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CHAPTER I 

 

INTRODUCTION 

 

Overview 

The objectives of this thesis are (1) to develop an algorithm to derive small angle X-ray 

(SAXS) scattering profiles from  atomic coordinates; (2) to develop a scoring function comparing 

experimental SAXS profiles with profiles containing approximated loop and side chain regions 

for integration with BCL::Fold; (3) to benchmark the score against different protein models (4)to 

determine a suitable weight for the SAXS score implemented in the consensus knowledge-based 

scoring function; and (5) to evaluate the improvement of native-like sampling. 

Protein Structure 

The primary structure of a protein is formed by a long chain of amino acids.   There are 

20 natural types of amino acids that are distinguished by different properties.  These properties 

include hydrophobicity, hydrophilicity, aromaticity, aliphaticity, size, charge, and the presence of 

hydroxyl groups.  An amino acid is composed of backbone atoms and a side chain unit.  The 

coordinate location of the backbone atoms, comprising a constant sequence of nitrogen, 

carbon, carbon, and oxygen, are influenced by the interactions of the differing side chain units.   

These side chain units, referred to as “R” groups, are responsible for the specific properties of a 

given amino acid.  The linear sequence of amino acids is held together by covalent peptide 

bonds.  Peptide bonds are formed at the c-terminus of amino acid one and the n-terminus of 
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amino acid two.  (See figure 1)  Peptide bond formation causes the release of water.  

 

 

As the peptide chain grows in length, the side chain and backbone residues interact 

(exert forces) on one another thus influencing their position in Euclidean space.  The main force 

for folding water soluble globular proteins is to pack hydrophobic side chains into the core of 

the protein forming a hydrophobic interior and a hydrophilic exterior surface.  For this packing 

to be possible the backbone polar groups (NH, C’=O) must be neutralized by the formation of 

hydrogen bonds.  This is accomplished by the formation of two types of secondary structure 

elements (SSEs): α helices or   sheets.   

A standard α-helix is built from a continuous region of the peptide chain and has 3.6 

residues per turn with hydrogen bonds between C’=O of residue n and NH of residue n+4.  

Although rare, other configurations of the α-helix exist.  If it is more tightly coiled the hydrogen 

bonding occurs at n+3 (310 helix), and if the α-helix is more loosely coiled, the hydrogen bonding 

 
Figure 1: Amino acids and peptide bonds.  The backbone structure of amino acids is depicted. (Top)  The 
structure of the R group distinguishes the amino acids from each other.  The formation of a dipeptide with a 
peptide bond is shown with the release of water (Bottom) 



3 
 

occurs at n+5 (π helix).  In each case all the NH and C’=O groups are joined with hydrogen bonds 

except at the n-terminus and c-terminus.  The termini of the α-helix are polar and are found at 

the surface of proteins.  The α-helix can range in length from four residues to over forty 

residues, while the average length is ten residues.  With each turn of the helix there is a 1.5Å 

rise along the helical axis. 

The other type of SSE is the  -sheet.  Different from the α-helix, this structure is built 

from several regions of the polypeptide chain.  These regions are called  -strands and vary in an 

extended configuration from 5 – 10 residues in length.  They are aligned adjacent to each other 

such that the NH group of one strand forms a hydrogen bond with the C=O group of the 

adjacent strand.  In this configuration, the strands can align in the same direction (parallel) or 

alternating directions (anti-parallel).  

After the secondary structure of helices and sheets are formed, they fold together 

packing the hydrophobic residues towards the core of the protein forming tertiary structure [3].  

At this stage, disulfide bonds and salt bridges form providing stability to the protein.  From a 

linear strand of amino acids, secondary structure elements form and then fold in 3-dimensional 

space to build a distinct shape - the tertiary structure of a protein.  Finally, multiple subunits 

bind together to form quaternary structure of the protein. 

Limitations of Protein Structure Determination 

The understanding of protein structure is important because protein structure 

determines protein function.  In humans, proteins are tiny biological machines that act as 

antibodies, contractile proteins, enzymes, hormonal proteins, structural proteins, storage 

proteins and transport proteins.  They are classified into different types depending on their 

tertiary structure.  For example, collagen (a support protein) has a super-coiled helical shape 

resembling a rope, while hemoglobin is a spherical compact globular protein.  This spherical 
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shape is ideal for travel through the bloodstream.  Two of the main types of proteins are 

globular proteins and membrane proteins.  Globular proteins are soluble and act as enzymes, 

while membrane proteins act as receptors that provide channels for polar molecules to pass 

through the cell membrane.     In the human genome 75% of the proteins are soluble proteins 

while 25% are membrane proteins.  Despite the discrepancy in the number of membrane 

proteins vs. soluble proteins, 50% of all pharmaceuticals target membrane proteins[4] while the 

other 50% target soluble proteins.   

The protein databank (PDB) is a repository of the atomic coordinates of each atom in a 

protein relative to each other [5].  The protein structures were determined through methods 

such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy and 

deposited into the database by experimentalists.  In the PDB, 98% of the proteins are soluble 

proteins, while 2% of the proteins are membrane proteins. This discrepancy is not due to 

chance.  Protein structure determination remains a major challenge in the field of structural 

biology [6-9], particularly for large proteins with highly flexible loop regions such as membrane 

proteins.  While X-ray crystallography and NMR spectroscopy can provide high resolution rigid 

body structures, these techniques are limited by size [10], high flexibility[11], and membrane 

environment[11].  

Membrane proteins, for example, are too large for NMR spectroscopy and do not 

crystallize for X-ray crystallography.  Other low resolution experimental techniques such as Cryo 

electron microscopy, electron paramagnetic resonance (EPR), and small angle X-ray scattering 

(SAXS) are used to gain insights about the structure of proteins.  Isolated, these low resolution 

techniques are not sufficient to determine the atomic coordinates of each atom of a protein in 

Euclidean space.  Because of these limitations, the field of computational structural biology 

emerged as a discipline.   The fundamental challenge in computational structural biology is to 
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write a computer algorithm to accurately compute the 3-dimensional coordinates of the tertiary 

protein structure given the linear sequence of amino acids. 

Experimental Restraints Combined with Computational Methods 

 Protein structure prediction methods are classified into de novo structure prediction 

techniques (without a template) and comparative modeling techniques (models built from 

similar protein structures) [12].  Template-based modeling identifies templates based on 

sequence similarity.  The template structure is then used as a basis for building target protein 

structures.  If no suitable templates can be found, then de novo structure prediction techniques 

are used.  Template based modeling techniques have traditionally provided  the best results in 

the Critical Assessment of protein Structure Prediction (CASP) assessment held every two years. 

In 2012 at CASP10, this was no different.   From this conference held in Gaeta Italy, one of the 

major concerns was that we still do not understand how to separate a good prediction (when 

the method works) from an erroneous protein structure prediction (when the method fails).  

This is difficult because the number of physical conformations available for a given protein 

sequence is vast.  The task of determining the optimal conformation of a protein given a 

potential-energy function requires computational time that is exponential in the number of 

degrees of freedom in the protein [7].  In fact, Levinthal’s paradox states that it would take more 

time than the age of the universe to systematically test each conformation[9].  The native 

structure is hypothesized to be the conformation with the lowest free energy[13].   The problem 

of protein structure prediction is transformed into a search for all possible conformations of an 

amino acid sequence on the free energy landscape for the conformation of lowest energy [14, 

15]. Critical to the success of this task is to 1) use a realistic energy function that can accurately 

determine the free energy of a given confirmation[16] and 2) use an efficient method to search 

the energy landscape.   Finding the global minimum of the energy function on the energy 
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landscape is challenging because the potential-energy surface of a protein contains many local 

minima.  Currently, no practical method for optimizing the potential energy of a protein exists.  

Because of this limitation, we seek to combine computational algorithms with experimental 

constraints to restrict the overall search space. 

BCL::Fold Pushes Size and Complexity Limits in de Novo Protein Structure Prediction 

  Using a Monte Carlo algorithm with Metropolis criteria in a simulated annealing 

environment, BCL::Fold was designed in the Meiler Lab to predict the structure of large proteins 

by assembling secondary structure elements (SSEs) [17, 18].   

Figure 2:  Diagram of the BCL::Fold Protocol 

(A) BCL::Fold uses a primary amino acid sequence as input to identify a consensus secondary structure prediction.   
(B) From secondary structure elements (SSE’s) BCL::Fold generates a pool of candidate α-helices and  -sheets.          
(C) The algorithm generates a proposed idealized protein model from the pool of secondary structure elements       
(D) The proposed protein model is scored based on an energy potential function incorporating the BCL::SAXS score.  
The Metropolis Monte Carlo simulated annealing algorithm is used to sample the potential energy surface.                
(E) Loop Regions and Side Chains added to the final SSE model 
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The advantages of this approach are 1) Low resolution / sparse experimental restraints 

are more readily available for SSEs and for backbone atoms; 2) The SSEs have well defined 

geometries and define the topology of a protein; 3) The Assembly of SSEs without the flexible 

loop regions facilitates the sampling of non-local residue contacts.  This protein structure 

prediction algorithm is based on the placement of SSEs prior to the determination of side chain 

coordinates and loop region coordinates.  The SSEs used in the BCL::Fold algorithm are built 

from a pool of predicted SSEs during five stages of assembly and one refinement stage.   The 

algorithm begins with a random placement of candidate SSEs.  The SSEs in the starting 

conformation are randomly moved to generate a new conformation.     

Using a knowledge-based potential energy scoring function[19], the energy of each 

conformation generated is evaluated.  If the new conformation or model is lower in energy than 

the current model, then it is accepted as the current model.  If the new model is higher in 

energy then it is accepted with the Metropolis criteria – a probability dependent on a scaling 

factor given by the Boltzmann distribution.  The Metropolis criterion provides a means to move 

uphill in the energy landscape and move out of local minima, thus more effectively sampling the 

search space of protein SSE conformations.  After the SSE core of the protein is formed, the loop 

and side chains regions are added with established protocols such as ROSETTA [20, 21] to yield 

complete protein models.   

Although the Metropolis criterion in BCL::Fold provides a way to test the energy 

landscape of SSE conformations more effectively, it cannot definitively identify the 

conformation in the lowest energetic state.  To overcome computational limitations, hybrid 

methods (the combination of multiple experimental techniques) can be utilized to elucidate the 

structure of otherwise unsolved proteins [22-24]. To reduce the search space, experimental 



8 
 

restraints have been incorporated into the scoring function of BCL::Fold, including NMR, 

Electron microscopy density maps, and EPR.  Another method gaining popularity in the 

structural biology community is the small angle X-ray scattering (SAXS) experimental method. 

Small Angle X-ray Scattering (SAXS) 

Small angle X-ray scattering (SAXS) is a sparse experimental structural characterization 

method for rapid analysis of biological macromolecules in solution [25-29].  SAXS is inherently a 

low resolution method because samples move freely in solution during data acquisition resulting 

in spherically averaged scattering intensity curves.  To obtain a SAXS scattering profile, x-rays 

with a constant wavelength ( ) irradiate a purified protein sample in a ~1.0 mg/ml solution. As 

the X-rays collide with the sample, they scatter elastically.  The scattered X-rays are captured on 

a detector as spots of varying intensity.  The overall SAXS scattering profile is calculated by 

subtracting the scattering profile of the blank buffer solution from the profile of the sample 

dispersed in solution.   

