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1 Introduction
In any statistical examination where regression techniques are utilized, the objective is to acquire a scientific
model that portrays the connection between observations of the outcome or dependent variable, to be
signified as T , and a collection of autonomous factors, referred to in total, without reference to their number
and estimation scale, as X. A straightforward approach to conceptualize the model is to think about the
estimate of the dependent variable as consisting of two components: the systematic component and the error
component. The systematic component is the mathematical function of independent factors that portrays
the “standard” estimation of T . The error component quantifies how much an individual subject’s value of T
varies from what is to be expected given their values of X. Common reasons for this error in the estimation
model are the exclusion of important independent factors, incorrect model specification, or inherent error in
the data collection, such as misclassification.

In general regression problems, covariates and outcomes are regularly measured with random error; in the
case of discrete factors, random error is referred to as misclassification. While stochastic error models have
received much consideration in writing, they are not easily extrapolated to the case of misclassification, as
the distribution of the error is not continuous. It has been shown that disregarding possible misclassifications
in analyses can lead to significant biases in the coefficient estimates and subsequent inferences (Magder &
Hughes, 1997). Without careful consideration, misclassification in the outcome can be overlooked in the
model, thus causing misleading results.

There are many cases where data collection is prone to misclassification. Often, misclassification is due to a
systemic error in the test for the outcome. This error in the testing mechanism can be well-defined through
replication and classified through two quantities: sensitivity and specificity. Methods exist to adjust for the
bias induced by misclassification in these cases where the sensitivity and specificity are known. In many
practical situations, however, the exact values of these error rates are unknown and difficult, if not impossible,
to obtain. A clear-cut solution in these cases may not be possible, but the bias in the estimates should be
addressed. Challenges arise because the proportion of misclassified outcomes will almost always be unknown;
moreover, the misclassification could be dependent on other variables in the study. Instances like this are not
uncommon, making methods to adjust for the biases in the estimates necessary for the validity of the results.

To demonstrate the problems with ignoring potential biases caused by misclassified outcomes, I evaluate
data from the Mid-South Coronary Heart Disease Cohort Study (MCHDCS), which was developed as one of
three populations of study under the Patient-Centered Outcomes Research Institute (PCORI) funded by
Mid-South Clinical Data Research Network (CDRN), where survey data was collected from patients visiting
a primary care facility. The patients were followed for one year post study enrollment to evaluate whether
they were hospitalized during this time. The goal of the study was to evaluate the association between health
literacy and hospitalization. The original data collection included information from hospitalizations that
occurred only at Vanderbilt Medical Center. However, since Vanderbilt Medical Center is a tertiary care
facility, it is likely that patients could have been hospitalized elsewhere in the area if their injuries or ailments
were not severe. To account for this, the data were expanded to include hospitalizations in three additional
hospitals in the Vanderbilt Health Affiliated Network (VHAN) - West TN Health, Maury Regional, and
Williamson Medical Center. After collecting data from the surrounding hospitals, it was discovered that the
exclusive use of Vanderbilt data would result in many misclassifications, as there was a substantial number of
patients that were hospitalized elsewhere during the one-year follow-up. Furthermore, it is suspected that
some of the variables studied could be associated with the hospital to which the patient was admitted. To
illustrate the bias this invokes, I compare the results of the naive logistic regression with that of the true
model and explore adjustment methods that have been proposed to adjust for misclassification.

2 Misclassification Adjustment Methods
Misclassification can be divided into two types: differential and non-differential. Differential misclassification
occurs when the probability of being misclassified depends on all or a subset of the covariates, X. Non-
differential misclassification occurs randomly, independent of the covariates in the model. This is an important
distinction because the type of misclassification affects the direction of the biases: non-differential is typically
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biased towards the null; however, differential misclassification can bias estimates in any direction, depending
on the strength and direction of the variable-misclassification association. In either case, the error in the
outcome will inevitably lead to misinterpretation of the estimated association between the variables and the
outcome.

In cases of misclassification, we do not observe the true outcome, T , but rather an error-corrupted version, Y .
The accuracy of Y can be quantified with the probabilities of observing the true value of T in Y : the sensitivity
(P (Y = 1|T = 1, X)) and the specificity (P (Y = 0|T = 0, X)). For the purposes of most adjustment methods,
the false positive probability, γ0, and the false negative probability, γ1, are typically derived from these
quantities:

1− spec = γ0(X) = P (Y = 1|T = 0, X) 1− sens = γ1(X) = P (Y = 0|T = 1, X)

In the special case of non-differential misclassification, these quantities are independent of the variables in
the model and thus fixed for all X:

γ0(X) = P (Y = 1|T = 0) = γ0 γ1(X) = P (Y = 0|T = 1) = γ1

For the example data, there was no misclassification observed when a patient was hospitalized at VUMC:
all observed VUMC hospitalizations were still valid even after the addition of the VHAN data. So the
specificity in the study was 1, yielding a false positive probability of γ0(X) = 0. There is suspected differential
misclassification in the example data, so the probability of a false negative, γ1(x), would not be assumed to
be a constant.

Using these quantities, researchers have developed methods that utilize the relationship between specificity,
sensitivity, and the outcome to adjust for the misclassification in the model and produce unbiased results. I
will explore some of these methods and use the example hospitalization data to demonstrate their results.

