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CHAPTER I 

 

INTRODUCTION 

 

Epilepsy 

Epilepsy is a common neurological disorder affecting 1% of the population worldwide, 

and is characterized by recurrent, unprovoked seizures resulting from synchronous 

neuronal discharges.1-4 An imbalance between excitatory and inhibitory 

neurotransmission is the neurophysiological hallmark of epilepsy. The term epilepsy 

encompasses a heterogeneous group of disorders that vary in severity, etiology and 

seizure type.   The classification and diagnosis of epilepsies is based on two features: the 

seizure type and the underlying cause.  In order to generate a consistent vocabulary that 

reflects the current state of our knowledge and understanding of epilepsies, in 2010 the 

International League Against Epilepsy revised the terminology for classifying seizures 

and etiology of epilepsy.   

 

Clinically, seizures can be classified into two categories: focal or generalized.  Focal 

seizures originate in a localized brain region that constitutes the seizure focus that is 

consistent from one seizure to another.  Features of focal seizures such as the impairment 

of consciousness or awareness, progression of seizure events and dyscognitive 

characteristics are descriptors used by clinicians for evaluating patients.  Generalized 

seizures, on the other hand, involve both hemispheres from the outset, rapidly engaging 
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bilaterally distributed networks and can be separated into several subcategories: tonic-

clonic, absence, myoclonic or others (less common).4-6  Tonic-clonic seizures are divided 

into two phases, the tonic phase where flexor and extensor muscles are simultaneously 

activated throughout the body resulting in a stiffening, followed by the clonic phase with 

a repetitive, rhythmic convulsion of muscles.  Absence seizures are characterized by a 

brief episode of unresponsiveness with loss of consciousness.  Myoclonic seizures are 

very brief muscle contractions involving the whole body or part of the body.   

 

The three terms genetic, structural/metabolic and unknown have been adopted for the 

etiological classification of epilepsies. Genetic epilepsies are the direct result of a known 

or presumed genetic defect in which seizures are the core symptom of the disorder.  In 

order to presume a genetic basis, either a gene and the molecular mechanisms should be 

identified or an appropriately designed family study should provide evidence of a genetic 

component.  Structural/metabolic epilepsies are a secondary result of a distinct other 

structural or metabolic condition.  Structural lesions associated with an increased risk of 

epilepsy may be acquired or of genetic origin.  However, these are distinct from “genetic 

epilepsies” because there is believed to be a separate disorder between the genetic defect 

and the epilepsy.  Lastly, the classification of unknown is used to reflect epilepsies in 

which the underlying cause is unknown and makes no assumptions regarding cause.6  

Albeit somewhat simple, these classifications have enabled clinicians to diagnose the 

epilepsy type and select the most effective treatment strategy for each patient.   
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Treatments of epilepsy 

The only existing cure for epilepsy is resective surgery for suitable patients and thus 

treatment of the majority of epilepsy patients with the currently available antiepileptic 

drugs (AEDs) is only symptomatic.  There are approximately twenty-four FDA approved 

antiepileptic drugs on the market with various mechanisms of action but most function to 

dampen neuronal signaling either by enhancing GABA-mediated inhibition or controlling 

excitability through actions on Na+ channels or T-type Ca+2 channels.7  Although many 

epilepsy patients achieve complete seizure control with current AEDs, these medications 

fail to control seizures in 30% of patients, highlighting the need not only for novel AEDs 

but also for research into the underlying molecular mechanisms of epilepsy that will 

contribute to our understanding of this debilitating disease.3 

  

Antiepileptic drug discovery  

Animal models of epilepsy have aided in our effort to understand the pathogenesis of 

epilepsy and have been instrumental for AED discovery.  The development of AEDs 

predominantly relies on the screening of test compounds for predictive activity against 

specific seizure types mimicked by acute seizure models, namely the maximal 

electroshock (MES) and pentylenetetrazole (PTZ) models.8  The MES seizure test was 

introduced in cats in 1937 and adapted for rodents in 1946.9,10  In the MES seizure model 

an electrical stimulus is administered either transcorneally or transauricularily to induce 

generalized tonic-clonic seizures.10  PTZ, a chemical convulsant, induces myoclonic and 

clonic convulsions.  Additional induced epilepsy models include kindling, kainate and 
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pilocarpine.  Amygdala kindling describes a process in which an electrical stimulus is 

administered to the amygdala via depth electrodes.  Repeated administration of the 

initially subconvulsive stimuli eventually induces seizures that increase in severity and 

duration.11  Kindling models are used to identify compounds that are predicted to be 

active against focal seizures in patients.  Both kainate and pilocarpine models of epilepsy 

exhibit spontaneous, recurrent seizures following the initial induction of status 

epilepticus with administration of either agent.12-14  The only genetic model of epilepsy 

being used for late-stage screening of AEDs is the GAERs rat which exhibits absence 

seizures.15  The 6-Hz psychomotor seizure model in which a prolonged electrical 

stimulus induces seizures has more recently been employed as a drug-resistant model in 

AED screens.16   All the models described, with the exception of the GAERs rat, 

represent induced seizure models occurring in non-epileptic brains and therefore do not 

accurately reflect the epilepsy process.  Since the introduction of these models and the 

establishment of the Anticonvulsant Screening Project of NIH/NINDS, numerous 

effective antiepileptic drugs have been generated.  However, this screening process, 

relatively unchanged since 1978 and reliant upon non-physiological models of epilepsy, 

has led to the stagnation of the development of new AEDs.  This is a significant problem 

as 30% of epilepsy patients remain without effective treatment options.3,8  The new 

generation of genetic epilepsy models which recapitulate spontaneous epilepsy in humans 

has been proposed as alternatives for the AED development and screening process.8   

 

Etiology of epilepsy 
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In addition to having utility in drug discovery, genetic models of epilepsy are being used 

to advance our knowledge regarding the pathology of epilepsy.  While disease and injury 

to the central nervous system are known to contribute to seizure susceptibility, the 

cellular and molecular mechanisms that underlie the pathogenesis of most epilepsies 

remain largely unknown (Figure 1.1).1  Previous work, however, has suggested the 

importance of genetic factors to the development of epilepsy.17  Although genetic 

epilepsies exhibit complex inheritance patterns, genetic mapping has identified mutations 

in single genes that are responsible for epilepsy in human patients.  All of the mutations 

that have been identified are molecular components of neuronal signaling, with mutations 

in voltage-gated sodium channels being the most prevalent.17   

 

 

 

Voltage-gated sodium channels 

Voltage-gated sodium channels are responsible for the initiation and propagation of 

action potentials in electrically excitable cells such as nerve, skeletal muscle and heart.  

Figure 1.1.  Proportion of cases of epilepsy by etiology (Adapted from Hauser et al, 1993).
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Voltage-gated sodium (Nav) channels are integral membrane proteins consisting of a 

pore-forming α-subunit (260 kD) complexed with one or more auxiliary β-subunits (33-

40 kD) (Figure 1.2).18-21  Nine genes encoding distinct α-subunits and four encoding β-

subunits have been identified in the human genome and the isoforms exhibit variable 

tissue expression patterns (Table 1.1).21  The α-subunit is composed of four structurally 

homologous domains (D1-D4) each containing six transmembrane segments (S1-S6).  

When the α-subunit adopts its three-dimensional structure within the membrane, it 

creates an ion-conducting pore with ion selectivity and permeation controlled by the S5-

S6 pore loop of each domain.  The S4 segment of each domain contains basic amino 

acids (arginine or lysine) at every third position and functions as a voltage-sensor. 18-20 

The β-subunits are single transmembrane proteins that modify the kinetics and voltage-

dependence of gating of the α-subunit.  Accessory β-subunits are also involved in channel 

localization and interact with other signaling molecules and the cytoskeleton making 

them an essential component of the Nav channel macromolecular complex.21,22 

 

 

 

 

Figure 1.2.  Schematic representation of a single voltage-gated sodium channel α-subunit and 
auxiliary β-subunit. 
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Given the importance of Nav channels to action potential generation and neuronal 

signaling, it is not surprising that more than 800 mutations in Nav channels have been 

identified in association with a range of clinically diverse epilepsies.20,21,23  Mutations 

within Nav1.1 constitute the greatest number of mutations identified; however, mutations 

within Nav1.2, Nav1.3, Nav1.6 and the β1 subunit have also been described.17,24  Utilizing 

whole-cell electrophysiology, researchers have been able to characterize the biophysical 

properties of these disease-associated mutant channels.  High resolution functional 

characterization of several mutations has provided insight on the molecular mechanisms 

by which voltage-gated sodium channel dysfunction contributes to epileptogenesis.  

Interestingly, the mutations identified exhibit altered biophysical properties 

representative of both gain-of-function and loss-of-function phenotypes.   

 

Table 1.1.  
Mammalian voltage-gated sodium channel genes 

Gene Protein Tissue Expression 

SCN1A Nav1.1 CNS, PNS, cardiac muscle* 

SCN2A Nav1.2 CNS, PNS 

SCN3A Nav1.3 CNS, PNS 

SCN4A Nav1.4 skeletal muscle  

SCN5A Nav1.5 cardiac muscle, skeletal muscle* 

SCN8A Nav1.6 CNS, PNS, cardiac muscle* 

SCN9A Nav1.7 PNS 

SCN10A Nav1.8 PNS 

SCN11A Nav1.9 PNS 
 

 

 

 

CNS, central nervous system; PNS, peripheral nervous system; 
*minor expression (Adapted from Meisler and Kearney, 2005). 
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Gain-of-function mutations within Nav channels are believed to enhance neuronal 

excitability thereby increasing seizure susceptibility.  Functional studies of epilepsy-

associated mutations have shown biophysical abnormalities in both activation and 

inactivation parameters that are predicted to promote excitability.  The SCN1A mutation 

W1204R exhibits a hyperpolarized shift in the voltage-dependence of activation which is 

consistent with hyperexcitability.25-27  A depolarized shift in the voltage-dependence of 

inactivation as observed with the mutations T875M and D1866Y of SCN1A represents 

gain-of-function in channel activity.26,28,29  An increased rate in the recovery from 

inactivation would result in a greater number of channels available to reactivate in 

response to depolarization.  This biophysical defect is observed with the SCN1A mutation 

D188V.30  A common gain-of-function biophysical defect is impaired channel 

inactivation leading to increased persistent sodium current.26,31  For example, the SCN1A 

epilepsy-associated mutation R1648H exhibits a level of persistent sodium current that is 

~4.5% of peak current compared to less than 1% for the wildtype channel.31   Persistent 

sodium current is hypothesized to reduce the threshold for action potential firing, directly 

resulting in neuronal hyperexcitability.   

 

Because epilepsy is a disorder that reflects neuronal hyperexcitability, the relationship 

between epilepsy and gain-of-function mutations in Nav channels consistent with cellular 

excitability seems rather intuitive.  Functional studies, however, have revealed loss-of-

function properties in disease-associated mutants.  The first sodium channel mutation 

identified in association with epilepsy was C121W in the β1 subunit gene SCN1B which 

resulted in impaired modulation of the associated subunit.32  Depolarizing shifts in the 
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voltage-dependence of activation and reduced sodium current density have been observed 

in functional studies and are consistent with loss-of-function.31,33,34  Other mutations have 

been described as nonfunctional resulting from a failure to conduct sodium ions or 

defects in protein trafficking reducing cell surface expression.35,36  In Dravet syndrome, a 

rare epileptic encephalopathy, more than half of the identified mutations in SCN1A 

introduce frameshifts or premature stop codons suggesting that haploinsufficiency of 

SCN1A is pathogenic.24,37,38  While initially it may seem counter-intuitive that 

haploinsufficiency of SCN1A would cause epilepsy, its regional expression pattern may 

shed light on the mechanism by which loss-of-function leads to hyperexcitability rather 

than hypoexcitability.  Studies have shown that distribution of SCN1A across brain 

regions is heterogeneous.  Within the hippocampus, SCN1A expression is largely 

dependent upon cell type.  Pyramidal neurons express negligible levels of SCN1A, 

whereas, interneurons express significantly higher SCN1A levels.39  The preferential 

expression of SCN1A within interneuron populations suggests that interneuron activity 

would be affected by loss-of-function of SCN1A to a greater extent than would pyramidal 

neurons.  Impaired function of GABAergic interneurons resulting from loss of SCN1A 

function would upset the balance between inhibitory and excitatory neurotransmission, 

tipping the scale toward network hyperexcitability.   

 

Functional characterization of mutant alleles has allowed researchers to correlate 

genotype-phenotype relationships with the molecular mechanisms that underlie genetic 

epilepsies.  Along with the functional characterization of epilepsy-associated mutations 

has come the generation of mouse models harboring patient mutations.  Genetic mouse 
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models of epilepsy have been excellent tools for testing specific disease mechanisms 

thereby furthering our understanding of the pathophysiology of epilepsy and for 

evaluating targeted therapeutics.  Information gained from both the functional 

characterization of mutants and the use of mouse models has been instrumental for 

directing the design of desperately needed novel therapies, with the ultimate goal of 

developing individualized treatments tailored to each patient mutation.  Two mouse 

models of epilepsy are described in greater detail below.   

