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CHAPTER I 

INTRODUCTION 

 

Pancreatic islet structure and function 

The pancreas is a glandular organ of the digestive system made up of two major cell types: 

exocrine cells and endocrine cells (Figure 1.1). The exocrine compartment, which is responsible 

for synthesis and secretion of digestive enzymes, includes both acinar and ductal cells and makes 

up the vast majority of the pancreas. The Islets of Langerhans make up the endocrine compartment 

of the pancreas and contain five types of hormone-secreting endocrine cells: glucagon-secreting 

α-cells, insulin-secreting β-cells, somatostatin-secreting δ-cells, pancreatic polypeptide-secreting 

PP-cells, and ghrelin-secreting ε-cells. The main function of the pancreatic endocrine cells is to 

maintain blood glucose homeostasis through hormone secretion in response to specific stimuli. In 

humans, the endocrine cells make up approximately 4-5% of the total pancreas volume in the adult 

(1).  

Insulin is released into the bloodstream in response to glucose uptake by the β-cells, the 

molecular mechanism of which is discussed in the following section. It is released in response to 

a rise in blood glucose concentration, and its primary function is to trigger glucose uptake in target 

tissues (Figure 1.2). Once in the bloodstream, insulin binds to insulin receptors expressed by target 

tissues, including hepatocytes of the liver, myocytes of skeletal muscle, adipocytes of fat tissue, 

cardiomyocytes of the heart, and neurons of the brain (2; 3). The effects of insulin in these tissues 

are mediated by signaling molecules called insulin receptor substrates 1-4 (IRS1-4) which are 

phosphorylated by the insulin receptor upon insulin binding.  
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Figure 1.1. Anatomy of the pancreas. In humans, the pancreas is situated behind the stomach 

and lies transversely across the posterior wall of the abdomen. The head of the pancreas sits in the 

loop of the duodenum as it exits the stomach, and the tail of the pancreas is located near the spleen 

(not pictured). Most of the pancreas is made up of acinar cells which secrete enzymes to aid in 

food digestion. The Islets of Langerhans containing the endocrine cells of the pancreas, are 

dispersed throughout the acinar tissue and are highly vascularized. They are responsible for 

secreting endocrine hormones to regulate blood glucose homeostasis and consist of five endocrine 

cell types: α-, β-, and δ-cells (labeled above) and PP- and ε-cells (not labeled). © 2003 

Encyclopedia Britannica, Inc. Reproduced in compliance with the online Terms of Use. 
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Figure 1.2. Insulin and glucagon action in the body. The two primary pancreatic hormones, 

insulin and glucagon, exert opposite effects on peripheral tissues to regulate blood glucose 

homeostasis. Insulin, released from the pancreatic β-cells under high blood glucose concentrations, 

stimulates glucose uptake, metabolism, and/or storage by glycogen formation in tissues such as 

the liver. Glucagon, on the other hand, is released from the pancreatic α-cells under low blood 

glucose concentrations and stimulates the breakdown of glycogen to glucose in the liver. Yellow 

arrows and text boxes represent the stimulus for and action of insulin. Blue arrows and text boxes 

represent the stimulus for and action of glucagon. © 2001 Craig Freudenrich, Ph.D., 

HowStuffWorks.com (4). Reproduced in compliance with the online Terms of Use. 
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This activation triggers a series of downstream phosphorylation events ultimately resulting 

in the translocation of glucose transporter 4 (GLUT4) to the membrane to facilitate the uptake of 

glucose from the bloodstream (5). In addition to acting on peripheral tissues in the body, insulin 

plays a feedback role in the β-cells themselves to promote β-cell proliferation and survival (6-8). 

Glucagon, on the other hand, triggers the release of glucose into the bloodstream, opposing 

the action of insulin (Figure 1.2) (9). It is released from pancreatic α-cells in response to a fall in 

the blood glucose concentration. When glucagon reaches its primary target tissue, the liver, it binds 

to glucagon receptors, G-protein-coupled receptors, triggering the activation of G-proteins, 

synthesis of cyclic adenosine monophosphate (cAMP), and ultimately the breakdown of glycogen 

stores into glucose via phosphorolysis by glycogen phosphorylase (10).  

The actions of the remaining pancreatic endocrine hormones are much less well-

understood. Somatostatin, secreted from pancreatic δ-cells, is known to inhibit the secretion of 

both glucagon and insulin (11). Pancreatic polypeptide, secreted from PP-cells, is thought to be 

secreted in response to food intake, functioning as a satiety factor via signaling to hypothalamic 

nuclei (12; 13). It has an additional putative role in regulating gastrointestinal motility (14). 

Ghrelin-secreting ε-cells are prominent during both mouse and human pancreas development, but 

are rarely found in the adult. They are thought to represent a multipotent progenitor, or transient, 

population in the developing pancreas, with the ability to give rise to α-, PP-, and β-cells (15; 16). 

In the adult, ghrelin is primarily secreted by ghrelinergic cells in the gastrointestinal tract, and is 

thought to inhibit insulin secretion from the β-cells (17). 

Islet architecture and cell composition differs between rodents and humans (Figure 1.3). 

In rodents, the β-cells are mostly confined to the core of the islet, while the α-, δ-, and PP-cells are  
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Figure 1.3. Islet morphology and composition in rodents and humans. (A-B) Immunolabeling 

of a mouse (A) and a human (B) islet sections for insulin (green), glucagon (red), and somatostatin 

(blue). (C-D) Endocrine cell composition of mouse islets (C) (n=28) and human islets (D) (n=32), 

as determined by analysis of optical sections through the entire islet. Horizontal bars represent the 

mean of each group. Image adapted from Brissova et al., © 2005 SAGE Publications, (18) and 

reproduced in compliance with the copyright agreement of SAGE Publications.  
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restricted to the outer mantle. In humans, there is no discernible core, with the different endocrine 

cell types intermingled throughout the islet. Mature rodent islets are composed of about 75% β-

cells, 19% α-cells, and 6% δ-cells, while mature human islets are composed of about 54% β-cells, 

35% α-cells, and 11% δ-cells (18).     

 

Mechanisms of glucose-stimulated insulin secretion 

Studies beginning in the 1960s have provided a deep but still incomplete understanding of 

signal transduction within β-cells. A critical feature of the β-cell is its ability to link changes in 

metabolic flux, brought on by glucose metabolism, to changes in membrane excitability and 

subsequent alterations in intracellular Ca2+ concentration ([Ca2+]i) and signaling (19; 20). Excitable 

cells maintain a negative resting membrane potential, primarily mediated by the activity of the 

Na+/K+-ATPase, which pumps Na+ ions out of and K+ ions into the cell (21). This activity 

maintains a higher concentration of K+ ions inside the cell than outside. During the resting state, 

ATP-sensitive potassium (KATP) channels are active, allowing potassium ions to diffuse down their 

concentration gradient out of the cell. In the triggering pathway of insulin secretion, glucose enters 

the β-cell through the GLUT2 transporter where it is metabolized in the mitochondria, causing an 

increase in the intracellular ATP:ADP ratio. This elevation in ATP closes KATP-channels, 

inhibiting potassium ion flow out of the cell and causing membrane depolarization and activation 

of voltage-dependent calcium channels (VDCCs). Opening of VDCCs allows for a transient 

elevation in [Ca2+]i, triggering insulin granule exocytosis (Figure 1.4A) (22). After action potential 

firing, several types of K-channels are activated to allow K+ ions to flow out of the cell and mediate 

membrane re-polarization and returning the cell to the resting state. These channels include  
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Figure 1.4. Glucose-stimulated insulin secretion in pancreatic β-cells. (A) Glucose enters the 

β-cell where it is metabolized, in a process initialized by glucokinase, to ultimately elevate the 

intracellular ATP:ADP ratio. The rise in ATP inhibits the KATP-channel, causing membrane 

depolarization and the opening of VDCCs (Voltage-dependent Ca2+-channels). The resulting 

transient increase in [Ca2+]i triggers insulin exocytosis. (B) Transmembrane topology of the two 

subunits of the KATP channel: SUR1 (shown in blue, encoded by Abcc8) and KIR6.2 (shown in 

magenta, encoded by Kcnj11). (C) Schematic of the heteroctameric structure of the KATP-channel. 

Four SUR1 subunits assemble to surround a core of four KIR6.2 subunits, forming the pore of the 

channel. Panels B and C were adapted from Ashcroft et al., 2005 (22) and reproduced with 

permission (see Appendix A). © 2005 American Society for Clinical Investigation. 
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voltage-dependent potassium channels (VDKCs) as well as two-pore domain K+ (K2P) channels 

(23; 24).  

This pathway highlights two well-established control points that regulate insulin secretion: 

glucokinase (GCK), which determines the rate of glucose phosphorylation (the rate-limiting step 

of glycolysis) and subsequent metabolism, and the KATP-channel, which serves to transduce 

changes in metabolism into electrochemical charge. Both of these control points have been 

established by experimentation in mouse models (25-28), and confirmed by the identification of 

genetic mutations in humans (29-33). Identification of specific gain- and loss-of-function 

mutations identified in humans has, in turn, helped to guide studies in mice, which have provided 

a very deep understanding of disease mechanisms. The KATP-channel is a hetero-octameric pore 

made up of four subunits each of the sulfonylurea receptor type 1 (SUR1) and the inward rectifying 

potassium channel 6.2 (KIR6.2), the protein products of Abcc8 and Kcnj11, respectively (Figure 

1.4B, C). Mouse gene knockout studies have shown that deletion of either gene results in a lack 

of functional KATP channels (25; 27; 34). The β-cells of these mice exhibit chronically elevated 

[Ca2+]i due to persistent membrane depolarization. However, inactivation of either Abcc8 or 

Kcnj11 in mice does not result in hyperinsulinemia, as in humans with deactivating mutations in 

either gene (25; 27; 34; 35). These findings will be further examined in this thesis. 

 

Pathogenesis of diabetes mellitus 

Diabetes mellitus, affecting 29.1 million people in the United States alone (36), is a group 

of diseases characterized by high blood glucose, or hyperglycemia, brought on by failure of 

pancreatic β-cells to secrete enough insulin to meet the needs of the body. Type 1 diabetes (T1D), 
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which makes up about 5% of all diabetes cases (36), develops when β-cells are destroyed by an 

autoimmune mechanism. Type 2 diabetes (T2D), making up 90-95% of all cases (36), develops in 

a progressive manner due to the failure of β-cells to secrete enough insulin to match the demand 

brought on by age, inactivity, obesity, and genetic risk factors. Clinically, the lower-than-necessary 

insulin secretion first manifests itself as impaired glucose tolerance, and is referred to as pre-

diabetes. However, as peripheral insulin resistance mounts, and the relative insulin deficiency 

worsens, fasting hyperglycemia may soon develop. When it does, hyperglycemia begins to impair 

β-cell function, starting a downhill spiral that can result in the dedifferentiation and/or death of 

these cells, and severe hyperglycemia, if not corrected (37-41). While the development of insulin 

resistance is a necessary prerequisite for this disease, only a fraction of insulin resistant people 

actually develop diabetes. Genome wide association studies have identified many loci that 

predispose a person to the development of T2D but we do not know how these genetic variations 

contribute to T2D disease risk or progression in most cases (42; 43).  

Other types of diabetes, such as monogenic forms caused by mutations in single genes, 

constitute 1-5% of all cases of diabetes (36). For instance, mutations that impair the catalytic 

function or stability of GCK cause maturity onset diabetes of the young type 2 (MODY2) while 

heterozygous mutations that increase GCK activity cause persistent hyperinsulinemic 

hypoglycemia of infancy (PHHI) (32). Moreover, inactivating mutations in both alleles cause 

persistent neonatal diabetes (PND). Similarly, mutations in either Abcc8 or Kcnj11, the two 

structural components of KATP-channels, also cause either PHHI or PND depending on whether 

they inhibit or stimulate channel activity, respectively (30; 31; 33).   

Over the past decade there have been progressively larger waves of genome wide 

association studies (GWAS) in an attempt to identify the genetic basis for T2D. A recent study 
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examined 26.7 million variants for T2D association in 11,645 type 2 diabetics and 32,769 controls 

of European origin by inputting sequence-based genotypes from 13 prior studies (44). The 

collective effort of many groups has resulted in the identification of at least 85 different loci, most 

of which are common variants (minor allele frequency > 5%) that are robustly associated with 

T2D. However, it remains largely unknown how these GWAS-identified regions affect the 

function of adipose, muscle, and islets. Since the majority of the variants reside in non-coding 

regions of the genome, and thus are not easily linked to the function of a specific gene, biological 

experimentation is required to identify the causal gene and to uncover the mechanisms that link 

gene function with disease risk.  

 

β-cell failure in diabetes 

Genetic predisposition itself does not cause T2D. Rather, metabolic stress brought on by 

insulin resistance, β-cell Ca2+ dyshomeostasis, liptoxicity (38; 40; 45) and eventually glucotoxicity 

(37; 38; 40; 46), in combination with genetic predisposition, cause the disease.  If left uncorrected, 

these stresses can lead to endoplasmic reticulum (ER) dysfunction, oxidative stress, and eventually 

DNA damage and cell death.  

Two major factors contribute to the pathogenesis of T2D: insulin resistance and β-cell 

dysfunction or failure. Currently, both factors are thought to be important in the development of 

the disease, but β-cell failure is the final common pathway in the development of T2D (47). Insulin 

resistance occurs when tissues such as liver, adipose, and muscle no longer respond to the normal 

actions of insulin. The most common causes of insulin resistance are excess weight and physical 

inactivity, but other factors such as genetics, ethnicity, and old age can play a role. While insulin 
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resistance is thought to be necessary for the development of T2D, it cannot be the only factor, since 

many people with insulin resistance never develop T2D. Many experts in the field believe that β-

cell failure, in the face of insulin resistance, is the key determinant in the development of T2D (38; 

47-49).   

Studies over the past decade strongly suggest that β-cell mass is relatively fixed, and that 

some individuals, depending on their genetic predisposition, are unable to even modestly increase 

their β-cell mass in response to mounting insulin resistance, causing their β-cells to become 

metabolically over-stimulated. At first, the over-stimulation may be transient, as evidenced by a 

modest postprandial hyperglycemia that soon returns to baseline. However, as glucose homeostasis 

fails due to insufficient insulin secretion, and hyperglycemia goes from transient to sustained, high 

blood glucose may soon begin to exert negative effects on the β-cell, and a downhill spiral, 

culminating in outright β-cell failure, may soon occur (41; 46; 50).  

Several mechanisms have been proposed to contribute to loss of functional β-cell mass in 

T2D, including ER stress, oxidative stress, excitotoxicity, loss of islet integrity/organization, and 

loss of β-cell identity (Figure 1.5) (47). The cause of ER stress is thought to be increased insulin 

biosynthesis due to increased metabolic demand in the setting of insulin resistance, potentially 

overwhelming the ER folding capacity (51). Excessively high rates of insulin production place β-

cells at risk for ER stress and activation of the unfolded protein response (UPR), which, if 

unresolved, causes β-cell death (51; 52). 

Oxidative stress, a second contributor to β-cell failure, is caused by elevated levels of reactive 

oxygen species (ROS) due to elevated metabolic load. ROS are natural products of the 

mitochondrial electron transport chain activated during glucose metabolism. Under hyperglycemic  
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Figure 1.5. β-cell failure in Type 2 Diabetes. In the type 2 diabetic environment, characterized 

by insulin resistance and increased metabolic load, pancreatic β-cells are faced with many different 

types of stressors, some of which may be worsened by genetic susceptibility. β-cell stressors 

include ER stress, oxidative stress, excitotoxicity, loss of islet organization, and loss of β-cell 

identity, among others. One or any combination of these stressors contribute to decreased β-cell 

function and mass, ultimately leading to T2D.  
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conditions, however, β-cells are under elevated metabolic load, increasing the amount of glucose 

metabolism and ROS production. Additionally, because β-cells express unusually low levels of 

antioxidant enzymes, they are not able to effectively dispose of excess ROS, further exacerbating 

the oxidative stress (53). In accordance with this hypothesis, islets from T2D patients have 

increased markers of oxidative stress, and exhibit impairments in glucose-stimulated insulin 

secretion (54; 55).  

Excitotoxicity, another potential cause of β-cell failure, is a phenomenon originally 

described in neurons that occurs when an excitable cell type, such as a neuron or a β-cell, 

experiences chronically elevated [Ca2+]i due to excess stimulation. Excitotoxicity, caused by 

excessive stimulation by glucose, has been suggested to cause β-cell dysfunction and eventual 

death (46), but the molecular mechanisms and the relevance to T2D are not understood.  

A fourth factor potentially contributing to β-cell failure is loss of islet organization. The 

arrangement of endocrine cells within the islet is critical for coordinated hormone secretion, which 

is maintained through autocrine and paracrine signaling (56). Although loss of islet structure has 

not been as well-studied as other sources of β-cell failure, hyperglycemia has recently been 

associated with disrupted islet morphology (57). 

Historically, β-cell death was thought to be the main contributor to loss of functional β-cell 

mass in T2D. However, Talchai and colleagues identified an alternative mechanism called β-cell 

dedifferentiation, or loss of β-cell identity (41). In this process, elevated metabolic load causes 

some β-cells to lose expression of key functional markers and begin to express genes normally 

only expressed during developmental stages or in immature β-cells. Importantly, these 

dedifferentiated cells no longer function as β-cells should, effectively contributing to the loss of β-
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cell mass seen in T2D. Interestingly, dedifferentiated β-cells sometimes transdifferentiate to other 

endocrine cell types and express other hormones, further contributing to dysregulated glucose 

homeostasis in T2D. More recent studies corroborate this idea, demonstrating that hyperglycemia 

alone is sufficient to cause a reversible loss of β-cell identity in mice (57; 58). However, studies 

of gene and protein expression in human islets have opposing conclusions about the role of β-cell 

dedifferentiation in the development of T2D, with some citing evidence that it occurs and others 

postulating that, though it may occur at a low rate, its role in T2D is likely to be minimal (59-62). 

Controversy exists regarding the precise definition of β-cell dedifferentiation (63). Some 

employ a very strict criterion, stating that markers of progenitor cells must be expressed to define 

a cell as dedifferentiated. However, I prefer a broader definition and view a dedifferentiated β-cell 

as one in which aspects of differentiation have been lost, but not necessarily that progenitor 

markers have become expressed. In either case, it is important to determine how this process 

contributes to loss of functional β-cell mass in T2D, and whether or not it can be reversed.     

 

Calcium signaling in β-cell health and function 

As a major second messenger, [Ca2+]i in β-cells is not only essential for insulin secretion, 

but it also regulates many cellular processes by modulating the activity of downstream signaling 

molecules, including Ca2+-dependent enzymes and transcription factors (64; 65). One of the most 

highly-understood pathways is the calcineurin/nuclear factor of activated T-cells (NFAT) 

signaling pathway. Calcineurin, a Ca2+-dependent serine/threonine phosphatase, is activated upon 

binding to both Ca2+ and to calmodulin, a Ca2+-binding protein. Once activated, calcineurin de-

phosphorylates cytoplasmic NFAT (NFATc), resulting in its translocation to the nucleus where it 



 15 

interacts with the nuclear NFAT component (NFATn) to activate gene transcription (65). Since 

the observation that some patients treated with calcineurin inhibitors, such as cyclosporine A, 

develop post-transplantation diabetes (66), calcineurin has been hypothesized to play a role in islet 

function. Concordantly, calcineurin inhibition with tacrolimus causes an increase in β-cell death 

and an inhibition of β-cell proliferation (67). Importantly, all four NFATc proteins (NFATc1-4) 

are expressed in β-cells (68), providing further support that the calcineurin/NFAT signaling 

pathway may be active in β-cells.  

