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CHAPTER I 

 

INTRODUCTION 

 

Ion channels are integral membrane proteins or protein complexes that are critical 

for cell functions that depend on properly maintained electrical and chemical gradients. 

Their direct involvement in a cell’s ability to generate electrical activity implicates ion 

channels in muscle contraction and movement, sensation, and cognition, among other 

complex physiologic functions. Additionally, their contributions to the regulation of 

electrolyte distribution across the cell membrane makes ion channels necessary for 

fundamental processes such as growth and fluid balance. As a result, disruption of normal 

ion channel function can have wide-ranging and substantial consequences, and the so-

called “channelopathies” include epilepsy, cardiac arrhythmias, cystic fibrosis, and many 

others1. 

 

Voltage-gated potassium (KV) channels 

KV channels comprise one family of ion channels. As voltage-gated channels, they 

respond to alterations in membrane potential with conformational changes that allow 

potassium ions to move down their electrochemical gradient into or out of a cell. KV 

channels constitute a diverse class of membrane proteins, and the channels in this subset 

are known to have an essential role in membrane excitability, cellular proliferation, 

synaptic transmission, and epithelial transport.  
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KV channel structure 

The minimal functional unit of a KV channel is a homo- or hetero-tetramer of pore-

forming subunits. There exist more than 75 genes encoding KV channel  subunits 

(categorized into 12 subfamilies, KV1-12), each possessing unique biophysical, 

pharmacological, and assembly properties, and with diverse physiologic functions.  

KCNQ1, also known as KV7.1 or KVLQT1, is an important KV channel  subunit in 

many physiologic systems but is best known for its contributions to cardiac 

electrophysiology, which are discussed below. Briefly, in cardiac myocytes KCNQ1 is a 

component of the channel complex responsible for IKs, a critical repolarizing current in 

the cardiac action potential2,3. KCNQ1 is also implicated in solute transport across the 

membranes of a number of epithelial tissues, including pancreas4,5, kidney6,7, the inner 

ear8,9, and components of the gastrointestinal tract7,9-13. 

Figure 1 illustrates basic structural features of the KCNQ1 monomer and 

homotetramer, which are typical of many KV channels. Limited success at purifying 

KCNQ1 has so far prohibited solving its structure directly. However, our collaborators 

recently published computationally validated models of KCNQ1 monomers and 

homotetramers in the open and closed states, based on KCNQ1 homology to other KV 

channels whose crystal structures were used as templates in computational predictions14.  

These models are useful for developing hypotheses about the mechanics of channel 

opening and closing and its modulation by other proteins.  Notably, each KCNQ1 

monomer has an intracellular N-terminus, four transmembrane segments (S1 through S4) 

that constitute the voltage-sensing domain of the functional tetramer, a pore domain 
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A

B

Figure 1. Structural features of KCNQ1. A, Topology map (left) and open-state model 
(right) of KCNQ1 monomer viewed from membrane plane, with transmembrane
segments designated S1 through S6. Blue denotes regions derived from KV1.2 crystal 
structure template; green denotes regions derived from crystal structure backbone 
coordinates and predicted side chain assignments; orange denotes regions modeled de 
novo using Rosetta. B, Open state model for KCNQ1 homotetramer (each monomer 
assigned a unique color). Left, extracellular view; right, view from membrane plane. 
Modeling data in A and B from Smith et al. Biochemistry, 2007 Dec 11;46(49):14141-52. 

S1

N C

S2 S3 S4 S5 S6

pore loop
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comprised of the two N-terminal transmembrane segments plus the linker (“pore loop”) 

between them (S5-P-S6), and a long intracellular C-terminus. 

 

Biophysical profile of KV current 

Unlike the other KV7 subtypes (KV7.2 – KV7.5, or KCNQ2 –KCNQ5), which can 

form heterotetramers in various combinations, KCNQ1 only assembles into homo-

tetramers15-19. Whole-cell voltage-clamp recordings allow characterization of the current 

generated by KCNQ1 tetramers in heterologous expression systems, as shown in Figure 

2. Applying a series of step depolarizations from a holding potential of -80 mV to more 

positive membrane potentials in 10 mV increments, we record a set of rapidly activating 

outward currents of increasing amplitude.  Upon returning the membrane to a repolarized 

potential (-30 mV) after each step depolarization, we observe that KCNQ1 channels 

partially inactivate after opening, which is apparent as a “hook” in the tail currents, 

reflecting recovery from the inactivated state before deactivation takes place. 

From the currents recorded under this voltage-clamp protocol, we can calculate 

average peak current density at each depolarizing test potential. Further, we can assess 

the voltage-dependence of activation for KCNQ1 channels, by normalizing peak tail 

current for each test potential to the maximal value for each cell, and plotting normalized 

peak tail current versus voltage. These activation curves can then be fitted with a 

Boltzmann function y = [1 + exp(V-V1/2/k)]-1  to determine the voltage for half-maximal 

activation (V1/2) and a slope factor (k). This set of basic biophysical properties of KCNQ1 

currents is displayed in Figure 2. 
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100 pA

0.5 s

Figure 2. Biophysical properties of KCNQ1 current. A, Representative whole-cell 
currents elicited in CHO cells transiently transfected with KCNQ1 upon applying a 
series of test potentials as illustrated in the voltage-clamp protocol (membrane voltage 
indicated in mV). B, Average peak current-density versus voltage plot (n = 9 cells). C, 
Voltage-dependence of activation. V1/2 =  -7.0 ± 1.9 mV, k = 10.4 ± 0.5 mV.
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Regulation of KV channels 

Research is demonstrating that in vivo, few (if any) KV channels function 

independently of modulatory subunits or other regulatory factors within the cell. Rather, 

they exist as dynamic protein complexes whose constituents include a wide variety of 

proteins and signaling molecules. KCNQ1 channels are no exception; thus, 

characterization of the biophysical properties of KCNQ1 homotetramers under baseline 

conditions provides a critical reference point for assessing their modulation by other 

proteins, signaling molecules, and intracellular conditions. 

Adrenergic stimulation has been identified as one important regulator of KCNQ1-

containing channel complexes20. Adrenergic agonists stimulate cyclic AMP (cAMP) 

activation of protein kinase A (PKA), which phosphorylates a serine in the N terminus of 

KCNQ1, altering its activity21,22. KCNQ1 regulatory activity has also been assigned to 

phosphatidylinositol-4,5-bisphosphate (PIP2), which has been found to stabilize the open 

state and increase current amplitude, as well as slow deactivation23,24. Additionally, cell 

swelling25 and extracellular acidification26 have each been observed to stimulate KCNQ1 

current. 

Recent studies have also implicated the ubiquitous Ca2+-sensing protein calmodulin 

(CaM) as a modulator of KCNQ1 activity27,28. A domain in the C-terminus of KCNQ1 

appears to mediate a biochemical interaction with CaM, and pharmacological disruption 

of the KCNQ1-CaM interaction was found to cause complete suppression of KCNQ1 

current, suggesting that CaM is required for KCNQ1 activity. Further, KCNQ1 voltage-

dependence of activation is shifted toward more negative potentials under conditions of 

high intracellular [Ca2+]. This KCNQ1 Ca2+ sensitivity may be conferred by its 
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interaction with CaM, as overexpression of a Ca2+-insensitive CaM mutant shifts the 

voltage-dependence of activation of KCNQ1 toward more positive potentials. 

 

KV Channel Accessory Subunits 

The diversity of KV channel composition and activity is also expanded through 

association of pore-forming -subunit tetramers with accessory subunits, of which there 

are three main classes:  KV, KCHIP, and KCNE.  These accessory proteins can have 

profound effects on channel biophysical properties, pharmacological responses, tissue 

distribution, trafficking, and regulation by other cellular factors29. 

 

KCNE proteins 

There are five KCNE genes, each encoding a short protein (103-177 residues in 

length) with a single membrane-spanning domain (Figure 3). The KCNE proteins do not 

generate current when they are expressed alone, but they are characterized by their ability 

to modulate the biophysical properties of potassium channels when coexpressed with KV 

 subunits. In addition to structural similarity, the KCNEs share promiscuity in their 

interactions with KV channel complexes. Lists of KV  subunits that each KCNE protein 

has been shown to modulate to date are illustrated in Figure 4. It is important to note that 

these lists reflect a compilation of findings based on a candidate approach to studying the 

targets of modulation of each KCNE protein, and they will likely be proven incomplete 

as research continues. 
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N

C

A

B

Figure 3. Basic structural features of KCNE proteins. A, Topology of a KCNE 
protein with extracellular N-terminus and cytoplasmic C-terminus. B, Amino acid 
sequence alignment of human isoforms of KCNE1-KCNE5. Colors denote predicted 
domains: purple – extracellular, red – transmembrane, blue – intracellular.
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Biophysical modulation of KCNQ1 by KCNE1-KCNE5 

As illustrated in Figure 4, each KCNE subunit is capable of modulating KCNQ1.  

We performed whole-cell voltage-clamp recordings in CHO cells co-expressing each 

KCNQ1-KCNE pair, which allows us to directly compare the modulatory properties of 

the KCNE family members (Figure 5).  As the current traces illustrate, each subunit 

exerts a different modulatory effect on KCNQ1.  Our findings, described below, are 

consistent with other published characterizations of the KCNQ1-KCNE channel 

complexes. 

KCNE1 (also known as minK, “minimal K+ channel protein”) interacts with 

KCNQ1 to increase its current amplitude, slow its activation and deactivation rates, 

remove its inactivation state, and shift its voltage dependence of activation to more 

positive potentials2,30. When KCNE2 (or MiRP1, MinK-related protein 1) is co-expressed 

with KCNQ1, it decreases its current amplitude but renders the channel constitutively 

open31. By contrast, KCNE3 (MiRP2) dramatically increases KCNQ1 current amplitude 

and also confers near-instantaneous activation32,33. KCNE4 (MiRP3) and KCNE5 

(MiRP4) each dramatically inhibit KCNQ1 channel activity at all physiologic voltages, 

though for KCNQ1 plus KCNE5 at supra-physiologic depolarizations an outward current 

with slowed activation properties is restored34,35. Together, these data reflect great 

diversity in the modulatory properties of the various KCNE subunits when they interact 

with KCNQ1. 
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Figure 5.  Whole-cell currents recorded in CHO cells co-transfected with KCNQ1
and KCNE1-5. Each set of traces recorded using voltage-clamp protocol as indicated 
in box. Currents recorded upon +50 mV test depolarization illustrated in red for 
reference.
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Mechanisms of KV channel modulation by KCNE proteins 

We have an incomplete understanding of the mechanisms by which KCNE subunits 

exert their modulatory effects on KV channel  subunits such as KCNQ1. One obstacle 

arises from conflicting evidence regarding the number of KCNE proteins that associate 

with a given tetramer of KV channel  subunits. The KCNQ1-KCNE1 channel complex 

has most commonly been the focus of previous investigations into subunit stoichiometry. 

Two studies approached the problem with the use of the K+ channel inhibitor 

charybdotoxin (CTX). Chen et al compared CTX on- and off-rates for cells expressing 

KCNQ1 and KCNE1 monomers (which assemble into their natural channel complexes) 

and cells expressing KCNQ1-KCNE1 concatamers that force defined stoichiometries36. 

Morin and Kobertz performed KCNE1 counting by iterative cell-surface modification37: 

they linked CTX to a cysteine-modifying agent via a cleavable linker, such that upon 

addition of this reagent to cells expressing KCNQ1-KCNE1 channels the compound 

blocks the channel and modifies a cysteine engineered into the extracellular domain of 

KCNE1. Excess reagent is washed out, and CTX is tethered to the channel complex via 

the KCNE1 cysteine, irreversibly blocking the channel until the linker is chemically 

cleaved, leaving one KCNE1 subunit labeled.  This process is repeated until the reagent 

becomes a reversible blocker without cleaving the linker, indicating that all the KCNE1 

subunits have been modified. Both studies provided strong evidence of a fixed 4:2 

KCNQ1-to-KCNE1 subunit ratio. 

However, other studies (whose main limitations include their reliance on isolated 

subdomains of KCNQ1 and KCNE1 or chimeras tethering KCNQ1 to other protein 

domains for structural anchoring, as opposed to native proteins) have suggested that 
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multiple configurations are possible (from one to four KCNE1 subunits per KCNQ1 

tetramer), depending on the relative expression of each gene38,39. Without a clear 

understanding of subunit stoichiometry it is difficult to work toward a comprehensive 

understanding of the mechanism of KCNE modulation of KCNQ1 or any KV channel 

complex. 

 

KCNE structure-function relationships 

We also lack data clearly defining the relative positioning of KCNE subunits within 

a KV channel complex. No direct crystallographic analysis has been achieved for any 

member of the KCNE family (alone or in complex with a KV channel), but our 

collaborators recently published a 3-dimensional characterization of KCNE1 based on 

NMR spectroscopy of KCNE1 purified into micelles, plus models for KCNE1 docking to 

KCNQ1 in open and closed states based on a number of experimentally derived 

restraints40. Though the authors themselves consider their models “best regarded as being 

medium-resolution in nature, both because of the imperfect precision of structures that 

satisfy the experimental restraints used in docking and because of uncertainty regarding 

some of the assumptions made in the restrained docking calculations”, they provide 

valuable new information about the general locations of KCNE1 subdomains with respect 

to KCNQ1. For example, in the closed state, KCNE1 is found to sit in a cleft between the 

S5-P-S6 pore domain of one KCNQ1 subunit and the voltage sensor of an adjacent 

subunit; in the open state, the N-terminus of the KCNE1 transmembrane domain is in 

contact with three different subunits: S1 from one, S5 and the pore helix from a second, 

and S6 from a third. 
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In many cases, findings from the structural analysis support mechanistic 

postulations derived from previous studies of structure-function correlates for how 

KCNE1 slows KCNQ1 channel activation and enhances conductance.  For example, 

previous studies had identified a specific residue in the KCNE1 transmembrane domain, 

Thr58, to be sufficient for conferring the slow activation properties of KCNE1 to KCNE3 

(in which a valine occupies the equivalent site) and vice versa41-43; in the structural 

models the side chain of Thr58 was found to be well-positioned to interact with KCNQ1. 

Further, the cleft KCNE1 was found to occupy in the open state encompasses the sites of 

four KCNQ1 gain-of-function mutations44-47, supporting a postulation from the structural 

model that KCNE1 may enhance conductance in part by stabilizing the open state of 

KCNQ1 via contact of its transmembrane domain with KCNQ1 residues in this cleft.   

Structural models of the KCNQ1-KCNE1 channel complex may prove to be a 

useful template for understanding some properties universal to all KCNE proteins, but 

given the unique structural and functional features of each KCNE protein, we must 

ultimately study them individually to determine the mechanisms that underlie their 

specific modulatory effects on KV channels. KCNE4 is distinct among the KCNE 

proteins both for its long C-terminus and for its dramatic inhibition of KCNQ1. Our lab 

used KCNE1-KCNE4 and KCNE3-KCNE4 chimeras to study which KCNE4 domains 

are critical for its inhibition of KCNQ1. Notably, the transmembrane residues sufficient 

for swapping activation properties among KCNE1 and KCNE3 were not found to impart 

KCNE1- or KCNE3-like properties to KCNE4 (nor KCNE4-like complete inhibition of 

KCNQ1 to KCNE1 or KCNE3).  
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Instead, the intracellular C-terminus of KCNE4 (residues 59 through 170) conferred 

inhibitory properties to KCNE1 and KCNE3, and also was also found to be necessary for 

KCNE4 inhibition of KCNQ1, as chimeras that replaced the C-terminus of KCNE4 with 

that of KCNE1 or KCNE3 failed to inhibit KCNQ148. Importantly, this study also 

demonstrated that the KCNE4 C-terminus is not sufficient for inhibition of KCNQ1, 

using a chimera that tethered the KCNE4 C-terminus to a surrogate single transmembrane 

domain protein, the lymphocyte CD8 receptor.  The CD8-KCNE4 C-terminus chimera 

did not inhibit KCNQ1 current, despite confirmation that the chimeric protein reached the 

membrane and that it interacts biochemically with KCNQ1. These data and findings from 

several other studies49-51 contribute to an emerging model of cooperativity between the 

transmembrane domain and C-terminus for a KCNE protein to exert its modulatory effect 

on a KV channel. 