2.1 Neuhaus Adjustment Method
John Neuhaus (Neuhaus 1999) was one of the first to explore potential adjustment methods for misclassification.
He exploited the relationship between specificity, sensitivity, the naive outcome, and the true outcome to
develop methods to estimate the bias in coefficient estimates. Using conditional probabilities, he derived the
basic equation for the probability of observing Y = 1 in the naive outcome:

PT (Y = 1|X) = γ0(X)P (T = 0|X) + (1− γ1(X))P (T = 1|X) (1)

Substituting the inverse link function, g−1(Xβ) for P(T = 1|X) in equation (1):

= γ0(x)
(
1− g−1(βX)

)
+
(
1− γ1(X)

)
g−1(βX) (2)

=
(
1− γ0(X)− γ1(X)

)
g−1(βX) + γ0(x) (3)

Noting this equation for PT (Y = 1|X), he derived an equation for the naive estimator, β∗
1 :

β∗
1 = H(β1) = g(PT (Y = 1|X + 1))− g(PT (Y = 1|X)) (4)

The actual equation for H(β1) is complex and non-intuitive, so he instead used Taylor approximations to
obtain an estimate for this relationship between the true coefficients, β1, and naive estimators, β∗

1 . This is
consistent in simple cases of misclassifcation, where misclassification is dependent only on binary variables
with known effects. As well as the rigidity in the required data structure, the Neuhaus method also relies
heavily on the assumptions of the distribution. While Neuhaus’s method laid the groundwork for modern
misclassification adjustment methods, it is not practical for the cases of complex misclassification that are
frequently encountered today, as in our example data. Since his paper in 1999, researchers have expanded
upon his principles to provide more flexible and nonparametric methods for misclassification adjustment.
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2.2 Misclassification SIMEX
Cook and Stefanski developed the SIMEX (Simulation-Extrapolation) method in their 1994 paper such that
no distributional assumptions need to be made about the misclassified data. Overall, SIMEX exploits the
relationship of the size of the measurement error in the outcome (σ2

u) to the bias of the naive estimator(s).
The method adds additional measurement error to the data, and measures the induced bias in relation to the
variance of the error that was added. Once a trend between the error and biased estimates is established, it
can be used to extrapolate back to the case of no error.

In their 2006 paper, Kuchenhoff, Mwalili, and Lesaffre expanded the SIMEX method to correct coefficient
estimates in the presence of a misclassified binary response. They refer to the independent variable that is
derived disregarding measurement error as the naive estimator. An extrapolation function, G(σ2

u), is used to
estimate the relationship between the naive estimators and the measurement error, β∗(σ2

u), and implies that
in the presence of no error, the true estimator could be derived: G(0) = β. The SIMEX method is rooted
in the parametric approximation to this function: G(σ2

u) ≈ G(σ2
u,Γ), where Γ is the vector of parameter

estimates for the assumed distribution of the extrapolation function. Common distributions used are linear,
quadratic (the most common), and loglinear. For example, G(σ2

u,Γ) = γ0 + γ1σ
2
u + γ2(σ2

u)2 for a quadratic
estimation.

Through simulation, the SIMEX method adds additional measurement error with variance λσ2
u to the

misclassified variable, making the total measurement error equal to (1 + λ)σ2
u. The method then reevaluates

the regression to obtain a new set of naive coefficients with the further misclassified outcome. By repeating
this simulation step for a fixed set of λ’s, one is able to obtain a parametric approximation for Γ̂, in G(σ2

u,Γ).
Then, the function G(σ2

u,Γ̂ is extrapolated back to 0 to obtain the adjusted SIMEX estimator, defined by
G(0,Γ̂). This is best illustrated by the graph in Figure 1:

Figure 1: Proportion of Measurement Error (1 +λ) vs Naive Estimate (β∗) with the Superimposed Estimated
Extrapolating Function, G(σ2

u, Γ̂)

Kuchenhoff, Mwalili, and Lesaffre discuss the calculation of the extrapolation function in terms of a linear
model with a misclassifed binary covariate, the simplest case, and then apply those principles to the
case of logistic regression with misclassified response. To expand the SIMEX method to the case of
misclassification in a discrete response, Y , Kuchenhoff, Mwalili, and Lesaffre define the misclassification
matrix Π as πij = P (Y = i|T = j) (a k × k matrix, where k is the number of possible outcomes for T). In
our example, the misclassification matrix is

Π =
[
π00 π01
π10 π11

]
=
[

1− γ1(x) γ1(x)
0 1

]
(5)
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The misclassified estimator can then be defined as β∗(Πλ), and we can assume that when there is no
misclassification, and thus Π0 = Ik×k, this equation gives the true value of β: β∗(Π0) = β. In order for these
functions to be well-defined, the determinant of Π must be greater than 0; in other words, both the specificity
and sensitivity must be greater than 0.5. This is intuitive and corresponds to other research explaining that
when the specificity or sensitivity are less than 50%, the data collection method performs worse than chance,
rendering the data unusable. In practice, the equations for γ0(x) and γ1(x) are rarely known beforehand but
may be estimated via a validation sample. However, it is prudent to note that the SIMEX method assumes
that the sensitivity and specificity are known, so using estimated values could introduce further error.

The misclassification SIMEX (MC-SIMEX) algorithm begins by applying the misclassification matrix, Πλ, to
increase the bias in the response variable. Then, in the extrapolation step, the method uses the misclassified
variables to extrapolate a parametric approximation:

λ→ β∗(Πλ) ≈ G(1 + λ,Γ) (6)

The adjusted estimator β̂ is then found by fitting the parametric approximation onto the set of extrapolated
points, [1 + λk, β̂(λk)], yielding an estimate of Γ. Using Γ̂, you can obtain the MC-SIMEX estimator in the
same way as the general SIMEX method:

β̂MCSIMEX := G(0, Γ̂) (7)

Corresponding to λ = −1. The MC-SIMEX estimator will be consistent only when the extrapolation function
is correct. The derivation of the extrapolation functions depends on the assumed distribution of G(σ2

u, Γ̂) and
can thus can be error-prone.

