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CHAPTER I 

 

GENERAL INTRODUCTION 

 

Naked family members (Drosophila Naked Cuticle and mammalian Naked1 and 

Naked2) have been identified as inducible antagonists of canonical Wnt signaling. We 

previously reported that Naked2, but not Naked1, interacts with the cytoplasmic tail of 

transforming growth factor α (TGFα), thereby coating TGFα-containing exocytic 

vesicles and directing these vesicles to the basolateral corner of polarized epithelial cells. 

We have designated Naked2 a cargo recognition and targeting (CaRT) protein required 

for TGFα basolateral cell surface delivery. Despite the importance of its role in both Wnt 

signaling and TGFα trafficking, the regulation of Naked2 has not been characterized. 

Moreover, in vivo roles for Naked2 in these biological processes are largely unknown. To 

address these deficiencies, I have examined the regulation of Naked2 expression in the 

context of canonical Wnt signaling and epidermal growth factor receptor (EGFR) 

signaling, and I have generated a targeted conditional disruption of Naked2 in the mouse.  



Part I: Human colorectal cancer 

 At least 50% of individuals within Western society will develop a colorectal tumor 

by age 70. Although only one in 10 benign adenomas progress to malignancy, colorectal 

cancer remains the second leading cause of cancer deaths in the United States (Parker, 

Tong et al. 1996) (American Cancer Society Cancer Statistics, 2006). Colorectal cancer 

results from an accumulation of genetic and epigenetic events that develop over decades 

(Vogelstein, Fearon et al. 1988). As many as 15% of colorectal cancers may be hereditary; 

these are best exemplified by Familial Adenomatous Polyposis (FAP) and Hereditary 

Nonpolyposis Colorectal Cancer (HNPCC) (Kinzler and Vogelstein 1996). Individuals 

with FAP bear an inherited mutation in the gatekeeper adenomatous polyposis coli (APC) 

gene and develop hundreds of benign adenomatous polyps in early adulthood with 

somatic loss of the second allele in the involved tissue. Over time, a fraction of these 

polyps progress to carcinomas, and colon cancer develops in almost all patients by age 40 

if prophylactic colectomy is not performed. Patients with FAP are also at increased risk 

for duodenal ampullary carcinoma, gastric carcinoma, thyroid cancer and CNS tumors. In 

contrast, HNPCC patients carry a germline mutation in one of the DNA mismatch repair 

genes, and with somatic inactivation of the second allele of the affected gene, there is 

accelerated progression to neoplasia in the involved tissue. Patients with these germline 

defects in DNA mismatch repair are also at increased risk for other extracolonic tumors 

as well, including endometrial cancer, ovarian cancer, gastric cancer and cancers of the 

renal pelvis or ureter. Although the majority of colorectal cancers arise from somatic 



events, many of the genes affected in hereditary colorectal cancer are also altered in 

sporadic colorectal cancer. For example, approximately 80% of sporadic colorectal 

cancers exhibit loss of functional APC.  

 Colorectal cancer refers to cancers of the colon and rectum, the terminal 6 to 7 feet of 

the digestive tract. The colonic mucosa consists of large numbers (~107) of crypts that are 

invaginations of the flat surface epithelium (Fig. 1.1). The colon is a dynamic, 

self-renewing epithelium. It is thought that a small number of stem cells occupy the 

bottom of the crypt with nearby, rapidly dividing transient amplifying cells that cease to 

proliferate and then differentiate as they migrate up the crypt. As the differentiated cells 

reach the luminal surface, they may undergo apoptosis before being sloughed into the 

lumen. In humans, the life span of an individual colonic epithelial cell is less than a week. 

Each day, about 1010 dead cells are shed by the colon. This loss is compensated for by the 

ordered migration of the rapidly dividing transient amplifying cells. Therefore, 

homeostasis of the colonic epithelium is maintained by the perpetual upward movement 

of a contiguous two-dimensional sheet of epithelial cells. This large-scale self-renewal of 

epithelial cells not only ensures the integrity of colon mucosa, but it also presents ample 

opportunities for the acquisition of somatic mutations that can occur during normal DNA 

replication and chromosome segregation. In addition to mutations that affect cellular 

proliferation and viability, other events impair migration so that initiated cells are 

retained, enabling accumulation of additional events that are required for a fully 

developed carcinoma.  



Figure 1.1 Tissue anatomy of the colonic epithelium. Recent data suggests that Lgr5 
marks colonic stem cells, and 2-4 of these non-quiescent cells reside at the base of each 
crypt (Barker, 2007). Progenitor/transient amplifying cells (light blue) occupy the bottom 
one-third of the crypt. Differentiated cells (green) populate the remainder of the crypt and 
the flat surface epithelium. As the differentiated cells reach the luminal surface, they may 
undergo apoptosis before being sloughed into the lumen (Adapted from Reya & Clevers, 
2005).

Differentiation
Cell cycle arrest
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Epithelial cells do not exist in a vacuum. Each crypt is encased in a single layer of 

pericryptal fibroblasts. These cells also migrate from the crypt base to the cell surface, 

albeit at a much slower rate than their epithelial counterparts. The stroma also contains 

additional cellular elements such as endothelial cells and a number of different types of 

inflammatory cells. It is increasingly recognized that these non-epithelial elements may 

contribute to the neoplastic process (Bosman, de Bruine et al. 1993; Martin, Pujuguet et 

al. 1996; Cutler, Graves-Deal et al. 2003).    

 The etiology of colorectal cancer has been extensively studied over the past twenty 

years (Fig. 1.2). The initiating event in most colorectal cancers is an activating mutation 

in the canonical Wnt signaling pathway. Some 85% of all sporadic and hereditary 

colorectal tumors display loss-of-function mutation in the APC gene (Kinzler and 

Vogelstein 1996), a key negative regulator of Wnt signaling. Activating mutations in a 

Wnt agonist, β-catenin, are found in half of the remaining cases. In the small number of 

cases in which mutations in APC and β-catenin are not detected, it is likely that other 

components of canonical Wnt signaling are dysfunctional. In any case, dysregulated 

canonical Wnt signaling results in an expansion of the proliferating crypt compartment 

that eventually leads to an abnormal tissue architecture, known as an adenoma or 

adenomatous polyp. This step is thought to be the rate-limiting event in colorectal 

tumorigenesis because of the low somatic mutation rate in normal epithelial cells that is 

required for the loss of the wild-type APC allele in FAP patients. In sporadic colon 

cancer, it takes an even longer period of time to accumulate mutations in both APC 
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alleles or in other Wnt component genes to initiate tumors. This coincides with the classic 

“two-hit” model proposed by Knudson (Knudson 1993).  

 Adenomas are benign tumors, and only a small fraction of them progress to larger 

adenomas and carcinomas, which require acquisition of further genetic alterations (Fig. 

1.2). Oncogenic activation of one K-Ras allele is detected in approximately 50% of 

human colorectal cancers. Although it is not generally thought to initiate tumors by itself 

(Haigis, in press) (Janssen, el-Marjou et al. 2002; Janssen, Alberici et al. 2006), mutant 

K-Ras appears to contribute to the transition from moderate to late adenomas (Lamlum, 

Papadopoulou et al. 2000). In late adenomas, mutations in the type 2 TGF-β receptor are 

detected (Grady, Rajput et al. 1998). TGF-β ligands and receptors are normally expressed 

in differentiated cells to inhibit proliferation (Polyak 1996; Oshima, Oshima et al. 1997). 

In addition to mutations in type 2 TGF-β receptors, loss of function mutations in Smad4 

and Smad2, key transducers of TGF-β signaling, have also been found in a small but 

significant fraction of colorectal cancers (Moskaluk and Kern 1996; Riggins, 

Thiagalingam et al. 1996). Compound heterozygous mice, carrying inactivating 

mutations in both APC and Smad4 alleles, develop histologically advanced, invasive 

malignant intestinal tumors (Takaku, Oshima et al. 1998). These studies suggest that loss 

of responsiveness to TGF-β signaling confers growth advantages and may contribute to 

the progression from adenomas to malignant tumors. However, during the late stages of 

colorectal carcinogenesis, TGF-β promotes tumor progression (Xu and Pasche 2007). 

Moreover, loss of function mutations in the p53 tumor suppressor gene are also a 



common late event in colorectal carcinogenesis (Kinzler and Vogelstein 1996). In APC 

mutant mice, p53 deficiency enhances the multiplicity and invasiveness of intestinal 

tumors (Halberg, Katzung et al. 2000), identifying an important role for wild-type p53 in 

suppressing colorectal tumor progression.  

 EGFR signaling also contributes to the pathogenesis of colorectal neoplasia (Fig. 1.2). 

EGFR is a transmembrane receptor tyrosine kinase member of the ErbB family that 

transduces intracellular signals through various pathways, such as Ras-MAPK and 

PI3K-AKT cascades. Activation of MAPK leads to increased activity of Elk1 and c-fos 

transcription factors that may induce expression of target genes, such as cyclin D, and 

prime the cell for cell cycle progression and enhanced proliferation (Prenzel, Fischer et al. 

2001). On the other hand, EGFR activation promotes tumor cell survival by inhibiting 

apoptosis, and this effect has been shown to be mediated by PI3K-AKT signaling cascade 

and may involve induction of NF-κB signaling. Moreover, EGFR signaling also 

contributes to tumor invasiveness and metastasis. EGFR ligands, TGFα and EGF, 

upregulate the expression of vascular endothelial growth factor (VEGF) and induce 

angiogenesis in tumor cells (Raymond, Faivre et al. 2000). Activated EGFR also 

influences cell-cell adhesion by modulating the interaction of E-cadherin and the actin 

cytoskeleton (Hazan and Norton 1998; Prenzel, Fischer et al. 2001). Cell motility is also 

promoted by EGFR tyrosine kinase through activation or upregulation of matrix 

metalloproteinases (Khazaie, Schirrmacher et al. 1993; Woodburn 1999; Ellerbroek, 

Halbleib et al. 2001).  



The role of EGFR signaling in the early events in intestinal neoplasia has been 

examined genetically by introducing the hypomorphic Egfrwa2 allele into the ApcMin 

mouse model of FAP (Roberts, Min et al. 2002). Homozygous Egfrwa2; ApcMin mice 

exhibited a 90% reduction in the number of macroscopic intestinal tumors 

(macroadenomas) at 3 months of age compared to Egfr wild-type ApcMin mice. However, 

there were an equal number of microadenomas (defined microscopically as 5 or fewer 

dysplastic crypts or crypts with nuclear β−catenin) in the two groups at one month of age. 

Thus, there was no difference in the number of initiated events. However, EGFR 

signaling was needed for the initiated tumors to “establish” themselves. The lack of any 

differences in proliferative indices in the microadenomas between the two groups 

suggests that EGFR signaling may confer an anti-apoptotic effect in the establishment 

phase of intestinal tumorigenesis. Macroadenomas that arose in homozygous Egfrwa2; 

ApcMin mice did not differ in size and histology from those arising in Egfr wild-type 

ApcMin mice. In a small cohort followed over an additional 9 months, polyp progression 

in the two groups was indistinguishable by these two parameters. In separate experiments 

using conventional nude mouse xenografts, an irreversible EGFR tyrosine kinase 

inhibitor reduced the growth of two human colorectal cancer cell lines, HCA-7 and 

HCT-116 (Roberts, Min et al. 2002). Thus, as in Drosophila eye development (Freeman 

and Bienz 2001; Freeman 2002; Brown, Kerr et al. 2007), there appears to be an iterative 

use of EGFR signaling in intestinal neoplasia.   

 EGFR has emerged as a promising therapeutic target in colorectal cancer. The 



recombinant, chimeric, IgG1 antibody cetuximab has been shown to have consistent 

clinical activity as a monotherapy in 10% of patients with chemotherapy-resistant 

metastatic colorectal cancer (Costa, Sander et al. 2004; Cunningham, Humblet et al. 

2004). However, no responses were observed in 115 metastatic colorectal cancer patients 

treated in a clinical trial with two doses of gefitinib, a reversible tyrosine kinase inhibitor 

(Rothenberg, LaFleur et al. 2005). Nevertheless, a 46% response rate has been observed 

in a small group of patients with advanced colorectal cancer treated with combined 

cetuximab and gefitnib (Merchant, in press). The Coffey lab championed the notion that 

EGFR axis may be a tractable therapeutic target in colorectal cancer. The EGFR axis is 

defined as the proximal events associated with activation of the EGFR and include cell 

surface EGFR ligand cleavage, ligand uptake by receptor and EGFR tyrosine kinase 

phosphorylation and activation. The Coffey lab has shown recently in vitro that combined 

pharmacological blockade at each of these steps results in cooperative growth inhibition 

(Merchant, Voskresensky et al. 2008). 

 Taken together, human colorectal cancer is a disease caused by multiple genetic 

alterations in colonic epithelial cells (Fig. 1.2). It involves extremely complicated, often 

convergent, signaling networks that remain poorly understood. However, the prevailing 

model can be simply stated: deregulation of canonical Wnt signaling initiates formation 

of benign tumors, followed by a further acquisition of mutations in key components of 

EGFR, TGF-β and p53 signaling pathways that promote malignant tumor progression 

and metastasis. It appears that c-MYC is a central node in the pathogenesis of colorectal 



cancer (Sansom, Meniel et al. 2007).  

To advance a better understanding of human colorectal tumorigenesis, my thesis 

focuses on the transcriptional and post-transcriptional regulations of Naked2, a protein 

that is involved in both Wnt signaling (Wharton, Zimmermann et al. 2001; Van Raay, 

Coffey et al. 2007) and EGFR-related events, i.e. the basolateral sorting of TGFα (Li, 

Franklin et al. 2004; Li, Hao et al. 2007).  

Based upon its widespread pattern of expression, rapid cell surface cleavage and avid 

capture by the EGFR, I postulate that TGFα is the ligand that most often binds the EGFR 

in vivo. It appears that delivery of TGFα to the cell surface is a critical, and possibly 

rate-limiting, step in regulating endogenous TGFα activity. In polarized epithelial cells, 

TGFα assures its efficient delivery to the EGFR-restricted basolateral surface by 

stabilizing Naked2 protein.    

In Drosophila development, EGFR signaling antagonizes Wg signaling, both in 

segmental patterning of the larva epidermis (Szuts, Freeman et al. 1997; Sanson 2001) 

and eye development (Freeman and Bienz 2001). However, both EGFR and Wnt 

signaling are upregulated in many malignant tumors, and, in some instances, the two 

pathways cooperate (Schroeder, Troyer et al. 2000; Civenni, Holbro et al. 2003; Schlange, 

Matsuda et al. 2007). Naked2 may provide a convergent point of TGFα trafficking and 

canonical Wnt signaling through its critical functions in both pathways. 

In Chapter V (General discussion), I will present a two step model by which Naked2 

participates in normal epithelial homeostasis (Fig. 5.2). First, it delivers TGFα to the 



basolateral surface. Upon discharging that function, it then binds and degrades any excess 

Dvl-1 so as to maintain tight control of canonical Wnt signaling. Thus, Naked2 may 

provide a convergence point between EGFR-related events (i.e., cell surface delivery of 

TGFα) and canonical Wnt signaling. 

In colorectal neoplasia, Naked2 is downregulated (Chapter III); this downregulation 

appears to be a late event in that I observed decreased expression of Naked2 in 10/16 

(60%) carcinomas but in 0/6 adenomas. A consequence of this loss would be impaired 

cell surface delivery of TGFα, resulting in a relatively unoccupied EGFR to which 

additional ligands might bind. Amphiregulin is an attractive candidate. Like TGFα, 

amphiregulin is delivered to the basolateral surface of polarized epithelial cells where it is 

cleaved by TACE. In contrast to TGFα, amphiregulin, through its heparin-binding 

domain, binds to heparin sulfate proteoglycans more efficiently that to the EGFR. Thus, 

normally amphiregulin may exist in a depot form in the extracellular matrix. With the 

increased proteolytic activity associated with cancer, amphiregulin may be released from 

the extracellular matrix to bind the EGFR. Of note, the Coffey lab has shown recently 

that amphiregulin, but not TGFα, confers an EMT-like transition when added to epithelial 

cells (Chung, Cook et al. 2005; Chung, Graves-Deal et al. 2005). Simply stated, I propose 

that the loss of Naked2 impairs cell surface delivery of TGFα, resulting in an unoccupied 

EGFR to which amphiregulin binds and drives tumor progression. 

To test this model in vivo, I have created a conditional targeted disruption of Naked2 

in the mouse (see Chapter IV). Experiments are underway to selectively eliminate 



Naked2 in the small and large intestine. To elicit a neoplastic phenotype, I anticipate that 

these mice may need to be crossed to MT-TGFα mice and/or ApcMin mice. Alternatively, 

the colon carcinogen azoxymethane may need to be administered to these mice. 

 

Part II: EGFR signaling and EGFR ligands 

EGFR and EGFR signaling 

 A major focus of the Coffey lab has been EGFR signaling and its role in 

gastrointestinal neoplasia with an emphasis on trafficking of the EGFR ligands in the 

context of a battery of human colorectal cancer cell lines that retain the capacity to form a 

uniform polarizing monolayer when cultured on Transwell filters. EGFR belongs to the 

family of ErbB receptor tyrosine kinases comprised of four closely related members (Fig. 

1.3B) — epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER1), 

ErbB-2 (HER2), ErbB-3 (HER3) and ErbB-4 (HER4). Upon binding of extracellular 

growth factor ligands to the ectodomain, EGFR homo- or heterodimerizes with other 

ErbB receptors and this results in activation of intrinsic tyrosine kinase acitivities that 

reside in the cytoplasmic tail of the receptors (Fig. 1.3A, with the exception of ErbB-3). 

Subsequent auto-phosphorylation at multiple tyrosine residues within the cytoplasmic tail 

of the receptor creates docking sites for appropriate binding of adaptor proteins or 

signaling molecules (such as GRB-2, Shc, PLC-γ and Src) to transduce a myriad of 

intracellular signals. Heterodimerization leads to an expansion in the number of possible 

signaling pathways stimulated even by a single ligand. The specificity of downstream 



 
 
 
 
 
 
 
 
 

 
 
 
Figure 1.3 Activation of ErbB receptors and their downstream signalings. (A) 
Receptor dimerization and auto-phosphorylation. Before ligand binding, the arm (domain 
II) is sequestered by subdomain IV within the monomer. Ligand binding leads to a 
conformational change that exposes the arm to facilitate intermonomer associations 
between dimerization arms. The consequence of ectodomain dimerization is the 
asymmetric interaction of kinase domains and auto-phosphorylation in tyrosine residues 
(Reprint Linggi & Carpenter, 2006). P, phosphorylation; Y, tyrosine. (B) Differential 
ligand engagement of the receptor and different dimeric receptor combinations activate 
receptor tyrosine kinase activities that signal through a variety of downstream cascades. 
Each of these receptor combinations translates into diversity as to different cell responses, 
including apoptosis, migration, proliferation, differentiation and cell adhesion. (Adapted 
from Yarden and Sliwkowski, 2001) 
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signaling pathways is determined by which ligand binds to the receptor, the composition 

of the receptor pairs and the particular tyrosine residues that are auto-phosphorylated. 

ErbB-2 and ErbB-3 are the two special members of the family (Citri, Skaria et al. 2003). 

ErbB-2 does not bind to any of known ligands with high affinity (King, Borrello et al. 

1989; Lonardo, Di Marco et al. 1990), but it is the preferred heterodimeirc partner for 

other ErbB receptors including EGFR. Furthermore, homodimerization of ErbB-2 

receptors causes robust ligand-independent receptor tyrosine kinase activity that is 

thought to contribute to tumor progression in mammary tissues (Bacus, Zelnick et al. 

1994; Karunagaran, Tzahar et al. 1996; DiGiovanna, Stern et al. 2005). On the other hand, 

ErbB-3 is deficient in its intrinsic receptor tyrosine kinase activity, but it couples with 

other receptors to start a unique repertoire of downstream cascades. Interestingly, 

herterodimerization of ligand-less ErbB-2 and kinase-inactive ErbB-3 seems to provide 

the most potent mitogenic and angiogenic signal (Alimandi, Romano et al. 1995; Yen, 

Benlimame et al. 2002).  

 By recruiting different adaptor and signaling proteins, activated EGFR initiates 

signalings that regulate diverse biological responses including proliferation, 

differentiation, cell motility and survival (Marmor, Skaria et al. 2004). The three best 

characterized cascades are Ras-mitogen-activated protein kinase (Ras-MAPK), 

phosphatidylinositol 3’ kinase-protein kinase B (PI3K-Akt) and phospholipase C-protein 

kinase C (PLC-PKC) pathways (Fig. 1.3B).  

 Ras-MAPK pathway is a major cascade that can be activated by EGFR ligands and 



ErbB receptors. Following activation of EGFR tyrosine kinase and auto-phosphorylation, 

Grb2 is recruited to the EGFR directly through its SH2 domain to the phosphotyrosine 

Y1068 and Y1086, or indirectly through PTB domain-mediated association of Shc to EGFR. 

In either case, the cytosolic Grb2/Sos (the Ras exhange factor) protein complex relocates 

to the activated receptor at the plasma membrane to facilitate the interaction of 

membrane-associated Ras and Sos. Sos catalyzes the exhange of Ras-bound GDP for 

GTP thereby activating Ras, which in turn activates the serine/threonine kinase Raf-1. 

Activation of Raf-1 initiates a kinase cascade involving serine phosphorylation of 

MEK1/2 (MAPKK) and tyrosine and threonine phosphorylation of Erk1/2 (MAPK). Erk 

phosphorylates multiple cytoplasmic proteins, such as MAPK-activated protein kinase 

and the ribosomal p70-S6 kinase. Activated Erk can also translocate into the nucleus, 

where it phosphorylates and activates a number of transcription factors including Sp1, 

PEA3, E2F, Elk1and AP1.  

 Activation of PI3K occurs through SH2-mediated recruitment of the p85 regulatory 

subunit to a consensus phosphotyrosine site on activated receptors, resulting in allosteric 

activation of the p110 catalytic subunit that may be involved in GTP-Ras binding. This 

process also requires additional adaptor proteins since p85 binding to EGFR is indirect. 

Active PI3K produces phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] from 

PtdIns(4,5)P2, resulting in the recruitment of Akt kinase and other signaling effectors that 

contain the lipid-binding FYVE or pleckstrin homology (PH) domains. Akt is then 

phosphorylated and activated by PDK1, another PH domain-containing kinase. Akt is a 



key effecter of PI3K and has many cytosolic and nuclear targets. In cytoplasm, 

phosphorylation of Bad by Akt promotes cell survival by blocking binding of this 

pro-apoptotic molecule to Bcl-2 and Bcl-X(L) proteins. Akt also inhibits Raf and 

glycogen synthase kinase-3 (GSK-3) kinase functions, while promoting protein 

translation through mTOR, eIF-4E and ribosomal p70-S6. Once translocated to the 

nucleus, Akt promotes cell cycle progression by regulating the cell cycle regulatory 

transcription factor FKHR and downregulating the cyclin dependent kinase inhibitor 

p27KIP1. Taken together, PI3K signaling pathway plays versatile roles in the regulation of 

cell proliferation and survival. Thus, PTEN has been shown a critical tumor suppressor 

gene by dephosphorylating the 3’ position of PI3K products. 

