)

§15 Table. GeneMANIA pathway analysis output for dominance of AN
(XLSX)
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$16 Table. Doubling times under the 8 growth conditions.
(XLSX)
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£, multiple kernel fuzzy SVM-based data
fusion for improving peptide identification

Ling Jian, Zhonghang Xia, Xinnan Niu, Xijun Liang, Parimal Samir, and Andrew J. Link

Abstract—SEQUEST is a database-searching engine, which calculates correlation score between observed spectrum and
theaoretical spectrum deduced from protein sequences stored in a flat text file, despite it is not a relational and object-oriental
repository. Nevertheless the SEQUEST score functions fail to discriminate between true and false PSMs accurately. Some
approaches, such as PeptideProphet and Percolator have been proposed to address the task of distinguishing true and false
PSMs. However, most of these methods employ time-consuming learning algorithms to validate peptide assignments [1]. In this
paper, we propose a fast algorithm for wvalidating peptide identification by incorporating heterogenecus information from
SEQUEST scores and peptide digested knowledge. To automate the peptide identification process and incorporate additional
information, we employ & multiple kernel leaming (MKL) to implement the current peptide identification task. Results on
experimental datasets indicate that compared with state-of-the-art methods, i.e., PeptideProphet and Percolator, our data fusing
strategy has comparable performance but reduces the running time significantly.

Index Terms—fuzzy SWM, mass spectrometry, multiple kernel learning, peptide-spectrum matches, peptide identification

1 INTRODUCTION

fficient mass spectrometry-based (MS) strategies for

peptide identification and quantification are prerequi-
sites for performing advanced proteomics studies [2]. Da-
tabase search engines, such as SEQUEST and MASCOT,
have been widely used to automatically match peptide
spectra generated from LC/MS/MS experiments to theo-
retical fragmentation spectra derived from target data-
bases. However, a large number of these peptide scoring
matches are false and need to be distinguished from true
hits [3].

A number of machine learning approaches have been
developed to validate the target PSMs using different
scoring functions. PeptideProphet employs the expecta-
tion maximization (EM) method to compute conditional
probabilities of true PSMs for observed peptide sequences
based on the assumption that the true and false PSM data
are drawn from a mixture of Gaussian and Gamma dis-
tributions [4]. The discrimination scores between true and
false PSMs are derived from those conditional probabili-
ties, and all PSMs with scores above a threshold are re-
ported as true PSMs. Choi and Nesvizhskii improve the
performance of PeptideProphet using semi-supervised
learning [5]. In an alternative approach, Percolator
searches against target and decoy databases separately
and uses g-values to evaluate the quality of PSMs [6], [7].
Progresses on different post-database searching algo-
rithms have been extensively discussed in [8].

Although a variety of peptide identification algorithms
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have been proposed, the validated PSMs reported by these
algorithms show significant differences [8]. For instance,
SVM-based algorithms show that some true PSMs are
very close to the decision hyperplane and hinge with de-
coy PSMs [9], and thus they are difficult to be distin-
guished from false PSMs. It has been shown that merging
different data sources can improve the accuracy of peptide
identification [10], [11], [12], [13]. For example, the num-
ber of tryptic termini (NTT) of peptides assigned to spec-
tra is wvaluable information and employed in Pep-
tideProphet [4]. However, using protein information, such
as “sibling peptides”, has been recoginized improper by
researchers [14], [15]. Because that feature may exclude
the decoy proteins and cause the target-decoy approach to
give biased results.

Although additional scoring and database attributes
improved wvalidation of PSMs, data representation for in-
tegrating the additional information remains challenges.
MKL is an efficient way to combine multiple data sources
and has been shown its effectiveness in genomic data fu-
sion [16], visual object detection [17] and face recognition
[18].

In this work, we propose a data fusion method based
on {2 MKL fuzzy SVM (MFS) to integrate multiple data
sources for accurate PSM validation. During the course of
kernel design, we used SEQUEST searching scores and
NTT as attributes. f2 MKL maodel was used to learn the
optimal kernel coefficients. In addition, as decoy PSMs are
artificially generated, the corresponding labels are known
certainly. On the other hand, a large number of target
PSMs are false, and thus the labels are not trustworthy
either. Hence, these two types of samples should be treat-
ed in different confidence. During training process, the
fuzzy SVM model assigns a weight to each PSM as its
fuzzy membership to reflect its corresponding confident
level. Experimental studies show that under FDR equals

ville, TN 37240. f 4t Qwiicﬁ“iﬁf?‘fﬁ'ﬁ’"ﬂﬁr%ﬁﬁ‘u HSE is pepmilte Put rcﬂ.l,l%! %Ih@f{ﬁdﬁ;@ugw ﬂ'ermjlrjej IEEE permission. See
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0.05, the MFS method can identify at least 18% more target
PSMs than single kernel fuzzy SVM using four different
training datasets.

2 METHODS

2.1 £; MKL of Fuzzy SVM

Different with traditional SVM approaches, which rely on
trustworthy labels of training data [19], the MFS model
needs to cope with a large number of incorrect training
labels. To deal with those untrustworthy labels, Lin and
Wang proposed to introduce fuzzy membership during
SVM learning [20]. The effectiveness of fuzzy SVM on
peptide identification has been shown by Liang et al. [9].

GivenlPSMs x; e R"™,i=1, ] with class label y, = {-1,1}

and the corresponding fuzzy degree s; €[0,1]. The kernel-

based fuzzy SVM learn model [20] can be written as
!

min LwTw+C sE 0

whe 2 ~

st ow(WOx)+b) =1- & i=1,-1, @
& 20i=1 0, 3

where @(x}is the mapping from input space to the fea-
ture space and C is a regularization parameter, balancing
between margin and error.

By solving the dual problem of Eqs.(1-3), one has fuzzy
kernel-based classifier

fx)= ia,yfkfx,,x) +b,

fml

0]

where @,,i=1,---,/ are non-negative Lagrange multipliers
and k(x,,x ) is the kernel function. The performance of a
kernel-based classifier closely depends on the design of
the kernel matrix which defines pairwise similarity of
data points. A good design can capture the most im-
portant information hidden in the dataset. MKL provides
a general solution to combine multiple single kernels [21],
[22], [23], [24]. However, the conventional solution for a
MKL model usually degenerates and a single kernel dom-
inates all others. Solutions for non-sparse kernel coeffi-
cients were described in [23] and [24] by using fznorm
MKL algorithms and showed good performance in the
area of bioinformatics [25]. The problem of {=norm MKL
for fuzzy SVM can be formulated as follows

min w(i: uk'
# i=1

st =1

®)

(6)

w20i=1--p, (7)
where @(k) denotes the optimal value of the dual prob-
lem Egs.(1-3). To tackle the computational complexity,
Sonnenburg et al. reformulated the problem as a semi-
infinite programming (SIP) [24]. The SIP’ formulation of
MFS can be written as

max & (&)
sb ||,m|z <1, [&))]
H=20i=1 o p, (10)
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] !
1 '
;gm(m—zm =6, (11
O=w =5C0=1,-1, (12)
!
> no =0, (13)
i=1

!
where f(a)= Y ajapy vk (x50 =L p.
Juk=1

2.2 Kernel Design

Several types of data sources are contained in SEQUEST
searching results: SEQUEST searching scores, tryptic ter-
mini data, etc. Table 1 summarizes the features used by
MFS.

TABLE 1
SUMMARY OF FEATURES USED BY MFS FOR SEQUEST
SEARCH RESULTS

Feature Description
Keorr the first coss-correlation value from the SEQUEST scarch
ACH the difference correlation value bi.ttwcm the first hitand the
second hit
Sprank the preliminary score preformed by SEQUSET
Tons the fraction of matched ions
Mass the observed monoisotopic mass of the identified peptide
enaNIC a Boolean value indicating if the peptide has a tryptic N/C-

lemminus

We defined two individual kernels and combined them
into a comprehensive kernel with the MKL technique.
First, we employed Gaussian kernel to exploit the
pairwise similarity between two PSMs based on the SE-
QUEST search scores. Here, we used five attributes, i.e.,
Xcorr, ACn, Sprank, lons, and Mass. To avoid attributes
with larger values dominating ones with smaller values,
we normalized each of the original SEQUEST scores by
using the equation x_nor = x_raw - (mean of x_raw)/(sid of
x_raw), where x_nor is the normalized SEQUEST score,
x_raw is the original SEQUEST score, and std of x_raw is
the standard deviation of the original SEQUEST score. Let
o be the number of attributes characterizing the PSM.
Then, the first individual kernel is defined by

k= expl | ). (14)

The second kernel was defined to utilize proteolytic in-
formation for validating the PSMs. Usually only a very
small number of fully-canonical PSMs are assigned to

Z
x-x)

decoy peptides in the database search process [26] and
the NTT distributions among true and false peptide as-
signments are sufficiently distinct. Hence, the NTT of
peptide is valuable information in peptide identification
[4]. Taking into account the NTT information, the second
kernel can be defined as

K =exp- | —n_.,lz). (15)
Here, n: stands for the NTT of peptide associated with the
ith PSM.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www ieee.org/publications_standards/publications/rights/index htm] for more information.

167



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOT 10.1109/TCBB.2015.2480084, IEEE/ACM Transactions on Computational Biology and Bioinformatics

AUTHOR ET AL.: TITLE

2.3 Fuzzy Membership Design

As true PSMs are usually close to each other, we em-
ployed density measurement of target PSMs to construct
the fuzzy membership for alleviating the impact of noise.

For a given training dataset Dy, = ((x,.3)); , denote/’
target PSMs by I, —{(xf.",l)}';_;l and /™ decoy PSMs by

Dogin = {(x._,—l)}ﬁ__ 1+ respectively. The fuzzy membership
of decoy PSMs are set as 1 as they are trustworthy. After-
wards the fuzzy membership of target PSMs are normal-
ized to [0 1] by
d’(x!!) I a’(x;)
i 1gj<t

max d(x5)— min d(x")
1555t 155t J

w(x!)

1

(16)

where w{x}.')prc-duturmhcd parameters by users, and

the density support function d(x)was obtained by solving
one-class SVM [27]

!
\?TL ;—WTW+%;§J -p (17)
st wlox)zp-&,i=1,-/, (18)
& 20i=1 1. (19)

The pseudocode for the MFS method is summarized as
follows.

Algorithm: £-MFS algorithm

Input: DY D7D, D, wy
Output: b¥

1: Train one-class SVM decision function d(x) on

Siram i
Compute density supporl d(x') of positive samples
X, € Wapn.

2: Compute the fuzzy membership of positive samples x;

via Eq.(16).

: Caleulate the initial kernel matrix &', &* via Eqs.(14-15).

4: Learn kernel coefficients g4, 4 over Iy, via Eqs.(8-13);

Egs.(1-3)
k= k' + ik ;

3

Solve with  comprehensive  kernel

Compute the final decision function Eq.(4)
5: Calculate the decision value f(x;) of samplesx, €ID;

Sort f(x;) in descending order;
Let /(x;) be the ;v|m--

thlargest decision value in nega-
tive samples;

Remove x° from D" if £(x" )< J(x);

Update D" .

3 RESULTS AND DISCUSSIONS

3.1 Datasets and Parameter Setting

The LC-MS/MS datasets used in this study were de-
scribed in a previous publication [26]. In fuzzy SVM, the
regularization parameter C is set as 1. In the one-class
SVM, we use the default setting for the kernel width &
and v, ie, set ¢as the dimension of input variable and
vas0.5[28].

3.2 Results on Training Set

The RAW files generated from the different LC/MS/MS
experiments were converted to mzXML format using the
program ReadW. The MS/MS spectra were extracted from
the mzXML file using the program MzXML2Search [29)].
Using SEQUEST, the datasels were searched against ei-
ther S. cerevisiae (5GD-2010) or human Uniprot
(uni280910) databases containing target and decoy pro-
tein sequences. All decoy protein sequences were created
by reversing the target protein sequences. In this study,
according to the distribution of Target/Decoy, we random
selected the training set of 2500 PSMs from each dataset.
Details aboul the training sets are shown in Table 2 and
Table 3.

TABLE 2
SUMMARY OF LC/MS/MS DATASETS AND SEQUEST SEARCH
REsULTS
Sample Mass Spectrometer  MiPS  Decoy/Total(%)
PRMC” Orbitrap XL OFF  35.12
PRMC-train  Orbitrap XL OFF 3560
PBMC"-test  Orbitrap XL OFF 3512
PBMC Orbitrap Velos ON 30.89
PBMC-train  Orbitrap Velos ON 30.72
PBMC-test  Orbitrap Velos ON 3088
Tal0g Crrbitrap XL ON 39.30
Tal(O8-train Crrbitrap XL ON 3944
Tal0s-test Orbitrap XL ON 3936
Gend LCQ N/A 5499
Gend-train LCQ N/A 55.08
Gend-lest LCQ N/A 5508
TABLE 3
SUMMARY OF UNFILTERED, CATEGORIZED PSMs
Target Dreco
Sample Full IIaIf‘g Non __ Full __ Half - Non
PBMC’ 28561 17490 30344 948 10033 30375
PBMC -train 610 349 651 21 201 668
PBMC -test 599 390 633 16 194 668
PBMC 110404 35915 62446 2520 24682 65912
PBMC-train 917 286 529 22 196 550
PBMC-test 9653 276 489 23 190 559
Tal0g 14893 6209 20520 419 5877 21042
Tal08-train 547 235 732 17 226 743
Tal08-test 537 239 740 14 202 783
Gend 1453 1210 4040 106 1465 6618
Gend-train - 471 232 681 21 244 851
Gend -test 537 239 740 21 187 776

Full denotes fully tryptic, Half denotes half tryptic, and Mon denotes non tryptic

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www ieee.org/publications_standards/publications/rights/index htm] for more information.