2.3 Maximum Likelihood
In their 2011 paper, Lyles, et al., introduced a more flexible method of misclassification adjustment that
does not assume prior knowledge of the distribution for sensitivity and specificity. Their method proposed a
data validation step in which a subset of the data is re-evaluated for the outcome with a more reliable data
collection method. Using the more accurate second data collection method, they developed an approach using
maximum likelihoods to adjust for misclassification. Developing a second logistic model for the association
between the predictors and sensitivity/ specificity, they were able to account for differential misclassification
using the validation sample:

ηt = logit[P (Y = 1|T = t,X∗)] = θ0 + θ1t+
∑

θiX
∗
i (8)

where X∗ may be only a subset of the available covariates. Using this equation, sensitivity and specificity
can be described as follows:

SExi
= P (Y = 1|T = 1, X = xi) = exp(η1i)

1 + exp(η1i)
(9)

SPxi = P (Y = 0|T = 0, X = xi) = 1− exp(η0i)
1 + exp(η0i)

(10)

Since the specificity is fixed in our example, SPxi will be 1 for all values of xi, and the parameters for SExi

can be estimated by a regression on Y with the validated outcome, T , and the covariates, X. The likelihood
for the true parameters, LT , is proportional to the product of the likelihood for the main data set, those
not in the validation set, (Lm) and the likelihood using data only from those in the validation data set (Lv):
LT ∝ Lm × Lv. Due to the binary nature of the outcome, these likelihoods are well-defined.

4



Lm =
∏[

(1− SPxi
)P (T = 0|X = xi) + SExi

P (T = 1|X = xi)
]yi

×
[
SPxi

P (T = 0|X = xi) + (1− SExi
)P (T = 1|X = xi)

]1−yi
(11)

Lv =
∏[

SExj
P (T = 1|X = xj)

]yjtj ×
[
(1− SPxj

)P (T = 0|X = xj)
]yj(1−tj)

×
[
(1− SExj

)P (T = 1|X = xj)
](1−yj)tj ×

[
SPxj

P (T = 0|X = xj)
](1−yj)(1−tj)

(12)

An additional benefit to Lyles et al.’s method is the allowance for testing for completely non-differential
misclassification through likelihood ratio tests. While the full likelihood, LT does have to be explicitly
programmed, once it is estabilished for the model, standard maximum likelihood estimation can be used to
estimate the true values of β.

2.4 Multiple Imputation
In 2012, Edwards, et al. took a different approach in utilizing the validation sample to adjust for misclassifi-
cation. They treated the misclassification in the outcome as a missing data problem where the only known
values for the outcome were in the validation group; all other values of the outcome were treated as missing.
Taking advantage of well-established methods for handling missing data, they performed multiple imputation
on the outcome using the validation group to determine the relationship between the true outcome, T , the
misclassified outcome, Y , and the covariates, X, forming an estimation to the equation:

logit
(
P (T = 1|Y,X)

)
= α0 + α1Y + α2Y X

∗ + α3X) (13)

Where X∗ can be a subset of X or equivalent to X. In this way, the multiple imputation method lends
itself nicely to handling differential as well as non-differential misclassification without prior knowledge of
which type is expected, and even allows for the associations to be different between the specificity and the
sensitivity through the interaction term α2. Once this equation has been fitted, it can be used to multiply
impute T in those not included in the validation sample.

For each of the K imputations, a regression is performed to obtain estimates for the coefficients. The final
estimate for β is thus obtained from the average of all imputations:

β̄ = K−1
K∑
k=1

β̂k (14)

The variance of this new estimate is given by the sum of the average variance in the estimates and the mean
squared error:

V (β̄) = K−1
K∑
k=1

V (β̂k) + (1 +K−1)
(

1
K − 1

) K∑
k=1

(β̂k − β̄)2 (15)

This method has the added flexibility of being compatible with standard missing data methods and approaches
asymptotic efficiency in the estimates as the value of K increases.
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3 Simulation
In order to evaluate potential biases due to misclassification, I conduct a simulation that resembles the
mechanism of misclassification in the MCHDCS study. To simplify the model, I employ only two independent
covariates: one continuous, xc ∼ N(0, 1), and one binary, xb ∼ Bern(0.4). The true outcome, T , and the
probability of misclassification are then generated from a model of these values.

To explore different intensities and directions of differential misclassification, I vary the coefficients for xc and
xb but fix the probability of misclassification by adjusting the intercept value accordingly. I then generate two
additional outcome variables that are misclassified differentially and non-differentially. I range the probability
of misclassification from 0 to 50%, since data with a suspected misclassification rate above 50% is considered
heavily faulty data and should not be analysed, but rather re-collected (Neuhaus 1999). This is because a
suspected misclassification rate above this threshold is considered worse than misclassification at random.

3.1 Set-up
For each simulation, I generate a data set of n = 1,000,000 observations with xc (continuous) and xb (binary)
under the previously specified models and use them to create the data generating model:

logit(P (T = 1)) = −1.5 + 0.5xc + 0.5xb (16)

I then generate two misclassified outcomes, Yd and Ynd, that are differentially and non-differentially misclassi-
fied, respectively. In order to emulate the model from the example data, I misclassify the outcome only when
T = 1 and make no changes when T = 0, maintaining the specificity at 100% and thus γ0 = 0. The mean
sensitivity is varied from 50% to 100% in both outcomes. The non-differentially misclassified variable, Ynd, is
generated by simply switching the value of T from 1 to 0 with the probability γ1 ∈ [0, 0.5]. The differentially
misclassified variable, Yd, is switched from 1 to 0 with a probability, γ1(x), that is modeled by the equation:

logit(γ1(x)) = d0 + dcxc + dbxb (17)

I vary the dc and db coefficients to explore the effect of the association between the marginal probability of
misclassification and the explanatory variables. Note that (dc, db) = (0, 0) implies non-differential misclassifi-
cation. To facilitate the comparison of the effects of non-differential versus differential misclassification, I
adjust the d0 coefficient to maintain E(γ1(x)) = γ1.