A SAXS scattering measurement represents a molecule’s rotationally average intensity 

(I) as a function of scattering angle (q). In this representation, large pairwise atomic distances 

are represented by small scattering angles and small pair wise atomic distances are represented 

by large scattering angles. (See Figure 3) The information content of a SAXS profile is much less 

than other high resolution experimental techniques because the overall scattering curve 

represents the radially averaged contribution of all non hydrogen surface atoms in all 

orientations.  Despite this limitation, several parameters can be extracted directly from the 

scattering curve which enables fast sample characterization.  These parameters include the 

molecular mass (MM), radius of gyration (Rg), hydrated particle volume (Vp) and maximum 
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particle diameter (Dmax).  Furthermore, the SAXS scattering curve contains information related 

to the overall shape of the molecule and is routinely used to validate structural models [30, 31]. 

The Guinier analysis is a rapid method to compute protein size, particle interactions 

(aggregation), oligomeric state, and overall data quality.  First, the radius of gyration and 

forward scattering I(0) are easily obtained from a plot of ln[I(q)] vs. q2. For monodisperse 

samples, this plot should be a linear line where the radius of gyration is the slope and the y 

intercept is I(0).  If the Guinier plot is nonlinear, that may indicate inter-particle interactions, 

polydispersity, or improper background subtraction.  The I(0) value normalized to solute 

concentration is proportional to the MM.  The MM can be used to distinguish different 

oligomeric states. 

 

 

 

 

 

 

 

 

 

 
Figure 3: Experimental SAXS profile of a protein sample where the crystallographic structure is available.  PDB 
ID: 3HZ7.  This is a monomeric domain of a protein of unknown function.  Each dot represents an intensity 
value for a given scattering angle.   
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 After Guinier analysis, the distance distribution function, p(r), is computed by a Fourier 

transformation of the SAXS pattern.  This function represents the SAXS data in real space and 

gives information about the overall shape of the macromolecule.  For example, a spherical 

particle has a bell shaped p(r) curve.  Direct Fourier transformation of the SAXS profile is not 

possible and indirect Fourier methods must be used.  Because the original SAXS profile contains 

all of the information from which the p(r) curve is derived, we used SAXS profiles directly for 

analysis without computing the distance distribution function. 

SAXS as an Experimental Restraint for Protein Structure Prediction 

 The combination of SAXS experimental data with computational protein structure 

prediction algorithms provides a potential opportunity to predict structures closer to the native 

topology [32-34].  SAXS profiles have been used to identify native-like protein models from a 

large set of alternative protein models [35, 36].  Furthermore, SAXS profiles have been used to 

reconstruct proteins in protein structure prediction algorithms. [27, 28, 30, 31, 37] Because the 

SAXS experimental technique represents proteins with spherically averaged election densities, 

multiple structures can be reconstructed from the same SAXS profile.  To address this challenge, 

experimental data collected from SAXS is integrated with additional structural information to 

reduce the number of proteins models consistent with a SAXS profile.   For example, Boura et. al 

characterized the structure of ESCRT-I in solution by simultaneous structural refinement against 

SAXS and double electron-electron resonance spectroscopy of spin-labeled complexes[38].  

Mishraki et. al used SAXS experiments to monitor the hexagonal state of the HII mesophase 

lattice structure. They also used electron paramagnetic resonance (EPR) to measure insulin 

entrapment within the lattice structure [39].  Wang et. al combined residual dipolar coupling 

(RDCs) from nuclear magnetic resonance spectroscopy (NMR) with SAXS restraints to orient 
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subunits and define the global shape of multi-component proteins and protein complexes [40].  

Grishaev et al. used NMR and SAXS restraints to refine the solution structure of the 82-kDA 

enzyme malate synthase G [41]. 

 BCL::SAXS Designed Specifically to Incorporate SAXS Restraints into BCL::Fold 

 Here we describe our newly developed algorithm BCL::SAXS – a module inside of our de 

novo protein structure prediction algorithm BCL::Fold.  The integration of BCL::SAXS with 

BCL::Fold provides a means to utilize SAXS scattering profiles as an additional term in the 

potential energy function[19].  Our algorithm computes complete SAXS scattering profiles for 

complete protein models and an approximate scattering profile for these idealized protein 

models that consist of secondary structure elements only.  We then compare the calculated 

scattering profile with the ‘experimental’ profile to identify likely protein structures.  For 

benchmark purposes, the ‘experimental’ profile was simulated from many proteins using 

CRYSOL[42] - a freely available software package to simulate SAXS profiles from atomic 

coordinates.  It is the current state of the art program for scattering vectors with lengths up to 

0.75Å-1. 

Computational approaches for SAXS fitting are classified as either ab initio or rigid body 

modeling.  The ab initio methods search for three dimensional shapes represented by beads 

that fit the experimental SAXS profile [28, 43].  This method does not yield a (unique) structural 

model, but provides a variety of configurations of spheres that correspond to a given scattering 

pattern.  The rigid body modeling approach uses the three dimensional atomic coordinates from 

a solved structure as input to compute the scattering profile [37].  The main methods to 

calculate a SAXS scattering profile from atomic coordinates are multipole expansion, Monte 

Carlo methods and coarse grain sampling with the Debye formula [42, 44-46].  Multipole 
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expansion methods have been shown to be highly accurate, but difficult to modify for 

approximations.  The Debye formula is easy to modify, but comes with a high computational 

cost[30].  We need to compare BCL::Fold models – i.e. protein structure that lack loops and side 

chains – with SAXS profiles.  To facilitate this, we chose to use the Debye formula, implement 

approximations for missing loops and side chain atoms, and address the computational cost 

with GPU acceleration.   

Overall approach 

In BCL::SAXS inter-atomic pairwise distances are computed explicitly for each heavy 

atom using the Debye formula for atomic scatterers [47].  We accelerated the algorithm 

performance by using graphical processing unit (GPU) parallel threads.  We demonstrate the 

discriminatory power of SAXS at three different abstraction levels: 1) Complete protein models, 

2) protein models with approximated side chain coordinates, 3) protein models with 

approximated side chain coordinates and approximated loop regions.  We quantify the 

performance of the protocol from a benchmark set of 455 proteins.  Further, we evaluate the 

effect of using the SAXS score as a weighted term in the knowledge-based energy function of 

BCL::Fold for four soluble protein examples.  Finally we introduce a new approximation for 

crude protein models missing side chain and loop regions. Following the benchmarking 

presented in this paper, BCL::SAXS will be made available to the scientific community. 
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CHAPTER II 

 

RELATED WORK 

 

  Different methods are available to compute scattering profiles from atomic models.  In 

one approach, the classical Debye formula has been used.  Peter Debye (1884 – 1966) won the 

Nobel Prize in chemistry in 1936 for his contributions to the study of molecular structure, 

specifically dipole moments.  In 1915 he published “Zerstreuung von Röntgenstrahlen” or 

Scattering from X-rays.  In this work Debye presented a method to compute scattering of 

electrons from nuclear position.  This work was refined by adding precomputed atomic form 

factors by Crommer and Mann.  While accurate for a given scattering angle range, the Debye 

approach is computationally expensive and the time-cost increases quadratically with the 

number of atoms in the protein.   Shown below is the Debye Formula with the atomic form 

factors: 

                 
          

     

 

   

 

   

 
 

(1) 

As shown, the given intensity (I) is a function of scattering angle (q) and 3D position (r). Fi and Fj 

are the computed form factor for the given atom at the specified scattering angle q.  Because of 

the iterative structure of this approach, the contribution of each atom can be quantified and 

adjusted.  

As an alternative to the Debye formula, CRYSOL was developed in 1995.    This program 

uses Gaussian sphere approximation to compute the scattering from the solvent in the excluded 
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volume and spherical harmonics to calculate both the envelope around the protein and the 

hydration layer that surrounds it: 

                              
 
    (2) 

where Fmol is the complex scattering amplitude of the molecule, Fdisp is the complex scattering 

amplitude of the displaced solvent, and   Fsurf is the complex scattering amplitude of the 

increased density of the surface water layer.  The average of these amplitudes is taken for a 

given q producing intensity (I).  As opposed to the Debye formula, the computational cost grows 

linearly with the number of atoms in the protein.  This method has been the gold standard for 

nearly 20 years in computing SAXS scattering profiles from atomic coordinates.  

In 2010 AXES, was created by a team at the NIH to rival the accuracy of CRYSOL [48].  In 

this approach experimental SAXS data variability was explicitly addressed by adding tuning 

parameters to the Experimental SAXS profile: 

                                    (3) 

where Iexpt is the experimental SAXS profile.  In this case, the scattering from the buffer is 

subtracted from the scattering with the sample and buffer with a scaling factor α and an offset 

value c added.  The scaling factor (α) accounts for instrument and sample concentration 

uncertainly during data collection.  The offset value (c) accounts for variability in X-ray 

fluorescence.  The predicted SAXS profile is computed the same way as CRYSOL with additional 

averages taken: 

                                
 
             (4) 

where Ω is averaged over a set of molecular frame orientations relative to the incident beam, 

solv is averaged over the displaced and surface water sets, and ens is averaged over the 
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ensemble of macromolecular structures.  Because of these different averaging tasks, AXES is 

more than an order of magnitude slower than CRYSOL.  Several approaches to improve the 

speed of AXES are currently under development. 

  Although fast (CRYSOL) and accurate (AXES), spherical harmonics are not as easily 

modified iteratively as the Debye formula is.  Because of the relative ease of implementation of 

the Debye formula, other groups have attempted to reduce the computational cost by making 

approximations to the Debye formula. 

  For example, the FoXs algorithm [44] approximates the atoms in a protein model as 

beads of different scattering masses but equal shape.    This approach reduces the computation 

time in the Debye formula by about two orders of magnitude but the scattering profiles 

obtained deviates slightly from the scattering profiles obtained from CRYSOL [42].  The loss in 

accuracy due to this approximation is shown however to be within the margin of experimental 

error.  For our purposes with loop and side chain approximations, we did not want to make an 

approximation of an approximation.  This had the potential to introduce a compounding effect 

that could negatively impact our results.   

Using a different approach to simplify the Debye formula, Stovgaard et. al [45] used 

dummy atoms with statistically derived form factors. This approach led to an order of 

magnitude increase in speed.  The scattering profiles obtained by using this method matched 

the scattering profiles obtained through CRYSOL, but also relies on the accuracy of the form 

factor estimates.  In the form factor estimates obtained by Stovgaard, the form factor 

contribution was very limited in the case of Isoleucine, Leucine and Valine.  These are 

hydrophobic residues and were likely buried in the interior of the protein core during training of 

the system. These amino acids have different levels of hydrophobicity depending on the pH of 
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the surrounding solution.   We were concerned that applying this approximation to proteins 

where either 1) the pH is not the same and 2) the structure of the protein does not have buried 

hydrophobic residues, would introduce error into our modeling. 