168



This article has been accepted for publication in a future issuc of this journal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOT 10.1109/TCBB 2015.2480084, IEEE/ACM

3.2.1 Fuzzy SVMvs. SVM  We tested the performance of
fuzzy SVM by comparing it with standard SVM over pre-

pared data. As b,
mine the density estimator with one-class SVM Eqgs.(17-
19), and computed the fuzzy membership Eq.(16) of posi-
DY ., . State-of-the-art software libsvm is
selected to solve the oneclass SVM model [28]). The
Gaussian kernel defined in Eq.{14) is selected to express
the feature

k(xjx )= (I)(xi)Td)(Xj) . Consequently, the fuzzy SVM are

is trusty data, we used it to deter-

tive samples

samples  similarity in space, ie.,

PBMCS-train

PBMC-train

Tal08-train

Gend train

i
1500
Single Kernel

500

2500

Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON JOURNAL MAME, MANUSCRIPT ID

trained on dataset D, . The classification accuracy of

fuzzy SVM on the dataset I,
ly from 54.38% to 88.65%, from 55.08% to 85.55%, from
66.53% to 86.11%, and from 86.56% to 95.13% on PBMC-
train, PBMC-train, Tal08-train and Gend-train, respective-
Ly.
3.2.2 Single kernel fuzzy SVM vs. Multiple kernel fuzzy SVM
The first single kernel matrix &' was defined by the pair-
wise similarity of PSMs which are represented by SE-
QUEST search scores. The SVM corresponding to %' was
obtained by solving Eqs.(1-3). In MKL fuzzy SVM, the
kernel combination coefficients of % and &’ were

are improved significant-

i

For i

b3

‘mﬂe\ s

2500

1000 1500

Multiple Kernel

Fig. 1. Ranking results on training datasets: x-coordinate stand for the rank index of samples computed by Eq.(4) and y-coordinate stand for
the initial index of samples, circle stand for target points, snow stand for decoy points, green stand for full digested PSMs, blue stand for half
digested, red stand for none digested and the vertical line corresponding to FDR equals 0.05.

learned by solving Eqs.{8-13). The optimal kernel coeffi-
cients are [0.7505 0.6609], [0.7604 0.6494], [0.7469 0.6649],
and [0.7238 0.6800] on four training datasets, ie., PBMC™
train, PBMC-train, Tal08-train and Gend-train. Compari-
son experiments on the above mentioned datasets were
conducted. The corresponding results are given in Fig. 1
from the first row to the fourth row. The left column of
Fig.1 shows the results of single kernel and the right col-
umn shows the results of multiple kernels. Under FDR
equals 0.05, multiple kernels can identify 29%, 18%, 71%,
and 27% more target PSMs than single kernel on PBMC™
train, PBMC-train, Tal08-train, and Gend-train, respective-
ly. This group of experiments demonstrates that multiple
kernel can significantly improve the confidence levels
distribution of PSMs.

3.3 Performance of €;-MFS on Test Datasets

To validate the generalization ability, we also evaluated
the performance of the MFS on the test datasets. For each

experiment, according to the distribution of Target/Decoy,
2500 PSMs were random drawn from original datasets for
testing. The decision function learned in training process
is directly used to calculate the decision values of the test
data. Details of results are summarized in Fig 2. Note that
the distribution of different type points in Fig 2 is closely
consistent with the right column of Fig 1. It shows that the
performance of MFS is consistent on training and test sets.
Moreover, three frequently used criteria in machine learn-
ing, i.e., true positive rate (I PR, sensitivity), ture negative
rate (TNR), and accuracy {Acc) are listed in Table 4. High-
Iy similar performance in training/test/whole datasets
shows that the proposed MFS algorithm can effectively
avoid overfitting issue. Hence, the trained model learned
in training set can fit the whole dataset.
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TABLE 4
GENERALIZATION ABILIBYT OF MFS METHOD
Sample FBMC? PBMC Tal0g Gend
TPR(%) TNR{%) Acc(®) TPR(%) TNR(%) Acc{%) TPR(%) TNR(%) Acc(%) TPR(%) TNR(%) Acc{%)
D,., 5460 8719 6620 6680 79.56 7072 3877 9757 6196 2262 9898 64.68
D, 5425 8804 6612 6898 7759 7164 3806 9756 6148 2146 98.84 64.08
] 5359 8678 6625 6642 7742 6982 3751 9761 6113 2247  98.83 64.46
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Fig. 2. Ranking results of MFS on test sets.

3.4 Evaluating the Performance on the Whole Da-
taset

Finally, we compared the performance of f-MFS with
that of the PeptideProphet and Percolator. For fair com-
parison our algorithm to PeptideProphet and Percolator,
the validation of the P5Ms was performed by testing a
range of probability filters (p values) provided by Pep-
tidepProphet until the desired FDR (ie., 0.05) was
reached. Likewise, a range of q values were chosen by
Percolator until the desired FDR was reached. In the cur-
rent experiment, the parameters are set as p2025 for
PeptideProphet and g <0.017 for Percolater on dataset
PBMC’, p=015 and g=0.015 on PBMC, p=04 and
g =0.026 on Tald8, p=0.25 and ¢<0.024 on Gend. It
should be noted that the MKL process is time-consuming,
besides storage of the non-sparse kernel matrices is
memory cost. Seo it is difficult for MFS to deal with large
scale problem directly. Fortunately, the experiment in Sec-
tion 3.3 shows that the kernel coefficients and decision
function learned in training set can fit the whole dataset.
In this secton, we use the kernel coeffidents and decision
function learned in training set to process the whele data
set. It takes ~172s to learn the kernel coefficients on train-
ing set and ~31s to process the whole PBMC® dataset,
~188s to learn the kernel coefficients and ~8ls to process
the whele PBMC dataset, ~232s to leamn the kernel coeffi-
cients and ~17s to process the whole Tal08 dataset, and
~14ls to learn the kernel coefficients and ~4s to process

A Aoke %& |

B ;*’:;%kt {‘fﬁ ﬂf&#ﬁ*f e
o~ Ty v

R SA K b B

the whole Gend dataset. Once the decision functon is
learned in training set, the evaluating process on the
whele data set is highly effective. Compared with Pep-
tideProphet and Percolator, the running time can be sig-
nificantly reduced from hour to minute to process data
set with capacity of 100 thousands. The experiments are
run on a machine configured with 4 G RAM and core i3-
2130 3.4 GHz processor. It should be point out that as the
number of half digested PSMs validated by MFS is less
than PeptideProphet and Percolator, the total number of
validated PSMs under FDR equals 0.05 is less than well-
known metheds. Table 6 lists detailed validated PSMs
according to their digestion pattern: fully-canenical, half-
canonical, and non-canonical PSMs. Compared with Pep-
tideProphet, MES can identify more full digested PShs
on three datasets out of four datasets. Compared with
Percolator, MES can identify more full digested P5Ms on
two datasets out of four datasets. Hence, the proposed
method’s performance is comparable with the well-
known methods.

Fig. 3 shows the overlap of the identified target PSMs
by the three methods on datasets PBMCE, PBMC, Tal0s
and Gend. On all the datasets, the target PSMs output by
MFS have large overlap with PeptideProphet and Perco-
lator. On PBMCS, PeptideProphet shared 91.3% target
PSMs with MFS; Percolator shared 86.3% target PSMs
with MES. On PBMC, these percentages are 93.3% and
88.0%. On Tal08, these percentages are 94.0% and 91.4%.
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On Gend, the percentages are 912% and 879%, respec-
tively. The results indicate that the majority of target

P5his validated by PeptideProphet and Percolator were
also validated by the proposed MES.

TABLE 5
S Uk ARY OF PSS WVALIDATED BY DIFFERENT AF PROACHES
& " PELIC FEMC Tallg Gond
pRroas Target Decoy Target  Decoy  Target Decoy  Target  Decoy
FeptideProphet 35673 260 120961 2047 15638 387 1443 38
Percolator 36096 EEE 122568 3133 14371 354 1304 35
MES 33300 268 115948 3165 14937 382 1350 36
TABLEB
DISTRIBUTION OF WALIDATED PSS
B " PRIMC PBLIC Tall2 Gend
PRIGas Full  Half Hon Ful  Half Non  Full Haf  Non Ful  Haf Nen
FeptideProphet 27622 7642 402 107730 13001 230 14530 1088 11 1375 68 1
Fercolator 2E¥20 046 0 321 111990 10453 125 13855 516 1] 1342 51 1
MF3 27026 5448 25 109747 5728 473 14721 214 2 1345 5 0
_——PepProphet —_PepProphet tional Institutes of Health under Grant No. GMOAEFTS.
(/ 1277 /7 2045 \'\ Ling Jian and Xijun Liang were supported by National
Y\ i b . . .
— \ MNatural Science Foundation of China under Grant No.
V4 t1837/ \15 9*\ e 'Q 52,/ 5)f \ 11326203 and No. 81403419, Natural Scence Foundation
l-" AN £°945 v v "-l |" S (10664 ) ) of Shandong Province under Grant No. ZRZ013F{034
\ 3131 .\138 Jear )/ \ 610\, 11JT;' 1927 js' and ZR2014AP0004, and Fundamental Research Funds
N N S for the Central Universities. Data for the project has been
Per colatur‘ Ml S Percolator — MFS funded in part with Federal funds from the National In-
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Abstract

Systems biology is an approach to comprehensively study complex interactions within a bi-
ological system. Most published systems vaccinology studies have utilized whole blood or
peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccina-
tion. Because human blood is comprised of multiple hematopaoietic cell types, the potential
for masking responses of under-represented cell populations is increased when analyzing
whole blocd or PBMC. To investigate the contribution of individual cell types to the immune
response after vaccination, we established a rapid and efficient method to purify human T
and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutro-
phils from fresh venous blood. Purified cells were fractionated and processed in a single
day. RNA-Seq and quantitative shotgun protecmics were performed to determine expres-
sion profiles for each cell type prior to and after inactivated seasonal influenza vaccination.
QOur results show that transcriptomic and proteomic profiles generated from purified immune
cells differ significantly from PBMC. Differential expression analysis for each immune cell
type also shows unigue transcriptomic and proteomic expression profiles as well as chang-
ing biological networks at early time points after vaccination. This cell type-specific informa-
tion provides a more comprehensive approach to monitor vaccine responses.
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Introduction

Systems biology is a comprehensive approach to describe complex interactions between multi-
ple components in a biological system[1]. Using high-dimensional molecular approaches, sys-
tems biology idenlifies changes caused by perturbations such as infection or vaccination,
combined with extensive computational analysis to model and predicl responses[2,3]. In the
context of vaccinology, systems biology offers an approach o dissect the human immune re-
sponse after immunization by correlating changes in the transcriptome and proteome with an-
tibody or cell-mediated immune responses, in order to make predictions about vaccine efficacy
and potentially adverse events[4,5].

The first systems biological studies to dissect human vaccine-induced responses utilized the
yellow fever vaccine, YF-17D[6,7]. In these pioneering studies, both CD8+ T cell and B cell sig-
natures identified in microarray profiles were correlated with protective cell-mediated and an-
tibody responses, thus providing predictive signatures. Since these studies, several other
vaccines have been studied, including live and inactivated influenza and pneumococcal poly-
saccharide vaccines [8-10]. Syslems biology sludies with influenza vaccines identified modules
of genes that positively correlated with protective immune responses. For example, interferon-
responsive genes that were up-regulated at early time points after TIV vaccination positively
correlated with robust hemagglutinin inhibition (HAI) titers[8,10]. Nakaya et al. found that an
elevaled antibody response to trivalent inactivated influenza vaccine (TIV), but not Lo live at-
tenuated influenza vaccine (LATV), correlated with upregulation of B cell-specific transcripts,
including immunoglobulins (IgA, IgD, IgE, and multiple [gGs) and the TNFRSF17 surface re-
ceptor]9]. Using the Nakaya dataset, Tan et al. identified immunoglobulin and complement
genes as well as proliferation-associated genes to be predictors of protective antibody produc-
tion in response to TIV vaccination. They concluded that enrichment of these particular gene
sets at 7 days post-TIV vaccination was likely due to increased representation of proliferating
plasmablasts in subjects with elevated antibody responses[11].

Predictive correlates that can be identified prior to vaccination are emerging in systems vac-
cinology studies. T'sang et al. recently showed that baseline proportions of 126 individual im-
mune cell sub-populations in the blood, identified by comprehensive flow cytometric analysis,
could predict influenza vaccine-induced antibody responses[12]. Several studies have found an
inverse correlation between baseline influenza-specific microneutralization or HAT titers and
the subsequent generation of both plasmablasts and protective antibodies after seasonal influ-
enza vaccination. These studies reported that subjects with lower baseline titers of influenza an-
tibodies generated more robust post-vaccine antibody responses compared to subjects with
high baseline titers [12,13]. Furman et al. identified several additional baseline predictors of
protective immunity, including the frequency of CD8 T cells and NK cells, as well as multiple
differentially expressed gene modules. These included genes associated with: 1) apoptotic path-
ways; 2) cell survival and proliferation (including generation and maintenance of germinal cen-
ters); 3) cell-to-cell signaling; 4) RNA post-transcriptional modification; and 5) carbohydrate
metabolism [13].