3.2 Evaluating Induced Biases
I will first examine the biases when misclassification is dependent only on one of the variables in the model
to evaluate how this would effect the entire model. I do it for both the continuous and binary variables
separately to explore whether they have different influences on the bias produced. The marginal probability
of misclassification in the differential case is thus modeled by the two equations:

Scenario 1 Scenario 2

logit(γ1(x)) = d00 + xb logit(γ1(x)) = d01 + xc

Note that in each equation the coefficient for the covariate of interest in the misclassification model is set to 1
and the other coefficient is set to 0. The intercept coefficient will vary and is not necessarily representing the
same value in both equations.
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Figure 2: Univariate Misclassification, Binary vs. Continuous

Above: Left: differential model dependent only on the binary variable. Right: differential model dependent
only on the continuous variable. The derived coefficients for the model are plotted with the corresponding
marginal probability of misclassification.

The plots in Figure 2, from both Scenario 1 and Scenario 2, illustrate that when misclassification is not
dependent on a particular variable, the bias induced on that variable is equivalent to the bias from a totally
non-differential model. This is true for both continuous and binary variables. The bias induced in the
differential model remains isolated to the variable(s) affecting misclassification.

One troubling feature to note is what happens as the probability of misclassification increases. Due to the
coefficient-dependent misclassification, the coefficient determined by the regression trends towards 0 and can
even switch signs if the misclassification rate is large, seen in probabilities of misclassification >0.35 for the
binary coefficient in Scenario 1 and for the continuous coefficient in Scenario 2.

The bias from non-differential misclassification is small in the coefficient estimates and appears to only heavily
affect the intercept term. Since the bias trends are similar in the intercept term no matter what kind of
misclassification is present, I will not present the graphs for the intercept in the following examples, as they
are remarkably similar to the intercept graphs above and provide little further inference.

In the following simulations, I evaluated the effect of having a negative correlation between the misclassification
and our variable of interest to confirm that the magnitude of the effect is in fact similar to the positive
correlation model. I also evaluate misclassification due to multiple variables to see if there is any compounding
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effect. The probability of misclassification in the differential case is thus modeled by the two equations:

Scenario 3 Scenario 4

logit(γ1(x)) = d00 − xc logit(γ1(x)) = d01 + xc + xb

Note that the intercept coefficient will vary and is not necessarily representing the same value in both
equations.
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Figure 3: Negative and Multivariate Misclassification Models

Above: Left: differential model with a negative coefficient for xc in the misclassification model. Right:
differential model dependent on both continuous and binary variables. The derived coefficients for the model
are plotted with the corresponding probability of misclassification.

The simulation with a negative coefficient for differential misclassification behaves as expected, mirrored
across the true value of the coefficient. This could be problematic as the bias trends the coefficient estimates
away from zero, possibly causing variables to appear more strongly associated with the outcome than they
truly are and thus leading to incorrect inferences. We can also see that the effects of misclassification on
a coefficient do not compound when the misclassification is due to multiple variables. The coefficients are
similarly biased in the model with both variables as they are in the model where misclassification was only
due to one variable.

In the next set of simulations, I evaluated the effect of having an association between the misclassification
and the variables of interest at more extreme ends of the spectrum, where the association is particularly
small or large. Since the effects of differential misclassification are similar between continuous and binary
variables, I will present only the continuous variable. The probability of misclassification in the differential
case is thus modeled by the two equations:

Scenario 5 Scenario 6

logit(γ1(x)) = d00 + 0.25xc logit(γ1(x)) = d01 + 1.5xc
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Note that the intercept coefficient will vary and is not necessarily representing the same value in both
equations.

0.0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5
Mean γ1

C
on

tin
uo

us
 C

oe
f. Model

Differential

Nondifferential

True

Scenario 5

0.0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5
Mean γ1

C
on

tin
uo

us
 C

oe
f. Model

Differential

Nondifferential

True

Scenario 6

Figure 4: Varying Coefficients of Misclassification Models

Above: Left: differential model with dc = 0.25. Right: differential model with dc = 1.5.

The graphs in Figure 4 are relatively intuitive. With a smaller magnitude, the regression is less affected by
the misclassification, but could still drive coefficient estimates away from the true value. The case with the
larger magnitude is much more concerning. With a probability of misclassification at just 0.1, the coefficient
estimate has already switched signs. This means that even moderately misclassfied data could bias results
such that they present the direct opposite of the truth. This has strong implications when it is believed that
the misclassification is highly dependent on the covariate of interest.

3.3 Evaluating Adjustment Methods
In order to demonstrate the capabilities of the presented adjustment methods, I generated data using similar
coefficients to our example study data with the equation:

logit
(
P (T = 1|X)

)
= −1.5 + 0.5x1 + 0.15x2 − 0.4x3 − 0.4x4 (18)

Where (x1, x2, x3) are N(0,1) and x4 is Bin(0.17) to resemble the example data. I performed 5,000 replications
with n = 3000 subjects simulated for each one. After generating, I misclassified the data, holding specificity
= 1 and varying the sensitivity dependent on a subset of the continuous variables to replicate our unique case
of non-differential misclassification.