 

Scn2aQ54 mouse model of epilepsy 

A genetically engineered mouse line, Scn2aQ54 (Tg(Eno2-Scn2a1*)Q54Mm), expresses a 

transgene encoding an inactivation impaired neuronal Nav1.2 channel.  The mutation, 

consisting of a substitution of glutamine for three adjacent residues, is located in an 

evolutionarily conserved region in the linker between transmembrane segments 4 and 5 in 

domain 2 (GAL879-881QQQ) (Figure 1.3A).  In heterologous expression systems, this 

mutation results in abnormal inactivation with increased persistent sodium current when 

compared to wildtype channels (Figure 1.3 B-C).  Mice expressing the Scn2aQ54 

transgene driven by the neuron-specific enolase promoter exhibit a severe epilepsy 

phenotype that is characterized by frequent partial seizures corresponding to EEG 

evidence of a seizure focus in the hippocampus.  These short duration partial seizures 

begin in early life then progress to secondarily generalized seizures, status epilepticus and 

premature death.  Epilepsy in Scn2aQ54 mice is correlated with persistent sodium current 

in hippocampal pyramidal neurons. These animals also show histopathological changes 

such as CA1-CA3 and hilar cell loss, gliosis and mossy fiber sprouting in the 
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hippocampus which also occur in human epilepsy patients.  Transgenic overexpression of 

wildtype Nav1.2 does not lead to a seizure disorder or reduced lifespan. 40  

 

 

 

 

 

 

The severity of the seizure phenotype observed in Scn2aQ54 mice is influenced by the 

genetic background.  Scn2aQ54 mice congenic on strain C57BL/6J (B6.Q54) have a 

seizure onset around 2 months of age with only a 20% incidence at 6 months of age.  A 

cross between hemizygous B6.Q54 males with SJL/J females yields transgenic 

 
Figure 1.3.  Scn2aQ54 mouse model of epilepsy.  (A) NaV1.2 mutation (Kearney et al, 2001). 
(B) Representative trace of sodium current from wildtype Nav1.2 (black trace) or Nav1.2 
GAL879-881QQQ (red trace).  (C) Summary data for persistent sodium current expressed as 
% peak current recorded from tsA201 cells - Chris Thompson, PhD. 
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heterozygotes on an F1 background (F1.Q54).  Seizure onset is around 3 weeks of age in 

F1.Q54 mice with 100% incidence at 6 months.  F1.Q54 mice exhibit a higher seizure 

incidence, increased seizure severity and reduced lifespan when compared to B6.Q54 

mice.41  Within the F1.Q54 population, female mice exhibit a significantly greater 

frequency of seizures than males (Figure 1.4).  The Scn2aQ54 mouse, which models 

mesial temporal lobe epilepsy, provides an excellent model to investigate therapies that 

would prove effective in patients carrying gain-of-function mutations with persistent 

sodium current.   

 

 

 

 

Scn1a+/- mouse model of epilepsy 

Loss-of-function SCN1A mutations have been modeled by Scn1a knockout mice, which 

exhibit a severe epilepsy phenotype mimicking Dravet syndrome.  Two groups have 

generated heterozygous Scn1a knockout (Scn1a+/-) mice and described consistent 

 
Figure 1.4.  Scn2aQ54 mice exhibit sex differences in seizure frequency.  Female F1.Q54 mice 
exhibit a greater number of seizures than male mice during a 30 minute observation period  
(** p < 0.005).  
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phenotypes.42-44  The first Scn1a+/- mouse that was generated by targeted deletion of exon 

26 of Scn1a (Scn1atm1Wac) was described by the Catterall group in 2006. Scn1a+/- mice are 

reported to exhibit severe, spontaneous generalized tonic-clonic seizures beginning 

around 2-3 weeks of age, have a reduced seizure threshold and reduced lifespan.  

Electophysiological recordings of hippocampal interneurons isolated from Scn1a+/- mice 

show a reduction in sodium current density, with no changes in the voltage-dependence 

of activation or inactivation.  Shortly after the introduction of the Catterall Scn1a+/- 

mouse, a knock-in mouse line carrying a premature stop codon, R1407X, in Scn1a 

(Scn1atm1Kzy) was generated and characterized by the Yamakawa group.39  The Scn1aRX/+ 

mouse also models Dravet syndrome with recurrent, spontaneous seizures and premature 

death.  The epilepsy phenotype of Dravet syndrome mice is strongly dependent on 

genetic background. The Kearney group generated Scn1a+/- mice on the 129S6/SvEvTac 

background  (129.Scn1a+/-) by replacing exon 1 with a neomycin selection cassette 

(Scn1atm1Kea) and confirmed reduced Nav1.1 expression to ~50% of wildtype levels in 

brain (Figure 1.5).  Heterozygous 129.Scn1a+/- mice do not exhibit overt seizures and 

sporadic death is rare (<10% at 12 weeks).  However, when heterozygous 129.Scn1a+/- 

mice are crossed to the C57BL/6J background, F1.Scn1a+/- mice are generated.  On the 

mixed genetic background, F1.Scn1a+/- mice have frequent seizures with a high incidence 

of spontaneous death with only 30% survival to 12 weeks  (Figure 1.5 C).  Results 

garnered from Dravet syndrome mice have led to the prevailing sentiment that impaired 

GABA-mediated inhibition is primarily responsible for seizure generation and 

epileptogenesis in patients exhibiting loss-of-function SCN1A mutations. 



14 
 

 

 

 

 

 

 

 

  

Figure 1.5. Scn1a+/- mouse model of epilepsy.  (A) Exon 1 containing the translation start site 
was replaced by a selection cassette by homologous recombination in ES cells. The targeting 
vector contained the pGK-puR-Δtk-EM7-NeoR selection cassette flanked by lox sites 
(triangles), a 6.1 kb 5’ homology arm and a 4.8 kb 3’ homology arm. The diphtheria toxin 
cDNA (DT-A) cassette was located outside of the targeting arm for negative selection against 
random integrations. (B) Western blot of brain membrane proteins with a Nav1.1 and β-tubulin 
antibody. (C) Survival of F1.Scn1a+/- mice is significantly reduced compared to 129.Scn1a+/- 
mice (Miller et al, 2014). 
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Specific Aim 1:  To determine whether transgenic expression of Nav1.1 in 

GABAergic neurons would rescue the epilepsy phenotype of Scn1a+/- mice. 

We hypothesized that restoration of SCN1A selectively in GABAergic interneurons 

would attenuate or prevent the epilepsy phenotype in Scn1a+/- mice.  To test this 

hypothesis, we generated transgenic mice in which human SCN1A is expressed 

selectively in GABAergic neurons using a Gad67-specific promoter (Gad67-SCN1A).  

We crossed Scn1a+/- mice with Gad67-SCN1A transgenic mice to generate a subset of 

offspring that have one wildtype allele, the knockout allele and one copy of the Gad67-

SCN1A transgene expressed selectively in inhibitory neurons.  We monitored long term 

survival of combined knockout/transgenic animals (Scn1a+/- :: SCN1ATg/+) to evaluate 

whether the mortality associated with Scn1a+/- mice could be ameliorated by restoring 

sodium channel expression in interneurons.  Results from these studies provided insight 

into the potential success of using a genetic approach for the treatment of Dravet 

syndrome, or inform the development of pharmacological agents that achieve the same 

degree of restored sodium current.  

 

Specific Aim 2: To determine whether preferential inhibition of persistent sodium 

current would be antiepileptic in Scn2aQ54 mice. 

Increased persistent sodium current has been implicated as a contributor to the 

pathogenesis of epilepsy.  We hypothesized that a drug capable of preferentially 

suppressing persistent sodium current would be an effective antiepileptic drug.  

Ranolazine, an FDA-approved drug for the treatment of angina pectoris, and the recently 

described novel compound, GS-458967 (GS967), selectively inhibit persistent sodium 
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current.  We examined the antiepileptic potential of ranolazine and GS967 in the 

genetically engineered Scn2aQ54 mouse model of epilepsy. We tested whether acute 

treatment with ranolazine or GS967 would reduce seizure frequency of Scn2aQ54 mice.  

We also evaluated whether persistent sodium current inhibitors improved survival of 

Scn2aQ54 mice.  Results from these experiments indicated that preferential inhibition of 

persistent sodium current represents a novel targeted antiepileptic drug strategy for 

treating genetic epilepsies associated with gain-of-function voltage-gated sodium channel 

mutations. 
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CHAPTER II 

 

GENERATION OF A TRANSGENIC MOUSE LINE SELECTIVELY EXPRESSING 
SCN1A IN GABAERGIC NEURONS FOR RESCUING DRAVET SYNDROME 

 

 

INTRODUCTION 

Dravet syndrome, also known as severe myoclonic epilepsy of infancy (SMEI), is a 

catastrophic pediatric epileptic encephalopathy.  Children with Dravet syndrome 

generally exhibit normal development during the first year of life but then develop 

seizures often in association with fever, with eventual progression to spontaneous, 

recurrent seizures and status epilepticus.  Following the onset of seizures, Dravet 

syndrome patients develop severe comorbidities including cognitive impairment, ataxia 

and psychomotor dysfunction.45,46  Because these children respond poorly to available 

antiepileptic drugs, there is unfavorable long-term survival.46,47  More than 70% of 

Dravet syndrome patients have de novo heterozygous mutations in the SCN1A gene 

encoding the voltage-gated sodium channel α1 subunit (Nav1.1).48,49  Heterozygous 

missense and truncation mutations suggest haploinsufficiency of SCN1A as the genetic 

mechanism of Dravet syndrome. 

 

Recent studies have demonstrated that heterozygous Scn1a knockout (Scn1a+/-) mice 

recapitulate the phenotype of Dravet syndrome.  Scn1a+/- mice display spontaneous 

seizures and premature lethality.  They also exhibit a reduced threshold for both 

hyperthermia- and flurothyl-induced seizures as well as cognitive and motor 
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impairments.42-44  Electrophysiological studies in dissociated hippocampal neurons from 

Scn1a+/-  mice have shown a reduced sodium current density and impaired excitability in 

GABAergic interneurons suggesting that impaired GABA-mediated inhibition underlies 

the pathophysiology of Dravet syndrome.42,44  To further support this interneuron 

hypothesis, Cheah et. al. generated a conditional deletion mouse model in which Nav1.1 

was selectively deleted from forebrain GABAergic interneurons using a Cre-Lox system.  

Deletion of Scn1a selectively from GABAergic interneurons is sufficient to cause 

epilepsy as the seizure and premature death phenotypes observed in Dravet syndrome are 

mimicked in this conditional deletion model.50   

 

In this study, we generated a transgenic mouse line in which human SCN1A is expressed 

selectively in GABAergic neurons (Gad67-SCN1A).  We have used this Gad67-SCN1A 

mouse line to directly test the hypothesis that the epilepsy phenotype in Dravet syndrome 

mice (Scn1a+/-) can be rescued by restoring sodium channel expression in GABAergic 

neurons. 

 

METHODS 

Animals 

All animal care and experimental procedures were approved by the Vanderbilt University 

Institutional Animal Care and Use Committee.  Mice were group-housed in a pathogen 

free mouse facility under standard laboratory conditions (12-hr light/dark cycle) and had 

access to food and water ad libitum.  Scn1a+/- mice were generated as previously 

described and are maintained as a congenic line on the 129S6/SvEvTac background 



19 
 

(129.Scn1a+/-).43  Each Gad67-SCN1A transgenic founder was crossed to strain 

C57BL/6J for at least seven generations to generate an independent line incipient 

congenic on the C57BL/6J background (B6.SCN1ATg/+).  Mice used for experiments were 

from the eighth (N8) or greater backcross generation.  Generation of F1 combined 

knockout/transgenic mice (Scn1a+/- :: SCN1ATg/+) was carried out by crossing 

129.Scn1a+/- mice with B6.SCN1ATg/+ hemizygous mice.  Mice were tail biopsied in the 

second postnatal week, and DNA was prepared from tail tissue using the Gentra Puregene 

Mouse tail kit according to the manufacturer’s instructions (Qiagen, Valencia, CA).  

Genotyping of Scn1a+/- mice was performed as previously described.43  Genotyping of 

the Gad67-SCN1A transgene was performed by multiplex PCR with primers A (5’ CTC 

CTC TTC TGC CCG TTC AC 3’), B (5’ ATA AGC ACG GGT AGT GAAG 3’) and C 

(5’ GAA GAT GGC CTT CCC TTT ATTC 3’).  Amplification was initiated by 

denaturation for 2 minutes at 94 ͦ C, followed by 33 cycles of 30s at 94 ͦ C, 30s at 58 ͦ C and 

1 minute at 72 ͦ C.  PCR products were electrophoresed on 1.5% agarose gels and 

visualized with ethidium bromide.    

 

Real-time quantitative PCR 

Genomic DNA was isolated from tail biopsies by proteinase K digestion, phenol/ 

chloroform extraction and ethanol precipitation.  DNA was resuspended in TE at a 

concentration of 40 ng/µL.  Real-time quantitative PCR was performed using a Taqman 

Gene Expression Assay for transferrin receptor (Tfrc) (Applied Biosystems, Foster City, 

CA) and a custom primer and probe set for Gad67-SCN1A to determine transgene copy 

number. The custom Taqman assay for Gad67-SCN1A included primers D (5’ AGA CCC 
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CAA ACC GGT ATC ATC 3’) and E (5’ AGC TGT CAG GTC CTG GTG GTA 3’) and 

probe (5’6FAM-TGC TCC ATG CGG CCG CC-MGBNFQ 3’).  Real-time PCR was 

performed in triplicate (45 cycles) using Taqman Fast Universal PCR Master Mix on a 

7900HT Fast Real-Time PCR System with Sequence Detection System 2.2 software 

(Applied Biosystems).  All assays lacked detectable signal in no template controls.  Copy 

number was estimated using a standard curve prepared by spiking C57BL/6J genomic 

DNA with Gad67-SCN1A plasmid DNA. 

 

Western blot analysis 

Western blot analysis was performed on brain membrane protein preparations that were 

isolated as previously described.51  Brain membrane proteins were subjected to 7.5% 

SDS-PAGE and transferred to a PVDF membrane.  Proteins were detected with primary 

antibodies directed against the HA-epitope (mouse, anti-HA.11 clone 16B12, 1:500, 

Covance) or the loading control β-tubulin (mouse, anti- β-tubulin clone TUB2.1, 1:5000, 

Sigma-Aldrich).  Immunoreactive bands were detected using horseradish peroxidase-

conjugated secondary antibody directed against the primary antibody (goat, anti-mouse, 

1:10,000, Santa Cruz) coupled with ECL Plus reagent and then imaged with 

hypersensitive ECL film.  Densitometry using NIH ImageJ was performed and band 

intensity of HA-epitope was normalized to that of β-tubulin. 

 

Survival Analysis 

129.Scn1a+/- females were crossed with B6.SCN1ATg/+ hemizygous males to generate F1 

generation mice for a survival study.  Survival was monitored until 8 weeks of age.  



21 
 

Littermates were used as controls.  Statistical comparisons were made using the Cox 

proportional hazards model and p < 0.05 was considered statistically significant.   

 

Seizure threshold testing 

Flurothyl (2,2,2-trifluroethylether) was used as previously described to induce seizures in 

P21-24 mice.52  Seizure threshold was determined by measuring latency to the 

generalized tonic-clonic seizure which is characterized by loss of posture and convulsions 

on the entire body.  All genotypes generated from crossing 129.Scn1a+/- and 

B6.SCN1ATg/+ mice were used for seizure threshold testing.  Statistical comparisons were 

made using one-way ANOVA followed by Tukey’s post-test and p < 0.05 was 

considered statistically significant.   