Despite insights into the global human immune responses obtained from these and other
studies, the majority of systems biology studies are limited in scope to total RNA from whole
blood or peripheral blood mononuclear cells (PBMC)[6-8,11-18]. Since human blood is com-
prised of a multitude of hematopoielic cell types thal are present in varying proportions, re-
sponses elicited rom under-represented cell types in the blood are likely masked by those of
predominant cells[19]. For example, Nakaya ef al. found upregulation of the transcription fac-
tor XBP-1, which is necessary for the terminal differentiation of antibody-forming plasma
cells, in RNA from sorted B cells, but not from PBMC, after TIV vaccination|[9,20].
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Additionally, when utilizing PBMC to monitor the immune response, the contributions of
polymorphonuclear (PMN) cells—prime contributors to innate immunity—are overlooked.

Mosl current vaccines larget adaptive immune T and B lymphocytes by conferring lasting,
life-long immunity (memory) that can be recalled rapidly upon subsequent encounter with the
immunizing antigen|21,22]. The qualitative and quantitative aspects of these adaptive immune
responses are slow to develop and are tightly regulated by the rapidly-induced innate immune
response. Thus, an immune response represents a highly coordinated effort from multiple he-
matopoictic cell types—cach with their own inherent programming. We therefore believe that
it is vitally important to analyze and model individual cell types in response to vaccination.

To develop a comprehensive systems biology model for studying immune responses follow-
ing vaccination, we developed an efficient protocol to purify from human blood six immune
cell types that contribute to both innate and adaptive immune responses: T cells, B cells, natural
killer (NK) cells, myeloid dendritic cells (mDC), monocyles, and neutrophils. These cells were
isolated and processed immediately for down-stream systems analysis Lo avoid potential prob-
lems associated with the use of frozen cells[23]. Unlike previous syslems vaccinology studies,
which utilized microarray analysis to map dynamic changes in the transcriptome after vaccina-
tion[6-10], this study utilized RNA-Seq data generated prior to and after TIV vaccination to-
gether with the human reference genome sequence to identify changes in both protein-coding
and non-coding RNA transcripts after vaccination. Additionally, and unique to this study, our
protocol included quantitative proteomics to monitor changes in protein expression after
vaccination.

Qur results reveal that RNA and protein expression profiles from each sorted cell type differ
significantly from the profile obtained from PBMC. Comparison of differentially expressed
transcripts and proleins aller vaccination with 2011-2012 seasonal TIV further shows consid-
erable differences between PBMC and sorted cells. Together, our data suggest that important
cell type-specific information is gained when purified cells rather than PBMC or whole blood
are utilized in systems studies. The cell type-specific information obtained from unbiased
RNA-seq and quanlitalive proteomics analysis utilizing the complete human reference genome
sequence provides a more comprehensive systems biology approach to monitor and eventually
to model vaccine responses. This approach is applicable for other systems biology studies in-
volving complex interactions between different cell types following vaccinations, infectious dis-
cases, discases and pharmacological interventions.

Materials and Methods
Seasonal TIV Vaccination of human volunteers and blood collection

Volunteer recruitment and vaccination protacols for this study were approved by the Vander-
bilt Institutional Review Board (IRB#111030 “CLR-03 2011-Immune Cells and Soluble Factors
from Healthy Donor”). After obtaining written informed consent, thirty one subjects were en-
rolled in this study. Twenty-nine subjects provided 90mL blood samples to develop our pheno-
typing and cell sorting protocols and to establish baseline blood profiling information; for
these purposes, twenty three subjects provided a single blood sample, and six subjects provided
four samples over subsequent days on the same schedule as proposed for vaccinated subjects.
Once the cell sorling pipeline was in place, lwo subjects were vaccinated with a single dose of
2011-2012 seasonal trivalent inactivated influenza vaccine (TIV) (strains included: AfCalifor-
nia/7/09 (HIN1,), A/Perth /16/2009 (H3N2), and B/Brisbane/60/2008). Blood samples (90mL)
from the two vaccinated subjects were processed prior to vaccination (day 0) and at days 1, 3,
and 7 post-vaccination for downstream RINA-seq and quantitative proteomics analysis.
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Immune cell purification and flow cytometric analysis

PBMC and PMN were isolated from anti-coagulated (EDT'A) whole blood via Ficoll-paque
PLUS (GE Healthcare) separation. Residual RBCs were removed from the PMN fraction by
ammonium-chloride-potassium (ACK) lysis (KD» Medical). Single cell suspensions of PBMC
or PMN were subjected Lo magnetic bead separation. T cells, monocytes, and neutrophils were
enriched by positive selection using directly conjugated anti-CD3, anti-CD14, and anti-CD15
microbeads (Miltenyi Biotec), respectively. B cells were enriched by positive selection using
anti-PE beads after staining with anti-CD19-PE antibody (Miltenyi Biotech) since directly con-
jugated CD19-microbeads interfered with subsequent anti-CD19 phenotypic staining. NK/
mDC were enriched by negative selection using Streptavadin microbeads (Miltenyi Biotec)
after staining with biotinylated anti-CD19 (clone HIB19), anti-CD15 (clone HI98), anti-CD 14
(clone 61D3), and anti-CD3 (clone UCHT1) antibodies (eBioscience). MACS enriched cells
were stained with 7-aminoactinomycin D (7-AAD), CD11¢-FITC (clone B-ly6) CD15-APC
(clone HI98) and CD56-PE-Cy7 (clone B159) (BD Biosciences), as well as CD19-PE (130-091-
247), CD3-VioBlue (130-094-363), and CD14-VioGreen (130-096-875) (Millenyi Biotec), and
were subjected to FACS on a BD FACSArialll flow cytometer. Cell purity of >98% was con-
firmed by re-analysis on the FACSArialll after the sort. Whole blood, PBMC, PMN and pooled
sorted cells were subjected to 9-color flow cytometric analysis (FCM) Lo assess phenotype and
cellular activation at each time point using the same sorting markers as above, without 7-AAD,
and with addition of CD86-PerCP-Cy5.5 (clone FUN-1), CD69-APC-Cy7 (clone FN50), and
CD134-PE-Cy5 (clone ACT35) (BD Biosciences). The SPHERO Ultra Rainbow calibration kit
(Spherotech; URCP-50-2K) was utilized to control for daily fluctuations in the detectors used
for activation marker staining. FCM was performed on a BD LSRFortessa flow cytometer, and
data was analyzed using the Flow/Je software package (Tree Star).

RNA expression analysis

Total RNA was extracted from PBMC and sorted immune cells (<0.5x10° cells) from the two
TIV-vaccinated subjects using the automated Maxwell 16 magnelic particle processor and a
Maxwell 16 LEV simply RNA kil (Promega Corp.). RNA was quantified by either a Qubit fluo-
rometer (Life Technologies) or the Quant-i'T RiboGreen RNA Assay (Life Technologies). To
assess RNA integrily, total RNA was evaluated on a Bioanalyzer 2100 (Agilent Technologies).
One hundred ng of total RNA with RIN values 7 was required for proceeding to downstream
RNA-seq applications. Polyadenylated RN As were isolated using NEBNext magnetic oligo d
(T)25 beads. NEBNext mRNA Library Prep Reagent Set for [llumina (New England BioLabs
Inc.) was used to prepare individually bar-coded next generation sequencing expression librar-
ies. Library quality was assessed by Qubit 2.0 Fluorometer (Invitrogen), and library concentra-
tion was estimated by utilizing a DNA 1000 chip on an Agilent 2100 Bioanalyzer (Applied
Biosystems). Accurate quantification of the prepared libraries for sequencing applications was
determined using the gPCR-based KAPA Biosystems Library Quantification kit (Kapa Biosys-
tems, Inc.). Each library was diluted to a final concentration of 12.5nM and pooled equimolar
prior to clustering. Paired-End (PE) sequencing (25 million, 50-bp, paired-end reads) was per-
formed using a 200 cycle TruSeq SBS HS v3 kit on an llumina HiSeq2000 sequencer (Illumina,
Inc.). Image analysis and base calling was performed using the standard Illumina Pipeline con-
sisting of Real time Analysis (RTA) version v1.13. Raw reads were de-multiplexed using a
bel2fastq conversion software v1.8.3 (Illumina, Inc.) with default settings. Post-processing of
the sequencing reads from RNA-seq experiments from each sample was performed as per
HudsonAlpha's unique in-house pipeline. Briefly, quality control checks on raw sequence data
from each sample were performed using FastQC (Babraham Bioinformatics). Raw reads were
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mapped to the reference human genome hgl9/GRCh37 using TopHat v1.4[24,25]. The align-
ment metrics of the mapped reads were estimated using SAMtools (S1 Datasel. RNA-seq quali-
ty control)[26]. Aligned reads were imported onto the commercial data analysis platform
AvadisNGS v1.5 (Strand Life Sciences). After quality inspection, the aligned reads were filtered
on the basis of read quality metrics where reads with a base quality score less than 30, align-
ment score less than 95, and mapping quality less than 40 were removed. Remaining reads
were then filtered on the basis of their read statistics, where missing mates, translocated, un-
aligned and flipped reads were removed. The reads list was then filtered to remove duplicates.
Samples were grouped and quantification of transcript abundance was performed on this final
read list using Trimmed Means of M-values (TMM) as the normalization method [27]. Output
data utilized for all subsequent comparisons was a normalized signal value generated by Ava-
disNGS. Resulting transcript lists were quality checked using AvadisNGS on a cell-type and
donor basis across lime poinls using comparalive analysis; transcripls from the same cell type
and donor required a correlation coefficient >0.9 to be accepted for further analysis (S1 Fig..
RNA qualily control).

Quantitative proteomic analysis

Protein extracts from PBMC and sorted immune cells (1x10° cells) from the two vaccinated
subjects were prepared as previously described[28] using a modified lysis buffer (50% Trifluor-
oethanol 50 mM HEPES) and quantified by BCA assay[29]. An immune cell common standard
(ICCS) control sample composed of protein extracts from PBMC and CD15" cells (80% and
20%, respectively, by protein weight) was included in all 8plex iTRAQ experiments. Ten ug of
reduced, alkylated, and trypsinized protein extracts were labeled with iTRAQ lags (AB Sciex),
pooled, and analyzed by MudPIT using an Eksigent 2-D nanoLC pump coupled Lo a nanoESI-
LTQ-OrbitrapXL mass spectrometer (Thermo Scientific)[30,31]. The precursor ions were ana-
lyzed in the Orbitrap followed by 4 collision induced dissociation (CID) fragment ion scans in
the fon trap to identify peptides. The precursor ions were then fragmented by higher-energy
collisional dissociation (HCD) to measure reporter ion intensities in the Orbitrap. For each
precursor ion, the CID and HCD spectra were merged using Proteome Discoverer v1.3 (Thermo
Scientific). The merged fragmentation spectra were searched against a forward and reverse
concalenated human Ensembl protein and common contaminants database (gene model 74)
using the Seguest database search engine running under Proteome Discoverer [32,33]. Precursor
mass lolerance was sel Lo 20 ppm and fragment mass Lolerance was sel to 0.8 Da. iTRAQ modi-
fication of N-terminus and e-amine of lysines and B-methylthiolation of cysteines were used as
static/constant modifications of the peptides. Oxidation of methionine and tryptophan and
deamidation of asparagine and glutamine were used as dynamic/variable modifications of the
peptides. Protein assembly, reporter ion quantitation and statistical analysis were performed
with a 5% peptide and protein FDR using ProteolQ v2.61 (Premier Biosoft). A slope of the re-
gression line >0.8 between the technical replicates of the common control (ICCS) based upon
pseudospectral counts was required as a quality control threshold (52 Fig.. Proteomics quality
control).

Comparative and differential analysis

Comparaltive analysis of RNA transcripts and proteomics profiles between cell types was per-
formed using Spearman correlation coefficients. Principal component analysis (PCA} was per-
formed in R and plotted using the rgl package|34]. Heirarchical clustering analysis and
dendograms were generated using Cluster3.0 and Java Treeview, respectively [35,36]. Differen-
tial RNA transcript expression analysis was performed in AvadisNGS v1.5. RNA transcripts
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were first filtered to include only reads that met a threshold of 0.5 RPKM in at least one time
point on a per-cell type and per-subject basis. Next, a Z-lest (theoretical estimate of variance),
in which the Benjamini-Hochberg procedure was used to fix the FDR at 0.05, was applied to
pair-wise comparisons (days 0-1, 0-3, and 0-7) on a per cell-type and per-subject basis (Ava-
disNSG v1.5, Strand Life Sciences) [37]. Differential expression of transcripts was then calculat-
ed on the basis of fold change[38]. A >1.5 fold change in expression between time points was
considered significant. Venn diagrams were used to identify differentially expressed transcripts
between individuals and cell types. To identify potential differential splicing events in the
RNA-Seq data, the publically accessible data analysis package Multivariate Analysis of Tran-
seript Splicing (MATS) was used[39]. MATS uses a multivariate uniform distribution to model
the between-sample correlation in exon splicing patterns, and a Markov chain Monte Carlo
(MCMC) method coupled with a simulation-based adaptive sampling procedure to calculate
the P value and false discovery rate (FDR) of differential alternative splicing. ‘Transcripls ex-
pressing the same differential splice event with both a p<<0.05 and FDR<0.05 from both sub-
jects were identifeid as significant. For differential protein expression analysis following
vaccination, fold changes were calculated in ProteolQ. A plot of log2 fold changes against pseu-
dospectral counts was used to assess the effect of sampling over the observed fold changes. The
symmetric distribution of log2 fold changes versus pscudospectral counts suggests the differen-
tial expression analysis was unbiased by protein abundances (52 Fig.). Distribution of fold
changes across different samples was visualized using cluster dot plots (52 Fig.). Missing values
and contaminating keratin proteins were removed prior to differential analysis. A >1.25 fold
change in expression between pair-wise comparisons (days 0-1, 0-3, and 0-7) was considered
significant. A Unix bash shell command was used Lo identify differentially expressed proteins
shared between individuals and cell types, as well as Lo create lists of DE genes and proteins for
heat maps. Heat maps of RN A and protein fold changes following vaccination were generated
using Cluster3.0 and Java Treeview.