 Our solution to the limitations presented about these other methods was to avoid any 

shape and/or form factor approximations and use GPU acceleration to compute the scattering 

profile directly from the Debye formula.  We would then compare our results with the Debye 

formula with the results obtained by spherical harmonics.  To our knowledge this is the first 

approach to combine the Debye formula for atomic scatterers with parallel GPU threading.  By 

utilizing this approach, we were able to avoid making further approximations to the Debye 

formula while addressing the computational bottleneck.   
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CHAPTER III 

 

ALGORITHM DEVELOPMENT 

 

Generate SAXS Profiles from Rigid Protein Bodies 

To accurately determine the SAXS profile from the atomic coordinates of full atom 

protein models we utilized several key equations – the Debye formula for atomic scatterers and 

three equations to calculate the form factors[44, 45, 47, 49-51]. The form factors are continuous 

functions of the scattering momentum q.  Using the Euclidean atomic coordinates from 

structures stored in the protein data bank (PDB), scattering profiles for rigid bodies are 

computed.  The following equations, starting with the Debye formula (for completeness), depict 

the method: 

                 
          

     

 

   

 

   

 
 

(5) 

where the intensity, I(q) is a function of the momentum transfer q.  The momentum transfer is 

given by q = (4πsinθ)/ , where the scattering angle θ is given by 2θ, and   is the wavelength of 

the incident beam.  Fi(q) and Fj(q) are the atomic form factors and rij is the pairwise Euclidean 

distance between atom i and atom j. M is the number of atoms in the protein and the 

summations run over all atoms.  To calculate the form factors, we subtracted the displaced 

solvent contribution from the form factor in vacuo: 

                    (6) 

where fv(q) is the atomic form factor in vacuo, and fs(q) is the form factor of the hypothetical 

atom that represents the displaced solvent.  The atomic form factor in vacuo approximation is 
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based on the combination of relativistic Dirac-Slater wave functions and numerical Hartree-Fock 

wave functions [52].  These Hartree-Fock scattering factors were previously computed from q = 

0 to q = 1.5 at intervals of 0.01Å-1.   For convenience, these scattering factors were previously fit 

to the 5-Gaussian (Cromer-Mann) analytic function: 

                
 
  

     

 

   

 
 

(7) 

where a, b, and c are the constants for each atom, and q is the scattering angle in angstroms.  

This approximation is only valid with a q range from 0 to 2.0Å (see Table 1) [53]. 

Table 1: The Cromer-Mann coefficients for scattering factors between 0 to 2.0Å 

Atom A1 A2 A3 A4 B1 B2 B3 B4 C 

H 0.493002 0.322912 0.140191 0.040810 10.510900 26.125700 3.142360 57.799700 0.003038 

C 2.310000 1.020000 1.588600 0.865000 20.843900 10.207500 0.568700 51.651200 0.215600 

N 12.212600 3.132200 2.012500 1.166300 0.005700 9.893300 28.997500 0.582600 11.52900 

O 3.048500 2.286800 1.546300 0.867000 13.277100 5.701100 0.323900 32.908900 0.250800 

S 6.905300 5.203400 1.437900 1.586300 1.467900 22.215100 0.253600 56.172000 0.866900 

 

 In SAXS scattering experiments, the valid scattering angle range is from 0 to ≈ 0.33Å. For larger 

scattering angles, a 6-Gaussian approximation must be used which is valid from 0 to ≈ 6.0 Å [54].  

The displaced solvent scattering fs(q) was approximated by Vi, the excluded solvent volume V 

displaced by atom i (See Table 2): 

            
 
    

   

   
 (8) 

where qs is the solvent density of 0.334e Å-3. The combination of these equations yields a SAXS 

scattering profile from rigid body data stored in a pdb file. 
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Table 2: Excluded volume, radius, and bound hydrogen count by atom type 

Type Volume 
(Å

3
) 

Radius 
(Å) 

Bound 
Hydrogen 

Type Volume 
(Å

3
) 

Radius 
(Å) 

Bound 
Hydrogen 

H 5.15 1.07 0 NH2 12.79 1.45 2 

C 16.44 1.58 0 NH3 17.94 1.62 3 

CH 21.59 1.73 1 O 9.13 1.30 0 

CH2 26.74 1.85 2 OH 14.28 1.50 1 

CH3 31.89 1.97 3 S 19.86 1.68 0 

N 2.49 0.84 0 SH 25.10 1.81 1 

NH 7.64 1.22 1     

 

Initial Validation of BCL::SAXS 

 I programmed BCL::SAXS using the equations described above and computed SAXS 

profiles for protein 1ENH using all atoms.   

 

 

 

 

 

 

 

 

As shown in figure 4, BCL::SAXS deviates from Crysol between 0.28 Å and 0.40 Å.  The red curve 

represents the scattering profile computed by Crysol, while the green curve represents the 

 
Figure 4: Initial SAXS profiles generated through BCL::SAXS.   
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profile generated through BCL::SAXS.  The large deviation from Crysol for all atom computations 

was unacceptable and had to be resolved.  Using Taylor series expansions on sinx/x: 

   
   

    

 
 

  
  

   
  

  
 

  

    

 
             

 
(9) 

We realized that the Debye formula did not vanish at q = 0, but reduced to: 

                 

 

   

 

   

 
 

(10) 

Adding this adjustment to the Debye formula solved the problem. 

 

 

 

 

 

 

 

 

GPU Parallel Processing to Accelerate Algorithm 

The pairwise nature of the Debye formula has a computational cost of O(N2) for each 

value of the scattering angle (q) evaluated.  N is the number of Cartesian coordinates (atoms) 

contained in the protein.  This high computational cost and time requirement has precluded the 

 

 

Figure 5: Computed SAXS profile with correction to Debye formula 
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use of the direct calculation of SAXS profiles using the Debye formula during folding simulations.  

To overcome this computational limitation, alternative approaches for this calculation including 

multipole expansion methods for spherical harmonics [42] and approximation of the individual 

form factors have been developed [45].  To directly compute the SAXS profile using the Debye 

formula we leveraged the parallel architecture of graphical processing unit (GPU) threads using 

OpenCL and computed SAXS profiles directly.   

The Debye formula can be visualized as an NxN square matrix of N-atom rows by N-

atom columns where N is the number of atoms in the protein.  The pairwise Euclidean distances 

were calculated for each entry in the matrix with the diagonal represented by zeros.  Pairwise 

distance calculations in a Matrix form are an ideal calculation type for GPU acceleration because 

each GPU thread can calculate a single Euclidean distance. The algorithm was restructured to 

have each thread calculate a Debye partial sum for a current atom i: 

                    
          

     

 

   

 
 

(11) 

This technique enables the application of this accelerated algorithm to very large 

multimeric systems in excess of 90,000 atoms while leveraging device shared memory in a tiling 

technique.  The result of this partial sum is a matrix of q rows by N-atom columns where q is the 

scattering angle and N is the total number of atoms.  These partial sums are then summed 

across each column to completion for each q using a GPU reduction sum kernel to arrive at the 

desired q number of sums (see figure 6).  Table 3 shows the timing results of GPU vs. CPU 

benchmarks with BCL::SAXS.  
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GPU Acceleration Yields Orders of Magnitude Speed Improvements 

The GPU accelerated Debye calculation was benchmarked on several protein systems 

from the PDB with sizes ranging from 1800 atoms to 92,000 atoms.    The benchmark was 

performed on several devices ranging from low-end workstation class GPUs (Quadro 600) to 

high-end consumer grade GPUs (C1060).  See Table 3 below. 

Table 3: Timing results of GPU vs. CPU benchmarks.  All timings are reported in seconds. Q600 indicates Quandro 
600. 

PDB Atoms 
CPU 

$1300 

GPU Accelerated Chips 
Maximum 
Speedup Q600 

$150 
GTX470 

$200 
GTX480 

$250 
GTX580 

$450 
GTX680 

$600 
C1060 
$1200 

1O26 1832 3.6 0.1 0.07 0.07 0.07 0.07 0.09 5x 

1WA5 7543 65 1 0.31 0.28 0.27 0.20 0.37 325x 

1NR1 23217 624.3 9.3 2 1.9 1.8 1.2 2.7 520x 

1ZUM 43243 2300 30 4.9 4.1 3.9 2.4 6.5 958x 

1VSZ 91846 15365 132 19.8 16.9 15.8 9.0 26.3 1707x 

 

 

Figure 6: Schematic of threading used for GPU acceleration.  Each partial 
intensity sum (IN) is computed for a given scattering angle Q.  The partial 
intensity values are then summed to give a final Intensity I(QN) for the given 
scattering angle. 
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CHAPTER IV 

 

ALGORITHM APPROXIMATIONS 

 

Approximate SAXS Profiles for Protein Models with Missing Side Chains and Loops 

To approximate the side chain regions of a given amino acid, the form factors for the 

atoms with missing side chain coordinates were added to the C  position of the respective 

amino acid.  This approach is analogous to how the form factors for hydrogen are summed 

together with their bound heavy atom in CRYSOL [42].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Protein model with two α-helical structures, p1 and p2 (left), approximated path with unit vectors v1 and v2 
pointing in the direction of p1 and p2 (middle) and residues placed equidistant along the path (right).  Panel A depicts 
the loop region residues summed at the midpoint between the SSEs.  Panel B depicts the linear path with the loop 
region residues evenly spaced along a linear line between the SSEs.  Panel C depicts the orientation dependent 
curvilinear path between SSE1 and SSE2.  
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The loop regions were first approximated by removing atomic coordinate data between 

secondary structure elements (SSEs) and computing the midpoint between the c-terminus of the 

first SSE to the n-terminus of the second SSE.  All of the form factor contributions from all of the 

residues were summed at this location.  This approach although fast, dramatically altered the 

SAXS profile.  (See Appendix III)  We were able to correctly identify five protein models (1UBIA, 

1J27A, 1JL1A, 1NFNA, and 3B50A) out of a set of nine using this method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Scoring Matrix of Single Atom and Linear Loop Approximation. The vertical column represents saxs 
profiles generated through BCL::SAXS with approximated loop regions by the designated method.  The horizontal 
column represents saxs profiles generated through CRYSOL.  The Matrix is not symmetric.  The green squares 
indicate the minimum saxs score when keeping the profile generated through BCL::SAXS constant and comparing 
across all other CRYSOL profiles.  The purple square indicate the minimum saxs score when keeping the profile 
generated through CRYSOL constant and comparing across all other BCL::SAXS profiles.  
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Figure 8 depicts in color square our initial results with the single atom and linear loop 

approximation.  In both cases we generated SAXS profiles from nine protein models with either 

the single atom or linear approximation for the loop regions.  We then used CRYSOL to generate 

scattering profiles from the same protein set and measured the difference between the curves 

with our scoring function.  The matrix is not symmetric which means that we obtain different 

results when we compare a CRYSOL model across a set of BCL::SAXS models vs. comparing a 

BCL::SAXS model across a set of CRYSOL models. To account for this, figure 8 contains two color 

columns per model.  For a model to be correctly identified by our SAXS score, both evaluation 

types must be a minimum (both boxes green and purple must be present in the diagonal 

position).   