Other studies have lent further insight into the particular mechanism of KCNE4 

inhibition of KCNQ1. These include early observations that delayed injection of KCNE4 

mRNA into oocytes previously injected with KCNQ1 does not impair the ability of 

KCNE4 to inhibit KCNQ1 current, suggesting that its inhibitory effect is not dependent 

on early KCNQ1-KCNE4 assembly in the secretory pathway, but could take place in the 

plasma membrane35.  Further, we52 and others35 have demonstrated that expression of 

KCNQ1 at the cell surface is not affected by KCNE4 expression, suggesting that KCNE4 

exerts its inhibitory effect on KCNQ1 via true biophysical modulation of channel gating, 

as opposed to disrupting KCNQ1 trafficking to the membrane or enhancing its 

internalization from the cell surface. These findings each provide additional clues as to 

the mechanism by which KCNE4 exerts its impressive inhibitory effect on KCNQ1. 
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Expression patterns of KCNE1-KCNE5 

All five of the KCNE genes are widely expressed in mammalian tissues. Our lab 

used real-time RT-PCR to quantify relative expression levels of KCNQ1 and KCNE1-5 in 

commercially available panels of cDNA derived from normal human subjects53. Figure 6 

illustrates the findings across 15 tissues. Consistent with previous studies in human and 

other mammalian tissues35,54-56, all of the KCNEs were detected in the heart. KCNE1 is 

also prominently expressed in kidney57,58, testes59, and uterus60,61. KCNE2 expression was 

found to be most significant in colon and small intestine, to complement previous 

findings of its high relative expression in stomach62,63. We found strongest KCNE3 

expression in human kidney, liver, prostate, colon, spleen, ovary, placenta, and 

leukocytes (consistent with previous findings62,64-67), whereas its expression has also been 

previously demonstrated in the trachea67, nasal epithelia64, and portal vein68. Prominent 

expression of KCNE4 was detected in kidney, skeletal muscle, testis, prostate, spleen, 

ovary, and uterus, which overlaps to some extent with a previous report of KCNE4 

expression in mouse35. Finally, we found particularly high KCNE5 expression in brain, 

thymus, ovary, and placenta, whereas previous studies have mostly focused on its 

expression in various regions of the central nervous system55,68. 

Our lab has also characterized KCNE4 expression at the protein level52.  Lysates 

from sixteen human tissues were probed with anti-KCNE4, as shown in the 

representative Western blots in Figure 7. Modest protein expression was detected in 

many of the tissues that demonstrated robust KCNE4 mRNA expression, including brain, 

heart, small intestine, kidney, liver, ovary, pancreas, skeletal muscle, spleen, testis, 

thymus, and uterus. Overall, the mRNA and protein data we have collected provide a 
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Figure 6. Relative expression of KCNQ1 and KCNE genes in human tissues.
Several human tissues were examined by real-time quantitative RT-PCR. Tissues 
were grouped by low (A) and high (B) overall expression for display purposes (note 
differences in the y-axis scale). All data were quantified by gene specific standard 
curves and results were normalized by GAPDH expression. Data are presented as 
mean ± SEM for at least 6 replicates from 2 different pooled (2 or more individuals) 
cDNA samples isolated from healthy individuals. From Lundquist et al. Genomics. 
2006 Jan;87(1):119-28. 
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Figure 7. Expression of KCNE4 protein in human tissues. A, Whole cell lysates
from COS-M6 cells transfected with HA epitope-tagged KCNE4 (+) or non-transfected
cells (−) were subjected to SDS-PAGE and western blotting with the indicated 
immunoreagent. A specific protein with a molecular mass of approximately 28 kDa was 
identified by immunoblotting with either anti-HA or anti-KCNE4. B, Western blot of 
lysates derived from non-transfected cells (NT) or cells expressing each individual 
KCNE protein probed for KCNE4. All lysates were also probed for GAPDH in order to 
demonstrate protein expression. C, Western blot of lysates derived from specified 
human tissues probed for KCNE4. Brain lysates were derived from the cerebellum. 
Colon lysates were derived from the descending colon. Heart lysates were derived from 
the left ventricle. Muscle lysates were derived from skeletal muscle (quadriceps). All 
lysates were also probed for GAPDH. From Manderfield et al. FEBS J. 2008 
Mar;275(6):1336-49. 
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foundational understanding of the distribution of KCNE expression, but further studies 

with increasing specificity (eg. identifying which subregions or specific cell types within 

a tissue express a given KCNE gene) are also needed. 

 

Physiologic functions of KCNE1-KCNE5 

It has become possible to assign physiologic functions to the KCNE proteins, based 

on various combinations of the following findings: disease association with human 

mutation(s) in a KCNE gene, phenotypic findings in Kcne knockout mouse models, 

recapitulation of the biophysical and pharmacological properties of a physiologic current 

upon heterologous expression of the candidate KV-KCNE channel complex, and 

confirmation of native expression of the KCNE gene and its target of modulation by the 

appropriate tissue. In many cases, a single KCNE gene has been implicated in multiple 

physiologic processes, which is not surprising based on the broad expression of KCNE 

genes and their promiscuity in modulating diverse KV channel complexes. Findings to 

date are summarized below. 

 

Cardiac physiology 

KV channels are critical for generation and propagation of action potentials in the 

heart. A generic ventricular cardiac action potential is displayed in Figure 8, along with 

underlying potassium currents. The exact waveform of the action potential varies within 

subregions of the heart, concurrent with variations in the biophysical properties of the 

underlying currents and expression of ion channel subunits. This electrical heterogeneity 
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Figure 8. Generic human ventricular action potential waveform. X-axis, 
membrane potential; y-axis, time. Underlying currents identified below; red box 
highlights major repolarizing K+ currents. Adapted from Nerbonne JM Trends 
Cardiovasc Med 14, 83-93 (2004).

100 ms

Phase 4

P
ha

se
 0

Phase 2

Phase 3

INa

ICa,L

Ito,f

Ito,s

IKs

IKr

IK,slow1

IK,slow2

ISS

IK1

IKATP

Phase 1

20



across the heart is critical for coordination and fine control of action potential 

propagation, but can also be a substrate for arrhythmia69.  

Ito, IKs, and IKr, the major outward K+ currents expressed by ventricular myocytes, 

are activated at depolarized potentials and contribute to repolarization of the myocyte.  

This directly implicates Ito, IKs, and IKr in determining the length of the action potential 

and the ability of myocytes to adapt to factors such as changing heart rate. Dysregulation 

of these currents can have significant consesquences, as delayed repolarization (which 

translates to a lengthened QT interval on electrocardiogram) may allow for premature 

reactivation of inward calcium and sodium currents, permitting early afterdepolarizations 

and the potential for ventricular fibrillation, arrhythmia, and sudden death. Discovery of 

genetic mutations associated with inherited long QT syndrome (LQTS) has helped 

identify genes that encode the cardiac K+ channel subunits responsible for the various 

repolarizing currents in the human cardiac action potential. 

All five of the KCNE genes are expressed to varying degrees and with distinct 

regional patterns in the heart70 (Figure 9). Over the years, several KCNE proteins have 

been identified as critical modulators of repolarizing K+ currents in the cardiac action 

potential. As mentioned previously, the pore-forming unit of IKs, the ‘slowly activating’ 

repolarizing K+ current, is a KCNQ1 tetramer, originally identified via association of 

KCNQ1 mutations with the most common inherited form of LQTS71. However, 

recapitulation of the pharmacological and biophysical properties of IKs requires co-

expression of KCNQ1 with KCNE12,3, giving rise to the slowly activating and 

deactivating current displayed in Figure 5, first observed in 1996. Shortly thereafter, 

KCNE1 mutations were identified in families with inherited LQTS, which when 
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Figure 9. Relative expression of KCNQ1 and KCNE genes in human heart. Five 
human cardiac tissues were examined by real-time quantitative RT-PCR: right atrium 
(RA), left atrium (LA), right ventricle (RV), left ventricle (LV), and fetal heart (FH). All 
data were quantified by gene-specific standard curves and values were normalized to 
GAPDH expression. Data are presented as mean ± S.E.M. of at least six replicates 
from two different pooled cDNA samples derived from multiple individuals. From 
Lundquist AL et al. J Mol Cell Cardiol. 2005 Feb;38(2):277-87. 
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characterized in heterologous expression systems were found to reduce IKS current by 

shifting the voltage dependence of activation and accelerating deactivation. Lengthened 

QT interval in the mutation carriers can thus be accounted for by delayed repolarization 

due to reduced IKs. KCNE1 mutations are now recognized to account for approximately 3 

% of inherited LQTS cases72, and cardiac IKs is universally accepted to be generated by a 

channel complex comprised of KCNQ1 and KCNE1 subunits.  

A recent study from our lab assessed whether the other KCNE proteins can 

modulate IKs
70.  A stable IKs-expressing cell line was generated by genomic integration of 

a bicistronic KCNE1-IRES2-KCNQ1 cassette, allowing uniform expression of KCNQ1 

and KCNE1 from a single genomic locus, and generating a consistent level of IKs current 

in all cells.  These IKs-expressing cells were then transfected with cDNA encoding each 

of the KCNE subunits, and potassium currents were recorded upon applying a standard 

voltage-clamp protocol (Figure 10). Cells expressing IKs plus EGFP, KCNE1, or KCNE2 

exhibited slowly-activating current with gating properties indistinguishable from the 

transient co-expression of KCNQ1 and KCNE1 in CHO cells. By contrast, expression of 

KCNE3 accelerated activation of IKs while co-expression of either KCNE4 or KCNE5 

suppressed the current. These observations indicate that KCNE3, KCNE4 and KCNE5 

are capable of modulating KCNQ1-KCNE1 channel complexes in vitro and may 

contribute to fine-tuning of IKs in vivo. 

IKr, the ‘rapidly activating’ repolarizing K+ current, was first associated with the KV 

 subunit hERG (‘human ether-a-go-go related gene’, also known as KCNH2 or KV11.1) 

in 199573,74, and dominant-negative hERG mutations were identified in LQTS soon 

after75. However, heterologous expression of hERG alone has revealed differences in the 
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biophysical and pharmacological profiles of its K+ current from those of native IKr
73,74,76-

81, suggesting that cardiac IKr channels may be comprised of hERG plus accessory 

subunits. KCNE1 and KCNE2 have each been proposed as modulators of hERG in 

human heart.  

In heterologous expression systems, KCNE1 can be co-immunoprecipitated with 

hERG and was found to increase hERG current density (with little effect on gating 

kinetics or single channel conductance)82, and native ERG and KCNE1 have been co-

immunoprecipitated from horse heart83. Co-expression of KCNE2 and hERG yields 

currents that resemble those of IKr, with more rapid deactivation and less sensitivity to 

external K+ than hERG alone. Further, in vitro translated hERG has been found to 

preferentially assemble with KCNE2 over KCNE184, and native KCNE2 and ERG have 

been co-immunoprecipitated from dog heart85. Loss-of-function mutations in both 

KCNE1 and KCNE2 have been associated with LQTS84,86-90, providing additional 

evidence that either of these subunits could be important for modulating IKr in cardiac 

physiology.  

Ito, the ‘transient outward’ K+ current, accounts for early repolarization in the 

human cardiac action potential. Ito,fast, the predominant component of Ito in most regions 

of mammalian myocardium, is thought to be composed of some combination of KV4.2 or 

KV4.3  subunits plus the KChIP2 accessory subunit, depending on the species91-94. 

Findings of altered Ito current in the Kcne2 knockout mouse plus co-immunoprecipitation 

of KCNE2 and KV4.2 from mouse heart95 implicate KCNE2 as a potential Ito modulator. 

KCNE3 has been demonstrated to be capable of modulating KV4.2 in heterologous 

expression studies, and association of a missense KCNE3 mutation with LQTS provides 
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further evidence that KCNE3 could modulate Ito in vivo96. Finally, KV4.2-KChIP2 

channels97 and KV4.3-KChIP2 channels98 have both been demonstrated to be modulated 

in vitro by KCNE4, suggesting it too could function as a native modulator of Ito. Further, 

KCNE4 was found to co-localize with KV4.2 to transverse tubules of rat cardiac 

myocytes and it was co-immunoprecipitated with KV4.2 and KChIP2 following 

heterologous expression in tsA201 cells97. 

These findings reflect our preliminary understanding of possible roles for the 

KCNE subunits in cardiac physiology, but in many cases further investigation is needed. 

Particularly compelling evidence could emerge from demonstration of native co-

assembly of the candidate channel subunits in cardiac myocytes, characterization of 

additional disease-associated mutants, or findings from knock-down studies in animal 

models whose cardiac electrophysiology closely recapitulates that of humans. 

 

Central nervous system (CNS) physiology 

Like the heart, the main function of the central nervous system requires generation 

and propagation of electrical signals, and thus depends on a wide range of ion channel 

subunits to elicit currents with varying biophysical properties. Expression of all five 

KCNE genes has been demonstrated in human brain53, promoting the possibility that any 

of them could play important roles in modulating neuronal excitability. The M-current, a 

muscarinic-sensitive voltage-and time-dependent K+ current expressed in many regions 

of the brain99, has been the focus of most investigations into possible CNS targets of 

KCNE modulation. Heteromultimers of KCNQ2 and KCNQ3 subunits are thought to 

contribute to M-current channels16,19, and mutations in each have been associated with 
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familial epilepsy100-102. It has been observed that the expression pattern of KCNE2 in the 

brain overlaps significantly with that of KCNQ2 and KCNQ3, that coexpression of 

KCNE2 with KCNQ2-KCNQ3 heteromultimers in COS cells recapitulates many 

biophysical properties of the native M-current, and that the three subunits can be co-

immunoprecipitated following co-expression in COS cells103.  

Studies have also provided evidence for possible contributions of KCNE1 and 

KCNE3 to central nervous system electrophysiology, via possible interactions with KV2.1 

and KV3.1 which may each constitute important neuronal KV channels. Kcne3 was co-

immunoprecipitated with KV2.1 and KV3.1 from rat brain, and KCNE3 has been 

demonstrated to modulate both of these a subunits in CHO cells66. A subsequent study 

also demonstrated modulation of KV3.1 and KV3.2 channels by KCNE1, KCNE2, and 

KCNE3 in CHO cells, further expanding the range of biophysical profiles of K+ currents 

that can be generated by these neuronal channels104. 

Additionally, KCNE4 has been proposed as a modulator of CNS KV channels 

composed of KV1.1 and KV1.3 subunits, based on observations that KCNE4 dramatically 

inhibits these channels in both oocytes and HEK cells105. Like its modulation of KCNQ1, 

KCNE4 is thought to inhibit the KV1 channels via biophysical modulation of channel 

gating at the plasma membrane (as opposed to impairing trafficking of the channel 

subunits), as delayed injection of KCNE4 cDNA was effective at inhibiting channels at 

the membrane, and cell-surface expression of the  subunits was not found to be 

impaired by co-expression of KCNE4. The native functions of KV1 channels in the brain 

are not known, and it is important to note that KV1.1 and KV1.3 are also expressed in 
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peripheral tissues (in many cases with patterns overlapping those of KCNE4) including 

lung, kidney, colon, and uterus. 

Together, these findings provide early leads into potential roles for KCNE subunits 

in the electrophysiology of the central nervous system, but thus far no mutation in any 

KCNE gene has been associated with CNS deficits in humans or experimental models, 

limiting our ability to draw any firm conclusions. 

 

Skeletal muscle physiology 

Another excitable tissue that relies on diverse ion channel activity is skeletal 

muscle. An important study published in 2001 directly implicated KCNE3 in 

maintenance of resting membrane potential in skeletal muscle, via its interaction with 

KV3.4 subunits65. In this study, KCNE3 protein was detected by Western blot in native 

rat sartorius muscle and in the C2C12 skeletal muscle cell line, and was found to co-

localize with KV3.4 in C2C12 cells by immunofluorescence. Further, KCNE3 was 

detected following co-immunoprecipitation with KV3.4 from COS cells co-transfected 

with the two subunits. Evidence of KV3.4 modulation by KCNE3 also emerged from 

voltage-clamp studies performed in CHO cells co-transfected with KV3.4 and KCNE3, 

and the biophysical properties of the KV3.4-KCNE3 channel complex matched those of 

native currents recorded in C2C12 cells. Finally, screening of patients with inherited 

muscle disorders without mutations in known disease-associated genes identified a 

KCNE3 mutation in two unrelated individuals with periodic paralysis. When 

characterized by co-expression with KV3.4 in CHO cells, this KCNE3 mutation was 

found to reduce K+ current and alter resting membrane potential, supporting a causative 
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role for the mutation in pathogenesis and for KCNE3 in normal skeletal muscle 

physiology. 