 

RESULTS 

Generation of Gad67-SCN1A mouse lines 

We generated a DNA plasmid containing the human SCN1A transgene.  The transgene 

cassette includes SCN1A under control of the Gad67 promoter and an IRES element 

preceding the fluorescent Venus (Figure 2.1).  The ~2.8 kb promoter fragment from the 

murine Gad1 gene includes 1.2 kb of flanking sequence, exon 1, intron 1 and 44 bp of 

exon 2.53  The 6 kb human SCN1A cDNA construct contains 3 repeats of the HA-epitope 

at the C-terminus.  The transgene construct was cloned into a vector containing piggyBac 

transposon inverted repeats.  This transposon-bearing DNA plasmid and RNA encoding a 

transposase were microinjected into (C57BL/6J x DBA/2J)F1 fertilized oocytes in the 

Vanderbilt University Transgenic Mouse Core.  Qualitatively, Gad67-SCN1A 
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hemizygous (SCN1ATg/+) mice have no overt phenotype and are indistinguishable from 

wildtype littermates as they survive and breed normally.  Further characterization of 

Gad67-SCN1A mice is presented below. 

 

 

 

Gad67-SCN1A transgenic mice 

Three independent lines of mice each carrying an independent insertion of the wildtype 

human SCN1A transgene were generated.  Transgenic mice were identified and the 

number of inserted transgene copies was estimated using real-time quantitative PCR on 

genomic DNA.  A benefit of using the piggyBac transposon system is that transgene 

integration is highly efficient and it prevents the integration of concatamers.54  The high 

efficiency of the piggyBac system, however, allows for multiple insertions of the 

transgene at different locations within the genome.  Transgenic mice containing two or 

fewer copies of the transgene were backcrossed to C57BL/6J mice.  Transgene copy 

number was calculated on the N2 generation mice and those with a single transgene copy 

were selected as transgenic founders (Table 2.1). 

 

 

Figure 2.1. Structure of the Gad67-SCN1A transgene.  Primers are indicated with half arrows.  
Primers A and C were used for genotyping.  Primers D and E and *, probe were used for 
quantitative PCR. 
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Table 2.1.  
Gad67-SCN1A transgenic lines   

Construct Line Copy Number Expression 

Gad67-SCN1A 4.7 1.2  low 

 9.4 1.0 moderate 

 13.18 1.1 high  

    
Gad67-SCN1A-

R1648C 
1.39 0.7 not done 

 2.15 0.8 not done 

 

 

Western blot analysis was used to determine relative transgene expression in whole brain 

tissue.  Varying levels of the SCN1A transcript was detected across the three transgenic 

lines, with line 4.7 displaying low expression approximately 2-3 fold less abundant than 

line 13.18 (Figure 2.2). 

 

 

 

 

 

 

 

Figure 2.2. Western blot analysis of brain membrane proteins from Gad67-SCN1A transgenic 
lines.  Representative blot for two-three biological replicates is shown for wildtype (WT) mice 
and mice from each of the transgenic lines.  The SCN1A transgene was detected by antibodies 
directed against the HA-epitope.  β-tubulin was used as a loading control.  Lane 6 was mis-
loaded and excluded from analysis.  
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In addition to the Gad67-SCN1A transgenic lines, we generated a transgenic line in which 

the Dravet syndrome associated SCN1A mutation, R1648C, is expressed selectively in 

GABAergic neurons (Gad67-SCN1A-R1648C).  Two independent lines of Gad67-

SCN1A-R1648C hemizygous mice were generated (Table 2.1).  Qualitatively, transgenic 

mice expressing mutant SCN1A selectively in GABAergic neurons have no overt 

phenotype and a normal lifespan. 

 

Survival analysis of combined knockout/transgenic animals (Scn1a+/- :: SCN1ATg/+) 

Scn1a+/- mice have a significantly reduced lifespan compared to wildtype littermates with 

only ~25% surviving to 8 weeks of age (Figure 2.3).  In order to directly test the 

hypothesis that the Dravet syndrome phenotype of Scn1a+/- mice can be rescued by 

restoring sodium channel expression selectively in inhibitory neurons, we generated 

combined knockout/transgenic animals (Scn1a+/- :: SCN1ATg/+) with each of the Gad67-

SCN1A transgenic lines and monitored survival of all generated genotypes for 8 weeks.  

Normal survival of Scn1a+/- mice was not rescued by restoration of GABAergic SCN1A 

(Figure 2.3).  Gad67-SCN1A transgenic line 9.4 had a trend of partial rescue but was not 

statistically significant ( p = 0.059). 

 

Latency to flurothyl-induced seizures 

Scn1a+/- mice exhibit a shorter latency (193 ± 21 sec) to first generalized tonic-clonic 

seizures following exposure to the volatile convulsant flurothyl compared to wildtype 

(269 ± 8 sec, p < 0.05) littermates.  Neither Gad67-SCN1A transgenic line (9.4 or 13.18) 

was able to rescue the flurothyl-induced seizure threshold of Scn1a+/- mice.   
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DISCUSSION 

In an effort to determine the neurophysiological mechanism responsible for Dravet 

syndrome, mouse models that recapitulate the disease phenotype have been generated by 

targeted deletion of mouse Scn1a and knock-in of a human SCN1A truncation mutation 

associated with Dravet syndrome.39,42,43  Dravet syndrome mice exhibit spontaneous 

seizures, premature death and a reduced threshold for induced seizures.  

Electrophysiological recordings from Scn1a+/- mouse hippocampal neurons have shown 

reduced sodium current density and excitability of GABAergic interneurons, which is 

hypothesized to be the basis for Dravet syndrome.  More recent studies have generated 

mice in which SCN1A has been conditionally knocked-out of inhibitory neuron 

populations.  Conditional deletion of Scn1a from interneurons was sufficient to cause 

 
Figure 2.3. Survival curves of combined knockout/ transgenic mice (Scn1a+/- :: SCN1ATg/+). 
Scn1a+/- mice were not rescued by transgenic expression of SCN1A selectively in inhibitory 
neurons. Transgenic line is noted in parenthesis, with n = 13-55 per group.  Survival 
difference between groups was not significant; Cox proportional hazards model. 



26 
 

epilepsy and lethality in mice.50  Results from these mouse models support the 

interneuron-hypothesis of epileptogenesis in Dravet syndrome.   

 

We hypothesized that restoration of SCN1A selectively in interneurons would attenuate or 

prevent the epilepsy phenotype in Dravet syndrome mice, and generated a Gad67-SCN1A 

transgenic mouse line that expresses human SCN1A selectively in GABAergic neurons.  

Experiments with combined knockout/transgenic mice are still ongoing.  Preliminary 

experiments, however, show that selective expression of SCN1A in inhibitory neurons of 

Scn1a+/- mice was not able to rescue the Dravet syndrome phenotype.  While one Gad67-

SCN1A line (9.4) showed a trend of partial rescue for the survival of Scn1a+/- mice, the 

improvement was not statistically significant.   The survival study was greatly under-

powered (power = 0.4) to observe partial rescue as we had assumed full rescue during 

experimental design.  In order to achieve statistical significance, sample size would need 

to increase 3-fold. Additionally, no improvement was observed with either Gad67-

SCN1A transgenic line for the reduced threshold to flurothyl-induced seizures in Scn1a+/- 

mice.  Our preliminary results are not entirely consistent with the idea of an interneuron-

only defect in Dravet syndrome as the cause of premature mortality and suggest the 

possibility of an additional mechanism.  This is consistent with recent work proposing 

that a combination of both inhibitory interneuron and excitatory pyramidal neuron 

dysfunction contributes to the lethality of Dravet syndrome in mice.  Studies in acutely 

dissociated hippocampal neurons isolated from Scn1a+/- mice revealed increased sodium 

current density and a hyperpolarized shift in the voltage-dependence of activation of 

pyramidal neurons compared to wildtype littermates in addition to reduced sodium 
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current density in inhibitory GABAergic interneurons.44  Additionally, increased sodium 

current density was observed in pyramidal neurons differentiated from Dravet syndrome 

patient-derived iPSCs.55  This idea of a hyperexcitable component to the pathology of 

Dravet syndrome is further explored in Chapter III. 

 

We were not able to attenuate or prevent the premature death phenotype of Scn1a+/- mice 

by restoring SCN1A selectively in GABAergic neurons using Gad67-SCN1A transgenic 

mouse lines.  We have suggested that the failure of the Gad67-SCN1A mouse lines to 

rescue survival in Scn1a+/- mice may be because additional mechanisms underlie the 

pathophysiology of Dravet syndrome rather than only a loss of GABA-mediated 

inhibition.  Other possible reasons for this failure may relate to the transgene integration 

site into the genome, or the cellular localization of the transgene product.  If the transgene 

inserted within an essential gene, this could confound our results.  It is also possible that 

we failed to observe rescue due to the targeting of all Gad67 positive (Gad67+) neurons.  

While Gad67 expression marks GABA producing neurons, GABAergic lineages are 

divided into interneuron populations that project locally and neuron populations with 

long-range projections.  By using the Gad67 promoter to drive sodium channel 

expression, the rescue strategy also includes Gad67+ non-interneurons which may be 

affecting rescue.  Additionally, it is known that interneurons innervate and control other 

interneurons.56,57  Because our rescue strategy for restoring SCN1A expression included 

all Gad67+ neurons, it is possible that interneuron/interneuron interactions became 

overactive, leading to a resultant hyperexcitability of the hippocampus.  To address these 

concerns, future experiments should restore SCN1A expression in specific interneuron 
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subpopulations such as parvalbumin- or somatostatin-positive inhibitory interneurons.  

Another possibility explaining why the Gad67-SCN1A transgenic lines did not rescue the 

phenotype could be because we either restored too much or failed to achieve adequate 

sodium channel expression.  To address this concern, we propose electrophysiological 

experiments to examine sodium current density in acutely dissociated hippocampal 

interneurons from each of the transgenic lines because we found that they have varying 

levels of transgene expression. 

 

In some cases of Dravet syndrome, conventional sodium channel-blocking antiepileptic 

drugs (AEDs) such as lamotrigine have been shown to paradoxically worsen the 

disease.58  There are currently no models in which AED-induced exacerbation of epilepsy 

has been replicated.  In vitro, our lab has shown that lamotrigine treatment increases cell 

surface expression of the Dravet syndrome associated SCN1A mutation R1648C.35  

Functional characterization of SCN1A-R1648C has revealed both gain- and loss-of-

function phenotypes.  SCN1A-R1648C exhibits persistent sodium current in addition to an 

overall reduced sodium current density resulting from impaired cell surface 

trafficking.31,35  Lamotrigine treatment rescues cell surface trafficking of SCN1A-R1648C 

which evokes increased persistent sodium current that could exacerbate seizure 

generation.  In order to examine the underlying mechanism responsible for the worsening 

phenotype of Dravet syndrome patients treated with certain AEDs, we generated a 

transgenic mouse line in which SCN1A-R1648C was expressed selectively in GABAergic 

neurons (Gad67-SCN1A-R1648C).  We will use this mouse line to investigate trafficking 
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rescue of a dysfunctional channel as a potential mechanism for the exacerbation of the 

Dravet syndrome phenotype by some AEDs.  
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CHAPTER III 

 

PREFERENTIAL INHIBITION OF PERSISTENT SODIUM CURRENT IS AN 
EFFECTIVE ANTIEPILEPTIC DRUG MECHANISM 

 

 

INTRODUCTION 

Epilepsy is a common neurological disorder characterized by recurrent, spontaneous 

seizures.1-3 Antiepileptic drugs (AEDs) are the mainstay of treatment for most patients 

and several mechanistically distinct classes of agents are available. Unfortunately, 30% 

of persons affected by epilepsy fail to achieve adequate seizure control with currently 

available pharmaceuticals suggesting the need for new AEDs.3  

 

Many widely used and successful AEDs target voltage-gated sodium (Nav) channels, 

typically by mechanisms resulting in use-dependent block of transient sodium current.  

Persistent sodium current, a small non-inactivating component of overall current carried 

by NaV channels, may be another potential target for AED action. Neurons in several 

brain regions exhibit persistent sodium current and this activity may help amplify 

subthreshold synaptic potentials and facilitate repetitive firing.59 Further, increased 

persistent sodium current is an observed feature of several heterologously expressed 

mutant human Nav channels associated with familial epilepsy syndromes such as genetic 

epilepsy with febrile seizures plus (GEFS+).60   Ranolazine is an FDA-approved drug for 

the treatment of angina pectoris arising from coronary insufficiency and acts by 

preferentially inhibiting persistent sodium current in heart.  We previously reported that 
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ranolazine can suppress persistent current generated by several human NaV1.1 mutations 

associated with genetic epilepsies or familial hemiplegic migraine.61  Ranolazine has also 

been shown to reduce action potential firing and epileptiform activity in cultured 

neurons.62  Whether preferential suppression of persistent sodium current would be 

antiepileptic in vivo is unknown. 

 

The genetically engineered mouse line, Scn2aQ54, expresses a transgene encoding an 

inactivation-impaired neuronal NaV1.2 channel. Mice expressing the Scn2aQ54 transgene 

exhibit a severe epilepsy phenotype that is characterized by short-duration partial seizures 

beginning in early life that then progress to secondarily generalized seizures, status 

epilepticus and premature death.40,41  Epilepsy in Scn2aQ54 mice is correlated with 

increased persistent sodium current in hippocampal neurons. These animals also exhibit 

histopathologic changes in the hippocampus, including hilar neuron loss and mossy fiber 

sprouting that also occur in chronic human epilepsy. This animal model provides an 

excellent opportunity to test the efficacy of drugs targeting persistent sodium current.  We 

hypothesized that preferential inhibition of persistent sodium current would eliminate 

sodium channel dysfunction and exert an antiepileptic effect in Scn2aQ54 mice. 

 

Heterozygous Scn1a knockout (Scn1a+/-) mice exhibit a severe epilepsy phenotype with 

spontaneous seizures and premature death that models Dravet syndrome in humans.  

Heterozygous loss of Scn1a impairs GABA-mediated inhibition because of a reduced 

sodium current density and neuronal excitability in GABAergic interneurons.42-44  Due to 

the haploinsufficiency of SCN1A, it should come as no surprise that conventional 
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voltage-gated sodium channel blockers are ineffective in patients with Dravet syndrome.   

In some cases, lamotrigine has even been shown to cause a paradoxical worsening of the 

disease.58   We hypothesized that Scn1a+/- mice would either be resistant to or would 

exhibit seizure aggravation with drugs targeting persistent sodium current.   