γ0(X) = 1 γ1(X) =
exp(θ0 − 0.65x2 + 0.4x3)

1 + exp(θ0 − 0.65x2 + 0.4x3)) (19)

This emphasizes that misclassification and the outcome are not always dependent on the same set of variables;
misclassification can be due to all of the variables of interest, a subset of them, or none of them. To illustrate
the effect that varying degrees of sensitivity can have on these methods, I ran one set of the simulations
for θ0 = −1 and the other half for θ0 = −0.2, which corresponds to an average sensitivity of approximately
0.73 and 0.55 respectively. The former is intended to be consistent with our example case, and the latter
explores a marginally acceptable sensitivity. In addition to varying the sensitivity, I also run each method
(and sensitivity) for three validation group sizes to explore the necessary sample size for these validation-based
methods to be effective: 500, 1000, and 1500.
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Table 1: Assessment of Adjustment Methods on X1: True Value = 0.5
Val. Size = 500 Val. Size = 1000 Val. Size = 1500

Method Avg(Est) SD(Est) Avg(SE(Est)) MSE Avg(Est) SD(Est) Avg(SE(Est)) MSE Avg(Est) SD(Est) Avg(SE(Est)) MSE

Avg. Sensitivity of 0.55
Naive 0.4502 0.0619 0.0615 0.0063 0.4502 0.0619 0.0615 0.0063 0.4502 0.0619 0.0615 0.0063

MLE 0.5082 0.0952 0.0662 0.0091 0.5029 0.0701 0.0614 0.0049 0.5026 0.0612 0.0577 0.0038

Imputed 0.4815 0.0950 0.0938 0.0094 0.4885 0.0710 0.0707 0.0052 0.4919 0.0627 0.0612 0.0040

SIMEX 0.4585 0.0609 0.0660 0.0054 0.4656 0.0595 0.0705 0.0047 0.4742 0.0580 0.0742 0.0040

Avg. Sensitivity of 0.73
Naive 0.4699 0.0558 0.0559 0.0040 0.4699 0.0558 0.0559 0.0040 0.4699 0.0558 0.0559 0.0040

MLE 0.5029 0.0790 0.0590 0.0062 0.5029 0.0628 0.0566 0.0040 0.5023 0.0568 0.0547 0.0032

Imputed 0.4798 0.0805 0.0797 0.0069 0.4839 0.0634 0.0630 0.0043 0.4884 0.0578 0.0569 0.0035

SIMEX 0.4765 0.0554 0.0584 0.0036 0.4829 0.0555 0.0607 0.0034 0.4895 0.0548 0.0626 0.0031

Table 2: Assessment of Adjustment Methods on X2: True Value = 0.15
Val. Size = 500 Val. Size = 1000 Val. Size = 1500

Method Avg(Est) SD(Est) Avg(SE(Est)) MSE Avg(Est) SD(Est) Avg(SE(Est)) MSE Avg(Est) SD(Est) Avg(SE(Est)) MSE

Avg. Sensitivity of 0.55
Naive 0.4254 0.0605 0.0613 0.0795 0.4254 0.0605 0.0613 0.0795 0.4254 0.0605 0.0613 0.0795

MLE 0.1469 0.1179 0.0647 0.0139 0.1493 0.0711 0.0595 0.0051 0.1508 0.0595 0.0558 0.0035

Imputed 0.1582 0.0871 0.0898 0.0076 0.1563 0.0683 0.0681 0.0047 0.1538 0.0597 0.0592 0.0036

SIMEX 0.3833 0.0602 0.0649 0.0580 0.3336 0.0593 0.0700 0.0372 0.2737 0.0577 0.0743 0.0186

Avg. Sensitivity of 0.73
Naive 0.3330 0.0558 0.0551 0.0366 0.3330 0.0558 0.0551 0.0366 0.3330 0.0558 0.0551 0.0366

MLE 0.1502 0.0991 0.0581 0.0098 0.1506 0.0654 0.0553 0.0043 0.1517 0.0565 0.0531 0.0032

Imputed 0.1627 0.0745 0.0799 0.0057 0.1591 0.0589 0.0623 0.0036 0.1575 0.0534 0.0557 0.0029

SIMEX 0.2983 0.0548 0.0568 0.0250 0.2581 0.0539 0.0597 0.0146 0.2136 0.0536 0.0621 0.0069
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Table 3: Assessment of Adjustment Methods on X3: True Value = -0.4
Val. Size = 500 Val. Size = 1000 Val. Size = 1500

Method Avg(Est) SD(Est) Avg(SE(Est)) MSE Avg(Est) SD(Est) Avg(SE(Est)) MSE Avg(Est) SD(Est) Avg(SE(Est)) MSE

Avg. Sensitivity of 0.55
Naive -0.5350 0.0625 0.0621 0.0221 -0.5350 0.0625 0.0621 0.0221 -0.5350 0.0625 0.0621 0.0221

MLE -0.4214 0.1289 0.0656 0.0171 -0.4035 0.0786 0.0605 0.0062 -0.4022 0.0628 0.0569 0.0039

Imputed -0.3937 0.0874 0.0890 0.0077 -0.3975 0.0679 0.0679 0.0046 -0.3977 0.0589 0.0597 0.0035

SIMEX -0.5144 0.0607 0.0666 0.0168 -0.4885 0.0601 0.0713 0.0114 -0.4578 0.0577 0.0752 0.0067

Avg. Sensitivity of 0.73
Naive -0.4930 0.0560 0.0561 0.0118 -0.4930 0.0560 0.0561 0.0118 -0.4930 0.0560 0.0561 0.0118

MLE -0.4208 0.1010 0.0586 0.0106 -0.4085 0.0692 0.0560 0.0049 -0.4051 0.0580 0.0540 0.0034

Imputed -0.3988 0.0753 0.0755 0.0057 -0.3986 0.0605 0.0612 0.0037 -0.3983 0.0552 0.0559 0.0030

SIMEX -0.4763 0.0552 0.0583 0.0089 -0.4552 0.0548 0.0607 0.0060 -0.4335 0.0543 0.0627 0.0041

Table 4: Assessment of Adjustment Methods on X4: True Value = -0.4
Val. Size = 500 Val. Size = 1000 Val. Size = 1500