 

Smooth muscle physiology 

Limited data have been generated to suggest specific physiologic functions 

performed by KCNE subunits in smooth muscle cells, but their expression has been 

confirmed in a number of cell types. For example, expression of Kcne2 and Kcne3 has 

been detected in mouse portal vein myocytes68. ERG channels are thought to contribute 

to K+ conductance and electrical activity of these cells, but native currents differ from 

those recorded upon heterologous expression of ERG subunits alone. Observations that 

Erg1 and Kcne3 transcripts co-localize at the cell membrane68 support postulations that 

KCNE3 may modulate ERG currents in vivo as part of the electrophysiologic profile of 

these vascular smooth muscle cells. 

Expression of KCNE1, KCNE3, and KCNE4 has been demonstrated in mouse106 and 

human myometrium53. Studies in mouse have shown upregulation of Kcne1 (along with 

Kcnq1 and Kcnq5) at the metestrous phase of the estrous cycle106. Further, Kcne1 levels 

have been observed to increase dramatically during late pregnancy in rodents60, though 

the physiologic significance of these findings is not known. 

 

Epithelial physiology 

Although they have been primarily studied for their contributions to the physiology 

of excitable tissues, KV channels expressed in the membranes of epithelial cells have also 
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proven to participate in transepithelial K+ secretion and recycling as a driving force 

behind other channels and transporters. 

One important example of a significant role for KV channels and KCNE subunits in 

epithelial physiology is the observation that KCNQ1 and KCNE2 are necessary for gastric 

acid secretion by parietal cells, which is coupled to K+ intake via the H+/K+-ATPase.  

KCNQ1 was originally identified as the channel responsible for K+ recycling that 

supports the H+/K+ exchanger in a 2001 study107.  KCNQ1 expression in parietal cells 

was localized to the tubulovesicles and apical membrane by immunofluorescence.  

Further, inhibition of KCNQ1 current in parietal cells by chromanol 293B was found to 

completely block acid secretion.  KCNE2 was also observed to be abundantly expressed 

in the stomach, and the K+ current measured in COS cells coexpressing KCNQ1 and 

KCNE2 showed electrophysiologic and pharmacologic similarities to the K+ current 

observed in parietal cells.  A subsequent study108 confirmed that KCNE2 is necessary for 

gastric acid secretion, reporting that a Kcne2-/- mouse model displays a gastric phenotype 

characterized by achlorhydria and hypergastrinemia.   

Similar roles for KCNQ1 and KCNE subunits have been established in the colon 

and small intestine. In colonic crypt cells, a basolateral K+ efflux is responsible for 

recycling K+ in conjunction with Na-K-2Cl cotransport into the cell at the basolateral 

membrane, and for hyperpolarizing the membrane; both phenomena contribute to the 

driving force for luminal Cl- secretion through CFTR at apical membrane. In situ 

hybridization and immunohistochemical studies confirmed the expression of KCNQ1 and 

KCNE3 in colonic crypt cells, and electrophysiologic studies demonstrated numerous 

similarities between K+ currents of colonic crypt cells with those of transfected 
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KCNQ1/KCNE3 channels109.  These findings suggest that a KCNQ1/KCNE3 channel 

may account for the basolateral K+ current that is important for cAMP-stimulated Cl- 

secretion, and thus may also play a role in the pathophysiology of cystic fibrosis and 

secretory diarrhea. 

Preliminary studies have implicated KCNQ1-KCNE1 channel complexes in the 

physiology of the exocrine pancreas. Both subunits are abundantly expressed in 

pancreatic acinar cells58, and a slowly activating K+ current with biophysical properties 

resembling IKs has been recorded in rat pancreatic cells5. Further, pancreatic acinar cells 

from the Kcne1 knockout mouse displayed significant reduction of a chromanol 293B-

sensitive, cholinergic-stimulated, slowly activating K+ current61, suggesting that an IKs-

like current generated by KCNQ1-KCNE1 channel complexes may contribute to the 

electrochemical driving forces that underlie pancreatic secretion of electrolytes and 

enzymes. 

KCNE2 has been directly implicated in thyroid hormone biosynthesis. A 2009 

study110 demonstrated KCNQ1 and KCNE2 form a TSH-stimulated K+ channel in 

thyrocytes responsible for a constitutively active K+ current at the basolateral membrane. 

Kcne2 knockout mice demonstrated a dramatic defect in I- accumulation in thyrocytes, 

which is a critical step in thyroid hormone biosynthesis. As a consequence, pups from 

homozygous Kcne2-/- crosses exhibited cardiomegaly, dwarfism, and alopecia, concurrent 

with decreased serum thyroid hormone and increased thyroid stimulating hormone. 

In many segments of the nephron, K+ flux is critical for maintaining appropriate 

electrochemical gradients that drive the tightly regulated distribution of fluid and 

electrolytes across the membrane. Colocalization of Kcnq1 and Kcne1 has been observed 
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in the luminal membrane of proximal tubules of mouse kidney, and the Kcne1 knockout 

mouse displayed abnormal K+ flux in proximal and distal tubules plus enhanced urinary 

excretion of fluid, Na+, Cl-, and glucose compared to wild-type mice111. KCNE4 has been 

localized to the apical membrane of intercalated cells of the nephron, which are only 

known to express one K+ channel, the voltage- and calcium-dependent BK channel112. 

Subsequent analysis by heterologous expression of BK plus KCNE4 in CHO cells 

revealed that KCNE4 shifts the voltage-dependence of activation of BK channels toward 

more positive potentials, and reduces macroscopic current but not single-channel 

conductance (suggesting that KCNE4 may accelerate turnover of BK channels, which 

was corroborated by biotinylation and pulse-chase experiments).  

Finally, vestibular dark cells of the inner ear are known to rely on functional 

KCNQ1-KCNE1 channel complexes for normal endolymph production.  The expression 

of KCNQ1 and KCNE1 has been observed at the apical surface of vestibular dark 

cells113, and Kcne1 knockout mice are profoundly deaf and demonstrate signs of 

dysfunction of the vestibular organ61. These phenotypes are likely attributable to impaired 

endolymph production, death of sensory hair cells, and degeneration of spiral ganglion 

neurons, which have all been observed in Kcne1 knockout mice, concurrent with 

mislocalization of Kcnq1 in dark cells114. The inner ear phenotype displayed by these 

mice is similar to that in patients with Jervell-Lange-Nielsen syndrome caused by 

mutations in human KCNQ1 or KCNE1. 
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Objective 

As summarized above, the KCNE proteins have already been implicated in a wide 

range of physiologic processes, but our understanding of their exact function is 

incomplete, particularly in the case of KCNE4. Though the modulatory effect KCNE4 

has been observed to exert on some KV channel complexes in vitro - total extinction of 

the current - is perhaps the most striking among the KCNE subunits, we have yet to 

determine how that effect is achieved or for what purpose(s) in physiology. 

In vitro observations of the functional properties of KCNE4 and studies of its 

expression in human heart provide strong, specific leads in cardiac physiology:  KCNE4 

may be an important regulator of IKs and/or Ito and contribute to fine-tuning of the cardiac 

action potential, with implications for heart rhythm and contractility.  Additionally, it is 

important to consider that KCNE4 may have an important function in skeletal muscle or 

in the CNS, tissues that robustly express KCNE4 and that require coordinated activity of 

ion channels for normal function.  Finally, based on the extensive expression of KCNE4 

in epithelial tissues and the emerging recognition of roles for members of the KCNE 

family in epithelial physiology, it is conceivable that KCNE4 may participate in KV 

channel activity in epithelial cells and contribute critically to their proper biological 

function. 

In heterologous expression systems, the most commonly observed modulatory 

effect of KCNE4 on KV channels of varying compositions is dramatic inhibition of 

current. In any physiologic setting, this could implicate KCNE4 as a negative regulator of 

endogenous K+ currents and the cellular functions they contribute to. Grunnet et al.105 

have postulated that, based on the time course of K+ current inhibition by KCNE4 (ie. 
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within hours of its expression), it may provide subacute regulation of cellular functions. 

They also note that this time frame is consistent with typical responses to hormonal 

regulation. Given that KCNE1 has previously been demonstrated to be subject to 

hormonal regulation, this is an intriguing possibility to consider for KCNE4. Speculation 

along these lines draws warranted attention to the fact that we have an extremely limited 

understanding of how KCNE4 is regulated, and new data shedding light on any 

regulatory factors would also be valuable toward understanding its physiologic functions. 

 

Based on the broad expression of KCNE4 by human tissues we hypothesized that 

KCNE4 performs physiologically significant functions in vivo. In this project, we aimed 

to first consider the specific leads in cardiac physiology.  Questions that address some 

crucial limitations of our understanding of function of KCNE4 include: What are the 

protein interacting partners of KCNE4 in native cells?  What are the consequences of the 

absence of KCNE4 on heart rhythm and contractility, and cardiomyocyte 

electrophysiology?  This thesis describes a set of multidisciplinary experiments that make 

use of a Kcne4 knockout mouse and are designed to answer these questions and advance 

our understanding of the physiologic function of KCNE4. 
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CHAPTER II 

 

DISCOVERY OF NOVEL KCNE4 PROTEIN INTERACTING PARTNERS 

 

 The physiologic function of KCNE4 may require interactions with other cellular 

proteins.  From studies in heterologous expression systems, we know that the KCNE 

subunits do not generate current when expressed alone; they are instead characterized by 

their ability to modulate currents generated by KV channel  subunits. We can study 

individual  subunits to see which are susceptible to functional modulation by KCNE4, 

but this candidate approach is inefficient for generating a comprehensive list of channels 

KCNE4 can modulate. In addition to potential targets of its modulation, we might expect 

KCNE4 to have numerous other protein interacting partners, falling into a variety 

different categories. Among the possibilities are up- or down-stream signaling proteins, 

chaperone proteins required for appropriate trafficking, or scaffolding proteins that 

enable KCNE4 to adopt a specific position relative to other components of a given KV 

channel complex.   

 Discovery of any of these potential interacting partners is an important early step 

toward determining the native physiologic function of KCNE4. Establishing a 

complement of KCNE4 interacting partners whose physiologic functions are already 

known could provide useful context when considering potential roles for KCNE4. 

Further, studies of KCNE4 activity in heterologous expression systems will be most 

effective when we can ensure that other proteins relevant to its native function are 

present. 
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 Studying biochemical interactions among membrane proteins has historically been 

difficult because of their hydrophobic nature. KV channel  subunits and accessory 

subunits are no exception. No reliable evidence exists even for the biochemical 

interaction of KCNQ1 and KCNE1 in native tissue, while it is universally accepted 

(based on robust biophysical findings) that they form the K+ channel complex responsible 

for IKs. Years of attempts by our lab and others that have failed to reliably demonstrate an 

interaction between the KCNE proteins and KV alpha subunits in native cells using 

traditional biochemical assays (such as co-immunoprecipitation) provided additional 

motivation for employing an alternative approach: a recently developed screening tool to 

discover novel KCNE4 protein interacting partners. 

  

Methods 

 The split-ubiquitin membrane-based yeast two-hybrid (MbYTH) system is a 

screening tool for identifying biochemical interactions among membrane proteins115,116. 

MbYTH is a modified version of the traditional yeast two-hybrid screen that does not 

require translocation of the bait and prey to the nucleus, and instead takes advantage of 

the ubiquitin-based split protein sensor (USPS) originally developed by Johnsson and 

Varshavsky117,118.  In MbYTH, the bait and prey are fused to complementary halves of 

ubiquitin: Cub (“C-terminal ubiquitin”) and NubG (“N-terminal ubiquitin G”; G denotes 

a single amino acid substitution, I13G, that decreases the affinity of Nub for Cub, to 

prevent spontaneous association). Upon interaction of bait and prey, NubG and Cub come 

together and the reconstituted “split-ubiquitin” is recognized by ubiquitin-specific 

proteases, resulting in cleavage of an artificial transcription factor (LexA-VP16) also 
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built into the bait-Cub fusion construct. The transcription factor then enters the nucleus, 

activating reporter genes that signal an interaction between bait and prey (Figure 11).  

 The specific reporter genes used in this screen include two auxotrophic growth 

markers (HIS3 and ADE2) and lacZ, which encodes the enzyme -galactosidase. The 

yeast reporter strain carries these genes under the control of LexA operators, such that 

they are expressed only when the artificial transcription factor LexA-VP16 is cleaved 

from split ubiquitin, allowing it to translocate to the nucleus. Upon binding of the 

transcription factor to LexA DNA binding domains upstream of these genes, the VP16 

transactivator domain recruits RNA polymerase and initiates their transcription. Thus, the 

interaction between bait and prey is transduced into transcriptional events that can be 

assayed by growth of yeast on media lacking histidine or adenine, or by color 

development in a -galactosidase assay.   

 Further, when ADE2 is not transcribed and the yeast adenine synthesis pathway is 

blocked, a red-colored metabolic intermediate accumulates. Thus, in the absence of a 

protein-protein interaction, yeast colonies are pinkish in color.  By contrast, the presence 

of two interacting proteins activates the ADE2 gene, leading to completion of the adenine 

synthesis pathway and yeast colonies appear faint pink to white, depending on the 

strength of the interaction. 

 MbYTH has been successfully implemented in numerous studies by independent 

groups for small-scale and library-screening applications119-125. Two publications by the 

group that pioneered development of the protocol are dedicated to describing detailed 

methodology115,116. The series of steps we completed are described briefly here: 
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Generation of KCNE4-Cub bait construct 

KCNE4 cDNA was subcloned into the pBT3-STE bait vector (acquired from 

Dualsystems Biotech, Schlieren, Switzerland) for type I integral membrane proteins such 

that KCNE4 is expressed under the weak CYC1 promoter and at the 3’ end is in-frame 

with the Cub-LexA-VP16 cassette. The bait vector also includes the yeast STE2 leader 

sequence for improved targeting of the heterologous bait protein to the yeast membrane. 

Following transformation in E. coli, positive clones were selected via KanR expression 

and bait insertion was confirmed by PCR and sequencing.  The bait vector also includes 

the auxotrophic marker LEU2, allowing for selection in yeast by growth on leucine- 

dropout (leu-) media. 

 

Biochemical validation of bait fusion protein expression in yeast 

The S. cerevisiae reporter strain NMY51 was transformed with the bait construct or 

one of two control constructs: pCCW-Alg5 (positive control bait vector, expresses yeast 

ER protein Alg5 as fusion protein with Cub-LexA-VP16 cassette under the CYC1 

promoter), and pPR3-N (negative control empty prey vector, expresses NubG under 

CYC1 promoter).  Yeast expressing the KCNE4 or control bait constructs were selected 

on leu- dropout media, whereas yeast expressing pPR3-N were selected on tryptophan- 

(trp-) dropout media. Protein lysates were prepared from each strain and used for SDS-

PAGE.  Western blots were performed using polyclonal rabbit anti-KCNE4 or 

monoclonal mouse anti-LexA to probe for the bait fusion proteins (predicted molecular 

weights: KCNE4-Cub-LexA-VP16, approximately 60 kDa; Alg5-Cub-LexA-VP16, 

approximately 77.5 kDa). 
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Functional validation of KCNE4-Cub bait construct by control co-transformations 

Expression and functionality of the bait protein were assessed in yeast using the 

“NubG/NubI” test.  In this test, NMY51 yeast were cotransformed with the KCNE4 or 

Alg5 control bait plus control prey plasmids that express control prey proteins Alg5-

NubG or Alg5-NubI.  (NubI is the wild-type N-terminal portion of ubiquitin that has 

strong affinity for Cub).  Coexpression of Alg5-NubI with a bait-Cub-LexA-VP16 fusion 

protein will result in reconstitution of split ubiquitin and activation of the transcription 

factors if the bait-Cub-LexA-VP16 protein is properly expressed in the ER or plasma 

membrane.  Coexpression of Alg5-NubG with the bait-Cub-LexA-VP16 fusion protein is 

not expected to result in reconstitution of split ubiquitin (unless the bait protein interacts 

with Alg5). 