 

In this study, we investigated the antiepileptic effect of preferential persistent sodium 

current inhibition using ranolazine and the recently described novel compound, 

GS967.63,64 We observed that both ranolazine and GS967 reduced seizure frequency in 

Scn2aQ54 mice, and GS967 inhibited spontaneous action potential firing in neurons 

isolated from Scn2aQ54 mice. GS967 was also effective at protecting against seizures in 

the maximal electroshock (MES) model.  Additionally, we found that long-term 

treatment with GS967 greatly improved survival, prevented hilar neuron loss and 

suppressed the development of mossy fiber sprouting in Scn2aQ54 mice.  Surprisingly, we 

also found that survival of Scn1a+/- mice was significantly improved with long-term 

treatment of GS967. 

 

MATERIALS AND METHODS 

Animals 

All animal care and experimental procedures were approved by the Vanderbilt University 

Institutional Animal Care and Use Committee.  Mice were group-housed in a pathogen-

free mouse facility under standard laboratory conditions (12-h light/dark cycle).  Mice 

had access to food and water ad libitum, except during experiments.  Scn2aQ54 transgenic 

mice were generated as previously described and are maintained as a congenic line on the 
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C57BL/6J background (B6.Q54) by continued backcrossing of B6.Q54 hemizygous 

males to C57BL/6J females.40  For experiments, F1 generation Scn2aQ54 mice were 

produced by crossing B6.Q54 hemizygous transgenic males with SJL/J females.  Scn1a+/- 

mice were generated as previously described and are maintained as a congenic line on the 

129S6/SvEvTac background (129.Scn1a+/-).43  For experiments, F1 generation Scn1a+/- 

mice were produced by crossing 129.Scn1a+/- mice with C57BL/6J mice.  Mice were tail 

biopsied in the second postnatal week, and DNA was prepared from tail tissue using 

Gentra Puregene Mouse Tail kit according to the manufacturer’s instructions (Qiagen, 

Valencia, CA).  Genotyping of the Scn2aQ54 transgene was performed as previously 

described.41 Genotyping of Scn1a+/- mice was performed as previously described.43  

Experimental animals used in this study were age 30-35 days unless otherwise noted.   

 

Drugs and compounds 

Ranolazine dihydrochloride (Sigma-Aldrich, St. Louis, MO, USA), phenytoin sodium 

injection, USP (Baxter Healthcare, Corp., Deerfield, IL, USA), phenytoin (Sigma-

Aldrich, St. Louis, MO, USA) and GS967 (Gilead Sciences, Foster City, CA, USA) were 

used.  For electrophysiological experiments, phenytoin and GS967 were prepared at stock 

concentrations of 50 mM and 10 mM respectively in DMSO, and diluted in the 

appropriate bath solution at the time of recording. The final DMSO concentration was 

always less than 0.02%.  A solution of ranolazine was prepared in Dulbecco’s phosphate 

buffered saline (PBS) with pH readjusted to 7.1. Drug-free PBS was used as a vehicle 

control for ranolazine experiments.  Phenytoin sodium was diluted in 0.5% methyl 

cellulose, and the vehicle control solution contained 10% ethyl alcohol, 40% propylene 
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glycol and 50% water diluted in 0.5% methyl cellulose.  The pH of phenytoin and vehicle 

solutions was between 7.5 and 8.0. A solution of GS967 was prepared in a vehicle 

solution containing 15% NMP, 10% solutol HS-15 and 75% water for MES experiments.  

GS967 was formulated in Purina 5LOD chow at concentrations of 2 mg/kg and 8 mg/kg 

by Research Diets, Inc. for experiments involving Scn2aQ54 and Scn1a+/- mice. 

 

In vivo pharmacology 

Non-transgenic F1 wildtype (C57BL/6J x SJL/J) mice purchased from The Jackson 

Laboratory (Bar Harbor, ME, USA) were used to study ranolazine pharmacokinetics in 

vivo.  Ranolazine (40 mg/kg) was administered as a single intraperitoneal (i.p.) injection 

in a volume of 10 ml/kg body weight.  At selected time points (10, 20, 30 or 40 minutes), 

four animals per group were deeply anesthetized before collecting blood and brain 

samples. Blood and brain samples were also collected from the phenytoin and GS967 

experimental animals. Plasma was isolated by centrifugation (9000 x g, 10 minutes).  

Brain tissue was homogenized in 3% sodium fluoride solution containing 1% HCl (300 

mg tissue in 600 µl).  Ranolazine and GS967 concentrations were measured by liquid 

chromatography coupled with tandem mass spectrometry as previously described.61  

Plasma phenytoin concentration was assayed by Vanderbilt University Medical Center 

Core Chemistry Laboratory using fluorescence polarization immunoassay technology 

(COBAS INTEGRA; Roche, Basel, Switzerland). 
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Acute isolation of hippocampal neurons 

Electrophysiology experiments were performed on acutely dissociated hippocampal 

pyramidal neurons isolated from Scn2aQ54 mice.  Mice were anesthetized with isoflurane 

and brains were removed under aseptic conditions. Slices (400 µm) were obtained using a 

Leica VT1200 microtome (Leica Microsystems, Nussloch, Germany). The hippocampus 

was isolated by dissection in ice cold sterile filtered dissection solution (in mM: 110 

NaCl, 2.5 KCl, 7.5 MgCl2, 10 HEPES, 75 sucrose, 25 glucose, pH 7.4), then allowed to 

recover in ACSF solution containing (in mM: 124 NaCl, 4.4 KCl, 2.4 CaCl2, 1.3 MgSO4, 

1 NaH2PO4, 10 glucose, and 26 NaHCO3, pH 7.35) for a period of 1-6 hours.  Neurons 

were dissociated by protease XXIII digestion (1.5 mg/ml) at room temperature in a 

solution containing (in mM: 82 Na2SO4, 30 K2SO4, 5 MgCl2, 10 HEPES, 10 glucose, pH 

7.4). Cells were triturated in dissociation solution containing 1 mg/ml bovine serum 

albumin, then placed in recording solution for electrophysiological experiments.65 

 

Electrophysiology 

Mutagenesis of recombinant rat NaV1.2 (rNaV1.2) was performed as described 

previously.26,66,67  Three mutations (G879Q, A880Q, L881Q) were introduced into full 

length rNaV1.2 to recapitulate the Scn2aQ54 transgene. Heterologous expression of 

rNaV1.2 in tsA201 cells and whole cell voltage clamp recording were performed as 

previously described.68  Persistent sodium current was measured during the final 10 ms of 

a 200 ms depolarization to 10 mV from a holding potential of 120 mV in the absence 

and presence of 1 µM GS967 or 10 µM phenytoin, followed by application of 0.5 µM 

tetrodotoxin (TTX) and offline digital subtraction as described previously.68  Use-
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dependent rundown was measured at stimulation frequencies of 10, 30, and 100 Hz in the 

absence and presence of either 1 µM GS967 or 10 µM phenytoin, followed by 

application of 0.5 µM TTX and offline digital subtraction of TTX-resistant current.  

Whole cell recordings of neuronal cell bodies were made in current clamp mode using an 

Axon MultiClamp 700B amplifier. Patch pipettes were fabricated from borosilicate glass 

using a multistage P-97 Flaming Brown micropipette puller (Sutter Instruments, Novato, 

CA), and fire-polished using a microforge (Narishige, Japan). Final pipette resistance was 

2.0 – 2.5 MΩ when filled with a solution containing (in mM: 110 K-gluconate, 10 KCl, 

10 HEPES, 10 dextrose, 10 sucrose, 10 phosphocreatine-Na2, 5 EGTA, 4 Mg-ATP, 0.3 

Na-GTP, 0.1 CaCl2, pH 7.35, 300 mOsmol/kg).  Bath solution consisted of (in mM: 155 

NaCl, 3.5 KCl, 1 MgCl2, 1.5 CaCl2, 10 HEPES, pH 7.35). The reference electrode 

consisted of a 2% agar bridge with composition of the bath solution. All whole-cell 

recordings were low-pass Bessel filtered at 5 kHz and digitized at 50 kHz. Membrane 

potential was clamped to 80 mV and cells were allowed to fire spontaneously. 

Spontaneous action potential firing frequency was measured in the absence and presence 

of GS967 (100, 300 and 1000 nM). Statistical comparisons were made using either 

Student’s t-test or one-way ANOVA followed by Tukey’s post-test and p < 0.05 was 

considered statistically significant.   

 

Evaluation of anti-seizure activity in Scn2aQ54 mice 

Anti-seizure activity was evaluated by comparing the number of behavioral seizures 

captured by video recording during a 30-min pre-treatment period with the number 

occurring during a 30-min post-drug period in male Scn2aQ54 mice.  Behavioral seizures 
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(tonic deviation of the head and body accompanied by forelimb clonus) were previously 

correlated with electroencephalographic seizures using video-EEG monitoring, and work 

in our laboratory has shown strong agreement between detection of seizures using 

behavioral and electroencephalographic observations (kappa 0.988) in untreated mice.40  

Mice were implanted with prefabricated headmounts (Pinnacle Technology, Inc., 

Lawrence, KS, USA) for video-EEG monitoring as previously described.52Video-EEG 

data was collected from ranolazine treated mice. Mice were placed in individual clear 

Plexiglas recording cages for 60-min prior to drug treatment (30-min habituation 

followed by the 30-min pre-treatment period). Drug treatments were randomly assigned 

within experimental groups.  Mice received 40 mg/kg ranolazine (maximum tolerated 

dose) or PBS as a single i.p. injection and were immediately returned to the recording 

cage for the 30-min post-treatment period.  Phenytoin experimental animals received a 

single i.p. injection of either 30 mg/kg phenytoin, which produced a plasma concentration 

within the human therapeutic range, or vehicle and were returned to the home cage for a 

delay of 75-min.  Mice were then placed into the recording cage for 30-min habituation 

followed by the 30-min post-treatment period.  The delay between drug injection and 

post-treatment period for each drug was based upon the time to peak plasma ranolazine 

concentration and the previously determined time to peak phenytoin effect.69  For both 

ranolazine and phenytoin experiments, digital video images captured during the two 30-

min video-monitored periods (pre- and post-drug treatment) were analyzed offline by two 

independent observers blinded to treatment. Statistical comparisons were made using 

repeated measures ANOVA and p < 0.05 was considered statistically significant.   
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GS967 could not be administered satisfactorily by the i.p. route because the vehicle alone 

caused excessive sedation in mice, and the stress of intravenous or oral gavage 

administration would have exacerbated seizures in Scn2aQ54 mice.  Therefore, GS967 was 

administered orally through supplementation in chow.  Baseline seizure frequency was 

quantified for 30 minutes in the GS967 experimental group (pre-treatment period), then 

mice were returned to the home cage and received either control or GS967 containing 

chow (either 2 mg drug per kg chow or 8 mg drug per kg chow; dosage estimated as 

0.375 mg/kg/d and 1.5 mg/kg/d, respectively, based on the consumption of 3.5-4 g chow 

per day).  Seizures were quantified offline by two independent observers blinded to 

treatment for 30 minutes at 24 and 48 hours after onset of treatment (post-treatment 

period), and percent change in seizure frequency was calculated. Statistical comparisons 

were made using repeated measures ANOVA and p < 0.05 was considered statistically 

significant.   

 

Maximal electroshock-induced seizures 

MES experiments were performed at The Jackson Laboratory (Bar Harbor, ME, USA) 

using 9 week old C57BL/6J male mice.  Mice were administered either GS967 or 

phenytoin solutions by oral gavage in a volume of 10 ml/kg body weight 2 hours prior to 

MES testing.  All tests were conducted at the empirically determined time to peak GS967 

and previously determined time to peak phenytoin effect.69  Transcorneal electrodes were 

placed on anesthetized corneas (0.5% tetracaine in normal saline). Electrical stimuli (20.5 

mA, 299 Hz, 1.6 ms pulse width, constant current previously determined to be the critical 

current for 97% of C57BL/6J animals to experience tonic hindlimb extension  was 
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delivered for 0.2s using the Ugo Basile (Model 7800) electroconvulsive device (Stoelting 

Co., Wood Dale, IL, USA).70  Maximal seizures appear as a tonic-clonic 

flexion/extension sequence, beginning with tonic extension of the forelimbs and 

terminating with tonic hindlimb extension.  Maximal seizures were scored with full tonic 

hindlimb extension (hindlimbs at 180 degree angle to the torso) as the endpoint.  Probit 

analysis was used to determine ED50 values (concentration required to protect 50% of 

animals against MES-induced seizures) for GS967 and phenytoin. 

 

Survival Analysis 

At weaning (postnatal day 21), Scn2aQ54 mice were randomly assigned to either GS967 

or control treatment groups.  Survival was monitored until 12 weeks of age.  Scn1a+/- 

mice were weaned at postnatal day 18 and randomly assigned to either GS967 or control 

treatment groups.  Survival was monitored until 8 weeks of age.  Animals in the GS967 

treatment group were provided chow containing GS967 (8 mg/kg). Statistical 

comparisons were made using the Cox proportional hazards model and p < 0.05 was 

considered statistically significant. 

 

Histology 

Cresyl Violet and Timm staining were used to detect hilar neuron loss and mossy fiber 

sprouting, respectively, in the dentate gyrus of female mice (age 60-65 days).  At 

weaning (postnatal day 21), Scn2aQ54 mice or wildtype (WT) littermates were randomly 

assigned to either GS967 or control treatment groups. Animals in the GS967 

experimental group were provided chow containing GS967 (8 mg/kg) until morning of 
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sacrifice.  Mice in both treatment groups underwent 30 minutes of video-taped 

observation just before sacrifice.  Seizure frequency was quantified by offline analysis of 

the video recordings by an observer blinded to treatment.  Staining with Cresyl Violet 

was performed as previously described.40  Timm staining was performed as previously 

described.71  Mossy fiber sprouting was measured by quantifying the density of stain 

within the inner molecular layer of the dentate gyrus from both the suprapyramidal and 

infrapyramidal blades.  An image of the dentate gyrus was obtained with a 10x objective 

from 2 sections from each mouse.  NIH ImageJ was used to acquire a total of 6 density 

measurements from each section (12 measurements per mouse).  Each measurement was 

normalized to the background staining within the outer molecular layer of the section 

(Figure 3.1).  These values were averaged to obtain a single density measurement for 

each animal.  Mossy fiber sprouting was compared among groups using one-way 

ANOVA followed by Tukey HSD post-hoc tests and p < 0.05 was considered statistically 

significant.  Statistical analysis was conducted using STATA 12.0 (StataCorp LP, College 

Station, TX).  