Method Avg(Est) SD(Est) Avg(SE(Est)) MSE Avg(Est) SD(Est) Avg(SE(Est)) MSE Avg(Est) SD(Est) Avg(SE(Est)) MSE

Avg. Sensitivity of 0.55
Naive -0.3738 0.1791 0.1758 0.0328 -0.3738 0.1791 0.1758 0.0328 -0.3738 0.1791 0.1758 0.0328

MLE -0.4022 0.2442 0.1809 0.0596 -0.4043 0.1900 0.1688 0.0361 -0.4070 0.1683 0.1596 0.0284

Imputed -0.3797 0.2248 0.2348 0.0509 -0.3844 0.1787 0.1842 0.0322 -0.3899 0.1612 0.1645 0.0261

SIMEX -0.3857 0.1768 0.1881 0.0314 -0.3884 0.1703 0.1997 0.0291 -0.3926 0.1671 0.2087 0.0280

Avg. Sensitivity of 0.73
Naive -0.3821 0.1566 0.1580 0.0248 -0.3821 0.1566 0.1580 0.0248 -0.3821 0.1566 0.1580 0.0248

MLE -0.3889 0.1994 0.1621 0.0399 -0.3990 0.1672 0.1560 0.0279 -0.4052 0.1536 0.1512 0.0236

Imputed -0.3693 0.1978 0.2064 0.0400 -0.3801 0.1621 0.1679 0.0267 -0.3903 0.1524 0.1550 0.0233

SIMEX -0.3928 0.1543 0.1638 0.0238 -0.3951 0.1520 0.1693 0.0231 -0.3998 0.1515 0.1734 0.0229
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Tables 1 and 4 illustrate that when the misclassification is not dependent on the variable, the coefficient
estimates for that variable from the naive and adjusted models are all very similar and close to the true value.
Subsequently the MSE does not decrease significantly in the adjusted models over the naive model. However,
the adjustment methods have a large impact on the coefficients that were involved in the misclassification,
x2 and x3, which is congruent with what was observed in the simulations. With both variables, the
misclassification induces a bias away from the null. While misclassification was dependent on both x2 and
x3, the association was stronger with x2; subsequently, we see more error in this coefficient. The maximum
likelihood and multiple imputation adjustment methods are effective at bringing the estimates closer to the
true values, while the MC-SIMEX method underperforms at all validation levels.

From Tables 1-4, we can see that the maximum likelihood and multiple imputation methods outperform the
MC-SIMEX method in almost every case. The MC-SIMEX method was developed for cases of known, rather
than estimated, sensitivity and specificity, as is the case with the estimates gathered from the validation
groups in the simulations. Subsequently, the MC-SIMEX method is able to produce better adjustments
with large validation sizes when the mechanism for misclassification can be better estimated and more true
data is available; however, such large validation sizes are rarely possible in practice, and the other methods
produce estimates closer to the true values regardless of validation size. Even with the smallest validation
size, the maximum likelihood and multiple imputation methods are able to estimate the true values with
much less error. The multiple imputation method appears to perform the best out of the three, but the
margin of improvement between this method and the maximum likelihood is small. However, by comparing
the SD(Est) and the Avg(SE(Est)), one can observe that the maximum likelihood method also underestimates
the uncertainty in the data, which can lead to false-positives in the final analyses.

4 Data Analysis
4.1 Data Introduction

The data collected from the Mid-South Coronary Heart Disease Cohort Study (MCHDCS) resulted in 488
cases of hospitalization during the follow-up period after the data was expanded to include the Vanderbilt
Health Affiliated Network (VHAN) as well as Vanderbilt Medical Center. We evaluate covariates hypothesized
to affect the hospitalization rates that include: age, sex, objective health, subjective health, race, education,
trust in healthcare, and access to healthcare. Objective health is quantified through the patient’s Elixhauser
scores, calculated from their ICD codes in the data base. In order to adjust for some patients having more
extensive ICD records, the number of years spanning ICD codes for each patient was included in the model.
Trust in healthcare is a four-level variable based on survey data regarding a patient’s trust in doctors, other
healthcare providers (OHP), both doctors and OHP, or neither. Trust in both is used as the reference. Access
to healthcare is a continuous variable, ranging from 0 to 3, derived from averaging 2 measures of access to
healthcare based on finances and doctor/office availability. A high value in this variable indicates better
access to healthcare. The variable of interest, health literacy, was treated as a continuous variable ranging
from 3 to 15, with a high value reflecting high competency. Table 5 describes the covariates in the data set
divided by hospitalization status and location.

From Table 5, significant differences are observed in the marginal comparisons of the true hospitalized patients
versus those not hospitalized in all covariates except ICD observation time, trust in healthcare, race, and
gender. Those hospitalized tend to be older and in worse health, objectively and subjectively. This is intuitive
as it would be expected for those groups to be hospitalized at a higher rate. Interestingly, those hospitalized
tend to be lower health literacy and fewer years of education. This could indicate that those who understand
their health less are more likely to go to the hospital when necessary. However, this only gives preliminary
information as these associations are likely to change in the full, adjusted model.
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Table 5: Comparison of Demographics Across Outcome with Nn=2117, Nv=364, and Ne=124, respectively
Hospitalizations

Variable Missing None VUMC Only Elsewhere
Age 1 68 (10.5) 68.5 (10.6) 72 (12)
Weight Total Accessibility 51 1.3 (0.3) 1.4 (0.4) 1.3 (0.3)
Mean of Subjective Health Measures 0 3.2 (0.8) 2.8 (0.8) 2.8 (0.8)
ICD Collection Time (years) 0 9.4 (5) 10.4 (5.4) 8.5 (5)
Elixhauser Score 0 11.6 (10.8) 20.8 (12.6) 13.6 (10.4)
Scaled Sum of Health Literacty Scores 7 12.6 (2.9) 12.3 (3.1) 11.6 (3.4)
Trust in Healthcare 47
Trust in Both 1463 (69%) 252 (69%) 86 (69%)
Trust Doctors Only 376 (18%) 54 (15%) 16 (13%)
Trust OHP Only 28 (1%) 3 (1%) 4 (3%)
Don’t Trust Either 215 (10%) 45 (12%) 16 (13%)