The second approach was to compute a linear path between the two SSEs.  Residues 

were then placed equidistant along this path to simulate loops.  We were able to correctly 

identify the same five protein models (1UBIA, 1J27A, 1JL1A, 1NFNA, and 3B50A) out of a set of 

nine using a linear path approximation between the SSEs.  This approximation was not realistic 

for systems that required more residues and had less space between SSEs.  In the case, residues 

would be placed in overlapping regions along the linear line resulting in severe steric clashes.   

To further optimize the method, we accounted for residue steric clashes by creating a 

curvilinear path between SSE1 and SSE2 and using their respective orientation.  This path begins 

in the direction of SSE1 and is gradually modified until it ends in the direction of SSE2.  This 

approach has the ability to generate parabolic, sigmoidal or linear pathways depending on SSE 

orientation.     While crude, this approach is much more rapid than actual loop construction. 
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Vector Calculations to Approximate the Path Directions between Two SSEs 

P1 represents the C  position of the last residue in the N-terminal SSE, while P2 represents the C  

position of the first residue in the C-terminal SSE.  

                  (12) 

                  (13) 

CP1 represents the center position of the last residue in the N-terminal SSE, while CP2 

represents the center position of the first residue on the C-terminal SSE. 

                   (14) 

                   (15) 

We computed a vector pointing in the same orientation of the SSE by subtracting the C  

position of the center of the SSE from P1 and P2.   

           (16) 

where n is the index of the point.  The direction of the vectors V1 and V2 were computed by 

dividing them by their magnitude. 

   
  

    
     

     
 

 
 

(17) 

The distance (Dsse) between two SSEs was computed by subtracting P2 from P1 and then 

taking the norm of the resulting vector. The distance (Dx) between points along the path (S) was 

computed by dividing one by one more than the number of amino acids in the loop region.  

    
 

     
 

 
(18) 
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The predicted loop length (P) was computed by multiplying the number of amino acids 

by the C  - C  spacing of 3.8 Å.  The 3.8 Å term is the average distance between amino acids in a 

protein.  It was computed by averaging the C  distance between residues in the engrailed 

homeodomain (pdb id: 1ENH) [55].   

            (19) 

Pathway Calculations for Loop Approximation 

The path length (S) between two SSEs was approximated as a curve starting in the 

direction of SSE1 and ending in the direction of SSE2.  The curve calculation consists of a linear, 

parabolic, and a directional component.  The linear component is given by: 

                  (20) 

where L is between [0, 1].  When L=0, the equation reduces to the Euclidean coordinates of 

point 1.  When L=1, the equation reduces to the Euclidean coordinates of point 2.  The parabolic 

component is given by: 

               (21) 

where N is a normalization factor to size the height of the parabola and control parabolic path 

length. The directional component is given by: 

             
         

         (22) 

where d1 and d2 are unit directional vectors pointing in the direction of SSE1 and SSE2 

respectively. The complete parabolic approximation function is:  

                                  
         

         (23) 
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Triangle Approximation for Normalization Factor Calculation 

 

 

 

 

 

 

 

 

The normalization factor (N) controls the height of the curve and corresponding path 

length.  To calculate N for a given loop region we divided the curve in half and approximated the 

arc to be the hypotenuse of a right triangle.  The base of the triangle was the Euclidean distance 

between the SSEs divided by two (See figure 2).  With these approximations, the normalization 

factor (N) is given by the Pythagorean Theorem: 

   
 

 
        

  
 

(24) 

Where N is the normalization factor, P is the predicted loop length, and Dsse is the Euclidean 

distance between P1 and P2. 

 

 

 

Figure 9: Depiction of parabolic height approximation. Dsse is the distance 
between SSE’s, Papx is the estimated distance of the parabolic loop. N is the 
normalization factor and controls the height of the parabola. 
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Regula Falsi Approximation for Normalization Factor Calculation 

Prior to implementing triangle approximation for loop regions, I computed the parabolic 

arc length based on the desired distance between the SSEs and a given normalization parameter 

to adjust the height of the arc.  This was framed as a non linear optimization problem using the 

regula falsi procedure.  In this instance, the objective function was the function to compute arc 

length, the parameter to optimize was the normalization factor n, and the goal was to minimize 

the difference between the desired arc length and the computed arc length.   

Arc Length Calculations 

 The following is the derivation shown by Robert Donley Ph.D of the arc length 

computation along the path f(x) = x2 from x=0 to x=1.  The formula to compute arc length is: 

             
 

 

 
 

(25) 

Setting f(x) = x2, gives f’(x) = 2x and (f’(x)) 2 = 4x2.  The formula becomes: 

           
 

 

 
 

(26) 

 

 

Figure 10: The triangulation method produces linear (left) and curved pathways (right) between SSEs depending on  
the value of the normalization factor. 
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This integral is not trivial and will require some work to evaluate.  The first step is to introduce 

the hyperbolic trigonometric functions cosh(t) and sinh(t). 

         
      

 
 

 
(27) 

         
      

 
 

 
(28) 

The cosh(t) function looks like 1+x2, but with much steeper growth at  . The sinh(t) is a function 

with an  inverse function.  Here are the derivative properties of the cosh(t) and sinh(t) functions: 

 

  
                   

 
(29) 

 

  
                   

 (30) 

The next step is to parameterize the cosh and sinh functions. 

                         (31) 

                       (32) 

The hyperbolic trigonometric functions will be used to evaluate the integral in equation 22.  To 

simplify this derivation I will refer to an arbitrary expression as a box. (   ) Note: inverse 

functions undo the action of the function.  For example, the inverse of ex is the ln x.  The inverse 

of x3 is x1/3.   

                       (33) 

Using the relation from equation 32: 

                (t)  (34) 

Substituting the relation from 33 into 34: 

               (35) 

Take the square root of both sides: 
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               (36) 

Using the relation in 33 and substituting that for the variable t in equation 36: 

                        (37) 

The necessary forms of the double angle formula for both the cosh and sinh functions are:   

                           (38) 

                      (39) 

For reference, equation 26 is shown again below: 

           
 

 

 
 

(26) 

Substitute 4x2 with a function to remove the radical:  

             (40) 

                
 

 

 
 

(41) 

Using the relationship in equation 32 and apply to equation 41: 

              
 

 

 
 

(42) 

Removing the radical: 

             
 

 

 
 

(43) 

To solve for dx in equation 43, take the derivative of 40 and solve for dx: 

   
          

 
 

 (44) 

Now substitute equation 44 into equation 43: 

            
        

 
   

 
(45) 

Simplify and pull the constant in front of the integral: 
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(46) 

Use double angle formula from equation 39 to simplify cosh2(t): 

                      (47) 

                      (48) 

         

 
 

 

 
          

 
(49) 

Substitute equation 49 into equation 46: 

  
 

 
  

 

 
 

         

 
    

 
(50) 

To evaluate this integral use u substitution: 

       

        (51) 

   
  

 
 

  

Substitute relationship from 51 into equation 50: 

  
 

 
  

 

 
 

        

 
 
  

 
 

 
(52) 

Simplify: 

  
 

 
  

 

 
 

        

 
    

 
(53) 

Integrate: 

  
 

 
 
 

 
  

        

 
    

 
(54) 

Simplify: 

  
 

 
  

        

 
   

 
(55) 

Substitute u = 2t into equation 55. 
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(56) 

Simplify: 

  
 

 
  

         

 
   

 
(57) 

From equation 40 and the function relationship in 33: 

              (58) 

Substitute 58 into 57: 

  
 

 
           

                  

 
   

 
(59) 

Apply the double angle formula for sinh from equation 38 into equation 59: 

  
 

 
           

                                  

 
   

 
(60) 

The inverse functions will cancel.  Using the relation from equation 37 yields: 

  
 

 
           

 

 
              

 (61) 

The arc length between 0 and 1 is given as: 

             (62) 

     
 

 
            

 

 
                

 (63) 

     
 

 
          

  

 
      

 
(64) 

Apply Arc Length Calculations Generally 

Now that we can compute the arc length for a simple function such as x2, we need to 

expand the method to include general functions while using all of the work previously shown. To 

do this we need to convert a general problem into the form from the previous section.  For 

example, suppose we want to find the arc length along the parabola: 
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 (65) 

Between x = 0 and x=20.  The first step is to shift the parabola by moving the vertex to the 

origin.  This is done by completing the square: 

  
 

  
       

 

 
  

 

 
     

 (66) 

  
 

  
    

 

 
 
 

 
 

 
     

 
(67) 

To center the parabola at the origin, remove the ¼ term and the vertical offset term of 20.  This 

leaves: 

  
 

  
   

 

 
 
 

 
 

(68) 

Perform u substitution: 

    
 

 
 

 (69) 

  
 

  
   

 (70) 

   
 

 
  

 (71) 

The limits of integration change.  When x = 0, u = -0.5; and when x=20, u = 19.5.  Now apply the 

arc length formula previously derived in equation 25 with equation 71: 

             
 

 

 
 

(25) 

       
 

 
  

 

  
    

    

 

 
(72) 

      
 

  
    

    

    

 

 
(73) 

In this form we can see the similarity from the formula given in part 1: 
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(61) 

Perform another u substitution with: 

 

  
       

 (74) 

 

 
     

 (75) 

       (76) 

         (77) 

With this substitution the limits of integration change again.  When u = -0.5, x = -0.05; when u = 

19.5, x = 1.95.  Equation 73 becomes:  

              
    

     

 
 

(78) 

                               (79) 

Where F(x) is: 

 

 
           

 

 
            

 (80) 

Numerically Implement Arc Length Calculations 

The derivation above requires the inverse hyperbolic sin function.  This function is 

expensive computationally.  Alternatively, to compute the arc length along a path given by: 

            (81) 

Between x=L1 and x = L2, we use the formula: 

  
 

  
    

     

     
             

 
(82) 

Where D1 and D2 are the derivatives evaluated at the end points: 

           (83) 

           (84) 
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(85) 

        
  

 
(86) 

One Dimensional Optimization 

 There are multiple methods of one-dimensional unconstrained optimization[56, 57].  To 

find a local minimizer, the ideal case would be to find the x value where the derivative of the 

function is zero. There are a few stumbling blocks to this approach: 1) the derivative may not 

exist, 2) it may be difficult to calculate and 3) the location on the function where the derivative 

is zero may not be explicitly solvable for x.  There are multiple approaches to solving this 

problem that address these concerns.  One approach is to set the derivative of the function 

equal to zero and find where this occurs (Newton, Bisection, Regula Falsi, and Secant 

optimization methods).  Another approach is to find the minimizer of f(x) without using the 

derivative function (Golden Section and Quadratic interpolation methods).  Another approach is 

to use information from both the function and the derivative of the function (Cubic 

Interpolation method). Each method has strengths and weaknesses depending on how the 

system behaves.  For example, the Newton method is very fast, but unstable. It may diverge, or 

converge to the opposite root.  In either case (divergence or false convergence), the answer is 

incorrect.  When the Newton method does converge, the convergence is quadratic (fast).  The 

secant method may diverge as well.  I chose regula falsi, because although a bit slower than the 

Newton or Secant method, it will not diverge and is faster than the Bisection Method.  