 

 

 

 

Figure 3.1. Quantification strategy for mossy fiber sprouting.  NIH ImageJ was used to 
perform densitometry within the granular layer of the dentate gyrus.  Density measurements 
were made within the inner molecular layer of the dentate gyrus from both the suprapyramidal 
and infrapyramidal blades (red circles).  Each measurement was normalized to the average 
background staining within the outer molecular layer of the section (yellow circles).  Areas 
measured were circles with a radius of 0.36 inches.      
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RESULTS 

Ranolazine reduces seizure frequency in Scn2aQ54 mice 

Previous work in heterologous cells demonstrated that ranolazine preferentially 

suppressed persistent sodium current induced by several human NaV1.1 mutants.72  Here 

we tested the ability of ranolazine to reduce seizure frequency in vivo using Scn2aQ54 

mice that have seizures as a consequence of an abnormal neuronal persistent sodium 

current conducted by a mutant NaV1.2 transgene.  Seizure frequency was quantified for 

30 minutes before and after intraperitoneal administration of 40 mg/kg ranolazine or 

vehicle.  Ranolazine reduced seizure frequency significantly compared to vehicle treated 

animals (Figure 3.2).  Additionally, a subset of animals (n=9) were monitored with 

simultaneous video-EEG recording. Following acute ranolazine treatment, we found a 

98% correlation between electroencephalographic and behavioral seizures (55 behavioral 

vs 56 electroencephalographic) and this was not different from untreated animals. The 

proportional reduction in seizure frequency was modest (48%) possibly due to short 

plasma half-life (~15 minutes) and low brain penetration of ranolazine in mice (Table 

3.1).  Despite the pharmacokinetic limitations of ranolazine, these results provided a 

proof-of-principle that preferential suppression of persistent sodium current can exert an 

antiepileptic effect.  

Table 3.1.  
Plasma and brain concentrations     

Drug* 
Dosage 

(mg/kg)** 
% Change in 

Seizure Frequency [Plasma]†  [Brain]  

Ranolazine 40 -48 ± 10% 19.3 ± 0.8 µM 4.9 ± 0.1 µM 

Phenytoin 30 -93 ± 5% 87.2 ± 1.2 µM  ND 

GS967 1.5 -92 ± 4% 0.6 ± 0.1 µM 0.6 ± 0.2 µM 
     

 

 

*Ranolazine and phenytoin were administered as single i.p. injections.  GS967 was orally 
administered through supplementation in chow. **, GS967 dose is in units of mg/kg/day; 
†phenytoin and GS967 are both highly (>90%) protein bound in plasma; ND, not determined 
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GS967 inhibits persistent current and spontaneous action potential firing 

The  novel compound, GS967, has recently been shown to selectively inhibit persistent 

sodium current mediated by the cardiac voltage gated sodium channel with much greater 

potency than ranolazine and has no cross reactivity with over 600 other molecular targets 

at 1 µM concentration.63  To investigate the effects of GS967 on brain NaV channels, we 

performed whole-cell voltage clamp recordings on tsA201 cells expressing a mutant 

NaV1.2 cDNA derived from the Scn2aQ54 transgene (NaV1.2-GAL879-881QQQ). 

External application of GS967 suppressed persistent sodium current with an estimated 

IC50 of 0.44 ± 0.16 µM, while peak (transient) current was inhibited with an estimated 

IC50 of 18.7 ± 47.2 µM (solubility limits of GS967 precluded testing concentration higher 

than 10 M) indicating a 42-fold greater preference for persistent current block over peak 

current block (p < 0.05; Figure 3.3 A,C). For comparison, phenytoin, a commonly 

prescribed AED, also inhibited persistent current (IC50 of 15.9 ± 24.7 µM vs. IC50 of 

Figure 3.2. Ranolazine reduces seizure frequency in Scn2aQ54 mice.  (A) Number of seizures 
for individual male mice before and after treatment of either vehicle (left) or ranolazine 
(right).  (B) A histogram of percent change in seizure frequency following a single i.p. 
injection of either vehicle or ranolazine (40 mg/kg).  Percent change was calculated in 
response to treatment, with n = 9 for each treatment (**p < 0.005; repeated measures 
ANOVA). 
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143.7 ± 70.1 µM, p < 0.05; Figure 3.3 B,C), but with lower potency and less preference 

(9-fold) over peak compared to GS967. Additionally, application of 1 µM GS967 induces 

small hyperpolarized shifts in the voltage dependence of activation and steady-state 

inactivation, and slows the fast component of recovery from fast inactivation  (Figure 3.4, 

Table 3.2).  A common feature of several AEDs is use-dependent inhibition of transient 

sodium current. Therefore, we examined use-dependent inhibition of NaV1.2-GAL879-

881QQQ mediated sodium current by either 1 µM GS967 or 10 µM phenytoin at 

different frequencies (10 – 100 Hz). We observed minimal steady-state use-dependent 

inhibition by GS967 across the range of stimulation frequencies (Figure 3.3 D), 

consistent with the activity of this drug observed on the cardiac voltage gated sodium 

channel.63  However, as expected, phenytoin exhibited strong use-dependent block of 

transient sodium current (Figure  3.3 D), with a greater degree of inhibition at high 

stimulation frequencies (44.2 ± 3.7%) compared to low frequency stimulation (22.6 ± 

2.8%, p < 0.05). These data suggest that GS967 acts mainly through a tonic block 

mechanism to preferentially inhibit persistent sodium current.  

 

Table 3.2.           

Effect of GS967 on Nav1.2-GAL978-881QQQ Biophysical Properties 

Voltage Dependence         
of Activation 

Voltage Dependence of Fast 
Inactivation Recovery from Fast Inactivation 

V1/2  (mV) k (mV) V1/2  (mV) k (mV) τf (ms) τs (ms)

Control -15.2 ± 0.8 8.5 ± 0.2 -67.5 ± 1.4 -5.4 ± 0.1 7.3 ± 0.5 (84 ± 2%) 572.1 ± 81.6 (17 ± 4%) 

GS967 -18.1 ± 0.9* 8.6 ± 0.2 -71.1 ± 1.6* -5.5 ± 0.2 15.2 ± 3.2* (40 ± 5%*) 78.9 ± 8.5* (56 ± 4%*) 
*p < 0.05 compared to control conditions, with n = 9-15 per condition 
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Figure 3.3.  GS967 inhibits persistent sodium current. (A) Representative trace of sodium 
current in the absence (black trace) or presence (red trace) of 1 M GS967. The inset 
illustrates persistent sodium current on an expanded scale. (B) Representative trace of voltage 
dependent sodium current in the absence (black trace) or presence (blue trace) of 10 M 
phenytoin. The inset illustrates persistent sodium current on an expanded scale. (C) 
Concentration response inhibition of persistent sodium current (closed symbols, solid lines) 
and transient sodium current (open symbols, dashed lines) by GS967 (red circles) and 
phenytoin (blue squares). (D) Steady-state use-dependent inhibition of transient sodium 
current by either 1 M GS967 (red symbols) or 10 M phenytoin (blue symbols) at 
stimulation frequencies of 10, 30, or 100 Hz. Values represent ratios of use-dependent 
inhibition in the presence of drug to that in the absence of drug. All data are expressed as 
mean ± SEM, with n = 7-11 for each condition – Chris Thompson, PhD. 
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We next investigated whether GS967 could exert preferential suppression of persistent 

sodium current in neurons isolated from Scn2aQ54 mice and whether this effect would 

inhibit neuronal action potential firing. Persistent current measurements from 

hippocampal pyramidal neurons isolated from Scn2aQ54 mice demonstrated that 1 µM 

GS967 significantly reduced persistent current from 1.2 ± 0.4% of peak current amplitude 

(n = 8) measured under control conditions to 0.1 ± 0.1% (n = 5, p < 0.05; Figure 3.5 

A,B). Whole-cell current clamp recording was then performed on hippocampal pyramidal 

Voltage (mV) 

Figure 3.4.  Effect of GS967 on NaV1.2-GAL879-881QQQ biophysical properties. (A) Peak 
current density elicited by test pulses to various membrane potentials and normalized to cell 
capacitance. (B) Voltage dependence of channel activation measured between 80 to +20mV 
(C) Voltage dependence of inactivation measured following a 100 ms inactivating prepulse 
ranging from 140 to 10 mV. (D) Time-dependent recovery from inactivation assessed with 
a 100 ms inactivating prepulse to 10 mV. Black symbols represent data recorded under 
control conditions while blue symbols are data recorded in the presence of 1 M GS967. Data 
are represented as mean ± S.E.M., with n = 9 – 11 for each condition  – Chris Thompson, 
PhD. 
 

Recovery Interval (ms) 



46 
 

neurons in the presence and absence of GS967. Neurons isolated from Scn2aQ54 mice 

exhibited high frequency spontaneous action potential firing, unlike wildtype littermates 

that exhibit rare spontaneous firing (Figure 3.5 C). Application of 1 µM GS967 reduced 

firing frequency by 98.8 ± 0.1% (n = 7) and this effect was reversible upon washout of 

the compound. Suppression of neuronal firing by GS967 was concentration-dependent, 

with an estimated IC50 of ~250 nM (Figure 3.5 D). By comparison, 1 µM phenytoin 

inhibited spontaneous action potential firing by only 36.7 ± 10.1% (open square in Figure 

3.5 D). 

 

Based on these in vitro observations coupled with the ability of GS967 to effectively 

cross the blood-brain barrier (Table 3.1), and a slower rate of elimination than ranolazine, 

we hypothesized that GS967 would exert antiepileptic activity in vivo. Accordingly, we 

examined the effect of GS967 in vivo using three distinct mouse models of epilepsy. 
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Figure 3.5. GS967 inhibits persistent current and spontaneous firing in Scn2aQ54 neurons. (A) 
Representative normalized trace of sodium currents from hippocampal pyramidal neurons 
from Scn2aQ54 (F1.Q54) mice recorded in the absence (black trace) or presence (red trace) of 1 
µM GS967. (B) Summary data for persistent sodium current (expressed as % of peak current) 
recorded from pyramidal neurons in the absence or presence of 1 µM GS967. Peak current 
densities were not significantly different between control and GS967 conditions (control: 
187.2 ± 32.6 pA/pF; GS967: 172.3 ± 46.2 pA/pF).  (C) Representative spontaneous action 
potential firing recorded from a hippocampal pyramidal neuron from either wildtype (F1.WT) 
or Scn2aQ54 (F1.Q54) mice. Membrane potential was clamped at 80 mV and spontaneous 
action potentials were recorded in the absence and presence of 1 µM GS967. (D) 
Concentration response of inhibition of spontaneous action potential firing by GS967 (closed 
circles) and inhibition action potential firing by 1 µM phenytoin (open square). Data are 
expressed as mean ± SEM, with n = 5-7 for each concentration (* p < 0.05) – Chris 
Thompson, PhD. 
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Seizure frequency in Scn2aQ54 mice is reduced by GS967 

We tested the ability of short-course (1-2 days) oral GS967 to reduce seizure frequency in 

Scn2aQ54 mice.  Mice maintained on 0.375 mg/kg/d GS967 exhibited a 50% reduction in 

seizure frequency whereas mice treated with higher dose (1.5 mg/kg/d) GS967 exhibited 

more than 90% seizure reduction following two days of treatment (Figure 3.6). The 

efficacy of this compound to suppress seizures in Scn2aQ54 mice is similar to phenytoin 

(30 mg/kg), but the anticonvulsant effect of GS967 requires a much lower plasma 

concentration (Table 3.1). Vehicle controls for both GS967 and phenytoin treated animals 

exhibited no reduction in seizure frequency.  It was observed that mice treated with 

phenytoin exhibited sedation characterized by lack of ambulation. Although there was a 

trend toward sedation, it was not significantly different from vehicle treated mice (5/7 

awake for vehicle vs. 3/8 awake for phenytoin, p = 0.31).  By contrast, no sedation was 

observed in GS967 and respective control treated animals.   

 

 

 

 

 

Figure 3.6.  GS967 reduces seizure frequency in Scn2aQ54 mice.  (A) Number of seizures in 
30 minutes for individual mice at baseline (day 0) and after treatment (day 1 and 2) with either 
control chow or 1.5 mg/kg/d GS967.  (B) A histogram of percent change in seizure frequency 
following oral administration of either control or chow containing GS967 at two dosage 
levels.  Percent change was calculated in response to treatment, with n = 6 for each treatment  
(*p < 0.05 and **p < 0.005 compared to control; repeated measures ANOVA). 
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GS967 suppresses MES-induced seizures 

To further investigate the antiepileptic activity of GS967, we tested the ability of the 

compound to prevent MES-induced generalized tonic hindlimb seizures in wildtype 

C57BL/6J mice. Varying dosages of GS967 that yielded 0 to 100% protection were orally 

administered two hours prior to testing.  Protection of MES-induced tonic hindlimb 

extension by GS967 was dose-dependent (Figure 3.7), with a calculated ED50 value of 0.1 

mg/kg. Vehicle treatment exhibited no protection against MES-induced seizures. For 

comparison, we experimentally determined an ED50 value of ~5 mg/kg for phenytoin 

protection against MES-induced tonic hindlimb extension consistent with previously 

published data.69  These observations indicate that GS967 has antiepileptic activity in two 

mechanistically divergent models of epilepsy. 
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Figure 3.7.  GS967 protects against MES-induced seizures.  Dose response curve for seizure 
protection by GS967. Data are shown as percentage of animals protected from seizure at a 
given dose of drug, with n = 5-8 animals per dose. In collaboration with Wayne Frankel, PhD 
at The Jackson Laboratory. 
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GS967 improves survival of Scn2aQ54 mice 

Scn2aQ54 mice have a significantly reduced lifespan with approximately 20% surviving to 

12 weeks of age (Figure 3.8).  Poor survival of Scn2aQ54 mice has been attributed to 

chronic, unrelenting seizures with widespread neuronal injury.  We tested whether 

preferential suppression of persistent current by GS967 would increase the lifespan of 

Scn2aQ54 mice.  Mice were continuously treated with GS967 beginning at postnatal day 

21 and survival was monitored until 12 weeks of age. GS967 treatment dramatically 

improved the survival of Scn2aQ54 mice with 90% of mice alive at 12 weeks compared to 

20% survival of control (untreated) animals (p < 0.005; Figure 3.8). 
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Figure 3.8.  GS967 improves survival of Scn2aQ54 mice.  Survival curves of Scn2aQ54 mice 
placed on control chow or chow containing GS967 (dose 1.5 mg/kg/d). Treatment began at 3 
weeks of age indicated by the dashed line, with n = 18-20 per group. Survival difference 
between groups was significant at p < 0.005; Cox proportional hazards model.  
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Survival of Scn1a+/- mice improved by GS967 

Scn1a+/- mice have a significantly reduced lifespan with only ~30% survival to 8 weeks 

of age (Figure 3.9).  Poor survival of Scn1a+/- mice has been attributed to seizure clusters 

in a developmentally sensitive time window around the time of weaning.  The seizures 

result from impaired GABA-mediated inhibition due to haploinsufficiency of SCN1A.  