 

 After verifying proper expression and functionality of our KCNE4-Cub-LexA-

VP16 bait, we sent the bait construct to Dualsystems Biotech, where the remaining steps 

of the library screen were completed: 

 

Bait self-activation test 

Dualsystems assessed whether our bait displayed self-activation of the reporter 

complex.  Yeast reporter strain NMY32 was transformed with the bait, grown in parallel 

on trp-leu- dropout media and trp-leu-histidine-adenine (trp-leu-his-ade-) dropout media, 

and assessed for adeneine and histidine prototrophy and -galactosidase activity. 
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Bait functional analysis 

Dualsystems performed a functional analysis of our bait using the control prey 

clones described in Table 1. Yeast reporter strain NMY32 was co-transformed with our 

bait plus each of these prey clones and growth on trp-leu-, trp-leu-his-, and trp-leu-ade- 

dropout media was assessed to determine if our bait was functional in the interaction 

assay. 

 

Pilot screen for optimization of screening stringency 

Prior to the library screen, Dualsystems performed a series of pilot screens to 

identify optimal screening conditions, by monitoring background interaction and 

interaction with positive controls while varying amounts of 3-amino-1,2,4-triazole (3-

AT) to modulate the sensitivity of the HIS3 reporter gene. 

 

Library transformation and selection of interactors  

Dualsystems next screened their library of cDNAs from adult human brain in the 

pPR3-N vector (in the NubG-x conformation, with the prey fused to the 3’ end of NubG).  

The library contains approximately 2.0 x 106 independent clones, with average insert size 

1.7 kb.  Yeast reporter strain NMY32 expressing our bait were sequentially transformed 

with prey clones, and primary selection was performed via growth assay on trp-leu-his-

ade- dropout media.   
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-galactosidase activity assay 

Putative positive interactors from the primary growth assay were further studied via 

high-throughput -galactosidase assay for the expression of lacZ.  Briefly, yeast cultures 

were grown to late exponential phase, pelleted, and resuspended in lysis buffer plus X-gal 

substrate.  Color development was monitored over time. 

 

Plasmid recovery and retransformation in E. coli 

Prey plasmids with the highest levels of -galactosidase activity were isolated from 

the primary yeast clones (in duplicate for each hit) and amplified in E. coli. Restriction 

digests using SfiI were performed to determine insert size. If both plasmids isolated from 

a given primary clone were identical in size, one plasmid was processed further. If two 

different sizes were noted (suggesting that the yeast cell may have taken up multiple prey 

plasmids during transformation), both plasmids were further processed. 

   

Confirmation of positive interactors 

After plasmid purification, each vector was reintroduced into the reporter strain 

expressing the bait (in parallel with yeast expressing an empty vector control bait), and 

the transformants were each retested for growth on selective media and for -

galactosidase activity. The clones that demonstrated reproducible signs of interaction 

with KCNE4 were then sequenced at the junction between NubG and the cDNA to 

determine the reading frame and to identify the encoded protein by BLAST analysis. 
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Results 

 

Biochemical validation of KCNE4 bait 

After cloning KCNE4 into the bait vector pBT3-STE, we made a few attempts to 

validate its expression in yeast by Western blot but as advised by Dualsystems we did not 

apply major efforts toward optimization. Dualsystems reports that they typically detect 

only 10-20% of all baits by Western blot due to any of a number of possible limitations, 

including low expression in yeast due to the weak Cyc1 promoter, limited solubility of 

the protein, or non-specific proteolytic activity. Dualsystems relies much more heavily on 

the functional validation assays for assessing whether a bait construct is properly 

expressed and can be used in a library screen. 

The results of our biochemical validation studies are found in Figure 12. Following 

SDS-PAGE and immunoblot, the KCNE4 fusion protein should be detectable with a 

molecular weight of approximately 60 kDa. A band of this size is apparent in both the 

anti-KCNE4 and anti-LexA blots, but the identity of this band is unclear without 

additional analysis via blocking peptides, a blot probed with secondary antibody alone, or 

a parallel blot of lysates from non-transfected yeast, none of which we performed. Protein 

lysates from yeast transfected with pCCW-Alg5 and pPR3-N served as a positive and 

negative control, respectively, for the LexA antibody. The Alg5-Cub-LexA-VP16 fusion 

protein should be detectable with anti-LexA and has predicted molecular weight of 77.5 

kDa; pPR3-N does not express any proteins that should be detectable in an anti-LexA 

blot. A band slightly smaller than 75 kDa unique from the bands in the other lanes was 

detectable in the pCCW-Alg5 lane and could represent the control bait. 
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Figure 12. Biochemical validation of bait expression in yeast. A, Anti-
KCNE4 immunoblot (IB) in protein lysates from yeast transformed with 
pBT3-STE-KCNE4. B, Anti-LexA immunoblot in protein lysates from yeast 
transformed with pBT3-STE-KCNE4, pCCW-Alg5, or pPR3-N. Arrows 
indicate putative bands of interest.
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Functional validation of KCNE4 bait 

We relied instead on a functional assay, the “NubG/NubI” test, for ultimate 

validation of correct expression of the bait. This assay revealed that co-expression of our 

KCNE4 bait with the NubI control prey yielded robust growth of white yeast colonies on 

trp-leu-his- and trp-leu-his-ade- plates (100% and 62% of growth on non-selective trp-

leu- plates, respectively), suggesting that the bait was properly expressed with the Cub-

LexA-VP16 complex in the cytosol, and split ubiquitin was reconstituted leading to the 

transcription of HIS3 and ADE2 (Table 2). Further, co-expression of our KCNE4 bait 

with the NubG control prey yielded little growth on the selective plates (22% and 13 % of 

growth on non-selective plates), suggesting that our bait is not self-activating and NubG 

must be tethered to a KCNE4 interacting partner for transcription of HIS3 and ADE2. The 

results of this assay gave us confidence to proceed with our library screen so we provided 

Dualsystems with our KCNE4 bait construct.  

Dualsystems performed additional functional validation assays using our KCNE4 

bait. They reported that our bait was negative for self-activation in yeast strain NMY32 

as observed via studies of adenine and histidine prototrophy and by an assay of -

galactosidase activity (data not shown). Further, growth assays following co-

transformation of NMY32 with our KCNE4 bait and a panel of control prey clones show 

robust growth of white yeast colonies upon co-expression of our KCNE4 bait with 

plasma membrane-bound control prey clones tethered to NubI but not NubG (Figure 13). 

Finally, Dualsystems reported that the optimal screening conditions for our bait include 

selection on trp-leu-his-ade- media with 20 mM 3-AT, as was indicated by a pilot screen. 
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trp-leu-his- trp-leu-his-ade- trp-leu-

bait prey # colonies (%) # colonies (%) # colonies

KCNE4-Cub
Alg5-NubI     
(+ control)

722 (>100) 340 (62) 548

KCNE4-Cub
Alg5-NubG    
( - control)

131 (22) 80 (13) 600

Alg5-Cub     
(+ control)

Alg5-NubI     
(+ control)

300 (71) 356 (84) 424

Alg5-Cub     
(+ control)

Alg5-NubG    
( - control)

100 (29) 268 (78) 344

Table 2. Results of functional validation assay with KCNE4-Cub bait construct.  
For each of four co-transformations, number and percentage of colonies counted four 
days after plating as indicated for selective (trp-leu-his- and trp-leu-his-ade-) versus 
non-selective (trp-leu-) media.
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trp-leu-ade-

trp-leu-his-

trp-leu-

Ost1-NubI

Ost1-NubG

Fur4-NubI

Fur4-NubG

Alg5-NubI

Alg5-NubG

Tom20-NubI

Tom20-NubG

empty vector

Bait: pBT3-Ste-KCNE4

Prey:

Figure 13. Functional validation of pBT3-Ste-KCNE4 bait by co-transformation 
with control prey plasmids. Panels show representative growth of yeast on selective 
(trp-leu-ade- or trp-leu-his-) versus non-selective (trp-leu-) media following co-
transformation with the bait and prey plasmids indicated.  Data provided by Dualsystems
Biotech.
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Library screen 

We requested that Dualsystems screen our KCNE4 bait with their human adult 

brain cDNA library because human adult heart was not available, and as an excitable 

tissue, brain seemed to be the most appropriate option among the alternatives. We 

anticipated that many of the KCNE4 interacting partners identified by screening an adult 

brain cDNA library would be proteins that might perform similar functions in a cardiac 

myocyte and have corresponding relevance to the function of KCNE4. In the library 

screen, Dualsystems reported that the transformation efficiency was 9.5 x 104 cfu/g 

DNA.  In total, they screened 2.7 x 106 transformants and identified 108 putative 

interactors by a primary growth assay on trp-leu-his-ade- media. Those 108 clones were 

then tested in a high throughput assay for -galactosidase activity, which indicated that 

98 of the clones were also positive for lacZ expression (Figure 14). 

 

Analysis of putative interactors 

We selected 20 clones that appeared to be strong interactors (based on qualitative 

assessment of the intensity of blue color in Figure 14) for follow-up analysis.  In 

duplicate for each prey clone, Dualsystems isolated the plasmids, amplified each in E. 

coli, and performed a restriction digest using SfiI to assess the size of each insert.  For 

each prey clone except two (14 and 28), the duplicate samples yielded inserts of identical 

size (Figure 15), suggesting that the yeast cells responsible for those clones had been 

transformed with just one prey clone each.  Two separate plasmids were recovered each 

from clones 14 and 28, and these were handled independently going forward, bringing 

the total number of putative positive prey clones for further analysis to 22.   
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1 hour:

24 hours:

Figure 14. Results from -Galactosidase assay in 108 putative positive prey 
clones. Development of blue color indicates -galactosidase activity and reflects 
strength of the bait-prey interaction. Images captured 1 hour (top) and 24 hours 
(bottom) after adding X-Gal substrate to yeast lysates. Red circles indicate twenty 
clones selected for further analysis. Legend provides ID number assigned to each 
clone as used in subsequent figures. Data provided by Dualsystems Biotech.
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Figure 15. Prey plasmid insert sizes following SfiI digestion. Plasmids from 
each prey clone run in duplicate and identified by numbers above gel lanes. Marker 
sizes indicated in base pairs. Data provided by Dualsystems Biotech.
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To confirm the interaction between each of the prey constructs and our KCNE4 

bait, Dualsystems next co-transformed yeast with our bait plus each of the 22 prey clones 

isolated following the screen and repeated the growth and -galactosidase assays. Figure 

16 illustrates results of the growth assay, comparing yeast growth on non-selective versus 

selective media following co-transformation of NMY32 with either our KCNE4 bait or a 

control empty bait vector p415CYC plus each of the 22 prey clones. Each prey conferred 

histidine prototrophy to yeast transformed with our KCNE4 bait (compared with no 

growth on trp-leu-his- dropout media when co-transformed with the control bait, which 

suggests that none of the prey clones is self-activating). The change in color of the yeast 

colonies from red to white upon coexpression with KCNE4 bait suggests each prey also 

activates the ADE2 gene, although observable growth on trp-leu-his-ade- dropout media 

was only evident for four of the prey clones (28-1, 36, 78, and 95). Results of the repeat 

-galactosidase assay (Figure 17) also confirm expression of lacZ for all prey clones 

except one (79) when coexpressed with KCNE4 bait (but no lacZ expression when 

coexpressed with the empty vector control bait). From this set of assays, Dualsystems 

concluded that all of our selected prey clones gave reproducible signs of interaction with 

KCNE4 except clone 79. 

Finally, the insert sequence of each prey clone was determined, and BLAST 

analysis revealed the identity of the parent genes (Table 3). The insert sequences were 

between 1211 and 1274 base pairs long, and 20 out of 21 each matched a human mRNA 

sequence with at least 97 % identity over a span of 520 to 1102 base pairs (one prey, 84-

2, matched only a human BAC clone with no associated gene).  The 20 identified prey 

proteins included 5 membrane-associated proteins (MBP, PDZD11, ANXA5, CALM2, 
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Figure 16. Repeat growth assay for interaction between KCNE4 bait and 22 
select prey clones. Images of yeast colonies following co-transformation with 
indicated prey plus either KCNE4 or control bait (p415CyC), grown on non-
selective versus selective media. Data provided by Dualsystems Biotech.
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trp-leu-his-ade-
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pBT3-STE-KCNE4

p415Cyc

04-2

11-1

14-1

14-2

26-2

28-1

28-2

31-1

36-1

37-2

38-2

53-1

67-1

70-2

72-1

78-2

79-1

81-2

84-2

95-1

106-2

108-1

Prey:

Bait:

Figure 17. Repeat -galactosidase assay for interaction between 
KCNE4 bait and 22 select prey clones. Accumulation of blue color 
reflects activation of MbYTH reporter gene lacZ in yeast co-transformed with 
each prey plus KCNE4 bait (versus empty bait control p415Cyc).
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prey ID accession #
gene 

symbol gene name
% 

Identity
length of hit 

(bp)

04-2 NM_198261.2 RSRC2 arginine/serine-rich coiled-coil 2 97 1080

11-1 NM_001154.2 ANXA5 annexin A5 98 1105

14-1 NM_001025101.1 MBP myelin basic protein 98 1047

14-2 NM_000320.1 QDPR quinoid dihydropteridine reductase 97 1018

26-2 NM_004522 KIF5C kinesin family member 5C 98 1107

28-1 NM_001860.2 SLC31A2
solute carrier family 31 (copper transporters), 
member 2

98 1062

28-2 NM_01434.1 MTCH1 mitochondrial carrier homolog 1 97 699

31-1 NM_002567.2 PEBP1 phosphatidylethanolamine binding protein 1 100 823

36-1 NM_016484.3 PDZD11 PDZ domain containing 11 99 951

37-2 NM_005760.2 CEBPZ CCAAT/enhancer binding protein zeta 98 1102

38-2 NM_182935.2 MOBP
myelin-associated oligodendrocyte basic 
protein

100 810

53-1 NM_005471.3 GNPDA1 glucosamine-6-phosphate deaminase 1 98 1069

67-1 NM_000365.4 TPI1 triosephosphate isomerase 1 98 1006

70-2 NM_030593.1 SIRT2 sirtuin 2 99 989

72-1 NM_032823.3 C9orf3 chromosome 9 open reading frame 3 98 1032

78-2 NM_001428.2 ENO1 enolase 1 98 1087

81-2 NM_001517.4 GTF2H4 general transcription factor IIH, polypeptide 4 98 890

84-2 AC104791.3  --- BAC clone RP11-181K12 from 4 99 985

95-1 NM_001743.3 CALM2 calmodulin 2 97 1078

106-2 NM_014235.2 UBL4A ubiquitin-like 4A 100 520

108-1 NM_006070.4 TFG TRK-fused gene 98 795

Table 3. Results of BLAST analysis revealing identity of 21 prey clones that 
yielded reproducible signs of interaction with KCNE4 bait.
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SLC31A2), 11 cytoplasmic proteins (KIF5C, QDPR, TFG, PEBP1, ENO1, TPI1, 

MTCH1, MOBP, GNPDA1, C9orf3, UBL4A), 3 nuclear proteins (GTF2H4, SIRT2, 

CEBPZ), and 1 protein of unknown localization (RSRC4).  Table 4 includes a brief 

description of known functional characteristics for each protein. 

 

Discussion 

We successfully employed MbYTH to identify 21 putative interacting partners of 

KCNE4. The set of interacting proteins identified did not include any KV channels as we 

had hoped, in order to identify novel targets of modulation by KCNE4. The lack of KV 

channels among the screening hits carries a number of potential implications for our 

understanding of the function of KCNE4, including the possibility that 1) KCNE4 

doesn’t function as a KV channel modulator in brain, or that 2) KCNE4 doesn’t modulate 

KV channels via direct interaction with the channel  subunit, and instead exerts its effect 

on channels via intermediate proteins. 