 Phospholipase Cγ (PLCγ) is recruited to the activated EGFR through SH2-mediated 

docking or indirect binding to PI3K products through their PH domains. Subsequent 

phosphorylation by EGFR tyrosine kinase activates PLCγ, resulting in hydrolysis of 

PtdIns(4,5)P2, to generate the second messengers diacylglycerol and inositol triphosphate 

[Ins(1,4,5)P3 or IP3]. IP3 releases intracellular calcium from endoplasmic reticulum and 

thereby activates calcium/calmodulin-dependent kinases. In addition, calcium 

collaborates with diacylglycerol to simulate protein kinase C that phosphorylates a large 

variety of substrates.  

 Thus EGFR signaling is intrinsically complex and context-dependent. It remains 

challenging to dissect each individual cascade under particular circumstances. As 

discussed above, ligand engagement of the EGFR appears to be the first step in the 



regulation and specification of downstream signaling.  

 

EGFR ligands 

 Seven mammalian ligands bind the ErbB family receptors (Fig. 1.4A); these include 

EGF, TGFα, heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR), 

betacellulin (BTC), epiregulin (EPR) and epigen (Shoyab, McDonald et al. 1988; 

Massague 1990; Higashiyama, Lau et al. 1992; Toyoda, Komurasaki et al. 1995; Strachan, 

Murison et al. 2001). All of the ligands are made as type I transmembrane proteins that 

are inserted into the plasma membrane where they undergo proteolytic cleavage to 

release mature soluble growth factors. All of the actions of these growth factors are 

thought to be mediated by binding to the EGFR. TGFα, EGF, AR and epigen bind solely 

to EGFR, whereas HB-EGF, betacellulin and epiregulin can also bind ErbB4.  

TGFα has been identified as the major endogenous EGFR ligand in the gut, playing 

key roles in various cell processes, including proliferation, survival and differentiation, to 

maintain the homeostasis and repair of gut epithelium. However, aberrant overexpression 

of TGFα is frequently observed in the majority of solid tumors when compared to their 

normal counterparts (Salomon, Brandt et al. 1995). The involvement of TGFα in 

autonomous proliferation of carcinoma cells has been verified by previous studies using 

antisense oligonucleotides and/or neutralizing antibodies against TGFα, which can 

significantly inhibit in vitro growth of various human carcinoma cells (Normanno, 

Bianco et al. 1996; De Luca, Casamassimi et al. 1999). In vitro colony formation assays 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4 EGFR ligands and their intracellular trafficking. (A) There are seven 
mammalian ligands for ErbB receptor family. All of the ligands are made as type I 
transmembrane proteins that undergo cell surface proteolytic cleavage to release mature 
soluble growth factors. The EGF-like domain that mediates receptor interactions is 
conserved in all of the ligands, but heparin-binding domain is only found in AR and 
HB-EGF (Reprint from Harris, 2003). (B) Differential trafficking of EGFR ligands. 
Among the four EGFR ligands, only EGF is delivered to both the apical and the 
basolateral membrane, whereas TGFα, AR and HB-EGF preferentially traffic to 
basolateral membrane, where they are processed and consumed by the EGFR with 
different kinetics (See text for details).  
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in soft agar and tumorigenicity studies in nude mice also indicate that TGFα can promote 

transformation of fibroblast cells, such as Rat-1 (Rosenthal, Hulse et al. 1986) and 

NIH3T3 (Di Marco, Pierce et al. 1989). Genetic studies in engineered mouse models 

have provided evidence for roles for TGFα in tumor initiation and progression (Matsui, 

Halter et al. 1990; Halter, Dempsey et al. 1992). 

As a proximal event of EGFR axis, regulated processing and cell surface presentation 

of different EGFR ligands are thought critical for their biological activities and signaling 

specificities. We have significantly advanced our understanding of the biology of 

endogenous EGFR ligands by studying trafficking and processing of these ligands in the 

context of polarized epithelial cells.  

When produced by polarized epithelial cells, EGF, TGFα, AR and HB-EGF exhibit 

differences in trafficking and cell surface delivery, cell surface processing and subsequent 

binding to the EGFR (summarized in Fig. 1.4B). EGF is delivered equally to both the 

apical and basolateral plasma membrane (Dempsey, Meise et al. 1997). In contrast, TGFα 

and AR are sorted preferentially to the basolateral membrane where they are cleaved by 

TNFα-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) 

(Brown, Meise et al. 1998; Borrell-Pages, Rojo et al. 2003; Gschwind, Hart et al. 2003; 

Sahin, Weskamp et al. 2004), a cell membrane metalloproteinase that is restricted to this 

compartment. Cell surface cleavage of TGFα occurs so rapidly that administration of a 

selective TACE inhibitor WAY-022 is required for its reliable detection at the cell surface. 

Released mature soluble TGFα is then avidly consumed by basolateral EGFRs in an 



autocrine or local paracrine fashion (Dempsey and Coffey 1994). Although mediated by 

the same enzyme, the cleavage of AR appears to be less efficient. Mature AR contains an 

amino-terminal heparin-binding domain (HBD) that interacts with extracellular and 

cell-associated HSPGs, as well as the tetraspanin, CD9 (Johnson and Wong 1994; Inui, 

Higashiyama et al. 1997; Nylander, Smith et al. 1998). Interaction with these molecules 

may facilitate a depot form of AR that, under certain conditions, can bind and activate 

EGFRs conferring distinct biological properties of AR (Chung, Cook et al. 2005; Chung, 

Graves-Deal et al. 2005). HB-EGF is also delivered predominantly to the basolateral 

compartment but remains there in its transmembrane form. The shedding of HB-EGF can 

be induced by protein kinase C (PKC) activation (Izumi, Hirata et al. 1998) and increased 

intracellular calcium (Horiuchi, Le Gall et al. 2007). Therefore, in addition to activation 

of EGFR by soluble HB-EGF, transmembrane HB-EGF can activate EGFRs in adjacent 

cells in a juxtacrine manner.  

 Realization that soluble TGFα was avidly captured by basolateral EGFRs emerged 

from the initial inability to detect TGFα in the apical or basolateral medium of MDCK 

cells stably expressing a full length TGFα cDNA under control of the CMV promoter 

(Dempsey and Coffey 1994). One possible explanation was that TGFα was rapidly 

consumed by the approximately 40,000 EGFRs that are confined to the basolateral 

surface. In support of this hypothesis, basolateral administration of a monoclonal 

antibody C225 (an EGFR monoclonal antibody that blocks ligand binding) resulted in a 

marked increase in TGFα levels in the basolateral medium. This phenomenon is not 



merely a tissue culture artifact since a 3-fold increase in serum levels of TGFα was 

observed one day following administration of C225 to a patient with Ménétrier’s disease 

(Burdick, Chung et al. 2000), a rare disease that is caused by ectopic EGFR activation.  

This local capture of TGFα by the EGFR has far reaching biological importance and 

contributes to such diverse processes as vulva formation in the nematode C. elegans and 

hair follicle formation in mammals. In C. elegans vulva development, Lin-3 (a soluble 

TGFα-like ligand) is released from the anchor cell and is taken up avidly by Let-23 (the 

EGFR homologue) on the closest vulva precursor cell P6.p to orchestrate the orderly 

development of the vulva (Sternberg and Horvitz 1986; Kornfeld 1997). Laser ablation of 

P6.p, as well as genetically reduced LET-23 activity in P6.p (Hajnal, Whitfield et al. 

1997), results in diffusion of Lin-3 and its consumption by basolateral Let-23 on 

neighboring precursor cells (designated P5.p and P7.p). This leads to adoption of a 

primary cell fate by P5.p and P7.p, and subsequently results in an aberrant multivulva 

phenotype. Thus, local consumption of Lin-3 (TGFα) by basolateral Let-23 (EGFR) in 

P6.p is critical to normal vulva development. 

Rapid consumption of TGFα by EGFR also appears to be important in mammalian 

hair follicle development as demonstrated in studies of EGFR null chimeric mice. In 

these mice, where outer root sheath does not express EGFR but adjacent dermal cells do, 

TGFα (produced by the inner root sheath) is not rapidly consumed by EGFRs in the outer 

root sheath, resulting in disorganized hair follicles (David Threadgill, personal 

communication). In addition, these studies have suggested that when TGFα avoids local 



capture by EGFRs in the outer root sheath, it can diffuse and potentially act as a 

chemotactic factor for adjacent dermal cells. This may account for the acneiform 

eruptions that are observed with monoclonal antibody blockade of the EGFR where 

inflammatory cells are found at the base of the hair follicle (Luetteke, Qiu et al. 1993). 

The rapid cell membrane cleavage and avid local consumption of TGFα support the 

hypothesis that TGFα is the major EGFR ligand in vivo, and that basolateral delivery is a 

critical, possibly rate-limiting step in the action of TGFα. Two basolateral sorting 

determinants have been previously discovered in the cytoplasmic tail of TGFα (Dempsey 

and Coffey 1994). Recent studies have demonstrated that Naked2, an originally identified 

Wnt antagonist, binds to the basolateral sorting determinants of TGFα and escorts 

TGFα-containing vesicles to the basolateral corner of polarized epithelial cells where 

these vesicles dock and fuse with the cell membrane in a Naked2 

myristoylation-dependent manner (Fig. 1.7) (Li, Franklin et al. 2004). This process 

appears to be specific to TGFα since overexpression of myristoylation-deficient G2A 

Naked2 disrupts basolateral sorting of TGFα, but not AR. 

 The two EGFR ligands, TGFα and AR, both are frequently upregulated in colorectal 

cancer. However, exogenous AR, but not TGFα, disrupts epithelial junctional integrity 

leading to an epithelial to mesenchymal (EMT)-like transition (Chung, Cook et al. 2005; 

Chung, Graves-Deal et al. 2005). This effect is abrogated by EGFR blockade. It is 

possible that an epithelial cell maintains normal homeostasis by proper spatial 

compartmentalization of the EGFR and TGFα. Perturbations in the Naked2-dependent 



trafficking of TGFα may be a cause, and not merely a consequence, of the neoplastic 

state by creating relatively unoccupied EGFRs that were then bound by AR, inducing an 

EMT-like transition that contributes to tumor progression. 

 In addition, a recent report also emphasizes that studying the regulation of EGFR 

ligand trafficking has important biological relevance. Groenestege et al. discovered that 

isolated recessive renal hypomagnesemia is due to a mutation in the cytoplasmic tail of 

EGF that disrupts basolateral sorting of EGF. This leads to insufficient stimulation of 

basolateral EGFRs in the proximal tubule of the kidney, resulting in impaired activation 

of the Mg2+ channel TRPM6 (transient receptor potential cation channel, subfamily M, 

member 6) and magnesium wasting in the kidney (Groenestege, Thebault et al. 2007). 

 I predict that investigation of the regulation and in vivo role of Naked2 will provide 

insights into basic mechanisms of TGFα basolateral trafficking that will eventually lead 

to a better understanding of the pathogenesis of colorectal cancer (CRC) and more 

effective ways to diagnose and treat this disease. Moreover, these results may have 

relevance to other epithelia such as lung, prostate and breast. 

 

Part III: Wnt signaling and its negative regulators 

Current model of canonical Wnt signaling 

 Wnt signaling pathway is a highly conserved pathway that is essential for 

embryonic development and stem cell maintenance in adult tissues (Fig. 1.5). 

Deregulation of Wnt pathway has also been closely linked to malignant transformations, 
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and this is best illustrated by the role of Wnt signaling in the initiation of colorectal 

cancer (Logan and Nusse 2004; Gregorieff and Clevers 2005; Reya and Clevers 2005). 

 The discovery of the Wnt family originated from Drosophila wingless that was 

identified as a key segmental polarity gene during early development of Drosophila 

embryos. Subsequently, the first mammalian homolog of wingless was discovered as a 

proto-oncogene int-1 in mouse, and this was followed by a rapid expansion of the Wnt 

gene family. To date, 19 Wnt genes are found in the mouse and human genomes, and all 

encode cysteine-rich glycoproteins. Wnt proteins are secreted as hydrophobic proteins 

due to palmitoylation at a conserved cysteine residue (Willert, Brown et al. 2003). This 

post-translational lipid modification not only affects membrane association of Wnt 

proteins, but it is also required for their biological activity. An enzyme that is encoded by 

the Drosophila porcupine (porc) gene (Kadowaki, Wilder et al. 1996), called mom-1 in C. 

elegans (Rocheleau, Downs et al. 1997), appears to catalyze the addition of palmitate to 

Wnts; however, direct evidence has not yet been demonstrated. 

 After secretion from signaling cells, Wnt proteins act on target cells by interacting 

with membrane-bound receptors, the Frizzled (Fz)/ low density lipoprotein (LDL) 

receptor-related protein (LRP) complex (Bhanot, Brink et al. 1996; Pinson, Brennan et al. 

2000; Tamai, Semenov et al. 2000; Wehrli, Dougan et al. 2000). This interaction causes 

phosphorylation of the cytoplasmic tail of LRP, which recruits Axin to LRP (Tamai, 

Zeng et al. 2004). The translocation of Axin, along with a potential mechanism involving 

Dishevelled (Dsh) through its interaction with Fz, disrupts the β-catenin destruction 



complex, a key component of the canonical Wnt signaling cascade (Fig. 1.5). Alternative 

Wnt cascades that are independent of β-catenin function are categorized as non-canonical 

Wnt signaling. This alternative pathway(s) is less well understood but involves 

intracellular calcium fluxes and planar cell polarity (Veeman, Axelrod et al. 2003). As 

my work does not address non-canonical signaling, only Wnt/β-catenin signaling will be 

discussed in the thesis. 

 Under physiological conditions, Dsh, casine kinase I (CKI), GSK-3β, Axin and APC 

form a β-catenin destruction complex that sequesters cytoplasmic β-catenin. CKI and 

GSK-3β sequentially phosphorylate a set of Ser and Thr residues within the amino 

terminus of β-catenin (Rubinfeld, Albert et al. 1996; Amit, Hatzubai et al. 2002; Liu, Li 

et al. 2002) that results in a recruitment of β-TrCP-containing E3 ubiquitin ligase, which 

ubiquitylates β-catenin and targets it for proteasomal degradation (Hart, Concordet et al. 

1999; Kitagawa, Hatakeyama et al. 1999; Winston, Strack et al. 1999). 

In the presence of Wnt, through an unclear signal mediated by Axin and Dsh, 

activated Wnt receptor Fz/LRP disassembles the β-catenin destruction complex. 

Stabilized β-catenin then translocates into the nucleus and forms a transcriptional 

activator complex with TCF transcriptional factors (TCF1, LEF, TCF3 and TCF4) 

(Behrens, von Kries et al. 1996; Molenaar, van de Wetering et al. 1996; van de Wetering, 

Cavallo et al. 1997). In the absence of nuclear β-catenin, TCF represses expression of 

target genes (Brannon, Gomperts et al. 1997) by interacting with Groucho (Cavallo, Cox 

et al. 1998), a transcriptional repressor that recruits histone deacetylases (HDAC), which 



results in a chromatin structure inaccessible to the transcriptional machinery (Chen, 

Fernandez et al. 1999). Nuclear β-catenin displaces the transcriptional repressor Groucho 

from TCF and converts TCF to a transcriptional activator by recruiting at least two other 

factors - histone acetylase CBP/p300 (cyclic AMP response element-binding protein) 

(Hecht, Vleminckx et al. 2000; Takemaru and Moon 2000) and the SWI/SNF 

(switching-defective and sucrose nonfermenting) component BRG1 (Barker, Hurlstone et 

al. 2001). In addition, activation of target genes also depends on Legless (BCL9) and 

Pygopus (Kramps, Peter et al. 2002; Parker, Jemison et al. 2002; Thompson, Townsley et 

al. 2002), possibly by recruiting chromatin remodeling factors and/or facilitating nuclear 

translocation of β-catenin (Townsley, Cliffe et al. 2004). 

The biological consequences of canonical Wnt/β-catenin signaling are solely carried 

out by the expression of its target genes, involving stem cell renewal, cell proliferation, 

cell survival and cell motility. Among a large number of Wnt targets, c-Myc and 

cyclin-D1 have been the most intensively studied. They play important roles in cell cycle 

progression and are the major mediators of the proliferative effects of canonical Wnt 

signaling. Overexpression of these two genes has been frequently observed in colorectal 

cancer.  

 

Negative regulators of canonical Wnt signaling 

Given its essential roles in normal epithelial homeostasis and stem cell renewal, it is 

not surprising that Wnt signaling needs to be tightly regulated, and perturbation of this 



regulation causes predisposition to various human cancers. A key feature of this tight 

control is the negative regulators that antagonize Wnt signaling at different levels (Fig. 

1.5; Table 1.1). Secreted Wnt inhibitory factor 1 (WIF1) (Hsieh, Kodjabachian et al. 1999) 

and the sFRP (Moon, Brown et al. 1997; Zorn 1997) protein family resemble the 

ligand-binding domain of transmembrane Wnt receptors; they inhibit canonical Wnt 

signaling by sequestering Wnt ligands extracellularly. At the cell surface, another secreted 

protein, Dickkopf (Dkk) (Glinka, Wu et al. 1998), binds to LRP coreceptor with high 

affinity (Bafico, Liu et al. 2001; Mao, Wu et al. 2001; Semenov, Tamai et al. 2001) and 

promotes the internalization of LRP, making it unavailable to bind Wnt ligands. This 

potent Wnt inhibitor has not been found in invertebrates, but mice and humans have 

multiple Dkk genes (Krupnik, Sharp et al. 1999; Monaghan, Kioschis et al. 1999). 

Another class of single-transmembrane molecules, the Kremen proteins (Mao, Wu et al. 

2002; Mao and Niehrs 2003), act as Dkk receptors and are required for this process, but 

the effects of Kremen proteins could be context-dependent (Cselenyi, 2008, Science 

Signaling).  

The components of the cytoplasmic β-catenin destruction complex are important 

intracellular inhibitors of canonical Wnt signaling. The two scaffolding proteins, APC 

and Axin, are the most extensively studied. They essentially form a scaffold, recruiting 

additional components to form a functional platform where β-catenin is sequentially 

phosphorylated by CKI and GSK3β, thus priming β-catenin for poly-ubiquitylation and 

degradation. An additional component of this complex, WTX, has been recently 



Table 1.1 Negative regulators of canonical Wnt signaling 

Negative regulator Localization  Activities 

WIF extracellular sequester Wnt ligands 

sFRP extracellular sequester Wnt ligands 

Dickkopf cell surface promote LRP internalization 

Kremen cell surface recruit Dickkopf 

APC cytoplasmic  

nuclear 

scaffold 

export nuclear β-catenin 

recruit transcriptional repressors 

Axin cytoplasmic scaffold 

WTX cytoplasmic scaffold 

CK1 cytoplasmic phosphorylate β-catenin 

GSK3β cytoplasmic phosphorylate β-catenin 

β-TRCP cytoplasmic ubiquitylate β-catenin 

Naked cytoplasmic inactivate Dvl 

Chibby nuclear sequester β-catenin 

ICAT nuclear sequester β-catenin 

Groucho nuclear TCF-binding transcriptional repressor  

MTGR-1 nuclear TCF-binding transcriptional repressor 

NLK/Nemo nuclear phosphorylate TCF 

Par5 nuclear export phosphorylated TCF 
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identified. Similar to APC, functional analyses demonstrated that WTX promotes 

ubiquitination and degradation of β-catenin (Major, Camp et al. 2007). Mutations in 

either APC or the Axin gene have been frequently discovered in colorectal tumors, 

whereas WTX is mutated in Wilms tumors. Most of these mutations result in truncated 

proteins that can not mediate interactions with critical molecules. For example, mutant 

APC usually lacks β-catenin- or Axin-binding domains, and thus it is unable to target 

cytoplasmic β-catenin for degradation. Recent studies have shown that Axin acts more 

than just as a scaffolding protein. It is also involved in transducing signals from Wnt 

receptors and the β-catenin destruction complex. Upon Wnt activation, Dishevelled (Dvl) 

and Axin are relocated to the plasma membrane through direct interactions with Fz and 

LRP receptors, respectively. This relocation of Axin causes disassembly of the 

cytoplasmic protein complex that is required for β-catenin destruction. Stabilized 

β-catenin then translocates to the nucleus.  

In the nucleus, it appears that β-catenin does not necessarily have unrestricted access 

to TCF. Chibby is a nuclear antagonist that binds to the C terminus of β-catenin 

(Takemaru, Yamaguchi et al. 2003) and sequesters β-catenin from TCF binding. Another 

β-catenin-binding protein, ICAT, not only blocks the binding of β-catenin to TCF (Tago, 

Nakamura et al. 2000) but disassembles complexes between β-catenin, LEF and 

CBP/p300 (Daniels and Weis 2002; Graham, Clements et al. 2002). Even if β-catenin 

escapes from these inhibitory factors, it still needs to compete with Groucho that binds to 

TCF as a transcriptional repressor. Similar to Gourcho, myeloid translocation gene 



related-1 (MTGR-1) is another transcriptional repressor that binds to TCF (Moore, 

Amann et al. 2008). In addition, TCF is also subject to regulation, as it can be 

phosphorylated by the MAPK–related protein kinase NLK/Nemo (Ishitani, 

Ninomiya-Tsuji et al. 1999). This phosphorylation diminishes the DNA-binding affinity 

of the β-catenin/TCF complex, thereby affecting transcriptional regulation of Wnt target 

genes (Ishitani, Ninomiya-Tsuji et al. 1999; Ishitani, Kishida et al. 2003). Another 

consequence of TCF phosphorylation, at least in C. elegans, is export of TCF from the 

nucleus (Meneghini, Ishitani et al. 1999), which is carried out by a 14-3-3 protein, Par5 

(Lo, Gay et al. 2004). More recently, accumulating data indicate that APC chases nuclear 

β-catenin and facilitates CtBP-mediated repression of Wnt target genes in normal, but not 

in colorectal cancer cells (Sierra, Yoshida et al. 2006; Xiong and Kotake 2006).  

In summary, physiological levels of canonical Wnt signaling are tightly regulated by 

a multi-layer network of negative regulators (Table 1.1). Loss of critical negative 

regulators promotes ectopic Wnt signaling and can lead to cancers or developmental 

disorders. Elucidation of the regulation of and precise biological roles for Wnt 

antagonists will provide important insights into the control of Wnt signaling and may 

identify tractable drug targets. 