In alignment with this hypothesis, Heit and colleagues found that knockout of the 

calcineurin subunit Cnb1 specifically in β-cells results in severe diabetes due to a marked reduction 

in β-cell proliferation and glucose intolerance (68; 69). Calcineurin was found to act through 

NFATc1, which directly binds and regulates the transcription of critical genes controlling β-cell 

function, including Ins1, Pdx1, Beta2, Glut2, Hnf4α, Gck, Hnf1α, and Hnf1β as well as cell cycle 

regulators Ccnd1 and Cdk4 (68). In a study by Soleimanpour and colleagues, Irs2, another gene 

involved in β-cell replication and survival, was also found to be bound by NFATc1 in a 

calcineurin-dependent manner (67). Addition of conditionally active NFATc1 in Cnb1-deficient 

β-cells restores β-cell mass and prevents the onset of diabetes (68), revealing that the 

calcineurin/NFAT pathway is essential for maintaining pancreatic β-cell mass and function.  

In addition to calcineurin, Ca2+ also regulates the activity of several Ca2+/Calmodulin-

dependent kinases (CaMKs), serine/threonine kinases that require the binding of Ca2+/Calmodulin 

for enzymatic activity (65). In the β-cell, CaMKII, specifically, is known to play a role in 

promoting insulin release in response to glucose-stimulated Ca2+-influx by phosphorylating 

downstream targets (70; 71). Dadi and colleagues recently generated a mouse model allowing for 

tetracycline-inducible inhibition of CaMKII activity specifically in β-cells (72). β-cells in these 
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mice exhibit reduced glucose-stimulated insulin secretion and glucose intolerance. Furthermore, 

they found that CaMKII functions as a Ca2+-sensor, participating in a positive feedback mechanism 

to regulate cytoplasmic Ca2+ levels in the β-cell.  

In addition to promoting insulin release, CaMKs have also been shown to control β-cell 

gene expression by modulating the activity of various transcription factors in response to 

Ca2+/Calmodulin binding. Phosphorylation of the transcription factor cAMP response element-

binding protein (CREB) at Serine 133 by CaMKs, triggers its activation and binding to target genes 

at the cAMP response element (CRE) sequence (73). Studies in the mouse have shown that the 

activity of CREB promotes β-cell survival through the induction of insulin receptor substrate 2 

(IRS2) (74), a key regulator of β-cell mass (75; 76). More recently, studies in a β-cell line and in 

mouse islets revealed that CaMKIV phosphorylates CREB to activate IRS2 and prevents β-cell 

apoptosis (77; 78). Several other studies have also highlighted the importance of CREB 

coactivators, including transducer of regulated CREB protein 2 (TORC2) (79; 80) and cAMP-

regulated transcriptional coactivator 2 (CRTC2) (81).    

 

Calcium signaling in β-cell failure 

Although activation of Ca2+-dependent transcription is essential for β-cell development, 

function, and survival, the over-activation of similar pathways can also lead to β-cell failure and/or 

death. Transgenic mice over-expressing calmodulin specifically in β-cells develop severe diabetes 

due to markedly-reduced insulin content (82). Transgenic mice over-expressing constitutively-

activated calcineurin develop hyperglycemia due to increased β-cell apoptosis and reduced β-cell 

proliferation (83). Additionally, over-activation of glucose metabolism by β-cell-specific 
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expression of mutant glucokinase in mice transiently causes increased β-cell proliferation, but 

chronically results in hyperglycemia due to increased β-cell apoptosis (46; 50). Chronic elevations 

in [Ca2+]i, alternately termed β-cell excitotoxicity, may be deleterious to β-cell function in a similar 

way that sustained neuronal excitation causes the dysfunction and death of neurons (84; 85). The 

idea that a sustained elevation of [Ca2+]i has a deleterious effect on β-cells is consistent with the 

finding that inhibition of voltage-dependent calcium channels prevents β-cell death in the setting 

of insulin resistance (86).   

 

Calcium signaling in loss of islet morphology 

In addition to developing severe diabetes, transgenic mice engineered to over-express 

calmodulin specifically in β-cells also exhibit severely disrupted islet morphology, with a reduced 

number of β-cells, a greater number of α- and δ-cells, and a greater number of α- and δ-cells 

localized to the islet core (82). A similar phenotype has also been observed in animals deficient 

for the KATP-channel, whose β-cells exhibit chronically elevated [Ca2+]i (25; 34; 35; 87), 

suggesting that overactivation of Ca2+/Calmodulin-dependent signaling pathways causes a 

disruption in islet morphology, although a definitive cause for this phenotype has not been 

established.  

 

Calcium signaling in loss of β-cell identity 

It has long been known that pancreatic endocrine cell fate is plastic, with cells maintaining 

the ability to convert between lineages with relative ease. For example, forced expression of PAX4 
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or ARX promotes α- to β-cell or β- to α-cell conversion, respectively (88; 89), forced expression 

of PDX1 induces α- to β-cell reprogramming (90), and genetic loss of DNMT1 in β-cells can 

induce their conversion to an α-cell fate (91; 92). Additionally, extreme ablation of β-cells induces 

a genetically-encoded program in α-cells to promote their conversion to β-cells (93). However, 

these studies have been conducted under non-physiological conditions, and β-cell reprogramming 

had not, until recently, been observed in a disease context.  

Talchai and colleagues were the first to observe loss of β-cell identity and subsequent 

conversion to other cell types in the context of metabolic stress (41). In this process, termed β-cell 

dedifferentiation, elevated metabolic load, induced by the combination of Foxo1 loss and either 

multiparty or age, causes some β-cells to lose expression of key functional markers, including 

Insulin, MafA, and Pdx1, and begin to express Ngn3, a gene normally only expressed during 

developmental stages or in immature β-cells. These dedifferentiated cells no longer function 

normally, contributing to the loss of β-cell mass seen in T2D, and sometimes convert, or 

transdifferentiate, to other endocrine cell types and express other hormones, such a glucagon (41). 

Importantly, β-cell dedifferentiation was also observed in diabetic GIRKO (GLUT4-insulin 

receptor knock-out line 1) mice (41), suggesting that it may be part of the natural progression of 

the disease.  

A more recent study from the same group identified a novel marker of dedifferentiated β-

cells (94). ALDH1A3, also called RALDH3, is a retinaldehyde dehydrogenase that was found to 

be specifically enriched in β-cells of Foxo knockout mice and of db/db and GIRKO diabetic mouse 

models, as well as in islets of diabetic humans (60; 94). ALDH1A3+ cells are associated with weak 

MAFA expression and elevated L-myc and NGN3 expression. At present, the relationship between 

ALDH1A3 and β-cell dedifferentiation is not well-understood. ALDH1A3 may serve as only a 
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marker for β-cell dedifferentiation as it does not itself cause β-cell dysfunction, since acute gain 

of function of ALDH1A3 does not inhibit β-cell function (94).      

Though chronically elevated β-cell [Ca2+]i has been associated with β-cell failure, its role 

in loss of β-cell identity has only very recently been explored. Dahan and colleagues reported that 

the developmental endocrine hormone gastrin is induced in β-cells of db/db mice, Akita mice, and 

mice with diphtheria toxin-induced hyperglycemia, as well as in human type 2 diabetic β-cells 

(95). Interestingly, this increase in Gast expression was inhibited when Ca2+-influx was blocked 

but was not increased when Ca2+-influx was induced, suggesting that Gast expression in the 

context of hyperglycemia requires Ca2+-influx, but that Ca2+-influx is not sufficient. This Ca2+-

dependent increase in Gast expression requires the action of calcineurin, a Ca2+-dependent 

phosphatase, since Tacrolimus, a calcineurin inhibitor, prevented hyperglycemia-induced Gast 

expression. The authors suggest that the process of Ca2+-induced Gast expression represents a 

“reprogrammed” β-cell, since the β-cells become polyhormonal, expressing both insulin and 

gastrin, but not a true “dedifferentiated” β-cell, since they do not express developmental markers, 

such as NGN3. 

 

Mouse models in diabetes research 

 The house mouse, Mus musculus, is a very common animal model in biomedical research 

for a variety of reasons. First, mice share over 90% of their genetic material with humans (96). 

Although this similarity is not as high as humans with non-human primates, mice exhibit a short 

generation time and can be easily genetically manipulated. Mice have been particularly useful for 

studying human pancreas development as well as diabetes disease progression. Furthermore, since 
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availability of human pancreas tissue samples is low and because the quality of such samples is 

variable, mice have provided a very robust experimental model. 

The Mouse-ENCODE Consortium (97) has shown that there is substantial conservation 

between the mouse and human genome, and that many fundamental processes and pathways that 

control gene activity are conserved in both species. However, there are major differences between 

mice and humans, particularly with respect to islets and β-cells. For instance, the arrangement of 

endocrine cells in mice differs from that in humans (Figure 1.3), as does the expression of key 

transcription factors, such as MAFA and MAFB. In mice, both MAFA and MAFB are expressed 

during development, but MAFB becomes restricted to α-cells in the adult (98). In humans, both 

factors are expressed in adult β-cells (99). These differences have led some to assert that studies 

in mice are irrelevant to understanding of T2D in humans. While I consider that viewpoint to be 

extreme, and see value in robustly conducted studies in mice, I acknowledge the need to be able 

to translate and validate knowledge gained in mice to humans. The bulk of the current knowledge 

about β-cell development and function has been derived from mice, and studies from the 

Magnuson lab contributed greatly to the knowledge base enabling three coding variants arising 

from studies of T2D (GCKR, PPARG and ABCC8) to be considered as causal for their respective 

GWAS signals (44).   

 Since the discovery of the Cre/Lox system to genetically inactivate or over-express specific 

genes in a cell-type-specific way, a variety of pancreas-specific Cre-driving transgenic mouse 

models have been designed (100). Similarly, the ability to genetically tag specific cell types with 

fluorescent proteins using transgenic constructs has enabled the isolation of pure populations of 

cells using fluorescence-activated cell sorting (FACS, described in the following section). 
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Transgenes allowing for pancreatic progenitor cell-specific or β-cell-specific gene expression have 

been particularly useful in studying β-cell development and function.  

 

FACS and transcriptome analysis of islet cell populations 

 Since the discovery of green fluorescent protein (GFP) and its utility as a reporter of gene 

expression, fluorescent proteins have been widely used in both transgenic and knock-in mouse 

models. Because of the utility of GFP, many other fluorescent proteins have been engineered to 

produce different colors to allow for simultaneous expression of more than one fluorescent reporter 

in the same mouse. These fluorescent proteins are used to report gene expression either by 

fluorescence microscopy or by FACS.  

By incorporating cell type or population-specific fluorescent proteins into transgenic and 

knock-in mouse models, pure endocrine cell populations are easily obtained, and are often paired 

with high-throughput downstream applications, including RNA-sequencing, to understand global 

gene expression under various conditions. Studies of β-cell-specific gene expression in humans, 

however, have been limited by the fact that pure β-cell populations are not easily obtained, since 

genetically-encoded fluorescent reporters are not achievable in humans. As a consequence, whole-

islet gene expression is often assayed, but these results are confounded by the fact that a 

heterogeneous cell population (containing not only β-cells, but also α- , δ-, and PP-cells as well as 

neurons and blood vessels) is used.  

Markus Grompe’s group first identified cell surface markers allowing for separation of 

pure human islet cell populations using FACS (101), and soon after began exploring the 

transcriptome from those sorted populations (102). Since then, FACS has been an invaluable 
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technique in increasing our understanding of the transcriptomes of human islet cell types (103-

107). However, some argue that, since these studies examine the entire population of a specific 

cell type, they fail to address population heterogeneity. There is mounting evidence that 

subpopulations within major islet cell types exist and are defined by specific differences in gene 

expression and properties (108-110).  

To overcome this issue, several groups have recently harnessed a new technology, called 

single-cell RNA-seq, to examine gene expression on the single-cell level (59; 62; 111; 112). This 

approach eliminates the need for fluorescent reporters or cell-type specific markers because cells 

are classified post-analysis based on gene expression of respective hormones. This technology also 

represents an important advance in the field, since researchers can begin to understand β-cell 

heterogeneity in both mice and humans, and to understand heterogeneity in normal and type 2 

diabetic patients. However, there are limitations to the approach as well. Because of the huge 

number of cells sequenced in these studies and due to the miniscule amount of RNA obtained from 

individual cells, the data is limited by shallow sequencing depths (fewer than 1 million reads per 

sample), making it likely that important discoveries are missed. Therefore, until single-cell 

technologies allow for the depth of sequencing that can be attained using cell populations, a 

combination of both approaches is needed to achieve a complete understanding of islet cell gene 

expression. 

In the following chapters, I describe our collection of seventeen RNA-seq datasets from 

FACS-purified mouse β-cells with the goal of better understanding the mechanism by which β-

cells fail in response to different types of stress. First, we used mice lacking Abcc8, a key 

component of the β-cell KATP-channel, to analyze the effects of a sustained elevation in the 

intracellular Ca2+ concentration ([Ca2+]i) on β-cell identity and gene expression. We found that 
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chronically elevated β-cell [Ca2+]i results in the dysregulation of over 4,200 genes, as well as 

modest loss of β-cell identity, characterized by decreased expression of key functional genes, 

increased expression of genes associated with β-cell dedifferentiation, increased β-cell 

transdifferentiation to PP-expressing cells, and decreased β-cell function. These studies prompted 

us to propose a model by which chronically elevated β-cell [Ca2+]i acts through a putative Ca2+-

regulated transcription factor, ASCL1, to disrupt a network of genes, contributing to β-cell failure.  

In addition to exploring the effects of chronically elevated [Ca2+]i on β-cell gene 

expression, we analyzed β-cells from mice ectopically expressing human growth hormone (hGH), 

mice made insulin resistant by feeding a high-fat diet (HFD), and mice of different sexes. We 

found that both ectopic hGH and HFD have beneficial effects (induction of β-cell proliferation 

genes) as well as deleterious effects (increased expression of ER stress genes) on β-cell function. 

Ultimately, the collection of 17 RNA-sequencing datasets allowed us to perform weighted gene 

correlation network analysis (WGCNA) to generate modules of similarly-expressed genes. Several 

of these initial modules have meaningful correlations to specific β-cell stresses. Overall, these 

studies highlight the power of using whole transcriptome datasets from highly-pure cell 

populations and have allowed us to elucidate how stress alters the β-cell gene regulatory network. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Mouse models and husbandry 

All animal experimentation was approved by the Vanderbilt Institutional Animal Care and 

Use Committee. Mice were fed a standard chow diet (PicoLab, 5L0D) unless otherwise specified, 

maintained on a 12-hour light/dark cycle, and were specific-pathogen-free. For glucose 

homeostasis characterization, male mice were given either a 10% fat (by kilocalories) control diet 

(Research Diets, Inc., D12450B) or a 60% fat diet (HFD, Research Diets, Inc., D12492). For RNA-

sequencing, mice were fed either a chow diet or a 60% fat diet for 30 days beginning at postnatal 

day (p)30.  

 Mice bearing the Sur1neo allele (Abcc8tm1.1Mgn, MGI: 2388392) were maintained in a 

congenic C57BL/6 background and genotyped as previously described (25). MIP-GFP mice 

(Tg(Ins1-EGFP/GH1)14Hara, MGI:3583654) were maintained in a congenic CD-1 line and 

genotyped as previously described (113). RIP-Cre mice (Tg.Ins2-cre25Mgn, MGI: 2176227) were 

maintained in a congenic C57BL/6 background and were genotyped using primers 5’-

CTCTGGCCATCTGCTGATCC-3’ and 5’-CGCCGCATAACCAGTGAAAC-3’. 

Gt(ROSA)26Sortm1(EYFP)Cos mice were purchased from The Jackson Laboratory and were genotyped 

as previously described (114). For RNA-sequencing, the C57BL/6 line bearing the Sur1neo allele 

was interbred with the CD-1 line containing the MIP-GFP transgene. Offspring of these matings 

were then interbred resulting in mice that were a random mix of both CD-1 and C57BL/6 strains.  

http://www.mousemine.org/mousemine/report.do?id=6535320&trail=|6535320
http://www.mousemine.org/mousemine/report.do?id=6569244&trail=|6569244
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Generation of Ins2Apple.LCA mice 

To facilitate the generation of new transgenic mouse lines with pancreatic β-cell specific 

gene expression we used recombinase-mediated cassette exchange (RMCE) utilizing Cre 

recombinase and two heterotypic Lox sites (115). This is a two-step procedure that generally 

requires the generation of mouse embryonic stem cells (mESCs) containing a loxed cassette 

acceptor (LCA) allele followed by RMCE to introduce the desired gene sequences into this site. 

To simplify this strategy, we designed a targeting vector for the Ins2 locus that expresses an H2B-

Apple fusion protein and functions as an LCA allele. The targeting vector was made based on 

pSP72.Ins2.GFP.LNL (116), which was a gift from Lori Sussel (Barbara Davis Center, University 

of Colorado). This plasmid, which contains 5’ and 3’ homology arms of 7078 and 3570 bps, 

respectively, was modified to contain a Lox66 site, the H2B-Apple sequence, an FRT-flanked PU-

ΔTK (puromycin resistance-Δ-thymidine kinase) selection cassette, and a Lox2272 site. Inclusion 

of the Lox66, Lox2272, and PU-ΔTK features enables dual function as an LCA (Figure 2.1A).  

After electroporation, 162 puromycin-resistant mESC clones were obtained and were screened by 

Southern blot hybridization using region-specific 5’ and 3’ probes. Six correctly targeted clones 

were identified, one of which (1C4) was injected into mouse blastocysts to generate chimeric 

mice (Figure 2.1B). After germline transmission, the Ins2LCA.Apple mice were genotyped using the 

following primers: Ins2F1 (5’-GAGGTGTTGACGTCCAATGAG-3’) and Ins2R1 (5’-

GAACTCACCTTGTGGGTCCTC-3’), which produce a wild type band of 562 bp; Ins2F and 

AppleR1 (5’-CATGTTATTCTCCTCGCCCTTG-3’), which produce an Ins2LCA.Apple allele 

specific band of 876 bp; and Cherry 2F (5’-CAGTTCATGTACGGCTCC-3’) and InsSeqR1 (5’-

CAGTGGCAGAACTCACCTTG-3’), which produce an Ins2LCA.Apple allele specific band of 684 

bp after PU-ΔTK is deleted by Flpe (Figure 2.1C). 



 26 

 

  



 27 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Generation of Ins2Apple.LCA mice. (A) Schematic of the Ins2.Apple.LCA targeting 

vector, which contains a Lox66 site, the H2B-Apple sequence, an FRT-flanked PU-ΔTK selection 

marker, and a Lox2272 site. Ins2WT represents the wildtype Ins2 allele. The Ins2LCA allele was 

created by homologous recombination in mouse ES cells. To generate the final allele, mice 

expressing the Ins2Apple.LCA allele were crossed with mice expressing Flpe, to excise the PU-ΔTK 

cassette. Primer binding sites are represented by arrows above the schemes. (B) Southern blot 

analyses using either BsrGI-digested ES cell clone DNA and the 5’ probe or NsiI-digested ES cell 

clone DNA and the 3’ probe. Clone 1C4 was injected into mouse blastocysts to generate live mice. 