 Regula Falsi Method 

This method is the method of false position.  The idea is to bracket x* between ak and bk 

with g(ak) and g(bk) of opposite sign.  G(x) is approximated by a secant line through (ak, g(ak)) and 

(bk, g(bk)): 
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The equation for the secant line is: 

        
           

     
        

 
(87) 

Let Ck solve for where equation 87 (the secant equation) equals zero: 

        
           

     
        

 
(88) 

   
               

           
 

 
(89) 

Once ck is found, the process is iterated until the termination criteria have been met.  The 

update rules are as follows: 

If g(ck) is the same sign as g(ak) 

 ak+1 = ck, bk+1 = bk 

If g(ck) is the opposite sign to g(ak) 

 ak+1 = ak, bk + 1 = bk 

If g(ck) = 0 

 Stop 

 

 
Figure 11: Regula Falsi Optimization.  The green dot represents x* or the location of x 
when g(x) is zero. The secant line is depicted as a dashed line.   
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The algorithm is repeated until an acceptable margin of error or a predefined maximum number 

of iterations have been reached.   

The method was implemented in BCL::SAXS and the normalization factor was computed 

with the regula falsi method optimization method.   With a precise normalization factor I was 

able to generate loops with precise parabolic arc length distances between SSEs.  During testing, 

the regula falsi method was slower and less accurate than the triangular approximation. Hence, 

the triangular approximation was chosen over the regula falsi approximation to compute the 

normalization factor.   See the section titled: Selecting the Optimal Parabolic Height 

Approximation Algorithm. 
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CHAPTER V 

 

EVALUATION OF ALGORITHM AND APPROXIMATIONS  

 

Generation of SAXS Profiles from Atomic Coordinates with CRYSOL 

Since SAXS is an emerging technique, there are few instances where experimental SAXS 

data exist for proteins that have been structurally determined to high resolution. Therefore, 

experimental scattering curves were approximated from high resolution protein structures in 

the PDB using the program CRYSOL [42].  This program computes the scattering profile using 

multipole expansion for fast calculation of the spherically averaged scattering profile.  CRYSOL 

calculates the vacuum and excluded volume scattering components as well as a hydration layer 

contribution.  To generate experimental scattering curves CRYSOL was run with the command 

line “crysol /dro 0.0 /sm 0.33 inputfile.pdb.” The hydration shell does not need to be included in 

the Debye model for calculating SAXS profiles because it has a smaller impact on  2 than the 

errors in an experimentally measured SAXS profile[31]. The upper q-limit of 0.33 Å-1 was used in 

order to be within the expected valid experimental range.  

SAXS Profile Analysis 

For direct comparison, the calculated curve was multiplied by a scaling weight (c) 

c=
 Ical qk  

 

k=1
Iexp qk 

 Ical
2 ( 

k=1 qk)
 

 
(90) 

where Ical is the intensity of the calculated curve, Iexp is the intensity of the experimental curve 

and q is the scattering angle. The scaling between Ical and Iexp cannot be determined because 

concentration cannot be measured with enough accuracy for simulation.  The scaling factor 
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minimizes the  2 measure.  After the scaling weight was computed, the intensities of the 

calculated curve were multiplied by the scaling weight (see top graph on figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To compare the scattering profiles, we first normalized the experimental and calculated 

scattering intensities to be between (0, 1] by multiplying all the intensities in both sets by a 

constant scaling factor ( ) : 

 

 

 

Figure 12: Original SAXS profile (Top) and Normalized SAXS profile of 1A28B (Bottom) for three different 
algorithms, Crysol, FoXs, and BCL::SAXS 
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(91) 

As shown in Figure 9, the normalization process does not change the morphology of the curves.  

The only difference is the scale on the y-axis.  All three algorithms appear to predict the same 

scattering profile from atomic coordinates.  To magnify the effects of small distances, (higher q 

values), the scattering intensities (I) for both data sets were converted to a log10 scale. 

 

 

 

 

 

 

   

The scattering profiles depicted on the logarithmic scale show the deviation in scattering 

profiles between the FoXs algorithm and the Crysol algorithm.   The scattering profile generated 

through BCL::SAXS is directly superimposed on the scattering profile generated through Crysol.  

Using cubic splines, the derivative of the intensities for both data sets were computed.  Similar 

to other approaches to modeling proteins from a SAXS scattering profile [28, 58, 59], we score a 

model based on the difference between the profile obtained by CRYSOL [42] and the profile 

computed by our algorithm BCL::SAXS. The measure was used to quantify the difference 

between the derivatives of the two scattering curves. 

 

 

Figure 13: Logarithmic SAXS profile for 1A28B 
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s= 
  Iexp qk  Ical qk  

  
   

 
 

 
(92) 

where Q is the number of entries in the data set. 

Model Similarity Assessed by dRMSD SAXS Score 

 To measure the similarity between two SAXS profiles we computed the derivative of the 

profiles generated through CRYSOL and BCL::SAXS to compute the similarity score (dRMSD).  In 

Table 4 we show the scattering profile scores for 1J27A, 2HUJA, 3FRRA, and 1PBVA without the 

derivative.  The difference between the curves resulting from BCL::SAXS and CRYSOL is in units 

of “experimental” standard deviations between scatting profiles (s).  In Table 5 we show the 

scattering profile score for the same proteins with the derivative included in the score. The 

difference between the curves resulting from BCL::SAXS and CRYSOL is in units of 

“experimental” standard deviations between derivatives of the scatting profiles. (ds).   In each 

case the scattering curve obtained from CRYSOL is compared to the BCL::SAXS curve with 

approximated side chain and loop coordinates.  In both of these tables, the diagonal represents 

protein self matching.  We observe that by using the dRMSD score, we can recover protein pairs 

that would otherwise be mislabeled by using the RMSD score alone. 

                                                                                                

 

 

 

 

 

 

Table 4: SAXS profile scores 

RMSD BCL::SAXS model with loop approximation 
in units of s 

 PDB ID 1J27A 2HUJA 3FRRA 1PBVA 

C
R

YS
O

L 

1J27A 0.069 0.179 0.305 0.382 

2HUJA 0.140 0.067 0.134 0.186 

3FRRA 0.221 0.127 0.078 0.097 

1PBVA 0.246 0.167 0.126 0.117 

 

 

Table 5: dRMSD SAXS profile scores 

dRMSD BCL::SAXS  model with loop approximation 
in units of ds 

 PDB ID 1J27A 2HUJA 3FRRA 1PBVA 

C
R

YS
O

L 

1J27A 0.67 1.80 3.02 3.73 

2HUJA 1.25 0.94 1.77 2.33 

3FRRA 2.36 1.94 1.12 1.20 

1PBVA 2.38 2.20 1.87 0.98 
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The derivative score accentuates small directional changes in the SAXS profile.  By doing this 

differences between the overall shapes of the two SAXS profiles under analysis are considered.  

(See Appendix IV) This properly corrects proteins that would otherwise be incorrectly identified.   
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Figure 14: SAXS profiles of 3FRR and 1PBVA.  The black curve is the scattering profile generated from the protein 
with the indicated PDB ID.  The green curve is the scattering profile generated through BCL::SAXS for the protein 
with the indicated PDB ID with approximated side chains and loop regions. 

Table 6: Stovgaard SAXS profile scores  

Stovgaard 
Score 

BCL::SAXS model with loop approximation 
in units of S 

 PDB ID 1J27A 2HUJA 3FRRA 1PBVA 
C

R
YS

O
L 

1J27A 4.81 12.19 21.32 29.81 

2HUJA 3.71 4.76 8.98 14.38 

3FRRA 5.09 4.04 4.53 8.27 

1PBVA 5.42 4.21 4.22 6.86 

 

 

Table 7: Cumulative Integral SAXS profile scores  

Cumulative 
Integral 

BCL::SAXS model with loop approximation 
in units of c 

 PDB ID 1J27A 2HUJA 3FRRA 1PBVA 

C
R

YS
O

L 

1J27A 0.462 0.445 0.469 0.623 

2HUJA 0.403 0.381 0.401 0.555 

3FRRA 0.405 0.380 0.392 0.545 

1PBVA 0.422 0.400 0.416 0.564 
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Alternative Methods to Compare SAXS profiles 

Stovgaard calculated the difference between two scattering curves with a similar 

approach [45].  The only difference is that rather than take the derivative of the functions, he 

divided by an estimated experimental error σ: 

s=

 
  

                   

     
 

 

 
   

 
 

 

(93) 

where σ is given by: 

  =          (94) 

Previously the expression: 

  =     (95) 

has been used in the literature as a realistic estimate of experimental error with   = 0.3.   

To increase the precision in the portion of the curve between q = 0.1 and 1 =0.5 Å-1, Stovgaard 

introduced a scaling factor (q+α) which is more strict at this scattering angle range with α = 0.15. 

Using this method, we measured the difference between BCL::SAXS and Crysol and compared it 

with the results reported in the Stovgaard paper.   

Table 8: Replication of Stovgaard Score.  Rg is radius of gyration, S is the Stovgaard Score, and Replicated S is the 
BCL::SAXS method scored using this method. 

PDB  ID Chain Length Rg S Replicated S 

1A28 B 249 10.39 0.300 0.173 

1A3A D 144 8.15 0.230 0.211 

1AQU A 281 10.73 0.177 0.165 

1AQZ A 142 8.48 0.208 0.183 

1ATL A 200 9.30 0.267 0.194 

1ATZ A 75 7.24 0.214 0.249 

1AUO A 218 9.34 0.137 0.204 

1BBH A 131 9.08 0.161 0.242 
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These results are significant for two reasons: 1) We successfully recreated the S score, 

and 2) In some cases BCL::SAXS outperformed the Stovgaard method using their scoring metric.  

(1A28, 1A3A, 1AQU, 1AQZ, and 1ATL).   

When we applied the Stovgaard score in our loop approximation analysis, the score was 

unable to identify the native protein.  (See Table 6)  We tested a cumulative integral score that 

sums the difference between the sums of increasingly large portions of the range.    Again, this 

method does not consider the shape of the curve in the analysis and failed to identify the native 

in three of four cases. (See Table 7)   As a general trend we found that curve morphology was a 

critical feature for profile comparison with approximated loop regions and side chains.     The 

derivative score was the only method that incorporated both morphology and curve deviation 

to correctly identify proteins from a small test set.  This is the method we used for the rest of 

the analysis. 