We tested whether inhibition of persistent sodium current by GS967 would further impair 

GABA-mediated inhibition thereby exacerbating the phenotype of Scn1a+/- mice.  

                    Age (weeks)
0 2 4 6 8

P
er

ce
nt

 S
ur

vi
va

l

20

40

60

80

100

 

 

 

 

GS967 treatment prevents hilar neuron loss in Scn2aQ54 mice 

Widespread neuronal loss in the dentate hilus is a commonly observed histopathological 

change in epilepsy patients and animal models of epilepsy, including the Scn2aQ54 mouse 

model.40,73,74  We investigated whether chronic GS967 treatment would prevent neuron 

loss in Scn2aQ54 mice.  Cresyl Violet staining revealed extensive neuronal cell loss in the 

Figure 3.9.  GS967 improves survival of Scn1a+/- mice.  Survival curves of Scn1a+/- mice 
placed on control chow or chow containing GS967 (dose 1.5 mg/kg/d). Treatment began at 18 
days of age indicated by the dashed line, with n = 12-13 per group. Survival difference 
between groups was significant at p < 0.005; Cox proportional hazards model.  
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dentate hilus in 60 day-old Scn2aQ54 mice compared to age-matched wildtype (WT) 

littermates (Figure 3.10) as reported previously.40  By contrast, qualitatively, there was no 

overt hilar neuron loss in GS967 treated Scn2aQ54 mice, indicating that GS967 treatment 

provides a neuronal preservation effect possibly by attenuating excitotoxicity caused by 

persistent sodium current. 

 

 

 

 

 

 

Mossy fiber sprouting is suppressed by GS967 treatment 

Seizure-induced sprouting of the mossy fiber pathway in the dentate gyrus is a frequently 

observed morphological change associated with epilepsy and has also been observed in 

Scn2aQ54 mice.40,74  We tested whether chronic GS967 treatment of Scn2aQ54 mice would 

Figure 3.10.  GS967 prevents hilar neuron loss in Scn2aQ54 mice. A-C, Cresyl violet stained 
sections of the dentate gyrus from a representative wildtype mouse (WT, panel A), untreated 
Scn2aQ54 mouse (F1.Q54, panel B) and a Scn2aQ54 mouse treated with 1.5 mg/kg/d GS967 
from age P21 to P60 (F1.Q54 + GS967, panel C).  Images in the middle and lower panels are 
high-magnification views. Scale bars represent 500 µm, 200 µm and 100 µm for the upper, 
middle and lower panels, respectively.  
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attenuate mossy fiber sprouting. Using Timm staining, we observed evidence of robust 

mossy fiber sprouting within the inner molecular layer of the dentate gyrus in 60 day-old 

Scn2aQ54 mice compared to age-matched WT littermates (Figure 3.11 A,B).  By contrast, 

Scn2aQ54 mice chronically treated with GS967 exhibited a low density of Timm staining 

(Figure 3.11).  Mossy fiber sprouting was quantified in the inner molecular layer of the 

dentate gyrus using densitometry normalized to background staining.  There was a 

significant (p < 0.05) reduction in the extent of mossy fiber sprouting in GS967 treated 

Scn2aQ54 mice (1.32 ± 0.12) compared to untreated Scn2aQ54 (1.81 ± 0.16*) and WT (1.36 

± 0.07) animals.  These findings indicate that chronic seizure suppression by GS967 

suppressed mossy fiber sprouting in Scn2aQ54 mice. 

 

 

 

 

 

 

 

Figure 3.11.  GS967 suppresses mossy fiber sprouting in Scn2aQ54 mice. A-C, Timm stained 
sections of the dentate gyrus from a wildtype (WT, panel A) untreated Scn2aQ54 mouse 
(F1.Q54, panel B) and a Scn2aQ54 mouse treated with GS967 from age P21 to P60 (F1.Q54 + 
GS967, panel C).  Images in the lower panels are high-magnification views. Scale bars 
represent 500 µm and 200 µm for the upper and lower panels, respectively. Quantification of 
the average density in the inner molecular layer of the dentate gyrus normalized to 
background is reported below images.  Data are expressed as mean ± SEM, with n = 6-8 per 
group (*p < 0.05; one-way ANOVA followed by Tukey HSD post-hoc). 
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DISCUSSION 

In this study, we determined the anticonvulsant effect of ranolazine and GS967, two 

persistent sodium current blockers. AEDs targeting voltage-gated sodium channels have 

existed for many years, and most exert their clinical effects through use-dependent block 

of transient sodium current in a manner similar to that of local anesthetics. Use-dependent 

block of the transient sodium current can dampen neuronal excitability especially during 

rapid firing such as the hypersynchronous bursts associated with seizures. While some 

AEDs may also suppress persistent sodium current to some extent, no currently approved 

AED has a strong preference blocking this activity.75  

 

Persistent sodium current and epilepsy 

Under normal physiological conditions, opening of voltage-gated sodium channels is 

short-lived and lasts only a few milliseconds before the process of fast inactivation 

returns current levels to near baseline values.  However, a small amount of sodium 

current may persist after the main transient current is extinguished. This persistent 

sodium current can influence neuronal firing by amplifying subthreshold synaptic inputs 

or evoking a sustained membrane depolarization.59  The ability of persistent sodium 

current to promote neuronal excitability has led to speculation that this current may 

contribute to epilepsy possibly by allowing pathological firing frequencies or by enabling 

the spread of epileptic neuronal activity.  

 

Several lines of evidence support the hypothesis that persistent sodium current can be 

epileptogenic. Mutations in human NaV1.1, NaV1.2, NaV1.3 and NaV1.6 sodium channels 
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have been associated with a spectrum of genetic epilepsies. In vitro experiments probing 

the functional consequences of several human mutations have revealed increased 

persistent sodium current as a major, and sometimes solitary, defect.26,66,76-79  Further, 

low level expression of a mutant NaV1.2 transgene exhibiting increased persistent current 

in the Scn2aQ54 mouse model demonstrates the pathogenic nature of this current.40  

Additionally, Chen and colleagues demonstrated high-threshold bursting in hippocampal 

CA1 neurons is driven by persistent sodium current in the pilocarpine-induced status 

epilepticus rat model of temporal lobe epilepsy.80  The authors speculate that increased 

persistent sodium current contributes to establishing chronic epilepsy in this rodent 

model.  More recently, evidence from Drosophila demonstrate important contributions of 

persistent neuronal sodium current to seizure phenotypes arising from spontaneous and 

engineered mutants.81,82   While increased persistent current does not account for all 

genetic epilepsies arising from mutant sodium channels, this mechanism appears to be an 

important contributor in many situations.  

 

Anticonvulsant activity of GS967 

GS967 has previously been shown to preferentially inhibit persistent sodium current 

mediated by the cardiac voltage gated sodium channel and is an effective suppressor of 

ventricular arrhythmias.63,64  Unlike ranolazine, GS967 is capable of effectively 

penetrating the blood brain barrier and has slow elimination from the body, suggesting 

that this compound may have more efficacious antiepileptic activity. Our data show that 

GS967 was capable of preferentially suppressing persistent sodium current mediated by a 

neuronal voltage-gated sodium channel with greater potency than the commonly 
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prescribed AED phenytoin, and inhibited spontaneous action potentials in pyramidal 

neurons isolated from Scn2aQ54 mice.  Importantly, GS967 suppressed seizures in both 

the MES-induced seizure model and the Scn2aQ54 mouse model of epilepsy.  

 

Many Dravet syndrome patients treated with sodium channel blockers such as 

lamotrigine show no benefit, and in some cases, experience worsening epilepsy.58  

Therefore, we hypothesized that because GS967 selectively inhibits voltage-gated sodium 

channels, Scn1a+/- mice would be refractory to GS967 treatment.  Surprisingly, however, 

GS967 treatment significantly improved the lifespan of Scn1a+/- mice.  Initial studies 

suggested that Dravet syndrome stemmed from a loss of GABAergic inhibitory tone.  

However, more recent studies have shown that in addition to impaired GABA-mediated 

inhibition, the mechanism responsible for Dravet syndrome may also involve a 

hyperexcitable component resulting from hyperactive pyramidal neurons.  Specifically, 

pyramidal neurons isolated from Scn1a+/- mice showed an increased sodium current 

density and a hyperpolarizing shift in the voltage-dependence of activation compared to 

wildtype animals which is consistent with hyperexcitability.44  Additionally, 

differentiated pyramidal neurons derived from Dravet syndrome patient iPSCs exhibit 

increased sodium current density and hyperexcitability.55  We propose that GS967 

prolongs the lifespan of Scn1a+/- mice by inhibiting the abnormal voltage-gated sodium 

current observed in hippocampal pyramidal neurons, thereby reducing overall 

excitability.        
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GS967 suppresses mossy fiber sprouting 

Mossy fiber sprouting refers to the aberrant growth of granule cell axons (mossy fibers) 

into the inner molecular layer of the dentate gyrus.74  This phenomenon has been 

observed in patients with epileptic seizures and in animal models of epilepsy, but the 

contribution of mossy fiber sprouting to epileptogenesis remains unclear and 

controversial.  Substantial evidence supports the idea that the sprouted fibers form 

synapses on granule cells and generate recurrent excitatory circuits capable of 

perpetuating seizure activity.74  Attempts to inhibit mossy fiber sprouting using 

commonly prescribed AEDs, including the voltage-gated sodium channel inhibitor 

lamotrigine, have been largely unsuccessful.83-86  Inhibition of the mammalian target of 

rapamycin (mTOR) signaling pathway has been demonstrated to suppress mossy fiber 

sprouting in animal models of temporal lobe epilepsy.87  Our results appear to represent 

the first example of a sodium channel blocking drug with anticonvulsant properties 

capable of suppressing mossy fiber sprouting in an epileptic animal model.   

 
 
CONCLUSION 
 
We demonstrated anticonvulsant activity for two preferential persistent sodium current 

blockers. We further demonstrated that GS967 is a potent and selective inhibitor of 

persistent current that suppresses seizure activity in two mouse models, dampens 

hippocampal neuronal excitability in a concentration-dependent manner, prolongs 

survival of genetic epilepsy models, and prevents both hilar neuron loss and development 

of mossy fiber sprouting in these mice. Our findings provide evidence suggesting that 
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preferential inhibition of persistent sodium current is an effective strategy for 

development of new AEDs. 
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CHAPTER IV 

 

PERSPECTIVES AND FUTURE DIRECTIONS 

 

Summary 

Epilepsy is one of the most common neurological disorders affecting approximately 50 

million people of all ages worldwide.88  Nearly two-thirds of patients diagnosed with 

epilepsy develop seizures with no obvious brain lesions or any other neurological 

abnormalities, so are presumed to be of genetic origin.1  These genetic epilepsies exhibit 

complex inheritance suggesting the involvement of multiple genes and environmental 

factors.  Recent studies, however, have identified monogenic epilepsies in which the 

syndromes arise from mutations within single genes.  All of the identified mutations 

occur in genes essential for neuronal signaling such as nicotinic acetylcholine receptors, 

GABAA receptors and voltage-gated ion channels, with mutations within voltage-gated 

sodium channels the most prevalent.17,24  Information gained from the identification and 

characterization of these mutant alleles has provided insight into the molecular 

mechanisms that underlie the pathology of epilepsy and have inspired the development of 

new therapies.   

 

The need for novel therapeutics is highlighted by the fact that 30% of epilepsy patients do 

not achieve seizure control with currently available AEDs, which creates a great burden 

both physically and socially.8  Drug resistant epilepsy represents an unmet medical 

challenge in the field that needs to be addressed and new therapies need to be developed.   
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Animal models of epilepsy 

While animal models have been extensively used in the past for the development and 

testing of AEDs, they may not accurately depict human epilepsy.  A definite limitation of 

these models is that they are induced seizure models rather than epilepsy models.8  

Animal models that exhibit spontaneous seizures are more etiologically relevant for 

investigating the neurophysiological basis of epilepsy and for testing new AEDs.  The 

availability of two genetic mouse models of epilepsy have provided a platform to study 

molecular mechanisms of epileptogenesis as well as a new testing ground for evaluating 

novel therapeutic strategies.  One drug that has come from such studies is GS967.  The 

compound GS967 is a potent and selective inhibitor of persistent sodium current which is 

a biophysical defect observed in association with some genetic epilepsies.  We tested the 

antiepileptic potential of GS967 and found that this compound was effective across 

multiple mouse models of epilepsy representing both gain- and loss-of-function 

phenotypes. 

 

Effectiveness of GS967 in multiple mouse models of epilepsy 

The Scn2aQ54 genetically engineered mouse model of mesial temporal lobe epilepsy 

expresses a transgene encoding a gain-of-function Nav1.2 channel.   Scn2aQ54 mice 

exhibit spontaneous seizures and premature death hypothesized to result from increased 

persistent sodium current in hippocampal neurons.40  We utilized the Scn2aQ54 mouse 

model of epilepsy to test the hypothesis that preferential inhibition of persistent sodium 

current would represent a novel antiepileptic drug mechanism.  We showed that GS967 
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reduced seizure frequency and improved survival of Scn2aQ54 mice.  These results 

indicate that GS967 is an effective AED in this genetic mouse model of epilepsy.  

Phenytoin, a conventional AED, also reduced seizure frequency in Scn2aQ54 mice, which 

validates the Scn2aQ54 model as a relevant model for testing new AEDs.  The Scn2aQ54 

mouse model represents a genetic model with spontaneous, recurrent seizures that could 

prove to be instrumental for evaluating novel compounds during AED development, 

particularly those with a target-based design strategy.   

 

We also found that GS967 was effective in the heterozygous Scn1a knockout (Scn1a+/-) 

mouse model of epilepsy.  Heterozygous deletion of Scn1a in mice models Dravet 

syndrome in human epilepsy.  Scn1a+/- mice exhibit severe, spontaneous seizures and 

premature death.  They also display a reduced threshold to induced seizures (flurothyl 

and hyperthermia) and cognitive and motor impairments.42-44  Scn1a+/- mice are excellent 

models of spontaneous genetic epilepsy that can be used to investigate mechanisms of 

epileptogenesis and exploited for AED development.  Long-term GS967 treatment 

dramatically improved the survival of Scn1a+/- mice, a result that was unanticipated.    