(C) PCR analysis used to distinguish between the wildtype and targeted Ins2 alleles. (D) 

Representative images from frozen pancreatic sections from Ins2Apple.LCA mice stained for Insulin 

and RFP. Panels B-D show primary data generated by Rama Gangula and Anna Osipovich. 
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Generation of Ins2Apple.hGH mice 

The variant Ins2LCA.Apple.hGH allele was made by inserting human growth hormone (hGH) 

genomic sequences downstream of H2B-Apple using RMCE. First, an exchange vector 

(pIns2.H2B-Apple.hGH) was made based on the pMCS.71/2272.hygro vector (117). This plasmid 

contains a Lox71 site, H2B-Apple, a 3 kb fragment of the hGH gene, a Lox2272 site, and an FRT-

flanked pgk-Hygro positive selection cassette (Figure 2.2A). Clone 1C4 Ins2LCA.Apple mESCs were 

then co-electroporated with the exchange plasmid and pBS185, a Cre-expression plasmid, as 

previously described (117). Of 90 hygro-resistant clones, nine survived ganciclovir selection, all 

of which were determined by PCR to be correctly exchanged. Clone 1C4/1A1 (68% normal 

karyotype) was injected into mouse blastocysts to achieve germ-line transmission. To genotype 

the Ins2LCA.Apple.hGH mice, the following primers were used: Ins2F1 and AppleR1, which produce a 

band of 713 bp, and Hygro.3R (5’-ACCGATGGCTGTGTAGAAGTACT-3’) and Ins2R1, which 

produce a band of 739 bp (Figure 2.2B). The pgk-Hygro selection cassette was removed by 

interbreeding with mice containing a Flpe-expressing transgene (118), then backcrossed into a 

C57BL/6 background. All mice used for experiments were at least 94% congenic for C57BL/6. 

 

Glucose tolerance testing 

Following a 16-hour fast, male mice were given an intraperitoneal injection of D-glucose 

(2 mg per g body weight). Blood glucose concentrations were taken at 0, 15, 30, 60, and 120 

minutes post glucose bolus and were measured using a BD Logic glucometer.  
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Figure 2.2. Generation of Ins2Apple.hGH mice. (A) Schematic of the Ins2.Apple.hGH exchange 

vector, which contains a Lox71 site, the H2B-Apple sequence, a 3kb fragment of hGH, an FRT-

flanked pgk-Hygro selection marker, and a Lox2272 site. The Ins2Apple allele was generated by 

RMCE in mouse ES cells expressing the Ins2Apple.LCA allele. To generate the final allele, mice 

expressing the Ins2Apple allele were crossed with mice expressing Flpe to excise the pgk-Hygro 

cassette. Primer binding sites are represented by arrows above the schemes. (B) PCR analysis used 

to identify mice expressing the targeted allele and mice in which pgk-Hygro has been excised (C) 

Frozen pancreatic sections from adult Ins2Apple.hGH mice stained for DAPI, Insulin, and Apple. (D) 

Frozen pancreatic sections from adult Ins2Apple.hGH mice stained for DAPI, Glucagon, and Apple. 

Panel B shows primary data generated by Rama Gangula. 
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Insulin tolerance testing 

Following a 6-hour fast, male mice were given an intraperitoneal injection of human insulin 

(0.75 mU/g body weight). Blood glucose concentrations were taken at 0, 15, 30, and 60 minutes 

post insulin bolus and were measured using a BD Logic glucometer.  

 

Verapamil administration 

Adult Abcc8+/+; MIP-GFP and Abcc8-/-; MIP-GFP mice were given either Splenda (2%) 

or a combination of Verapamil (1mg/mL, Sigma, V4629) and Splenda in their drinking water for 

three weeks. Splenda was used to mask any taste of Verapamil. 

 

Immunofluorescence microscopy 

Whole pancreata were fixed for 4 hours in 4% paraformaldehyde, incubated overnight at 

4°C in 30% sucrose, embedded in OCT compound (Tissue Tek), frozen on dry ice, and sectioned 

at a depth of 8 microns. For TUNEL assay, whole pancreata were fixed overnight in 10% formalin, 

embedded in paraffin, and sectioned at a depth of 5 microns. Immunofluorescence staining was 

performed as previously described (119). Antibodies used are listed in Table 2.1. After antibody 

staining, slides were mounted with Prolong Gold with DAPI (Invitrogen). Images were acquired 

using either a Zeiss Axioplan-II upright microscope or an Olympus FV-1000 inverted confocal 

microscope, were pseudo-colored using ImageJ (NIH), and are representative of the phenotype 

observed in at least three different animals per group per time point. 
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Table 2.1: Primary antibodies used 

Antibody Species Company Dilution 

ALDH1A3 Rabbit Novus Biologicals 1:500 

GFP (YFP) Chicken Invitrogen 1:2000 

Glucagon Rabbit Linco 1:1000 

Insulin Guinea pig Invitrogen 1:1000 

Insulin Rabbit Cell Signaling 1:100 

Pancreatic polypeptide Guinea pig Linco 1:1000 

RFP (Apple) Rabbit Rockland 1:1000 

S100A6 Sheep R&D Systems 1:100 

Serotonin (5-HT) Rabbit ImmunoStar 1:1000 

Somatostatin Rabbit ICN Biomedicals 1:1000 

 

 

Morphometric analysis 

In general, morphometric analysis was performed by manual cell counting of 10-15 

representative islets per animal using immunofluorescent images in ImageJ. To determine 

percentages of each endocrine cell type, the total number of cells expressing a specific hormone 

and the total number of cells within the islet were counted. To determine the percentages of each 

endocrine cell type inside the islet core, the total number of cells expressing the specific hormone 

that were greater than two cell diameters inside the islet were determined. To assess β-cell death, 

an In Situ Cell Death Detection Kit (TUNEL, Roche, 11684795910) was used on paraffin-
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embedded pancreatic sections from Abcc8-/- and Abcc8+/+ mice at 12 weeks of age. Insulin co-

staining was performed to label pancreatic β-cells. For each Abcc8-/-; R26LSL.YFP; RIP-Cre and 

Abcc8+/+; R26LSL.YFP; RIP-Cre animal, the total number of cells co-expressing YFP and a specific 

hormone were determined.  

 

Islet isolation 

Pancreata were digested by injection of 0.6 mg/mL Collagenase P (Roche) into the 

pancreatic bile duct. Partially dissociated tissue was fractionated using a Histopaque-1077 (Sigma) 

gradient followed by hand-picking of islets. For FACS and RNA-sequencing, islets from 3-7 mice 

were pooled for each sample. For qRT-PCR, islets from a single mouse were used per sample. 

 

Resting membrane potential and Ca2+ imaging 

Islets were isolated from the pancreata of 7- to 10-week-old Abcc8+/+; MIP-GFP and 

Abcc8-/-; MIP-GFP mice and cultured in poly-d-lysine (Sigma) coated 35-mm glass-bottom dishes 

(Cellvis) in RPMI 1640 supplemented with 15 % FBS, 100 IU/ml penicillin, and 100 mg/ml 

streptomycin at 37 °C, 5% CO2 for 42 hrs. A perforated patch-clamp technique was employed to 

record plasma-membrane potentials from single β-cells using an Axopatch 200B amplifier with 

pCLAMP10 software. Cells were washed twice with Krebs-Ringer–HEPES buffer (KRHB) with 

(in mmol/L) 119.0 NaCl, 2.0 CaCl2, 4.7 KCl, 25.0 HEPES, 1.2 MgSO4, and 1.2 KH2PO4 (adjusted 

to pH 7.35 with NaOH) with 11.0 mM glucose. Patch electrodes (3-5 MΩ) were filled with an 

intracellular buffer (IC) with (in mmol/L) 150.0 KCl, 3.0 MgCl2, 0.03 amphotericin B, and 10.0 
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HEPES (adjusted to pH 7.25 with KOH). Membrane potential was held at -80 mV, and islets were 

perifused with KRHB with 11 mM glucose while a seal was being formed between the recording 

pipette and the cell membrane. Once a seal was formed (≥ 1 GΩ) β-cell membrane potential was 

monitored at 11 mM glucose for 10 min then perifusion was switched to KRHB with 2 mM glucose 

for 30 min. For intracellular calcium imaging, islets were isolated from pancreata of 9- to 11-week-

old Abcc8+/+and Abcc8-/- mice, and imaging of cytoplasmic calcium was performed as previously 

described (120). 

 

Islet culture 

Purified islets were incubated overnight at 37°C in RPMI-1640 (Gibco 11879-020) growth 

medium supplemented with 10% heat-inactivated FBS (Gibco, 16140-071), 1% penicillin-

streptomycin (Pen/Strep, Gibco, 15140-122), and 11 mM D-glucose (Research Products 

International Corp, G32040). The next morning, islets were incubated in DMEM (Gibco, 11966-

025) supplemented with 5.6 mM glucose, 10% FBS, and 1% Pen/Strep for two hours at 37°C. 

Islets were then incubated in either experimental or control medium, and incubated for 24 hours at 

37°C. Experimental media were made from DMEM (5.6 mM D-glucose, 10% FBS, and 1% 

Pen/Step) and contained 100 μM tolbutamide (Sigma, T0891) or 20 mM KCl (Sigma, P5405), 

with or without 50 μM verapamil (Sigma, V4629). 
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Cell isolation 

Purified islets were dispersed in an Accumax (Sigma) and 1U/mL DNase (Invitrogen, 

AM2222) solution at 37°C. Flow Cytometry Buffer (FCB, R&D systems, FC001) supplemented 

with DNase and 0.5M EDTA was added to the cell suspension, and cells were filtered using a 35-

μm cell strainer. Cell pellets were resuspended in FCB supplemented with DNase and EDTA. 

Either 7AAD (ThermoFisher, A1310, final concentration 1 μg/mL, for MIP-GFP islets) or DAPI 

(ThermoFisher, D21490, final concentration 5 μg/mL, for Ins2.Apple islets) was added to the 

sorting media for exclusion of dead cells. Live cells expressing the fluorescent reporter were 

collected with a 100-μm nozzle using the FACS Aria II (BD Biosciences) instrument. Cells were 

collected in the Maxwell 16 LEV simplyRNA Tissue Kit (Promega, TM351) Homogenization 

Solution supplemented with 1-thioglycerol.  

 

RNA purification and quality control 

RNA was isolated from either FACS-purified β-cells or whole islets using the Maxwell 16 

LEV simplyRNA Tissue Kit (Promega, TM351). After purification, RNasin (40 U/uL, Promega) 

was added to the RNA samples before storage at -80°C. RNA samples were analyzed using the 

Agilent 2100 Bioanalyzer, and only samples with an RNA integrity number greater than 7 were 

used for sequencing or qRT-PCR. 
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Library assembly and sequencing 

RNA samples from FACS-purified β-cells were amplified using the SMART-Seq v4 Ultra 

Low Input RNA Kit for Sequencing (Clontech) using 8 cycles of PCR. cDNA libraries were 

constructed using the Low Input Library Prep Kit (Clontech). RNA sequencing of Abcc8+/+; MIP-

GFP and Abcc8-/-; MIP-GFP samples was performed on the Illumina NextSeq500 instrument 

using paired-end, 75 nucleotide reads. RNA-seq data are available in the ArrayExpress database 

(www.ebi.ac.uk/arrayexpress) under the accession number E-MTAB-4726. RNA sequencing of 

Ins2Apple/+ samples was performed on the Illumina HiSeq3000 instrument using paired-end, 75 

nucleotide reads.   

 

Bioinformatics analysis 

Raw sequencing reads were processed utilizing TrimGalore 0.4.0 (which relies on 

CutAdapt 1.9.dev2) to remove adapter sequences and pairs that were either shorter than 20 bp or 

that had Phred scores less than 20. The Spliced Transcripts Alignment to a Reference (STAR) 

application (121) was used to perform sequence alignments to the mm10 (GRCm38) mouse 

genome reference and GENCODE comprehensive gene annotations (Release M8). STAR’s two-

pass mapping approach was used to increase the detection of reads mapping to novel junctions 

identified during the first mapping pass. Overall, approximately 88-91% of the raw sequencing 

reads were uniquely mapped to genomic sites. Finally, HTSeq was used for counting reads mapped 

to genomic features (122), and DESeq2 was employed for differential gene expression analysis 

(123), using the Advanced Computing Center for Research and Education (ACCRE) at Vanderbilt 

University. 
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Pathway analysis and upstream regulator prediction 

The DAVID Bioinformatics Resource 6.8 Beta was used for functional annotation 

clustering and to identify KEGG pathways enriched in different conditions using differentially-

expressed genes generated from RNA-seq data. iRegulon (124) was used to predict gene regulatory 

networks. Default search parameters were used (20kb centered around the transcription start site, 

7 species conservation). Enrichment score threshold was 3.0.   

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

The High Capacity cDNA Reverse Transcription Kit (Life Technologies) was used to 

convert whole islet RNA to cDNA. qRT-PCR was performed on the Applied Biosystems 7900HT 

instrument using the 2X SyBR Green PCR Master Mix (Life Technologies). Samples were 

analyzed in triplicate, and were normalized to Hprt expression. Primer sequences are listed in 

Table 2.2. 

 

Table 2.2: qRT-PCR primer sequences 

Gene Forward Primer Reverse Primer 

Aldh1a3 5’-GGGTCACACTGGAGCTAGGA 5’-CTGGCCTCTTCTTGGCGAA 

Ascl1 5’-GACTTTGGAAGCAGGATGGCA 5’-CACCCCTGTTTGCTGAGAAC 

Hprt 5’-TACGAGGAGTCCTGTTGATGTTGC 5’-GGGACGCAGCAACTGACATTTCTA 

S100a4 5’-AGCACTTCCTCTCTCTTGGTC 5’-TCATCTGTCCTTTTCCCCAGG 

S100a6 5’-CACATTCCATCCCCTCGACC 5’-GTGGAAGATGGCCACGAGAA 
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Weighted gene correlation network analysis (WGCNA) 

WGCNA is a method used to determine highly-correlated gene modules relating clusters 

of genes to each other and to pre-determined sample traits. Briefly, WGCNA determines a 

connection weight between pairs of genes and identifies gene modules by applying a soft threshold 

power to correlations between pairs of genes within a network. Starting with seventeen RNA-Seq 

datasets from FACS-purified β-cells, we utilized WGCNA (version 1.51) (125) to remove 

expressed genomic features that had excessive missing values using an iterative function called 

“goodSampleGenes.” We proceeded with network construction and module detection, by first 

choosing a soft-thresholding power β against which co-expression similarity is used to calculate 

adjacency (126). Several candidate β values were tested, the resultant network topologies 

inspected, and a β value of 0.8 identified as the lowest power for which the scale-free topology fit 

index is optimal. The actual network was constructed using the following parameters, including 

the soft thresholding power of 0.8, a relatively large minimum module size of 50, a medium 

sensitivity for cluster splitting, and a block size larger than the number of genomic features to 

avoid the splitting of data. Computation was performed on Vanderbilt’s ACCRE computing 

cluster, with 96GB of RAM resourced to ensure matrix calculations for the entire gene set could 

be executed: 

blockwiseModules(datExpr, maxBlockSize = 25000, power = 8, deepSplit = 2, 
                       TOMType = "unsigned", minModuleSize = 50, 
                       reassignThreshold = 0, mergeCutHeight = 0.25, 
                       numericLabels = TRUE, pamRespectsDendro = FALSE, 
                       saveTOMs = TRUE, 
                       saveTOMFileBase = "wgcnaTOM", 
                       verbose = 3) 
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This WGCNA script implements all of the steps of module detection. Specifically, it 

automatically constructs a correlation (co-expression) network, creates a cluster tree, defines 

modules as branches, and merges close modules. We determined module-trait relationships by 

correlating gene-module membership against gene-trait significance, and then determined the 

overall correlation of all genes with modules to the individual traits. Relationships with p-value < 

0.05 were considered significant.  Correlation networks were exported for modules of interest and 

visualized in Cytoscape 3. 

 

Statistical analysis 

Statistical significance was determined using two-tailed Student’s t-test. Data is 

represented as mean ± s.e.m. A threshold of p < 0.05 was used to declare significance. 
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CHAPTER III 

CHRONIC β-CELL DEPOLARIZATION IMPAIRS β-CELL IDENTITY BY DISRUPTING A 

NETWORK OF CA2+-REGULATED GENES 

 

Introduction 

In Type 2 Diabetes (T2D), pancreatic β-cells fail to respond appropriately to metabolic 

stresses brought on by age, obesity, and genetic risk factors. The mechanisms by which chronic 

metabolic stress, including insulin resistance, glucotoxicity, and lipotoxicity (39; 40; 46) impair β-

cell function are not understood. While metabolic stress is usually considered to be exogenous to 

the β-cell, chronic stimulation leads to changes within the β-cell, impairing function. One such 

factor is chronic elevation in [Ca2+]i, sometimes called excitotoxicity (85), which may be triggered 

by sustained β-cell depolarization due to chronic stimulation.   

Ca2+ is a ubiquitous second messenger that is central to regulating cellular dynamics of 

many cell types, including β-cells. Genetic and pharmacological perturbations that either stimulate 

or impair Ca2+-signaling have dramatic effects on -cell function. For instance, the disruption of 

calcineurin, a Ca2+-dependent phosphatase, or either CaMKII or CamKIV, two Ca2+-dependent 

kinases, profoundly impairs β-cell function, likely by modulating the activity of Ca2+-responsive 

transcription factors such as NFAT, CREB, and TORC2 (67; 68; 72; 79; 81). Conversely, the 

constitutive activation of calcineurin or calmodulin, a Ca2+-binding protein, also causes marked β-

cell dysfunction (46; 82; 83). 
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Acutely, glucose metabolism induces ATP-sensitive potassium (KATP) channel closure, 

membrane depolarization, opening of voltage-gated Ca2+-channels, a rise in [Ca2+]i, and insulin 

secretion. However, sustained elevation in [Ca2+]i has multiple effects on β-cell function that can 

either be adaptive or maladaptive. β-cell proliferation induced by glucose metabolism (50) is an 

example of an adaptive response to sustained elevations in [Ca2+]i. However, chronically elevated 

[Ca2+]i can also induce maladaptive responses, since prevention of Ca2+-influx in the setting of 

insulin resistance prevents β-cell death (86). In either case, mice lacking KATP-channels exhibit 

disrupted islet morphology, characterized by α-cells being located in the islet core (87; 127). The 

cause is not understood, but could reflect either loss of cell identity or impairments in cell adhesion.  

In this chapter, I will show that-cells in Abcc8-/- mice exhibit chronic membrane 

depolarization that results in a sustained elevation in [Ca2+]i. The persistent increase in [Ca2+]i, in 

turn, alters the expression of over 4,200 genes, some of which are involved in cell adhesion, Ca2+-

binding and Ca2+-signaling, and maintenance of β-cell identity. We found that Abcc8-/- mice exhibit 

β-cell to PP-cell trans-differentiation and have increased expression of Aldh1a3, a gene recently 

suggested as a marker of de-differentiating β-cells. Additionally, we show that S100a6 and 

S100a4, two EF-hand Ca2+-binding proteins, are acutely regulated in β-cells by membrane 

depolarization agents, suggesting that they may be markers for β-cell excitotoxicity. Finally, we 

performed a computational analysis to predict components of the gene regulatory network that 

may govern the observed gene expression changes and found that one of the predicted regulators, 

Ascl1, is directly regulated by Ca2+ influx in β-cells. 
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Results 

 

Abcc8-/- β-cells exhibit persistent membrane depolarization and elevated [Ca2+]i 

Previous studies have shown chronically elevated [Ca2+]i and continuous action potential 

firing in β-cells of mice lacking KATP-channels (25; 27; 34). To definitively establish Abcc8-/- mice 

as a model for chronically elevated β-cell [Ca2+]i, we measured membrane potential at high 

(11mM) and low (2mM) glucose concentrations (Figure 3.1A, B). While Abcc8-/- β-cells exhibit 

action potentials in high glucose, they fail to undergo membrane potential polarization in low 

glucose (Figure 3.1B). Quantification of the changes in Abcc8-/- β-cell membrane potentials 

confirms that Abcc8-/- β-cells show no difference in membrane potential between high and low 

glucose, contrary to Abcc8+/+ β-cells (Figure 3.1C, D). Importantly, continual depolarization of 

Abcc8-/- β-cells causes a chronic elevation in [Ca2+]i, as shown by Ca2+-imaging at both low and 

high glucose (Figure 3.2A). Quantification of area under the curve shows that Abcc8-/- β-cells have 

significantly higher [Ca2+]i than Abcc8+/+ β-cells at each time interval measured (Figure 3.2B). 