Race, binary 0
White 1890 (89%) 307 (84%) 113 (91%)
Other 227 (11%) 57 (16%) 11 (9%)

Gender 0
Male 1446 (68%) 251 (69%) 83 (67%)
Female 671 (32%) 113 (31%) 41 (33%)

Education 37
Did not graduate high school 190 (9%) 43 (12%) 15 (12%)
High school graduate or GED 516 (24%) 88 (24%) 34 (27%)
Some college or 2-year degree 579 (27%) 117 (32%) 34 (27%)
College graduate 365 (17%) 43 (12%) 15 (12%)
More than a college degree 441 (21%) 67 (18%) 21 (17%)

4.2 Investigation into Misclassification
After data collection was expanded to include the surrounding hospitals, a 34.1% increase in the number of
patients that were hospitalized was observed. The table below illustrates the misclassification of the outcome.

Table 6: Comparison of Newly Added Hospitalization Data
VUMC Only

Not Hospitalized Hospitalized Total
All Hospitals Not Hospitalized 2117 0 2117

Hospitalized 124 364 488
Total 2241 364 2605

From this table, we can see that we have a sensitivity of 74.6% and a specificity of 100%. The sensitivity
and specificity can be used to adjust for the misclassification and generate unbiased estimates. However,
first, the type of misclassification must be investigated. I perform a logistic regression on the 488 cases with
the outcome being an binary indicator of misclassification in our original data collection. I use the same
covariates from Table 5. The results from this regression are in Table 7 below.
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Table 7: Regression Results for Predicting Misclassification
Variable DF Odds Ratios P-value
Health Literacy 1 0.0109

0.75 (0.6, 0.93)*
Elixhauser Score 1 <0.0001

0.52 (0.41, 0.67)*
Collection Time 1 0.00486

0.7 (0.55, 0.9)*
Subjective Health 1 0.429

0.9 (0.7, 1.17)
Trust in Healthcare 3 0.633

Trust Doctors Only 1.13 (0.58, 2.19)
Trust OHP Only 2.77 (0.58, 13.18)
Don’t Trust Either 1.05 (0.52, 2.09)

Weighted Access 1 0.131
0.83 (0.66, 1.06)

Race, binary 1 0.263
Other 0.65 (0.31, 1.38)

Gender 1 0.318
Female 1.28 (0.79, 2.09)

Age 1 0.00363
1.44 (1.13, 1.84)*

TOTAL 11 <0.0001
a All continuous variables are standardized.

The regression indicates that the misclassification observed in the outcome is dependent on health literacy,
Elixhauser score, ICD observation time, and age; i.e., the misclassification is differential and thus non-random.
Patients who were less health literate, in worse health, observed for a shorter amount of time, and/or older
were more likely to be hospitalized somewhere other than Vanderbilt Medical Center and thus more likely to
be misclassified by the original data collection. This regression will be used to estimate the model for the
misclassification in the data, demonstrating the ability of the adjustment methods to alleviate this problem.

4.3 Data Analysis
As displayed in the simulation studies in Section 3.2, differential misclassification can have a strong impact
on coefficient estimates. To display how the misclassification can bias the results of the regression in typical
analyses, I present the true and naive regressions in Table 8: one with the original misclassified outcome and
one with the true outcome after further data collection.
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Table 8: Regression Results for Misclassified vs. True Model
Misclassified True

Variable DF Odds Ratios P-value Odds Ratios P-value
Health Literacy 1 0.00286 0.0397

1.22 (1.07, 1.4)* 1.13 (1.01, 1.26)*
Elixhauser Score 1 <0.0001 <0.0001

1.91 (1.7, 2.15)* 1.66 (1.5, 1.84)*
Collection Time 1 0.11 0.919

1.1 (0.98, 1.24) 1.01 (0.9, 1.12)
Subjective Health 1 <0.0001 <0.0001

0.68 (0.59, 0.79)* 0.66 (0.58, 0.74)*
Trust in Healthcare 3 0.182 0.0826

Trust Doctors Only 0.7 (0.5, 0.99)* 0.69 (0.51, 0.93)*
Trust OHP Only 0.67 (0.2, 2.3) 1.2 (0.5, 2.86)
Don’t Trust Either 1.07 (0.73, 1.55) 1.06 (0.76, 1.47)

Weighted Access 1 0.00274 0.0241
1.2 (1.07, 1.36)* 1.13 (1.02, 1.26)*

Race, binary 1 0.106 0.225
Other 1.34 (0.94, 1.92) 1.22 (0.88, 1.69)

Gender 1 0.0266 0.0689
Female 0.74 (0.56, 0.97)* 0.8 (0.64, 1.02)

Age 1 0.453 0.00387
1.05 (0.92, 1.19) 1.18 (1.05, 1.32)*

TOTAL 11 <0.0001 <0.0001
a All continuous variables are standardized.

After the second round of data collection where more cases were found, gender no longer had a significant
effect, and age became significant. The magnitude of the effects for health literacy, Elixhauser score, access,
and gender were mitigated and brought closer to the null, while other variables were more significant in the
true model. This could mislead researchers and hinder reproducibility of the results.