Visualization of RNA and proteins across the human genome

Genome-wide visualization of relative RNA or protein expression from PBMC and each puri-
fied immune cell type was generaled using the open-source Circos software package[40]. The
genome location for individual transcript and protein data points was mapped using BioMart
[41].

Network analysis

Differentially expressed protein-coding RNA transcripts and proteins identified in both sub-
jects after vaccination were imported into Ingenuity Pathway Analysis (Qiagen) to identify the
most significantly affected unique canonical pathways, biological functions and networks be-
tween lime poinls,

Resulis
Immune cell isolation

To obtain purified human immune cells, PBMC and PMN were immedialtely fractionaled from
freshly collecled venous blood over a Ficoll density gradient. Average numbers of PBMC

and PMN obtained from 90mL of fresh blood were 232.9 + 96.6x10° and 113.1 + 70.0x10° (av-
erage * SD), respectively. These cells were stained with a cockltail of antibedies to identify and
quantify six targeted immune cell types: CD3+ T cells, CD14+ monocytes, CD15+ neutrophils,
CD19+ B cells, CD11c+ mDC, and CD56+ NK cells (Fig. 1A). Distribution of leukocyte cell
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Fig 1. Flow cytometric analysis of immune cell types purified from human bloeod. (a) Whole blood {top panel), PEMC {middle panel) and PMN {bottom
panel) cell samples from a single representative subject were stained with a cocktail of antibodies directed against CD3, CD11¢, CD14, CD15, CD19,

and CD56 cell surface markers for phenolypic analysis by llow cytometry. Moving left-to-right, live cells were first gated for CD3 and CD15 expression.
Subseguent gates were drawn from the negative population in the previous panel. {b,c) Graphical representation of flow cytometric analysis from whole
blood and the PBMC fraction reveals the variability among subjects (n = 31). (d) PMN and PBMC cell fractions from a single representative subject were
subjected to CD15', CD3', CD19', and CD14" positive selection or CD19°CD15 CD14'CD3 enrichment (lop panels) via magnetic sorting (MACS). MACS-
enriched cells were stained with the same cocktail of antibodies as in {a), with addition of 7AAD 1o exclude non-viable cells, and subjected to FACS (bottom
panels) following the same gating scheme as in (a) to obtain highly purified neutrophil, T cell, B cell, monocyte, m DC, and NK populations for systems
analysis.

doi-10.1371/journal pane. 011852801
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types in the whole blood (Iig. 1B) and PBMC fraction (I'ig. 1C) fell within the expected, physi-
ologically accepled range (whole blood: neutrophils, 25-80%; T cells, 10-30%; B cells, 1-9%;
monocyles, 5-11%; NK, 1-8%; mDC 0-1%); however, variability was observed

between subjects.

The number of cells needed for enrichment of each cell type, as well as the order of enrich-
ment, depended upon both the total number of PBMC obtained and the individual’s phenotyp-
ic blood profile. The standard sorting protocol was designed for use when 150-300x10° PBMC
were obtained from 90mL fresh blood, which occurred in 24/39 (62%) samples (53 Fig. Flow
chart for immune cell purification). To account for variability in the abundance and composi-
tion of each donor’s cells, alternative sorting schemes were developed to maximize recovery of
all cell types if larger or smaller numbers of PBMC were obtained from 90mlL. fresh blood,
which occurred in 9/39 (23%) and 6/39 (15%) samples, respectively (53 I'ig.). Additionally, ifa
phenotypic blood profile varied widely from the average, or if recovery of a particular cell type
was sub-optimal on the first visit, the proportion of PBMC or PMN fraction dedicated o en-
richment of the affected cell-type(s) was altered accordingly in subsequent visils.

PBMC and PMN fractions were first subjected to magnetic-activated cell sorting (MACS)
to positively select CD3+ T cells, CD14+ monocytes, CD15+ neutrophils, CD19+ B cells or
negatively enrich for CD3-CD14-CD15-CD19- NK and mDC (Fig. 1D, top panels). However,
cell yields and purity were inconsistent, rarely resulting in greater than 90% purity from any
sample. Therefore, MACS-enriched cells were further subjected to fluorescence-activated cell
sorting (FACS). Using the same antibody cocktail employed for phenotyping, with addition of
(7-AAD) to exclude non-viable cells, neutrophils (CD3 CD15%), T cells (CD15 CD19CD14 CD37),
B cells (CD15°CD3 CD14 CD19%), monocyles (CD15"°CD3 CD19°CD14%), mDC
(CD15CD3 CD19' CD14' CD56' CD11c"), and NK cells (CD15CD3 CD19'CD14 CD11c¢ CD56%)
were sorted with greater than 98% purity (Fig. 1D, bottom panels) in a short period of time;
each sort generally took 30 min or less. Purified cells were not significantly activated by the
sorling process, as assessed by flow cytometric analysis of size and scatter as well as surface
staining for activation markers (54 Fig. Individual cell types are not activated by the sorling
process).

By employing this approach for sorting 6 immune cells types from fresh whole blood, we
consistently obtained sufficient cells for both transcriptomic and proteomics analysis. After
FACS purification, cells were immediately processed and frozen for downstream RNA
(<0.5x10° cells) and protein (1x10° cells) analyses. Greater than 1.5x10° of cach cell type was

Table 1. Recovery of purified immune cells.

Starting quantity of PBMC* or PMN* Cell recovery after MACS + FACS N

(mean * SD x 10°%) {mean + SD x 10%)
T cell 21.7£33 202070 36
B cell 8311207 1.7+ 069 38
Monocyte 75.0+20.7 2.9+039 22
mDC 1149+ 382 0.41£0.31 26
NK 1.9+0098 26
Neutrophil 31.6+82 2.9+ 035 16

*T cells, B cells, monocytes, mDC and NK cells were enriched/purified from the PEMC fraction
# Neutrophils were enriched/purified from the PMN fraction.

¢oi:10.1371/journal.pene. 41185281001
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typically collected, except for mDC (Table 1). Recovery of sorted mDC was sufficient only for
RNA analysis; proteomic analysis was not performed on this cell type.

Transcriptomic and Proteomic analysis in two TIV-vaccinated subjects

Previous systems biology approaches investigating yellow fever and influenza vaccine re-
sponses utilized microarray analysis to map the transcriptome after vaccination|6-10]. We
used a more comprehensive, sensitive, quantitative and unbiased approach, next-generation
RNA sequencing (RNA-Seq), which measures the RNA expression profile of each sample more
accurately over a greater dynamic range than microarray-based technologies|42]. In addition
to identification of expected coding sequences, RNA-seq allows for identification of non-cod-
ing transcripts, splice variants, sequence polymorphisms, and previously unannotated genes
|43]. Additionally, the majority of systems vaccinology studies have focused solely on tran-
scriptional analysis Lo map the immune response, with only selected proteins validated. We
also used unbiased quantitative proteomics in addition to transcriptional data to analyze the
immune response after vaccination.

A minimum of 100 ng total RNA of high quality (RIN greater than 7) was required for the
construction of polyadenylated RN A-seq libraries. Sufficient RNA (250-700 ng total RNA) of
good quality was oblained from 0.5x10° PBMC and FACS-sorted T cells, B cells, NK, mono-
cytes and neutrophils, as well as from 0.4-0.5x10° FACS-sorted mDC (S5 Fig. Adequate RNA
quality and quantity is obtained from sorted immune cells for RN A-seq applications). While
sufficient quantity of RNA was obtained from 0.5x10" neutrophils for our studies, these cells
consistently vielded less RNA compared to other cell types, suggesting that additional sorted
neutrophils should be collected in the future for downstream RNA applications.

Using 25 million, 50-bp paired-end (PE) RNA-sequencing, the transcriptomes of PBMC as
well as the six purified immune cell types from two subjects prior to (day 0) and at days 1, 3,
and 7 after T1V vaccination were profiled. After the sequenced reads were aligned to the hgl9
human reference genome and filtered to remove transcripts of poor quality, samples were load-
ed into AvadisNGS v1.5 for downsLream analysis. Approximately 56,000 transcripls were iden-
tified in 56 RNA samples (52 Daltaset, Normalized transcript expression in human immune
cells prior to and post-TIV vaccination). Of these transcripts, 19,000-27,000 transcripls per
cell type contained normalized signal values that were greater than zero. Twenty nine classes of
RNA transcripts were identified, including protein coding RNA, pseudogenes, anti-sense RNA,
long intervening non-coding RNA (lincRNA), and novel genes (S1 Table. Summary of baseline
RNA transcripts identified in each cell type from one subject by RN A-seq analysis). Identifica-
tion of non-polyA classes of RNA was likely caused by non-specific binding to oligo-dT or
other inefficiencies during library construction; however, these classes constituted less than 2%
of the total transcripts identified. Using Circos[40], PBMC and purified immune cell baseline
(day 0) transcripts from a vaccinated subject plotted over the length of the human genome
showed transcription was active across most of the genome, with small regions that appeared
transcriptionally silent (S6 Fig. Transcriptional profiling of PBMC and individual immune cell
types). Each of the purified immune cell types displayed distinct RN A expression profiles com-
pared to PBMC and the other cell types. Pair-wise comparison of baseline (day 0) transcrip-
tomes from the subject showed weak correlation between PBMC and each sorted cell type
(Fig. 2A). Principal component analysis (PCA) of transcriplomes from each time point re-
vealed that all cell types clustered distinctly based on RNA expression profiles (Fig. 2B). Finally,
hierarchical clustering analysis of filtered transcripts revealed that each cell type displayed a
distinct RNA expression profile that differed from both PBMC and the other cell types in all
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Fig 2. RNA-Seq analysis of purified immune cells after TIV vaccination. {(a) Pair-wise comparison of day 0 RNA profiles (all transcript classes
represented, filtered to remove zero values; 32,505 transcripts) from a vaccinated subject shows that the transcriptome of each sorted cell type correlates
weakly with PBMC and other sorted cell types. (b) PCA of RNA profiles {all transcript classes represented, filtered to remove zero values; 37,608 transcripts)
from a TIV-vaccinated subject at four ime points shows that the purified immune cell types cluster into distinct groups, although monocytes and mDC cluster
closely. (e-h) Semi-supervised hierarchical clustering analysis of RNA expression from a vaccinated individual reveals that purified immune cells have
distinct RNA expression profiles compared to PBMC at all time-points. Data (non-zero transcripts with an RPKM of 1 in at least one sample) was centered for
normalized signal value across gene and cell type; red = up, black = no change, green = down. {¢) All transcript classes {21,438 transcripts). {d) Protein
coding transcripts (13,243 transcripts, induding |g and TCR transcripts). (e) Pseudogenes (3,466 transcripts, 2x scale). (f) Anti-sense RNA (1,310
transcripts, 2x scale). (g) lincRNA (1,047 transcripts, 2x scale). (h) New genes (167 transcripts, 5x scale).

doi:10.1371/journal pone. 0118528 6002

classes of RNA investigated (I'ig. 2C-H) (53 Dataset. Normalized transcript expression in
human immune cells filtered for an RPKM of 1.0 in at least one sample from one subject).
Prior to performing quantitative proteomics, protein lysates were quantified. PBMC and
sorted immune cells (1x10°) generated between 30-80 ug of protein/sample (57 Fig. Adequate
protein quantity is obtained from sorted immune cells for proteomics applications). In contrast
to the RNA levels, neutrophils contained the highest amount of protein, while lymphocytes
contained the least. Lysates from each sample were trypsinized, desalted, and labeled with
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8plex iTRAQ reagents. A control sample—the Immune Cell Common Standard (ICCS)—was
labeled with two iITRAQ channels to assess technical variation and used to normalize data
across experiments. Two labeling strategies were tested Lo determine the optimal pooling strat-
egy for delecting proleomic changes afier vaccination (S8 Fig. Two iTRAQ stralegies for quan-
titative proteomic analysis of immune cells after vaccination). In strategy 1, all six cell types at a
single time point were multiplexed in one experiment. The advantage of this approach is that
technical experimental variation between cell types at each time point would be minimized.
However, since liquid chromatography tandem mass spectrometry (LC-MS/MS) selected pro-
teins for identification and quantification based upon their abundance in the sample, proteins
present in higher amounts across the samples would be preferentially quantified. Thus, differ-
entially changing proteins with low expression from a single cell-type might not be quantified.
Also, by increasing the complexity of the sample pool through multiplexing lysates from six
different cell Lypes, co-fragmentalion of co-eluling peptides might cause an increase in iTRAQ
signal interference. In strategy 2, all four time-points from one cell type were multiplexed in a
single experiment. The advantage of this approach is that by pooling similar proteomes, sample
complexity is reduced, thus reducing iTRAQ signal interference caused by co-fragmentation of
co-cluting peptides. Since LC-MS/MS quantifies only a fraction of the proteome, this strategy
would also ensure quantification of a larger fraction of cell type-specific proteins. However, cell
type-specific changes that are artifacts might be detected due to technical experimental varia-
tion. We tested both strategies and analyzed the results using both unsupervised hierarchical
clustering and PCA (S8 Fig.). Strategy 2 produced cell-type specific clustering and protein ex-
pression patterns by both hierarchical clustering and PCA, while strategy 1 did not. Since the
samples in the iTRAQ experiments using strategy 1 did nol cluster together by either hierarchi-
cal clustering or PCA, we discounted the possibility of batch effecl. Therefore, strategy 2 was
considered the optimal approach and employed for proteomic analysis.