 

Part IV: Naked2 in TGFα trafficking and Wnt signaling 

Naked protein family 

 The founding member of the Naked family, naked cuticle (nkd), was identified as a 



segment polarity gene in Drosophila (Zeng, Wharton et al. 2000) and was named based 

on its excess naked cuticle phenotype in nkd mutant larvae. 

 In Drosophila, embryonic segmentation begins as early as 3 h after egg laying 

(AEL). Through positive and negative transcriptional regulation, the pair-rule genes that 

have already been patterned in a periodically gradient fashion along the anterior-posterior 

axis initiate the expression of segment polarity genes, such as wingless (wg), engrailed 

(en) and hedgehog (hh). engrailed and hedgehog are expressed in the same row of cells, 

whereas wingless is expressed in the adjacent stripe of cells. From 3.5 h AEL, as 

cellularization of the embryo occurs and transcriptional regulation by pair-rule genes fade 

away, the parasegmental periodicity of the body plan needs to be reinforced through cell 

to cell signalings between wg expressing cells and en expressing cells. Secreted Wg 

protein binds to and activates its receptors (D-frizzled-2) (Bhanot, Brink et al. 1996) on 

the surface of adjacent en expressing cells. The downstream signaling of this receptor 

maintains the transcription of en (Siegfried and Perrimon 1994), which itself is a 

transcription factor that sustains hh gene expression in the en-expressing cells. When Hh 

protein is secreted and binds to the Hedgehog receptors on the adjacent posterior cells, it 

stimulates wg gene expression (Heemskerk, DiNardo et al. 1991; Ingham 1991; Mohler 

and Vani). This reciprocal signaling loop between neighboring cells stabilizes the 

transcription pattern of these two types of cells. The boundary between wg and 

en/hh-expressing cells forms a temporary landmark of parasegments. In cooperation with 

other signaling molecules, the diffusion of Wg and Hh proteins center from the 



parasegmental boundary provides gradient signals to specify cell identities across the 

parasegment during the definitive segmentation.  

On the ventral side of the abdominal epidermis, asymmetrical distributions of Wg, 

Hh and EGFR signalings result in 6 segmental repeats of denticle belts interspersed with 

naked cuticles. Each denticle belt contains 6 rows of cells secreting unique types of 

protrusions (denticles) of various sizes and shapes. These cells receive EGFR signaling 

and are composed of a row of cells anterior to the segment boundary and 5 rows of cells 

posterior to the segment boundary. In contrast, the other 6 rows of cells receive high 

levels of Wg signaling and adopt a smooth or naked cuticle cell fate. In wg mutant larva, 

the cuticles are replaced by mirror images of denticles (Bejsovec and Martinez Arias 

1991), while embryos that were exposed to excess Wg exhibit a loss of denticle belt 

phenotype (Noordermeer, Johnston et al. 1992). Naked cuticle phenotype is also seen in 

embryos that have a mutation in Wg antagonists, such as zestewhite3/glycogen synthase 

kinase 3b (zw3/gsk3b) (ref. 8), D-axin (ref. 9) and D-Apc2 (ref. 10). 

The excess naked cuticle phenotype observed in nkd mutant embryos indicates that 

Naked Cuticle acts as a negative regulator of canonical Wg signaling (Zeng, Wharton et al. 

2000). Epistasis studies have placed Nkd activity in a transduction step between Dsh and 

Zw3 (Rousset, Mack et al. 2001). A direct interaction between Naked Cuticle and Dsh is 

required for the antagonistic effect of Naked Cuticle. The interaction is dependent on zinc 

but not calcium, although Naked Cuticle protein contains an EF-hand domain (Rousset, 

Wharton et al. 2002). In addition, nkd transcription is lost in wg mutant embryos, 



suggesting that nkd is a Wg target gene and part of a negative feedback loop of canonical 

Wg signaling through which nkd may play critical roles in limiting the duration and 

distribution of canonical Wg signals.  

Subsequent studies have identified two mammalian orthologs of Drosophila Naked 

Cuticle in mouse and human (Fig. 1.6), Naked1 and Naked2 (Wharton, Zimmermann et 

al. 2001; Yan, Wallingford et al. 2001). The most conserved region amongst Naked 

family members is the EF-hand motif, also known as Naked homologous region 1 (NHR1, 

residues 107-175 in human Naked2). For Naked1, this motif binds Dsh and Zn2+ but not 

Ca2+; Naked2’s affinity for Dsh is weaker (Rousset, Wharton et al. 2002; Wharton 2003). 

Mice with a targeted deletion of the EF-hand region of Naked1 exhibit reduced 

spermatogenesis but otherwise appear normal (Li, Ishikawa et al. 2005). The remaining 

three conserved regions between Naked1 and 2 are as follows: 1) the N-terminal 36 

amino acids that include glycine as the second residue that is myristoylated along with 

adjacent cis-acting basic residues; 2) residues 236-265 in human Naked2 (Naked 

homologous region 2 [NHR2]); and 3) a C-terminal polyhistidine stretch. Naked2, but not 

Naked1, recognizes a Golgi-processed form of TGFα and binds the cytoplasmic tail of 

TGFα between residues 300-385 (TGFα cytoplasmic tail-binding domain [TTB]), a 

sequence in Naked2 that diverges from Naked1 (Li, Franklin et al. 2004; Li, Hao et al. 

2007).  

Similar to their Drosophila counterpart, mammalian Nakeds directly interact with 

Dishevelled (Dvl) in yeast two-hybrid, GST-pulldown and co-immunoprecipitation 



A

B

Figure 1.6 Naked protein family. (A) Naked family includes Drosophila Naked Cuticle 
and vertebrate Naked1 and Naked2. The most conserved region amongst Naked family 
members is the EF-hand motif, also known as Naked homologous region 1 (NHR1). Resi-
dues 236-265 in human Naked2 (Naked homologous region 2 [NHR2]), N-terminal my-
ristoylation site (G) and  C-terminal polyhistidine stretch (Hn) are conserved in Naked1 
but not in Naked Cuticle. Other functional domains, such as TGFa-tail-binding (TTB) do-
main and vesicle recognition (VR) domain, only exist in Naked2. (B) Nucleotide sequence 
alignment of Naked1 and Naked2 in human, mouse and zebrafish.
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assays (Wharton, Zimmermann et al. 2001; Yan, Wallingford et al. 2001). Overexpression 

of mouse Naked1 inhibits Wnt-1-induced canonical Wnt/β-catenin signaling as 

demonstrated by TOPflash reporter assays. In vivo expression of mouse Naked1 rescues 

wnt-8-induced secondary axes formation in Xenopus embryos. Independent of its roles in 

canonical Wnt signaling, Naked1 is reported to stimulate Wnt/PCP (planar cell polarity) 

signaling, resulting in defective convergence extension in Xenopus embryos (Yan, 

Wallingford et al. 2001). Given that Naked directly binds to Dvl, a known regulator of 

both canonical Wnt/β-catenin and Wnt/PCP pathways, these studies suggest that 

mammalian Naked may act as a switch of Wnt signaling to direct Dvl toward the PCP 

pathway and away from the β-catenin pathway.  

However, a recent study in zebrafish revealed a different scenario. Overexpression of 

zebrafish Naked1 and Naked2 not only antagonizes maternal and zygotic Wnt/β-catenin 

signaling but also inhibits the Wnt/PCP pathway in the early development of zebrafish 

embryos (Van Raay, Coffey et al. 2007). Silberblick is a loss-of-function Wnt11 mutant 

that exhibits impaired PCP signaling with defects in convergence extension during 

gastrulation and cyclopia due to abnormal extension of axial tissues. Injection of naked1 

or naked2 RNA exacerbate the penetrance and expressivity of cyclopia. In a separate 

experiment, Naked1 or Naked2 abolishes the ability of wnt11 to rescue this phenotype. 

These results argue that, in zebrafish, Naked1 and Naked2 are sufficient to suppress both 

Wnt/β-catenin and Wnt/PCP pathways.  

Taken together, Drosophila Naked Cuticle may strictly function in Wg/Armadillo 



signaling, but the roles of vertebrate Nakeds appear to be more complicated. The 

discrepancy of Naked functions in the Wnt/PCP pathway between the two vertebrate 

systems may be due to the different assays or organisms employed, or just unique to 

silberblick mutants. It indicates that vertebrate Nakeds play complex roles in Wnt 

signaling pathways rather than a simple switch between β-catenin and PCP pathways. 

However, despite all discrepancies, the prevailing notion is that Naked binds to Dvl and 

antagonizes canonical Wnt/β-catenin signaling in both vertebrates and invertebrates.  

 

Naked2 functions in basolateral trafficking of TGFα 

 In addition to roles in Wnt signaling, our previous studies have demonstrated a unique 

function of human Naked2 in sorting and delivering TGFα to the basolateral cell 

membrane of polarized epithelial cells (Fig. 1.7) (Li, Franklin et al. 2004; Li, Hao et al. 

2007). 

 Using a yeast two-hybrid library that we made from RNA from polarizing HCA-7 

cells, we identified that Naked2 interacts with the two BL sorting determinants in the 

cytoplasmic tail of TGFα. Naked2 interacts with the cytoplasmic tail of a 

Golgi-processed form of TGFα by coating a novel subset of TGFα-containing exocytic 

vesicles and escorting these vesicles to the basolateral corner of polarized epithelial cells, 

where the vesicles dock and fuse in a Naked2 myristoylation-dependent manner (Li, 

Franklin et al. 2004). TGFα is unable to reach the plasma membrane in 

myristoylation-deficient (G2A) Naked2-expressing cells. These effects are specific for 



Figure 1.7 TGFa delivery by Naked2-associated vesicles. (A) As TGFa-containing 
vesicles emerge from the trans Golgi network, Naked2 coats and escorts these exocytic 
vesicles to the basolateral corner of polarized epithelial cells. These vesicles dock and fuse 
with the plasma membrane in a Naked2 myristoylation-dependent manner. (B) Demonstra-
tion of a Naked2-coated TGFa-containing vesicle by fluorescence microscopy. Naked2-
EGFP (green) outlines the surface of the vesicle, while HA staining (red) decorates the 
ectodomain of epitope-tagged TGFa in the vesicle lumen.  

A B

               41



TGFα in that basolateral sorting of AR is retained in both wild-type and G2A 

Naked2-expressing cells. 

 Myristoylation of Naked2 not only affects cell membrane docking and fusion, but 

it also stimulates a dynamic behavior between vesicles (Li, Hao et al. 2007). We have 

shown that discrete residues within the N-terminus of Naked2 direct these vesicles to the 

basolateral cell surface. Residues 1-173 redirect Na+/H+ exchanger regulatory factor 

(NHERF)-1 from the apical cytoplasm to the basolateral membrane, and internal deletion 

of residues 37-104 results in apical mislocalization of Naked2 and TGFα. The basolateral 

trafficking of low-density lipoprotein receptor (LDLR) requires μ1B subunit of the 

epithelial cell–specific AP-1B adaptor complex (Folsch, Ohno et al. 1999). Sec6/8 

exocyst complex beneath the tight junctions is then utilized for basolateral docking and 

fusion events for LDLR and vesicular stomatitis virus G protein (VSV-G) (Kreitzer, 

Schmoranzer et al. 2003; Polishchuk, Di Pentima et al. 2003). However, 

Naked2-associated vesicles are directed to the lower lateral membrane of polarized 

MDCK cells and do not appear to require μ1B nor utilize the subapical Sec6/8 exocyst 

complex as a targeting patch for basolateral docking and fusion. We have proposed that 

Naked2 acts as a specific cargo recognition and targeting (CaRT) protein to ensure 

proper targeting, tethering and fusion of TGFα-containing exocytic vesicles at the lower 

lateral membrane of polarized MDCK cells (Li, Hao et al. 2007). 

 These data suggest that, under normal conditions, TGFα signaling may be regulated 

at its ligand intracellular sorting step by a Naked2-dependent mechanism; however, in a 



pathological state, TGFα can escape this regulated delivery and processing step due to 

downregulated or mutated Naked2 (e.g. in colon cancer, see Chapter III). As we 

discussed earlier in this thesis, impaired TGFα trafficking may disorganize epithelial 

homeostasis and contribute to tumor progression.  

 

Regulation of Naked2 

Naked Cuticle has been originally discovered as an inducible antagonist of the 

Wg/Arm pathway in that nkd transcription is markedly reduced in wg mutant embryos, 

and misexpression of either wg or an activated form of Armadillo (UAS-ArmS10) results in 

ectopic transcription of nkd in similar patterns (Zeng, Wharton et al. 2000). In vertebrates, 

a close correlation between Naked1 expression and active Wnt signaling has been 

observed in zebrafish embryos, chick embryos, mouse liver epithelial cells and human 

colon tumors (Yan, Wallingford et al. 2001; Yan, Wiesmann et al. 2001; Ishikawa, 

Kitajima et al. 2004; Schmidt, Otto et al. 2006; Van Raay, Coffey et al. 2007). Moreover, 

5 perfectly matched TCF-binding sites are identified in the putative promoter of the 

human Naked1 gene (Yan, Wiesmann et al. 2001). In contrast, Naked2 is maternally 

expressed, and its expression appears ubiquitous in zebrafish and mouse embryos 

(Wharton, Zimmermann et al. 2001; Van Raay, Coffey et al. 2007). More recently, Lei et 

al. has demonstrated that mouse Naked2 promoter activity is directly repressed by a 

homeobox gene Hoxc8 (Lei, Juan et al. 2007), which plays essential roles in 

differentiation and proliferation and is upregulated in various human cancers (Alami, 



Castronovo et al. 1999; Miller, Miller et al. 2003; Chen, Gu et al. 2005). Naked2 appears 

to be differentially regulated among other Naked family members. In fact, we have 

shown that Naked2 is indirectly inhibited by canonical Wnt signaling in SW480 cells and 

that down-regulation of Naked2 is a common event in human colorectal cancer (see 

Chapter III).  

 As discussed earlier, Naked2 does exhibit unique adaptor-like activities in TGFα 

exocytic trafficking. As part of the constitutive intracellular trafficking machinery, most 

adaptor or coat proteins like, AP-1 and AP-2, are ubiquitously expressed and long-lived 

(Sorkin, McKinsey et al. 1995). It is generally thought that adaptors regulate recruitment 

and stability of cargo but not vice versa. However, Hirst and co-workers recently reported 

that degradation of a relatively short-lived clathrin-dependent adaptor, GGA2, was 

delayed when one of its cargos, CIMPR, was overexpressed in HeLa cells (Hirst, Seaman 

et al. 2007). The authors concluded that cargo proteins may not be simply passively 

sorted by adaptors, but they may actively contribute to the formation of coated vesicles 

by interacting with and regulating coat components, at least in the case of GGA2. In a 

similar context, we asked whether the stability of Naked2 was regulated by its cargo, 

TGFα. 

Ubiquitin-mediated and proteasome-dependent proteolysis is one of the key 

mechanisms that regulate protein stability and expression levels in a variety of cellular 

processes, such as cell cycle progression, signaling transduction and protein transport 

(Hochstrasser 1996; Pickart 2001; Weissman 2001). Ubiquitylation is a multi-step 



post-translational protein modification catalyzed by E1s (ubiquitin-activating enzymes), 

E2s (ubiquitin-conjugating enzymes) and finally E3s (ubiquitin ligases) (Fig. 1.9). 

Cycling of these reactions can conjugate poly-ubiquitin chains on substrate proteins and 

thereby target them to the proteasome for degradation. The highly regulated, exquisitely 

precise ubiquitylation of particular substrates is conferred by protein interactions 

involving substrate-specific E3s, of which there are well over 500. Poly-ubiquitylated 

substrates that contain a ubiquitin chain with more than 3 ubiquitin moieties are targeted 

for proteasomal degradation. 

 In my thesis study, I not only identify ubiquitylation of Naked2 but also elucidate 

the biochemical basis for this phenomenon by identifying a ubiquitin ligase for Naked2. 

Naked2 is a short-lived protein with a half-life of 60 min due to rapid ubiquitin-mediated 

proteasomal degradation. AO7, a RING finger protein that exhibits ubiquitin ligase 

activity (Lorick, Jensen et al. 1999), binds to and ubiquitylates Naked2 in vitro and in 

vivo. Increased expression of TGFα dose-dependently reduces AO7 binding to Naked2, 

thus protecting Naked2 from ubiquitin-mediated proteasomal degradation. This effect of 

TGFα is EGFR-independent; a physical interaction between the cytosolic tail TGFα and 

Naked2 is necessary and sufficient to attenuate Naked2 ubiquitylation. These studies 

identify the first E3 for Naked2 and a novel EGFR-independent action of TGFα (see 

Chapter II for details).  
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CHAPTER II 

 

EGF RECEPTOR-INDEPENDENT ACTION OF TGF-ALPHA PROTECTS NAKED2 
FROM AO7-MEDIATED UBIQUITYLATION AND PROTEASOMAL 

DEGRADATION 

 

Introduction 

EGFR signaling is one of the most extensively studied signal transduction pathways 

and the EGFR itself has proven to be a tractable target in cancer therapy.  It is therefore 

not surprising that EGFR signaling has emerged as an attractive candidate for a systems 

biology approach (Wiley, Shvartsman et al. 2003; Citri and Yarden 2006). All seven of 

the mammalian EGFR ligands are produced as transmembrane ligands that are cleaved at 

the cell surface by proteases to release soluble ligands that then engage the EGFR (Harris, 

Chung et al. 2003). It is increasingly recognized that a key regulatory node in the 

initiation of EGFR signaling is transactivation of the receptor by G protein-coupled 

receptor (GPCR)-mediated, protease-executed cell surface cleavage of pro-ligands 

(Prenzel, Zwick et al. 1999). An under appreciated aspect of EGFR signaling is the cell 

surface delivery of the different EGFR ligands. This is especially relevant in the context 

of polarized epithelial cells where the EGFR is concentrated at the basolateral surface. 

The importance of this process was underscored by the recent finding that isolated 

recessive renal hypomagnesaemia is due to a mutation in the cytoplasmic tail of EGF that 

disrupts its sorting to the basolateral surface of proximal tubular cells of the kidney 



(Groenestege, Thebault et al. 2007).  

Our laboratory has studied the trafficking of transforming growth factor-α (TGFα) in 

polarized epithelial cells (Dempsey and Coffey 1994). TGFα is preferentially delivered to 

the basolateral cell surface where it is rapidly cleaved by TNF-α converting enzyme/a 

disintegrin and metalloprotease-17 (TACE/ADAM-17) (Dempsey and Coffey 1994; 

Sunnarborg, Hinkle et al. 2002). Soluble TGFα is then avidly captured by basolateral 

EGFRs (Dempsey and Coffey 1994). The rapid cleavage and avid capture of TGFα 

suggest that its cell surface delivery may be a rate-limiting step in the spatial and 

temporal regulation of endogenous TGFα activities (Harris, Chung et al. 2003).  Two 

basolateral sorting determinants have been identified in the cytoplasmic tail of TGFα (LL 

and HCCQVRKH) (Dempsey, Meise et al. 2003), both of which contribute to its 

interaction with Naked2 (Ishikawa, Kitajima et al. 2004), a previously identified negative 

regulator of Wnt signaling (Rousset, Mack et al. 2001; Yan, Wallingford et al. 2001; Yan, 

Wiesmann et al. 2001). We have shown that Naked2 binds to the cytoplasmic tail of a 

Golgi-processed form of TGFα through its TTB domain (residues 300-385). Although 

Naked2 contains features of an adaptor and a coat (i.e. cargo recognition and selection), it 

exhibits additional properties (dominant acting basolateral sorting, motor recognition and 

myristoylation-dependent docking and fusion at the plasma membrane), leading us to 

designate it a multifunctional cargo recognition and targeting (CaRT) protein for TGFα 

trafficking (Li, Franklin et al. 2004; Li, Hao et al. 2007). However, the regulation of 

Naked2 in epithelial cells has not been elucidated. 



Ubiquitin-mediated and proteasome-dependent proteolysis is one of the key 

mechanisms that regulate protein activities in a variety of cellular processes, such as cell 

cycle progression, signaling transduction and protein transport (Hochstrasser 1996; 

Pickart 2001; Weissman 2001). Ubiquitylation is a multistep post-translational protein 

modification catalyzed by E1s (ubiquitin-activating enzymes), E2s (ubiquitin-conjugating 

enzymes) and finally E3s (ubiquitin ligases). Cycling of these reactions can conjugate 

poly-ubiquitin chains on substrate proteins and thereby target them to the proteasome for 

degradation. The highly regulated, exquisitely precise ubiquitylation of particular 

substrates is conferred by protein interactions involving specific substrate-specific E3, of 

which there are well over 500.  

In this paper, we demonstrate that Naked2 is a short-lived protein with a half-life of 

60 min due to rapid ubiquitin-mediated proteasomal degradation. AO7, a RING finger 

protein that exhibits ubiquitin ligase activity (Lorick, Jensen et al. 1999), binds to and 

ubiquitylates Naked2 in vitro and in vivo.  Increased expression of TGFα 

dose-dependently reduces AO7 binding to Naked2, thus protecting Naked2 from 

ubiquitin-mediated proteasomal degradation (Fig. 5B). This effect of TGFα is 

EGFR-independent; a physical interaction between the cytosolic tail TGFα and Naked2 

is necessary and sufficient to attenuate Naked2 ubiquitylation. These studies identify the 

first E3 for Naked2 and a novel EGFR-independent action of TGFα. 



Materials and Methods 

Plasmid construction, antibodies and chemicals 

Generation of full-length human Naked2 and TGFα expression plasmids has been 

described previously (Li, Hao et al. 2007). Truncated Naked2 sequences were obtained 

by PCR amplification from full-length human Naked2 cDNA and verified by automated 

sequencing (Perkin Elmer 377, Vanderbilt Ingram Cancer Center DNA Sequencing 

Shared Resourse). All 5’ primers contained EcoRI restriction sites, and all 3’ primers 

contained BamHI sites. The PCR products were cloned into pEGFP-N2 vector (Clontech, 

Mountain View, CA) between the EcoRI and BamHI sites. TGFα tail expression cDNA 

contained the TGFα cytoplasmic tail, transmembrane domain and signal peptide, which 

were obtained by RT-PCR reactions from full-length human TGFα cDNA. PCR 

fragments were ligated and cloned into pCB7 expression vector between BglII and 

HindIII sites. The HA-tagged ubiquitin expression plasmid, pHA-Ub (Sekhar, Yan et al. 