Having demonstrated the gravity of misclassified data on the results, I then employed the misclassification
adjustment methods in attempt to adjust for the measurement error in the data. I randomly sampled 1000
patients from the data set to mimic a validation sample for the adjustment methods. In practice, only
the patients that had not been hospitalized in the original data set would need to be contacted, since the
specificity is 1, which would be around 860 patients on average in the example data, based on the rate of
hospitalization in the original data. I repeated the validation sampling and reapplied the adjustments methods
100 times and averaged the results in the table below. The methods are presented with the coefficients and
subsequent 95% confidence intervals for each variable and method combination. An asterisk next to the
confidence interval indicates that the value is significantly different than the null based on the variance from
that model. Since the true and naive models do not involve the validation samples, the calculation was only
performed once and those values are presented along side the averages from the adjustment methods for
comparison.
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Table 9: Regression Results for Model Comparison
Truth Naive Mult. Impute MLE MCSimex

Health Literacy 1.13 (1.01, 1.26)* 1.22 (1.07, 1.4)* 1.1 (0.95, 1.27) 1.14 (1, 1.3)* 1.22 (1.06, 1.41)*
Elixhauser Score 1.66 (1.5, 1.84)* 1.91 (1.7, 2.15)* 1.68 (1.5, 1.89)* 1.67 (1.49, 1.87)* 1.92 (1.7, 2.16)*
ICD Collection Time 1.01 (0.9, 1.12) 1.1 (0.98, 1.24) 1.02 (0.9, 1.15) 1.02 (0.91, 1.14) 1.1 (0.98, 1.24)
Subjective Health 0.66 (0.58, 0.74)* 0.68 (0.59, 0.79)* 0.72 (0.63, 0.82)* 0.66 (0.57, 0.75)* 0.68 (0.59, 0.79)*
Trust: Trust Doctors Only 0.69 (0.51, 0.93)* 0.7 (0.5, 0.99)* 0.75 (0.54, 1.04) 0.7 (0.5, 0.98)* 0.7 (0.5, 0.99)*
Trust: Trust OHP Only 1.2 (0.5, 2.86) 0.67 (0.2, 2.3) 0.91 (0.31, 2.65) 0.93 (0.31, 2.79) 0.66 (0.17, 2.55)
Trust: Don’t Trust Either 1.06 (0.76, 1.47) 1.07 (0.73, 1.55) 1.05 (0.73, 1.51) 1.08 (0.74, 1.56) 1.06 (0.73, 1.53)
Weighted Access 1.13 (1.02, 1.26)* 1.2 (1.07, 1.36)* 1.15 (1.02, 1.29)* 1.16 (1.03, 1.31)* 1.2 (1.06, 1.35)*
Race (binary): Other 1.22 (0.88, 1.69) 1.34 (0.94, 1.92) 1.25 (0.88, 1.78) 1.28 (0.9, 1.83) 1.35 (0.94, 1.94)
Sex: Female 0.8 (0.64, 1.02) 0.74 (0.56, 0.97)* 0.81 (0.63, 1.05) 0.78 (0.6, 1.01) 0.74 (0.56, 0.97)*
Age Divided by 5 1.18 (1.05, 1.32)* 1.05 (0.92, 1.19) 1.16 (1.01, 1.33)* 1.18 (1.04, 1.34)* 1.05 (0.93, 1.19)

Interestingly, in our complex example of misclassification with a relatively small validation size, the MC-
SIMEX method was unable to produce estimates better than the naive model. However, the maximum
likelihood and multiple imputation methods strongly reduced the error in the coefficients. In particular, the
MCHDCS study was interested in the health literacy effect which the maximum likelihood method captured
well. The multiple imputation method produced a closer estimate to the true value; however, unlike the true
model, it did not indicate that the effect was significantly different than the null. The multiple imputation
method proves to be more conservative than the maximum likelihood method in the trust coefficient as
well. However, having learned from the simulations that the maximum likelihood tends to underestimate
uncertainty, its tight confidence intervals may not actually be representative of the data.

5 Discussion
Non-differential, or random, misclassification is present in small quantitites in most data collection, and
the simulation studies reviewed here illustrated that this type only mildly biases the coefficient estimates
toward the null. While this could potentially cause significant associations to be missed in cases of heavy
misclassification, the true problem arises when it is suspected that the probability of misclassification is
dependent on the variables in the model, as was discovered in the MSCHDCS data. This differential
misclassification can have a large impact on the validity of the results. In the MSCHDCS data, gender
was erroneously significant in the naive model, and the significance of age was missed altogether. Since the
misclassification was dependent on the target variable, health literacy, adjustment was even more prudent
to our results, and the magnitude of the health literacy coefficient was reduced in the adjusted models. In
contrast, there was an increase in the age coefficient as it became significant after adjustment. This illustrates
how the direction of the bias in differential misclassification is not consistent and thus not easily predicted.

The maximum likelihood method proves to be effective in handling the case of differential misclassification
in both the example data and the simulations. However, the performance of both the multiple imputation
and maximum likelihood adjustment methods is similar. This is intuitive since they both draw on likelihood
properties. While the MC-SIMEX method is appealing due to the complex derivation and multiple simulations,
it was not able to provide results better than the naive model when utilizing an estimated model for the
complex mechanism of misclassificaiton. The MC-SIMEX method would be best reserved for cases where the
sensitivity and specificity are known and more straightforward.

While it will rarely be possible to identify the model for differential misclassification without having prior
knowledge, the model can be estimated with a validation group and still provide consistent results. The
simulation studies highlighted that estimates can be greatly improved with these methods even when the
validation size is small. This has great impact on research, since collecting validation samples can be labor-
and cost-intensive, but studies can derive relatively unbiased results using the maximum likelihood or multiple
imputation methods with modest validation sizes. The multiple imputation method may be favorable since
the technique for applying this method is well-established in most statistical coding languages, but it may
underreport significant associations if they are small in magnitude.
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