Peptide spectra generated by LC-MS/MS were searched against the human Ensembl data-
base of protein sequences using Sequest [33], and the resulting peptides were scored and assem-
bled into proteins and quantified based upon the iTRAQ reporler ion inlensities in ProteolQ.
The proteomes of PBMC and five purified immune cell types from two subjects prior to
(day 0) and at days 1, 3, and 7 after TIV vaccination were analyzed. Approximately 7,000 pro-
teins were identified in 44 protein samples (54 Datasel. Normalized protein expression in
human immune cells prior to and post-TIV vaccination). After removing zero values and con-
taminating keratins, approximately 4,000 proteins from each subject were retained for further
analysis (S5 Dataset. Normalized protein expression in human immune cells filtered to remove
zero values and contaminating keratins from one subject). Similar to transcriptomic analysis,
the PBMC and purified immune cell baseline (day 0) proteomes from a vaccinated subject plot-
ted over the length of the human genome showed aclivity across the majority of the genome
(59 Fig. Proleomic profiling of PBMC and individual immune cell types). Additionally, each of
the purified immune cell types displayed distinct proteomic profiles when compared to PBMC
and the other cell types. Pair-wise comparison of baseline (day 0) proteomic data from the sub-
ject showed poor correlation between PBMC and sorted cell types (Fig. 3A). PCA of proteomic
data from each time point revealed that all cell types clustered distinctly based on proteomic
profiles (Fig. 3B). Hierarchical clustering analysis of proteins identified showed that each cell
type displayed a distinct protein expression profile that differed from both PBMC and the
other cell types (Fig. 3C).

Strikingly, when clustering samples from both subjects in the same experiment by PCA, cell
types from both subjects at every time point clustered similarly for RNA expression ( ~ 39,000
transcripts, filtered to remove zero values). However, when analyzing protein data from both
subjects ( ~ 5,300 proteins, filtered to remove zero values and contaminating keratins), samples
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Fig 3. Proteomic analysis of purified immune cells after TIV vaccination. (a) Pair-wise comparison of day 0 protein profiles (3,852 proteins, filtered to
remove zero values and contaminating keratins) from a vaccinated subject shows that proteomes of sorted cells correlate poody with PBMC. (b) PCA of
protein profiles from a TIV-vaccinated subject at four time points shows that purified immune cell types cluster into distinct groups. (c) Semi-supervised

hi hical ¢l analysis of relative protein expression from a vaccinated individual reveals that purified immune cells have distinct proteomic
expression profiles compared to PBMC. Data was centered across protein and cell type; red = up, black = no change, green = down,

doi:10.1371/journal pone.0118528.0003

of the same cell type at every time point clustered similarly on a per-subject basis, but cells
from the two subjects did not cluster together (510 Fig. Principal component analysis reveals
poor correlation of proteomes between subjects).

Differential analysis of RNA and proteins from two TIV-vaccinated
subjects

For comparison of transcriptional changes in PBMC and sorted immune cells, transcripts that
were differentially expressed (DE) =1.5-fold (p < 0.05) after vaccination were investigated.
While standard methods for determining fold change typically use a 2x fold-change, we found
that using this threshold failed to identify significant numbers of shared DE transcripts be-
tween both subjects. We therefore tested several different fold-change values, ranging from
1.25x-1.75x. By lowering the threshold to 1.5x, we obtained more comprehensive lists of DE
transcripts from each cell type that were shared between both donors at each time point. When
DE transcripts from PBMC were compared to DE transcripts from each purified immune cell
type, less than 10% similarity was typically observed (52 Table. Comparison of differentially ex-
pressed RNA transcripts in PBMC and individual immune cell types). Circos was used to plot
DE transcripts from PBMC and each purified immune cell type from a vaccinated subject over
the length of the human genome and to visualize overlap of differentially expressed genes at
three time points after TIV vaccination (day 1, day 3, and day 7) (Fig. 4). The plots showed a
lack of substantial overlap in differential expression between PBMC and each purified immune
cell type. Interestingly, the three lime points showed changing patterns of overlapping expres-
sion for PBMC and each cell type after T1V vaccination. Substantial variability was also ob-
served in the number of cell type-specific DE transcripts when making subject-1o-subject
comparisons, with less than 10% similarity between donors for most cell types and time points
(53 Table. Shared DE RNA transcripts; 56 Dalasel. Shared up-regulated DE RNA transcripts;
and 57 Dataset. Shared down-regulated DE RNA transcripts). To minimize background noise,
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Fig 4. Visualization of differentially expressed RNA transcripts in PBMC and individual immune cell types. Circos plots of differentially expressed
RNA transcripts from a vaccinated subject at (a) day 1, (b) day 3, and (c) day 7 post-TIV vaccination (fold change of =1.5x and p < 0.05). All RNA transcript
classes are represented. For each cell type, the colored bar on the outer circle represents the entire human genome; segments within the bars divide the
genome into chromosomes. Red lines indicate DE transcripts that are shared between PBMC and purified immune cell types. Gray lines indicate DE
transcripts that are shared b 1 the purified immune cell types.

doi:10.1371/journal pone.0118528.g004
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Fig 5. Unique modules of RNA transcripts are differentially exp dineachi cell type after TIV vaccination. Differentially expressed RNA
transcripts (=1.5-fold change, p < 0.05) that were shared between both subjects after TIV-vaccination were subjected to semi-supervised hierarchical
clustering analysis. Log2 fold-change values of shared DE transcripls in all cell types from both subjects were clustered at (a) day 1 (463 transcripts), (b) day

3 (653 transcripts), and (c) day 7 (428 transcripts) post-vaccination. Very little overap of shared diff ially exp d RMA transcripts is observed between
cell types; red = up; yellow = no change; blue = down.

doi:10.1371/journal pane.0118528.0005
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we only considered DE transcripts from each cell type that were shared in both subjects after
TIV vaccination in further downstream investigations. Using semi-supervised hierarchical
clustering, little overlap in the significantly changing protein-coding RNA (ranscripts was ob-
served between each cell Lype and al each time point after TIV vaccination (Fig. 5A-C).

Additionally, RN A-seq analysis provided a platform to investigate differential splicing
events after TIV vaccination. Using the Multivariate Analysis of Transcript Splicing (MATS)
data analysis package[39], splicing events were identified in each cell type from each subject
(54 Table. Total splicing events identified in each cell type). Differential splicing events
(p=<0.05 and FDR<0.05) were then identified in cach cell type from cach individual (S5 Table.
Differential splicing events identified in each subject, cell type and time point). Several splicing
events shared between both subjects were identified (56 Table. Shared differential splicing
events).

For proleins, the DE threshold was lowered to >1.25-fold to adjust for iTRAQ under-re-
porting of fold changes[44]. By choosing this threshold, we obtained comprehensive lists of DE
proteins from each cell type that were shared between both subjects at each time point. Similar
to RNA, there was little correlation between PBMC and purified immune cell types when com-
paring DE proteins (S7 Table. Comparison of differentially expressed proteins in PBMC and
individual immune cell types). Circos was used to plot DE proteins from PBMC and each puri-
fied immune cell type in a vaccinated subject over the length of the human genome and to
visualize overlap of differentially expressed proteins at three time points after TIV vaccination
(day 1, day 3, and day 7) (Fig. 6). Similar to RNA data, the plots showed a lack of substantial
overlap in DE proteins between PBMC and purified immune cell types, as well as changing pat-
terns of overlapping expression for PBMC and each cell type at each time point after TIV vacci-
nalion. Subslantial variability was observed in the number of cell type-specific DE proteins,
with less than 20% being shared between both subjects for most cell types and time points
(S8 Table. Shared DE proteins; 58 Datasel. Shared up-regulated DE proteins; and 59 Dalaset.
Shared down-regulated DE proteins). Similar to transcriptomic data, semi-supervised hierar-
chical clustering revealed little overlap in the shared DE proleins from each cell type at each
time point after TIV vaccination (Fig. 7A-C).
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Fig 6. Visualization of differentially expressed proteins in PBMC and individual immune cell types. Circos plots of difierentially expressed proteins

from a vaccinated subject at(a) day 1, (b) day 3

, and (c) day 7 post-TIV vaccination (fold change of =1.25x). For each cell type, the colored bar on the outer

circle represents the entire human genome; segments within the bars divide the genome into chromosomes. Red lines indicate DE proteins that are shared

between PBMC and purified immune cell types.
doi:10.1371/journal pone.0118528.006

Gray lines indicate DE proteins that are shared between the purified immune cell types.
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Fig 7. Unique modules of proteins are differentially expressed in each immune cell type after TIV vaccination. Differentially expressed proteins
(=1.25-fold change) that were shared between both subjects after vaccination with TIV were subjected to semi-supervised hierarchical clustering analysis.
Log2 fold change values of shared DE proteins in each cell type from both subjects were clustered at (a) day 1 {196 proteins), (b) day 3 (263 proteins), and
(c) day 7 (199 proteins) post-vaccination. Very little overlap of differentially expressed proteins is observed between cell types; red = up; yellow = no change;
blue = down. B cell data was derived from only one subject due to insufficient recovery of B cells from the second subject.

doi:10.1371/journal pone.0118528 0007

Following cluster analysis, lists of shared DE transcripts or proteins from each cell type and
time point were loaded into Ingenuity Pathway Analysis (IPA) to identify the most significant
biclogical interactions after TIV vaccination. When comparing the top network identified in
each cell type for both protein-coding RNA transcripts and proteins (Figs. 8 and 9, respective-
ly), each cell type induced unique biological networks at day 1 after TIV vaccination. Similarly,
unique RNA and protein networks were observed in each cell type at day 3 and day 7 after vac-
cination (511 Fig. Networks derived from DE RNA transcripts at d3 post-TIV vaccination; 12
Lig. Networks derived from DE RNA transcripts at d7 posl-TIV vaccination; S13 Fig. Networks
derived from DE proteins at d3 post-TIV vaccination; and 5§14 Fig. Networks derived from DE
proteins at d7 post-TIV vaccination). The top biological networks and canonical pathways
identified in each cell type at each time point are shown in $10 DataseL. Top networks and
pathways identified in TIV-vaccinated subjects.

Discussion

The goal of this study was to develop methods and establish protocols that can be used in fu-
ture systems vaccinology studies. By utilizing this efficient cell-sorting protocol, we obtained
sufficient numbers of six immune cell types purified from freshly collected whole blood to per-
form both RN A-sequencing and quantitative proteomics experiments. Importantly, cells were
processed and stored for downstream applications in a single day, thus avoiding the pitfalls of
freeze-thaw cycles on downstream analysis. In this study, sorting was stopped once the target
number of cells was reached (1.5-3 x10° cells) even if MACS-enriched material remained. Col-
lection of larger numbers of cells is therefore possible for some cell types. In this regard, we
have utilized this protocol in a subsequent vaccinology study and collected up to 4x10° neutro-
phils, up to 3x10° B cells, T cells, NK and monocytes, and up to 1x10* mDC from similar
amounts of starting material.

Further fractionation of these six cell types into sub-populations was considered. However,
we decided against this approach for several reasons. First, we were inlerestled in broadly sam-
pling the immune system in response o vaccination. Previous vaccinology studies thal investi-
gated responses of individual immune cells only focused on selected cell types [9,10]. Our
approach profiled both transcriptomic and quantitative proteomic responses of six essential in-
nate and adaptive immune cell types, including neutrophils and NK cells, after vaccination.
Signals from small, potentially important sub-populations from any of these immune cell types
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Fig 8. Networks derived from DE RNA transcripts at d1 post-TIV ination. Diff ially exp | protein-coding RMA transcripts (1.5x, p<0.05)
identified in both TIV-vaccinated subjects at day 1 post-vaccination were imported into IPA, and the top network identified in each cell type is displayed. Very
little overlap of individual transcripts or biological networks that are activated is observed between cell types.

doi:10.1371/journal pone.0118528 0008

may still be masked in our systems analysis. However, by sorting for these six immune cell
types, we simultaneously investigated both innate and adaptive immune cell responses to vacci-
nation at a cell-specific level. Second, pursuing sub-populations of immune cells would require
cither obtaining larger blood samples or reducing the number of distinct cell types that we
could purify in order to recover sufficient cells for both RNA-Seq and proteomics analyses. If
only transcriptomic studies had been performed, sorting for sub-populations from selected im-
mune cell types would have been possible. Finally, the added cost for analysis of both
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Fig 9. Networks derived from DE proteins at d1 post-TIV vaccination. Differentially expressed proteins (1.25x) identified in both TIV-vaccinated subjects
at day 1 post-vaccination were imported into IPA, and the top network identified in each cell type is displayed (*multiple ENSPs mapped to these proteins).
Very little overap of individual proteins or biclogical networks that are activated is observed between cell types. B cell data was derived from only one subject
due to insufficient recovery of B cells from the second subject.

d0i:10.1371fjournal pane. 0118528.009

transcriptomic and proteomic data from additional sub-populations was considered prohibi-
tive for this study’s broad survey of innate and adaptive immune responses after vaccination.
Future studies that focus on a specific immune cell type(s) and/or sub-populalions can easily
be performed by adapting our protocel, especially if only transcriptomic analysis is proposed.