Interestingly, despite having chronically elevated β-cell [Ca2+]i, Abcc8-/- mice have long been 

known to have surprisingly small disturbances in their plasma glucose concentrations (25). First, 

as previously reported (128) they exhibit outright hypoglycemia in the fasted state (Figure 3.4A).  

Second, we have also observed that they exhibit a trend toward mild hyperglycemia in the fed state 

(Figure 3.4B).  
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Figure 3.1. Abcc8-/- β-cells exhibit persistent membrane depolarization. A perforated patch 

recording technique was employed to monitor the membrane potential of Abcc8+/+ and Abcc8-/- β-

cells in whole islets. (A) Abcc8+/+ β-cells display normal activity at 11mM glucose and become 

hyperpolarized in response to 2mM glucose (representative recording). (B) Abcc8-/- β-cells display 

activity similar to Abcc8+/+ β-cells at 11mM glucose (with a trend toward a depolarized plateau 

potential); however, their activity remains statistically unchanged in response to 2mM glucose 

(representative recording). (C) Quantification of the potentials of Abcc8+/+ and Abcc8-/- β-cells at 

11mM and 2mM glucose. Abcc8+/+ β-cells become significantly more polarized in response to 

2mM glucose while there is no difference between Abcc8-/- β-cells at 11mM and 2mM glucose. 

(D) Quantification of the percent change in membrane potential between 11mM and 2mM glucose 

for Abcc8+/+ and Abcc8-/- β-cells. The membrane potential of Abcc8+/+ β-cells changes 

significantly more than Abcc8-/- β-cells. ***p<0.001. This data was generated by Matthew 

Dickerson and David Jacobson. 
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Figure 3.2. Abcc8-/- β-cells exhibit elevated [Ca2+]i. (A) Intracellular Ca2+ was monitored in 

Abcc8+/+ and Abcc8-/- islets with Fura-2 AM. Islets were equilibrated in 2mM glucose, stimulated 

with 11mM glucose, and returned to 2mM glucose as indicated by the bars above the traces (overall 

averages are shown). (B) Intracellular Ca2+ area under the curve (AUC) was quantified at intervals 

representing low glucose conditions (0-2 min), glucose-stimulation (10-12 min), and a return to 

low glucose (20-22 min). Data are an average of n ≥ 21 islets from three animals. **p<0.01, 

***p<0.001. This data was generated by Matthew Dickerson and David Jacobson. 
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β-cell identity becomes compromised in Abcc8-/- mice 

During prolonged metabolic stress, β-cells can lose expression of functional markers and 

convert to other endocrine cell types (41). However, β-cell de-differentiation has not been studied 

in the context of chronically elevated [Ca2+]i. Thus, we performed β-cell lineage tracing using 

Abcc8-/-; RIP-Cre; Rosa26LSL.YFP/+ mice. While there was no evidence for either β- to α-cell or β- 

to δ-cell trans-differentiation (Figure 3.3D, E), we observed an increase in YFP/PP co-expression 

(Figure 3.3C). Most YFP/PP co-expressing cells are poly-hormonal, expressing both PP and 

insulin (Figure 3.3A), but a few cells (0.24% of the YFP+ cells, 10% of the YFP/PP double+ cells, 

Figure 3.3F) have ceased insulin expression (Figure 3.3B). Administration of a Ca2+-channel 

blocker to Abcc8-/- mice resulted in a decrease in Insulin/PP co-expressing cells, but the difference 

was not significant (Figure 3.3G). The loss of β-cell identity correlates with impaired glucose 

tolerance not attributable to β-cell death (Figure 3.4A, C). Complete dedifferentiation, retention 

of YFP expression but loss of hormone expression, was only observed at a very low rate that was 

similar among wildtype and knock-out animals (0.19% and 0.21%, respectively, Figure 3.3H).  

 

RNA expression profiling of Abcc8-/- and Abcc8+/+ β-cells 

To determine how chronically elevated β-cell [Ca2+]i affects gene expression, we 

performed RNA-sequencing using FACS-purified β-cells from Abcc8-/-; MIP-GFP mice at 8-9 

weeks of age. Since the inclusion of an hGH mini-gene in the MIP-GFP allele causes both hGH 

expression and activation of STAT5 signaling (129), we used MIP-GFP-expressing mice as 

controls. Principal component and gene clustering analyses (Figure 3.5B, C), performed on RNA-

Seq data from FACS-purified cells (Figure 3.5A), indicates that most of the top 500 differentially- 
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Figure 3.3. Loss of strict β-cell identity in Abcc8-/- mice. We performed β-cell lineage tracing 

using Abcc8-/-; RIP-Cre; R26
LSL.YFP/+ 

animals and assessed β-cell dedifferentiation at 12 weeks of 

age. (A) Representative examples of polyhormonal cells co-expressing YFP, PP, and insulin. (B) 

Representative examples of YFP-labeled cells that are expressing PP but not expressing insulin. 

(C) Quantification of PP/YFP double+ cells shows an increase in their occurrence in Abcc8-/-; RIP-

Cre; R26
LSL.YFP/+

 mice compared to Abcc8+/+; RIP-Cre; R26
LSL.YFP/+ 

mice at 12 weeks of age. (D, 

E) Quantification of YFP/Glucagon double+ cells (D) or YFP/Somatostatin double+ cells (E) shows 

no difference in the prevalence of these cells in wild type and knockout mice, suggesting that 

Abcc8-/- β-cells do not transdifferentiate to α- or δ-cells. (F) Summary of the total number of YFP 

and PP double-positive, but insulin-negative, cells observed in Abcc8+/+; RIP-Cre; R26LSL.YFP and 

Abcc8-/-; RIP-Cre; R26LSL.YFP animals at 12 weeks of age. (G) Quantification of PP/Insulin double+ 

cells in frozen pancreatic sections shows a trend towards a decrease in polyhormonal cells in 8-9-

week-old Abcc8-/- mice after 3 weeks of verapamil administration (p=0.26). However, the 

difference is not statistically significant.  (H) Quantification of the number of YFP-positive, 

hormone-negative cells observed in Abcc8+/+; RIP-Cre; R26LSL.YFP and Abcc8-/-; RIP-Cre; 

R26LSL.YFP animals at 12 weeks of age. N=3-4 animals, 10-15 islets counted per animal. Scale bar 

= 5μm. *p < 0.05, ***p < 0.001, n.s. = Not Significant. 
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Figure 3.4 Mild glucose intolerance in Abcc8-/- mice. (A) Glucose tolerance tests using male 

Abcc8+/+ or Abcc8-/- C57BL/6 mice at 4, 12, 20, and 28 weeks of age. Green lines represent 

Abcc8+/+ mice. Blue lines represent Abcc8-/- mice. Error bars represent standard error. *p<0.05, 

**p<0.01. n=4-10 mice. (B) Fed blood glucose concentration in a cohort of Abcc8+/+ and Abcc8-/- 

mice between from 4 to 8 weeks of age showing no difference between the groups. n=5 animals 

per genotype. Green lines represent Abcc8+/+ mice. Blue lines represent Abcc8-/- mice. (C) Rate of 

β-cell death as assessed by TUNEL assay at 12 weeks of age in Abcc8+/+ and Abcc8-/-mice. 
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Figure 3.5. Principal Component Analysis and Gene Clustering Analysis. (A) FACS profiles 

of sorted populations from Abcc8+/+; MIP-GFP and Abcc8-/-; MIP-GFP mice indicating that β-

cells from both genotypes can be purified similarly. (B) Principal component analysis shows that 

the eight samples used for RNA-sequencing cluster by genotype, with some variation in the second 

principal component. (C) Heat map depicting gene clustering analysis using the top 500 

differentially-expressed genes. “WT” = Abcc8+/+. “KO” = Abcc8-/-. J.P. Cartailler of Creative Data 

Solutions generated panels B and C. 

  



 49 

expressed genes cluster as expected. Differential expression analysis (Figure 3.6B) reveals 4,208 

differentially-expressed genes (2,152 downregulated and 2,056 upregulated) in Abcc8-/- β-cells 

(adjusted p-value < 0.05). Approximately 90% are protein-coding, 3% are non-coding RNAs, 2% 

are pseudogenes, and 3% are other types of processed transcripts (Figure 3.6A). 

 

Abcc8-/- β-cells exhibit changes in expression of genes involved in β-cell maturation, Ca2+-

signaling, and cell adhesion 

To correlate gene expression with the functional abnormalities of Abcc8-/- islets, we 

examined genes known to be highly enriched in mature β-cells and observed that Ins1, Slc2a2, 

Neurod1, Gck, Glp1r, Npy, several synaptotagmins, Tph1, Tph2, and Egfr are all down-regulated 

(Figure 3.6C). Conversely, Ppy is upregulated in Abcc8-/- β-cells, consistent with our observation 

of poly-hormonal cells.   

 Since Abcc8-/- β-cells have chronically elevated [Ca2+]i, we examined genes involved in 

Ca2+-binding or signaling. The genes affected included Myo7a, a Ca2+/Calmodulin-binding myosin 

motor protein, Pcp4, a calmodulin-binding protein known to protect neurons from Ca2+-induced 

toxicity (130), and Cacng3, a subunit of a voltage-dependent Ca2+-channel. In addition, Nfatc1, 

Mef2c, and Mef2d, three calcium-regulated transcription factors; Camk1d, Camkk1, and Camkk2, 

three kinases involved in calcium-signaling; and S100a1, S100a3, S100a4, S100a6, and S100a13, 

five EF-hand calcium-binding proteins, are up-regulated (Figure 3.6C).   

We and others have previously observed that mice lacking KATP-channels have severely 

disrupted islet morphology (25; 34; 87). To better understand the progressive deterioration in islet 

morphology, we quantified the changes occurring over time in the number and location within  
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Figure 3.6. RNA-sequencing of Abcc8-/- β-cells. With the assistance of J.P. Cartailler, we 

performed RNA-sequencing of FACS-purified β-cells from Abcc8-/-; MIP-GFP and Abcc8+/+; 

MIP-GFP animals. (A) Pie chart showing the percentage of differentially-regulated genes that fall 

into biotype categories of protein-coding, non-coding RNA, other RNA, pseudogene, other 

processed transcripts, and other types of transcripts. (B) Volcano plot showing the most 

differentially-expressed genes in Abcc8-/-; MIP-GFP β-cells based on the -log10 (FDR-adjusted P-

value) and the log2 (fold change). Genes with a log2 (fold change) greater than 3 are labeled and 

grouped into categories based on biotype characterization. (C) Selected differentially-expressed 

genes grouped in categories of interest in Abcc8-/-; MIP-GFP β-cells. All genes shown were 

manually selected and have FDR-adjusted p-values < 0.05.  
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islets of α-, β-, δ-, and PP-cells in Abcc8-/- mice (Figure 3.7).  We observed both a decrease in the 

percentage of β-cells per islet (Figure 3.8A), and an increase in the percentage of α-, δ-, and PP-

cells per islet (Figure 3.8B-D) in Abcc8-/- mice compared to Abcc8+/+ controls, though the total 

number of cells per islet did not differ (Figure 3.8H). The striking difference in visual appearance 

of the Abcc8-/- islets led us to quantify the location of cells within islets, finding that Abcc8-/- mice 

have an age-dependent increase in α-, PP-, and δ-cells (Figure 3.8E-G) located in the islet core.  

To correlate gene expression with this disrupted islet architecture, we examined expression 

of cell adhesion molecules, hypothesizing that a reduction in such genes could result in loss of islet 

structure. Consistently, we observed reduction in multiple cell adhesion molecules, including 

Cldn1, Cldn3, Cldn8, Cldn23, and Ocln, genes involved in tight junctions; Cdh1, Cdh7, Cdh8, 

Cdh13, and Cdh18, encoding cadherins; Cdhr1, a cadherin-related protein; Pcdhb15 and Pcdhb22, 

encoding protocadherins; and Vcam1, a vascular cell adhesion molecule (Figure 3.6C).  

Aldh1a3, a retinaldehyde dehydrogenase recently suggested to be a marker for β-cell 

dedifferentiation (94), is 27-fold upregulated in Abcc8-/- β-cells by RNA-seq (Figure 3.6C). In 

addition, six other genes (Serpina7, Aass, Asb11, Penk, Fabp3, and Tcea1) enriched in 

dedifferentiated β-cells (94) are upregulated in Abcc8-/- β-cells (Figure 3.6C). Co-immunostaining 

with insulin indicates that while ALDH1A3 is expressed in only 0.4% of Abcc8+/+ β-cells, it is 

expressed in 29.1% of Abcc8-/- β-cells (Figure 3.9A, D), However, this fraction was reduced to 

11.4% in Abcc8-/- mice administered the Ca2+-channel blocker verapamil (Figure 3.9A, B), further 

suggesting that a chronic increase in [Ca2+]i impairs the maintenance of cell identity. 
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Figure 3.7 Abcc8-/- islets have disrupted islet morphology that worsens over time. 

Immunostaining of frozen pancreatic sections at 4, 12, 20, and 28 weeks of age with antibodies 

against insulin, glucagon, pancreatic polypeptide, and somatostatin shows that (A, B) α-cells, (C, 

D) PP-cells, and (E, F) δ-cells become localized to the islet core in Abcc8-/- islets but are restricted 

to the periphery in Abcc8+/+ islets. Scale bar = 50μm.  
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Figure 3.8 Quantification of islet morphology changes. Cell counting at 4, 12, 20, and 28 weeks 

of age shows that Abcc8-/- islets have (A) a smaller percentage of β-cells and a greater percentage 

of (B) α-cells, (C) PP-cells, and (D) δ-cells in the islet.  Abcc8-/- islets also have an increasing 

percentage of core (E) α-cells, (F) PP-cells, and (G) δ-cells beginning by 4 weeks of age. (H) The 

average number of cells per islet does not differ between Abcc8+/+ and Abcc8-/- islets. Green lines 

represent Abcc8+/+ islets. Blue lines represent Abcc8-/- islets. N=3-4 animals per genotype, 10-15 

islet sections counted per animal. Error bars represent standard error. *p<0.05, **p<0.01, 

***p<0.001.  
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Figure 3.9. Heterogeneous expression of S100A6 and ALDH1A3. (A) Co-immunostaining of 

ALDH1A3, a potent marker of dedifferentiated β-cells, and insulin in pancreatic sections from 

Abcc8+/+, Abcc8-/-, and Abcc8-/- mice given Verapamil. (B) Quantification of (A) showing the 

percentage of Insulin and ALDH1A3 co-expressing cells in each group. Verapamil treatment 

partially rescues the percentage of ALDH1A3-expressing β-cells in Abcc8-/- mice. (C) Co-

immunostaining of S100A6 and insulin in Abcc8+/+ and Abcc8-/- pancreatic sections. (D) 

Quantification of (C) showing the percentage of Insulin-expressing cells that co-express S100A6 

in Abcc8+/+ and Abcc8-/- mice. (E) Co-immunostaining of ALDH1A3 and S100A6 shows that there 

is not strict co-localization of these two factors, again emphasizing the heterogeneous nature of β-

cell failure. Arrows indicate cells that co-express ALDH1A3 and S100A6. Scale bar = 50μm. N=3 

animals, 8-12 islet sections counted per animal. *p<0.05, **p<0.01, ***p<0.001.   
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S100a6 and S100a4 are markers of excitotoxicity in β-cells 

To identify genes that could serve as markers of β-cell excitotoxicity, we further analyzed 

S100a6 and S100a4. Both genes are appealing targets due to their functions as EF-hand Ca2+-

binding proteins, the association of S100a6 with insulin secretion (131), and the increased 

expression of members of the S100 gene family in islets from humans with hyperglycemia (132). 

Moreover, they are among the most highly-upregulated genes in Abcc8-/- β-cells, with S100a6 and 

S100a4 increasing 37- and 5-fold, respectively. While S100A6 is only expressed in 2.8% of 

Abcc8+/+ β-cells, it is expressed in 38.4% of Abcc8-/- β-cells (Figure 3.9C, D). Additionally, qRT-

PCR using whole islet RNA confirms the upregulation of S100a6 and S1004 in Abcc8-/- islets 

(Figure 3.10A). 

To determine if the observed changes in S100a6 and S100a4 expression in Abcc8-/- β-cells 

are due to chronically elevated [Ca2+]i, and not to unknown compensatory effects, we treated 

wildtype islets with either KCl or tolbutamide and found that membrane depolarization is 

associated with an increase in both S100a6 and S100a4 expression (Figure 3.10B-E), mirroring 

the expression pattern in Abcc8-/- β-cells. Importantly, these changes are reversed when islets are 

treated with both a depolarizing agent and the Ca2+-channel inhibitor verapamil (Figure 3.10B-

E). Moreover, the expression of S100a6 and S100a4 is decreased when Ca2+ influx is 

pharmacologically inhibited in Abcc8-/- mice (Figure 3.10F, G). These results suggest that S100a6 

and S100a4 expression in Abcc8-/- β-cells is tightly correlated with [Ca2+]i. Finally, co-

immunostaining with S100A6 and ALDH1A3 indicates that several, but not all, cells co-express 

these two proteins (Figure 3.9E). Quantification reveals that 15.4 ± 2.1% of insulin-expressing 

cells in Abcc8-/- mice express both S100A6 and ALDH1A3.  
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Figure 3.10. S100a6 and S100a4 serve as markers of excitotoxicity in β-cells. (A) qRT-PCR 

using whole islet RNA confirms upregulation of S100a6 and S100a4 in Abcc8-/- islets compared 

to Abcc8+/+ islets. (B-E) qRT-PCR using whole islet RNA from wild type islets treated with either 

100μM tolbutamide or 20mM KCl with or without 50μM verapamil for 24 hours. S100a6 (B, C) 

and S100a4 (D, E) are significantly upregulated in response to membrane depolarization, but this 

effect is negated when Ca2+ influx is blocked. (F, G) qRT-PCR using whole islet RNA from animals 

administered verapamil (1mg/mL) in the drinking water for 3 weeks indicates that both S100a6 

and S100a4 expression is significantly downregulated when Ca2+ influx is inhibited. n.s. = not 

significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.     
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Prediction of upstream regulators 

To determine if there are similarities in the regulation of differentially-expressed genes in 

Abcc8-/- β-cells [Ca2+]i, we utilized iRegulon, which searches for common DNA binding motifs in 

co-expressed genes (124), to identify potential upstream regulators. Analysis of the top 500 

upregulated genes reveals that binding sites for ASCL1, CEBPG, and RARG are common, and 

many genes, including Aldh1a3, are predicted to be regulated by all three (Figure 3.11, 3.13A). 