2002), was a generous gift from Dr. Michael Freeman (Vanderbilt University). Murine 

AO7, AO7-RM and GST-AO7T expression plasmids have been described (Lorick, Jensen 

et al. 1999). FLAG-AO7 and FLAG-AO7-RM mammalian expression plasmids were 

generated by PCR amplification from mouse HA-AO7 and HA-AO7-RM plasmids using 

a 5’ primer encoding an EcoRI site and a FLAG epitope tag, and a 3’ primer encoding a 

NotI site. The PCR products were cloned into pcDNA3.1(+) (Invitrogen, Carlsbad, CA) 

between the EcoRI and NotI sites. 

The monoclonal HA and β-actin antibody were obtained from Sigma (St. Louis, MO). 



The rabbit polyclonal Naked2 antibody VU308 was raised against a GST-fused Naked2 

peptide (residues 1-217 of human Naked2) in cooperation with Cocalico Biologicals 

(Reamstown, PA). Horseradish peroxidase-donkey anti-mouse and anti-rabbit IgG were 

obtained from Jackson ImmunoResearch (West Grove, PA). Protein-G agrose beads were 

purchased from Invitrogen (Carlsbad, CA). rhTGFα and amphiregulin were purchased 

from R&D Systems (Minneapolis, MN). MG-132 and CHX were purchased from 

CALBIOCHEM (San Diego, CA). The selective TACE/ADAM-17 inhibitor WAY-022 

was provided by Jay Gibbons (Wyeth Ayerst Laboratories, Pearl River, NY). Human 

recombinant E1, UbcH5b and HA-ubiquitin were purchased from BostonBiochem. All 

other chemicals were obtained from Sigma unless otherwise stated. 

 

Cell culture, transfection and stable cell line 

Parental HEK293 cells, MDCK cells, Caco-2 cells and all transiently or stably 

transfected derivatives were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), glutamine, nonessential amino acids, 

100 U/ml penicillin, 100 μg/ml streptomycin (Hyclone, Logan, UT) with or without 500 

μg/ml geneticin and/or 200 μg/ml hygromycin (Roche). 

Transient transfections were performed in HEK293 cells using FuGENE6 (Roche 

Applied Science, Indianapolis, IN) transfection reagent according to the manufacturer’s 

instructions. Twenty-four hrs after transfections, cells were harvested or processed for 

further experiments. Stable transfections were performed using Lipofectamine 2000 



(Invitrogen) according to the manufacturer’s suggestions. Transfected cells were split and 

diluted at least 10-fold into selection medium 24 hrs after transfections. For each 

transfection, multiple antibiotic resistant colonies were picked 4 to 7 days later. 

 

RT-PCR 

Total RNA was isolated from Caco-2 cells using the RNeasy mini kit (QIAGEN, 

Valencia, CA). RT-PCR was performed to determine the relative gene expression using 

SuperScript™ One-Step RT-PCR kit (Invitrogen) according to the manufacturer’s 

instructions. All amplifications started with a minimal amount of RNA (250 ng of total 

RNA), and the reactions were limited to 25 cycles to avoid saturating the reaction. 

GAPDH primers were added into same reaction tubes to serve as an internal control for 

equivalent starting materials. 

 

Immunoprecipitation and immunoblotting 

For immunoprecipitations, cells were lysed in 1X lysis buffer (25 mM Tris HCl, 150 

mM NaCl, 0.5% Nonidet P-40, 0.5% sodium deoxycholate, 1 mM DTT and 2% BSA). 

After preclearing, supernatants were incubated with HA antibody or Naked2 antibody 

VU308 for 2 h and then with protein G beads for another 2 h. Beads were washed three 

times with 1X lysis buffer, boiled in sample buffer for 5 min and proteins were resolved 

on 8% SDS-PAGE for ubiquitylation analysis or 10% SDS-PAGE otherwise and then 

transferred to nitrocellulose membrane before western blotting. For immunoblotting of 



whole cell lysates, the protein concentration of precleared cell lysates was determined 

using Micro BCA Protein Assay Kit (Pierce, Rockford, IL) before boiling in sample 

buffer. All straight western blots were reblotted for β-actin to assure equivalent loading 

and transfer. 

 

Expression and purification of GST-AO7T 

A GST fusion of a C-terminal truncation of AO7 at amino acid 363 (GST-AO7T) was 

utilized in the in vitro ubiquitylation assay as the full length GST fusion is poorly 

expressed (Lorick, Jensen et al. 1999). GST-AO7T plasmid was transformed into BL-21 

strain and grown overnight at 37ºC. The expression of the GST-AO7T was induced by 

adding 0.2 mM IPTG for 18 h at 30ºC. Cells were then harvested and lysed as previously 

described (Hu, Krezel et al. 2006). The clear supernatant of bacteria lysate was used to 

extract GST-AO7T protein using B-PER® GST Fusion Protein Purification Kit (Pierce, 

Rockford, IL). Finally, 12ml of volume was eluted from glutathione column and 4ml 

GST-AO7T enriched fractions were dialysed three times against 4L TBS. The purity of 

the protein was determined by SDS–PAGE and Coomassie blue staining.  

 

In vitro ubiquitylation assay 

Ubiquitylation assays were carried out as previously described (Lorick, Jensen et al. 

1999), unless indicated. 100ng each of human recombinant E1, UbcH5b (E2), 1μg of 

HA-ubiquitin and 400ng purified GST-AO7T were used in each 100μl reaction. 



Naked2-EGFP expressed in HEK293 cells was immunoprecipitated using GFP antibody 

and protein G agrose beads followed by 5 times wash in RIPA buffer. Finally, beads were 

resuspended in 125μl 50mM Tris (PH 7.4). 20μl of agrose-bond Naked2-EGFP were used 

in each reaction. The reaction products were boiled immediately in SDS sample buffer 

and resolved by 8% SDS-PAGE followed by western blotting with HA antibody. 



Results 

Naked2 is ubiquitylated and undergoes rapid proteasomal degradation 

Initial studies were designed to determine the stability of Naked2 protein and 

whether it was regulated by proteasomal or lysosomal degradation. To that end, MDCK 

cells stably expressing EGFP-tagged Naked2 (Naked2-EGFP) were treated with 

cycloheximide (CHX) to block protein synthesis and Naked2 protein levels were 

monitored by immunoblotting. As shown in Fig. 2.1, Naked2 protein was rapidly 

degraded with a half-life of 60 min.  When MDCK cells were pre-treated with a 

proteasome inhibitor, MG132, for 2 h prior to the addition of CHX, Naked2 degradation 

was significantly retarded. By contrast, pre-treatment with a lysosomal inhibitor, 

ammonium chloride (NH4Cl), had no effect (Fig. 2.1) on Naked2 degradation. Thus, 

Naked2 is a short-lived protein that undergoes rapid proteasomal degradation. 

Since poly-ubiquitylation is a signature for delivering substrates to the proteasome 

for degradation (Doherty, Dawson et al. 2002; Pickart 2004), we next performed an in 

vivo ubiquitylation assay (Sekhar, Yan et al. 2002) to directly examine the ubiquitylation 

of Naked2. We transiently transfected HEK293 cells with plasmids encoding non-tagged 

Naked2 and HA-tagged ubiquitin (Sekhar, Yan et al. 2002); 48 h later, cell lysates were 

prepared and subjected to immunoprecipitation using a Naked2 antibody VU308 (see 

Materials and Methods) and blotted with an HA antibody. Clear laddering of 

poly-ubiquitylated Naked2 was detected when HA-tagged ubiquitin was co-expressed 

with Naked2 (Fig. 2.2A, lane 4). The lowest band detected by the HA antibody migrates 
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Figure 2.1 Proteasomal degradation of Naked2. (A) MDCK cells expressing Naked2-
EGFP were treated with 1 mg/ml cycloheximide (CHX). Cell lysates were collected at 
the indicated time points and then subjected to Naked2 western blotting. The majority of 
Naked2-EGFP was degraded within 4 h. Naked2 degradation was blocked by 2 h exposure 
to a proteasome inhibitor (5 mM MG132) prior to CHX treatment but not by pre-exposure 
to a lysosomal inhibitor (20 mM NH4Cl). All blots were reprobed for b-actin as a loading 
control. (B) Band densities were quantified and normalized to b-actin staining. 
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Figure 2.2 Ubiquitylation of Naked2. (A) HEK293 cells transiently expressing Na-
ked2 and HA-ubiquitin were lysed and immunoprecipitated using the Naked2 an-
tibody VU308 (see Materials and Methods) followed by anti-HA western blotting. 
A ladder of ubiquitylated Naked2 was detected, and the composition of the ladder 
shifted to higher molecular weight species in the presence of MG132. In the lower 
panel, the blot was stripped and reprobed with VU308 to demonstrate that compa-
rable amounts of Naked2 were immunoprecipitated. (B) Aliquots of whole-cell ly-
sates were blotted with HA, Naked2 and b-actin antibodies to show their respective 
expression levels. pUb-Naked2 designates poly-ubiquitylated Naked2; mUb-Naked2 
designates mono-ubiquitylated Naked2.
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at approximately 9 kDa (the molecular mass of a single HA-ubiquitin molecule) above 

the Naked2 band, and likely represents mono-ubiquitylated Naked2, which might be an 

intermediate product of poly-ubiquitylation. The presence of immunoreactive forms 

migrating at higher molecular weights is consistent with poly-ubiquitylated Naked2, 

which was confirmed by reprobing with Naked2 antibody (data not shown). The 

identification of poly-ubiquitylated Naked2 is consistent with it being a short lived 

protein as demonstrated in the previous degradation assays (Fig. 2.1). Consistent with 

proteasomal degradation, in the presence of MG132, not only was overall Naked2 

ubiquitylation enhanced, but there was also a compositional shift to higher molecular 

weight forms of ubiquitylated Naked2 (Fig. 2.2A, lane 8). We also observed 

poly-ubiquitylation of endogenous Naked2 in parental MDCK cells (data not shown).  

 

TGFα upregulation of Naked2 is EGFR-independent 

We previously demonstrated that Naked2 acts as a CaRT protein for the efficient 

delivery of TGFα-containing exocytic vesicles to the basolateral surface of polarized 

epithelial cells (Li, Franklin et al. 2004; Li, Hao et al. 2007). We considered whether the 

cargo TGFα might regulate its CaRT.  We found a marked increase in endogenous 

Naked2 protein levels in MDCK cells stably overexpressing TGFα (Fig. 2.3A, 

MDCK-lane 1 and 2). An even more dramatic upregulation of Naked2 protein was 

observed when TGFα was stably overexpressed in Caco-2 cells, a human colorectal 

cancer cell line (Fig. 2.3A, Caco-2-lane 1, 2 and 4). Since TGFα is a major EGFR ligand, 
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Figure 2.3 EGFR-independent upregulation of Naked2. (A) Compared to vec-
tor control cells, MDCK cells stably expressing human TGFa exhibited increased 
Naked2 levels. Pharmacological blockade of EGFR activation using an irrevers-
ible EGFR tyrosine kinase inhibitor (EKI-785, 1 mM) or TGFa cell surface shed-
ding with a selective TACE inhibitor (WAY022, 1 mM; designated as “TI”) did not 
affect Naked2 levels in TGFa transfected MDCK cells. In similar experiments in 
Caco-2 cells, Naked2 was dramatically upregulated in two independent clones of 
Caco-2 cells stably expressing TGFa; a longer exposure was required to observe 
endogenous Naked2 in parental Caco-2 cells (Data not shown). EKI-785 treat-
ment did not affect Naked2 levels in Caco-2 cells. (B) There were no differences 
in Naked2 expression by RT-PCR analysis of RNA isolated from both vector- and 
TGFa-transfected Caco-2 cells. GAPDH served as an internal loading control.
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we presumed that this effect was mediated by EGFR activation. However, levels of 

Naked2 in TGFα-expressing MDCK cells were not altered by pharmacological blockade 

of EGFR tyrosine kinase activity using an irreversible EGFR tyrosine kinase inhibitor 

(EKI-785) or cell surface cleavage of TGFα using a selective TACE inhibitor (WAY-022) 

(Fig. 2.3A). Nor did administration of 1 nM recombinant human TGFα (rhTGFα) for 24 

h increase Naked2 levels in parental MDCK cells (data not shown). As in MDCK cells, 

neither blocking EGFR tyrosine kinase activity nor adding rhTGFα affected Naked2 

protein levels in Caco-2 cells (Fig. 2.3A and data not shown). To determine whether 

Naked2 is upregulated at the transcriptional level by TGFα overexpression, RT-PCR for 

Naked2 was performed in Caco-2 cells. We observed no significant differences in 

Naked2 transcript levels in TGFα-overexpressing Caco-2 cells compared to vector 

control cells with or without the EGFR tyrosine kinase inhibitor EKI-785 (Fig. 2.3B). 

These findings indicate that Naked2 is upregulated by TGFα in an EGFR-independent 

manner, and this effect occurs at a post-transcriptional level. 

 

Overexpression of TGFα stabilizes Naked2 by inhibiting its ubiquitylation 

We next asked whether endogenously produced TGFα upregulated Naked2 protein 

by retarding its proteasomal degradation. CHX was added to MDCK cells stably 

expressing Naked2-EGFP with or without co-expressed TGFα. We found that 

co-expression of TGFα significantly delayed Naked2 turnover compared to vector 

control cells (Fig. 2.4A), a result consistent with our earlier observation that Naked2 
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Figure 2.4 Reduced Naked2 ubiquitylation and degradation by TGFa overexpression. 
(A) MDCK cells stably expressing Naked-2-EGFP and TGFa or Naked-2-EGFP and blank 
pCB7 vector were incubated with 1mg/ml CHX for the indicated times followed by Naked2 
western blotting. Similarly, the degradation of endogenous Naked2 in Caco-2 and Caco-2-
TGFa cells was determined. (B) Cell lysates from HEK293 cells transiently expressing Na-
ked2, TGFa and HA-ubiquitin, as indicated, were subjected to immunoprecipitation using 
VU308 antibody followed by HA (upper panel) or Naked2 (lower panel) western blotting. 
The ubiquitylation of Naked2 was reduced in the presence of TGFa. In the right panel, WCL 
were subjected to western blotting using the HA and Naked2 VU308 antibodies to show 
comparable levels of expression.
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expression was increased in MDCK cells and Caco-2 cells stably overexpressing TGFα 

(Fig. 2.3A). This effect was also observed in Caco-2 cells, the rapid degradation of 

endogenous Naked2 was dramatically attenuated when TGFα was stably overexpressed 

(Fig. 2.4A, Caco-2).  In line with the stabilization of Naked2 upon TGFα 

overexpression, the intensity of total ubiquitylated Naked2 was significantly reduced by 

TGFα in an in vivo ubiquitylation assay in transiently co-transfected HEK293 cells (Fig. 

2.4B, left panel-lane 4 and 5). As a control, western blotting of whole-cell lysates showed 

comparable expression of transfected Naked2 and ubiquitin with or without 

co-expression of TGFα (Fig. 2.4B, right panel). Taken together, these results with both 

transfected and endogenous Naked2 support our contention that TGFα upregulates 

Naked2 by inhibiting its poly-ubiquitylation and proteasomal degradation.  

 

Interaction between Naked2 and the cytoplasmic tail of TGFα is required for 
Naked2 stabilization 

Based on our findings that the TTB domain of Naked2 interacts directly with the 

cytoplasmic tail of Golgi-processed TGFα (Li, Franklin et al. 2004) and that TGFα’s 

upregulation of Naked2 persists despite pharmacological blockade of TGFα cell surface 

cleavage and EGFR tyrosine kinase activity (Fig. 2.3), we predicted that 1) the TGFα tail 

alone would be sufficient to stabilize Naked2 and 2) internal deletion of Naked2’s TTB 

domain would abolish this effect (Fig. 2.10C, D).  

To test the first prediction (Fig. 2.10C), we constructed a TGFα tail expression 

plasmid that contains the TGFα cytoplasmic tail (39 residues) preceded by its N-terminal 



signal peptide and transmembrane domain; a HA-tag was inserted between the signal 

peptide and transmembrane sequences for immunoprecipitation studies. 

Co-immunoprecipitation experiments in transiently transfected HEK293 cells showed 

that Naked2-EGFP was pulled down as efficiently by the HA-tagged TGFα tail (Fig. 

2.5A, upper panel-lane 2) as by full-length TGFα (Fig. 2.5A, upper panel-lane 3). As we 

predicted, the TGFα tail alone delayed the degradation of Naked2 when stably 

co-expressed in MDCK cells (Fig. 2.5B).  

To examine the second prediction (Fig. 2.10D), an internal deletion of the TTB motif 

(ΔTTB-Naked2-EGFP) was generated (see Materials and Methods). As expected, 

co-immunoprecipitation experiments in transiently transfected HEK293 cells showed that 

the ΔTTB-Naked2-EGFP mutant no longer interacted with HA-tagged TGFα (Fig. 2.5A, 

upper panel-lane 4). Stably overexpressing full-length TGFα did not protect the 

ΔTTB-Naked2-EGFP mutant from rapid degradation in MDCK cells (Fig. 2.6A). As we 

predicted, ubiquitylation of ΔTTB-Naked2-EGFP was not reduced when TGFα was 

co-expressed (Fig. 2.6B, lane 4) in contrast with the markedly attenuated ubiquitylation 

of wild-type Naked2 upon TGFα co-expression (Figs. 2.4B and 2.6B). Taken together, 

these results indicate that the TTB motif of Naked2 and the cytoplasmic tail of TGFα are 

critical for the Naked2-TGFα interaction, which is required for TGFα-induced Naked2 

stabilization but not for Naked2’s degradation.  

 

Identification of AO7 as a ubiquitin ligase for Naked2 ubiquitylation 
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Figure 2.5 A physical interaction between Naked2 and TGFa is required to 
stabilize Naked2 protein. (A) Validation of binding activities of HA-TGFa tail 
and DTTB-Naked2-EGFP. HEK293 cells were transiently co-transfected with 
Naked2-EGFP, DTTB-Naked2-EGFP, HA-tagged TGFa and a TGFa cytoplas-
mic tail construct (HA-TGFa tail), as indicated. Cell lysates were immunopre-
cipitated using HA antibody and then blotted for Naked2. The cytoplasmic tail 
of TGFa was sufficient to pull down Naked2, but deletion of Naked2’s TTB do-
main abolished the interaction between Naked2 and TGFa. In the lower panel, 
Naked2 and b-actin western blotting showed equivalent expression and loading. 
(B) TGFa tail is sufficient to retard Naked2 degradation. MDCK cells stably 
expressing Naked2-EGFP and HA-TGFa tail (or pCB7 vector control) were 
exposed to CHX for the times indicated, and the stability of Naked2 protein was 
monitored by western blotting. 
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Figure 2.6 TGFa does not inhibit the ubiquitylation and degradation of DTTB-Na-
ked2-EGFP. (A) TTB domain of Naked2 is required for Naked2 stabilization. TGFa 
expression did not prevent degradation of DTTB-Naked2-EGFP that is unable to bind 
TGFa. (D) TGFa overexpression did not affect ubiquitylation of DTTB-Naked2-EGFP. 
HEK293 cells were transiently transfected with DTTB-Naked2-EGFP and HA-ubiquitin 
with or without TGFa. Immunoprecipitation using Naked2 antibody was followed by 
anti-HA or Naked2 western blotting. In contrast to wild-type Naked2, ubiquitylation of 
the DTTB-Naked2 mutant was not inhibited by TGFa expression.
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Because of the direct interaction between TGFα and Naked2, we considered that 

reduced Naked2 ubiquitylation might result from hindered access of a ubiquitin ligase to 

Naked2 when TGFα binds. In separate experiments, Naked2 was identified as an 

AO7-interacting protein by a yeast two-hybrid screen using the N-terminal half of 

mammalian AO7 (data not shown). AO7, also known as RING finger protein 25 (RNF25), 

exhibits RING finger-dependent ubiquitin ligase activity (Lorick, Jensen et al. 1999) (Fig. 

2.7A). We confirmed this interaction by co-immunoprecipitation in HEK293 cells.  

HA-tagged AO7 was pulled down by GFP antibody when EGFP-tagged Naked2, but not 

EGFP alone, was co-expressed (Fig. 2.7B, lane 1 and 2). Two point mutations at C135 

and C138 in the conserved RING finger domain of AO7 abolished the E3 activity of AO7 

(Fig. 2.7A) (Lorick, Jensen et al. 1999), but this RING mutant AO7 (AO7-RM) retained 

the ability to interact with Naked2 (Fig. 2.7B, lane 3 and 4). Therefore, we utilized 

FLAG-tagged AO7-RM as a dominant-negative to examine whether AO7 participates in 

Naked2 ubiquitylation. Overexpression of AO7-RM dramatically reduced the 

ubiquitylation level of Naked2 in an in vivo ubiquitylation assay in HEK293 cells (Fig. 

2.8A, lane 3). In addition, we also conducted an in vitro ubiquitylation assay, which 

employed human recombinant E1, UbcH5B (E2), HA-tagged ubiquitin and a bacterially 

expressed C-terminal truncation of AO7,GST-AO7T, which is expressed substantially 

better than the full length protein (Lorick, Jensen et al. 1999). Due to insolubility of 

full-length Naked2 when expressed in E. coli (Hu, Krezel et al. 2006), Naked2-EGFP 

fusion protein was expressed in HEK293 cells and immunoprecipitated using anti-GFP to 
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Figure 2.7 Protein interaction between Naked2 and AO7. (A) Schemat-
ic illustration of AO7 and its mutants. AO7 contains a RING finger motif 
and a Pro-rich region. AO7-RM contains two point mutations at C135 and 
C138 and lacks ubiquitin ligase activity. AO7T is a C-terminal truncation 
mutant that retains E3 activity and is soluble when expressed in E. coli. 
(B) Naked2-EGFP and HA-tagged AO7 or AO7-RM were co-expressed in 
HEK293 cells, followed by co-immunoprecipitation using a GFP antibody. 
Both forms of AO7 were pulled down by GFP antibody in the presence of 
Naked2-EGFP, but not EGFP alone. Western blotting using GFP antibody 
demonstrated the expression levels of Naked2-EGFP and EGFP alone.
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serve as ubiquitylation substrate. Western blotting using HA antibody revealed 

ubiquitylation of Naked2-EGFP when E1, E2 and GST-AO7T were all present in the 

reaction (Fig. 2.8B, lane 4). Ubiquitylated Naked2 was not detected when GST-AO7T 

was absent from the reaction, ruling out the possibility that the ubiquitylation was 

mediated by E3s co-purified from HEK293 cells. The specificity of ubiquitylation is 

demonstrated by the lack of ubiquitylation of EGFP that was not fused to Naked2. These 

data indicate that AO7 is a ubiquitin ligase for Naked2.  