Emerging technologies that allow for greater identification of sub-populations of cells and
the potential for single cell analysis are now possible [15]. For example, CyTOF offers an op-
portunity to investigate both cell surface and intracellular protein expression at the single cell
level [46]. This technology allows for staining of a potentially unlimited number of cellular
markers by eliminating the spectral overlap that plagues traditional flow cytometry applica-
tions due to use of fluorescently-labeled antibodies. Therefore, analysis of a substantially in-
creased number of cell subtypes from a single sample can be performed. However, the
destructive nature of this technology (single cell ICP mass cytometry) eliminates the potential
to collect live cells for further downstream applications. Additionally, by nature, antibody-tar-
geted validation studies require that previously identified molecules be selected for screening.
The approach described in this study generated both unbiased and quantitative global
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transcriptomic and proteomic data from six purified immune cell populations after vaccina-
tion. CyTOF offers a powerful, single-cell, high throughput approach to validate and character-
ize resulls derived by these types of systems studies.

This study oplimized our stralegy lo generate and analyze RNA-seq and quantitative prote-
omics data from individual immune cell types sorted from fresh human blood. Differential
analysis for each immune cell type revealed unique transcriptomic and proteomic expression
profiles as well as changing biological networks during the early response after vaccination.
Lending support to our strategy, previous transcriptional findings from systems analysis after
TIV vaccination were identified in our approach. For example, we found that B cell-specific
transcripts identified by Nakaya et al. as correlative predictors of protective immunity follow-
ing TV vaccination, including immunoglobulin genes and TNFSFR17 as well as the transcrip-
tion factor XBP-1, were up-regulated in sorted B cell samples from both of our subjects 7 days
after vaccination (51 Dalaset)[9]. Additionally, we found that CXCR3, the receptor for
CXCL10/IP-10, was significantly up-regulated in both PBMC and sorted B cell samples after
TIV vaccination (S1 Dataset); CXCL10/IP-10 was the only cylokine Nakaya et al. identified as
being significantly increased in the serum of TIV-vaccinated subjects in their systems study|9].
These data suggest that our subject cohort likely attained at least some measure of protection
after TIV vaccination. Future studies using these protocols will correlate vaccine-induced dif-
ferential expression of both RNA and proteins, as well as serum cytokine levels, with day 28 an-
tibody titers to make predictions about generation of protective immunity in response
to vaccination.

‘The methods and strategies developed in this project provided a unique and important op-
portunily to investigale the quantitative and qualitative differences between PBMC and indi-
vidual immune cell types at both the transcriptomic and proteomic levels. By ulilizing RNA-
seq rather than microarray analysis, we were able Lo identify and quantify an expanded fraction
of the transcriptome, which included 29 different classes of RNA transcripts. Additionally,
both transcriptomic and proteomic data were visualized across the human reference genome
sequence. Only a small fraction of differentially expressed transcripts and proteins identified in
the purified immune cell types were also identified in the PBMC fraction. Thus, by analyzing
cach cell type individually, cell-specific transcriptomic and proteomic contributions to the im-
mune response following vaccination were identified. This cell type-specific information, cou-
pled with unbiased systems biology approaches, provides a more comprehensive approach to
monitor and eventually model vaccine responscs. The approaches developed in this pilot proj-
ect will help to guide future systems biology studies aimed at modeling and predicting complex
responses to vaccines and vaccine adjuvants involving interactions between multiple cell types.

Supporting Information

§1 Dataset. RN A-seq quality control.
(XLSX)

52 Dataset, Normalized transcript expression in human immune cells prior to and post-
TIV vaccination,
(XLSX)

§3 Dataset. Normalized transcript expression in human immune cells filtered for an
RPKM of 1.0 in at least one sample from one subject.
(XLSX)

PLOS ONE | DOI:10.1371fjournal.pone. 0118528 February 23, 2015 18/24

191



G PLOS | one

Cell-Based Monitoring of Vaccine Responses

S4 Dataset. Normalized protein expression in human immune cells prior to and post-TIV
vaccination.

(XLSX)

§5 Dataset. Normalized protein expression in human immune cells filtered to remove zero
values and contaminating keratins from one subject.
(XLSX)

$6 Dataset. Shared up-regulated DE RNA transcripts.
(XLSX)

§7 Dataset. Shared down-regulated DE RNA transcripts.
(XLSX)

S8 Dataset. Shared up-regulated DE proteins.

(XLSX)

59 Dataset, Shared down-regulated DE proteins.
(XLSX)

510 Dataset. Top networks and pathways identified in TIV-vaccinated subjects.
(XLSX)

S1 Fig. RNA quality control. Scatter plots showing the correlation of total RNA transcripts be-
tween time points and subjects. (a) ‘Time point comparison within the same subject (HD30
PBMC day 3 vs HD30 PBMC day 0). (b) Subject-to-subject comparison of one time point
(HD30 PBMC day 3 vs HD31 PBMC day 3). Both comparisons show correlation greater than
0.95.

(TIE)

$2 Fig. Proteomics quality control. (a) Scatter plot showing the protein abundances measured
in two technical replicates of the ICCS common control. Each dot represents an individual pro-
tein. X axis represents the protein abundance measured in replicate 2. Y-axis represents the
protein abundances measured in replicate 1. (b) Scatter plot showing the distribution of fold
changes of proteins with respect to their abundances. Each dot represents an individual pro-
tein. X axis represents protein abundance. Y axis represents fold changes. (c) Cluster dot plot
showing the distribution of fold changes in different iTRAQ channels. Each dot represents an
individual protein and the lines represent patterns of expression change.

(TIF)

§3 Fig. Flow chart for immune cell purification. (a) When 150-300x10° PBMC were ob-
tained, B cells (CD197), monocytes (CD14%) and T cells (CD37) were first positively selected
from the PBMC fraction by MACS; approximately 15% of PBMC were dedicated for CD3* en-
richment, 35% of PBMC were dedicated to CD14" enrichment, and 45% of PBMC were dedi-
cated to CD19" enrichment. Negative flow through material was collected, pooled and
subsequently depleled of remaining CD3", CD14%, CD15", and CD19" cells to enrich for mDC
and NK cells. All MACS enriched cell populations were stained as in Fig. 1 A with the addition
of 7-AAD for live/dead cell identification and subjected to FACS sorting Lo yield highly purified
cell populations. (b) When >300x10° PBMC were obtained, CD3+, CD19+ and CD14+ selec-
tion was performed as in (a), with a smaller cell fraction dedicated to each sort, while NK and
mDC were enriched by negative selection directly from PBMC. Cells were stained and FACS
sorted as in (a). (€) When < 150x10° PBMC were obtained, all PBMC were dedicated to CD19™
B cell selection. The CD19-negative flow through was then subjected to CD3"CD14" dual
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positive selection. MACS enriched cells were stained as in (a), and B cells were FACS sorled
from the CD19" fraction, T’ cells and monocytes were FACS sorted from the CD3°CD14" frac-
tion, and NK and mDC were FACS sorted from the CD19 CD3 CD14 fraction. Any polential
contaminating neutrophils were eliminated from the NK and mDC fraction by staining with
anti-CD15 during FACS sorting.

(TIF)

$4 Fig, Individual cell types are not activated by the sorting process. Aliquots of whole blood
(WB), PBMC and pooled sorted cells ( ~ 10,000 each cell type) from a representative subject
were stained with antibodies directed against CD3, CD11¢, CD14, CD15, CD19 and CD56 for
phenotyping as in Fig. 1A, as well as CD69, CD86 and CI2134 to measure cellular activation.
Fluorescence minus one (FMO) controls were used lo determine background fluorescence lev-
els for activation marker staining in each cell type from WB and PBMC samples. Assessment
of surface expression (mean fluorescence intensity; MFI) of (a) CD69 in each cell type, (b)
CD86 in monocyes, B cells, and mDC, and {¢) CD134 in T cells reveals that none of the cell
types were significantly activated during any step of our sorting protocol.

(TIF)

S5 Fig. Adequate RNA quantity and quality is obtained from sorted immune cells for
RNA-seq applications. RNA isolated from sorted immune cells (500,000 each cell type except
mDC, which contained 400,000 at d0, 567,000 at d1, 438,000 at d3, and 548,000 at d7) from a
single vaccinated subject was quantified (top panel) and evaluated for RNA integrity (bottom
panel) as described in Materials and Methods.

(TIE)

$6 Fig. Transcriptional profiling of PBMC and individual immune cell types. Baseline, day
0 RNA profiles of PEMC and each purified cell type (all transcript classes represented, non-
zero transcripts with an RPKM of 1 in at least one sample; ~ 21,000 transcripts) from a single
subject were plotted using Circos to visualize relative expression of transcripls across the ge-
nome. Bars on the outside of the circle represent individual chromosomes, The heal-map color
scaling parameter was sct to "scale_log_base = 1" to allow for optimal color space.

(TIF)

$7 Fig. Adequate protein quantity is obtained from sorted immune cells for proteomics ap-
plications. Total protein isolated from sorted immune cells (1x10° each cell type) from a single
vaccinated subject was quantified as described in Materials and Methods.

(TIE)

S8 Fig. Two iTRAQ strategies for quantitative proteomic analysis of immune cells after
vaccination. (a) Experimental design. In strategy 1, multiple immune cell types from one time
point were multiplexed together in the experiment. In strategy 2, different time points from the
same immune cell type were multiplexed together. An immune cell common standard (ICCS)
was used lo normalize reporler ion intensilies across Lhe experiments. {(b) Unsupervised hierar-
chical clustering analysis and (¢) PCA of pseudo-spectral counts from one subject generated
using strategy 1 (left panels; 5,676 proteins, filtered to remove zero values and contaminating
keratins) or strategy 2 (right panels, 3,852 proteins, filtered to remove zero values and contami-
nating keratins) reveals that cell-types cluster together and display distinct cell-type specific
patterns of protein expression using strategy 2, but not with strategy 1.

(TIF)

$9 Fig. Proteomic profiling of PBMC and individual immune cell types. Baseline, day 0 pro-
tein profiles of PBMC and each purified cell type (3,852 proteins) from a single subject were
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plotted using Circos to visualize relative expression of proteins across the genome. Bars on the
outside of the circle represent individual chromosomes. The heat-map color scaling parameter
was sel Lo “scale_log_base = 10" to allow for oplimal color space.

(TIF)

$10 Fig. Principal component analysis reveals poor correlation of proteomes between sub-
jects. (a) RNA transcripts (all RN A classes represented, filtered to remove zero values;

~ 39,106 total transcripts) and (b) proteins (5,304 total proteins, filtered to remove zero values
and contaminating keratins) from subject 1 (HD31; large circles) and subject 2 (HD30; small
circles) were clustered in the same experiment. RNA from both subjects clusters similarly,
while proteins do not.

('T1E)

$11 Fig. Networks derived from DE RNA transcripts at d3 post-TIV vaccination. Differen-
tially expressed protein-coding RNA transcripts (1.5x, p<0.05) identified in both T1V-vacci-
nated subjects at day 3 post-vaccination were imported into IPA, and the top network
identified in each cell type is displayed. Very little overlap of individual transcripts or biological
networks that are activated is observed between cell types.

(TIF)

$12 Fig. Networks derived from DE RNA transcripts at d7 post-TIV vaccination. Differen-
tially expressed protein-coding RNA transcripts (1.5x, p<0.05) identified in both TIV-vacci-
nated subjects at day 7 post-vaccination were imported into IPA, and the top network
identified in each cell type is displayed. Very little overlap of individual transcripts or biological
networks thal are activated is observed between cell Lypes.

(TIF)

$13 Fig. Networks derived from DE proteins at d3 post-TIV vaccination. Differentially ex-
pressed proteins (1.25x) identified in both TIV-vaccinaled subjects at day 3 post-vaccination
were importled into IPA, and the lop network identified in each cell type is displayed (+multiple
ENSPs mapped to these proteins). Very little overlap of individual proteins or biological net-
works that are activated is observed between cell types. B cell data was derived from only one
subject due to insufficient recovery of B cells from the second subject.

(TIF)

$14 Fig. Networks derived from DE proteins at d7 post-TIV vaccination. Differentially ex-
pressed proteins (1.25x) identified in both TIV-vaccinated donors at day 7 post-vaccination
were imporled into IPA, and the top network idenlified in each cell type is displayed (+multiple
ENSPs mapped Lo these proteins). Very little overlap of individual proteins or biological net-
works that are activated is observed between cell types. B cell data was derived from only one
subject due to insufficient recovery of B cells from the second subject.

(TIE)

§1 Table. Summary of baseline RNA transcripts identified in each cell type from one sub-
ject by RNA-seq analysis.

(TIE)

§2 Table. Comparison of differentially expressed RNA transcripts in PMBC and individual
immune cell types.

(TIF)

$3 Table. Shared DE RNA transcripts (all transcript classes represented).
(TIF)
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$4 Table. Total splicing events identified in each cell type.

(TIE)

S5 Table. Differential splicing events identified in each subject, cell type and time point.
(TIF)

$6 Table. Shared differential splicing,

(TIF)

§7 Table. Comparison of differentially expressed proteins in PMBC and individual im-
mune cell types.

(TIF)

S8 Table. Shared DE proteins.