Interestingly, all three predicted regulators are upregulated in Abcc8-/- β-cells (Figure 3.13C). 

Conversely, analysis of the top 500 downregulated genes predicts binding sites for TEAD1, 

HNF1A, and ZFP647 (Figure 3.12, 3.13B). The expression of these regulators is unchanged in 

Abcc8-/- β-cells (Figure 3.13C).    

 

Ascl1 is regulated by [Ca2+]i in β-cells 

Since Ascl1 is 22-fold upregulated in Abcc8-/-; MIP-GFP β-cells (Figure 3.6B) and 24-fold 

upregulated in Abcc8-/- islets (Figure 3.13D), and has been shown by ChIP to bind near 51% of 

the predicted targets (133-135), we studied its responsiveness to changes in [Ca2+]i in isolated 

islets. Consistent with Ascl1 being regulated by [Ca2+]i, its expression increases in response to 

membrane depolarization, an effect that is reversed when Ca2+ influx is inhibited by verapamil, 

both in isolated islets (Figure 3.13E) and in mice (Figure 3.13F). These results support the idea 

that ASCL1 could play a central role in regulating gene expression in β-cells with chronically 

elevated [Ca2+]i.  



 59 

 

Figure 3.11. iRegulon-predicted network of regulators of the top 500 upregulated genes in 

Abcc8-/- β-cells. Map depicting the top 3 predicted regulators (green octagons) and their predicted 

target genes (magenta circles). A majority of the genes are predicted to be co-regulated by two or 

more regulators. Genes of interest (S100a6, S100a4, and Aldh1a3) are highlighted yellow. 
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Figure 3.12. iRegulon-predicted network of regulators of the top 500 downregulated genes in 

Abcc8-/- β-cells. Map depicting the top 3 predicted regulators (green octagons) and their predicted 

target genes (magenta circles).  
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Figure 3.13. Upstream regulator prediction using iRegulon. Using the top 500 up- and down-

regulated genes in Abcc8-/- β-cells, we utilized iRegulon to predict common upstream regulators 

based on enriched DNA binding motifs. (A, B) Tables summarizing the top 3 predicted regulators 

of upregulated (A) and downregulated (B) genes, their enrichment scores, and the number of 

predicted targets. (C) Expression of the predicted regulators in Abcc8-/- β-cells, as determined by 

RNA-seq. (D) qRT-PCR using whole islet RNA confirms upregulation of Ascl1 in Abcc8-/- islets 

compared to Abcc8+/+ islets. (E) qRT-PCR for Ascl1 using whole islet RNA from wildtype islets 

treated with 20mM KCl with or without 50μM verapamil for 24 hours. (F) qRT-PCR using whole 

islet RNA from animals administered verapamil. n.s. = not significant, *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001.     
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Discussion 

Chronically elevated [Ca2+]i, within pancreatic β-cells perturbs the expression of over 4,200 

genes, compromising cell identity, causing β- to PP-cell trans-differentiation, and impairing islet 

morphology. Such an increase in [Ca2+]i, may also occur when insulin secretion is inadequate to 

overcome insulin resistance during the early stages of β-cell failure, or when a sulfonylurea is used 

as therapy. While some of the changes may be adaptive, such as the increase in Pcp4, a calmodulin-

binding protein that protects neurons from Ca2+-induced excitotoxicity (130), many of the 

observed changes, such as the reduction in cell adhesion molecules and the increase in genes 

associated with β-cell failure, are likely to be maladaptive. 

 

[Ca2+]i in Abcc8-/- β-cells 

While we observed persistent membrane depolarization and a sustained elevation of the 

[Ca2+]i, others have observed oscillations in intracellular calcium in β-cells from KATP-channel 

knockout mice (136; 137). This is likely attributable to our experimental conditions, which 

involved only a very brief stimulation with glucose and averaging of the calcium traces, which did 

not allow for [Ca2+]i oscillations to be identified (Figure 3.2A). We did, however, observe a 

transient drop in [Ca2+]i in Abcc8-/- islets following glucose stimulation (Figure 3.2A) that was not 

seen in Abcc8+/+ islets. This drop is due to brief membrane hyperpolarization caused by transient 

activation of the sodium potassium ATPase (136), and has also been observed previously in islets 

treated with KATP-channel inhibitors (138) as well as in other KATP-channel-deficient mice (136). 

Thus, our findings are in agreement with other studies (136) that have also observed persistent 
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membrane depolarization and continuous action potential firing leading to elevated [Ca2+]i in β-

cells from KATP-channel knockout mice.    

 

A chronic increase in [Ca2+]i impairs β-cell identity 

Recent studies have suggested that β-cell dedifferentiation contributes to the development 

of T2D (41; 94). We found that the expression of genes involved in maintaining β-cell identity and 

function were adversely affected in Abcc8-/- mice, including Ins1, Slc2a2, Neurod1, Gck, and 

Syt10. However, some of the transcription factors previously associated with β-cell 

dedifferentiation (41), including Mafa, Pdx1, Nkx6.1, FoxO1, Ngn3, Oct4, and Nanog, are 

unchanged in Abcc8-/- β-cells. This difference may explain the modest loss of β-cell identity 

observed in Abcc8-/- mice, with only 2.21% of β-cells undergoing trans-differentiation to either 

INS/PP poly-hormonal or PP mono-hormonal cells. Importantly, we observed that, while it did not 

reverse the INS/PP poly-hormonal cells, treatment with a Ca2+-channel blocker resulted in a 

decrease in the percentage of Abcc8-/- β-cells expressing the dedifferentiation marker ALDH1A3, 

further supporting our claim that a chronic increase in [Ca2+]i contributes to loss of β-cell identity.  

It is important to distinguish our results, reflecting the loss of KATP-channels, from studies using 

KATP-channel gain-of-function mutants (57; 58). The current study examines the effects of elevated 

[Ca2+]i in a euglycemic setting, while the latter reflects decreased [Ca2+]i in a hyperglycemic 

setting.  

Based on our finding of compromised β-cell identity in Abcc8-/- mice, we suggest that 

chronically elevated [Ca2+]i, or excitotoxicity, if left uncorrected, may contribute to β-cell failure 

in T2D. However, it can also be argued that the loss of β-cell identity is an adaptive mechanism 
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that helps prevent the development of hyperinsulinemia in response to chronically elevated [Ca2+]i. 

These findings also have important implications for the use of sulfonylureas, including tolbutamide 

and glibenclamide, as therapies for T2D. Sulfonylureas have been widely prescribed for patients 

with T2D for decades, but our results suggest that, by inhibiting KATP-channels to cause 

chronically-elevated [Ca2+]i and to increase insulin secretion, they might also cause maladaptive 

effects, resulting in loss of β-cell function and identity and potentially exacerbating the disease. 

Indeed, the observation that patients prescribed sulfonylureas often experience a loss in efficacy 

of the drug after about six years, requiring the addition of exogenous insulin to maintain glycemic 

control (139), suggests that β-cell function deteriorates with this use of these drugs. 

 

A network of [Ca2+]i-regulated genes 

Many of the dysregulated genes in Abcc8-/- β-cells, such as S100a6, Myo7a, Pcp4, Cacng3, 

Mef2c, and Camk1d, are involved in Ca2+ binding and signaling. The S100 gene family, for 

instance, modulates the activity of other proteins upon Ca2+ binding (140). Moreover, S100A6, 

specifically, promotes Ca2+-stimulated insulin release (131). Camk1d, Camkk1, and Camkk2, three 

protein kinases, Myo7a, a myosin motor protein, and Mef2d and Mef2c, are involved in 

Ca2+/calmodulin-dependent signaling, or are regulated by [Ca2+]i (65; 141). While we only cite 

selected examples, our results are consistent with a network of Ca2+-modulated genes being 

required in β-cells for the maintenance not only of internal Ca2+-homeostasis but also the regulation 

of key biological responses. However, despite strong evidence that the chronic increase in [Ca2+]i 

perturbs many genes involved in Ca2+-signaling, it remains possible that some of the gene 
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expression changes that occur in Abcc8-/- β-cells are due to paracrine and/or neuronal signaling, 

since Abcc8 is expressed in other islet cell types and neurons. 

We focused on two [Ca2+]i-regulated genes, S100a6 and S100a4, since they are highly up-

regulated in Abcc8-/- β-cells and are acutely regulated by treatment with depolarizing agents and a 

Ca2+-channel blocker. The upregulation of these and other members of the S100 gene family of 

Ca2+-binding proteins may reflect a buffering mechanism existing in the β-cell to sequester excess 

Ca2+ ions and prevent over-activation of downstream signaling pathways. Interestingly, 

administration of a Ca2+-channel blocker to Abcc8-/- mice did not fully rescue the expression levels 

of S100a6 or S100a4 (Figure 3.10F, G) or of Ascl1 (Figure 3.13F). The failure of Verapamil to 

fully restore basal expression levels of these genes, or to significantly reverse the percentage of 

Ins/PP polyhormonal cells (Figure 3.3G), is likely due to limitations in the experimental design. 

For instance, it is possible that the animals were not given an adequate dose of Verapamil to 

completely rescue the effect. It is also possible that the duration of Verapamil administration was 

not sufficient. Therefore, we can conclude that expression of S100a6 and S100a4 is regulated by 

Ca2+-influx in the β-cell and that these genes are promising as markers for β-cell excitotoxicity.  

In support of this, members of the S100 gene family, including S100A3, S100A6, S100A10, 

S100A11, and S100A16, have been associated, in human islets, with hyperglycemia (132), and 

S100A6, specifically, was shown to be positively correlated with increased body mass index in β-

cells from type 2 diabetic donors (112). Recently, several groups have performed single-cell RNA-

sequencing of human pancreatic cells types from both normal and type 2 diabetic donors (59; 111; 

112). Although one of these studies revealed slightly increased expression of S100A6 in β-cells 

from type 2 diabetic donors compared to normal donors (RPKM of 282 vs. 224, respectively) 

(111), no study reported a statistically significant difference in expression of S100A6, S100A4, or 
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ASCL1. However, because single cells were sequenced in these studies, and since expression data 

from multiple single cells was not pooled to increase depth, the data is limited by shallow 

sequencing depths (fewer than 1 million reads per sample), making it likely that important 

correlations were missed. Indeed, only a small number of genes were reported to be differentially 

expressed in β-cells from normal compared to type 2 diabetic donors (48 in one study (111), and 

76 in another (112)). Therefore, a more directed effort needs to be made in order to establish if 

these genes are correlated with type 2 diabetes in human β-cells.   

 

Effects of a sustained increase in [Ca2+]i on islet morphology 

Perturbations in Ca2+-signaling provide a compelling explanation for the disrupted islet 

morphology observed in KATP-channel knockout mice. Among the down-regulated genes are many 

that encode cell adhesion molecules, such as Ocln, Tln1, and Cdh1. An attractive hypothesis is that 

deterioration of β-cell to β-cell adhesion over time allows other endocrine cells types to infiltrate 

to the core of the islet. In accordance with this, [Ca2+]i is known to be required for maintenance of 

tight junctions and adherens junctions, and focal adhesion disassembly occurs in response to 

elevated [Ca2+]i (142). However, this hypothesis fails to explain the change in overall number of 

each of the islet cell types. The observed decrease in β-cell number may be accounted for by 

elevated apoptosis, as has been observed by some (34; 35), but was not observed in our studies. 

Another possibility, which I favor, is that disruption of Ca2+-influx during development, as in the 

case in constitutive loss of KATP-channels, causes a disruption in endocrine lineage allocation. 
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Identification of putative upstream regulators 

Bioinformatics analysis of genes that are either up- or down-regulated by [Ca2+]i suggests 

commonalities in the upstream transcriptional control regions. Our analysis suggests that genes 

that are upregulated by [Ca2+]i contain binding sites for ASCL1, CEBPG, and RARG. ASCL1, 

also known as MASH1, plays a role in neuronal commitment and differentiation (143). Retinoic 

acid receptors, including RARG, play a role in both endocrine cell development and maintenance 

of proper insulin secretion and β-cell mass (144). Finally, CEBPB, a closely related protein to 

CEBPG, represses the insulin promoter under conditions of chronically-elevated glucose, and its 

accumulation in β-cells increases vulnerability to ER stress (145; 146). Although our 

computational analysis is purely predictive, it is partially validated by the fact that 51% of the 

ASCL1 target genes and 60% of the RARG binding sites were previously established by ChIP 

(133-135; 147). Importantly, S100a4 is among the ASCL1 targets that have been experimentally 

validated (133-135), and our in-depth analysis of Ascl1 strongly supports the idea that it is 

regulated by Ca2+-influx, strengthening our putative model.  

Conversely, analysis of genes that are down-regulated by [Ca2+]i predicts binding sites for 

TEAD1, HNF1A, and ZFP647. Although Tead1 gene expression is unaffected in Abcc8-/- β-cells, 

the activity of TEAD1, a member of the Hippo pathway that interacts with YAP/TAZ to promote 

proliferation, is directly inhibited by Ca2+ (148). Furthermore, since a gene knock-out of Hnf1a 

results in β-cell failure and diabetes (149), a predicted decrease in its activity could explain the 

decrease in genes involved in β-cell function in Abcc8-/- β-cells.    
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Excitotoxicity in β-cell failure 

Despite altering the expression of 4,208 genes, chronic β-cell depolarization does not, 

itself, cause overt T2D, at least within the timeframe studied here, although mild glucose 

intolerance was observed. This suggests that a combination of stresses may be required for β-cell 

failure (46). Moreover, our finding that S100A6 and ALDH1A3 do not strictly co-localize in 

Abcc8-/- β-cells is consistent with β-cell failure occurring in a stochastic manner, and suggests that 

some cells may fail before others. Regardless, our findings provide insights into the adaptive and 

maladaptive responses that occur when β-cells are chronically depolarized. These responses may 

require the individual or combined activity of ASCL1, RARG, and CEBPG, in the case of genes 

up-regulated by [Ca2+]i, or TEAD1, HNF1A, and ZFP647, in the case of genes down-regulated by 

[Ca2+]i. While further studies are necessary to validate this model, our studies clearly show that a 

chronic increase in [Ca2+]i results in dysregulation of many genes and modest loss of β-cell identity 

(Figure 3.14). Although β-cells may have mechanisms that limit the maladaptive effects of an 

increase in [Ca2+]i, our findings suggest that β-cell excitotoxicity, in combination with other 

metabolic stresses, may contribute to β-cell dedifferentiation and failure. 
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Figure 3.14. Model showing the effects of chronically elevated [Ca2+]i in the β-cell. Our results 

suggest that there is a putative gene regulatory network mediating the effects of chronically 

elevated [Ca2+]i in the β-cell. Elevated [Ca2+]i activates predicted regulators ASCL1, RARG, and 

CEBPG, causing an elevation in Ca2+-binding and signaling. Our results also suggest that the 

combined actions of ASCL1, RARG, and CEBPG activate Aldh1a3 expression. Elevated [Ca2+]i 

may negatively regulate the activity of TEAD1, HNF1A, and ZFP647, leading to loss of β-cell 

function and stable β-cell identity. Loss of β-cell function and identity further contributes to the 

upregulation of Aldh1a3. Finally, the combination of elevated Ca2+-binding and signaling, 

decreased β-cell function and identity, and other metabolic stresses leads to β-cell failure. 
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CHAPTER IV 

THE EFFECTS OF HUMAN GROWTH HORMONE ON β-CELL FUNCTION AND GENE 

EXPRESSION 

 

Introduction 

The ability to genetically tag specific cell types with fluorescent proteins using transgenic 

constructs has enabled the isolation of pure cell populations using fluorescence-activated cell 

sorting (FACS). Transgenes allowing for pancreatic progenitor cell-specific or β-cell-specific gene 

expression have been particularly useful in studying β-cell development and function.  However, 

the utility of some such lines has been limited by low or variegated expression in the cell type of 

interest, presumably due to chromatin inaccessibility. In an attempt to overcome issues of low 

transgene expression, studies in the late 1980s and early 1990s discovered that inclusion of intronic 

sequences and polyadenylation signals increases transgene expression in vivo by enhancing 

chromatin accessibility (150; 151). Since these initial studies, inclusion of the entire human growth 

hormone (hGH) coding sequence, including introns, has been widely used to enhance expression 

of transgenes driving cell-type-specific constructs.  

Recently, the Magnuson lab and others have reported that the hGH minigene present in 

many pancreas-specific drivers, originally thought not to produce a functional protein, causes 

ectopic expression of hGH in pancreatic tissues (129; 152; 153). The hGH protein has marked 

effects on the physiology of these animals, with elevated STAT5 signaling, causing increased 

expression of islet serotonin, β-cell proliferation, and subsequent β-cell mass (Figure 4.1) (129; 

152; 153). By a mechanism that is apparently independent of STAT5 signaling, ectopic hGH can  
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Figure 4.1. Effects of ectopic hGH expression on β-cell mass and function. Pancreas-specific 

transgenic mouse lines containing an hGH minigene (Pdx1-Cre shown in this example) can drive 

the ectopic expression of hGH in β-cells. hGH binds prolactin receptors (PRLR) on the surface of 

β-cells, triggering STAT5 phosphorylation and induction of pregnancy-like gene expression. 

Activation of pregnancy-like genes results in serotonin (5-HT) synthesis and increased β-cell 

proliferation. In addition to activating STAT5 signaling, hGH expression causes other effects, such 

as reduction in glucose-stimulated insulin secretion (GSIS) and decreased GLUT2 expression. The 

combination of elevated β-cell mass and decreased GLUT2 expression causes resistance to 

streptozotocin (STZ)-induced diabetes. Reprinted from Brouwers et al. (129) © 2014, with 

permission from Elsevier (see Appendix B).  
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also result in decreased β-cell expression of GLUT2 as well as impaired glucose tolerance (129).    

One transgene made by this strategy that is widely used to identify and isolate pure β-cell 

populations is the MIP-GFP mouse (113), containing the mouse insulin promoter driving the 

expression of green fluorescent protein (GFP). With these new findings in mind, it is imperative 

to determine the expression status of hGH protein in mouse models made in this way and to ensure 

that proper controls are used to avoid misinterpretation of results.  

In this chapter, I will describe the generation of a novel Ins2.Apple allele, which contains 

the hGH minigene, that allows for nuclear-labeling specifically of β-cells with exquisite separation 

of the Apple-expressing population by FACS. Furthermore, RNA-sequencing of both Ins2Apple/+ 

and MIP-GFP β-cells reveals severe defects in the latter population that are drastically reduced or 

absent in the former. Together, our results suggest that, while the hGH minigene is present in our 

Ins2.Apple allele, the effects of it are diminished, making it an improved alternative to the MIP-

GFP allele for investigators wishing to genetically label mouse β-cells. 
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Results 

 

Generation of Ins2.Apple.LCA mice 

In order to generate mice expressing a fluorescent reporter in the Ins2 locus, we first 

generated a targeting vector containing the H2B-Apple fusion protein (a nuclear red fluorescent 

protein) sequence followed by an FRT-flanked PU-ΔTK positive selection cassette, both flanked 

by homology arms to the second exon of the mouse Ins2 locus (Figure 2.1A). To increase the 

future utility of this allele, we inserted two LoxP sites, one upstream of the H2B-Apple sequence 

and one downstream of the PU-ΔTK cassette, to facilitate future gene targeting into the Ins2 locus 

using Recombinase-Mediated Cassette Exchange (RMCE). This vector was inserted into the 

mouse Ins2 Locus by homologous recombination in mESCs to generate an Ins2.Apple.LCA allele. 