 

TGFα attenuates AO7-Naked2 binding 

Thus far we have shown that TGFα protects Naked2 from ubiquitylation, and that 

AO7 binds to and ubiquitylates Naked2. We next sought to determine whether TGFα 

affects Naked2 ubiquitylation by hindering its interaction with AO7. HEK293 cells that 

were transfected with Naked2 and HA-AO7 were mixed and split into 3 wells, followed 

by a second transfection with different concentrations of a TGFα expression plasmid. 

Naked2-bound AO7 was co-immunoprecipitated using Naked2 antibody and revealed by 

HA western blotting (Fig. 2.9). As the input of TGFα increased, the interaction between 

AO7 and Naked2 decreased, suggesting that increased levels of TGFα may inhibit 

Naked2 ubiquitylation by reducing AO7 binding to Naked2. 

 



TGFa     0     2      8  (mg)
Naked2-
bound AO7

Total AO7

Naked2

b-actin

Figure 2.9 Increased TGFa expression reduces AO7 binding to Naked2. 
Different concentrations of TGFa expression plasmid were transfected into 
HEK293 cells that express HA-AO7 and Naked2. Co-immunoprecipitation 
using Naked2 antibody followed by HA western blotting revealed the levels 
of AO7 that bind to Naked2. The expression levels of total AO7 and Naked2 
were examined by western blotting using HA and Naked2 antibody. 
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Discussion 

We previously determined that Naked2 acts as multi-functional protein to ensure the 

efficient delivery of TGFα to the basolateral surface of polarized epithelial cells. It 

recognizes basolateral sorting determinants in the cytoplasmic tail of Golgi-processed 

TGFα, thereby coating TGFα-laden exocytic vesicles (Li, Franklin et al. 2004). Naked2 

residues 1-36 confer vesicle recognition (C Li and RJ Coffey, unpublished observation). 

Naked2 residues 1-173 direct these vesicles to the basolateral corner of polarized 

epithelial cells, where the vesicles dock and fuse in a Naked2 myristoylation-dependent 

manner (Li, Hao et al. 2007). In polarized MDCK cells expressing 

myristoylation-deficient G2A Naked2, Naked2-associated vesicles accumulate at a 

basolateral corner, and TGFα is unable to reach the plasma membrane. That G2A Naked2 

acts as a dominant negative is supported by our recent finding that Naked2 siRNA results 

in cytosolic accumulation of TGFα and no detectable cell surface TGFα (Li, Hao et al. 

2007). These multiple functions carried out by Naked2 to ensure the precise and efficient 

delivery of TGFα to the basolateral surface of polarized epithelial cells have led us to 

designate Naked2 a CaRT protein (Li, Hao et al. 2007). 

Naked2 does exhibit features of a coat such as cargo recognition and selection. As 

part of the constitutive intracellular trafficking machinery, most adaptor or coat proteins 

like AP-1 and AP-2 are ubiquitously expressed and long-lived (Sorkin, McKinsey et al. 

1995). It is generally thought that adaptors regulate recruitment and stability of cargo but 

not vice versa. However, we have found that Naked2 is poly-ubiquitylated and undergoes 



rapid proteasomal degradation (Figs. 2.1 & 2.2). Moreover, its stability appears to be 

regulated by its cargo TGFα (Fig. 2.3 ~ 2.6). This is similar to the recent report of Hirst 

and co-workers showing that the degradation of a relatively short-lived 

clathrin-dependent adaptor, GGA2, was delayed when one of its cargos, CIMPR, was 

overexpressed in HeLa cells (Hirst, Seaman et al. 2007). The authors concluded that 

cargo proteins may not be just passively sorted by adaptors, but they may actively 

contribute to the formation of coated vesicles by interacting with and regulating coat 

components, at least in the case of GGA2. In this paper, we not only identify a similar 

phenomenon in the context of Naked2-coated TGFα vesicles, but also elucidate the 

biochemical basis for this phenomenon (Fig. 2.10). 

Given the multiple tasks orchestrated by Naked2 (cargo selection, vesicle recognition, 

basolateral targeting and vesicle fusion), it is perhaps not surprising that it is a highly 

regulated protein. We show that the upregulation of Naked2 by TGFα is 

post-transcriptional. Naked2 is a short lived protein with a half-life of 60 min due to 

ubiquitin-mediated proteasomal degradation (Fig.2.1). We also identified AO7 as a 

ubiquitin ligase for Naked2. It has been previously shown that AO7 mediates RING 

finger-dependent auto-ubiquitylation in vitro (Lorick, Jensen et al. 1999). A subsequent 

study implicated AO7 in NF-κB-mediated transcriptional activity (Asamitsu, Tetsuka et 

al. 2003) through interactions involving the transactivation domain of the p65 subunit. 

However, no direct ubiquitylation of p65 was detected and, until now, no other substrates 

for this E3 have been identified. Herein we show that AO7 interacts with and 
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ubiquitylates Naked2. Thus, we have identified the first heterologous substrate for AO7, 

as well as the first E3 ligase for Naked2.  

We previously demonstrated that TGFα binds to Naked2 residues 300-385 (Li, 

Franklin et al. 2004). Since TGFα protects Naked2 from ubiquitylation and AO7 binds 

directly to Naked2, we considered whether TGFα binding to Naked2 might hinder access 

of the ubiquitin ligase to Naked2 or may mask critical lysine residues within Naked2 that 

undergo ubiquitylation.  Indeed, we found that as we increased TGFα input there was 

reduced binding of AO7 to Naked2 (Fig. 2.9). This result favors the first possibility, but 

does not exclude the second possibility mentioned above. Thus, studies are underway to 

map the Naked2-AO7 interaction domains and to identify the ubiquitylation site(s) within 

Naked2. 

The discrepancy between the high efficiency of TGFα in Naked2 stabilization and 

the partial inhibition of Naked2 ubiquitylation and AO7 binding by TGFα raises the 

possibility that additional mechanisms may be involved in TGFα-mediated Naked2 

upregulation. For example, TGFα-containing vesicles may attract and recruit free Naked2 

onto the vesicle surface and facilitate cell membrane trafficking. This process may restrict 

subcellular localization of Naked2 to membrane structures where it is lacking protein 

degradation machinery. Therefore, increased level of TGFα may result in effective 

Naked2 protein stabilization without complete attenuation of Naked2 ubiquitylation. 

Detailed cellular localization studies will be conducted in order to test this possibility. 

TGFα-induced stabilization of Naked2 occurs independently of EGFR activation. 



The first EGFR-independent action of TGFα was described by Derynck and co-workers 

(Shum, Reeves et al. 1994).  By addition of a monoclonal antibody to the ectodomain of 

TGFα, these investigators observed PKC-mediated “reverse signaling.” In the present 

case, the effect is mediated by the cytoplasmic tail of TGFα through a direct 

protein-protein interaction. Interestingly, the target of this effect, Naked2, plays a critical 

role in the exocytic delivery of TGFα (Li, Franklin et al. 2004; Li, Hao et al. 2007). 

Therefore, Naked2 stabilization by TGFα may be a self-regulating mechanism by which 

TGFα ensures its proper sorting and efficient cell surface delivery.  

It has become increasingly clear that regulated cell membrane trafficking of EGFR 

ligands is essential to their activities and disruption of this process may result in severe 

physiological consequences. For example, isolated recessive renal hypomagnesaemia is 

due to a mutation in the cytoplasmic tail of pro-EGF that disrupts basolateral sorting of 

pro-EGF. This leads to insufficient stimulation of basolateral EGFRs in the proximal 

tubule of the kidney, resulting in impaired activation of the Mg2+ channel TRPM6 

(transient receptor potential cation channel, subfamily M, member 6), and magnesium 

wasting in the kidney (Groenestege, Thebault et al. 2007). We previously demonstrated 

that Naked2 plays a critical role in escorting TGFα to the basolateral surface of polarized 

epithelial cells. These effects of Naked2 are specific for TGFα in that overexpression of 

myristoylation-deficient G2A Naked2 in MDCK cells impairs cell surface delivery of 

TGFα, but not amphiregulin (AR) (Li, Franklin et al. 2004), another basolaterally 

targeted EGFR ligand that is also cleaved by cell surface TACE/ADAM17. Thus, TGFα 



appears to utilize a unique Naked2-mediated trafficking machinery; it ensures its 

basolateral cell surface delivery by stabilizing its CaRT Naked2 (Fig. 2.10). Taken 

together, these results highlight the complexity of basolateral trafficking and underscore 

the need for considering ligand trafficking and delivery in a systems biology approach to 

studying EGFR signaling. 
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CHAPTER III 

 

DOWNREGULATION OF NAKED2 IN HUMAN COLORECTAL CANCER 

 

Introduction 

Colorectal cancer is amongst the most common neoplasms in Western society, 

representing the second leading cause of cancer-related deaths in the United States 

(Parker, Tong et al. 1996). More than 85% of all sporadic and hereditary colorectal 

cancers display loss-of-function mutations in the Adenomatous Polyposis Coli (APC) 

gene (Kinzler and Vogelstein 1996) that encodes a key negative regulator of canonical 

Wnt signaling; activating mutations in a Wnt agonist, β-catenin, or inactivating mutations 

in the Axin gene are found in half of the remaining cases (Morin, Sparks et al. 1997). 

Deregulation of canonical Wnt signaling leads to expansion of the proliferative crypt 

compartment, and likely additional events, that eventuate in abnormal cellular and tissue 

architecture known as an adenoma (Oshima, Oshima et al. 1995; Oshima, Oshima et al. 

1997; Lamlum, Papadopoulou et al. 2000). Following initiation of a colorectal tumor, 

additional genetic alterations occur that further enhance proliferation, cell survival and 

cell motility, all of which promote progression and metastasis (Kinzler and Vogelstein 

1996; Polyak 1996; Oshima, Oshima et al. 1997).  

 From Drosophila to human, canonical Wnt signaling is highly conserved, and it plays 

crucial roles in normal embryonic development and stem cell maintenance in adult tissues 



(Reya and Clevers 2005). Dysregulation of canonical Wnt signaling has been closely 

linked to neoplasia, with the strongest link being in the initiation of colorectal cancer 

(Logan and Nusse 2004; Gregorieff and Clevers 2005; Reya and Clevers 2005). It is well 

accepted that canonical Wnt signaling needs to be tightly regulated under normal 

physiological conditions. A key component of this regulation is the cytoplasmic β-catenin 

destruction complex that consists of APC, Axin, CKI and glycogen synthase kinase-3β 

(GSK-3β). Sequential phosphorylations by CKI (Amit, Hatzubai et al. 2002; Liu, Li et al. 

2002) and GSK-3β (Yost, Torres et al. 1996) prime β-catenin for poly-ubiquitylation and 

its constitutive proteasomal degradation (Aberle, Bauer et al. 1997; Latres, Chiaur et al. 

1999; Liu, Kato et al. 1999). A signal from an activated Frizzle/LRP (Fz/LRP) receptor 

complex disassembles this protein complex and prevents degradation of β-catenin. 

Stabilized β-catenin then translocates into the nucleus, interacts with TCFs (TCF1, LEF, 

TCF3 and TCF4) by displacing co-repressors and converting TCFs to transcriptional 

activators (Behrens, von Kries et al. 1996; Molenaar, van de Wetering et al. 1996; van de 

Wetering, Cavallo et al. 1997). The loss of functional APC that occurs in 80% of 

colorectal cancers impairs the ability of the destruction complex to degrade β-catenin. 

However, the signaling mechanism that couples the Fz/LRP receptors and β-catenin 

destruction complex remains to be fully understood.  

Previous studies suggest that recruitment of Dvl and Axin by Fz and LRP, 

respectively (Cliffe, Hamada et al. 2003; Tamai, Zeng et al. 2004), is required for 

receptor activation and β-catenin stabilization. Drosophila Naked Cuticle directly binds 



to Dsh and antagonizes the Wingless/Armadillo (Wg/Arm) pathway at a step upstream of 

Zeste-white 3 kinase (Zw3), the GSK-3β homolog in Drosophila (Rousset, Mack et al. 

2001). Vertebrate Naked proteins, Naked1 and Naked2, are recently identified (Katoh 

2001; Wharton, Zimmermann et al. 2001; Yan, Wallingford et al. 2001). They both 

interact with Dvl via a conserved EF-hand domain in a Zn2+-dependent manner (Rousset, 

Wharton et al. 2002) and retain similar activities in antagonizing canonical Wnt signaling. 

In addition, vertebrate Nakeds also play a role in the non-canonical Wnt/Planar cell 

polarity (PCP) pathway. This is not unexpected because Dvl has been shown to be 

involved in both canonical and PCP Wnt pathways (Theisen, Purcell et al. 1994; Axelrod, 

Miller et al. 1998; Boutros, Paricio et al. 1998). In Xenopus embryos, Naked 

overexpression inhibits the normal convergent extension by overactivating PCP signals, 

suggesting that Naked switches Dvl activity from Wnt/β-catenin to the PCP pathway 

(Yan, Wallingford et al. 2001). However, a recent work by Van Raay et al. has shown an 

inhibitory effect on both pathways by overexpressing Nakeds in zebrafish embryos (Van 

Raay, Coffey et al. 2007). Although this discrepancy remains to be elucidated, Naked 

proteins are indeed important negative regulators of canonical Wnt signaling, which is 

frequently enhanced in colorectal cancer. 

 The tight regulation of canonical Wnt signaling is carried out, at least in part, by 

efficient negative feedback loops through inducible negative regulators, including Axin, 

Dickkopf (Dkk) and Naked Cuticle. In vertebrates, close correlation between Naked1 

transcription and active Wnt signaling has been observed in zebrafish embryos, chick 



embryos, mouse liver epithelial cells and human colon tumors (Yan, Wallingford et al. 

2001; Yan, Wiesmann et al. 2001; Ishikawa, Kitajima et al. 2004; Schmidt, Otto et al. 

2006; Van Raay, Coffey et al. 2007). Moreover, 5 perfectly matched TCF-binding sites 

were identified in the putative promoter of human Naked1 gene (Yan, Wiesmann et al. 

2001). In contrast, Naked2 expression pattern appears more ubiquitous and 

distinguishable from Naked1 expression in early development of zebrafish and mouse 

embryos (Wharton, Zimmermann et al. 2001; Van Raay, Coffey et al. 2007). More 

recently, Lei et al. has demonstrated that mouse Naked2 promoter activity is directly 

repressed by a homeobox gene Hoxc8 (Lei, Juan et al. 2007), which plays essential roles 

in differentiation and proliferation and is upregulated in many human cancers (Alami, 

Castronovo et al. 1999; Miller, Miller et al. 2003; Chen, Gu et al. 2005). Thus, Naked2 

appears to be differentially regulated compared to Naked1, a known Wnt target gene. In 

this study, we examined the expression pattern of both Naked1 and Naked2 in SW480 

cells, a human colorectal cancer (CRC) cell line with mutant APC and active Wnt 

signaling. Naked2 displays opposite expression pattern of Naked1. In fact, Naked2 

expression and promoter activity appeared to be repressed by active Wnt signaling, 

although with a time lapse. In line with these results, an expression profiling of Naked2 

protein in human colorectal tumors has revealed that Naked2 expression is 

downregulated in carcinomas and metastasis, but not in adenomas. Given the additional 

roles of Naked2 in maintaining normal basolateral TGFα trafficking (a proximal event of 

EGFR axis) (Li, Franklin et al. 2004; Li, Hao et al. 2007) and the importance of EGFR 



signaling in carcinoma maintenance (Roberts, Min et al. 2002), we proposed that loss of 

Naked2 expression in the late event of CRC may contribute to the tumor progression by 

disrupting normal delivery of TGFα and EGFR signaling. 



Materials and methods 

 

Plasmids, antibodies and chemicals 

Putative mouse Naked2 promoter sequences were obtained by PCR amplification 

from a Naked2-containing clone identified by the David W. Threadgill lab from a 

RPCI-22 mouse BAC library (Invitrogen, Carlsbad, CA), which contained the Naked2 

locus. PCR primer pairs for pro1.5 (nucleotides -1353 to +105) were 

5’-TGTGGATCCTAATCATTGAATC-3’ and 5’-GCGAATTCCGAGCTGAGAG-3’; for 

pro2.3 (nucleotide -1979 to +105) were 5’-TGGATAGATCTGTGTCTTTGG-3’ and 5’- 

GCGAATTCCGAGCTGAGAG-3’. The pro4.5 was a ligation product of a PCR product 

(by using primers 5’-GCTTACAAAGCTTGATCTTC-3’ and 

5’-GATTCAATGATTAGGATCCACA-3’) and pro1.5 by an intrinsic BamHI site. All 

PCR fragments were sequenced and confirmed to be free of mutations. The pro1.5, 

pro2.1 and pro4.5 fragments were then subcloned into pGL3-Basic vector (Promega, 

Madison, WI) for subsequent luciferase reporter assays. Control vector pGL3-Promoter 

that contains the SV40 promoter was also obtained from Promega. TOPflash and 

FOPflash plasmids were purchased from Upstate Biotechnology (Lake Placid, NY). The 

β-catenin (ΔN89) expression vector (Wagenaar, Crawford et al. 2001) was a generous gift 

from Lynn M. Matrisian’s lab (Vanderbilt University, TN). 

The rabbit polyclonal Naked1 and Naked2 antibodies were raised against GST-fused 

Naked1 (residues 1-229 in human Naked1) and Naked2 (residues 1-217 in human 



Naked2) peptides in collaboration with Cocalico Biologicals (Reamstown, PA). The 

mouse monoclonal β-catenin and β-actin antibodies were obtained from Sigma (St. Louis, 

MO). The mouse monoclonal α-tubulin antibody was purchased from Oncogene 

Research Products (San Diego, CA). Horseradish peroxidase-donkey anti-mouse and 

anti-rabbit IgG were obtained from Jackson ImmunoResearch (West Grove, PA). Alexa 

Fluor 488 goat anti-mouse antibody was produced from Molecular Probes (Invitrogen, 

Carlsbad, CA). All other chemicals were obtained from Sigma unless otherwise stated. 

 

Cell culture and transfection 

HEK293 cells and all transiently transfected derivatives were grown in Dulbecco’s 

modified Eagle’s medium (DMEM) by Hyclone (Logan, UT). SW480 and its derivative 

cells were generous gifts from Dr. Antony W. Burgess (Ludwig Institute for Cancer 

Research, Austrilia). SW480 cells were grown in RPMI 1640 medium (Hyclone, Logan, 

UT). SW480.APC and vector control cells were grown in the RPMI 1640 medium with 

1.5mg/ml geneticin (G418) (RPI, Mt. Prospect, IL). All culture media were supplemented 

with 10% fetal bovine serum (FBS), glutamine, nonessential amino acids, 100 U/ml 

penicillin and 100 μg/ml streptomycin (Hyclone, Logan, UT) 

Transient transfections were performed in HEK293 cells using FuGENE6 (Roche 

Applied Science, Indianapolis, IN) transfection reagent according to the manufacturer’s 

instructions. Twenty-four hrs after transfections in 24-well plates, cells were lysed in 1x 

Passive Lysis buffer (Promega, Madison, WI) followed by luciferase reporter assays.  



 

RT-PCR 

Total RNA was isolated from Caco-2 cells using the RNeasy mini kit (QIAGEN, 

Valencia, CA). RT-PCR was performed to determine the relative gene expression using 

SuperScript™ One-Step RT-PCR kit (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s instructions. We used primer 5’-CCACTTCTACCAGACATAGAGC-3’ 

and primer 5’-GTGCTCTCCTGGAAGAGGCTG-3’ for Naked1 PCR and primer 

5’-CGATGGGGAAACTGCAGTCG-3’ and primer 

5’-CAAAGTCATAGAGCGTGAAC-3’ for Naked2. All amplifications started with a 

minimal amount of RNA (250 ng of total RNA), and the reactions were limited to 25 

cycles to avoid saturating the reaction. RT-PCR for GAPDH was performed in the same 

reaction tubes to serve as an internal control for equivalent starting material. Primers used 

for GAPDH are 5’-TGAAGGTCGGAGTCAACGGATTTGGT-3’ and 

5’-CATGTGGGCCATGAGGTCCACCAC-3’. 

 

Western blotting and immunocytochemistry 

Cells were lysed in ice-cold 1X lysis buffer (25 mM Tris HCl, 150 mM NaCl, 0.5% 

Nonidet P-40, 0.5% sodium deoxycholate, 1 mM DTT and 2% BSA) and precleared by 

centrifugation. The protein concentration of supernatant was determined using Micro 

BCA Protein Assay Kit (Pierce, Rockford, IL) before boiling in sample buffer. Then 

proteins were resolved on 10% SDS-PAGE followed by western blotting. For β-catenin 



immunocytochemistry, SW480.APC cells were treated with either 10mM LiCl or NaCl 

for 24 hrs before fixation in 4% paraformaldehyde. Then cells were permeabilized with 

0.1% Triton X-100 for 15 min followed by standard immunofluorescence.  

 

Luciferase reporter assay 

The pGL3 vectors that contained different fragments of Naked2 promoter sequence 

were transiently transfected into HEK293 cells (0.4μg for each well in a 24-well tissue 

culture plate). Twenty-four hrs after transfection, cells were processed and assayed for 

luciferase activity using Dual-GloTM Luciferase Assay System (Promega, Madison, WI). 

Promoter-less pGL3-Basic and SV40 promoter-containing pGL3-Promoter vectors were 

used as negative and positive controls, respectively. To test the response to Wnt signaling, 

the mutant β-catenin (ΔN89) expressing vector was co-transfected with pGL3 derivatives. 

TOPflash (containing the binding site for the Tcf/LEF family of transcription factors 

fused to a luciferase reporter gene) or FOPflash (negative control) reporter plasmids (van 

de Wetering et al., 1997) were utilized to indicate the activation of canonical Wnt 

signaling by ΔN89 β-catenin. In all luciferase reporter experiments, Renilla luciferase 

vectors were co-transfected with reporter vectors. The resulting reporter luminescence 

intensities were all normalized to Renilla luciferase intensities from the same well.  

 



Results 

 

Opposite Expression pattern of Naked1 and Naked2 in SW480 cells 

 A direct correlation has been established between canonical Wnt signaling and 

expression of Drosophila Naked Cuticle and vertebrate Naked1(Wharton, Zimmermann 

et al. 2001; Yan, Wiesmann et al. 2001; Van Raay, Coffey et al. 2007). More directly, 

several putative TCF-binding sites have been identified in the human Naked1 promoter 

region (Yan, Wiesmann et al. 2001). To examine whether the other Naked family member, 

Naked2, is also regulated by canonical Wnt signaling, we analyzed Naked1 and Naked2 

expression in SW480 cells and SW480 cells stably expressing full-length APC.  