(TIF)
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It is generally assumed that the MHC class [ antigen {(Ag)-processing (CAF)
machinery — which supplies peptides for presentation by class I molecules — plays
no role in class I-restricted presentation of cytoplasmic Ags. In striking contrast to this
assumption, we previcusly reported that proteasome inhibition, TAF deficlency or ERAAP
deficlency led to dramatically altered T helper (Th)-cell responses to allograft (HY) and
microblal (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing
and presentation, altered CD4+ T-cell repertoire, or both underlay the above finding, We
found that TAP deficlency and ERAAP deficlency dramatically altered the quality of class
II-associated self peptides suggesting that the CAF machinery impacts class II-restricted
Ag processing and presentation. Consistent with altered self peptidomes, the CD4% T-cell
receptor repertoire of mice deficient in the CAP machinery substantially differed from
that of WT animals resulting in altered CD4% T-cell Ag recognition patterns. These data
suggest that TAP and ERAAP sculpt the class Il-restricted peptidome, Impacting the CD4+
T-cell repertoire, and ultimately altering Th-cell responses. Together with our previous
findings, these data suggest multiple CAP machinery components sequester or degrade
MHC class II-restricted epitopes that would otherwise be capable of eliciting functional
Th-cell responses.
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Introduction

CD4% T helper (Th) cells regulate multiple cellular and humoral
responses to pathogenic microbes and parasites to protect against
infectious diseases. These cells sense infections by recognizing
short microbial peptides presented by MHC class 11 molecules on
the cell surface of APCs. Hence, alterations or deficiencies in fac
tors that control class II-restricted Ag processing and presenta-
tion can alter the display of self and microbial peptides by APCs.
Alterations in the presented self peptide repertoire (peptidome)
can change the CD4' T-cell repertoire activated in response to
an infection, which in turn can affect the host’s susceptibility to
infectious disease.

Th cells recognize endogenous cytosolic as well as exogenous
Ags. The mechanisms controlling exogenous class l-resericeed
Ag presentadon are quite well established [1, 2]. Nonetheless,
endogenous cytosolic Ag presentation by class 1T molecules is less
well understood. Endogenous cytosolic Ags existing within pro-
fessional APCs are presented by class 1T molecules when they
are delivered to the endo/lysosomes. These Ags are delivered to
these compartments by various autophagic mechanisms — macto-
autophagy [3-7] or chaperone-mediated autophagy [8-10] —
and processed therein for presentation to CD4" T cells [11-17].
Alternatively, cytosolic Ags expressed by class [I-negative cells —
such as allograft, tumour and infected cells — are acquired by
phagocytosis. Professional class 1l-positive APCs (e.g. DCs and
macrophages (Mds)) phagocytose dying cells and process Ags into
short peptides within the phago lysosomes, assemble with class
Il molecules and are displayed at the cell surface [18-20]. This
process, termed indirect presentation, was originally described to
explain solid organ allograflt rejection.

Newer data suggest that this dogmatic separation of class 1
and class 11 Ag processing and presentation is not so absolute.
Interdependence between these two processing pathways has
been observed either within the presentng APCs or in damaged
neighbouring (donor) cells. As we reported previously, class I1
restricted cytosolic Ags are exposed to modification by compo-
nents of the MHC class | Ag processing (CAP) machinery in both
the presenting and donor cells [21]. This modificadon is evi-
dent in animal models deficient in the CAP components TAP and
ERAAP where an altered basal class I-restricted peptide reper
toire is displayed [22-26]. However, the effect of their absence
on the class Il-restricted peptide repertoire has not been fully
explored. Certain class Il-restricted Ags, including several self
peptdes, that are dependent upon the actons of the CAP machin-
ery have been identified [12-15,21,27-31]. Nonetheless, other
investgators have not seen a dependence upon this processing
machinery for class Il-restricted Ag presentation [17, 32-34].
Despite the identficadon of a few peptides that depend on CAP
machinery for presentaton, the global impact the CAP machin
ery has on the self and nonself pepidome remains unknown.
Moreover, although previous studies have observed differences
in Ag presentation, no notable alterations in the frequencies of
TCR VE usage in TAP-deficient animals for either CD4% or CD&"
T cells were observed [35]. It is therefore unclear whether the
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class Il-restricted CD4* T-cell repertoire is impacted by the CAP
machinery.

We recently showed that CD4™ T cell recognition of indirectly
presented cytosolic, class lI-restricted self (HY minor histocompat-
ibility Ag) and non-self (Listeria monocytogenes (Lm)) peptides was
enhanced in the absence of the CAP components TAP and ERAAP
[21]. Curiously however, the donated HY alloantigen entered the
cytosol of acceptor APCs and required LMP2-dependent immuno
proteasomes for presentadon [21]. Moreover, the effects of CAP
components on HY alloantigen presentation were neither due to
competitdon between class I and class I Ags nor due to compettion
between CD4" and CD&" T cells. They were also not caused by
enhanced MHC class II, B7.1, B7.2, calreticulin or HSP20 expres-
sion nor enhanced macro-autophagy, or enhanced ER-associated
degradation. Hence, we concluded from that study that the CAP
machinery must regulate the quantty and/or quality of peptdes
available for presentation by class [T molecules. Hence, we hypoth-
esized that by regulating the class Il-restricted peptidome, CAP
components could alter the robustness of the Th-cell response to
class II-restricted Ags [21].

We now report direct evidence that TAP and ERAAP influence
the available class Il-associated peptide pool. In their absence,
a nearly unique self peptidome is displayed by H2A" molecules.
These findings emerged from amino acid sequence analyses of
the class ll-associated self peptidomes isolated from WT, TAP-/~,
or ERAAP~'~ splenocytes. As previously described [35], we also
found insubstantial alterations in the TCR VP usage. Nonetheless,
we observed significant changes within the Ag-binding CDR3 of
TCR p-chains (CDR3pP) expressed by CD4T T eells. Consistent with
altered Ag processing and presentation and an altered TCR diver-
sity, we found that functional Th-cell responses to H2A" restricted
vaceinia viral (VACV) epitopes were also altered. TAP™'~ mice
recognized novel epitopes not recognized by WT mice and, con-
versely, had lost recognition of some epitopes recognized by WT
mice. Our in-depth analysis of the self pepddome, mature TCR
repertoire and Th-cell responses suggests that the CAP machin
ery meaningfully sculpts class Il-restricted Ag presentation likely
through sequestradon or degradadon of potental epitopes.

Results

TAP and ERAAP sculpt the class II-restricted self
peptidome

Previous reports have documented an altered endogenous class 1-
associated sell class [l-restricted peptidome in the absence of
the CAP components TAF or ERAAP [22-26]. Recently, increas-
ing interdependence of the class |- and class Il-restricted Ag
processing pathways and the idendficadon of several class 11—
restricted peptides that require the acdvity of components of
the CAP machinery have been reported [12-15, 27-31]. This
led us to query whether the basal class I-associated self
peptidome might also have a similar dependence on TAP
and/or ERAAP. To this end, class lI-associated peptides were
eluted from affinity purified H2A® molecules expressed by WT,
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Figure 1. LC

and ERAAP~ - mnice were separated by BPC and their
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each peptide (bold underlined, observed ion masses). MNote: the +2ion mass/charge values are provided in Supporting Information Fig. 1.
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B6.120-TAP~~, B6.120-ERAADP~/~, and B6.120-H24Ab~/~ spleno-
cytes, Importantly, deficiency in either TAP or ERAAP did not alter
the frequency of APCs within the spleen. Nor was the cell suface
phenotype (e.g class Il and co-receptor CDB0 and CDB% expres-
sion) different than WT (data not shown; [24, 251). The recov-
ered peptides were fractionated by reversed-phase chromatogra-
phy (BEPC and their sequence deduced by LCME/ME tandem
mass spectrometty (Fig. 1 and Supperting Information Fig. 1).

The mass/charge (nz) pattern generated by ME/MWES was com-
pared againg a dataset consisting of the mez patterns of theoret-
ical and known peptide sequences. The degree of concordance
between these two patterns was assigned a cross corrvelation score
Feorr (Cn). Higher Cn values are assigned to those peptides whose
ez pattern showed greater concordance between the observed
and expected m/z patterns [36], Only peptides with a Cr = 1.5
were considered to be possible peptide sequences. However, the
larger the Ch value the more confidence is placed in the peptide
sequence identification. In addition, greater diff erences in the Ch
values between the top two most likely peptide sequence identi-
fications (ACR) provides greater confidence in the identfication.
Therefore, peptides with a highly confident identification were
considered to have a Cn score =3.0 and ACR =0.2, Overall, this
dataset had an average Cn =3.536 and ACh = 0,324, Inaddition,
440 of the peptides had only a single possible sequence identifi-
cation for which no ACn canbe caleulated.

To ascertain the specificity of the bound peptides, materials
ehited from contrel H2Ab-deficient cells were isolated and anal-
yaed by the same methods, We found that only ~7% of the peptide
sequences (Cn > 1.5) identified in WT, TAP~~ and ERAAP~/-
samples were also present in the control H2Ab~~ eluates (data
not shown). These were largely derived from three sources; (i) Ig—
likely representing the Abused for immuneaffinity purification or
splenic Ig that bound to protein & Sepharose used to prepare the
immuneaffinity cohimn; (if) complement — pethaps becanse they
bind Ig and (i) fibronectin, fibrinogen and other secreted pro-
teins — likely representing unspecific contaminants of the purifica-
tion. Few peptides were derived from cytosolic/intracellular pro-
teins, Hence, peptide sequences that matched those solated from
H2Ab~~ splenocytes were considered an artefact of the purifica-
tion. Such peptide sequences with Cr = 1.5 when present in WT,
TAP~~ and ERAAP~~ samples were removed from all down-
stream analyses.

Analysiz of the peptides identified with high confidence (Ch
= 3,0 and ACR = 0.2) that were eluted from WT, TAP™"~ and
ERAAP™ splenccytes surprisingly revealed little overlap between
the peptides displayed by WT cells and either TAP~~ or ERAAP~/~
cells (Fig. 2 and Supporting Information Table 1), Only 22.5% of
the H2AP-restricted self peptide sequences displayed by WT cells
were also presented by TAP~~ or ERAAP~~ cells (Fig. 24). In
a different project, replicate M5 samples that consisted of pep-
tides with similar confidence levels eluted from MHC molecules,
demonstrated a 3% concordance (SBC, CT5, AJL and 57, unpub-
lished data). Since class l-associated peptides expressed by WT-
and CAP-deficient cells have only 22.5% overlap, the differences
in the WT and CAP peptidomes are likely real and not caused by
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c Cn>1.5
C57BL/6

A 30 B
C57BL/6

Cn>2.5
C57BL/6

TAPY  ERAAP TAPY  ERAAPT TAP  ERAAPY
D cytosolic secreted
C57BL/6 C57BL/6
TAR/ ERAAPT  TAPT  ERAAP/

Figure 2. TAP and ERAAP deficiency alters the basal HZAP-restricted
self peptidome The prevalence of HIAP-restricted self peptide
sequences was conpared between WT, TAP~~ and ERAAP~/- strains.
Wenn diagrams indicate the number of unique and comnon peptide
sequences identified amongst the peptidomes displayed by the indi-
cated strains. Ch= 3.0 (A4) Cra 25 (B)or Crs L5 (C)indicates decreasing
spectral confidence (see Materials and Metbods). ACkh = 0.2 distinguishes
between the top two peptide sequences predicted from the spectram;
this criterion allows identification of the best peptide sequence that
matches the observed spectnum. (O Using the LOCATE database, the
number of peptides derived from cytosolic and secreted proteins was
compared amongst the peptidomes consisting of peptides with Co o=
3.0,

rreproducibility inthe experiment. Conversely, 18,434 of self pep-
tide sequences displayed by TAP~~ cells were presented by WT
cells, while 33% of self peptide sequences displayed by ERAADP~~
cells were presented by WT cells. This lack of identity was not
due to bias in selecting peptides with Cr = 3.0 as datasets which
included peptides identified with either moderate (Cn = 2.5 and
ACh = 0.2; Fig. 2B) orlow (Cn = 15 and Ach = 0.2 Fg 20
confidence also demonstrated litle overlap in peptide sequence.
However, to maintain focus on relevant naturally processed self
peptides using this unbiased approach, all dewnstream analyses
were peiformed onpeptides with Cr = 3.0 and ACh = 0.2 Impor-
tantly, this peptide zet was found to have a false discovery rate
(FDE; described inthe Materiak and Methods) of 0, ie. no peptides
were identified by random similarity.

Notably, the average length of H2AP-associated peptides
mereased from 14-16 amine acid residues in WT cells to 15-20
amino acids in TAP~'~ and ERAAP~~ cells (Supporting Informa-
tion Table 1 and Fig. 2. This was consistent with peptide length
changes previously observed for class I-associated peptides dis-
played by ERAAP~~ cells [22]. In addition, we observed numer-
ous groups of nested peptides arising from the same protein (Sup-
potting Information Table 2) as would be expected from class [I-
associated peptides expressed by WT cells [37, 38]. These nested
peptides contained both M- and C-terminal extensions, consistent
with previews reports on class [-associated peptides expressed
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by WT cells [37, 38]. Moreover, only two peptides identified in
this study have been previously reported (Supporting Information
Table 1) [37,38]. The lack of overlap in peptides identified in pre-
wious studies and this one may have resulted from the analysis of
different cell populations. We used unmanipulated APCs isolated
directly ex vive in this study compared with B-cell lymphomas,
LP5-indured B-cell blastz, [FN-v-induced BMC23 cell line and
Fit3-induced cells used in the earlier reports [37,38]. In addi-
tion, although we found thousands of peptides by LC-WME/MS, we
have focused solely on those with the highest Cnvalies, It is con-
ceivable that the few hundred peptides previously reported were
excluded based on the criteria used for sequence determination
and wvalidation and may be present in the larger dataset. Hence
the differences cbserved in the different reports do not detract
from the nowel peptides reported herein as similar results were
obzserved withthe larger datasets as well (Fig. 2B and C).