Fortunately, identification of non-KV channel protein interacting partners can 

provide useful leads toward understanding other aspects of the function of KCNE4 – for 

example, its trafficking, its regulation, and potential cellular functions beyond direct 

modulation of channel activity. Based on their known functions, a number of the hits 

have more obvious potential for intersection with KCNE4.  For example, calmodulin is a 

known modulator of voltage-gated ion channels including KCNQ127,28,126-129.  The 

interaction between KCNQ1 and calmodulin has so far been studied without considering 

implications for KV channel accessory subunits. To begin investigating a potential 

interaction between KCNE4 and calmodulin, we can use previous characterizations of the 
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gene 
symbol gene name protein type remarks

RSRC2 arginine/serine-rich coiled-coil 2 uknown unknown function

ANXA5 annexin A5 channel-like
phospholipase A2 and protein kinase C inhibitory protein with calcium 
channel activity

MBP myelin basic protein
secreted 
protein

major constituent of the myelin sheath in oligodendrocytes and 
Schwann cells; also expressed in bone marrow and immune system

QDPR quinoid dihydropteridine reductase enzyme
catalyzes NADH-mediated reduction of quinonoid dihydrobiopterin.  
Essential component of the pterin-dependent aromatic amino acid 
hydroxylating systems

KIF5C kinesin family member 5C motor protein
member of kinesin 1 family of motor proteins which transport specific 
cargoes along the microtubules; substrate of protein kinase CK2

SLC31A2 
or  CTR2

solute carrier family 31 (copper transporters), 
member 2 or  copper transporter 2

transporter copper transporter 

MTCH1 or 
PSAP

mitochondrial carrier homolog 1 or  presenilin 
1-associated protein

integral 
mitochondrial 

membrane

integral mitochondrial outer membrane protein; interacts with 
presenilin 1; induces apoptosis when overexpressed in cultured cells

PEBP1 or 
RKIP

phosphatidylethanolamine binding protein 1 
or  Raf-1 kinase inhibitor protein

kinase 
inhibitor

modulates signaling in the MAP kinase cascade; metastasis 
suppressor

PDZD11 or 
PISP

PDZ domain containing 11 or  plasma 
membrane calcium ATPase-interacting single 
PDZ protein

modulator of 
membrane 

transporters

ubiquitously expressed; previously shown to modulate Ca-ATPase and 
Menkes copper ATPase

CEBPZ or 
CBF

CCAAT/enhancer binding protein zeta or 
CCAAT binding protein

DNA binding transcriptional regulator

MOBP
myelin-associated oligodendrocyte basic 
protein

structural
soluble cytoplasmic protein which is important for stabilization of 
compact myelin

GNPDA1 glucosamine-6-phosphate deaminase 1 enzyme
catalyzes the reversible conversion of glucosamine-6-phosphate into D-
fructose-6-phosphate (Fru6P) and ammonium

TPI1 triosephosphate isomerase 1 enzyme
catalyzes the isomerization of glyceraldehydes 3-phosphate (G3P) and 
dihydroxy-acetone phosphate (DHAP) in glycolysis and 
gluconeogenesis

SIRT2 sirtuin 2 DNA binding class III histone deacetylase implicated in control of mitotic exit

C9orf3 chromosome 9 open reading frame 3 enzyme
member of the M1 zinc aminopeptidase family; catalyzes the removal 
of an amino acid from the amino terminus of a protein or peptide

ENO1 or 
MBP-1

enolase 1 or  c-myc promoter binding protein 
1

enzyme
glycolytic enzyme; short form (MBP-1) exhibits transcriptional 
repressor activity

GTF2H4 general transcription factor IIH, polypeptide 4 DNA binding general transcription factor, component of the preinitiation complex

 --- BAC clone RP11-181K12 from 4  ---  ---

CALM2 calmodulin 2
calcium 
sensor

member of the EF-hand calcium-binding protein family

UBL4A ubiquitin-like 4A chaperone
part of protein complex that facilitates targeting of tail-anchored 
proteins to the TRC40 insertion pathway

TFG TRK-fused gene fusion protein
member of NF-kappaB pathway; target of translocations in lymphoma 
and thyroid tumors; normal cellular role is unclear

Table 4. Functional characteristics of putative KCNE4 interacting partners identified in 
MbYTH screen.
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functional interaction between calmodulin and KCNQ1 as a starting point for formulating 

hypotheses. Experiments designed to characterize the biochemical and functional 

interaction between KCNE4 and calmodulin are discussed in Chapter III.  

Similarly, we can speculate about the relevance of a potential interaction between 

KCNE4 and any of the other MbYTH hits based on their known functions, though the 

degree to which an apparent connection to KCNE4 already exists varies considerably 

among them. The appearance of several transcription factors among the hits is interesting 

in light of a previous study which described the ability of a C-terminal fragment of the 

voltage-gated calcium channel CaV1.2 to translocate to the nucleus and regulate 

expression of a number of genes through its interaction with other nuclear proteins130. A 

similar function is conceivable for KCNE4, especially since it has a long C terminus 

(unique among the KCNE proteins), the importance of which is not known. Alternatively, 

this long C terminus could promote the interaction of KCNE4 with any of the 

cytoplasmic proteins among the MbYTH hits, whether implicated in enzymatic reactions, 

signaling cascades, or other cellular functions. 

A number of experimental limitations must be considered in our application of the 

MbYTH screen to identify novel KCNE4 protein interacting partners and learn more 

about its native physiologic function. MbYTH screening is most greatly limited by the 

inability to create a truly comprehensive, functional library of cDNA prey fused to NubG.  

When constructing the library, only one-third of the inserted cDNAs will be in-frame at 

their 3’ end with NubG, and only a fraction of those in-frame cDNAs will be full-length.  

Additionally, in our MbYTH screen, which used a “NubG-x” prey library, we were 

unable to identify type I integral membrane proteins (with extracellular N-termini, such 
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as other KCNE proteins) that might interact with KCNE4. We may wish to eventually 

screen x- NubG cDNA libraries to expand our coverage to include type I integral 

membrane proteins, but these libraries present separate technical challenges. Together, 

these factors limit the sensitivity of the MbYTH screen at picking up all KCNE4 

interacting partners.  

Additionally, this screen can be assumed to carry a high rate of false positives, due 

to the possibility of self-activating bait or prey clones, or non-specific aggregation of bait 

and prey that allows reconstitution of split ubiquitin. Finally, it is important to consider 

that not all protein-protein interactions that occur in transformed yeast will reflect 

important protein-protein interactions that take place endogenously in mammalian cells. 

 Despite these limitations, the screen was a useful tool for identifying putative 

protein interacting partners of KCNE4, and has provided us with many new leads for 

investigating the native physiologic function of KCNE4. To pursue any of the interaction 

partners further, important next steps include validating the biochemical interaction then 

assessing its functional importance.  We pursued further characterization of the 

interaction between KCNE4 and calmodulin by applying these steps, and our findings are 

described in Chapter III. 
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CHAPTER III 

 

KCNE4 JUXTAMEMBRANE REGION IS REQUIRED FOR INTERACTION WITH 
CALMODULIN AND FOR FUNCTIONAL SUPPRESSION OF KCNQ1 

 
 
 

Regulation of many voltage-gated potassium (KV) channels occurs through a variety 

of intracellular second messengers and by interactions with accessory subunits. Several 

KV channels, including KCNQ1 (KV7.1), are modulated by accessory subunits belonging 

to the KCNE family of single-transmembrane domain proteins70,131,132. KCNE1 associates 

with KCNQ1 to form the channel complex responsible for generating the slow 

component of the cardiac delayed rectifier current (IKs). IKs is a repolarizing K+ current 

critical during later phases of the cardiac action potential2,3 that is impaired in various 

genetic or acquired cardiac arrhythmia syndromes42,133-137 arising from mutations in the 

genes encoding either KCNQ1 or KCNE1. 

In some circumstances, accessory subunits are required for transducing intracellular 

signaling events into physiologically relevant changes in KV channel activity. For 

example, in the heart KCNQ1 is modulated by -adrenergic signaling through cAMP-

mediated channel phosphorylation. However, this effect results in physiological changes 

in potassium current only when certain KCNE subunits are also expressed138,139. 

Elucidating other functional and biochemical events that accompany KCNE modulation 

of KV channels is important for understanding the physiological importance of this 

accessory subunit family. 

A comprehensive understanding of KCNQ1 regulation by KCNE proteins may 

require that we consider properties of these interactions in the context of the relevant 
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intracellular milieu such as the cycling of internal Ca2+ concentration that occurs in 

cardiac myocytes. Each ionic component of the cardiac action potential including IKs is a 

potential target for feedback regulation by intracellular Ca2+. Indeed, calmodulin (CaM), 

the ubiquitous Ca2+-transducing protein28,140, is recognized to bind and confer Ca2+ 

sensitivity to the biophysical properties of several cardiac ion channels including 

KCNQ127,28,141-144. Of note, KCNQ1 interacts biochemically with CaM through a domain 

in the channel carboxyl-terminus, and pharmacological disruption of the KCNQ1-CaM 

interaction causes complete suppression of KCNQ1 current, suggesting that CaM is 

required for KCNQ1 activity27,28. In this study, we asked whether certain KCNE 

accessory subunits might interact biochemically or functionally with CaM.  Specifically, 

because the dramatic inhibitory modulation of KCNQ1 by KCNE4 resembles the effect 

of disrupting the binding of CaM to KCNQ1, we hypothesized that an interaction 

between KCNE4 and CaM could be involved in the modulation of KCNQ1 by KCNE4. 

This hypothesis is supported by work described in Chapter II. 

Our results demonstrate that KCNE4, but not KCNE1, can biochemically interact 

with CaM and that this interaction requires a tetra-leucine motif in the juxtamembrane 

region of the KCNE4 carboxyl-terminus. Further, mutation of this tetra-leucine motif 

abolishes CaM association with KCNE4 and impairs functional interactions of KCNE4 

with KCNQ1.  Our findings have potential relevance to KCNQ1 regulation by an 

important and ubiquitous intracellular signaling molecule. 
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Methods 

 

cDNA constructs 

Full-length KCNQ1 was expressed from the pIRES2-DsRed vector, whereas  

KCNE1 and KCNE4 were subcloned into pIRES2-EGFP (Clontech), as described 

previously70. A triple HA epitope (YPYDVPDYAGYPYDV PDYAGSYPYDVPDYA) 

was introduced into the KCNE4 vector, and a triple FLAG epitope 

(DYKDHDGDYKDHDIDYKDDDDK) into the KCNE1 cDNA, immediately upstream 

of the stop codon. HA sequence was PCR amplified from a plasmid provided by Sabina 

Kupershmidt (Vanderbilt University, Nashville, TN, USA); FLAG sequence was PCR 

amplified from p3XFLAG-CMV™-13 (Sigma-Aldrich). Addition of the epitope tags did 

not affect the modulatory properties of KCNE4 or KCNE1, as previously reported52. 

Point mutations were engineered using QuikChange Mutagenesis (Stratagene). All 

constructs were verified by complete sequencing of the open reading frames.   

 

Cell culture and transfection 

Chinese hamster ovary cells (CHO-K1, American Type Culture Collection) were 

grown at 37°C with 5% CO2 in F-12 nutrient mixture medium supplemented with 10% 

fetal bovine serum (FBS, Atlanta Biologicals), penicillin (50 units ml−1)–streptomycin 

(50 μg ml−1) and L-glutamine (2 mM). CHO cells stably expressing KCNQ1 or KCNQ1 

plus KCNE1 were generated using transposon-mediated gene transfer145. Stable clones 

were identified by G418 resistance and tested by patch-clamp recording, and maintained 

at 37°C with 5% CO2 in CHO cell medium plus 600 g/ml G418. Unless otherwise 
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stated, all tissue culture media were obtained from Invitrogen. CHO cells were transiently 

transfected using FuGENE-6 (Roche Applied Science). For electrophysiology studies 

shown in Figure 25, cells were transfected with a 2:1 ratio of KCNQ1 to E4-HA, L[69-

72]A-HA, or empty vector DNA. 

 

Protein isolation 

Forty-eight hours post-transfection, CHO cells were lysed for recovery of protein as 

previously described52. Briefly, one 100 mm dish of cells for each transfected construct 

was washed twice with ice-cold phosphate buffered saline (PBS) (137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4), then lysed with NP-40 lysis buffer (1% 

NP-40, 150 mM NaCl, 50 mM Tris, pH 8.0) supplemented with Complete mini protease 

inhibitor tablet (Roche Applied Science). Lysates were rocked for 30 min at 4°C then 

centrifuged twice at 14,000 x g for 10 min to remove insoluble debris. Total protein 

concentration was quantified using a Bradford reagent (Bio-Rad Laboratories). 

 

Peptides 

CaM-inhibitory peptides CaMKII-P, LKKFNARRKLKGAILTTMLA (Enzo Life 

Sciences) and MLCK-P, RRKWQKTGHAVRAIGRL, and control peptide CTRL-P, 

RRKEQKTGHAVRAIGRE (CalBiochem) were used in biochemical and functional 

experiments in Figures 18, 19 and 22. In a previous characterization of MLCK-P (“Trp 

peptide”), the Kd of calmodulin and MLCK-P was calculated to be 6 pM from assay of 

MLCK inhibition, yielding the conclusion that the peptide inhibits MLCK by trapping 

calmodulin and leaving free calmodulin concentration very low146. Similarly, prior 
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characterization of CaMKII-P (“peptide 290-309”) determined that CaMKII-P inhibits 

CaMKII and CaM-dependent phosphodiesterase activity by peptide interaction with CaM 

and not by a direct effect on the enzyme 147. Our experiments in Figures 18, 19 and 22 

make use of the ability of these peptides to bind CaM and induce its dissociation from 

KCNQ1 or KCNE4. CTRL-P is an analog of MLCK-P with two amino acid substitutions 

that disrupt its interaction with CaM146. 

 

CaM-agarose pull-down 

Cellular lysate (100 g) was added to 50 L CaM-agarose beads slurry (Sigma-

Aldrich) in 1.7 ml microcentrifuge tubes, and volume was brought to 0.5 ml with wash 

buffer consisting of NP-40 lysis buffer with protease inhibitors and either 2 mM CaCl2 or 

2 mM EGTA + 2 mM EDTA. Protein was incubated with beads for 2 h at 4°C with 

rocking, in the presence or absence of CaM-inhibitory peptides CaMKII-P, MLCK-P, or 

CTRL-P. Beads were pelleted and supernatant was reserved as unbound fraction. Beads 

were washed six times in 1 ml CaCl2 or EGTA + EDTA wash buffer, then resuspended in 

25 l 2x SDS-PAGE sample buffer (100 mM Tris pH 7.5, 20% glycerol, 4% Na dodecyl 

sulfate, 0.008% bromophenol blue, 5% -mercaptoethanol, 5 M urea). Proteins were 

eluted from beads by heating for 5 min at 95°C.   

 

Preparation of cross-linked antibody 

As previously described 52, 10 g of antibody were combined with 750 μl of borate 

buffer (200 mM sodium tetraborate decahydrate, pH 9.0), and 50 μl of Protein-G 

Sepharose™ 4 Fast Flow (GE Healthcare) and rocked at room temperature for 1 h. The 
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beads were washed with borate buffer supplemented with 20 mM dimethyl pimelimidate 

dihydro-chloride, and rocked for 30 min at room temperature. The cross-linking reaction 

was quenched by 1 h incubation with 200 mM ethanolamine, pH 8.0. Beads were washed 

in PBS and stored at 4°C until use. 

 

Co-immunoprecipitation 

Cellular lysates were pre-cleared with Protein-G Sepharose™ 4 Fast Flow then 

incubated for 1 h at 4°C with 50 l cross-linked antibody. Beads were washed three times 

in ice-cold lysis buffer plus protease inhibitors, then proteins were eluted with 2X SDS-

PAGE sample buffer for 5 min at 55 °C. 