SW480 cells are a human colorectal cancer cell line (Leibovitz, Stinson et al. 1976) 

that contains a C>T substitution at codon 1338 of the APC gene (Nishisho, Nakamura et 

al. 1991). This mutation results in a truncated APC that lacks the Axin-binding domain 

and part of the β-catenin binding domain. As a result, β-catenin accumulates in both the 

cytoplasm and nucleus, and high levels of canonical Wnt signaling are observed as 

measured by TOPFlash reporter activity. Stable overexpression of wild-type APC in 

SW480 cells (SW480.APC) restores cell surface localization of β-catenin (Faux, Ross et 

al. 2004) (Fig. 3.1), silences canonical Wnt signaling and reverses the transformed 

phenotype as assessed by cellular morphology (Fig. 3.1), growth in soft agar and tumors 

in nude mice (Faux, Ross et al. 2004). Subconfluent SW480, SW480.APC and vector 

control cells were subjected to both RT-PCR and western blotting to assess relative levels 
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of Naked1 and Naked2 (Fig. 3.2). As expected, Naked1 is highly expressed in parental 

SW480 cells but levels of Naked1 mRNA and protein are significantly decreased in the 

SW480.APC cells (Fig. 3.2). In contrast, Naked2 expression is barely detectable in 

parental SW480 cells but mRNA and protein levels are markedly increased in 

SW480.APC cells (Fig. 3.2). Thus, Naked1, like Naked Cuticle, appears to be a canonical 

Wnt target gene, whereas Naked2 acts in an opposite manner.  

 

Active canonical Wnt signaling represses Naked2 transcription 

We then examined whether the upregulation of Naked2 in SW480.APC cells is due 

to repressed canonical Wnt signaling. To activate canonical Wnt signaling, SW480.APC 

cells were exposed to LiCl, a GSK-3β inhibitor. Twenty-four hr exposure to LiCl resulted 

in nuclear translocation of β-catenin (Fig. 3.3A), demonstrating activation of canonical 

Wnt signaling. However, levels of Naked2 protein were unchanged at this time, and it 

required an additional 24 hr exposure to LiCl before Naked2 protein levels declined (Fig. 

3.3B). These results demonstrate a direct correlation between activation of canonical Wnt 

signaling and downregulation of Naked2 protein, although there was a temporal lag 

between activation of canonical Wnt signaling and decreased levels of Naked2.  

 

β-catenin inhibits mouse Naked2 promoter activity 

Naked1 has been shown to be a direct transcriptional target of canonical Wnt 

signaling. Five perfectly matched TCF-binding sites have been identified in the putative 
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Figure 3.2 Differential expression of Naked1 and Naked2 in SW480 and SW480.APC 
cells. (A) Relative mRNA expression of Naked1 and Naked2 in SW480 and SW480.APC 
cells by RT-PCR. RT-PCR for GAPDH was used as internal control for equivalent starting 
material. (B) Western blotting of Naked1 and Naked2 in SW480 and SW480.APC cells. b-
actin blotting was performed to show comparable loading of cell lysates. (D) Quantitation 
of Naked1 and Naked2 protein levels in SW480 and SW480.APC cells after normalization 
to b-actin.
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cells. (A) The GSK-3b inhibitor LiCl induces nuclear translocation of b-catenin in SW480.
APC cells. In these APC-transfected cells, b-catenin immunoreactivity is restricted to the 
plasma membrane, indicating quiescent canonical Wnt signaling. After 24-hr exposure 
to 10 mM LiCl, there is nuclear and cytoplasmic accumulation of b-catenin, indicating 
activation of canonical Wnt signaling. As a control, 10 mM NaCl did not affect b-catenin 
localization. (B) LiCl reduces Naked2 protein levels in SW480.APC cells. Cells were 
treated with 10mM LiCl or NaCl over a three day time course followed by western blotting 
for Naked2. It required 48-hr exposure to LiCl for Naked2 levels to decrease and levels 
further declined at 72 hrs.     
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human Naked1 promoter and are thought to mediate transcriptional activation by the 

β-catenin/TCF complex. To test whether canonical Wnt signaling regulates Naked2 

transcription by inhibiting Naked2 promoter activity, we identified and subcloned the 

putative mouse Naked2 promoter that comprised nucleotides from -4,365 to +105 relative 

to the start of the 5’-untranslated region (UTR) (Fig. 3.4A). In comparison with the 

mouse Naked1 promoter, the Naked2 promoter contains a comparable number of putative 

TCF-binding sites; however, the orientation of these TCF-binding elements (TBE) differ 

(Fig. 3.4A). When we subcloned the most proximal 1.5kb (pro1.5) sequence of the 

putative promoter into the pGL3-Basic (promoter-less) vector, it displayed strong 

promoter activity (Fig. 3.4B). In contrast, when we extended the sequence to 2.1kb 

(pro2.1 in Fig. 3.4A), the promoter activity was markedly reduced. Promoter activity was 

partially restored when the promoter sequence was extended to 4.5kb (pro4.5), but it was 

still weaker than the pro1.5 fragment. These results suggest that the proximal upstream 

sequence of Naked2 5’-UTR contains basic promoter activity, and the sequence between 

nucleotides -1,353 and -1,979 contains negative regulatory elements. However, we 

cannot exclude the existence of long range enhancer elements in further 5’ or 3’ 

sequences. 

We then tested whether overexpression of β-catenin affected Naked2 promoter 

activity. Deletion of the N-terminal 89 residues in β-catenin (ΔN89) resulted in loss of 

phosphorylation sites that are required for its degradation (Munemitsu, Albert et al. 1996; 

Wagenaar, Crawford et al. 2001). This constitutively active mutant β-catenin was 
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Figure 3.4 Overexpression of b-catenin inhibits mouse Naked2 promoter activity. (A) 
Schematic depiction of putative mouse Naked1 and Naked2 promoters. Both Naked1 and 
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However, they display different orientations as depicted as "+" for CTTTGA/TA/T and "-" 
for T/AT/ACAAAG. Different fragments of the Naked2 promoter (shown as gray bars) 
were subcloned from the mouse genome. The numbers labeled on the promoter sequences 
represent the nucleotide length. (B) Basic Naked2 promoter activity. Luciferase reporter 
(pGL3) driven by different Naked2 promoter fragments or the control SV40 promoter were 
expressed transiently in HEK293 cells. Luminescence intensities were calculated as the 
fold increase relative to the pGL3-Basic blank reporter. (C) b-catenin represses Naked2 
promoter elements. DN89 b-catenin was co-expressed with reporter vectors containing Na-
ked2 promoter fragments or with TOPflash/FOPflash reporter plasmids. The induction of 
TOPflash reporter indicated an activation of Wnt signaling by DN89 b-catenin. In contrast, 
all pro1.5, pro2.1 and pro4.5 activities were greatly attenuated upon DN89 b-catenin co-
expression.
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co-transfected with TOPflash/FOPflash reporters or pGL3 vectors containing different 

Naked2 promoter sequences. Strong induction of TOPflash reporter activity demonstrated 

a substantial activation of β-catenin/TCF transcription factors by ΔN89 β-catenin (Fig. 

3.4C). Subsequent luciferase assays detected a reduction in promoter activity in all three 

Naked2 promoter fragments (Fig. 3.4C), suggesting that the Naked2 promoter is 

repressed by canonical Wnt signaling. These findings may provide a molecular basis for 

the differential regulation of Naked2 expression by canonical Wnt signaling compared to 

Naked Cuticle and Naked1.  

 

Naked2 expression is downregulated in colorectal cancer but not in adenomas 

The majority of human colorectal cancers are initiated by mutations in the APC gene, 

resulting in activation of canonical Wnt signaling. As a Wnt target gene, Naked1 mRNA 

was found to be elevated in 65% of laser microdissected human colon tumors compared 

to adjacent normal colonic mucosa (Yan, Wiesmann et al. 2001). We also observed 

increased Naked1 expression in parental SW480 cells that harbor a mutant APC gene, 

and it was decreased in SW480.APC cells in which canonical Wnt signaling was silenced. 

In contrast, Naked2 expression was suppressed in parental SW480 cells but it was 

restored upon introduction of wild-type APC.  

These results led us to assess Naked2 protein levels in human colorectal tumors. We 

observed reduced Naked2 protein levels in 10/16 (62%) of colorectal cancer specimens 

compared to their adjacent normal colonic mucosa (Fig. 3.5A). In one individual, Naked2 
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levels were low in both the primary lesion and liver metastasis compared to adjacent 

normal colonic mucosa. In contrast, Naked2 protein levels were not decreased in any of 6 

adenomas compared to their matched normal colonic tissue (Fig. 3.5B). Thus, decreased 

Naked2 expression appears to be a late event in colorectal cancer, and further supports an 

indirect action of canonical Wnt signaling on Naked2 expression. 

 



Discussion 

Given its importance in so many biological processes, it is imperative that canonical 

Wnt signaling be tightly regulated. In fact, a large number of negative regulators act at 

almost every step of the pathway. Deregulation of this tight control can lead to cancers 

(Oshima, Oshima et al. 1995; Oshima, Oshima et al. 1997; Lamlum, Papadopoulou et al. 

2000). Naked family members, Drosophila Naked Cuticle and vertebrate Naked1 and 

Naked2, are firmly established as effective Wnt antagonists (Zeng, Wharton et al. 2000; 

Katoh 2001; Wharton, Zimmermann et al. 2001; Yan, Wallingford et al. 2001; Van Raay, 

Coffey et al. 2007) by interacting with and inactivating Dishevelled, a critical signaling 

molecule that mediates signals from Fz receptor to the cytoplasmic β-catenin destruction 

complex (Zeng, Huang et al. 2008). The role of Naked2 is being re-assessed in light of 

the recently identified, additional function for this molecule, that is, its ability to act as a 

CaRT for the basolateral trafficking of TGFα in polarized epithelial cells(Li, Franklin et 

al. 2004; Li, Hao et al. 2007).  

The C-terminus of Naked2 contains a TGFα-tail-binding (TTB, residues 300-385) 

domain that is not conserved in Naked1 and Naked Cuticle (Li, Franklin et al. 2004; Li, 

Hao et al. 2007). As a result, human Naked2, but not Naked1, binds to the cytoplasmic 

tail of Golgi-processed TGFα and escorts TGFα-containing exocytic vesicles to a 

basolateral corner of polarized epithelial cells. These vesicles then dock and fuse with the 

plasma membrane in a Naked2 myristoylation-dependent manner. Overexpression of 

myristoylation-deficient mutant (G2A) Naked2 in polarized MDCK cells causes 



abnormal accumulation of TGFα-containing vesicles that fail to dock and fuse with cell 

membrane due to much reduced social activity of G2A-coated vesicles (Li, Hao et al. 

2007). These studies establish that Naked2 may act as a double agent between TGFα 

trafficking and Wnt signaling, while other family members are dedicated to the latter 

pathway.  

In this paper, we demonstrate that Naked2 is not only functionally distinct from other 

family members, but it is also differentially regulated by canonical Wnt signaling. In 

contrast to Naked Cuticle and Naked1, Naked2 transcription is repressed upon activation 

of the Wnt/β-catenin pathway (Fig. 3.2 and 3.3); this effect correlates with a reduction in 

Naked2 promoter activity (Fig. 3.4). However, we observed a 24-hr temporal lag between 

nuclear translocation of β-catenin and downregulation of Naked2 protein after LiCl 

treatment of SW480.APC cells (Fig. 3.3). Given that Naked2 is a short-lived protein due 

to poly-ubiquitylation and rapid proteasomal degradation (Ding, submitted), the delayed 

downregulation of Naked2 may not be a direct effect of the β-catenin/TCF transcriptional 

complex. This finding may explain why decreased Naked2 expression is observed in 

carcinomas, but not in adenomas (Fig. 3.5), whereas loss of functional APC and 

activation of canonical Wnt signaling is a common early event in colorectal neoplasia. 

Most Wnt target genes contain multiple consensus TCF-binding sites in their 

promoter regions. In the absence of nuclear β-catenin, TCF associates with 

transcriptional repressors, like Groucho (Cavallo, Cox et al. 1998; Hecht, Vleminckx et al. 

2000) and MTGR-1 (Moore, Amann et al. 2008), to repress target gene expression. Upon 



Wnt activation, β-catenin translocates to the nucleus where it displaces transcriptional 

repressors from TCF and results in transcriptional activation of Wnt target genes. Until 

recently, the β-catenin/TCF complex has not been thought to directly repress 

transcription of target genes. However, canonical Wnt signaling may repress gene 

transcription through other transcription factors. For example, one of the key events 

during the initiation of the epithelial-mesenchymal transition (EMT), a process exploited 

by invasive cancer cells, is Wnt-dependent downregulation of E-cadherin by the Snail 

transcription factor (Yook, Li et al. 2005; Yook, Li et al. 2006; Ko, Kim et al. 2007). It 

has been shown that Snail contains a β-catenin-like motif and undergoes 

GSK-3β-dependent phosphorylation, β-TrCP-mediated ubiquitylation and proteasomal 

degradation (in a manner similar to β-catenin). Wnt signaling inhibits Snail 

phosphorylation and degradation. As a result, Snail translocates into the nucleus and 

represses transcription of E-cadherin, one of the Snail target genes. Thus, through a 

mechanism similar to the regulation of β-catenin, canonical Wnt signaling activates Snail 

and represses gene transcription. A similar mechanism may also be utilized to 

downregulate Naked2 expression in colorectal cancer, although it may not necessarily be 

through the Snail transcription factor. A recent study reported that mouse Naked2 gene is 

a direct transcriptional target of Hoxc8, a member of the homeobox gene family, through 

a long-range enhancer region (Lei, Juan et al. 2007). Hoxc8 is a known target gene of 

caudal protein Cdx4, and Cdx4 is a direct transcription target of β-catenin/TCF 

transcription factor (Pilon, Oh et al. 2006). Thus, canonical Wnt signaling may repress 



Naked2 expression by a cascade of sequential transcriptional events through Cdx4 and 

Hoxc8. Upregulation of Hoxc8 expression has been observed in prostate, cervical and 

colorectal cancer (Alami, Castronovo et al. 1999; Miller, Miller et al. 2003; Chen, Gu et 

al. 2005), but levels of Naked2 have not been examined in this context. Studies are 

underway to determine whether Cdx4 and Hoxc8 are required for Wnt signaling-induced 

Naked2 downregulation. 

The frequent downregulation of Naked2 in colorectal carcinomas raises an additional 

question:  is it just a passive consequence of active Wnt signaling or does it actively 

contribute to tumor progression? Given that 90% of colorectal cancers contain mutations 

in either APC, Axin or β-catenin genes, all acting downstream of Naked2, one may argue 

that loss of Naked2 may not impact on canonical Wnt signaling in colorectal cancer. 

However, it has been shown that a Wnt binding protein SFRP attenuates canonical Wnt 

signaling in colorectal cancer cells with loss of functional APC (Suzuki, Watkins et al. 

2004).  

Moreover, loss of Naked2 may impact on colorectal cancer through impaired cell 

surface delivery of TGFα. Upon binding of different ligands, EGFR initiates complex 

signaling cascades that regulate diverse biological responses, including proliferation, 

differentiation, cell motility and survival (Marmor, Skaria et al. 2004). The ligands that 

bind to the receptor may determine the specificity of downstream signaling (Hackel, 

Zwick et al. 1999; Prenzel, Fischer et al. 2001; Yarden and Sliwkowski 2001). TGFα is 

the major ligand for EGFR and plays an important role in maintaining epithelial 



homeostasis in the gut. In polarized epithelial cells, TGFα is delivered to the basolateral 

cell surface where it is cleaved by TACE and the soluble ligand is then avidly taken up 

by the EGFR (Dempsey and Coffey 1994; Dempsey, Meise et al. 2003). Another EGFR 

ligand, AR, is also preferentially delivered to the basolateral membrane and cleaved by 

the same enzyme (Sunnarborg, Hinkle et al. 2002; Gschwind, Hart et al. 2003). However, 

soluble AR binds more efficiently to HSPGs than to the EGFR and thus may exist in a 

depot form (Schuger, Johnson et al. 1996). Loss of Naked2 may result in impaired cell 

surface presentation of TGFα. One possible consequence of this loss would be to create 

relatively unoccupied EGFRs to which AR or other ligands can now bind. We reported 

recently that AR, but not TGFα, causes a EMT-like phenotype in MDCK cells (Chung, 

Cook et al. 2005; Chung, Graves-Deal et al. 2005). Taken together, these data lead us to 

propose a model in which loss of Naked2 expression impairs cellular trafficking of TGFα 

and contributes to colorectal cancer progression. 
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CHAPTER IV 

 

GENERATION AND CHARACTERIZATION OF NAKDED2 KNOCK-OUT MICE 

 

Introduction 

Mammalian Naked2 was identified as a Naked Cuticle homolog by its conserved 

EF-hand motif. Similar to Naked1, Naked2 antagonizes canonical Wnt signaling in 

various vertebrate species, such as Xenopus, zebrafish, mouse and human (Wharton, 

Zimmermann et al. 2001; Yan, Wallingford et al. 2001; Van Raay, Coffey et al. 2007). It 

also plays a role in the non-canonical Wnt/PCP pathway as elucidated in the early 

development of Xenopus and zebrafish embryos (Yan, Wallingford et al. 2001; Van Raay, 

Coffey et al. 2007). In addition, our recent cell culture-based studies have demonstrated 

unique functions of Naked2 in the basolateral cell surface delivery of TGFα (Li, Franklin 

et al. 2004; Li, Hao et al. 2007), a major EGFR ligand in the gastrointestinal epithelium. 

However, in vivo roles for Naked2 have not been examined in the mouse. 

EGFR belongs to the ErbB family of receptor tyrosine kinases; there are seven 

mammalian ligands to EGFR: EGF, TGFα, HB-EGF, AR, betacellulin (BTC), epiregulin 

(EPR), and epigen (Shoyab, McDonald et al. 1988; Massague 1990; Higashiyama, Lau et 

al. 1992; Toyoda, Komurasaki et al. 1995; Strachan, Murison et al. 2001). These ligands 

are made as type I transmembrane proteins that are inserted into the plasma membrane 

where they undergo proteolytic cleavage to release mature, soluble growth factors, which 



in turn bind to and activate ErbB receptors. TGFα, EGF, AR and epigen bind solely to 

EGFR, whereas HB-EGF, BTC and EPR can also bind ErbB4.  

 Upon binding by different ligands, EGFR forms a homo-dimer with itself or a 

hetero-dimer with other ErbB receptor members — ErbB-2 (HER2), ErbB-3 (HER3) and 

ErbB-4 (HER4). The dimerization of the ectodomains results in activation of intrinsic 

tyrosine kinase acitivities that reside in the cytoplasmic tail of the receptors, with the 

exception of HER3 which lacks intrinsic tyrosine kinase activity. Subsequent 

auto-phosphorylation at specific tyrosine residues within the cytoplasmic tail of the 

receptor creates docking sites for binding of adaptor proteins or signaling molecules 

(such as GRB-2, Shc, PLC-γ and Src) to transduce a subset of intracellular signaling 

spectrum, regulating diverse biological responses including proliferation, differentiation, 

cell motility and survival (Marmor, Skaria et al. 2004). The specificity of downstream 

signaling pathways is determined by which ligand engages the receptor, the composition 

of the receptor pairs and the particular tyrosine residues that are auto-phosphorylated.  

It is increasingly recognized that cell surface delivery and presentation of EGFR ligands 

are critical steps in regulating EGFR activities.  

Each of the EGFR ligands exhibits distinct features as to cell surface delivery, cell 

surface cleavage and binding to the EGFR (Fig. 1.4B). In polarized epithelial cells, EGF 

is equally delivered to both the apical and basolateral plasma membrane (Dempsey, 

Meise et al. 1997). In contrast, TGFα and AR are sorted preferentially to the basolateral 

membrane where they are cleaved by TACE/ADAM17 (Brown, Meise et al. 1998; 



Borrell-Pages, Rojo et al. 2003; Gschwind, Hart et al. 2003; Sahin, Weskamp et al. 2004), 

a cell membrane metalloproteinase that is restricted to this compartment. The cell surface 

cleavage of TGFα occurs so rapidly that the cell membrane immunoreactivity of TGFα 

can only be detected after administration of a selective TACE inhibitor, WAY-022 . 

Soluble, mature TGFα is then avidly consumed by basolateral EGFRs in an autocrine or 

local paracrine fashion (Dempsey and Coffey 1994). Cell surface cleavage of AR by 

TACE appears to be less efficient than that of TGFα. Mature AR contains an 

amino-terminal heparin-binding domain (HBD) that interacts with extracellular and 

cell-associated HSPGs as well as the tetraspanin CD9 (Johnson and Wong 1994; Inui, 

Higashiyama et al. 1997; Nylander, Smith et al. 1998). Interaction with these molecules 

may facilitate a depot form of AR that, under certain conditions, can bind and activate 

EGFRs, conferring distinct biological properties to AR (Chung, Cook et al. 2005; Chung, 

Graves-Deal et al. 2005). HB-EGF is also predominantly delivered to the basolateral 

compartment but remains as a transmembrane form. The shedding of HB-EGF can then 

be induced by protein kinase C (PKC) activation (Izumi, Hirata et al. 1998) and increased 

intracellular calcium (Horiuchi, Le Gall et al. 2007). 

 The rapid cell surface cleavage and avid local consumption of TGFα suggest that cell 

surface delivery is a critical, possibly rate-limiting, step in regulating the action of 

endogenous TGFα. Two basolateral sorting determinants have been found in the 

cytoplasmic tail of TGFα (Dempsey, Meise et al. 2003). Naked2, an originally identified 

Wnt antagonist, binds to the basolateral sorting determinants of TGFα and escorts 



TGFα-containing vesicles to the basolateral corner of polarized epithelial cells where 

these vesicles dock and fuse with the plasma membrane in a Naked2 

myristoylation-dependent manner (Li, Franklin et al. 2004; Li, Hao et al. 2007). This 

process appears to be specific to TGFα, since overexpression of myristoylation-deficient 

G2A Naked2 disrupts basolateral sorting of TGFα but not that of AR. 

In the normal gut, TGFα is the major EGFR ligand that binds basolateral EGFRs, 

and it plays a critical role in maintaining epithelial homeostasis. Loss of Naked2 

expression in colorectal cancer will perturb Naked2-dependent basolateral delivery of 

TGFα and thus create relatively unoccupied EGFRs to which AR can now bind. This 

substitution of AR for TGFα may have significant biological consequences. Previous 

work from the Coffey lab has shown that recombinant human AR, but not TGFα, disrupts 

epithelial junctional integrity leading to an EGFR-dependent epithelial to mesenchymal 

(EMT)-like transition (Chung, Cook et al. 2005; Chung, Graves-Deal et al. 2005). 