The final allele was generated after Flpe-mediated excision of the PU-ΔTK cassette. Southern blot 

analysis confirmed the presence of both wildtype and targeted bands of the expected size in six 

mouse embryonic stem cell (mESC) clones (Figure 2.1B). Clone 1C4 was used to generate live 

mice. PCR genotyping produces a 562-bp band for the wildtype allele and a 684-bp band for the 

targeted mutation (Figure 2.1C). 

 

Ins2.Apple.LCA mice have variegated expression of H2B-Apple 

To test the functionality of our newly-generated Ins2.Apple.LCA allele, we performed 

immunofluorescence staining on pancreatic sections for Insulin and Apple to find that the allele is 

highly variegated in Insulin-expressing β-cells (Figure 2.1D). The cause of this variegation is not 

known, but likely is due to epigenetic modifications to the genomic area resulting in silencing of 
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the allele in a population of the cells. To remedy this variegation, we generated a second 

Ins2.Apple allele containing a human growth hormone (hGH) minigene, a sequence known to 

improve transgene expression by increasing DNA accessibility (150; 151). To achieve this, we 

made an Ins2.Apple.hGH exchange vector containing the H2B-Apple sequence, followed by an 

hGH minigene and an FRT-flanked Hygro positive selection cassette (Figure 2.2A). This 

exchange vector was incorporated into the Ins2.Apple.LCA allele via RMCE. Flpe-mediated 

excision of the Hygro cassette generated the Ins2Apple mice used for subsequent experiments.   

 

Ins2Apple/+ mice have specific expression of H2B-Apple in β-cells 

To determine if the inclusion of the hGH minigene improves the expression of H2B Apple, 

we performed immunofluorescence staining of frozen pancreatic sections to find that 77.56 ± 0.3% 

of insulin-expressing β-cells also express Apple (Figure 2.2C), indicating that a small amount of 

variegation still exists. Additionally, Apple expression is specific to β-cells, as no expression is 

seen in glucagon-producing α-cells (Figure 2.2D). The Ins2Apple allele also has great utility as a 

fluorescent reporter to be used for fluorescence-activated cell sorting (FACS), since it allows for 

better separation of the β-cell population than the MIP-GFP allele (Figure 4.3A). 

 

Ins2Apple/+ mice do not have ectopic hGH expression 

Recently, we and others have reported that the hGH minigene present in many transgenes 

causes ectopic expression of hGH in pancreatic tissues (129; 152; 153), resulting in marked 

abnormalities in β-cells, including elevated STAT5 signaling and impaired glucose tolerance. To 

determine if the Ins2Apple/+ mice have any of these abnormalities, we performed 
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immunofluorescence staining for serotonin, a product of the pregnancy-like gene expression 

signature induced by STAT5 signaling in mice with ectopic hGH expression (129). We found that 

Ins2Apple β-cells do not overexpress serotonin (Figure 4.2A), suggesting that, although the hGH 

minigene is present in the Ins2.Apple.hGH allele, it may not make a functional protein.  

 

RNA expression profiling of MIP-GFP and Ins2Apple/+ β-cells 

To determine if ectopic hGH alters gene expression, we performed RNA-sequencing using 

four replicates of FACS-purified MIP-GFP β-cells (discussed in Chapter III) compared to six 

replicates of FACS-purified Ins2Apple/+ β-cells at p60. The four MIP-GFP β-cell samples were 

mixed-gender while the six Ins2Apple/+ β-cell samples were segregated by sex, with three from 

males and three from females. To avoid biases introduced by sex differences, the six gender-

separated Ins2Apple/+ β-cell samples were analyzed as six replicates. After isolation of both 

populations and performing RNA-seq, principal component analysis (PCA) and gene clustering 

analysis were performed. These analyses indicated the samples (Figure 4.3B) and the top 500 

differentially-expressed genes (Figure 4.3C) cluster largely by genotype. Differential expression 

analysis of the ten samples revealed 9,128 genes (4,718 upregulated, 4,410 downregulated) that 

were significantly dysregulated (based on FDR-adjusted p-value < 0.05) in MIP-GFP β-cells 

compared to Ins2Apple/+ β-cells, 87% of which were protein-coding, 3% were non-coding RNA, 4% 

were pseudogenes, and 6% were other types of transcripts (Figure 4.4A). Fold change between 

the two groups was as high as about 6,500-fold, and p-values for six of the transcripts were too 

small to estimate, indicating the extent to which gene expression differs between the two models.   
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Figure 4.2. Ins2Apple/+ mice do not have ectopic hGH expression. (A) Co-immunostaining of 

pancreatic sections from Ins2Apple/+ and RIP-Cre, a transgene in which hGH is expressed, mice for 

insulin and serotonin (5-HT). Scale bar = 50μm. (B) Expression of pregnancy-related genes in 

FACS-purified β-cells from Ins2Apple/+ and MIP-GFP mice, as determined by RNA-seq. Genes 

were hand-picked and have p < 0.05.  
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Figure 4.3. FACS purification of Ins2Apple/+ and MIP-GFP β-cells for RNA-Seq. (A) FACS 

profiles of sorted β-cell populations from Ins2Apple/+ and MIP-GFP mice. (B) Principal component 

analysis shows that the ten samples used for RNA-sequencing cluster by genotype, with some 

variation in the second principal component. (C) Heat map depicting gene clustering analysis using 

the top 500 differentially-expressed genes. J.P. Cartailler of Creative Data Solutions generated 

panels B and C.  
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Figure 4.4. RNA-sequencing of Ins2Apple/+ and MIP-GFP β-cells. With the assistance of J.P. 

Cartailler of Creative Data Solutions, we performed RNA-sequencing of FACS-purified β-cells 

from Ins2Apple/+ and MIP-GFP animals at 8-9 weeks of age. (A) Pie chart showing the percentage 

of differentially-regulated genes that fall into biotype categories of protein-coding, non-coding 

RNA, other RNA, pseudogene, and other types of transcripts. (B) Volcano plot showing the most 

differentially-expressed genes in MIP-GFP β-cells based on the -log10 (FDR-adjusted P-value) and 

the log2 (fold change). Genes with a log2 (fold change) greater than 5 are labeled and grouped into 

categories based on biotype characterization. 
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To determine if the pregnancy-related genes known to upregulated in MIP-GFP β-cells are 

also upregulated in Ins2Apple/+ β-cells, we compared their average expression levels in both alleles 

using raw count information from our RNA-seq dataset. We found that pregnancy-related genes 

are very highly expressed in MIP-GFP β-cells while expression levels are significantly lower in 

Ins2Apple/+ β-cells (Figure 4.2B). These results suggest that, although the hGH minigene is present 

in the Ins2Apple allele, it may not make a functional protein and does not induce a pregnancy-like 

phenotype in Ins2Apple/+ mice.    

 

Pathway Analysis and Upstream Regulator Prediction 

Expression profiling of MIP-GFP β-cells revealed that approximately 9,000 genes are 

dysregulated compared to Ins2Apple/+ β-cells. To correlate the functional abnormalities associated 

with β-cells from mice ectopically expressing hGH with the gene expression changes in MIP-GFP 

β-cells, we examined the expression of genes known to be involved in maintaining β-cell function. 

As previously-reported, Slc2a2, encoding GLUT2, is significantly downregulated in MIP-GFP β-

cells (129). But we also observed that other critical genes, including Ins1, Pdx1, Gck, Abcc8, and 

Hnf1a are also significantly downregulated (Figure 4.5A).  

To further explore the potential defects in MIP-GFP β-cells in an unsupervised way, we 

used DAVID v6.8 beta to search for enriched biological pathways among the top 3,000 up- or 

downregulated genes. Among the most upregulated pathways are those involved in protein 

processing (Protein processing in the ER, Protein export, and Ribosome) and oxidative 

phosphorylation (Figure 4.5B). The specific stress-related genes that are upregulated in MIP-GFP 

β-cells are shown in Figure 4.5A. Among the most downregulated pathways are those critical for  
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Figure 4.5. Dysregulated genes in MIP-GFP cells. (A) Selected differentially-expressed genes 

in MIP-GFP β-cells. MIP-GFP β-cells exhibit a decrease in expression of genes associated with 

β-cell function, and an increase in expression of genes associated with ER stress, ER protein 

processing, and oxidative phosphorylation, as indicated by the fold change in selected genes from 

our RNA-seq dataset. Genes involved in β-cell function were manually selected, whereas the 

remaining genes were identified by DAVID. All genes shown have FDR-adjusted p-values < 0.05. 

(B, C) We used the DAVID Bioinformatics Resource (version 6.8 Beta) to analyze enriched KEGG 

Pathway categories for genes that were significantly up- (B) or down-regulated (C) in MIP-GFP 

β-cells.  
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maintaining β-cell function (PI3K-Akt signaling pathway and insulin secretion) (Figure 4.5C). 

These results suggest that MIP-GFP β-cells downregulate genes and pathways critical for 

maintaining β-cell function and upregulate protein processing to the point of being subjected to 

ER stress. 

Finally, to better understand the mechanisms by which these gene expression changes 

occur, we used iRegulon to predict common upstream regulators of the top 500 most upregulated 

genes in MIP-GFP β-cells. The top four predicted regulators are STAT5B, WISP2, IRF1, and 

ALX4 (Figure 4.6). The fact that many of the upregulated genes are predicted to have binding 

sites for STAT5B, a regulator previously implicated in mediating the effects of ectopic hGH 

expression (129), supports the idea that hGH is an important driver of gene expression observed 

in MIP-GFP β-cells. However, many of the upregulated genes are not predicted to be regulated by 

STAT5 signaling, suggesting that ectopic hGH is not the only contributor to the abnormalities in 

the MIP-GFP β-cells.  
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Figure 4.6. iRegulon-predicted network of regulators of the top 500 upregulated genes in 

MIP-GFP β-cells. Map depicting the top 4 predicted regulators (green octagons) and their 

predicted target genes (magenta circles).  
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Discussion 

 Using mice expressing a novel Ins2.Apple allele, which appears to escape the negative 

effects of the hGH minigene, we found that the widely-used MIP-GFP mice have severe defects 

in β-cell gene expression, some of which may be independent of hGH-driven STAT5 signaling.  

 

MIP-GFP β-cells have decreased expression of critical functional genes 

 Our RNA-sequencing analysis using β-cells from Ins2Apple/+ and MIP-GFP mice revealed 

the dysregulation of over 9,000 genes, due to the presence of the MIP-GFP transgene. It has 

previously been shown that β-cells from transgenic mice expressing the hGH minigene have 

impaired function, including decreased glucose tolerance (129; 152; 153). However, little is known 

about the underlying gene expression changes and molecular mechanisms responsible for this 

abnormality. Here, we demonstrate that, in addition to decreased expression of GLUT2, as 

previously described (129), several other critical β-cell function genes are downregulated in MIP-

GFP β-cells. In particular, the downregulation of genes critical to the canonical GSIS pathway 

(Gck, encoding glucokinase, and Abcc8, encoding a component of the KATP-channel) provide a 

plausible explanation for the impairment in glucose tolerance observed in other mouse models 

expressing hGH.   

MIP-GFP mice, however, despite having ectopic expression of hGH, do not have impaired 

glucose tolerance (113; 129), suggesting that the downregulation in these critical genes is not 

sufficient, at least within the timeframe of those studies, to cause glucose intolerance. An important 

caveat to this conclusion, however, is that background strain can hugely impact the severity of 

metabolic phenotypes (154). The transgenic mouse line (Pdx1-Cre) originally found to have 
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ectopic hGH expression and impaired glucose tolerance was maintained on a congenic C57BL/6 

background (129), while the MIP-GFP mice cited as having normal glucose tolerance were 

maintained on a CD-1 background. Mice used here for RNA-sequencing were maintained on a 

mixed background of C57BL/6 and CD-1. Since the CD-1 background is an outbred strain, animals 

are more genetically diverse than inbred C57BL/6 animals, making it possible that mild metabolic 

abnormalities could be masked. Assessment of the MIP-GFP animals on an inbred C57BL/6 

background is necessary to make sound conclusions about the effects of the transgene on β-cell 

function. 

 

MIP-GFP β-cells exhibit gene expression changes associated with ER stress 

 In addition to having decreased expression of key functional genes, MIP-GFP β-cells have 

increased expression of genes involved in ER protein processing, ER stress, and oxidative 

phosphorylation. ER stress is thought to be a major cause of β-cell failure in the pathogenesis of 

T2D, caused by increased demand for insulin biosynthesis in the setting of insulin resistance (38; 

39). More studies are needed to determine if MIP-GFP β-cells are, in fact, experiencing ER stress, 

rather than simply upregulating genes involved in protein processing pathways. The cause of the 

potential ER stress in these animals also remains to be determined. Since hGH appears to be 

expressed at a much higher level in MIP-GFP β-cells than in Ins2Apple/+ β-cells, elevated STAT5 

signaling may induce ER stress in an undetermined manner. It is also possible that differences in 

copy number of the alleles place varying levels of strain on the ER folding capacity of the β-cells 

from the two lines. H2B-Apple was strictly limited to one copy, since only heterozygous mice 

were used, but GFP could have been present in either one or two copies, since both heterozygous 

and hemizygous mice were used, potentially doubling the demand for GFP folding. 
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A network of dysregulated genes in MIP-GFP β-cells 

 We have previously postulated that STAT5 signaling is responsible for the pregnancy-like 

changes in gene expression observed in β-cells with ectopic hGH expression (129). However, we 

also observed phenotypic changes, such as impaired glucose tolerance, that were not explained by 

elevated STAT5 signaling. In support of this, our upstream regulator prediction analysis revealed 

at least three factors, other than STAT5, that could contribute to the observed gene expression 

changes. Among the predicted regulators are WISP2, IRF1, and ALX4. Interestingly, WISP2 has 

been shown to increase β-cell proliferation through AKT signaling (155), potentially contributing 

to increased β-cell mass in mouse models ectopically expressing hGH. Additionally, ALX4 is part 

of a locus associated with increased T2D risk in humans (156). While more work is needed to 

determine if these putative regulators control gene expression in MIP-GFP β-cells, our results 

suggest that a network of regulators, rather than a single factor, contribute to the abnormalities 

induced by the presence of the transgene. 

 An important caveat to these findings, however, is that we do not know which of the 

observed gene expression changes in the MIP-GFP β-cells are due to ectopic hGH expression or 

to confounding factors introduced by the experimental design. For example, some changes may be 

attributed to the difference in genetic background between the two moues strains used: MIP-GFP 

mice were a mixed background of C57BL/6 and CD-1 while Ins2Apple/+ mice were pure C57BL/6. 

Additionally, allele design drastically differs between the two strains: the MIP-GFP allele is a 

transgene while the Ins2Apple allele is a knock-in allele. In order to definitively determine which 

gene expression changes are due to ectopic hGH expression, identical alleles, with one containing 

the hGH sequence and the other lacking it, need to be designed and studied further using whole 

transcriptome analysis. 
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CHAPTER V 

TOWARDS A GENE CORRELATION NETWORK DESCRIBING β-CELL FAILURE 

 

Introduction 

In Type 2 diabetes mellitus (T2D) pancreatic β-cells fail in response to genetic 

susceptibility and metabolic stress due to mounting insulin resistance brought on by advancing age 

and obesity (37-40; 45). Insulin resistance occurs when target tissues no longer respond properly 

to insulin signaling, causing increased demand for insulin secretion, since glucose is not efficiently 

cleared from the blood (39). When insulin demand exceeds insulin secretory capacity, medical and 

dietary interventions become necessary to prevent further increases in plasma glucose 

concentration due to an increasing loss of β-cell function (37; 38; 40; 41; 157).  

One factor that is widely accepted to increase risk for developing insulin resistance and 

T2D is obesity. In humans, weight gain of 5% is associated with a 20% increase in the risk for 

developing insulin resistance (158). Since obesity and insulin resistance are so tightly correlated, 

a common method to induce insulin resistance in rodent models is to administer a high-fat diet 

(HFD) (159). Insulin resistance induced by HFD is known to stimulate several responses in the β-

cell, including increased insulin production, increased insulin secretion, and increased β-cell mass 

(159; 160). While the genes and gene networks that regulate the β-cell response to insulin 

resistance, or how these networks contribute to development of T2D, are not fully understood, 

metabolic stress, brought on by insulin resistance and other factors, is thought to disrupt the gene 

regulatory network (GRN) that maintains pancreatic β-cell function and identity.  



 87 

Network biology can be used to catalog, integrate, and quantify genome-scale molecular 

interactions, from which key features relevant to regulation, disease, or other dysfunction can be 

identified and validated. Gene correlation networks (GCNs) provide an unbiased means for 

exploring the intrinsic organization of a transcriptome by extrapolating gene-to-gene relationships 

and organizing them into modules of coherently expressed genes (126; 161). In turn, these modules 

provide a framework for describing changes in gene expression across multiple conditions (162). 

GCNs can also be used as the basis to infer GRNs, which focus specifically on interactions between 

regulators and their putative targets in closely related conditions (162; 163). Since GCNs can 

integrate multiple RNA-Seq datasets, and become more informative as more datasets are 

incorporated, they can reveal patterns of gene co-expression that may not be identifiable in routine, 

pairwise comparisons (164). Such patterns reveal networks and subnetworks of genes that have 

critical cellular functions.  

WGCNA is a software program that classifies genes into coherently expressed modules via 

hierarchical clustering (125). Due to the statistical power of approaches like WGCNA, modules of 

similarly regulated genes can be informative even when the differences between individual genes 

are small. WGCNA has been especially useful for identifying genes with high connectivity 

(centrality), often referred to simply as “hub” genes, that are of special interest because they have 

been shown to be resilient to large genetic background variations and therefore are vital for core 

biological functions. In this chapter, I will describe our collection of 17 RNA-seq datasets from 

FACS-purified β-cell populations under the conditions of chronically elevated [Ca2+]i, HFD-

induced obesity, ectopic hGH expression, and sex differences, as well as our efforts towards using 

WGCNA to create a network to uncover hub genes regulating the β-cell response to various 

stressors.   
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Results 

 

  RNA expression profiling of β-cells from HFD-fed and chow-fed mice  

Before collecting β-cell populations under the condition of obesity, we needed to first 

determine the time course over which HFD feeding disrupts glucose homeostasis. To this end, we 

measured weight gain, glucose tolerance, and insulin tolerance in male C57BL/6 mice given HFD 

versus a control diet for up to six weeks. After only one week of HFD, male mice had gained a 

significant amount of weight (3.7g) compared to male mice fed a control diet (0.7g) (Figure 5.1A). 

After six weeks, mice fed HFD had gained 16g while mice fed a control diet had only gained 5.1g. 

HFD-fed male mice became glucose intolerant after only two weeks, and became more glucose 

intolerant with continuation of the HFD (Figure 5.1B, C). Furthermore, HFD-fed mice became 

insulin resistant after two weeks (Figure 5.1D).   