 

Cell-surface biotinylation 

Forty-eight hours after transfection, CHO cells were bathed in 1.5 mg·ml−1 sulfo-

NHS-biotin (Pierce Chemical Company) in PBS for 1 h on ice. The biotinylation reaction 

was quenched with 100 mM glycine in PBS, then cellular lysates were prepared as 

described above, in ice-cold RIPA buffer (150 mm NaCl, 50 mm Tris-Base, pH 7.5, 1% 

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, supplemented with a Complete mini-

protease inhibitor tablet). Lysates were incubated with ImmunoPure Immobilized 

Streptavidin beads (Pierce Chemical Co.) overnight at 4°C. Beads were pelleted and the 

supernatant was reserved as the non-biotinylated fraction. Beads were washed three times 

then biotinylated proteins were eluted in 2x SDS-PAGE sample buffer for 30 min at room 

temperature.  
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SDS-PAGE and Western blotting 

Protein samples were subjected to electrophoresis on pre-cast 4-20% Tris-HCl gels, 

then transferred to Immun-Blot™ PVDF membranes (Bio-Rad Laboratories). Membranes 

were blocked for one hour with 10% non-fat dry milk in TBS-T before applying the 

appropriate primary antibody in 4% non-fat dry milk in TBS-T: 1:5000 mouse 

monoclonal anti-HA (Covance), 1:200 goat polyclonal anti-KCNQ1 (Santa Cruz 

Biotechnology), 1:2000 mouse monoclonal anti-calmodulin (Millipore Corporation), or 

1:1000 rabbit polyclonal anti-calnexin (Sigma). Membranes were washed in TBS-T then 

probed with the appropriate secondary antibody in 4% non-fat dry milk in TBS-T: 1:5000 

goat anti-mouse IgG-HRP, rabbit anti-goat IgG-HRP, or goat anti-rabbit IgG-HRP (Santa 

Cruz). Membranes were washed in TBS-T and HRP signal was detected using ECL Plus 

(GE Healthcare Life Sciences) and Kodak BioMax MS film (Kodak). For E4-HA pull-

down by CaM-agarose in the presence of CaM-inhibitory peptides, protein band 

densitometry was performed on scanned films using ImageJ software (National Institutes 

of Health). Differences among groups were determined by one-way ANOVA, with 

Tukey post-test for pairwise comparison. 

 

Electrophysiology 

Currents were measured in CHO cells using the broken-patch, whole-cell 

configuration of the patch clamp technique148. For experiments using transiently co-

transfected cells, only yellow fluorescent cells (positive for both dsRed-MST and EGFP 

fluorescence) were recorded. Whole cell currents were recorded at room temperature 

(20–23°C) using Axopatch 200 and 200B amplifiers (MDS Analytical Technologies). 
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Pulses were generated using Clampex 8.1 (MDS Analytical Technologies), and whole 

cell currents were filtered at 1 kHz and acquired at 5 kHz. The access resistance and 

apparent membrane capacitance were estimated as previously described149. Whole-cell 

currents were not leak subtracted. Unless otherwise indicated, whole-cell currents were 

measured during a series of 2-s voltage steps from a holding potential of −80 mV to test 

potentials ranging from 80 to +60 mV (in 10-mV increments) followed by a 1-s step to 

30 mV to record tail currents. The extracellular solution contained (in mM): 132 NaCl, 

4.8 KCl, 1.2 MgCl2, 1 CaCl2, 5 glucose, and 10 HEPES, pH 7.4. The standard 

intracellular solution contained (in mM): 110 K+ aspartate, 1 CaCl2, 10 HEPES, 11 

EGTA, 1 MgCl2, and 5 K2ATP, pH 7.35. Pipette solution was diluted 5–10% to prevent 

activation of swelling-activated currents. For experiments using CaM-inhibitory peptides, 

50 M peptide was added to the diluted pipette solution. For experiments using varying 

concentrations of intracellular free Ca2+ (Figures 20 and 26), see Table 5 for composition 

of intracellular solution. We also tested the effects of including EDTA along with EGTA 

to the 30 nM [Ca+2]i  pipette solution (Figure 20) to control for non-specific effects of 

EDTA. Patch pipettes were pulled from thick-wall borosilicate glass (World Precision 

Instruments, Inc.) with a multistage P-97 Flaming-Brown micropipette puller (Sutter 

Instrument Co.) and heat polished with a Micro Forge MF 830 (Narashige). After heat 

polishing, the resistance of the patch pipettes was 2–5 MΩ in the standard solutions. As a 

reference electrode, a 2% agar bridge with composition similar to the control bath 

solution was used. Junction potentials were zeroed with the filled pipette in the bath 

solution. Unless otherwise stated, all chemicals were obtained from Sigma-Aldrich. Data 

were collected for each experimental condition from at least three distinct transient 
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free [Ca2+]          
(nM)

CaCl2 

(mM)
EDTA 
(mM)

EGTA 
(mM)

3 0.42 11 0
10 1 0 11
30 2.67 0 11

30 (EGTA + EDTA) 2.67 11 11
100 5.67 0 11

Table 5. CaCl2 and chelator composition of pipette solutions for varying [Ca2+]i
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transfections and analyzed using a combination of Clampfit (MDS Analytical 

Technologies), OriginPro 7 (OriginLab Corporation) and SigmaPlot 2000 (Systat 

Software, Inc.). Steady-state current at each test potential was measured 1.9 s following 

the voltage step, and current density was obtained by normalizing steady-state current to 

cell capacitance. Voltage-dependence of activation was determined by normalizing peak 

tail current for each test potential to the maximal value for each cell, and plotting 

normalized peak tail current versus voltage. Activation curves were fitted with a 

Boltzmann function to determine the voltage for half-maximal activation (V1/2) and slope 

(k). To analyze kinetics of activation, the current recorded between 0.075 s and 0.475 s 

after the voltage step to +60 mV was fitted with a single exponential function to 

determine the time constant, tau (). Statistical analyses were performed using SigmaStat 

2.03 (Systat Software, Inc.).  

 

Results 

 

KCNQ1 interacts biochemically and functionally with CaM 

To demonstrate that KCNQ1 interacts biochemically with CaM in our experimental 

system (i.e., heterologous expression in CHO cells), we used CaM-agarose beads to pull 

down KCNQ1 in the presence of either CaCl2 or the Ca2+ chelators EGTA and EDTA. 

KCNQ1 was immunodetected robustly in eluate from beads incubated in the presence of 

CaCl2 but less was detectable when the incubation was performed in the presence of Ca2+ 

chelators (Figure 18A). To examine the specificity of this finding, we performed pull-

down assays in the presence of CaCl2 plus either of two CaM-inhibitory peptides, 
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Figure 18. Biochemical and functional interaction between KCNQ1 and CaM.  A, 
Representative immunoblot (IB) following CaM-agarose pull-down using lysates from CHO cells 
transiently transfected with full-length KCNQ1 (Q1) or non-transfected cells (NT), performed in 
duplicate in the presence of 2 mM CaCl2 or 2 mM EDTA + 2 mM EGTA.  Bound (beads) and 
unbound (supernatant, s/n) fractions were each probed for KCNQ1 using anti-KCNQ1.  Bars below 
each lane indicate average bound-to-unbound signal ratio, normalized to CaCl2 condition from 
same experimental replicate.  Mean ± SEM for normalized ratios: EDTA + EGTA, 0.03 ± 0.02, n = 
3; ***, p < 0.001 versus CaCl2 by t-test.    B, Representative immunoblot following CaM-agarose
pull-down of KCNQ1 in the presence of 2 mM CaCl2 and CaMKII-P, MLCK-P, or CTRL-P at 
indicated concentrations in M. Bars below each lane indicate average bound-to-unbound signal 
ratio, normalized to no peptide condition from same experimental replicate.  Mean ± SEM for 
normalized ratios: CaMKII-P, 0.07 ± 0.06, n = 2; MLCK-P, 0.06 ± 0.04, n = 3; CTRL-P, 0.65 ± 0.16, 
n = 3; ***, p < 0.001 by Tukey post-test pairwise comparisons to no peptide following one-way 
ANOVA (p < 0.001).  C, Decay of steady-state whole-cell current over time recorded in CHO cells 
expressing KCNQ1 in the presence of 50 mM CTRL-P, 50 mM MLCK-P or no peptide in the 
pipette solution.  Left, average (± SEM) steady-state current for each sweep during 0.1 Hz-train of 
2-s depolarizations to +60 mV from holding potential 80 mV, each normalized to current recorded 
in same cell 60 s after obtaining whole-cell configuration; n = 4; p ≤ 0.05 for one-way ANOVA and 
Tukey post-test pairwise comparison of MLCK-P versus CTRL-P and MLCK-P versus no peptide.  
Right, representative current traces recorded at 100 s and 370 s, normalized to steady-state 
current recorded at 60 s. 
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CaMKII-P and MLCK-P (named according to the binding regions of calmodulin-

dependent kinase II and myosin light chain kinase, respectively), or a control peptide, 

CTRL-P. Compared to the peptide-free condition, both CaM-inhibitory peptides impeded 

pull-down of KCNQ1 by CaM-agarose, whereas CTRL peptide did not diminish the 

interaction (Figure 18B). 

We next examined the functional significance of the interaction between KCNQ1 

and CaM in CHO cells. We recorded whole-cell currents in CHO cells transiently 

transfected with KCNQ1, using the MLCK inhibitory peptide in the pipette solution to 

disrupt the biochemical interaction between KCNQ1 and CaM. In the presence of 50 M 

MLCK peptide, steady-state current amplitude decayed rapidly over time whereas cells 

dialyzed with 50 M CTRL or with no peptide showed minimal decay (Figure 18C). We 

also studied whether the CaM-inhibitory peptide has a functional effect on IKs, by 

recording whole-cell currents in CHO cells stably expressing KCNQ1 + KCNE1. Again, 

in the presence of 50 M MLCK peptide, steady-state current amplitude decayed rapidly 

over time whereas cells dialyzed with 50 M CTRL or with no peptide showed minimal 

decay (Figure 19). 

We also observed that KCNQ1 function is Ca2+-sensitive. Specifically, we observed 

no effect of varying [Ca2+]i on current density, but a shift toward more depolarized 

voltage-dependence of activation was observed at lower intracellular Ca2+ concentrations 

(Figure 20). Overall, our results demonstrate a Ca2+-dependent interaction of KCNQ1 

with CaM that is necessary for channel activity.  
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Figure 19. IKs is sensitive to CaM availability. Representative whole-cell currents 
recorded from CHO cells stably expressing IKs in the presence or absence of CaM-
inhibitory peptide in the pipette solution. Traces reflect currents at time intervals 
indicated following membrane rupture
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Figure 20. Q1 voltage-dependence of activation is modulated by low intracellular free 
calcium concentrations. A, Activation curves for CHO cells stably expressing Q1 recorded in 
the presence of 3 nM, 10 nM, or 30 nM [Ca2+]i buffered with chelators as indicated (n = 8). B, 
V1/2 measured in CHO cells stably expressing Q1 recorded with 3 nM, 10 nM, 30 nM, and 100 
nM [Ca2+]i, plotted against [Ca2+]i . Mean V1/2 ± SEM: 3 nM -6.5 ± 0.7 mV, n = 8; 10 nM -4.7 ± 1.9 
mV, n = 8; 30 nM -14.5 ± 0.9 mV, n = 8; 30 nM (EGTA + EDTA) -16.8 ± 0.9, n = 8; p<0.001 by 
ANOVA and ***, p<0.001 for Tukey post-test pairwise comparison. C, Mean ± SEM current 
density versus voltage recorded in CHO cells stably expressing Q1 measured in the presence of 
3 nM, 10 nM, 30 nM and 30 nM (EGTA + EDTA) [Ca2+]i.  No trend in current density is observed 
with varying [Ca2+]i (n = 8).
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Ca2+-dependent interaction of KCNE4 with CaM 

The suppression of KCNQ1 current resulting from CaM inhibition closely 

resembles the effects of KCNE4 co-expression with the channel. We hypothesized that 

the mechanism of KCNQ1 inhibition by KCNE4 may involve the ability of KCNE4 to 

mimic a CaM inhibitory peptide. To test this hypothesis, we first sought to demonstrate 

interaction between KCNE4 and CaM.  

We used multiple biochemical approaches to assess whether KCNE4 can interact 

with CaM. First, CaM-agarose pull-down assays using lysates from CHO cells transiently 

transfected with epitope-tagged KCNE4 (KCNE4-HA) revealed that KCNE4-HA interacts 

with CaM in a Ca2+-dependent manner (Figure 21A). Next, we validated the biochemical 

interaction between KCNE4-HA and CaM by co-immunoprecipitation using an anti-CaM 

primary antibody. KCNE4-HA was detected following immunoprecipitation performed in 

the presence of CaCl2 but not Ca2+ chelators, whereas CaM was detectable in the 

immunoprecipitate regardless of Ca2+ availability (Figure 21B). Finally, we demonstrated 

that the interaction of KCNE4-HA with CaM could be significantly disrupted by CaM-

inhibitory peptides but not by the control peptide (Figure 22). These data indicate that 

KCNE4-HA and CaM biochemically interact in CHO cells. 

We also tested whether another KCNE subunit can interact biochemically with 

CaM by CaM-agarose pull-down using CHO cells transiently transfected with FLAG 

epitope-tagged KCNE1. No signal was detected in the bound fraction, regardless of 

whether the pull-down was performed in the presence of CaCl2 or Ca2+ chelators (Figure 

23). These results suggest that CaM interaction is not a universal property of all KCNE 

subunits. 
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Figure 21. Biochemical interaction between KCNE4 and CaM. A, Representative 
immunoblot following CaM-agarose pull-down using lysates from CHO cells transiently 
transfected with E4-HA or non-transfected cells (NT), performed in duplicate in the presence of 
2 mM CaCl2 or 2 mM EDTA + 2 mM EGTA.  Bound (beads) and unbound (s/n) fractions were 
each probed for KCNE4 using monoclonal HA antibody.  Bars below each lane indicate 
average bound-to-unbound signal ratio, normalized to CaCl2 condition from same experimental 
replicate.  Mean ± SEM for normalized ratios: EDTA + EGTA, 0.16 ± 0.09, n = 3; ***, p < 0.001 
versus CaCl2 by t-test.  B, Representative immunoblot following co-immunoprecipitation with 
anti-CaM in the presence of 2 mM CaCl2 or 2 mM EDTA + 2 mM EGTA.  The apparent higher 
molecular weight of apo-CaM versus holo-CaM following SDS-PAGE is consistent with 
previous findings20 and is attributable to conformational changes that allow CaM to adopt a 
more compact form upon binding Ca2+ 38.  Bars below each lane indicate average HA-to-CaM
signal ratio, normalized to CaCl2 condition from same experimental replicate.  Mean ± SEM for 
normalized ratios: EDTA + EGTA, 0.04 ± 0.06, n = 4; ***, p < 0.001 versus CaCl2 by t-test.
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Figure 22. CaM-inhibitory peptides disrupt KCNE4-CaM interaction. 
Representative immunoblot following CaM-agarose pull-down of E4-HA in the 
presence of CaMKII-P, MLCK-P, or CTRL-P at indicated concentrations in M.  
Pull-down performed in the presence of 2mM CaCl2. Bound (beads) and unbound 
(supernatant, s/n) fractions were each probed for KCNE4 using monoclonal anti-
HA. Bars below each lane indicate average bound-to-unbound signal ratio, 
normalized to no peptide condition. Mean ± SEM for normalized ratios: 50 M
CaMKII-P, 0.25 ± 0.05, n = 4; 5 M MLCK-P, 0.33 ± 0.11, n = 3; 16 M MLCK-P, 
0.41 ± 0.09, n = 3; 50 M MLCK-P, 0.24 ± 0.02, n = 4; 50 M CTRL-P, 0.76 ± 0.09, 
n = 4; ***, p < 0.01 for Tukey pairwise comparison to no peptide following one-way 
ANOVA (p = 0.001). 
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Figure 23. KCNE1 does not interact biochemically with CaM.  Representative 
anti-FLAG immunoblot following CaM-agarose pull-down using lysates from cells 
expressing KCNE1-flag or non-transfected cells, performed in duplicate in the 
presence of 2 mM CaCl2 or 2 mM EDTA + 2 mM EGTA.
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Juxtamembrane tetra-leucine motif is critical for KCNE4-CaM interaction 

To survey where CaM might interact with KCNE4 we examined the full-length 

KCNE4 amino acid sequence using an online CaM binding site prediction algorithm 

(http://calcium.uhnres.utoronto.ca). Based upon various peptide properties including 

hydropathy, -helical propensity, residue weight, side chain charge, and helical class, we 

identified one potential CaM interaction site located between KCNE4 residues 44 and 73. 