Accuracy of Calculated SAXS Profiles 

To validate our SAXS method we compared our results with CRYSOL [42], SAXS profiles 

were generated using BCL::SAXS and CRYSOL for proteins in our benchmark dataset of 455 

proteins.  We then scored the difference between a given protein with itself and all other 

proteins using our scoring function described in the methods section.  In figure 15, the SAXS 

comparison scores for complete models ranged from 0.138 ds (1J27A) to 0.199 ds (2HUJA).  In 

our benchmark protein set the SAXS scores for complete models ranged from 0.0357 ds (1FD3A) 

to 1.424 ds (2ZWAA).   Figure 15 depicts the SAXS scattering profiles generated from ridged 

bodies for 4 proteins: 1J27A, 2HUJA, 3FRRA, and 1PBVA.  It also depicts the effect side chains 

approximation and loop region approximations have on the overall shape of the SAXS profile.  
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Non-redundant Dataset for Protein Discrimination Benchmark 

To determine how well the SAXS score can distinguish different proteins from each 

other, we evaluated a random subset of 455 proteins with 20% identify cutoff, 1.6 Å resolution 

cutoff, and 0.25 R-factor cutoff from the PICES databank[60, 61].  These proteins can be formed 

 
Figure 15: BCL::SAXS comparison with CRYSOL for different levels of protein model approximation.  Complete is 
for complete protein models, Approximated side chains represent the first approximation with the side chain 
summed and placed at the C-beta position of the residue.  Approximated side chains and loop regions represent 
the first and second approximation with simulated loop regions. The dRMSD score is the RMSD of the derivative 
between the CRYSOL and the designated curve. 
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into a 455 x 455 matrix (207,025 pairings) where the diagonal represents a protein paired with 

itself (a true positive) and the off diagonal elements represents a protein paired with a different 

protein.  Using scattering profiles generated through CRYSOL, we computed the difference 

between the native protein and the test protein for each pairing.  If the minimum SAXS score for 

a given protein was on the diagonal for the ith row and jth column, then we correctly identified 

the protein from all other candidate proteins and classified that as a true positive.  If the 

minimum SAXS score was not on the diagonal, we classified it as a false positive.  Using receiver 

operating characteristic (ROC) curves, we plotted the false positive rate on the x axis and the 

true positive rate on the y-axis.  

 

 

 

 

 

 

 

The area under the curve (AUC) for complete protein models is 99.95%. When side 

chains are removed, the AUC is 99.62%.  The AUC for proteins without side chains and loop 

regions is 70.85%. When loop regions are approximated, the AUC is 92.64%.  There were 

207,025 total pairing evaluated in this experiment.  In all but three cases the lowest SAXS score 

was the native protein when using complete protein models for analysis.  For proteins 1YOZA 

and 3I31A the native was ranked second, while for protein 3L42A the native was ranked third. 

 
Figure 16: ROC analysis of 455 proteins from the benchmark dataset.  The linear plot is on the left, while the 
logarithmic plot is on the right. 
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SAXS dRMSD Score Analysis 

Figure 17 depicts the range of SAXS scores from our benchmark set of 455 proteins for 

complete protein models.   All of the self pairing scores had a dRMSD score below 1.5 ds, while 

non self pairing profiles had a dRMSD score ranging from 0.3 to over 13 ds.  There is a window of 

overlap between the scores for matches and non-matches below 1.5 ds.  As a loose guideline, 

based on this benchmark set, A SAXS dRMSD score above 1.5 ds indicate that the compared 

proteins are different.  A SAXS dRMSD score below 1.5 ds indicate that the scattering profiles 

are similar, with the similarity increasing as the score decreases. 

 

 

 

 

 

 

 

 

 

 

In the benchmark dataset of 455 proteins there were 207,025 different combinations.  Of these 

combinations, only 5568 have dRMSD scores below 1.5 ds.  This is a reduction of 97% of the 

 
Figure 17: Range of SAXS dRMSD scores from benchmark set.  Shown on the top left are the dRMSD scores 
computed between CRYSOL and BCL::SAXS profiles of the same protein.  The top right plot depicts the distribution 
of these scores. Shown on the bottom left are the scores between CRYSOL and BCL::SAXS profiles where the 
protein used to compute the CRYSOL curve is different from the protein used to compute the BCL::SAXS curve.  The 
bottom right depicts the distribution of these scores below a dRMSD cutoff of 1.5ds 
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models.  The distribution of the scores in the range below 1.5 ds is skewed to the left in the case 

of identical protein pairs and skewed to the right in the case of different proteins.  This explains 

why the AUC in the ROC analysis was 99.95.   Most of the erroneous protein models were above 

1.5 ds.  For the models that were inside this range, the model with the minimum ds score was 

the native in all but three cases.  This analysis shows that although multiple proteins can have 

the same SAXS profile, structurally distinct proteins can be distinguished by a SAXS profile below 

a cutoff of 1.5 ds.  

Selecting the Optimal Parabolic Height Approximation Algorithm 

Shown below are the results of the triangle and regula falsi loop approximation 

methods.   The regula falsi method has a more pronounced arc in the path between two SSEs, 

while the triangle approximation has a smaller arc in the path.  In comparison with the Native, 

we observe that the loop regions in 2HUJA are more flat that arched.   

 

 

 

 

 

 

 

 

The AUC for the triangle approximation was 92.64% and was used to on our benchmark 

protein set.  The AUC for the regula falsi approximation was 81.74%.  Although this was an 

 
Figure 18: Loop Approximation results for triangle and regula falsi methods 
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improvement over protein models with missing loop regions, the high arches in the pathway 

between SSEs negatively impacted the morphology of the SAXS profile.  We decided to use the 

triangle approximation for rapid loop building.    

Structural Similarity of Proteins with Similar SAXS Scores 

To determine if protein models with similar SAXS scores were similar in protein 

structure, MAMMOTH [62] was used to rank structural similarity between two proteins.  The 

455 x 455 matrix (207,025 pairings) was used again to score the structural similarity of a pair of 

proteins.  The diagonal represents self protein pairing. The higher the Z-score, the more similar 

the two structures are. The lower the SAXS dRMSD score, the more similar the two saxs profiles 

are.  In this analysis, a high Z-Score and a low SAXS score indicate that proteins identified by 

SAXS as similar are structurally similar.    Figure 19 shows that structurally similar proteins (high 

Mammoth Z-score) have a low SAXS score (bottom left corner).  However, while structurally 

dissimilar proteins (low Mammoth Z-score) tend to have increased SAXS scores, the observed 

range of SAXS scores widens.  As expected, structurally different proteins appear similar in a 

SAXS experiment if their overall shape is similar. 

The MAMMOTH analysis shows that proteins with very similar z-scores (structurally 

similar proteins) also have a low SAXS dRMSD score.  Importantly, the analysis shows that very 

similar structures do not have high SAXS scores.  In the middle range of the analysis, we observe 

that SAXS scores are degenerate.  Different structures can have similar SAXS scores.  This 

degeneracy is inherently due to the spherical averaging of atoms in the SAXS data collection 

process.  Because of this degeneracy SAXS cannot be used exclusively to predict protein 

structure. 
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Figure 19: Structural MAMMOTH Z-score vs. SAXS profile similarity score.  The x-axis represents the 
MAMMOTH z-score and with large values indicating structural similarity of two proteins. The y-axis 
represents the SAXS similarity score (dRMSD) with small values indicating similarity of two scattering profiles 
generated from proteins.  Panels A, B, and C correlate with their respective red dot.  Panel A depicts 3H5LA 
matched with itself. Panel B depicts 1N1FA matched with 2GPEA.  Panel C depicts 1G9GA matched with 
1A53A.  In each panel, the SAXS score is dRMSD and the MAMMOTH Z-Score is Z. 

 

 
Figure 20: RMSD100 vs. dRMSD SAXS score for single protein.  BCL::SAXS was used to score 10,000 protein 
confirmations of 3FRRA from the BCL::Fold benchmark set.  In each case the surface mesh of the native confirmation 
of 3FRRA is in shown in gray. Each model represents a different state and is identified by a red dot in the RMSD100 vs. 
SAXS dRMSD plot.  
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 In the MAMMOTH analysis (figure 19), we compared two different proteins.  Figure 20 

depicts how the SAXS dRMSD score is used to compare different topologies of the same protein.  

RMSD100 is a normalized root-mean-square distance for comparing protein structures[63].   

SAXS Restraints Incorporated into BCL::Fold during Protein Folding 

The BCL::SAXS score was added to the minimization process in BCL::Fold for 1CI6A, 

3PDYA, 1PBVA, and 1J27A.  During the assembly process of secondary structure elements, the 

SAXS score was used to penalize configurations that deviated from the experimental restraint. 

For each folding simulation, 1000 models were generated in BCL::Fold The results of four soluble 

protein examples are shown in Table 9 and visualized in figure 21. 

 

 

 

 

 

 

 

 

Figure 21 shows the RMSD100 distribution plots for our example proteins during protein 

folding with BCL::Fold.  For each protein, 1000 models were generated through BCL::Fold with 

and without SAXS restraints.  

PDB BCL::Fold Type Mean STDEV PVALUE 
Top 10% 

Enrichment 

1CI6A 
No SAXS Restraint 

9.89 2.60 

2.79 e
-24

 
3.6 

SAXS Restraint 2.22 1.27 0.7 

1PBVA 
No SAXS Restraint 11.39 0.48 

2.13 e
-9

 
1.4 

SAXS Restraint 10.70 0.48 1.4 

3PDYA 
No SAXS Restraint 14.56 1.20 

3.10 e
-3

 
4.8 

SAXS Restraint 13.71 0.90 1.4 

1J27A 
No SAXS Restraint 9.11 0.69 

4.06 e
-1

 
0.9 

SAXS Restraint 9.08 0.96 0.9 

 

Table 9: Mean RMSD100 score and standard deviation for top 5% models folded in 
BCL::Fold with and without SAXS restraints.  The PVALUE is the probability that the mean 
shift is due to chance. The top 10% enrichment is given by the intersection of the set of 
top 10% models ranked by RMSD100 and the set of top 10% models ranked by SAXS 
dRMSD score. 
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Figure 21: Folding results for 1000 models generated with and without using SAXS as a weighted term in 

energy function of BCL::Fold.  The proteins 1CL6A, 1PBVA, 3PDYA and 1J17A are shown. (Panels A, B, C, and D 

respectively) On the left the distribution plots depict the difference between folding with and without SAXS 

restraints.  On the right the SAXS score vs. RMSD100 plots are shown.   In these plots, the native protein (red 

dot) was obtained from the PDB.  The side chain and loop region coordinates were removed and then 

approximated through the BCL::SAXS algorithm.   
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The top 10% enrichments were computed by counting the number of models given by 

the intersection of set of top 100 models ranked by RMSD100 and the set of top 100 models 

ranked by SAXS dRMSD score and dividing by ten.  A perfect enrichment score would be ten. An 

enrichment value of one means the dRMSD score did not help nor hinder the ranking process.  A 

score below one indicates that the dRMSD score negatively affected the ranking, while a score 

above one indicates that the dRMSD score positively affected the protein ranking.  The dRMSD 

vs. RMSD100 plots are shown on the right side of figure 21.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

CHAPTER VI 

 

DISCUSSION 

 

We have implemented an innovative technique to compute SAXS profiles from atomic 

coordinates.  In our approach we did not make approximations to the Debye formula, rather we 

used GPU acceleration to handle the double summation of all atoms.   To our knowledge this is 

the first time GPU acceleration has been used in the Debye formula to compute SAXS profiles.  

We were able to consistently replicate the scattering profiles generated by CRYSOL.  By using 

the Debye formula we obtained direct control of the scattering profile calculation.  This provided 

the opportunity to rapidly approximate the side-chain and loop region positions of a given 

protein model and compute a scattering profile.   The deviation between this scattering profile 

and the scattering profile generated by CRYSOL was used as a restraint in BCL::Fold.   

Because of the low resolution of the SAXS method, it cannot be used exclusively to 

identify the native protein configuration from a set of similar protein configurations.  We have 

shown however, that although the information content in the SAXS profile is limited, it can be 

used to filter erroneous protein models early in the prediction process thus focusing 

computation time on models that fit the experimental data.   