To determine how HFD affects β-cell gene expression, we performed RNA-sequencing 

using FACS-purified β-cells from male Ins2Apple/+ mice fed either a standard chow diet or a high-

fat diet for 30 days (Figure 5.2A). A similar population of Apple-expressing cells was isolated 

from both chow-fed and HFD-fed mice (Figure 5.2B). Principal component analysis (PCA) and 

gene clustering analysis indicate that the samples and the top 500 differentially-expressed genes 

cluster largely by diet, with some variation (Figure 5.2C, D). Differential expression analysis of 

the six samples revealed 1,596 genes whose expression in HFD-fed β-cells differed from that of 

the chow-fed β-cells (based on a p-value < 0.05). Approximately 96% of the differentially-

expressed genes encode proteins, 1.4% are non-coding RNAs, 0.6% are pseudogenes, and 2% are  
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Figure 5.1 Glucose homeostasis in HFD-fed C57BL/6 animals. Male C57BL/6 mice were given 

either a 10% fat diet (control) or a 60% fat diet (high-fat) for up to 6 weeks. (A) Net weight gain 

in control-fed and HFD-fed males over a 6-week period. (B, C) Glucose tolerance tests of control-

fed and HFD-fed males after 2 weeks (B) or 6 weeks (C) of experimental diets. (D) Insulin 

tolerance test in control-fed and HFD-fed males after 2 weeks of experimental diets. Error bars 

represent standard error. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 5.2 RNA-sequencing of InsApple/+ β-cells from HFD- or chow-fed animals. We 

performed RNA-sequencing of FACS-purified β-cells from Ins2Apple/+ animals fed either a high-

fat diet or a chow diet. (A) Average weight gain in chow-fed and HFD-fed Ins2Apple/+ males used 

for FACS and RNA-sequencing. **p<0.01. (B) FACS profiles of sorted populations from 

Ins2Apple/+ mice indicating that β-cells from both groups can be purified similarly. (C) Principal 

component analysis shows that the six samples used for RNA-sequencing cluster by diet. (D) Heat 

map depicting gene clustering analysis. J.P. Cartailler of Creative Data Solutions generated panels 

C and D.    
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Figure 5.3 Differential expression analysis of InsApple/+ β-cells from HFD- or chow-fed 

animals. With the assistance of J.P. Cartailler of Creative Data Solutions, we performed RNA-

sequencing of FACS-purified β-cells from Ins2Apple/+ mice fed either a chow or high-fat diet (A) 

Pie chart showing the percentage of differentially-regulated genes that fall into biotype categories 

of protein-coding, non-coding RNA, pseudogene, other processed transcripts, and other. (B) 

Volcano plot showing the most differentially expressed genes in HFD-fed Ins2Apple/+ β-cells based 

on the -log10 (FDR-adjusted P-value) and the log2 (fold change). Genes with a log2 (fold change) 

greater than 3 are labeled and grouped into categories based on biotype characterization. 
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other types of transcripts (Figure 5.3A). Among the top upregulated genes in β-cells from HFD-

fed Ins2Apple/+ mice are Gucy2, encoding a guanylate cyclase, Bhlha15, a transcription factor called 

Mist-1, Rasd2, a monomeric G-protein called Rhes, Oxtr, the oxytocin receptor, and Kcnk13, a 

potassium channel (Figure 5.3B). Among the top down-regulated genes are Mt1 and Mt2, 

cysteine-rich metal binding proteins called metallothionein 1 and 2, Ier2, an immediate early gene 

called Pip92, Npas4, an immediate early gene induced by ER stress, and Igfbp5, encoding an 

insulin-like growth factor binding protein (Figure 5.3B).   

 

High-fat diet induces both β-cell proliferation and ER stress 

 To determine which functional categories are enriched in our RNA-seq dataset, we used 

the DAVID Bioinformatics Resource v6.8 beta to perform functional annotation clustering and 

KEGG pathway analysis. High-fat diet is known to stimulate an increase in β-cell mass (159; 160). 

In accordance with this observation, categories of cell division (enrichment score = 4.5) and 

kinetochore (enrichment score = 2.8) were both among the top upregulated categories in β-cells of 

HFD-fed mice (Figure 5.4A). Specific genes involved in cell division that are significantly 

upregulated in β-cells of HFD-fed mice are shown in Figure 5.4F.   

In addition to promoting β-cell compensation through elevated proliferation, HFD is also 

known to cause ER stress, contributing to β-cell failure in T2D (51). Indeed, among the top 

upregulated categories of genes in β-cells of HFD-fed mice are protein transport (enrichment score 

= 13.0) and the unfolded protein response (enrichment score = 8.3) (Figure 5.4A), and among the 

top upregulated pathways in β-cells of HFD-fed mice are ER protein processing (p-value = 1.26 x  



 93 

 

Figure 5.4 Functional annotation clustering and pathway analysis. We used the DAVID 

Bioinformatics Resource (version 6.8 Beta) to analyze enriched gene ontology and KEGG 

Pathway categories that were significantly up- or down-regulated in HFD-fed Ins2Apple/+ β-cells. 

(A) The top up-regulated gene categories, (B) the top down-regulated gene categories, (C) the top 

up-regulated pathways, and (D) the top down-regulated pathways in HFD-fed Ins2Apple/+ β-cells. 

Selected genes involved in (E) ER stress and (F) cell division that are upregulated in HFD-fed 

Ins2Apple/+ β-cells. *p<0.05, **p<0.01, ***p<0.001.  
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10-22) and protein export (p-value = 2.5 x 10-4) (Figure 5.4C). Specific genes involved in ER Stress 

that are significantly upregulated in β-cells of HFD-fed mice are shown in Figure 5.4E.   

 

Seventeen RNA-seq datasets from adult β-cells 

To better understand the physiological and pathological changes that occur in pancreatic 

β-cells in response to metabolically- and genetically-induced stress, we have collected, processed, 

and analyzed 17 RNA-seq datasets from FACS-purified mouse β-cells at p60, as shown in Table 

5.1. These 17 datasets originated from five different groups of mice that enabled us to perform 

four different pairwise comparisons using DESeq2 (123; 165) and to obtain the volcano plots 

shown in Figure 5.5. The collection and analysis of Groups A and B is described in Chapter III, 

and of Groups D and E, in Chapter IV. Comparison of Group A vs. B enabled us to assess the 

impact of chronically elevated [Ca2+]i (excitotoxicity) on gene expression (Figure 5.5A). 

Comparison of C vs. D provided insight into the effects of obesity and a high fat diet (HFD) 

(Figure 5.5B). Comparison of A vs. both D and E (combined as six replicates) revealed the 

differences between β-cells of MIP-GFP and Ins2Apple mice (Figure 5.5C). Finally, by comparing 

D vs. E, we were able determine the effect of sex in the setting of a standard diet (Figure 5.5D). 

The experimental paradigm, and number of genes affected by each perturbation, is summarized in 

Table 5.2.  
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Table 5.1: Genotype, fluorescent reporter, diet, and sex of experimental mice. 

Group Genotype Reporter Diet Sex N 

A Wildtype MIP-GFP Chow Mixed 4 

B Abcc8-/- MIP-GFP Chow Mixed 4 

C Wildtype Ins2Apple/+ High Fat (60%) Male 3 

D Wildtype Ins2Apple/+ Chow Male 3 

E Wildtype Ins2Apple/+ Chow Female 3 

 

 

Table 5.2: Pairwise comparisons performed to assess the impact of four different variables on β-

cell gene expression. 

Comparison Variable Genes affected (p < 0.05) 

A vs. B Chronically elevated [Ca2+]i 4,208 

C vs. D Obesity/HFD 1,596 

A vs. [D + E] MIP-GFP transgene 9,128 

D vs. E Sex 657 
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Figure 5.5. Volcano plots of genes that are differentially regulated in β-cells.  The results of 

our four pairwise comparisons performed using DESeq and our 17 RNA-Seq datasets.  Genes are 

indicated in different colors that reflect biotype. 
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Weighted gene correlation network analysis 

We constructed a preliminary gene correlation network of the 17 datasets listed in Table 

5.1 using standard WGCNA.  After filtering out genomic features with missing values and settling 

on a soft thresholding power of 0.8 (based on scale-free topology fit index), we used WGCNA to 

construct a gene correlation network, whose dendrogram is shown in Figure 5.6, consisting of 

fifteen modules (Table 5.3). Multiple modules contain hub genes with strong connectivity, two 

examples of which are shown in Figures 5.7 and 5.8. To better understand what these modules 

mean biologically, we analyzed the correlations between each module and specific traits. Traits 

used in this analysis were “Abcc8 genotype,” “Diet,” “Sex,” “Fluorescent Reporter,” and “Genetic 

Background” (Figure 5.9). We found that several modules were significantly correlated with 

specific traits. For example, the green-yellow module (Figure 5.7) is positively correlated (0.83, 

p = 4x10-5) with the “Diet” trait. Additionally, the yellow module (Figure 5.8) is negatively 

correlated (-0.8, p = 1x10-4) with the “Abcc8 Genotype” trait.  

 

 

 

 

 

 

 



 98 

 

Figure 5.6. Cluster Dendrogram of GCN. Output obtained using WGCNA to process 17 RNA-

Seq datasets from five different experimental conditions. Over 19,000 genes were organized into 

15 modules.  
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Table 5.3: Preliminary WGCNA Results. 

Module Name # of Genes 

Turquoise 7876 

Blue 5316 

Brown 769 

Yellow 712 

Green 655 

Red 586 

Black 536 

Pink 529 

Magenta 444 

Purple 426 

Greenyellow 302 

Tan 247 

Salmon 246 

Cyan 198 

Midnightblue 190 
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Figure 5.7. WGCNA-derived Green-Yellow gene module. Green-yellow module from standard 

WGCNA using 17 FACS-purified β-cell RNA-seq datasets. Circles, or nodes, contain the names 

of individual genes, and lines, or edges, form connections between nodes.  
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Figure 5.8. WGCNA-derived Yellow gene module. Yellow module from standard WGCNA 

using 17 FACS-purified β-cell RNA-seq datasets. Circles, or nodes, contain the names of 

individual genes, and lines, or edges, form connections between nodes.  
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Figure 5.9. Module-trait relationships. For each gene, we plotted the strength of module 

membership against gene significance for a specific trait. This analysis yielded a correlation value 

of each module with each trait as well as a p-value (shown in parentheses above). A positive 

correlation value indicates a positive correlation while a negative correlation value indicates a 

negative correlation. Correlation values range from an absolute value of 1, indicating perfect 

correlation, to a value of 0, indicating no correlation. For example, the green-yellow module is 

positively correlated (0.83, p = 4x10-5) with the “Diet” trait, and the yellow module is negatively 

correlated (-0.8, p = 1x10-4) with the “Abcc8 Genotype” trait. Red indicates strength of positive 

correlation. Blue indicates strength of negative correlation.  
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Discussion 

 

Dysregulated genes in β-cells from obese mice 

RNA-expression profiling of FACS-purified β-cells from HFD- or chow-fed Ins2Apple/+ 

males at p60 revealed the dysregulation of 1,596 genes in response to obesity (Figure 5.3). Among 

the most upregulated genes is Oxtr (3-fold upregulated, p = 2.05 x 10-13), which encodes the 

oxytocin receptor. Oxytocin, a neuropeptide produced by hypothalamic neurons, has a stimulatory 

effect on insulin secretion in β-cells (166-168), and has anti-diabetic effects in both mice and 

humans (169). Upregulation of the oxytocin receptor in β-cells of HFD-fed mice could reflect an 

adaptive mechanism to allow for increased insulin secretion in the setting of obesity and insulin 

resistance.  

Another highly upregulated gene is Rasd2 (3.2-fold upregulated, p = 2.77 x 10-22), encoding 

a monomeric G-protein called Rhes. Interestingly, Rasd2 expression is regulated in β-cells in a 

membrane depolarization- and calcium-dependent manner (170; 171). It has also been shown to 

bind and activate mTOR (172), a protein which stimulates β-cell proliferation (173-176). These 

previous studies suggest that Rhes may be a link between metabolic stimulation and compensatory 

β-cell proliferation, and, its upregulation in β-cells of HFD-fed mice supports this hypothesis.        

Among the most highly downregulated genes in β-cells from HFD-fed mice is Npas4 (2.7-

fold downregulated, 6.76 x 10-12), an immediate early gene that is induced by ER stress. Immediate 

early genes are activated as a first line of defense in cells undergoing stress. In β-cells, Npas4 

expression increases in response to membrane depolarization as well as ER stress-inducers, and 

has been shown to protect the β-cell from thapsigargen- and palmitate-induced dysfunction and 
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death (177). It has also been shown to protect β-cells from toxicity induced by the calcineurin 

inhibitor tacrolimus (178), though the mechanism has not been elucidated. Its downregulation 

suggests that β-cells in HFD-fed mice may be experiencing the late stages of ER stress, meaning 

that they have lost a key cytoprotective protein and may soon undergo cell death. This hypothesis 

is supported by functional annotation clustering as well as pathway analysis, which reveal 

significant upregulation of genes involved in the unfolded protein response and protein processing 

in the ER.  

 

Exploration of preliminary modules 

By performing WGCNA using 17 different RNA-seq datasets from populations of FACS-

purified β-cells, we were able to classify over 19,000 genes into 15 preliminary modules. Several 

of these modules significantly correlate with specific traits represented by the different datasets. 

For instance, the yellow module, which correlates best with the Abcc8 null allele, contains five 

hub genes. Among these, Prkcb shows the highest connectivity. This is both a plausible and 

informative finding since Prkcb belongs to a family of serine- and threonine protein kinases that 

are activated by calcium and diacylglycerol. The negative correlation of genes in this module with 

the Abcc8 null genotype may reflect a negative feedback loop present in the β-cell which 

downregulates Ca2+-responsive proteins/kinases to protect the cell from overactivation of 

downstream pathways in the case of chronically elevated [Ca2+]i. Similarly, there are multiple, 

densely connected hub genes in the green-yellow module, which correlates with HFD and obesity. 

Interestingly, Ppargc1a, a transcriptional coactivator whose expression has been associated with 

impaired glucose tolerance and reduced insulin secretion (179; 180), exhibits the highest 
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connectivity in this module. While much more work must be performed in order to fully understand 

what is represented by these modules, this initial analysis provides strong evidence that our method 

will yield informative information about how various stimuli affect the β-cell gene expression 

network. 

 

Limitations of the current datasets 

 Although the 17 datasets we used to perform our preliminary WGCNA are of high quality 

and have yielded informative results, there are several confounding factors that exist. First, sex 

was not controlled in each of the datasets collected. The MIP-GFP and Abcc8-/-; MIP-GFP datasets 

are from mice of mixed sexes, while the remaining datasets were collected in a sex-segregated 

manner. Second, not all datasets were collected using the same fluorescent reporter allele. Most 

datasets used the Ins2.Apple allele recently generated by our lab, but the Abcc8-/- dataset contained 

the MIP-GFP allele. Third, genetic background of the mice was not consistent across all samples 

and is a confounding variable when considering the effects of the MIP-GFP allele compared to the 

Ins2.Apple allele. Finally, we neglected to collect datasets from HFD-fed Ins2Apple/+ females, 

preventing us from uncovering any sex-specific effects of obesity.  

 To eliminate these confounding factors, replacement datasets need to be collected that 

completely control for the factors of sex, fluorescent reporter allele, and genetic background. 

Table 5.4 summarizes the total datasets that will be used in a future WGCNA, including the 15 

replacement datasets that are yet to be obtained. To accomplish this task, Abcc8-/- mice will be 

bred with Ins2Apple/+ mice and will be separated into sex-specific datasets to eliminate the 

confounding factors of fluorescent reporter allele, genetic background, and sex. Additionally, the 
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MIP-GFP allele will be obtained in a congenic C57BL/6 background, to eliminate the confounding 

effects of mixed background. Finally, Ins2Apple/+ female mice will be subjected to the HFD 

paradigm. In total, this plan will generate 24 FACS-purified RNA-seq datasets for use in WGCNA. 

It is also important to note that combination of the male and female datasets will allow for analysis 

of six replicates for each perturbation, if sex-separation is not a critical consideration. 

 

Table 5.4: Summary of replacement datasets to be obtained 

Group Genotype Background Reporter Diet Sex N 

A Wildtype C57BL/6 MIP-GFP Chow Male 3 

B Wildtype C57BL/6 MIP-GFP Chow Female 3 

C Abcc8-/- C57BL/6 Ins2Apple/+ Chow Male 3 

D Abcc8-/- C57BL/6 Ins2Apple/+ Chow Female 3 

E Wildtype C57BL/6 Ins2Apple/+ High Fat Male 3 

F Wildtype C57BL/6 Ins2Apple/+ High Fat Female 3 

G Wildtype C57BL/6 Ins2Apple/+ Chow Male 3 

H Wildtype C57BL/6 Ins2Apple/+ Chow Female 3 
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CHAPTER VI 

SIGNIFICANCE AND FUTURE DIRECTIONS 

 

Significance 

Throughout this thesis, I have described the collection of RNA-seq data from highly-pure 

mouse β-cell populations. The analysis of this large amount of high-throughput data has lead me 

to make two broad conclusions about the manner in which β-cells fail in response to increased 

metabolic load during the progression of T2D: (1) β-cells may fail in a heterogeneous manner, and 

(2) some responses to environmental stress are adaptive while others are maladaptive, resulting in 

a bi-phasic response.  

 

Heterogeneity in β-cell failure 

Although the pancreatic islets consist of a heterogeneous population of cell types 

(endocrine cells, neuronal cells, and supporting vasculature), the β-cells have historically been 

considered to be a homogenous population, with uniform gene expression profiles as well as equal 

capacity to proliferate and respond to insulin secretagogues. Recently, however, several reports 

have challenged this view and have identified distinct subpopulations of β-cells with unique gene 

expression profiles and properties.  

Dorrell and colleagues utilized antibody-labeling coupled with flow cytometry of human 

islet cells to describe four antigenically-distinct β-cell subtypes which can be identified by 

differential expression of two markers: ST8SIA1 and CD9 (109). Importantly, these subtypes have 
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differences in expression of several key transcription factors (SIX3, RFX6, MAFB, and NEUROD1) 

as well as genes involved in insulin secretion (GLUT2, PPP1R1A, and ABCC9) and have 

differences in basal and glucose-stimulated insulin secretion, despite uniform expression of insulin 

mRNA and protein. Bader and colleagues identified a factor in mouse β-cells, called Fltp, which 

distinguishes proliferation-competent from mature populations (110). Fltp is a Wnt/planar-cell 

polarity factor that appears to be expressed when precursor cells differentiate into mature β-cells. 

These sub-populations exhibit different responses to metabolic stress, with the Fltp- population 

compensating for increased metabolic demand through proliferation in response to pregnancy. 

Johnston and colleagues took a functional rather than a genetics approach to identify “hub” β-cells 

whose electrical firing activity precedes the rest of the population (108). Importantly, these hub 

cells are vital for coordinating electrical response to glucose stimulation and may be necessary for 

insulin secretion. Segerstolpe and colleagues performed single-cell RNA-sequencing on human 

islet cells and discovered at least five subpopulations of β-cells based on differential expression of 

RBP4, FFAR4, ID1, ID2, and ID3 (112). Finally, our studies describing the β-cell response to 

chronically-elevated [Ca2+]i identified at least four subpopulations of β-cells based on 

heterogeneous protein expression of ALDH1A3 and S100A6 (Figure 3.9). However, the 

functional significance of these subgroups is yet to be determined.     

Taken together, the results of these studies, although different, suggest that distinct β-cell 

subpopulations exist and that the responses to stimuli or stress may not be uniform within the entire 

β-cell population. In support of this, Dorrell and colleagues discovered that the distribution of β-

cell subtypes was altered in patients with T2D (109), but it is unknown if the abnormal distribution 

precedes or follows the development of the disease. β-cell heterogeneity is an area that greatly 

merits further study since many questions are left unanswered: How many β-cell subpopulations 
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exist and how can we define them? Are different subpopulations more susceptible to 

environmental stress than others? Does the distribution of subpopulations predispose an individual 

to the development of T2D? How stable are these subpopulations and does their distribution 

change over time? Additional studies using single-cell transcriptome analysis are necessary to 

answer these questions and to fully understand heterogeneity in β-cell failure. 