This candidate interaction site spans part of the transmembrane domain plus 15 residues 

of the adjacent intracellular juxtamembrane region of the KCNE4 carboxyl terminus 

(Figure 24A). Because critical binding energy in protein-protein interactions involving 

CaM is often provided by bulky hydrophobic amino acids150, we targeted a tetra-leucine 

motif (residues 69-72) within the candidate binding site for disruption of the interaction 

between KCNE4 and CaM. Specifically, we mutated the four leucine residues to alanines 

(designated L[69-72]A-HA), then performed CaM pull-down assays to determine effects 

on the protein-protein interaction. CaM-agarose assays comparing pull-down of wild-type 

KCNE4-HA to L[69-72]A-HA demonstrated that this juxtamembrane tetra-leucine motif is 

required for the biochemical interaction of KCNE4 with CaM (Figure 24B) most likely 

because this sequence is part of a CaM binding site. Importantly, this tetraleucine motif is 

conserved in KCNE4 orthologues across mammals, birds, and amphibians.  Similar 

motifs are absent in the other KCNE subunits and this is consistent with the observed 

lack of KCNE1 biochemical interaction with CaM (Figure 23).  

We also assessed CaM-agarose pull-down of E4-HA constructs engineered with 

charge reversals in the same region, R[62-63]E-HA and K[65-66]E-HA, and found that 

these mutations did not disrupt the biochemical interaction between KCNE4 and CaM 
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Figure 24. KCNE4 juxtamembrane tetra-leucine motif is critical for biochemical 
interaction with CaM.  A, Amino acid sequence of human KCNE4.  Box encloses predicted 
transmembrane domain, underline denotes region identified by online prediction tool 
(http://calcium.uhnres.utoronto.ca) as most likely to contain putative CaM binding site. B, 
Representative immunoblot following CaM-agarose pull-down comparing lysates from CHO 
cells transiently transfected with wild-type E4-HA, L[69-72]A-HA, or non-transfected cells (NT). 
Pull-down performed in the presence of 2 mM CaCl2. Bound (beads) and unbound (s/n) 
fractions each probed for KCNE4 using monoclonal anti-HA. Bars below each lane indicate 
average bound-to-unbound signal ratio, normalized to wild-type E4-HA from same experimental 
replicate.  Mean ± SEM for normalized ratios: L[69-72]A-HA, 0.12 ± 0.08, n = 3; ***, p < 0.001 
versus wild-type by t-test. C, Representative immunoblots following CaM-agarose pull-down 
comparing lysates from CHO cells transiently transfected with wild-type E4-HA, R[62-63]A-HA, 
K[65-66]E-HA, L[69-70]A-HA, L[71-72]A-HA, L[69-72]A-HA, L69A_L72A-HA, and L72A_L79A-HA. 
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(Figure 24C). Additionally, we generated E4-HA constructs with pairs of leucine-to-

alanine substitutions in the following combinations: L[69-70]A, L[71-72]A, 

L69A_L72A, and L72A_L79A. By CaM-agarose pull-down, it appears that none of these 

pairs of substitutions (except possibly L[69-70]A) is as effective at disrupting the 

KCNE4-CaM interaction as is substituting all four leucines in positions 69-72 with 

alanines (Figure 24C). 

 

Altered KCNQ1 modulation by L[69-72]A-HA 

To test whether disruption of the biochemical interaction between KCNE4 and CaM 

is accompanied by any functional consequences, we compared whole-cell currents 

recorded from CHO cells expressing KCNQ1 alone, KCNQ1 co-expressed with wild-

type KCNE4-HA, and KCNQ1 co-expressed with L[69-72]A-HA. Representative current 

traces and a current density-voltage plot illustrate that the dramatic KCNQ1 suppression 

normally exerted by wild-type KCNE4 is not evident with L[69-72]A-HA (Figure 25A & 

25B). The degree of KCNQ1 suppression was significantly less for L[69-72]A-HA than 

for wild-type KCNE4. Interestingly, L[69-72]A-HA exerts other modulatory effects on 

KCNQ1 including a significant shift in the voltage-dependence of activation curve to 

more depolarized potentials (Figure 25C; Table 6) and a significant slowing of the 

kinetics of activation (Figure 25D).   

It is important to note that cell-surface biotinylation assays revealed that L[69-

72]A-HA is detectable at the cell surface (Figure 25E), albeit at a reduced level. However, 

the modulatory effects of L[69-72]-HA on KCNQ1 described in Figure 25C and 25D 

imply that mutant KCNE4 subunits still associate with KCNQ1 at the plasma membrane 
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to a significant extent. Overall, these findings demonstrate that disrupting KCNE4-CaM 

interaction hinders the inhibition of KCNQ1 by KCNE4 and suggests possible 

mechanisms for the regulation of KCNQ1 function. 

 

KCNE4 inhibition of KCNQ1 is Ca2+-sensitive 

To assess whether KCNE4 inhibition of KCNQ1 is sensitive to [Ca2+]i, we 

compared whole-cell currents recorded from CHO cells stably expressing KCNQ1 and 

transiently transfected with KCNE4 or empty vector, measured using a pipette solution 

that contained either 10 nM or 3 nM free [Ca2+]. Representative current traces and a 

current density versus voltage plot (Figure 26) illustrate that KCNE4 fails to completely 

inhibit KCNQ1 current when [Ca2+]i is chelated acutely. CHO cells expressing KCNE4 in 

the absence of KCNQ1 generated no current when recorded using 3 nM [Ca2+] pipette 

solution, suggesting that the recorded currents illustrated in Figure 26 are not from 

endogenous channels activated by low [Ca2+]i (data not shown). These findings are 

consistent with the Ca2+ sensitivity of the biochemical interaction between KCNE4 and 

CaM (Figure 21A) and the impaired KCNQ1 inhibition by KCNE4 upon disrupting 

interactions between KCNE4 and CaM by mutagenesis. Importantly, the impairment of 

KCNE4 inhibition of KCNQ1 upon acutely chelating [Ca2+]i is unlikely explained by an 

acute decrease in KCNE4 cell-surface expression, favoring the interpretation that the 

KCNE4 function is directly affected by disrupting its interaction with CaM. 
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Figure 26.  KCNE4 inhibition of KCNQ1 is impaired upon reducing [Ca2+]i. 
A, Representative whole-cell currents from CHO cells stably expressing Q1 
and transiently transfected with empty vector or E4, recorded in the presence 
of 10 nM or 3 nM free [Ca2+].  B, Mean (± SEM) current density versus voltage 
plot (n = 8).  At all test potentials more positive than -20 mV, p < 0.05 for Q1 + 
GFP, 3 nM (∆) versus Q1 + E4, 3 nM (○) and p < 0.01 for Q1 + E4, 10 nM (●) 
versus Q1 + E4, 3 nM (○) by t-test.
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Discussion 

Regulation of KCNQ1 is physiologically important especially in heart where this 

protein constitutes the pore-forming subunit required to generate IKs, an essential 

repolarizing current. KCNQ1 is part of a macromolecular complex containing accessory 

subunits and regulatory proteins such as yotiao21, phosphodiesterase PDE4D3151 and 

CaM27,28. In addition to regulation by multiple intracellular second messengers including 

cAMP, PIP2
23,24, and Ca2+27,28,141,143,144, KCNQ1 is modulated by KCNE proteins, some 

of which can exert dramatic effects on the channel70,131.  

Interactions between accessory subunits (e.g., KCNE) and other regulatory proteins 

associated with the macromolecular IKs complex are emerging as another layer of 

complexity in regulating KCNQ1 function138. In this study, we uncovered a new and 

intriguing example of an interaction between a KCNE subunit and another important 

KCNQ1 regulatory protein. Specifically, we identified an interaction between KCNE4 

and CaM that is linked to the robust inhibitory effect of this accessory protein on 

KCNQ1. The observation that pharmacological inhibition of CaM dramatically blunts 

KCNQ1 activity27,28, which resembles the modulatory effect of KCNE4 on KCNQ1, 

prompted our hypothesis that KCNQ1 inhibition by KCNE4 could involve CaM.   

Our demonstration of a Ca2+-dependent biochemical interaction between KCNE4 

and CaM, and that KCNQ1 functional modulation by KCNE4 is impaired both upon 

mutation of a candidate CaM-interaction site in the juxtamembrane region of KCNE4 and 

by acutely chelating [Ca2+]i to displace CaM from KCNE4, suggests a connection 

between the mechanism of KCNQ1 inhibition by KCNE4 and the effect of CaM on the 

channel. We previously assumed that the inhibition of KCNQ1 by KCNE4 is caused by a 
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direct effect of KCNE4 on the channel48,152. In demonstrating that the interaction between 

CaM and KCNE4 is critical for the inhibitory effect of KCNE4, the data presented here 

introduce the new possibility that KCNE4 inhibits KCNQ1 by disrupting CaM-mediated 

KCNQ1 activation. 

The KCNE4 region we identified to be critical for its biochemical interaction with 

CaM lacks typical motifs shared by many (but not all) CaM-interacting proteins, such as 

an IQ domain or a 1-5-10 motif150. However, there are other examples of membrane 

proteins known to interact with CaM at an intracellular juxtamembrane region (as we 

demonstrated for KCNE4), including the epidermal growth factor receptor153-155. We 

previously demonstrated that the cytoplasmic domain of KCNE4 is necessary for its 

inhibition of KCNQ1, and is sufficient to confer inhibitory function to a chimera 

consisting of the N-terminus and transmembrane domain of KCNE1 but the C-terminus 

of KCNE448. This overlap between the CaM-binding site and the KCNE4 domain 

necessary for inhibition of KCNQ1 activity supports our hypothesis that KCNQ1 

inhibition by KCNE4 may involve its ability to interact with CaM. 

The primary structure of KCNE4 is distinct from the other four KCNE proteins at 

the juxtamembrane site identified here as a CaM-binding region. Specifically, the region 

containing four sequential hydrophobic leucine residues in KCNE4 is occupied by polar 

residues in the other four KCNE proteins, which would likely not support interactions 

with CaM. As we demonstrated in this study, KCNE1 does not interact with CaM when 

expressed alone (Figure 23). 

The identification of critical residues for CaM binding also allowed us to study the 

functional consequences of disrupting the KCNE4-CaM interaction. We demonstrated 
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that KCNE4 L[69-72]A subunits fail to robustly inhibit KCNQ1. However, expression of 

this KCNE4 mutant does modulate the kinetics and voltage-dependence of KCNQ1 

activation and changes kinetic properties of tail currents consistent with removal of 

inactivation (Figure 25). Overall these findings indicate that the mutant KCNE4 with 

impaired biochemical interaction with CaM also exhibits impaired ability to inhibit 

KCNQ1, whereas its ability to function as a modulatory subunit to KCNQ1 is not lost. 

We speculate that these residual functional effects of KCNE4 L[69-72]A on KCNQ1 

could be mediated through interactions between the pore-forming subunit and the 

KCNE4 transmembrane domain. In support of this notion, there are similarities in 

KCNQ1 modulation evoked by KCNE4 L[69-72]A and a chimera consisting of the N- 

and C-termini of KCNE1 coupled to the transmembrane domain of KCNE448. 

The physiological implications of the observations presented here may be 

significant, but are difficult to assign because of the primary lack of understanding of the 

physiological contributions of KCNE4. In heart, where KCNE4 could modulate 

repolarizing currents such as IKs, and where local free Ca2+ concentrations cycle 

dramatically, the Ca2+-CaM sensitivity described here for KCNE4 may enable Ca2+-

dependent regulation of repolarization time.  Because repolarization time is critical for 

action potential duration as well as Ca2+ release and contractility156, CaM-KCNE4 

interactions might constitute part of a feedback loop for regulating intracellular Ca2+. 

Further characterization of KCNE4 L[69-72]A in native cardiac myocytes will be 

valuable toward establishing the physiologic consequences of disrupting the interaction 

between KCNE4 and CaM. 
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The novel protein-protein interaction we demonstrated in this study reinforces the 

notion that KV channels function as dynamic protein complexes subject to regulation by 

both accessory subunits and intracellular signaling molecules, which may themselves 

interact to impact channel function. 
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CHAPTER IV 

 

INVESTIGATING THE PHYSIOLOGIC FUNCTION OF KCNE4 

 

Each of the five KCNE proteins modulates potassium channel function in a distinct 

manner, allowing specific transformation of the biophysical properties of a channel 

depending on which accessory subunit(s) is (are) present in the channel complex.  Given 

that the KCNE proteins can exert potent and diverse modulatory effects and may 

potentially participate in a large variety of channel complexes, a compelling question 

emerges:  what is the native physiologic role of each KCNE gene? 

The answer is partly revealed by the association of mutations in KCNE genes with 

inherited human diseases.  Specifically, mutations in KCNE1 have been associated with 

congenital long QT syndrome (LQTS)72,86,157, while KCNE2 variants have been identified 

in cases of sporadic and drug-induced LQTS72,84,87,88.  Periodic paralysis, a skeletal 

muscle disorder, has been associated with mutations in KCNE365,158.  Finally, deletion of 

a genomic region (Xq22.3) containing KCNE5 results in a syndrome featuring Alport 

syndrome, mental retardation, midface hypoplasia, and elliptocytosis55. 

These disease associations provide strong focus points for elucidating the 

physiologic roles of KCNE1, KCNE2, KCNE3, and KCNE5.  In the case of KCNE4, other 

than a single report159 that the minor allele of a SNP (1057 G/T) leading to a conservative 

amino acid substitution (145 E/D) is found slightly more frequently in patients with 

idiopathic atrial fibrillation than controls in a Chinese population (34.0% versus 27.1%, 

respectively), no human inherited disease has been associated with a mutation in KCNE4.  
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Considering the particularly dramatic modulatory effects imparted by KCNE4 on critical 

channel complexes and the broad expression of KCNE4 by human tissues, it is likely that 

KCNE4 plays an important role in one or more physiologic systems, but we are left to 

investigate that role without the natural focus point arising from phenotypic 

characterization of native mutation carriers. 

An alternative approach to an investigation into the physiologic function of KCNE4 

is to first consider which tissues express KCNE4.  The mRNA expression pattern of 

KCNE4 (Figure 6, Chapter I) reveals that many tissues express KCNE4.  This set of 

tissues includes those whose functions are directly dependent on their ability to conduct 

electricity (such as heart, skeletal muscle, and brain) and some that are non-excitable 

(such as kidney, testes, and colon). 

KV channel complexes (including those comprised of KCNQ1 and KCNE subunits) 

have previously been implicated in critical physiologic functions in many of the tissues 

that express KCNE4.  As one example in a non-excitable cell type, data suggest that 

KCNQ1-KCNE3 channel complexes provide the basolateral K+ recycling in colonic crypt 

cells required to maintain the electrochemical driving forces behind lumenal Cl- secretion 

through CFTR at the apical membrane160.  This lead and the other studies cited in Chapter 

I establish a precedent for the importance of KV channels and KCNE modulatory subunits 

in the physiology of non-excitable tissues.  Because our data demonstrate that KCNE4 is 

expressed in a number of non-excitable tissues, any effort toward determining the native 

function of KCNE4 would be incomplete without considering potential roles in these 

systems. 
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On the other hand, KV channels are primarily studied for their contributions to the 

physiology of excitable cells, such as myocytes or neurons.  The electrical excitability of 

these cells stems directly from the capacity of their plasma membranes to respond to 

changes in voltage and to propagate an electrical signal; voltage-gated ion channels 

provide both of these functions.  Thus, in addition to considering potential roles for 

KCNE4 in non-excitable tissues as described above, it is critical to investigate its possible 

contributions to the physiology of excitable tissues. 

In vitro observations of the functional properties of KCNE4 and studies of its 

expression in human heart provide us with strong, specific leads in cardiac physiology.  

In heterologous expression systems, KCNE4 dramatically inhibits IKs
70, a critical 

repolarizing current in the human cardiac action potential (Figure 5, Chapter I).  Further, 

expression of KCNE4 is robust in all regions of adult heart as well as in fetal heart70 

(Figure 9, Chapter I).   These findings as well as the physiologic functions in cardiac 

physiology already established for other members of the KCNE family lead us to believe 

that KCNE4 may be an endogenous regulator of IKs and contribute to fine-tuning of the 

cardiac action potential, with implications for heart rhythm and contractility. 