Initial work in Scn1a+/- mice showed reduced sodium current density and excitability in 

GABAergic interneurons leading to the interneuron-hypothesis of Dravet syndrome, 

which postulates that the loss of GABA-mediated inhibition is the underlying 

physiological mechanism of epileptogenesis.  We had hypothesized that GS967 would 

exacerbate the phenotype of Scn1a+/- mice because GS967 would further inhibit Scn1a 

which already exhibits haploinsufficiency.  Because GS967 was effective in Scn1a+/- 

mice, it suggests a more complex pathophysiology than was originally hypothesized.  
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This is consistent with recent work showing that excitatory pyramidal neuron dysfunction 

may contribute to the pathophysiology of Dravet syndrome.  Increased sodium current 

density and excitability of pyramidal neurons was recorded in both Scn1a+/- mice and 

Dravet syndrome derived iPSCs.44,55  These results postulate that Dravet syndrome may 

reflect a combination of abnormalities within interneurons and pyramidal neurons that 

create a significant imbalance in excitatory and inhibitory neurotransmission and promote 

network hyperexcitability.  Interestingly, withdrawal of GS967 at 9 weeks from a cohort 

of mice showed long-term effects as survival was maintained to 12 weeks of age.  The 

benefits of GS967 in Scn1a+/- mice that persist in the absence of drug suggest that there is 

a critical period of vulnerability in which Scn1a+/- mice are extremely susceptible to 

premature death and treatment through this period yields long-term survival.   

 

GS967 represents a novel pharmacological tool that could prove beneficial for 

investigating the neurophysiological mechanisms responsible for epileptogenesis in 

Dravet syndrome.  Additionally, GS967 may have potential as a therapeutic for Dravet 

syndrome patients.  We have shown that GS967 improves the lifespan of Scn1a+/- mice.  

The question that still remains, however, is whether GS967 can rescue the seizure 

phenotype of Scn1a+/- mice.  Scn1a+/- mice exhibit spontaneous seizure and reduced 

thresholds for flurothyl- and hyperthermia-induced seizures when compared to wildtype 

animals.  Future experiments should monitor the occurrence of spontaneous seizures and 

evaluate seizure thresholds following GS967 treatment. Electrophysiological experiments 

in hippocampal slices in the presence of GS967 would provide further insight into the 



63 
 

pathogenesis of Dravet syndrome which can be used to inform the development of novel 

therapeutics.  

 

GS967 as a novel antiepileptic drug 

The effectiveness of GS967 as an antiepileptic drug was confirmed in three 

mechanistically distinct mouse models of epilepsy.  GS967 reduced seizure frequency 

and prolonged the lifespan of Scn2aQ54 mice.  GS967 also protected against induced 

seizures in the maximal electroshock (MES) seizure model.  Phenytoin was used as a 

comparator in the Scn2aQ54 and MES models and in both cases GS967 was more potent 

at seizure suppression.  No adverse consequences were observed with GS967 treatment.  

Additionally, GS967 prevented hilar neuron loss and suppressed mossy fiber sprouting in 

Scn2aQ54 mice which appears to be the first example of a sodium channel blocking drug 

with antiepileptic properties capable of preventing mossy fiber sprouting, an added 

benefit of GS967 as an AED.  Scn1a+/- mice which model the drug refractory epileptic 

encephalopathy, Dravet syndrome, benefited from GS967 treatment.  GS967 treatment 

improved the lifespan of Scn1a+/- mice further promoting its utility as an effective AED.  

GS967 has a large therapeutic window and is selective for voltage-gated sodium channels 

as it does not affect other ion channels, transporters, receptors or kinases. The safety 

profile of GS967 coupled with its success in multiple mouse models of epilepsy certainly 

warrants consideration for a New Drug Application to move studies into higher 

organisms with the eventual goal of GS967 as a viable treatment option for epilepsy 

patients.   
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Gad67-SCN1A genetic rescue of Scn1a+/- mice 

Studies in Scn1a+/- mice have provided the field with many clues regarding the cellular 

and molecular mechanisms that contribute to the pathology of Dravet syndrome.  We 

have used the Scn1a+/- mouse model to further probe the pathophysiology of Dravet 

syndrome and to investigate potential therapies to rescue the epilepsy phenotype.  As 

described previously, we found that GS967 has AED properties in Scn1a+/- mice.  Results 

from those experiments and recent work in pyramidal neurons are suggestive of a more 

complex pathophysiological mechanism than was initially hypothesized.  The idea of a 

combination pathology for Dravet syndrome, including interneuron and pyramidal neuron 

abnormalities, is further supported by observations made in the Gad67-SCN1A transgenic 

rescue experiments. We generated three independent Gad67-SCN1A transgenic mouse 

lines selectively expressing SCN1A in GABAergic rneurons and attempted to rescue the 

Dravet syndrome phenotype of Scn1a+/- mice.  We hypothesized that if Dravet syndrome 

exhibits an interneuron-specific pathology, then restoration of SCN1A selectively in 

inhibitory neurons of Scn1a+/- mice would rescue the epilepsy phenotype.  The Gad67-

SCN1A genetic approach that we utilized was not sufficient to attenuate or prevent the 

phenotype of Scn1a+/- mice.  Additional experiments need to be performed to further 

characterize the three Gad67-SCN1A transgenic lines and will provide insight into why 

restoration of SCN1A did not alleviate the phenotype. We need to conduct experiments to 

determine the transgene integration site into the genome to ensure that our results are not 

confounded by the fact that the transgene disrupted expression of an essential gene.  We 

also need to confirm the SCN1A is localized to GABAergic neurons.  Western blot 

analysis shows varying levels of SCN1A transgene across the Gad67-SCN1A lines.  
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Future electrophysiological experiments will determine the interneuron sodium current 

density associated with each transgenic line and compare to endogenous wildtype levels.  

These experiments will inform us whether there is inadequate or excess sodium current 

restored.  It is also plausible that the epilepsy phenoptype was not rescued by the Gad67-

SCN1A transgenic strategy because the interneuron only explanation for Dravet syndrome 

is an overly simplified model, and in fact other neuronal populations may also contribute 

to the disease. 

 

Lamotrigine and Scn1a+/- :: SCN1ARC/+ mice  

We also generated two independent Gad67-SCN1A-R1648C transgenic mouse lines 

which express mutant SCN1A selectively in GABAergic neurons.  The SCN1A mutation 

R1648C has been identified in association with Dravet syndrome.29  Previous studies of 

SCN1A-R1648C demonstrated impaired cell surface trafficking, reduced sodium current 

density and increased persistent sodium current compared to wildtype channels.35,89  

Treatment of cells expressing SCN1A-R1648C with the conventional sodium channel 

inhibitors, lamotrigine and phenytoin, has shown increased cell surface expression.35  A 

paradoxical phenomenon in the treatment of Dravet syndrome is that clinically, some 

patients experience worsening seizures in response to treatment with sodium channel 

blockers such as lamotrigine.58  There are no models in which AED-induced exacerbation 

of epilepsy has been modeled and the current Dravet syndrome models do not really offer 

any explanations either.  The Gad67-SCN1A-R1648C transgenic lines provide a unique 

opportunity to examine potential mechanisms underlying exacerbation of Dravet 

syndrome by certain AEDs.  We will use the mutant transgenic mice to test the 
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hypothesis that lamotrigine treatment exaggerates the phenotype of Dravet syndrome by 

increasing cell surface expression of a dysfunctional channel.  Future experiments will 

need to evaluate the seizure phenotype of combined knockout/transgenic mice (Scn1a+/- :: 

SCN1ARC/+) following chronic lamotrigine treatment.  Additionally, in vivo experiments 

examining the effect of lamotrigine treatment on cell surface expression of SCN1A-

R1648C need to be conducted. Results from these experiments could provide a 

mechanistic basis for the adverse effects of some treatment strategies in Dravet 

syndrome.  Furthermore, Scn1a+/- :: SCN1ARC/+ mice would provide an actual model of 

spontaneous, drug-resistant epilepsy.   

 

Conclusions 

Historically, animals have been used for evaluating the safety of compounds intended for 

human use.  Advances in medical science and genetic manipulations have led to the 

generation of animal models of human diseases that have provided groundbreaking 

insight into the cellular and molecular mechanisms underlying the pathology of disease.  

Additionally, animal models have been invaluable inspiration for directing the 

development and for testing the efficacy of novel therapeutics.  The field of epilepsy is 

not excluded from the benefits surrounding the use of animal models.  Simple seizure 

models have been used for decades to screen compounds for AED discovery and identify 

potential drug candidates.  A disadvantage of these simple seizure models is that they 

model acute seizures rather than genetic epilepsy.  Genetic engineering, however, has 

enabled the generation of mouse models of epilepsy that are more etiologically relevant 

to human epilepsy.  Two distinct models have been described exhaustively throughout 
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this thesis.  The transgenic Scn2aQ54 mouse model of mesial temporal lobe epilepsy 

expresses a gain-of-function mutation in a neuronal Nav1.2 channel and exhibits 

spontaneous seizures.  While the Scn2aQ54 mouse model has been used extensively in the 

past to investigate mechanisms of epileptogenesis, we used the Scn2aQ54 model for AED 

development to test a hypothesis-driven, target-based treatment strategy.  We discovered 

that preferential persistent sodium current inhibition is an effective AED mechanism and 

GS967 was identified as a potent AED.  Since Scn2aQ54 mice are a model of epilepsy, it 

should be considered as a primary model of epilepsy to be used in future AED 

development.  The second genetic model that exhibits epilepsy is the Scn1a+/- mouse 

model, which mirrors Dravet syndrome.  The Scn1a+/- mouse model has primarily been 

used to investigate the disease mechanism of Dravet syndrome, with the goal being that 

once the pathophysiological mechanism is understood it can be converted to develop 

therapeutic strategies.  The common hypothesis responsible for the pathology of Dravet 

syndrome involves a loss of GABA-mediated inhibition due to haploinsufficiency of 

SCN1A.  Although experiments are still ongoing, we are using Scn1a+/- mice to further 

investigate the molecular basis for Dravet syndrome by utilizing a genetic approach to 

rescue the phenotype.  Results from these experiments could be used to inform 

development of target-based strategies in the treatment of Dravet syndrome.  

Serendipitously, we found that GS967 has a beneficial effect in Scn1a+/- mice, a result 

that could translate into an effective treatment strategy for Dravet syndrome.  Scn1a+/- 

mice model epilepsy and should also be used in the development of novel AEDs.   

Through the use of animal models of epilepsy, we were able to identify a novel 

compound, GS967, that shows great potential as an antiepileptic drug.  GS967 was 
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effective in three mechanistically different mouse models of epilepsy, making it a 

promising candidate for human epilepsy patients.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



69 
 

REFERENCES 
 
 
 

 1.  Hauser, W. A., Annegers, J. F. & Kurland, L. T. Incidence of epilepsy and 
unprovoked seizures in Rochester, Minnesota: 1935-1984. Epilepsia 34, 453-468 
(1993). 

 2.  Leonardi, M. & Ustun, T. B. The global burden of epilepsy. Epilepsia 43 Suppl 6, 
21-25 (2002). 

 3.  Sander, J. W. The epidemiology of epilepsy revisited. Curr. Opin. Neurol. 16, 
165-170 (2003). 

 4.  Goodman & Gilman Goodman and Gilman's The Pharmacological Basis of 
Therapeutics. (2006). 

 5.  Hui, Y. Y., Ahmad, N. & Makmor-Bakry, M. Pathogenesis of Epilepsy: 
Challenges in Animal Models. Iran J. Basic Med. Sci. 16, 1119-1132 (2013). 

 6.  Berg, A. T. et al. Revised terminology and concepts for organization of seizures 
and epilepsies: report of the ILAE Commission on Classification and 
Terminology, 2005-2009. Epilepsia 51, 676-685 (2010). 

 7.  Ghaffarpour, M. et al. Pharmacokinetic and pharmacodynamic properties of the 
new AEDs: A review article. Iran J. Neurol. 12, 157-165 (2013). 

 8.  Loscher, W., Klitgaard, H., Twyman, R. E. & Schmidt, D. New avenues for anti-
epileptic drug discovery and development. Nat. Rev. Drug Discov. 12, 757-776 
(2013). 

 9.  Putnam, T. J. & Merritt, H. H. Experimental determination of the anticonvulsant 
properties of some phenyl derivatives. Science 85, 525-526 (1937). 

 10.  Swinyard, E. A., Brown, W. C. & Goodman, L. S. Comparative assays of 
antiepileptic drugs in mice and rats. J. Pharmacol. Exp. Ther. 106, 319-330 
(1952). 

 11.  Goddard, G. V., McIntyre, D. C. & Leech, C. K. A permanent change in brain 
function resulting from daily electrical stimulation. Exp. Neurol. 25, 295-330 
(1969). 

 12.  Everett, G. M. & Richards, R. K. Comparative anticonvulsive action of 3,5,5-
trimethyloxazolidine-2,4,dione (tridione), dilantin and phenobarbitol. J 
Phramacol 81, 402-407 (1944). 

 13.  Ben-Ari, Y., Tremblay, E., Ottersen, O. P. & Naquet, R. Evidence suggesting 
secondary epileptogenic lesion after kainic acid: pre treatment with diazepam 
reduces distant but not local brain damage. Brain Res. 165, 362-365 (1979). 

 14.  Cavalheiro, E. A. et al. Long-term effects of pilocarpine in rats: structural damage 
of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32, 
778-782 (1991). 



70 
 

 15.  Marescaux, C., Vergnes, M. & Depaulis, A. Genetic absence epilepsy in rats from 
Strasbourg--a review. J. Neural Transm. Suppl 35, 37-69 (1992). 

 16.  Barton, M. E., Klein, B. D., Wolf, H. H. & White, H. S. Pharmacological 
characterization of the 6 Hz psychomotor seizure model of partial epilepsy. 
Epilepsy Res. 47, 217-227 (2001). 

 17.  Meisler, M. H., Kearney, J., Ottman, R. & Escayg, A. Identification of epilepsy 
genes in human and mouse. Annu. Rev. Genet 35, 567-588 (2001). 

 18.  Catterall, W. A. Cellular and molecular biology of voltage-gated sodium 
channels. Physiologic Rev 72, S15-S48 (1992). 