Therefore, Naked2 may play an important role in maintaining epithelial homeostasis in 

the gastrointestinal tract. Loss of Naked2 expression may perturb TGFα trafficking, and 

this may have physiological consequences in vivo. To test this possibility, I have 

generated a conditional targeted allele of Naked2 gene in mice, and the initial 

characterization of these mice is underway.  



Materials and Methods 

Plasmids and bacteria strains 

 The Naked2-containing BAC clone was identified by the David W. Threadgill lab 

from the RPCI-22 mouse BAC library (Invitrogen, Carlsbad, CA). 

The PL253, PL451 and PL452 vectors (Liu, Jenkins et al. 2003) were obtained from 

the Neal Copeland lab (NCI, Frederick, MA). The PL253 is a pBluescript-derived 

plasmid for retrieval of DNA from a BAC clone. This plasmid contains a Mc1-driven 

Thymidine Kinase (TK) cassette for negative selection in ES cells. The PL451 plasmids 

contains a neo cassette flanked by two frt sites and one loxP site 

(Frt-Pgk-em7-Neo-Frt-loxP). The PL452 contains a neo cassette flanked by two loxP 

sites (loxP-Pgk-em7-Neo-loxP). The neo gene in these two plasmids is expressed both 

from a prokaryotic promoter (em7) and a eucaryotic promoter (Pgk). 

 The exo, bet and gam containing E.coli strains, EL250 and EL350, are used in this 

study. They are derived by transferring the defective λ prophage present in DY330 cells 

(Yu, Ellis et al. 2000) into DH10B cells to create DY380 cells (Lee et al. 2001). An 

arabinose-inducible cre gene (PBAD-cre) is then introduced into the defective λ prophage 

present in DY380 cells to create EL350 cells (Lee et al. 2001). Instead, EL250 is a 

DY380 derivative containing an arabinose-inducible flpe gene (PBAD-flpe). 

  

Antibodies and other reagents 

 The Naked2 antibody was generated as described in Chapter II. The α-tubulin 

http://recombineering.ncifcrf.gov/plasmid.asp#PL253


antibody was purchased from Oncogene Research Products (San Diego, CA). 

Horseradish peroxidase-donkey anti-mouse and anti-rabbit IgG were obtained from 

Jackson ImmunoResearch (West Grove, PA). Endonucleases and cloning enzymes were 

purchased from New England Biolabs (Ipswich, MA). All other chemicals were obtained 

from Sigma (St Louis, MO) unless otherwise stated. 

 

PCR and RT-PCR 

 PCR amplification (PfuTurbo, La Jolla, CA) was performed by setting up the 

reaction mixture containing 0.5 μl of dNTP (10 mM), 10 ng of BAC DNA, 0.5 μl (10 μM) 

of each primer, 5 μl of 10X Pfu DNA polymerase reaction buffer, 1 μl of PfuTurbo (2.5 

U/μl) and water to a total volume of 50 ul. PCR was performed using a PE-9700 PCR 

machine with the following settings: 94°C for 2 min, then 25 cycles of 94°C for 15 sec, 

annealing for 30 sec, and 72°C for 1 min. Annealing temperatures were adjusted for each 

primer pair. PCR products were ligated into the pCR2.1-TOPO vector using a TOPO TA 

cloning kit (Invitrogen, Carlsbad, CA) followed by DNA sequencing and subcloning. 

Genotyping PCR was performed using Taq DNA polymerase (Roche, Indianapolis, IN) 

with following primers: 5’- GACACGCCTTGGGTCTCC-3’ and 

5’-TTTTTCCACTGCCCATTTGT-3’. The wild-type allele will generate a 708 bp 

product; the Naked2 null allele will generate a 113 bp product. 

 Total RNA was extracted from mouse intestinal tissues using the RNeasy mini kit 

(QIAGEN, Valencia, CA). RT-PCR was performed using the SuperScript™ One-Step 



RT-PCR kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. We 

used primer (5’-CACCCGTCCTAGCGCCACTG-3’) and primer (5’- 

CTTCTTGCTAAGTCTCAGTG-3’) that encompass exon 1 and exon 5 of the mouse 

Naked2 gene.  

 

Southern blotting 

Phenol-chloroform extracted ES cell genomic DNA (>10 μg) was digested with 

EcoRV (4 units / μg DNA) at 37ºC overnight. Digested DNA was then resolved by 0.8% 

agrose electrophoresis in 1x TAE buffer at 1 v/cm gel for about 16 hrs. The next day, the 

gel was soaked in 5 volumes of 0.2M HCl for 6min, rinsed briefly with H2O twice, 

soaked in denature buffer for 30min with constant, gentle agitation (Denaturing buffer: 

1.5M NaCl, 0.5M NaOH) and then rinsed again with H2O twice. DNA was then 

transferred to HybondN+ membrane (Amersham Life Science) overnight. The next day, 

membrane was rinsed with 2x SSC buffer and incubated at 65ºC for 2 hrs in 

prehybridization solution (6XSSC + 1% SDS + 5X Denhardt + 0.1mg/ml boiled SSDNA). 

Meanwhile, southern probes were synthesized using pre-purified templates, Prime-It II 

Random Primer Labeling Kit (Strategene #300385) and 32P-dCTP. Gel-purified PCR 

products, using following primer pairs, were used as templates for probe synthesis.  

3’ probe primers  5’-CTGAAGGGTACAGAGAGCAAG-3’ 

5’-GCTTGCTGTGAGGCAGGTTAG-3’ 

5’ probe primers  5’-GTCTTGGTAAGCAAGAAGTGA-3’ 



     5’-GCATGCGCCACCACCTCCAG-3’ 

neo probe primers  5’-CTTCAAAAGCGCACGTCTGC-3’ 

     5’-GTGCTCGCTCGATGCGATGT-3’ 

32P-labeled probes were boiled and then cooled on ice before adding to 

prehybridization solution. The hybridization was incubated overnight at 65°C in 

hybridization bottles. On the last day, the membrane was washed with 2XSSC + 0.5% 

SDS, at 65°C for 10min, followed by washes in preheated 1XSSC +0.5% SDS at 65°C 

for 10min and 3 times in preheated 0.1XSSC +0.1% SDS at 65°C for 30min. Then 

autoradiography was conducted at -80°C in a sealed cassette.  

 

Western blotting 

 Mouse ileum tissues were dissected and homogonized in ice-cold lysis buffer (25 

mM Tris HCl, 150 mM NaCl, 0.5% Nonidet P-40, 0.5% sodium deoxycholate, 1 mM 

DTT and 2% BSA) in the presence of protease inhibitor cocktail (Sigma, St Louis, MO). 

Lysates were centrifuged at 13,000 rpm for 15 min at 4ºC, and clear supernatants were 

saved. The protein concentration of the supernatant was determined using the Micro BCA 

Protein Assay Kit (Pierce, Rockford, IL) before boiling in sample buffer. Approximately 

50 μg proteins of each sample were resolved on 10% SDS-PAGE followed by regular 

western blotting using the Naked2 antibody.  

 

In situ hybridization 



The synthesis of digoxigenin (DIG)-labeled probes was performed according to the 

manufacturer’s protocol (Roche). Briefly, one in vitro transcription reaction (20μl) 

contained: 1μg of linearized DNA template (normally 2-4μl); 1X DIG RNA labeling mix 

(1mM ATP, CTP and GTP; 0.65mM UTP; 0.35mM DIG-11-UTP pH7.5); 1X 

transcription buffer; 40U RNasin (RNase inhibitor, Promega) and 50U of the appropriate 

RNA polymerase (T7,T3 or SP6). The transcription reaction was performed at 37°C for 2 

hours and stopped by adding RNase-free DNaseI (20U) for 15 minutes at 37°C to destroy 

the template DNA. The labeled probes were precipitated with 3M sodium acetate (pH 5.2) 

and 100% ethanol, washed in 70% ethanol, resuspended in diethyl pyrocarbonate 

(DEPC)-treated water and stored at -80°C. The Naked1 (739 bp) and Naked2 (824 bp) 

template sequences were PCR amplified from the mouse genomic DNA using the 

following primer pairs: Naked1 probe (5’-CGGAATTCTCCTTCCACCTCCTTGACAC-3’) 

and (5’-CGGGATCCGGTTTGGGGAGACCTGTGTA-3’); Naked2 probe 

(5’-CGGAATTCGAAAACCTCTTGGGACACCA-3’) and 

(5’-CGGGATCCTCTGGCCTCTTTGTTTTGCT-3’). PCR products were inserted into 

pBluescript KS(+) in EcoRI and BamHI. After linearization with EcoRI, anti-sense 

probes were synthesized with T7 RNA polymerase. 

Section in situ hybridization was carried out as described (Hogan et al,, 1994) with 

some modifications. After dissection, mouse intestines were Swiss-rolled, directly 

embedded in Tissue-Tek® OCT compound in a cold ethanol-dry ice bath and stored at 

-80°C. Cryosections, at 15μm thickness, were collected on Superfrost Plus slides and 



dried in a 37°C incubator for 40 minutes before being fixed in 4% PFA for 20 minutes at 

RT. Slides were then washed twice in DEPC-PBS for 5 minutes each time, followed by 

proteinase K treatment (2μg/ml in 50mM Tris pH7.5 and 5mM EDTA) at RT for various 

lengths of time depending on the embryonic stage. After a brief rinse in DEPC-PBS, 

samples were post-fixed in 4% PFA for 15 minutes at RT. To enhance signaling, sections 

were treated for acetylation with 250ml 0.1M triethanolamine-HCl (pH 8.0) containing 

0.625ml acetic anhydride. After two 5 minute washes in DEPC-PBS at RT, slides were 

incubated with hybridization buffer (same as in whole-mount hybridization) for at least 2 

hours at 60°C; DIG-labeled probes were then added onto the slide at 1-2μg/ml and 

incubated overnight at 60°C. Unbound probes were removed by a series of washes in 

1XSSC (60°C, 10 minutes), 1.5XSSC (60°C, 10 minutes), 2XSSC (37°C, 20 minutes, 

twice), 2XSSC containing 0.2μg/ml RNaseA (37°C, 30 minutes), 2XSSC (RT, 10 

minutes), 0.2XSSC (60°C, 30 minutes, twice), PBTw (60°C, 10 minutes, twice; RT, 10 

minutes), and PBT (PBS containing 0.1% TritonX-100 and 0.2% BSA) (RT, 15 minutes). 

Slides were incubated in blocking buffer (PBT containing 20% goat serum) for at least 2 

hours at RT, before anti-DIG antibody conjugated to AP was added into the blocking 

buffer at 1:2000 dilution for overnight incubation at 4°C. After three 30 minute washes in 

PBT at RT, sections were equilibrated in NTM without or with 5mM levamisole for 5 

minutes each time and incubated in BM Purple at 37°C until specific signals were 

detected. The color reaction was stopped by rinsing slides in PBS. 

 



Results 

 

Generation of targeting vector using BAC recombineering 

Given the early expression of Naked2 in various tissues of the mouse embryo 

(Wharton, Zimmermann et al. 2001), we employed a conditional knock-out strategy to 

avoid potential embryonic lethality.  

The mouse Naked2 is a single-copy gene on chromosome 13C1, and it contains ten 

exons (Fig. 4.1). The first three exons are short and condensed in a <700-bp region, 

followed by a large 20-kb intron. Since intron one is only 97-bp long, insertion of a 34-bp 

loxP site in this sequence may alter the transcriptional initiation or RNA splicing of the 

wild-type Nkd2 gene. Therefore, we targeted the 5’-loxP site into intron 2, which is 

253-bp long (Fig. 4.1). To avoid the disruption of splicing acceptor and potential branch 

point of intron 2, the loxP site was inserted 70-bp upstream of exon 3. In intron 3, the 

second loxP site was introduced with a pgk-neo cassette flanked by Frt sites.  In the 

presence of active Cre recombinase, the floxed fragment will be excised, resulting in 

deletion of exon 3 and creating a pre-mature stop of the Naked2 transcript, expressing 

only the first 22 residues encoded by the first two exons. 

To precisely and efficiently target the loxP sequences and neo cassette in the Naked2 

locus, I utilized a phage-based E.coli homologous recombination system, which allows 

plasmid-based subcloning and DNA modification without the need for restriction 

enzymes or DNA ligases.  



The first step was to retrieve the 10 kb mouse genomic sequence encompassing the 

first 3 exons of Naked2 gene and their contiguous regions from a BAC clone 

RPCI-22-164-N12 (BAC N12) and place it into PL253 vector by a process known as gap 

repair. The gap repair is a homolog recombination reaction that requires recombinases 

encoded by two Red genes, exo and det. The functions of these two recombinases are 

further assisted by the Gam protein. We first electroporated BAC N12 DNA into 

overnight-cultured EL350 cells that contained exo, det and gam genes, and the 

BAC-containing cells were selected using the chloramphenicol resistance (Camr) gene 

that is carried in the BAC vector backbone. Two short homologous arms, A-B and Y-Z 

(~450 bp), were PCR amplified and ligated into PL253 between NotI and SpeI sites. The 

retrieval vector was subsequently linearized with HindIII at the junction of the two arms 

to create a DNA double-strand break for gap repair. We electroporated one μg of the 

linear retrieval vector into BAC N12-containing EL350 cells, which had been induced for 

exo, det and gam expression by prior growth at 42ºC for 15 min. Resultant ampicillin 

resistant (Ampr) colonies were diagnosed by digestion with NotI and SpeI. This retrieved 

plasmid containing the 10.1 kb genomic sequence spanning exon 3 of the Naked2 gene 

was designated as pWT000. 

The second step was the introduction of a loxP site into intron 2 of the subcloned 

Naked2 genomic DNA. Mini-targeting arms that were homologous to the targeting site 

were PCR amplified using primers C-D and E-F from BAC DNA and inserted into EcoRI 

and BamHI sites in the PL452 plasmid to flank the loxP-neo-loxP cassette. The floxed 



 
 
 
 
 
 
Table 4.1 Primers used in generating the Naked2 targeting vector 

 

Primer Sequence 5’-3’ Purpose 

A TAGCGGCCGCTATGTTGAGGACATGCTTG 

B GTAAGCTTGATTCACAGAACACATGTC 
Retrieval, 5’ arm 

C AGTCGACGGGGAAATTTCAGTCC 

D CGAATTCACCCAGAGCCCCGAGG 
1st loxP targeting, 5’ arm 

E AGGATCCGGGTGGGCGCTGCAAG 

F AGCGGCCGCTTCTGCAAGGCCCTT 
1st loxP targeting, 3’ arm 

G AGTCGACTCTAAGGCAFAFATGGGACT 

H CGAATTCCGCTGTATTAAGCTCTCCAA 
2nd loxP targeting, 5’ arm

I AGGATCCGGAGCATCCCTGGACAAATGG 

J AGCGGCCGCTCTGCTCTTAAACACAGCAC 
2nd loxP targeting, 3’ arm

Y GTAAGCTTATGTATGTGGAGGCCAGAGG 

Z GTACTAGTCAGAAACCACCAATCCCCTGT 
Retrieval, 3’ arm 
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Neo cassette together with the mini-targeting arms was excised by SalI and NotI and 

electroporated to gap repair-competent EL350 cells (see Materials and Methods) that 

contained the pWT000 plasmid. Kanamycine resistant (Kanr) colonies were examined by 

KpnI digestion, and the correct recombination product that had the floxed neo cassette 

targeted into intron 2 was designated as pWT006. Excision of the neo cassette from the 

pWT006 was accomplished by inducing Cre expression by prior growth in 

arabinose-containing media for 1 hr. As a result, a single loxP site was left in the targeting 

site of intro 2, and this plasmid was designated as pWT008.  

The last step was to target a second loxP site together with a Frt-neo-Frt cassette into 

the 5’ end of intron 3. The Frt-Pgk-em7-neo-Frt-loxP cassette in the PL451 plasmid was 

flanked by mini-targeting arms that were amplified using PCR primer pairs G-H and I-J. 

A similar gap repair reaction was conducted and produced the pWT006 plasmid that had 

the second loxP site correctly targeted. This final targeting vector was subsequently 

linearized with DraIII and electroporated into TL-1 ES cells.  

 

Screening targeted ES cell clones by Southern blotting 

 After electroporation, 106 G418-resistant and TK-negative ES cell colonies were 

picked, and genomic DNA was extracted. The clones were digested with EcoRV 

endonuclease and resolved by agrose gel followed by Southern blotting.  A 5’ probe 

outside of the 5’ targeting arm recognized a 16.7 Kb fragment in the wild-type allele and 

a 7.5 Kb fragment in the targeted Naked2flox-neo allele (Fig. 4.1). Six of 106 clones were 
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Figure 4.2 Southern blot for ES cell screening. (A) One hundred and six G418 resistant 
and TK-negative ES cell clones were screened by Southern blotting using the 5’ probe. A 
7.5 kb band that represents the targeted allele was detected in six clones. The wild-type 
allele produced a 16.7 kb band using the 5’ probe. (B) All six targeted clones displayed 
correct band sizes by additional probes (3’ and neo). 
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positive for the 7.5 Kb band by 5’ probe screening (Fig. 4.2A). The targeted ES cell 

clones were also confirmed by Southern blotting using a 3’ probe and neo probe (Fig. 

4.2B).  

 Given the possibility that homologous recombination may also occur by utilizing the 

633 bp sequence between the 5’ loxP site and Frt-neo-Frt cassette as a short 

recombination arm (Fig. 4.3B), we conducted a further examination using PCR. The 

neomycin resistance displayed by these targeted clones indicated that potential 

mis-recombination may only happen between the short middle sequence and the long 3’ 

targeting arm, which will result in loss of the 5’ loxP site (Fig. 4.3A, B). Thus, we 

designed a pair of primers that encompassed the 5’ loxP site. The presence of targeted 5’ 

loxP site will produce a PCR product 46 bp longer than un-targeted sequence. To our 

surprise, 2 of the 6 clones were missing the 5’ loxP site, indicating a high frequency of 

recombination mediated by the short arm (Fig. 4.3C). PCR products were sequenced to 

confirm the accuracy of 5’ loxP sites, and three correctly targeted clones (1A1, 2B6 and 

2B10) were chosen for blastocyst injection.  

 

Genotyping of targeted Naked2 alleles in mice 

 Only injections using 1A1 and 2B6 clones resulted in high percentage agoutis, which 

were then directly crossed to Flpe female mice for germline transformation and removal 

of the neo cassettes. Resultant F1 pups were genotyped and germline transformation of 

Naked2flox alleles was confirmed. Heterozygous Naked2flox/+ male mice were crossed with 
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Figure 4.3 Possible homologous recombination events that may result in loss of one 
loxP site. (A) Prefered homologous recombination event that targets both loxP sites (red 
arrows) encompassing exon 3 of the mouse Naked2 gene. (B) The 5’ loxP site was lost due 
to unwanted homologous recombination. (C) PCR diagnosis for the six targeted ES cell 
clones using primers that flank the 5’ loxP sites. 
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Sox2-cre females to generate Nake2-null alleles. To test for embryonic lethality, Naked2 

+/- mice were intercrossed, resulting in all wild-type, heterozygous and homozygous 

Naked2 mice. The genotypes were verified by PCR genotyping (Fig. 4.5A); the number 

of each genotype that appeared adhered to Mendellian rules of inheritance (data not 

shown). Therefore, embryonic lethality was not observed in Naked2-/- mice.  

 

Molecular confirmation of Naked2 expression in normal and knock-out mice 

 In wild-type intestinal tissues of 6-week old mice, endogenous Naked2 expression 

was detected by in situ hybridization using a 3’ probe (see Materials and Methods). The 

expression of Naked2 was found in both small intestine and colonic epithelial cells but 

not in stromal cells (Fig. 4.4). Along the crypt-luminal axis, Naked2 was highly expressed 

at the luminal surface and displayed a decreasing gradient of expression towards the crypt 

base. The majority of crypt epithelial cells were negative for Naked2 staining except a 

small niche of cells that expressed moderate levels of Naked2 at the base of the crypt. In 

mouse colon, Naked2 was also detected at the top of crypt, but it exhibited a weak but 

much broader pattern of expression in the bottom half of the colonic crypt.  

We verified the loss of Naked2 expression in the young adult intestinal tissues of 

Naked2-/- mice. Both RT-PCR and western blotting confirmed partial and complete loss of 

Naked2 expression in hetero- and homozygote Naked2 mutant mice (Fig. 4.5B, C).  



Colon Ileum

Naked2

Figure 4.4 Naked2 in situ hybridization in normal mouse intestine tissues.  Naked2 is 
expressed at the luminal surface of the crypt epithelium in both colon and small intestine of 
wild-type mice. Moderate Naked2 expression is also detected at the base of intestinal crypt 
but it is much weaker in colonic crypt. 
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Figure 4.5 Molecular confirmation of Naked2 knock-out mice. (A) PCR genotyping of 
tail DNA from wild-type and Naked2 mutant mice. (B) Naked2 mRNA expression in wild-
type and Naked2 mutant mice by RT-PCR. Total RNA of intestinal tissues was extracted 
from young adult mice and subjected to One-step RT-PCR using primers that encompass 
exon 1 and exon 5. (C) Western blotting of intestinal tissues from wild-type and Naked2 
mutant mice. Naked2 mRNA and protein levels are reduced in the heterozygous mice and 
lost in Naked2-/- mice.  
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Discussion 

 Despite previous Naked2 studies using overexpression and RNA interference in 

epithelial cell culture and zebrafish embryos, in vivo characterization of Naked2 function 

has not been characterized in the mouse due to the lack of genetically engineered Naked2 

mutant mice. Recently, a Naked2 mutant mouse was generated by replacing the exons 

that encode Dvl-binding motif with IRES-lacZ/neomycine cassette (Zhang, Cagatay et al. 

2007). However, homologous mutant Naked2lacZ mice are viable with slightly reduced 

litter sizes. Surprisingly, the double knock-out of both Naked1 and Naked2 using a 

similar strategy did not produce an overt phenotype, except subtle alterations in cranial 

bone morphology that resemble the phenotype of a mutation in Axin2, another 

Wnt/β-catenin antagonist. Based on these data, the authors concluded that Naked2 

function is dispensable for embryonic development.  

 However, the above study may be flawed. First, we have identified an additional 

Dvl-binding domain located at the C-terminus of human Naked2 (unpublished data) that 

is not replaced by IRES-lacZ/neomycine cassette. Resultant mutant Naked2 may still be 

able to affect Dvl and Wnt signaling. Second, Naked2 protein without the EF-hand 

domain retains TTB motif (residue 300-385) that is sufficient to interact with the 

cytoplasmic tail of TGFα. The mutant Naked2 generated in the previous study may have 

intact functions in delivering TGFα to the basolateral cell surface. Therefore, elimination 

of the entire Naked2 gene or the C-terminus functional TTB and the additional 

Dvl-binding domains may produce a more accurate phenotype of Naked2 function.  