For this project to be successful, there were some key challenges that had to be solved.  

First, we had to find a method to compute SAXS profiles from atomic coordinates.  Second, we 

had to have a scoring function to compare the similarity of two SAXS profiles.  Third, we had to 

develop a method to approximate models with missing side chains and missing loop regions.  

Forth, we had to benchmark our results.  Once we could generate SAXS profiles from complete 
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protein models, it was clear how important the shape of the SAXS profile is when comparing two 

profiles.  When we summed the side chain coordinates to the C-  position of its respective 

residue and compared the SAXS profile generated with this approximation to the profile 

generated through CRYSOL, the profile generated from the approximation was vertically offset 

from the profile generated from CRYSOL.  The overall shape of the curve remained the same.   

To account for this behavior, we computed the first derivative of the profiles and then 

computed the similarity score, dRMSD, between the derivatives of the SAXS profiles.  By using 

the derivative score, we reduced the amount of false positives obtained during our analysis with 

our benchmark protein set.  

 Using this scoring metric, BCL::SAXS was 99.95% accurate in picking the native protein 

from a set of other proteins.  With the side chains approximated, BCL::SAXS was 99.62% 

accurate in picking the native protein from a set of other proteins.    With the loop regions 

removed, the accuracy dropped from 99.62% to 70.85%. This result shows that loop regions play 

an important role in protein topology.  Using our loop approximation algorithm, the accuracy 

increased to 92.64%.  This result shows that having an approximate estimate of a protein 

location can have significant impact on the accuracy of SAXS scattering profiles generated from 

atomic coordinates. 

The derivation of the loop approximation method was a learning process.  We first 

attempted the midpoint approximation, followed by the linear approximation, and then used 

the curvilinear approximation.  Using the curvilinear approximation we had to derive the 

normalization factor N.  Our first approach to calculate N was the regula falsi optimization 

protocol with parabolic arc length computations.  This was computationally expensive and 

mathematically complex.  After successfully implementing the method we noticed that loop 
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regions between SSEs are not large parabolic arcs between SSEs (see figure 18), but rather they 

curve and weave around the SSEs.  The precision gained by the optimization protocol was 

unnecessary. Substituting the entire protocol with one line of code (the triangular 

approximation)   increased the speed and accuracy of the calculation.  This experience reminded 

me of the words of Dr. Richard Hamming; “The purpose of computing is insight, not numbers.”   

There are two classification levels of protein structure that we considered in this work.  

The first level is how the SAXS score can be used to distinguish different proteins from one 

another.  The second level is how the SAXS score can be used to distinguish different 

conformations of the same protein.  The MAMMOTH analysis (figure 19) depicts different 

proteins.  This analysis highlights the point that structurally similar proteins have a low saxs 

scores (sample A), structurally different proteins can have low saxs scores (sample B) and 

structurally different proteins can have high saxs scores (sample C).  The trend is that two 

proteins that are structurally similar do not have a high saxs score.  If two proteins are 

structurally similar then they will have a low saxs score.  The opposite is not true.  If two 

proteins have a low saxs score, that does not mean they are structurally similar.   

Figure 20 depicts different confirmations of the same protein.  Sample B and C have 

similar SAXS scores with the native, but have RMSD value of 8.75 and 16.77 respectively.  This 

enforces the observation that if two proteins have a low SAXS score, that does not mean they 

are structurally similar.  In fact, we observe many different topologies with low SAXS scores but 

large RMSD100 differences. 

  With these observations in mind, we used SAXS restraints during protein folding.  

Figure 21 shows the results two different folding runs of four proteins with 1000 models 

generated for each protein in BCL::Fold.  In the first folding run, BCL::SAXS was used to rank the 
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1000 models generated by BCL::Fold.  We observe enrichment all cases except for 1J27A.  In this 

case the enrichment value was 0.9.  In the second case, we used SAXS as a term in the 

knowledge based scoring function of BCL::Fold.  By doing this we clearly observed that low SAXS 

scores do not imply structural similarity.  There was a statistically significant improvement of the 

mean RMSD100 values in the top 5% of the models, but no models were below 8Å cutoff.   

These results show that SAXS can be very useful to score models after they have been generated 

but may not be the best choice for generating initial protein models.  This may in fact restrict 

our ability to effectively sample the energy landscape of a given protein by prematurely forcing 

models to adhere to SAXS restraints.      

Computation of SAXS profiles can be used to validate high-resolution models in solution 

and to identify biologically active protein conformations.  SAXS can also be used to characterize 

complexes whose components have known atomic structures.  These components act as 

building blocks that can be arranged to form complexes where the scattering from the complex 

fits the experimental data.  Investigators interested in large complexes can use BCL::SAXS to 

generate computed SAXS profiles for permutations of a given complex and identify the 

experimental configuration.   

Investigators interested in protein docking studies can use BCL::SAXS to generate 

computed SAXS profiles of receptor-ligand complexes to identify likely receptor-ligand 

configurations and compare their proposed models with experimental data to identify the 

correct configuration of the system. 

Furthermore, SAXS is another experimental technique that can now be used by 

BCL::Fold to aid in protein structure prediction.  Although, SAXS cannot unambiguously identify 

the correct protein topology from a group of structures of similar shape, it can be used to filter 
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away erroneous models, thus focusing further computation on more feasible backbone 

topologies.   Small globular proteins are not amenable to this approach in protein structure 

prediction.  Interestingly, the SAXS experimental technique seems to be suited best for large, 

highly variable protein topologies. - Opposite that of X-ray crystallography and NMR.  SAXS 

provides a means of studying assembly and large-scale conformational changes.  Further work 

must be done to benchmark SAXS with large variable proteins. 
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CHAPTER VI 

 

CONCLUSION 

Summary 

The SAXS profile simulated from protein models in silico can be used to distinguish 

different proteins from each other, but cannot be used exclusively to distinguish different 

permutations of the same protein topology.  Despite this limitation, SAXS can be used to filter 

protein models that are very different from the native from further analysis during protein 

structure prediction saving time, money, and computational resources.  BCL::SAXS has potential 

use for the scientific community to investigate protein-protein confirmations, and quaternary 

protein structure orientation.  These SAXS profiles can provide additional structural information 

and can be very useful when combined with NMR or EPR.      

We showed that side chains do not dramatically change shape of the overall scattering 

profile obtained from a given protein and that they can be approximated as a point at the C  

position of the peptide backbone.  We showed that the loop regions between secondary 

structure elements are critical to the overall morphology of the SAXS profile and that they can 

be coarsely approximated to improve protein identification.      We were able to identify the 

correct fold for 1CI6A, but as the complexity of the protein increased, the number of degenerate 

confirmations increased.   

Study Limitations 

 Because of the lack of experimental SAXS data, CRYSOL was used to simulate 

experimental SAXS curves.  This work must be benchmarked with experimental SAXS data. 
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Future Work 

Further work should be done to extend this analysis to larger multimeric protein 

complexes and membrane proteins.  The literature shows that SAXS has been successfully 

combined with NMR to produce more native-like protein structures as opposed to using either 

method alone.  BCL::SAXS should be combined with other experimental methods such as NMR 

and EPR to incorporate as many sparse experimental restraints as possible for protein structure 

prediction in BCL::Fold. 
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CHAPTER VII 

 

APPENDIX I – 1ENH Cα- Cα spacing: 3.8Å Average  

 

Atom 
Num Atom Residue 

Residue 
Num X Y Z 

delta 
X 

delta 
Y 

delta 
Z 

Distance 
(Spacing) 

2 CA ARG 3 3.22 44.97 51.87 0.00 0.00 0.00 0.00 

13 CA PRO 4 0.60 47.33 50.35 2.62 -2.36 1.52 3.84 

20 CA ARG 5 -0.88 46.16 47.07 1.48 1.17 3.28 3.78 

31 CA THR 6 0.73 47.49 43.90 -1.61 -1.33 3.17 3.79 

38 CA ALA 7 -1.24 48.84 40.93 1.97 -1.36 2.98 3.82 

43 CA PHE 8 -1.94 46.20 38.32 0.70 2.65 2.61 3.78 

54 CA SER 9 -2.13 46.94 34.66 0.19 -0.74 3.66 3.74 

60 CA SER 10 -5.24 46.24 32.55 3.11 0.71 2.11 3.82 

66 CA GLU 11 -3.39 43.46 30.86 -1.85 2.78 1.69 3.74 

75 CA GLN 12 -2.14 42.02 34.15 -1.25 1.44 -3.29 3.80 

84 CA LEU 13 -5.65 42.06 35.60 3.51 -0.03 -1.44 3.80 

92 CA ALA 14 -7.06 40.39 32.48 1.41 1.67 3.12 3.80 

97 CA ARG 15 -4.55 37.61 32.78 -2.51 2.78 -0.30 3.76 

108 CA LEU 16 -5.17 37.25 36.53 0.61 0.37 -3.75 3.82 

116 CA LYS 17 -8.92 36.99 36.11 3.75 0.25 0.42 3.79 

125 CA ARG 18 -8.54 34.40 33.41 -0.39 2.59 2.70 3.76 

136 CA GLU 19 -6.18 32.33 35.60 -2.36 2.07 -2.20 3.83 

145 CA PHE 20 -8.55 32.67 38.56 2.37 -0.34 -2.96 3.81 

156 CA ASN 21 -11.34 31.34 36.36 2.80 1.33 2.20 3.80 

164 CA GLU 22 -9.25 28.29 35.62 -2.10 3.05 0.74 3.77 

173 CA ASN 23 -8.22 27.49 39.18 -1.03 0.80 -3.56 3.79 

181 CA ARG 24 -8.78 29.76 42.10 0.56 -2.27 -2.92 3.74 

192 CA TYR 25 -6.13 28.22 44.33 -2.65 1.55 -2.23 3.79 

204 CA LEU 26 -2.54 28.89 43.45 -3.58 -0.67 0.88 3.75 

212 CA THR 27 0.23 26.33 43.84 -2.78 2.56 -0.39 3.80 

219 CA GLU 28 3.67 27.79 44.68 -3.44 -1.46 -0.85 3.83 

228 CA ARG 29 4.98 26.73 41.31 -1.31 1.06 3.37 3.76 

239 CA ARG 30 2.15 28.37 39.34 2.83 -1.64 1.98 3.82 

250 CA ARG 31 2.53 31.53 41.41 -0.38 -3.16 -2.08 3.80 

261 CA GLN 32 6.21 31.54 40.48 -3.68 -0.01 0.94 3.80 

270 CA GLN 33 5.47 31.02 36.80 0.74 0.52 3.68 3.79 

279 CA LEU 34 2.82 33.74 36.92 2.65 -2.72 -0.12 3.80 

287 CA SER 35 5.27 36.08 38.61 -2.45 -2.35 -1.69 3.79 
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293 CA SER 36 7.79 35.51 35.74 -2.52 0.57 2.87 3.86 