 19.  Catterall, W. A. From ionic currents to molecular mechanisms: the structure and 
function of voltage-gated sodium channels. Neuron 26, 13-25 (2000). 

 20.  George, A. L., Jr. Inherited disorders of voltage-gated sodium channels. J Clin 
Invest 115, 1990-1999 (2005). 

 21.  Meisler, M. H. & Kearney, J. A. Sodium channel mutations in epilepsy and other 
neurological disorders. J Clin Invest 115, 2010-2017 (2005). 

 22.  Vacher, H., Mohapatra, D. P. & Trimmer, J. S. Localization and targeting of 
voltage-dependent ion channels in mammalian central neurons. Physiologic Rev 
88, 1407-1447 (2008). 

 23.  Parihar, R. & Ganesh, S. The SCN1A gene variants and epileptic 
encephalopathies. J. Hum. Genet. 58, 573-580 (2013). 

 24.  Catterall, W. A. Sodium Channel Mutations and Epilepsy. (2012). 

 25.  Spampanato, J., Escayg, A., Meisler, M. H. & Goldin, A. L. Generalized epilepsy 
with febrile seizures plus type 2 mutation W1204R alters voltage-dependent 
gating of NaV1.1 sodium channels. Neuroscience 116, 37-48 (2003). 

 26.  Lossin, C., Wang, D. W., Rhodes, T. H., Vanoye, C. G. & George, A. L., Jr. 
Molecular basis of an inherited epilepsy. Neuron 34, 877-884 (2002). 

 27.  Escayg, A. et al. A novel SCN1A mutation associated with generalized epilepsy 
with febrile seizures plus - and prevalence of variants in patients with epilepsy. 
Am J Hum Genet 68, 866-873 (2001). 

 28.  Spampanato, J. et al. A novel epilepsy mutation in the sodium channel SCN1A 
identifies a cytoplasmic domain for beta subunit interaction. J Neurosci 24, 
10022-10034 (2004). 

 29.  Escayg, A. et al. Mutations of SCN1A, encoding a neuronal sodium channel, in 
two families with GEFS+2. Nature Genet 24, 343-345 (2000). 

 30.  Cossette, P. et al. Functional characterization of the D188V mutation in neuronal 
voltage-gated sodium channel causing generalized epilepsy with febrile seizures 
plus (GEFS). Epilepsy Res. 53, 107-117 (2003). 



71 
 

 31.  Rhodes, T. H., Lossin, C., Vanoye, C. G., Wang, D. W. & George, A. L., Jr. 
Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of 
infancy. Proc Natl Acad Sci U S A 101, 11147-11152 (2004). 

 32.  Wallace, R. H. et al. Febrile seizures and generalized epilepsy associated with a 
mutation in the Na+-channel 1 subunit gene SCN1B. Nature Genet 19, 366-370 
(1998). 

 33.  Spampanato, J., Escayg, A., Meisler, M. H. & Goldin, A. L. Functional effects of 
two voltage-gated sodium channel mutations that cause generalized epilepsy with 
febrile seizures plus type 2. J Neurosci 21, 7481-7490 (2001). 

 34.  Lossin, C. et al. Epilepsy-associated dysfunction in the voltage-gated neuronal 
sodium channel SCN1A. J Neurosci 23, 11289-11295 (2003). 

 35.  Thompson, C. H., Porter, J. C., Kahlig, K. M., Daniels, M. A. & George, A. L., Jr. 
Nontruncating SCN1A mutations associated with severe myoclonic epilepsy of 
infancy impair cell surface expression. J. Biol. Chem. 287, 42001-42008 (2012). 

 36.  Sugawara, T. et al. NaV1.1 channels with mutations of severe myoclonic epilepsy 
in infancy display attenuated currents. Epilepsy Research 54, 201-207 (2003). 

 37.  Claes, L. et al. De novo mutations in the sodium-channel gene SCN1A cause 
severe myoclonic epilepsy of infancy. Am J Hum Genet 68, 1327-1332 (2001). 

 38.  Ohmori, I., Ouchida, M., Ohtsuka, Y., Oka, E. & Shimizu, K. Significant 
correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. 
Biochem. Biophys. Res. Commun. 295, 17-23 (2002). 

 39.  Ogiwara, I. et al. NaV1.1 localizes to axons of parvalbumin-positive inhibitory 
interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene 
mutation. J Neurosci. 27, 5903-5914 (2007). 

 40.  Kearney, J. A. et al. A gain-of-function mutation in the sodium channel gene 
Scn2a results in seizures and behavioral abnormalities. Neuroscience 102, 307-
317 (2001). 

 41.  Bergren, S. K., Chen, S., Galecki, A. & Kearney, J. A. Genetic modifiers 
affecting severity of epilepsy caused by mutation of sodium channel Scn2a. 
Mamm. Genome. 16, 683-690 (2005). 

 42.  Yu, F. H. et al. Reduced sodium current in GABAergic interneurons in a mouse 
model of severe myoclonic epilepsy in infancy. Nature Neurosci 9, 1142-1149 
(2006). 

 43.  Miller, A. R., Hawkins, N. A., McCollom, C. E. & Kearney, J. A. Mapping 
genetic modifiers of survival in a mouse model of Dravet syndrome. Genes Brain 
Behav. 13, 163-172 (2014). 

 44.  Mistry, A. M. et al. Strain- and age-dependent hippocampal neuron sodium 
currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiol. 
Dis. 65C, 1-11 (2014). 



72 
 

 45.  Engel, J., Jr. Intractable epilepsy: definition and neurobiology. Epilepsia 42 
Suppl 6, 3 (2001). 

 46.  Dravet, C., Bureau, M., Guerrini, R., Giraud, N. & Toger, J. Epileptic Syndromes 
in Infancy, Childhood and Adolescence. Rogers, J., Bureau, M., Dravet, C., 
Dreifuss, F. E. & Wolf, P. (eds.), pp. 75-88 (John Libbey, London,1992). 

 47.  Oguni, H., Hayashi, K., Awaya, Y., Fukuyama, Y. & Osawa, M. Severe 
myoclonic epilepsy in infants--a review based on the Tokyo Women's Medical 
University series of 84 cases. Brain Dev. 23, 736-748 (2001). 

 48.  Claes, L. R. et al. The SCN1A variant database: a novel research and diagnostic 
tool. Hum. Mutat. (2009). 

 49.  Lossin, C. A catalog of SCN1A variants. Brain Dev. 31, 114-130 (2009). 

 50.  Cheah, C. S. et al. Specific deletion of NaV1.1 sodium channels in inhibitory 
interneurons causes seizures and premature death in a mouse model of Dravet 
syndrome. Proc. Natl. Acad. Sci. U. S. A 109, 14646-14651 (2012). 

 51.  Hartshorne, R. P. & Catterall, W. A. Purification of the saxitoxin receptor of the 
sodium channel from rat brain. Proc. Natl. Acad. Sci. U. S. A 78, 4620-4624 
(1981). 

 52.  Hawkins, N. A., Martin, M. S., Frankel, W. N., Kearney, J. A. & Escayg, A. 
Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy 
with febrile seizures plus. Neurobiol. Dis. 41, 655-660 (2011). 

 53.  Oliva, A. A., Jr., Jiang, M., Lam, T., Smith, K. L. & Swann, J. W. Novel 
hippocampal interneuronal subtypes identified using transgenic mice that express 
green fluorescent protein in GABAergic interneurons. J Neurosci. 20, 3354-3368 
(2000). 

 54.  Wilson, M. H., Coates, C. J. & George, A. L., Jr. PiggyBac Transposon-mediated 
Gene Transfer in Human Cells. Mol. Ther. 15, 139-145 (2007). 

 55.  Liu, Y. et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy 
mechanism. Ann. Neurol. 74, 128-139 (2013). 

 56.  McBain, C. J. & Fisahn, A. Interneurons unbound. Nat. Rev. Neurosci. 2, 11-23 
(2001). 

 57.  Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 
318-326 (2014). 

 58.  Guerrini, R. et al. Lamotrigine and seizure aggravation in severe myoclonic 
epilepsy. Epilepsia 39, 508-512 (1998). 

 59.  Stafstrom, C. E. Persistent sodium current and its role in epilepsy. Epilepsy Curr. 
7, 15-22 (2007). 

 60.  George, A. L. J. Inherited disorders of voltage-gated sodium channels. J. Clin. 
Invest. 115, 1990-1999 (2005). 



73 
 

 61.  Kahlig, K. M., Lepist, I., Leung, K., Rajamani, S. & George, A. L. Ranolazine 
selectively blocks persistent current evoked by epilepsy-associated Nanu1.1 
mutations. Br. J Pharmacol. 161, 1414-1426 (2010). 

 62.  Kahlig, K. M. et al. Ranolazine reduces neuronal excitability by interacting with 
inactivated states of brain sodium channels. Mol. Pharmacol. 85, 162-174 (2014). 

 63.  Belardinelli, L. et al. A novel, potent, and selective inhibitor of cardiac late 
sodium current suppresses experimental arrhythmias. J Pharmacol. Exp. Ther. 
344, 23-32 (2013). 

 64.  Sicouri, S., Belardinelli, L. & Antzelevitch, C. Antiarrhythmic effects of the 
highly selective late sodium channel current blocker GS-458967. Heart Rhythm. 
10, 1036-1043 (2013). 

 65.  Carter, B. C. & Bean, B. P. Sodium entry during action potentials of mammalian 
neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking 
neurons. Neuron 64, 898-909 (2009). 

 66.  Rhodes, T. H., Lossin, C., Vanoye, C. G., Wang, D. W. & George, A. L., Jr. 
Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of 
infancy. Proc. Natl. Acad. Sci. U. S. A 101, 11147-11152 (2004). 

 67.  Kahlig, K. M. et al. Divergent sodium channel defects in familial hemiplegic 
migraine. Proc. Natl. Acad. Sci. U. S. A. 105, 9799-9804 (2008). 

 68.  Thompson, C. H., Kahlig, K. M. & George, A. L., Jr. SCN1A splice variants 
exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia 52, 
1000-1009 (2011). 

 69.  White, H. S. et al. The anticonvulsant profile of rufinamide (CGP 33101) in 
rodent seizure models. Epilepsia 49, 1213-1220 (2008). 

 70.  Frankel, W. N., Taylor, L., Beyer, B., Tempel, B. L. & White, H. S. 
Electroconvulsive thresholds of inbred mouse strains. Genomics 74, 306-312 
(2001). 

 71.  Sloviter, R. S. A simplified Timm stain procedure compatible with formaldehyde 
fixation and routine paraffin embedding of rat brain. Brain Res. Bull. 8, 771-774 
(1982). 

 72.  Kahlig, K. M., Lepist, I., Leung, K., Rajamani, S. & George, A. L. Ranolazine 
selectively blocks persistent current evoked by epilepsy-associated NaV 1.1 
mutations. Br. J Pharmacol 161, 1414-1426 (2010). 

 73.  Dudek, F. E. & Sutula, T. P. Epileptogenesis in the dentate gyrus: a critical 
perspective. Prog. Brain Res. 163, 755-773 (2007). 

 74.  Buckmaster, P. S. Mossy Fiber Sprouting in the Dentate Gyrus. (2012). 

 75.  Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D. S. & Avoli, M. Voltage-
gated sodium channels as therapeutic targets in epilepsy and other neurological 
disorders. Lancet Neurol. 9, 413-424 (2010). 



74 
 

 76.  Vanoye, C. G., Lossin, C., Rhodes, T. H. & George, A. L., Jr. Single-channel 
properties of human NaV1.1 and mechanism of channel dysfunction in SCN1A-
associated epilepsy. J. Gen. Physiol 127, 1-14 (2006). 

 77.  Veeramah, K. R. et al. De novo pathogenic SCN8A mutation identified by whole-
genome sequencing of a family quartet affected by infantile epileptic 
encephalopathy and SUDEP. Am. J Hum. Genet. 90, 502-510 (2012). 

 78.  Holland, K. D. et al. Mutation of sodium channel SCN3A in a patient with 
cryptogenic pediatric partial epilepsy. Neurosci Lett. 433, 65-70 (2008). 

 79.  Estacion, M., Gasser, A., Dib-Hajj, S. D. & Waxman, S. G. A sodium channel 
mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and 
induces hyperexcitability in hippocampal neurons. Exp. Neurol. 224, 362-368 
(2010). 

 80.  Chen, S. et al. An increase in persistent sodium current contributes to intrinsic 
neuronal bursting after status epilepticus. J Neurophysiol. 105, 117-129 (2011). 

 81.  Lin, W. H., Gunay, C., Marley, R., Prinz, A. A. & Baines, R. A. Activity-
dependent alternative splicing increases persistent sodium current and promotes 
seizure. J Neurosci. 32, 7267-7277 (2012). 

 82.  Sun, L. et al. A knock-in model of human epilepsy in Drosophila reveals a novel 
cellular mechanism associated with heat-induced seizure. J Neurosci. 32, 14145-
14155 (2012). 

 83.  Nissinen, J., Large, C. H., Stratton, S. C. & Pitkanen, A. Effect of lamotrigine 
treatment on epileptogenesis: an experimental study in rat. Epilepsy Res. 58, 119-
132 (2004). 

 84.  Pitkanen, A., Nissinen, J., Jolkkonen, E., Tuunanen, J. & Halonen, T. Effects of 
vigabatrin treatment on status epilepticus-induced neuronal damage and mossy 
fiber sprouting in the rat hippocampus. Epilepsy Res. 33, 67-85 (1999). 

 85.  Cha, B. H., Akman, C., Silveira, D. C., Liu, X. & Holmes, G. L. Spontaneous 
recurrent seizure following status epilepticus enhances dentate gyrus 
neurogenesis. Brain Dev. 26, 394-397 (2004). 

 86.  Buckmaster, P. S. Prolonged infusion of tetrodotoxin does not block mossy fiber 
sprouting in pilocarpine-treated rats. Epilepsia 45, 452-458 (2004). 

 87.  Buckmaster, P. S., Ingram, E. A. & Wen, X. Inhibition of the mammalian target 
of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in 
a rodent model of temporal lobe epilepsy. J Neurosci. 29, 8259-8269 (2009). 

 88.  Kwan, P., Schachter, S. C. & Brodie, M. J. Drug-resistant epilepsy. N. Engl. J. 
Med. 365, 919-926 (2011). 

 89.  Rhodes, T. H. et al. Sodium channel dysfunction in intractable childhood epilepsy 
with generalized tonic-clonic seizures. J. Physiol 569, 433-445 (2005). 

 
 