 In this study, we floxed exon 3 of the mouse Naked2 gene. Deletion of exon 3 

resulted in premature termination of the Naked2 transcript that only encodes the 

N-terminus 22 residues of Naked2 protein. This design produced a more complete 

elimination of functional Naked2 gene. RT-PCR using primers that encompass exon 1 to 

exon 5 and western blotting using Naked2 antibody that was generated against residues 1 

to 217 have confirmed the loss of Naked2 expression in homologous Naked2-/- mouse 

intestinal tissues (Fig. 4.5). However, we have not observed any developmental defects 

upon initial examination.  

Besides molecular confirmation, functional examinations are underway. To test the 

effect of Naked2 ablation on Wnt signaling, the Top-Gal transgene will be introduced into 

Naked2-/-. The level of Wnt signaling can be determined by lacZ staining. To test whether 

the loss of Naked2 disrupts basolateral trafficking of TGFα, TGFα 

immunohistochemsitry will be performed in Naked2-/- mouse tissues. We expect to 

observe loss of cell surface TGFα in Naked2-/- epithelial cells in the presence of a TACE 

inhibitor.  

We may detect phenotypic abnormalities by a more comprehensive histological 

examination of Naked2-/- mice, but it is not too surprising that ablating Naked2 alone is 

not enough to produce a simultaneous phenotype. Naked2 exhibited weaker interaction 

with Dvl compared to Naked1 in yeast two-hybrid assays (Wharton, Zimmermann et al. 

2001), indicating that Naked2 may not be dedicated to regulating Wnt signaling and loss 

of Naked2 function in inhibiting Wnt signaling can be compensated for by Naked1. This 
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possibility can be tested by introducing Dr. Keith Wharton’s Naked1 mutation in our 

Naked2-/-. In addition, Naked2 expression appears to be repressed by canonical Wnt 

signaling (see Chapter III), a manner that is opposite to Naked1 expression. This 

difference suggests that Naked2 is not part of the negative feedback loop of self-regulated 

Wnt signaling. Moreover, because normal epithelial cells express low levels of TGFα and 

thus have low dependency of Naked2, disruption of TGFα trafficking by Naked2 ablation 

in these cells may not cause biological consequences. We suspect that in the presence of 

high levels of TGFα, Naked2-/- mice may result in a severe phenotype (Fig. 2.6).  

Although further characterization is needed, the Naked2 null mice generated in this 

study provide a valuable tool to determine in vivo functions for Naked2.  
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CHAPTER V 

 

GENERAL DISCUSSION 

 Tumorigenesis is a complex process requiring the accumulation of alterations in 

multiple genes affecting multiple pathways. In particular, human colorectal cancers 

represent a paradigm for the molecular and genetic mechanisms underlying tumor 

formation and progression (Fearon 1999). More than 85% of colorectal tumors have 

mutations in the APC gene, and loss of APC function results in constitutive activation of 

canonical Wnt signaling (Powell, Zilz et al. 1992). Overexpression of EGFR is found in 

more than one third of colorectal carcinomas; its overexpression may be linked to 

advanced stages (Gross, Zorbas et al. 1991) and may predict metastatic disease (Radinsky, 

Risin et al. 1995). This indicates the importance of EGFR signaling in the pathogenesis of 

colorectal cancer. Although the importance of Wnt and EGFR signaling pathways in 

tumorigenesis is well established, the convergence of these two pathways in colorectal 

cancer has not been generally appreciated. 

 Naked2 has been shown to act both as a negative regulator of Wnt signaling and as a 

CaRT protein for basolateral delivery of TGFα, a major EGFR ligand in the gut. In my 

thesis work, I have focused on the regulation of Naked2 expression in the context of 

TGFα trafficking and canonical Wnt signaling. Naked2 is not only required for proper 

TGFα exocytosis, but it is also regulated by TGFα through a direct protein-protein 

interaction. TGFα binds Naked2 and inhibits proteasomal degradation of Naked2 in an 



EGFR-independent manner. This effect is mediated by a reduction in the association of 

Naked2 and AO7, a RING finger protein that acts as a ubiquitin ligase for Naked2. I 

show that, unlike Naked Cuticle and Naked1 that are induced by canonical Wnt signaling, 

Naked2 mRNA expression is repressed by activation of canonical Wnt signaling in 

human colorectal cancer cells. However, this repression appears to be indirect. Loss of 

Naked2 expression is a common event in colorectal carcinomas but not in adenomas. My 

work sheds new light onto the regulation of Naked2, a unique member of the Naked 

family, and the work provides a convergence point between canonical Wnt signaling and 

an EGFR-related event, that is, basolateral trafficking of TGFα in polarized epithelial 

cells. In addition, I have successfully generated a Naked2 knock-out mouse by utilizing 

BAC recombineering. This mouse will be a valuable tool to examine physiological roles 

for Naked2 in vivo.  

 

Ubiquitylation of Naked2 and its E3 ligase 

 I have discovered that Naked2 is a short-lived protein that undergoes rapid 

proteasomal degradation. This was an unexpected finding because most classic adaptor or 

coat proteins involved in exocytic and endocytic trafficking are long-lived and 

ubiquitously expressed, such as AP-1 and AP2 (Sorkin, McKinsey et al. 1995). When 

Naked2 is viewed from the perspective of canonical Wnt signaling and the need for its 

tight regulation, it is not surprising that Naked2 protein is regulated dynamically. The 

robust poly-ubiquitylation of Naked2 that was detected in in vivo and in vitro assays 



substantiates its proteasomal degradation. However, the critical lysine residues that are 

required for Naked2 ubiquitylation and degradation remain to be determined. In addition, 

it will be of interest to determine the nature of the Naked2 ubiquitin chains, although 

poly-ubiquitin chains that are extended through the K48 residue of the ubiquitin moiety 

target protein for proteasomal degradation.  

 In my thesis work, AO7 has been shown to be a ubiquitin ligase for Naked2, and the 

binding of AO7 to Naked2 is affected by levels of TGFα, suggesting a role for AO7 in 

the regulation of Naked2 by TGFα. My results do not exclude the possibility that other 

ubiquitin ligases for Naked2 may exist and regulate the expression of Naked2 in other 

circumstances. However, due to the large number of existing ubiquitin ligases, 

identification of other ubiquitin ligases for Naked2 could be technically challenging. 

Similarly to phosphatases that counteract corresponding kinases, deubiquitinases (DUBs) 

hydrolyze the ubiquitin moieties from ubiquitylated proteins. Thus, DUBs can be 

involved in the cellular processes that are regulated by ubiquitylation. For example, 

activation of NF-κB requires proteasomal degradation of IκB, a negative regulator of 

NF-κB in cytoplasm. Cylindromatosis (CYLD) acts as a DUB for IκB and thereby 

inhibits NF-κB signaling (Kovalenko, Chable-Bessia et al. 2003; Trompouki, 

Hatzivassiliou et al. 2003; Courtois 2008). It will be important to identify DUBs for 

Naked2 and to understand how ubi/deubiquitylation balances the regulation of Naked2.  

 It is worth noting that a strong mono-ubiquitylated Naked2 species was frequently 

observed in ubiquitylation assays. Is it a specific mono-ubiquitylated Naked2 or just an 



intermediate product of the poly-ubiquitylation reaction? Mono-ubiquitylation regulates a 

variety of cellular processes ranging from transcriptional regulation to cell signaling and 

membrane trafficking (Hicke 2001; Mukhopadhyay and Riezman 2007). As an important 

trafficking protein for TGFα delivery, mono-ubiquitylated Naked2, if it exists, is likely to 

have biological significance.  

 

The regulation of Naked2 degradation 

 The prevailing concept is that adaptor or coat proteins play active roles in cargo 

selection and vesicle assembly but not vice versa. However, a recent study has reported 

that the degradation of a relatively short-lived clathrin-dependent adaptor, GGA2, was 

delayed when one of its cargos, CIMPR, was overexpressed in HeLa cells (Hirst, Seaman 

et al. 2007). My work not only identifies a similar phenomenon in the context of 

Naked2-coated TGFα vesicles, but it also elucidates the biochemical basis for this 

phenomenon. In a separate study utilizing fluorescence-activated vesicle sorting (FAVS), 

we have identified 389 proteins that are associated with Naked2 vesicles. These include 

other potential cargos for Naked2-associated vesicles like Na+/K+-ATPase α1. It will be 

interesting to examine whether Naked2 degradation is regulated by cargos other than 

TGFα.  

 My observation - that increased expression of TGFα reduces the interaction between 

AO7 and Naked2 - may provide molecular insight as to how TGFα stabilizes Naked2. To 

test whether this effect is through a direct competition for Naked2 binding between TGFα 



and AO7, we sought to determine the AO7-binding sites in the Naked2 sequence. 

Preliminary data suggests that AO7 binds to multiple sequences in Naked2 excluding the 

TGFα tail-binding domain (residue 300-385). Thus, direct competition between TGFα 

and AO7 for binding to Naked2 is unlikely. A recent structural study found that the 

N-terminal half of Naked2 behaves as an intrinsically unstructured protein (IUP) (Hu, 

Krezel et al. 2006). p27Kip1 is also an IUP and it assumes a secondary structure when it 

binds to the cyclin A-Cdk2 complex (Verkhivker 2005). I propose that TGFα binding 

may confer an ordered protein structure to Naked2 that makes it less accessible to other 

proteins such as AO7. Structural studies of Naked2 in the presence of TGFα will be 

needed to examine this possibility.  

 Besides ubiquitylation, another posttranslational modification, myristoylation, has 

been identified previously to be critical for Naked2 function (Li, Franklin et al. 2004). 

Myristoylation deficient-mutant (G2A) Naked2 no long localizes to the plasma 

membrane when expressed in polarized MDCK cells. By immuno-electron microscopy, 

G2A-associated vesicles accumulate in the cytoplasm (Li, Hao et al. 2007). Of interest, 

an independent study has shown that G2A mutant Naked2 exhibits delayed protein 

degradation compared to wild-type Naked2 (unpublished data). Based on these results, 

we suspect that Naked2 is stabilized upon recruitment to the surface of vesicles, whereas 

cell membrane and/or cytosolic Naked2 is subjected to active protein degradation. This 

localization-dependent degradation of Naked2 begs the question as to the cellular 

distribution of AO7, which has not been characterized.  



 

The transcriptional regulation of Naked2 by Wnt signaling 

 In addition to stabilization of Naked2 protein by TGFα, Naked2 transcription is 

repressed by active Wnt signaling as we demonstrated in Chapter III. This result not only 

adds additional complexity to Naked2 regulation but also distinguishes Naked2 from 

other Naked family members that are inducible target genes of canonical Wnt signaling 

(Rousset, Mack et al. 2001; Yan, Wiesmann et al. 2001; Van Raay, Coffey et al. 2007). 

Whereas there are a number of examples of inducible antagonists to canonical Wnt 

signaling such as Axin2 and Dkk1, there are few, if any, examples of a negative regulator 

that is inhibited by Wnt signaling. This may be a way that Wnt activation amplifies its 

own signal. Given the role of Naked2 in TGFα trafficking, we propose a model in which 

active Wnt signaling undermines epithelial homeostasis by disrupting cell surface 

delivery of TGFα. Transcriptional repression of Naked2 has been described previously by 

Lei, H et al (Lei, Juan et al. 2007). The transcription factor, Hoxc8, a member of the 

homeobox gene family, directly binds to a distal enhancer element at 25 kb upstream of 

human Naked2 promoter. The enhancer activity was significantly repressed by Hoxc8 

expression in NIH3T3 cells that did not express endogenous Hoxc8. There is 

considerable evidence that the canonical Wnt/β-catenin pathway induces expression of 

caudal (Cdx) proteins (Pilon, Oh et al. 2006) that impact on skeletal patterning by direct 

regulation of Hox gene expression. These observations provide a possible cascade in 

which Naked2 is repressed by active Wnt signaling. In addition to the distal enhancer 



element that is regulated by Hoxc8, we have characterized the proximal sequence of 

mouse Naked2 promoter as shown in Chapter III. This 4.5 kb sequence exhibited strong 

promoter activity that was repressed by overexpression of ΔN89 β-catenin, suggesting 

that Naked2 promoter can be repressed by canonical Wnt signaling. Future efforts should 

further dissect this promoter sequence. Proximal regulatory elements may be identified, 

and the synergistic effects of proximal and distal enhancer elements in Naked2 

transcriptional regulation may be found. However, given the temporal lag between Wnt 

activation and Naked2 repression, it is possible that transcriptional regulation may not be 

a direct effect of the β-catenin/TCF complex.   

  

Naked2 in normal epithelial homeostasis and colorectal tumorigenesis 

The role of ErbB receptor signaling in both normal development and malignant 

progression has been extensively studied over the past decade. The increasing complexity 

of ErbB signaling pathways has led to systems biology approaches. Cell surface cleavage 

of the ligands, activation of receptor tyrosine kinase activity and MAPK phosphorylation 

have been proposed to be three critical nodes in ErbB signaling (Wiley, Shvartsman et al. 

2003; Citri and Yarden 2006). In these systems biology approaches, cell surface delivery 

of ligands has been neglected. However, evidence is accumulating that ligand 

engagement of the EGFR may determine the specificity of downstream signals, and that 

differential cell surface delivery and presentation of each ligand appear to be critical steps 

for the accessibility of different ligands to the EGFR. Moreover, disruption of regulated 



exocytic sorting of EGFR ligands may have important biological consequences as 

demonstrated by a recent study in isolated recessive renal hypomagnesaemia 

(Groenestege, Thebault et al. 2007), a disease caused by a mutation in the cytoplasmic 

tail of EGF that impairs its basolateral sorting.  

In normal epithelial cells, Naked2 ensures efficient delivery of TGFα to the 

basolateral surface of polarized epithelial cells where it is then rapidly cleaved by TACE, 

and soluble ligand is avidly taken up by the EGFR. Coordination of these events 

maintains local signaling by TGFα in an autocrine and/or local paracrine manner. 

Occupation of the EGFR by TGFα prevents engagement by other basolaterally delivered 

ligands such as AR. Maintaining the preeminence of TGFα in engaging the EGFR may 

be essential for epithelial homeostasis, because it has been shown that exogenous 

recombinant human AR, but not TGFα, results in an EMT-like phenotype in polarized 

MDCK cells (Chung, Cook et al. 2005; Chung, Graves-Deal et al. 2005). Thus, alteration 

in normal TGFα trafficking may have important biological consequences, such as EMT, 

that may contribute to tumor progression. To ensure its efficient basolateral trafficking, 

TGFα stabilizes its CaRT protein Naked2 by inhibiting its proteasomal degradation (see 

Chapter II).  

Naked2 is also a known antagonist of canonical Wnt signaling by inactivating Dvl, 

although the mechanism underlining this inactivation is unclear. In recent studies, the 

Coffey lab has identified that Naked2 and Dvl-1 form a mutual degradation complex (Hu, 

in preparation). 



These two independent roles of Naked2 suggest that Naked2 may provide a 

convergence point between EGFR-related events (i.e., cell surface delivery of TGFα) and 

canonical Wnt signaling. In separate studies, we have observed Naked2 interactions with 

either TGFα or Dvl-1, but we have not detected TGFα, Naked2 and Dvl-1 together in a 

ternary complex (C Li and RJ Coffey, unpublished observation). In addition, we have not 

identified Dvl among the 389 proteins that have been identified in Naked2-associated 

vesicles by LC/MS-MS (J Cao and RJ Coffey, unpublished observation). These findings 

lead us to entertain the possibility that TGFα may compete Naked2 from binding to Dvl 

and thereby enhance Wnt signaling. However, it is also possible that Naked2 may act in a 

sequential manner. Naked2 first interacts with TGFα and facilitates efficient delivery of 

TGFα-containing exocytic vesicles to the plasma membrane. Upon discharging this 

function, Naked2 now binds and degrades Dvl so as to repress canonical Wnt signaling. 

In fact, we have detected decreased TOPflash activity in Caco-2-TGFα cells compared to 

parental Caco-2 cells, and this reduction is attenuated by Naked2 siRNA in Caco-2-TGFα 

cells (Fig. 5.1).  

Based on these results, we proposed a two-step model by which Naked2 participates 

in both normal epithelial homeostasis and colorectal tumor progression (Fig. 5.2). In 

normal intestinal epithelium, as cells migrate up from the stem cell niche at the base of 

the crypt, they start to differentiate and express TGFα. Decreased canonical Wnt 

signaling in the differentiating cells allows expression of Naked2 mRNA to facilitate 

TGFα trafficking. Constitutive delivery of TGFα-containing vesicles stabilizes Naked2 
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Figure 5.1 Naked2-dependent inhibition of canonical Wnt signaling in Caco-2-TGFa 
cells.  (A) Knocking-down Naked2 in Caco-2-TGFa cells by Naked2 shRNA. The pEUP 
vector expressing 29-mer small hairpin RNA for human Naked2 or the empty vector was 
transfected in TGFa-expressing Caco-2 cells. Subsequent western blotting using the Na-
ked2 antibody reveals a significant reduction of Naked2 expression by Naked2 shRNA. 
(B) TOPflash assay in Caco-2 and Caco-2-TGFa cells. Compare to Caco-2 cells, Caco-
2-TGFa cells display reduced TOPflash activity , which is partially restored by Naked2 
shRNA. shNaked2 refers to Naked2 shRNA.
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protein, which in turn inactivates Dvl and thereby maintains tight control of canonical 

Wnt signaling.  

In contrast, upon activation of the canonical Wnt signaling in early stage of 

colorectal cancer, Naked2 transcription is repressed. TGFα and AR are often upregulated 

in colorectal tumors. If Naked2 mRNA expression is markedly suppressed, there may be 

insufficient levels of Naked2 protein to escort TGFα to the cell surface. As a 

consequence, AR will now bind to the relatively unoccupied EGFRs and predispose to 

tumor progression.  

Taken together, Naked2 is regulated by both TGFα and canonical Wnt signaling but 

at different levels. Through regulating Naked2, the inhibitory relationship between the 

two pathways contributes to both epithelial homeostasis and colorectal tumor 

progression.  

 

Proposed studies with Naked2 knock-out mice 

 Genetically engineered Naked2 mutant mice have been reported to exhibit no severe 

developmental defects (Zhang, Cagatay et al. 2007). However, the lack of a phenotype 

may be due to the incomplete elimination of the Naked2 gene, as I have detected an 

immunoreactive Naked2 band in these purportedly Naked2 null mice. I have generated a 

targeted Naked2 mutation that produces a pre-mature transcript of Naked2 encoding only 

22 residues of the N-terminal sequence. These Naked2 knock-out mice will allow us to 

explore the in vivo significances of Naked2 in the context of both Wnt signaling and 



TGFα trafficking.  

We have achieved germline transformation of the targeted allele and the floxed exon 

3 of the Naked2 gene has been deleted by crossing to the Sox2-cre transgene. Loss of 

Naked2 expression in the Naked2-/- mice has been confirmed by both RT-PCR and 

western blotting (Fig. 4.5). However, no overt defects have been observed in these 

Naked2-/- mice.  

In vitro assays have established that mammalian Naked2 inhibits canonical Wnt 

signaling, but we have not yet examined alterations in canonical Wnt signaling in these 

mice. I suspect that ablation of Naked2 may not result in significant increase of canonical 

Wnt signaling because Naked2 is not a strong inhibitor of Wnt signaling due to its weaker 

interaction with Dvl compared to Naked1. In addition, loss of Naked2 function in 

antagonizing the canonical Wnt pathway can be compensated for by Naked1. Moreover, 

other negative regulators that are downstream of the Nakeds may also attenuate the 

effects of Naked2 ablation. These might also explain why Naked1 mutant mice are 

mostly normal except for minor defects in spermatogenesis and cranial bone morphology. 

Therefore, one of the first functional examinations of Naked2-/- mice will be a 

determination of canonical Wnt signaling levels by introducing a TOPGAL reporter gene. 

Similar to the in vitro TOPflash assay, the in vivo levels of canonical Wnt signaling will 

be assessed by the levels of lacZ staining.  

The in vivo roles of Naked2 in TGFα trafficking will also be examined in Naked2-/- 

mice. We anticipate an accumulation of cytoplasmic TGFα and reduced cell surface 



TGFα; this latter analysis will be performed after systemic administration of a TACE 

inhibitor. In addition, potential alterations in EGFR signaling will be studied. However, 

based on initial observations, we anticipate that additional provocative maneuvers may be 

needed to elicit phenotypic defects in the Naked2-/- mice. Previous studies have 

demonstrated that overexpression of TGFα in mouse by the metallothionein-TGFα 

(MT-TGFα) transgene promoted hyperplasia in the intestinal epithelium without 

otherwise causing major alterations in the tissue architecture (Sandgren, Luetteke et al. 

1990). Although MT-TGFα mice showed higher sensitivity to carcinogenesis in various 

tissues, such as skin (Shibata, Ward et al. 1997), pancreas and liver (Sandgren, Luetteke 

et al. 1993), they only exhibited enhanced tumor formation in the duodenum once crossed 

to APCMin mice for colorectal cancer (Williams Dove, personal communication). This 

difference may be due to the high levels of Naked2 expression along the intestinal track 

except the duodenum (Li, Franklin et al. 2004). To test the effects of Naked2 loss in the 

setting of high levels of TGFα, we intend to cross the MT-TGFα transgenic mice to the 

Naked2-/- mice (Fig. 4.6).  

Since TGFα overexpression is not sufficient to cause colorectal neoplasia, additional 

events may need to be introduced to test the two step model of Naked2 function in 

promoting tumor progression. APCMin mice produce intestinal polyps at three months of 

age due to loss of the wild-type APC allele. Because the APC is a Wnt antagonist 

downstream of Naked2, APCMin mice are an ideal model to study the effects of Naked2 

that are solely mediated through disrupting the TGFα cell surface delivery but not 



through Wnt signaling. Based on the model I proposed above, loss of Naked2 in APCMin 

mice may promote tumor establishment and progression.  

As we have retained the conditional mutant Naked2 allele, we can achieve a 

spatiotemporal removal of Naked2 expression by crossing floxed Naked2 to 

tissue-specific cre-ERT2 transgenes (Fig. 4.6). Villin-cre-ERT2 is expressed specifically in 

the gut epithelium and kidney. It therefore appears to be a useful tool to study Naked2 

function in the intestinal epithelium. We may also consider administering the colon 

cancer carcinogen azoxymethane (AOM) in these models.  

Taken together, the successful generation of Naked2 knock-out mice provides a 

valuable reagent to test the two-step model of Naked2 that we have proposed based on 

previous in vitro studies. This study will shed new light on the idea that efficient cell 

surface delivery of TGFα by Naked2 helps to maintain normal epithelial homeostasis and 

that disruption of this process promotes tumor progression.  
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