H2AP-associated  peptides  were derived from beth
secreted /extracellular and cytosolic/intracellular proteins as
defined in the LOCATE database [39]. Howewver, the majority
[~700) were processed from cytosolic/intracellular proteins
(Fig. 2L,
Comparing individual genctypes, the presentation of cytoplas-
mic/intracellular protein-derived peptides was increased in
T4P~~ and ERAAP™" splenccytes, Consistent with previeus
reports [40], ~63 of the H2ZAP-associated self peptidome
presented by WT cells were generated from cytosolic/intracellular
proteins. In contrast, 87.5% and BO.23 of the H2AP-associated
peptides displayed by TAP~~ and ERAAP~- splenocytes,
respectively, were derived from cvtosolic/intraceliular proteins
(Fig. 200, These data demonstrate that numerous cytoplas-
mic/intracellular proteins, including endesomal proteins, are
processed and presented by H2AY in TAP~/~ and ERAAP~/~ mire.
From these analyses, we conclude that CAP components can
impact the H24P-associated self peptidome.

including preteins associated with endosomes.

TAP and ERAAP deficlency alter the CD4* TCR
repertoire

4z the self peptidome instructs the developing TCR repertoire,
we compared TCE VP usage by CD4t CD62L"CD44% naive T
(T cells between WT mice and for TAP™~ or ERAAP ™ animals
using a panel of Vi-specific antibodies. As previously reported
[351, the frequencies of TCR Vf usage between WT-, TAP~—- or
ERAAP~/~-derived CD4* T, cells were quite similar, although not
identical (Fig. 34). Likewise, TCR VB wusage within Lim-reactive
CD4t CD62IMCD44M effector T (Teg) cells of WT, TAP~ or
ERAAP~/~ mice were similar as well (Fig 3R).

Since Ag recognition is mediated by the highly variable CDE3,
we specifically examined this region of the TCE p-chains, CDR3A
sequence diversity can be estimated by analysing the number of
amino acids spanning the V-D-J recombination site by spectratyp-
ing the nuclectides that encode them [41, 42]. Although diff erent
sequences may have equivalent lengths, thereby underestimat-
ing the true diversity, differences in the number of amine acids,
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Pigure 3. Differential zelf peptidome display has little impact on the
TCEVE usage WT, TAP~/= and ERAAP~/~ mice were inomulated with Lin
ornot and the TCR Wi usage of theindicated CD4+ T-cell population wasz
deterrnined by flow cytometry after staining with a panel of V-spedfic
antibodies. The cumulative bar graphs indicate the proportion of each
V[ segment present within the (&) CD4%T Ty, (CD44 CDEL") or B) Lin-
irmrmune Tey (CO44"CDEZLY) population in replicate experiments.

nonetheless, provide a high throughput estimate of Ag receptor
diversity. The diversity of the TCR of flow sorted CD4F Ty, cells
were analysed by spectratyping 52 VB-JB pairings. This analysis
revealed extensive alterations in some but not all CDR3R length
profiles in the nafve TCE f-chain repettoire expressed by WT,
TAP~~ or ERAAP~~ mice (Fig. 4 and Supperting Information
Fig. 34). Similar analysis of flow sorted Dm-responsive CO4Y Tog
cells revealed extensive differences in the CDR3P length profiles
between WT and TAP- or ERAAP-deficient CD4+ Teg cells (Fig, &
and Supporting Information Fig. 3B). These data suggest that,
despite similarities in VP usage, which was serologically deter-
mined, C04% T cells utilize different CDE3 sequences in the
absence of the CAP machinery. Since the CDRE3p region of the
TCR is predominantly involved in Az recognition, sequence dif-
ferences in this region could potentially lead to alterations in the
CD4 T-cell responses to micrebial challenge.

TAP-deficiency alters class Il-restricted microbial Ag
recognition

Previously, we reported that the magnitude of the CD4% T cell
response to minot histocompatibility 4g HY and Zm-derived LLO
and pé0 peptides were increased in animals deficient in TAP or
ERAAP [21]. Here, we have shown that TAP and ERAAP imparct
the quality of the H2AP-restricted self peptideme and alter the
TCE repertoire. Therefore, we queried whetherthe CAP machinery
could destroy and/or create class lI-restricted microbial peptides
recognized by CD4t T eells, Tothisend, WT, H24b~"~ and TAP~~
mire were inoculated with VACY and, 7 days later, the TH response
tested against apanel of 448 15-merpeptides. This panel consisted
of putative H2ab restricted peptidesfrom VACY ORFs [43], An ini-
tial screen of these peptides revealed few shared specificities and
significant alterations in the magnitude of CO4+ T-cell responses
to these shared peptides in TAP™'~ mice when compared to WT

wiww.eji-journal.en



Eur. ). Immunol. 2013, 43; 1162-1172

altered recognition of microbial peptides leading to either limited
immunegenicity or enhanced immunopathology. In this regard, it
is noteworthy that herpetic stromal keratitis (HSK) — a leading
cause of blindness that has an infectous edology [62] — evolves as
a consequence of chronic HSV infection. HSK is a chronic inflam

matory disease that is mediated by CD4+ T cells [63]. As ICP47 of
HSV blocks TAP function [48], one might predict that the display
of an altered peptidome by HSV-infected cells might lead to CD4*
T-cell-mediared inflammation resuldng in HSK. Further investd-
gations will be needed 1o understand the clinical outcome of CAP
deficiencies in humans.

In sum, it is becoming clearer that many Th-cell epitopes
are being processed by components of both cytosolic and
endo/lysosomal Ag-processing pathways [11-15, 21, 27-31,61].
Data obtained from tagged Ags have suggested that the subeel-
lular localizadon of the Ag may be cridcal for its presentaton
[15,31, 34, 64-66]. Proteasomes and endo/lysosomal proteases
may degrade proteins at the point of Ag entry, endogenous ver-
sus exogenous, respectively. Subsequently, peptides may then be
shared between the two Ag presentation pathways depending on
the efficiency of molecular components that wansport processed
Ags, While some peptides can be presented by both pathways
[11-15,27-31], it is evident that other peptides are restricted to
a single presentation pathway [32, 34]. This is likely due to an as
yet undefined biochemical mechanism(s) by which pardally pro-
cessed Ags are targeted from the cytosol to the endo/lysosome.
Understanding the underlying mechanism will impact how T-cell
biology is harnessed for vacdnations and immunotherapies as well
as in treating autoimmune disorders that have a microbial etiology
(e.g. HSK).

men'als and methods

Animals

C57BL/6J mice were purchased from The Jackson Laboratory.
B6.129-TAP™/~, B6.129-ERAAP™ and B6.129-Ab~"" mice [21]
were bred, maintained and used in experiments in compliance
with Vanderbilt University’s lnstitutional Animal Care and Use
Committee regulations and approval. B6.129-TAP /", BG6.129-
ERAAP~~ and B6.129-Ab~"~ mice had been backcrossed to the
C57BL/6 sirain 8-10 generations before use.

Isolation of naturally processed H2A"-associated self
peptides

REC-depleted single cell suspensions of splenocytes pooled from
68 to 70 mice per strain were solubilized, clarified and pre
cleared with normal mouse serum by previously described meth-
ods [67, 68]. Pre-cleared lysates were passed twice over pro
tein A Sepharose (Repligen)-bound W6,/32 (and-HLA class 1, an
irrelevant Ab; Cedarlane) column followed by bead-bound H2A®-
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specific Ab column (NYRmI-A, Cedarlane) at 4°C. After extensive
washes, columns were eluted with 0.2N acetic acid. The eluates
were adjusted to 2N acetic acid, incubated for 20 min in a boiling
water bath and cooled on ice [68]. Eluted peptdes were enriched
by Centricon 10 ultrafiliration (Millipore), freeze dried, resus
pended in ~0.1 mL deionized disdlled water (Sigma) and frac-
tionated by RPC (HP1090, Hewlett-Packard) as described [68].
Approximately 150 fractions were collected and lyophilized to
dryness.

MS-ESI sequencing of naturally processed
H2AbY-associated self peptides

Each lyophilized RPC fraction was resuspended in 0.1% formic
acid and subjected to reversed-phase microcapillary LC-MS/MS
analysis using an LTQ linear ion trap mass spectrometer (Ther
mofisher). A fritless, microcapillary column (100 pm inner diam
eter) was packed with 10 cm of 5-pm Ciz reversed-phase material
(Synergi 4u Hydro RP80a, Phenomenex). RPC fractionated pep
tides were loaded onto the column equilibrated in buffer A (0.1%
formic acid, 5% acetonitrile) using the LCPacking autosampler.
The column was placed in line with an LT(Q mass spectrometer.
Peptides were eluted using a 60 min linear gradient from 0 to
60% buffer B (0.1% formic acid, 80% acetonitrile) at a flow rate
of 0.3 pL/min. During the gradient, the eluted ions were ana-
lyzed by one full precursor MS scan (400-2000 m/z) followed
by five MS/MS scans of the five most abundant ions detected
in the precursor MS scan while operatng under dynamic exclu-
sion. Extractms2 program was used to generate the ASCII peak
list and to identify +1 or muldply charged precursor ions from
the native mass spectrometry data file [69]. Tandem spectra were
searched with no protease specificity using SEQUEST-PVM against
a RefSeq murine protein database [36]. For multiply charged pre-
cursor ions (z > +2), an independent search was performed on
both the +2 and +3 mass of the parent ion. Data were processed
and organized using the BIGCAT software analysis suite with a
weighted scoring matrix used to select the most likely charge state
of multiply charged precursor ions [70]. Fragmentation/ionization
patterns were compared against a dataset consisting of the frag-
mentation/ionization patterns of theoretical and known peptide
sequences. The degree of concordance between these two patterns
was assigned a cross correlation score X..e (Crt) with higher val-
ues representing greater concordance between the observed and
expected fragmentation,/ionization patterns [36]. Peptides with a
Sequest Cn score =3.0 and ACn = 0.2 compared with the second
most likely assignment were considered highly concordant (see
Supportng Informadon Fig. 1).

The ion fragments were also searched against the reversed
mouse proteome database to detenmine the false detecdon rate
FDE. FDR was calculated as (2 = # reverse hits)/(# reverse hits
{ # forward hits). This generated an overall FDRE of 7%. Whereas
a search of only the highly concordant peptide spectra (Cn = 3.0
and ACn = 0.2) generated an FDR of 0, i.e. no peptides were
identified in the reversed database. The parental ions represent-
ing peptdes eluted from class 11 molecules of only two genotypes
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were manually searched against the database of parental ions of
the third genotype. Of the 62 overlapping peptide sequences, only
2 (3.2%) were identified in the third genotype within 10 HPLC
fractons and 10 min of LC eluton of the same fraction num-
ber/retention time. Of these, one was inappropriately identified
by the tandem MS and the other was not analysed by tandemn MS
for identification. From this analysis, we conclude that 96.8% of
peptides presented by class IT molecules of only two genotypes
were correctly identified and were not presented by that of the
third genotype.

Immunization, T-cell purification and functional
analysis

The indicated mouse strains were inoculated either retro-orbitally
with ~5 x 10* cfu WT Lm or i.p. with 2 x 10° pfu VACV WR
strain. After 7 days, splenocytes were harvested and either stained
for flow cytometric characterization or restimulated for funcdonal
analyses. Lm-immune splenocytes were stained with mAb against
mouse CDH2L and CD44 for flow sordng of naive (T, ) and effector
(T.) CD4* T-cell populations (FACS Aria, BD) Binscience). Post
sort purity was ascertained by flow cytometry and found to be
=08% (data not shown). A separare aliquot of CD4" T cells were
analysed for VP usage with a panel of 15 anti-Vg antibodies (BD
Bioscience) within the T, (CD44°CD62L") or Lm-immune T,z
(CD44M CDE2L) subsets.

Co-culture of total VACV-immune splenocytes with H2A®-
restricted peptdes derived from VACV [43] for [FN-y ELISPOT
was performed as previously described [21].

TCR spectratyping

Total RNA was isolated from flow sorted non-immune CD47
T cells or flow sorted CDG2ZLMCD44*CD4+ T, cells and acd-
vated, effector CDE212CDA4MCD4T T,y cells and converted to
cDNA as described [71]. PCR amplification of individual Vp-Cp
junctdons and Jp-specific run-off was performed using previously
reported primer pairs [72] and Supermix (Invitrogen). The run-off
Jp primers were end-modified with WellRED D2, D3 or D4 fluores-
cent dyes (Sigma-Genosys) to detect products using capillary gel
electrophoresis (CEQA8000; Beckman Coutler). CDR3p fragment
sizes were determined by correlation against a size standard con-
sisting of WellRED D1 fluorescent DNA strands of incremental 20
nt residues (Beckman-Coulter) and the frequency within the pop-
ulation was determined by integraton of the peak area. CDR3p
length was calculated as the number of amino acids between the
conserved last germline encoded VP Cys to the Jp Gly-X-Gly motif.
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