299 CA GLU 37 5.23 35.94 33.03 2.56 -0.43 2.71 3.75 

308 CA LEU 38 3.46 38.99 34.43 1.77 -3.05 -1.40 3.79 

316 CA GLY 39 6.34 40.90 35.99 -2.88 -1.91 -1.56 3.79 

320 CA LEU 40 4.66 41.00 39.41 1.68 -0.10 -3.42 3.81 

328 CA ASN 41 6.08 39.98 42.80 -1.42 1.02 -3.38 3.81 

336 CA GLU 42 4.80 36.52 43.85 1.27 3.47 -1.06 3.84 

345 CA ALA 43 3.51 38.18 46.98 1.29 -1.66 -3.13 3.77 

350 CA GLN 44 1.29 40.51 45.00 2.22 -2.33 1.99 3.78 

359 CA ILE 45 -0.29 37.60 43.14 1.58 2.91 1.86 3.80 

367 CA LYS 46 -0.93 35.67 46.35 0.64 1.93 -3.21 3.80 

376 CA ILE 47 -2.74 38.63 47.93 1.81 -2.97 -1.59 3.82 

384 CA TRP 48 -4.69 39.28 44.74 1.95 -0.64 3.19 3.80 

398 CA PHE 49 -5.83 35.61 44.76 1.13 3.67 -0.02 3.84 

409 CA GLN 50 -6.77 35.65 48.49 0.94 -0.04 -3.73 3.85 

418 CA ASN 51 -8.79 38.85 48.15 2.02 -3.21 0.34 3.80 

426 CA LYS 52 -10.47 37.65 45.03 1.69 1.21 3.13 3.75 

435 CA ARG 53 -11.66 34.48 46.81 1.19 3.17 -1.79 3.83 

446 CA ALA 54 -12.90 36.57 49.72 1.24 -2.09 -2.91 3.79 

451 CA LYS 55 -14.94 38.86 47.44 2.03 -2.29 2.28 3.82 

460 CA ILE 56 -16.25 35.74 45.71 1.32 3.11 1.73 3.80 
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APPENDIX II – SAXS profiles before and after the Debye formula correction 
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APPENDIX III – 1BBHA BCL::SAXS profile with Midpoint Loop Approximation  
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APPENDIX IV- Logarithmic and Derivative SAXS Profiles of 3FRRA Topologies 
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APPENDIX V –BCL::SAXS Benchmark set of 455 proteins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDB ID 
1A53A 1GWYA 1MG7A 1RYIA 1WC2A 2BJFA 2GAGB 2OPCA 2VQPA 

1AH7A 1H03P 1MK4A 1RYPL 1WHIA 2BKMA 2GDMA 2OV0A 2VTWA 

1AOLA 1H32A 1MTPA 1S2WA 1WLZA 2BMOA 2GIYA 2OYAA 2VXTI 

1B0NB 1H97A 1MUWA 1SA3A 1WOJA 2BOUA 2GPEA 2P14A 2W1JA 

1B8ZA 1HE1A 1MXRA 1SFPA 1WRAA 2BURA 2GUDA 2P51A 2W3QA 

1BKRA 1HQ0A 1N1FA 1SKZA 1WUIS 2C0HA 2GYQA 2P9XA 2W5NA 

1BX7A 1HXNA 1N5UA 1SR8A 1WWRA 2C61A 2H2ZA 2PBIB 2W83C 

1C1YB 1I0RA 1N7SD 1SVBA 1WZUA 2C8MA 2H8EA 2PGNA 2WB0X 

1C7SA 1I2KA 1NFPA 1SZHA 1X6OA 2CBZA 2HBAA 2PMUA 2WDSA 

1CEOA 1I71A 1NKDA 1T0TV 1XAKA 2CE2X 2HEUA 2PQ8A 2WFWA 

1COZA 1IG0A 1NLSA 1T3YA 1XE7A 2CI1A 2HIMA 2PTHA 2WI8A 

1CV8A 1IM5A 1NPYA 1T6SA 1XGKA 2CKKA 2HLYA 2PVBA 2WKJA 

1D0CA 1ISUA 1NTHA 1T9IA 1XKRA 2CNQA 2HQSC 2Q0SA 2WNHA 

1D2VA 1J0HA 1NWZA 1TFEA 1XOVA 2CVEA 2HU9A 2Q5CA 2WQIA 

1DC1A 1J2RA 1O26A 1TIGA 1XU1R 2D0OA 2HYKA 2Q9FA 2WUXA 

1DG6A 1JB7B 1O97C 1TP6A 1XZZA 2D5BA 2I53A 2QDXA 2WY4A 

1DJ8A 1JEKA 1OD3A 1TT8A 1Y66A 2DC4A 2I8TA 2QFEA 2WZOA 

1DQPA 1JH6A 1OGDA 1TVXA 1Y96B 2DEJA 2IDLA 2QISA 2X5XA 

1DY5A 1JIXA 1OIHA 1U07A 1YD9A 2DOKA 2II2A 2QKPA 2YSKA 

1E4FT 1JMVA 1OOEA 1U5KA 1YGTA 2DQWA 2IMFA 2QQ9A 2YXOA 

1EAYC 1JQ5A 1OSYA 1U7PA 1YLKA 2DTJA 2IPIA 2QTWA 2Z0TA 

1EF8A 1JX6A 1OZ2A 1UCRA 1YOZA 2DYJA 2IW1A 2QWOB 2Z3QA 

1ELKA 1JYOE 1P5VA 1UG6A 1YT3A 2E2DC 2IY2A 2R25A 2Z6OA 

1EUVA 1K3YA 1PBYC 1UJPA 1YZ1A 2E56A 2J1VA 2R6JA 2Z98A 

1EXTA 1K8KC 1PJXA 1UPQA 1Z21A 2E85A 2J6LA 2RB8A 2ZD7A 

1F00I 1KA1A 1PSRA 1USGA 1Z6OA 2EBNA 2J9OA 2REEA 2ZFYA 

1F3UA 1KMJA 1Q0PA 1UUYA 1ZC3B 2EHZA 2JDID 2RINA 2ZK9X 

1F86A 1KPTA 1Q6OA 1UWKA 1ZHXA 2ENDA 2JE6I 2RKLA 2ZPTX 

1FD3A 1KU3A 1QAZA 1V2BA 1ZL0A 2ET1A 2JGPA 2SPCA 2ZSIB 

1FM0D 1KYFA 1QHDA 1V5VA 1ZUUA 2F01A 2JLQA 2UUYB 2ZWAA 

1FS7A 1L3KA 1QNRA 1V84A 1ZZKA 2F5GA 2NNUA 2UXQA 2ZYZB 

1FYEA 1L7LA 1QQP4 1VBWA 2A2KA 2FAOA 2NRRA 2UZ1A 3A1FA 

1G4YB 1LFWA 1QW9A 1VE2A 2A7BA 2FCWA 2NVHA 2V33A 3A6FA 

1G6XA 1LM5A 1R17A 1VHWA 2AEBA 2FFUA 2NX4A 2V7FA 3ABDX 

1G9GA 1LQTA 1R6JA 1VLSA 2AKZA 2FIPA 2O0QA 2V9KA 3B47A 

1GK9B 1LTZA 1R8SA 1VSRA 2ARCA 2FMAA 2O6FA 2VCHA 3B6HA 

1GO3F 1LZLA 1RFYA 1W07A 2AXWA 2FPHX 2O90A 2VFRA 3BBBA 

1GS5A 1M1NB 1RK6A 1W4XA 2B3GA 2FTXB 2ODFA 2VHKA 3BFOA 

1GU2A 1M4LA 1RSSA 1W6SB 2B9DA 2FYGA 2OH5A 2VLQA 3BHWA 

1GVDA 1M9ZA 1RW7A 1WA5C 2BCMA 2G40A 2OKMA 2VOVA 3BL9A 

3BNEA 3CJKB 3DR9A 3EW8A 3FVHA 3H0UA 3I31A 3K8UA 3LKEA 

3BONA 3CL6A 3DVOA 3F2EA 3FXQA 3H5LA 3I84A 3KF6B 3LLUA 

3BQAA 3CP3A 3E1RA 3F6GA 3G2BA 3H79A 3IDBB 3KJDA 3LQSA 

3BSOA 3CT5A 3E4WA 3F8MA 3G4EA 3H8TA 3IISM 3KQ5A 3LW3A 

3BWUD 3CYPB 3E8TA 3FB9A 3G9MA 3HFWA 3IM3A 3KUPA 3M1IB 

3C1RA 3D2QA 3ECBB 3FF5A 3GBGA 3HKWA 3IP4C 3KZDA 3M7VA 

3C5NA 3D3MA 3EFYA 3FHDA 3GG7A 3HO6A 3ITVA 3L42A 3MEAA 

3C7TA 3D85C 3EKIA 3FL2A 3GJ8B 3HR6A 3JTZA 3L60A 3MMSA 

3C9HA 3DANA 3EMFA 3FO8D 3GMXA 3HUPA 3JXOA 3LATA 3MWCA 

3CBZA 3DGPA 3EOJA 3FQMA 3GP4A 3HY0A 3K2MC 3LHQA 3VUBA 

3CHJA 3DKSA 3ETJA 3FSIA 3GWAA     
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APPENDIX VI – Loop and Normalization Factor Optimization with Benchmark Set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No Loop Approximation 

 

Linear Path Approximation 
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Curvilinear Path with Normalization Factor of 0 

 

Curvilinear Path with Regula Falsi Approximation 
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Curvilinear Path with Triangular Approximation 
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APPENDIX VI –BCL::SAXS Commandlines 

Comparing SAXS profiles 

The BCL application, “SimulateSaxsData” is used to create SAXS profiles from given pdb file and 

compare the profile generated with the experimental SAXS profile.  There are three levels of 

approximation.  The first level is complete protein models without any missing regions.  A 

sample command line is: 

./bcl.exe SimulateSaxsData ‘SaxsDebye(consider loops=0, analytic=0)’ –pdb 

1ENH.pdb –saxs_input_format crysol –exp_data 1ENH00.int –output_file 1ENH.data 

–aaclass AAComplete –rmsd   

The command line for approximating side chains is: 

./bcl.exe SimulateSaxsData ‘SaxsDebye(consider loops=0, analytic=0)’ –pdb 

1ENH.pdb –saxs_input_format crysol –exp_data 1ENH00.int –output_file 1ENH.data 

–aaclass AABackBone –rmsd   

The command line for approximating both side chains and loop regions is: 

./bcl.exe SimulateSaxsData ‘SaxsDebye(consider loops=1, analytic=0)’ –pdb 

1ENH.pdb –saxs_input_format crysol –exp_data 1ENH00.int –output_file 1ENH.data 

–aaclass AABackBone –rmsd –min_sse_size 5 3 999   

These will create a SAXS profile for protein 1ENH and compare the protein with the SAXS profile 

generated through CRYSOL for the desired approximation level.  The “input” folder must contain 

1ENH.pdb and 1ENH00.int.   

BCL::Fold Availability 

All components of BCL::Fold, including scoring, sampling, and clustering methods are 

implemented as part of the BioChemical Library (BCL) that is currently being developed in the 

Meiler laboratory (www.meilerlab.org). BCL::Fold is freely available for academic use along with 

several other components of the BCL library. 

 

 

 

 

 

 

http://www.meilerlab.org/
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