 

Adaptive vs. maladaptive responses 

After thorough examination of RNA-sequencing datasets representing β-cell responses to 

different types of stress, we observed gene expression changes that likely represent adaptive 

responses, meaning that they are beneficial to the β-cell, as well as changes that likely represent 

maladaptive responses and are deleterious to the β-cell. In the β-cells exposed to chronically-

elevated [Ca2+]i, we observed an increase in the expression of several Ca2+-binding proteins, 

including members of the S100 gene family as well as Pcp4, a Ca2+/calmodulin-binding protein 

that protects neurons from Ca2+-induced excitotoxicity (130). Though further experimentation is 

necessary to test this hypothesis, we think it likely that these changes are adaptive, allowing for 

binding and sequestering of excess Ca2+ to prevent overactivation of downstream pathways. We 

also observed decrease in β-cell function and identity, with an increase in genes associated with 

dedifferentiation, such as Aldh1a3, and a decrease in genes associated with β-cell function, such 

as Ins1, Slc2a2, and Gck. These likely reflect maladaptive changes, since the dysregulation of these 

genes is deleterious to β-cell function.  

Another example comes from our analysis of dysregulated genes in β-cells from HFD-fed 

animals. We observed an increase in expression of cell cycle regulators, including Cdk1 and 
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Ccna2, which likely reflects an adaptive mechanism, allowing expansion of β-cell mass to 

compensate for increased metabolic demand. Additionally, genes related to ER stress were 

significantly upregulated, suggesting a maladaptive response to HFD.  

These observations of both adaptive and maladaptive responses to various stimuli 

prompted me to propose a bi-phasic model for β-cell stress (Figure 6.1). During the adaptive phase 

of environmental stress, gene expression changes occur that allow the β-cells to compensate and 

maintain their function. However, during the maladaptive phase, the β-cells are no longer able to 

compensate for the environmental stress, and gene expression changes occur that lead to β-cell 

dysfunction and/or death. While we have only explored the gene expression changes that occur in 

response to a few stimuli, we think it likely that this model is applicable to a variety of metabolic 

stresses. 
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Figure 6.1. Bi-phasic model of the β-cell response to stress. Collectively, our results have lead 

us to propose a general model describing two phases in the β-cell response to environmental stress: 

the adaptive phase and the maladaptive phase. The adaptive phase likely occurs under acute 

exposure to a stimulus. During this phase, gene expression changes occur that allow the β-cell to 

adapt and compensate for increased metabolic demand. However, after a theoretical threshold is 

passed, perhaps under chronic exposure to the stimulus, the β-cell can no longer compensate, and 

maladaptive changes lead to dysfunction and/or death.  
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Future Directions 

 

ASCL1 as a regulator of Ca2+-dependent β-cell gene expression 

In Chapter III, I described a putative network of Ca2+-regulated genes in β-cells, at which 

ASCL1 was the center. We found that Ascl1 is significantly upregulated in β-cells with chronically 

elevated [Ca2+]i, Ascl1 expression is tightly controlled by Ca2+-influx, and ASCL1 binding sites 

have been established in many of the genes upregulated in β-cells with chronically elevated [Ca2+]i. 

To our knowledge, this is the first time Ascl1 expression or activity has been linked to Ca2+-

signaling. ASCL1 is known to play an important role in promoting neuronal differentiation (133-

135; 143; 181), but a role for ASCL1 has not been established in β-cells. 

Although all of my experiments were performed using mice or primary mouse islets, these 

approaches are limited by the difficulty of obtaining a sufficient number of cells for subsequent 

analyses, such as whole transcriptome sequencing or chromatin immunoprecipitation. To 

overcome this limitation, future studies may need to incorporate established, immortalized β-cell 

lines to better understand the role of ASCL1 at the molecular level.  

While our preliminary data strongly suggests that ASCL1 plays a role in regulating Ca2+-

dependent gene expression in β-cells, we have no direct evidence that this is the case, or any idea 

of what genes are being regulated. To determine which genes are regulated by ASCL1, siRNA-

mediated knockdown of Ascl1 in β-cell lines would need to be performed. RNA-sequencing both 

with and without Ascl1 knockdown, followed by differential expression analysis would identify 

genes whose expression is influenced by ASCL1 in β-cells. However, RNA-seq does not provide 

information about a direct binding relationship of transcription factors to DNA. In order to more 
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deeply understand how ASCL1 influences these genes, chromatin immunoprecipitation followed 

by next generation sequencing (ChIP-Seq) using an antibody against ASCL1 is necessary. The 

combination of RNA-seq and ChIP-seq data would provide a more complete picture of the role of 

ASCL1 in regulating gene expression in β-cells than either approach alone. 

While the experiments described above, which would likely make use of immortalized β-

cell lines, might provide insight into the genes that are regulated by ASCL1 and the genes to which 

ASCL1 directly binds, they are limited by the fact that immortalized β-cells differ from native β-

cells in important ways, including deviations in glucose stimulated insulin secretion and 

misexpression of hexokinase (182). Thus, an alternative method to elucidating ASCL1 target genes 

in β-cells is to utilize a mouse model in which Ascl1 has been deleted. Constitutive, whole-body 

knockout models of Ascl1 have been generated (183-185), but null animals die shortly after birth 

due to defects in breathing and feeding (183). Therefore, a conditional Ascl1 knockout model must 

be used in order to study gene expression in adult β-cells.  

Guillemot and colleagues have generated an Ascl1flox allele that, when bred to 

homozygosity and in combination with a β-cell specific Cre-expressing allele, could be used to 

create a β-cell specific knockout of Ascl1 (186). However, although the Ascl1flox allele contains a 

green fluorescent reporter, Venus, the protein is not expressed at a detectable level (186), 

eliminating the ability to genetically mark cells in which Ascl1 has been removed. To overcome 

this limitation, it may be necessary to include a Cre-inducible fluorescent reporter allele to label 

Ascl1-deficent cells. After β-cell specific deletion of Ascl1, transcriptome analysis using FACS-

purified β-cells would reveal which genes are directly regulated by ASCL1. Incorporation of this 

gene expression data with the ChIP-seq data generated above would yield a model describing the 

role of ASCL1 in regulating Ca2+-dependent gene expression in β-cells. 
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Iterative weighted gene correlation network analysis 

In Chapter V, I described the collection of seventeen different RNA-seq datasets and the 

WGCNA performed to identify modules of genes whose expression varies in response to metabolic 

stress. By identifying highly robust co-regulated gene modules and the hub genes they contain, 

and validating the function of these genes in cell culture systems and mice, a deeper understanding 

of the gene regulatory network that controls the adaptive and maladaptive responses of the β-cell 

to metabolic stress can be obtained. 

The Magnuson lab has collaborated with Dr. Chris Stoeckert (University of Pennsylvania) 

to develop and document an extension of WGCNA called Iterative WGCNA (125; 187). The 

development of this tool was motivated by limitations in the hierarchical clustering algorithm used 

by WGCNA, which restricts gene cluster resolution. Iterative WGCNA extends the WGCNA 

method to determine the signed eigengene connectivity measure (kME) (125) of each gene and to 

assess the goodness of fit to an assigned module. This optimization strategy has been shown to be 

a highly robust means of evaluating goodness of fit (188).   

While our preliminary results are already state-of-the-art in many ways, and point to many 

genes and pathways that are likely to be involved in the response of the β-cell to stress, additional 

bioinformatics analysis and molecular investigation is needed to more fully validate and 

understand the acquired data. Since several of the fifteen modules obtained from the standard 

WGCNA contain hub genes that are plausibly involved in the response of the β-cell to specific 

types of stress, iterative WGCNA would yield exceedingly more robust modules that may reveal 

groups of genes that are not yet evident using standard WGCNA. 
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To take full advantage of rich content of our adult mouse (p60) RNA-Seq datasets, as well 

as the very substantial effort that went into developing iterative WGCNA, the datasets described 

in Table 5.4 should be re-processed using this newly available iterative WGCNA script. By 

improving the statistical associations within each module, this analysis would be more robust, 

enhancing the identification of new hub genes, the identification of upstream regulators, and the 

ability to correlate changes observed in mice with datasets derived from human cells and islets.  

 

Network Validation 

After modules have been generated, hub genes and putative upstream regulators associated 

with each specific metabolic stress and biological response can be more easily identified. For 

instance, the model I described in Chapter III highlights the potential importance of ASCL1, 

CEBPG, and RARG in the response of β-cells to chronically elevated [Ca2+]i. To perturb this 

predicted GCN, putative regulators such as these could be knocked down in β-cell lines using 

siRNA, similarly to the method I described above for ASCL1. If the GCN is altered in a predictable 

way, one could confidently say that the predicted regulators are valid. This experimental paradigm 

could be expanded to include additional predicted regulators after the derivation of additional 

modules by WGCNA. Moreover, by formally applying gene set enrichment analyses (189) and 

using pathway information from KEGG (190) and Reactome (191), pathways that correlate with 

each of the sixteen or more individual modules could be identified. 
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Collection of additional RNA-seq datasets 

Since the 24 RNA-Seq datasets (Table 5.4) available for iterative WGCNA are only 

slightly above the minimum number recommended, and since the perturbations that I described in 

previous chapters have only scratched the surface of what is possible using WGCNA, it is vital to 

expand the number of datasets. By adding additional, highly controlled datasets, new modules of 

coordinately-regulated genes are likely to become evident, further increasing the scientific impact 

of the network. To achieve this goal, β-cell function needs to be perturbed in additional ways to 

not only obtain an expanded GCN, but also to be able to meaningfully interpret the new modules.  

Rictor/mTORC2 signaling in β-cells. Signaling through the phosphotidylinositol-3-kinase 

(PI3K)/AKT/mTORC1 pathway has long been known to be essential for regulating β-cell mass 

(173-175). Signaling through Rictor/mTORC2/AKT-S473 is important for maintaining normal β-

cell mass, and the phosphorylation of AKT-S473, by negatively regulating AKT-T308 

phosphorylation, is necessary for maintaining a balance between β-cell proliferation and cell size 

(176). The role of Rictor/mTORC2 signaling through FOXO proteins has taken on greater 

significance in light of a recent report that failing β-cells in diabetic mice exhibit both a decrease 

in mitochondrial function and compensatory activation of signaling through Rictor/mTORC2 (94). 

The compensatory activation of Rictor/mTORC2 (176) is critical for inhibiting FOXO, which 

suppresses β-cell proliferation (192-195). Given this new evidence of a link between β-cell 

dedifferentiation and Rictor/mTORC2 signaling, investigating this signaling pathway in more 

depth would be prudent.  

The Magnuson lab previously compared the mRNA transcriptional profiles of 43 genes in 

pancreatic islets from β-cell specific Rictor knockout (βRicKO) mice (176) and observed changes 
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in genes regulating cell proliferation and insulin secretion. While some of the transcriptional 

changes observed were easily explained, others were not. For example, an increase in expression 

of both Ngn3 and MafB, genes normally only expressed in developing or immature β-cells, was 

observed in the βRicKO mice. Given the recent findings of β-cell dedifferentiation, defined by 

expression of developmental markers (94), signaling via Rictor/mTORC2/AKT may contribute to 

the loss of β-cell identity in metabolically-stressed β-cells. Addition of RNA-sequencing datasets 

generated from FACS-purified β-cells from Ins1Cre/+; Rictorfl/fl; Ins2Apple/+ mice to the iterative 

WGCNA pipeline would identify specific gene modules and allow for exploration of possible 

upstream regulators (Table 6.1). 

 

Table 6.1: Summary of mice that could be used to explore the effects of Rictor/mTORC2 signaling 

on β-cell gene expression 

Group Genotype Reporter Diet Sex N 

A Ins1Cre/+; Rictorfl/fl Ins2Apple/+ Chow Male 3 

B Ins1Cre/+; Rictorfl/fl Ins2Apple/+ Chow Female 3 

  

 

Excess metabolic flux in β-cells. The Magnuson lab has also previously collaborated with 

Dr. Yuval Dor to derive mice that contain a Cre-inducible, Rosa26 lox-stop-lox allele that 

expresses GckY214C, an activated form of glucokinase identified in a pedigree with 

hyperinsulinemia, as well as a GFP reporter to genetically tag cells in which GckY214C is expressed 

(46). When interbred with Pdx1CreER, treatment with tamoxifen results in the pancreatic β-cell 
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specific expression of GckY214C, causing an increase in metabolic flux, a transient increase in 

insulin secretion, and a reduction in the blood glucose concentration (46). The most interesting 

observation in this study was that hypoglycemia in these animals was short-lived, reaching a trough 

at 4 days past induction of the mutant Gck, after which the mice became hyperglycemic due to a 

fall in insulin secretion. This finding closely mimics the pattern observed in patients treated with 

glucokinase-activating (GKA) drugs: they experience a short period of improved blood glucose 

concentrations, but this effect disappears within a couple of months (196; 197). These studies 

further suggest that the loss of β-cell function after inducing expression of GckY214C is due to β-

cell apoptosis resulting from oxidative damage and DNA double-strand breaks (46). Based on 

these results, further assessment of the impact of increased glycolytic flux on β-cell gene 

expression is needed. GckY214C/+ mice would be predicted to have increased metabolic flux, 

increased Ca2+-flux and signaling, and, because of their higher than normal insulin secretion, 

increased Rictor/mTORC2/AKT-S473 signaling.   

 In addition, the prior study also revealed that β-cell membrane depolarization was both 

necessary and sufficient to trigger DNA damage, and that cellular damage was reduced by 

tacrolimus, a calcineurin inhibitor (46). This latter finding is consistent with the idea that aberrant 

Ca2+-signaling (excitotoxicity) contributes to the failure of β-cells in T2D, a conclusion consistent 

with our findings that a chronic elevation in [Ca2+]i impairs β-cell function and identity (Chapter 

III above).  

In order to understand the gene expression changes that occur in the β-cell in both the 

hypoglycemic and glucotoxic phases of GCK activation, sex-segregated datasets at 4 days post 

tamoxifen injection (at the height of the hypoglycemic phase) and at 22 days post tamoxifen 

injection (at the height of the hyperglycemic phase) should be collected (Table 6.2). The collection 
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of these datasets will greatly increase our understanding of the binary phases of β-cell 

glucotoxicity. 

 

Table 6.2: Summary of mice that could be used to explore the effects of excess metabolic flux on 

β-cell gene expression 

Group Genotype Reporter Days Sex N 

A R26LSL.GckY214C/+; Ins1CreER/+ GFP  4 Male 3 

B R26LSL.GckY214C/+; Ins1CreER/+ GFP 4 Female 3 

C R26LSL.GckY214C/+; Ins1CreER/+ GFP  22 Male 3 

D R26LSL.GckY214C/+; Ins1CreER/+ GFP  22 Female 3 

 

 

Glucagon-like peptide-1 (GLP-1) signaling in β-cells. Incretins, such as glucagon-like 

peptide-1 (GLP-1), are released from the gut in response to food intake and elicit a variety of 

responses from the islet. First, they are known to enhance insulin release from the β-cell while 

simultaneously inhibiting glucagon release from the α-cell (198). Second, they have been shown 

to positively regulate β-cell mass by enhancing proliferation as well as islet neogenesis (199). 

While GLP-1 receptor (GLP1R) agonists are widely used as a treatment for T2D, there is 

increasing evidence that they may have long-term negative effects on β-cell function (200; 201), 

and much remains to be learned about the specific gene expression changes that are induced in β-

cells in response to these drugs.  For this reason, assessment of the effects of both acute and chronic 

stimulation of GLP-1 signaling on β-cell gene expression is needed.   
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To understand both the beneficial and detrimental effects of GLP1R signaling, β-cell RNA-

seq datasets need to be collected from mice treated with Liraglutide for either 7 days, to examine 

acute effects, or 200 days, to examine chronic effects (Table 6.3). β-cell samples from 200-day 

old control mice also must be collected, since the 200-day treatment with Liraglutide goes well 

beyond p60. In addition, by collecting control datasets from mice that are approximately 260 days 

old (p260) one would be able to compare p60 and p260 datasets, thereby gaining new insights into 

how gene expression in β-cells changes with age.  

 

Table 6.3: Summary of mice that could be used to explore the effects of excess GLP-1 signaling 

on β-cell gene expression 

Group Treatment Genotype Days Sex N 

A Liraglutide Ins2Apple/+ 7 Male 3 

B Liraglutide Ins2Apple/+ 7 Female 3 

C None Ins2Apple/+ 200 Male 3 

D None Ins2Apple/+ 200 Female 3 

E Liraglutide Ins2Apple/+ 200 Male 3 

F Liraglutide Ins2Apple/+ 200 Female 3 
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Closing remarks 

The studies described herein have all utilized RNA-seq datasets from FACS-purified 

mouse β-cell populations under various genetic or metabolic stimuli. We examined the effects of 

chronically elevated [Ca2+]i induced by constitutive loss of the KATP-channel, ectopic hGH 

expression driven by the MIP-GFP transgene, obesity induced by HFD feeding, and gender by 

separation of males and females. The overarching goal of these studies was to better understand 

the signaling pathways induced in β-cells in response to stress during the progression to T2D: 

specifically, how stress alters the gene regulatory network. 

The key finding from the studies described in Chapter III was the discovery that chronically 

elevated [Ca2+]i, or excitotoxicity, has detrimental effects on the β-cell, including slight glucose 

intolerance, loss of β-cell identity, loss of islet morphology, and severe disruption in gene 

expression. We additionally identified two markers, S100A4 and S100A6, whose expression is 

directly controlled by Ca2+-influx and which may serve as markers for excitotoxic stress. Finally, 

we identified a network of Ca2+-regulated genes as well as a putative Ca2+-dependent regulator, 

ASCL1, which we envision to be at the center of this network. This finding is particularly novel 

and interesting given that ASCL1 has never been studied in β-cells and has never before been 

shown to be regulated by Ca2+-influx. We anticipate that further study of this transcription factor 

will be important for fully understanding how gene expression in the β-cell is regulated by 

chronically elevated [Ca2+]i. 

In Chapter IV, I described the generation of a novel β-cell specific fluorescent reporter 

allele, Ins2.Apple, which we used to assess the effects of ectopic hGH on β-cell gene expression 

by comparing it to the MIP-GFP transgene. The key finding from these studies is that the MIP-
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GFP transgene, which is widely used in the β-cell research community, induces enormous changes 

in β-cell gene expression, many of which indicate a decline in β-cell function as well as the 

induction of ER stress. These studies add to the pool of emerging evidence that alleles with ectopic 

hGH expression should be used with extreme caution. 

Finally, in Chapter V, I detailed our efforts towards creating a gene-correlation network, 

which incorporates 17 RNA-seq datasets, to describe β-cell failure. While this analysis is not 

complete, it marks a major advance in the field toward understanding higher order comparisons 

between groups, rather than limiting studies to pairwise comparisons. We anticipate that the 

collection of additional datasets overtime will strengthen the correlations we have already 

identified and will increase our knowledge of the gene expression changes underlying β-cell failure 

in T2D. 

Overall, these studies highlight the power of using whole transcriptome datasets from 

highly pure cell populations. By combining highly controlled and robust datasets from mouse cell 

populations with single-cell datasets from human patients, the field as a whole will be able to 

achieve a deep understanding of how β-cells fail in T2D.   
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