Because a primary focus of our lab is on the function of KCNE subunits in the 

context of cardiac electrophysiology and because of the compelling preliminary data 

identifying KCNE4 as a potential modulator of IKs, our initial effort in characterizing the 

function of KCNE4 has been directed to its potential role in cardiac physiology.  Our 

studies have been motivated by the hypothesis that KCNE4 is an endogenous negative 

regulator of IKs and/or other repolarizing K+ currents in the human cardiac action 

potential.  In this role, KCNE4 could serve to reduce repolarizing currents in cardiac 
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myocytes, thereby lengthening the QT interval, which may in turn have effects on 

excitation-contraction coupling and contractility. 

 

Kcne4-null mouse model 

Our primary approach to studying the function of KCNE4 in cardiac physiology 

was to characterize the cardiac phenotype of a Kcne4-null mouse.  As a model organism, 

the mouse offers many appealing traits: it is a mammal, has a short breeding cycle, is 

relatively easy to manipulate in many experimental systems, has a fully sequenced 

genome of approximately the same size as the human genome, and has been the target of 

many advanced gene transfer technologies.   

For the specific needs of this project, the mouse also presents considerable 

limitations.  Most critically, the cardiac electrophysiology of a mouse does not closely 

resemble human cardiac electrophysiology.  As shown in Figure 27, the mouse and 

human ventricular action potentials have distinct morphological differences owing to 

unique sets of underlying currents.  Of particular relevance, the currents responsible for 

repolarization (which we hypothesize may be critical targets of KCNE4 modulation) are 

not conserved between the two species.  In humans, the delayed rectifier potassium 

currents IKs and IKr contribute to an elongated repolarization phase characterized by its 

plateau.  By contrast, adult mouse ventricular cells express a different cohort of 

potassium channels with distinct time- and voltage-dependent properties.  These channels 

give rise to unique delayed rectifier currents (IK,slow1,  IK,slow2, and ISS) which contribute to 

a much abbreviated repolarization phase in the mouse compared to human161. 
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Figure 27. Human versus mouse ventricular cardiac action potentials.
Potassium currents contributing to repolarization differ markedly between the 
two species (red box).  In humans, Ito accounts for transient repolarization
(phase 1) followed by a plateau (phase 2) attributable to K+ efflux via IKs and IKr

balanced against Ca2+ influx via ICa,L.  As Ca2+ channels inactivate and K+

currents predominate, the cell rapidly repolarizes (phase 3) back to the resting 
potential.  By contrast, mouse ventricular cells do not prominently express IKs or 
IKr, but their unique repolarizing K+ currents IK,slow1, IK,slow2, and ISS drive rapid 
repolarization with no plateau phase.  Adapted from Nerbonne JM Trends 
Cardiovasc Med 14, 83-93 (2004).
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Despite these limitations, phenotypic characterization of mouse models following 

genetic manipulation of various K+ channels has provided much insight into molecular 

mechanisms underlying normal and pathological cardiac physiology94,162-171.  Thus we 

decided that a Kcne4-null mouse line could ultimately provide us the best opportunity to 

observe the effects of knocking out Kcne4 on cardiac electrophysiology in vivo.  In the 

studies described here, we acknowledge that our findings must be interpreted in the 

specific context of mouse physiology and our ability to generalize to human physiology 

is limited.  With these considerations, we hypothesized that if Kcne4 is an important 

negative regulator of repolarizing currents in the mouse cardiac action potential, the 

phenotype of Kcne4-null animals might include a shortened QT interval, possible 

enhanced susceptibility to or protection against cardiac arrhythmias, and possible 

contractile defects. 

 

Methods 

 

Breeding and marker-assisted selection to establish isogenic lines of Kcne4-/- mice 

 

Kcne4 knockout 

We obtained four Kcne4+/- founder mice from Lexicon Pharmaceuticals Inc., which 

were generated by homologous recombination in embryonic stem cells of the129/SvEv 

mouse strain, with a lacZ-containing Neo cassette replacing the entire coding region of 

Kcne4.  Recombinant cells were injected into early-stage host embryos of the C57BL/6 

albino strain and implanted into the uterus of a female C57BL/6 mouse.  Pups were bred 
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with selection for animals with the transgene in the germ cell line, and we received 

Kcne4+/- animals on a hybrid C57BL/6-129/SvEv background strain.   

 

Speed Congenics 

Because the C57BL/6 and 129/SvEv strains exhibit significant differences in 

cardiac physiology172 (Table 7) which could confound phenotypic findings, our first 

priority was to separately enrich each background strain and move our transgene to two 

isogenic lines.  To do this efficiently, we implemented a marker-assisted selection 

protocol while performing a series of backcrosses with pure C57BL/6 or 129S6/SvEv 

female mice to enrich that strain.  At each generation, the genomes of male Kcne4+/- pups 

were screened using 70 microsatellite markers that span the genome and can discriminate 

between the two strains, to deduce the percentage of C57BL/6 versus 129S6/SvEv 

background in each.  The most enriched male Kcne4+/- mouse was selected as the founder 

for the next generation, and so on.  This process allowed us to generate congenic litters of 

Kcne4+/+, Kcne4+/-, and Kcne4-/- mice within 4-5 generations.  Once congeneity was 

attained, we used Vanderbilt’s Transgenic / Embryonic Stem Cell Shared Resource Core 

to cryopreserve 632 Kcne4-/- embryos on the C57BL/6 background.  Of these, 45 

embryos (from two separate vials) were thawed to test viability, which yielded six live 

pups whose genotypes were confirmed as Kcne4-/-.  The Core continues to store the 

remaining 587 frozen embryos in 24 vials, for future repopulation of the mouse colony if 

necessary. 
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129/S6 C57BL/6 129/S6 C57BL/6

(n = 10) (n = 10) (n = 10) (n = 10)

Heart Rate (bpm)   571 ± 13 692 ± 5 <0.001 689 ± 12 741 ± 2*** <0.001

HR var (bpm) 15 ± 4 12 ± 3 0.850 20 ± 4 15 ± 3 0.331

PR (ms) 31.9 ± 1.3 26.0 ± 0.8 0.001 28.3 ± 0.6 24.4 ± 0.7 <0.001

QRS (ms) 9.6 ± 0.3 8.1 ± 0.2 <0.001 8.5 ± 0.1 7.5 ± 0.2 <0.001

QT (ms) 70.2 ± 1.8 55.4 ± 0.8 <0.001 54.7 ± 2.0 53.8 ± 0.6 0.672

QTc (ms) 66.7 ± 1.9 59.0 ± 0.8 0.002 58.4 ± 1.6 58.7 ± 0.3 0.856

Table 7. Electrocardiographic parameters in male and female 129/Sv and 
C57BL/6 conscious mice. Values are mean ± SEM.  HR var, heart rate 
variability; p, p-value following student t-test comparing strains. Adapted from 
Chu V et al., BMC Physiol. 2001; 1:6.

Males Females

p p
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Genotyping 

We employed a simple PCR assay that discriminates wild-type from transgenic 

alleles, using genomic DNA isolated from ear punches collected when pups were 3 weeks 

old.  Importantly, during this breeding process we observed that crosses exhibited a 

Mendelian ratio of Kcne4+/+, Kcne4+/-, and Kcne4-/- animals and all three genotypes are 

viable. 

 

Consequences of Kcne4 knockout on cardiac physiology at the whole-animal level 

 

Electrocardiography 

Adult mice were examined under isoflurane anesthesia for cardiac 

electrophysiological and arrhythmia phenotypes using high-resolution surface 

electrocardiography (ECG) recording. Anesthesia was induced with 3% inhaled 

isoflurane and maintained at 1.5-2%.  Following induction of anesthesia, an electrode 

was placed subcutaneously in each limb.  Four-lead ECGs were recorded and digitized at 

2 kHz using a data-acquisition board and custom-built software available in the 

laboratory of our collaborator, Dr. Bjorn Knollman.  ECGs were recorded continuously 

for at least five minutes, then electrodes were removed, isoflurane was withdrawn, and 

mice were allowed to recover under a warm lamp.  Comparisons of resting heart rate, PR, 

QT, and QRS duration were made from signal-averaged recordings among Kcne4+/+, 

Kcne4+/-, and Kcne4-/- littermates.  Rate-corrected QT interval, denoted QTc, was 

calculated using the Mitchell equation for mice QTc = QT/sqrt(RR/100).  Data were 

examined for evidence of conduction disturbances (eg. prolonged PR, increased QRS 

97



duration) and abnormal rhythm, specifically for evidence of atrial and ventricular 

arrhythmias.  All measurements were performed off-line and blinded to genotype.  

Statistical significance for differences in the above parameters among groups was 

assessed using ANOVA followed by an appropriate post-test.  Separate analyses were 

performed for male and female animals. 

 

Echocardiography 

We evaluated myocardial contractile function in conscious Kcne4+/+, Kcne4+/-, and 

Kcne4-/- littermates using transthoracic echocardiography.  These studies were performed 

by an established core laboratory in the Division of Cardiovascular Medicine, which is 

equipped with a 15-MHz high-frequency transducer.  Measurements of left ventricular 

(LV) end-diastolic and end-systolic diameter, LV fractional shortening, and estimated LV 

ejection fraction were obtained from 2D guided M-mode images acquired at 100 frames 

per second.  Images were read off-line using short-axis and parasternal long-axis views 

by two independent investigators blinded to genotype.  Statistical significance for 

differences in the above parameters among groups was assessed using ANOVA with an 

appropriate post-test.  All studies were performed at two different ages (8 and 30 weeks) 

to investigate the age-dependence of the phenotype.  Separate analysis was performed for 

male and female mice. 
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Consequences of Kcne4 knockout on cardiac physiology at the cellular level 

 

Isolation of adult cardiac myocytes 

Isolation of adult mouse ventricular myocytes was performed following heparin 

injection (0.1 mL 5000 USP U/mL) under isoflurane anesthesia with rapid excision of the 

heart. The aorta was cannulated and the heart perfused in retro-aortic fashion with 

Modified Tyrode solution (mM: NaCl 130, NaH2PO4 1.2, glucose 10.0, KCl 5.4, MgCl2 

1.2, pH 7.2) for 3 min at 33.8-34.0 oC measured at the apex of the heart.  Type II 

collagenase (Worthington) at 0.5 mg/mL and type XIV protease at 0.05 mg/mL were 

added to the perfusate and the myocardium was perfused for 4-6 minutes, until fluid 

resistance in the tubing dropped by 50 % and the tissue began to turn pale in color.  The 

heart was then removed from the cannula, and the atria and ventricles were separated.  

Myocytes were dispersed by gentle agitation through a Pasteur pipette in a solution 

consisting of Modified Tyrode plus 1 mg/mL BSA, 1.0 mM MgCl2, 0.5 mM EDTA, and 

0.2 mM CaCl2 (pH 7.2).  Cells were washed twice in this solution (pelleting by gravity) 

then plated on coverslips for acute electrophysiological recordings. 

 

Electrophysiology 

All recordings were performed using the ruptured-patch technique at room 

temperature.  Recordings and subsequent analyses were performed blinded to the 

genotype of the cells. Statistical comparisons were made between groups from Kcne4+/+, 

Kcne4+/-, and Kcne4-/- littermates by one-way ANOVA with an appropriate post-test.  
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Current-clamp recordings -- Recordings were performed in normal Tyrode solution 

without blockers.  Action potentials were elicited with 2 ms square wave pulses (1-2 nA, 

or approximately 1.25 times threshold) at 1 or 0.3 Hz stimulation frequency.  Cells were 

paced at 1 Hz for 4 minutes, and sweeps 181-183 were averaged for analysis.  Action 

potential duration at 50 % (APD50) and 90 % (APD90) repolarization were determined as 

well as resting membrane potential and overshoot (peak membrane potential). 

Voltage-clamp recordings -- Examination of adult ventricular myocytes allowed for 

analysis of Ito, IK1 and Isus (comprised of IKslow,1 and IKslow,2).  Recordings were performed 

under conditions that suppress activation of Na+ and Ca2+ channels.  We recorded 

currents evoked by 4.5 s voltage pulses ranging from –40 to +40 mV (holding potential –

80 mV) in 10 mV increments. Distinct potassium currents were differentiated on the basis 

of their time dependence.  Current density normalized to cell capacitance was deduced 

for the individual currents. 

 

Results 

 

Consequences of Kcne4 knockout on general animal health 

We observed that Kcne4-/- mice of both background strains appear healthy, grow at 

the same rate as their Kcne4+/+ littermates, and can live in the research facility to at least 

18 months of age.   
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We acquired multi-system phenotyping data from Lexicon Pharmaceuticals, who 

generated the transgenic mouse line.  Among pertinent findings from their studies of F2 

mice on a hybrid C57BL/6-129/SvEv background are the following: 

 

 Kcne4-/- mice have significantly reduced conscious heart rate compared to 

Kcne4+/+ littermates (age 15 weeks): 558.6 ± 21.0 (n = 32) versus 635.2 ± 31.6 

bpm (n = 12); p = 0.05 for comparison of genotypes after allowing for effects of 

sex (two-way ANOVA) 

 No difference in mean systolic blood pressure (age 15 weeks) following 

measurements ten times daily by tail cuff for four days 

 Kcne4-/- mice have significantly reduced body temperature (measured rectally) 

compared to Kcne4+/+ littermates (age 12 weeks): 36.1 ± 0.24 (n = 8) versus 37.2 

± 0.34 °C (n = 4); p = 0.04 for comparison of genotypes after allowing for effects 

of sex (two-way ANOVA) 

 Kcne4-/- have significantly elevated blood phosphorous levels compared to 

Kcne4+/+ littermates (age 16 weeks): 6.1 ± 0.2 (n = 8) versus 4.8 ± 0.2 mg/dL (n = 

4); p = 0.001 for comparison of genotypes after allowing for effects of sex (two-

way ANOVA) 

 Kcne4-/- mice have significantly elevated blood calcium levels compared to 

Kcne4+/+ littermates (age 16 weeks): 9.6 ± 0.09 (n = 8) versus 9.3 ± 0.1 mg/dL (n 

= 4); p = 0.05 for comparison of genotypes after allowing for effects of sex (two-

way ANOVA)  
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 Kcne4-/- mice have a trend toward reduced blood glucose compared to Kcne4+/+ 

littermates (age 16 weeks): 80.1 ± 5.5 (n = 8) versus 100.8 ± 7.7 mg/dL (n = 4); p 

= 0.07 for comparison of genotypes after allowing for effects of sex (two-way 

ANOVA) 

 Kcne4-/- mice have a trend toward elevated blood cholesterol levels compared to 

Kcne4+/+ littermates (age 16 weeks): 122.3 ± 7.9 (n = 8) versus 95.0 ± 11.2 mg/dL 

(n = 4); p = 0.08 for comparison of genotypes after allowing for effects of sex 

(two-way ANOVA) 

 No difference in blood levels of albumin, alkaline phosphatase, alanine 

aminotransferase, blood urea nitrogen, creatinine, triglycerides, or uric acid (age 

16 weeks) 

 No difference in glucose tolerance nor blood insulin levels (age 15 weeks) 

 No abnormalities upon urinalysis assessing: leukocytes, nitrites, urobilinogen, 

protein, pH, blood, specific gravity, ketones, bilirubin, glucose (age 15 weeks) 

 No difference in body length at age 16 weeks, nor weight measured at 2-week 

intervals from age 2 weeks through 14 weeks 

 No difference in acute phase response (TNF, MCP-1, or IL-6 blood levels) 

following sublethal intraperitoneal LPS injection (age 18 weeks) 

 No difference in peripheral blood mononuclear cell profile assessing counts of: 

CD4+ cells, CD8+ cells, NK cells, B cells, monocytes (age 16 weeks) 

 No difference in hematology profile assessing: red cell count, white blood cell 

count, lymphocytes, neutrophils, eosinophils, basophils, monocytes, hemoglobin, 

hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean 
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corpuscular hemoglobin concentration, red cell distribution weidth, platelet count, 

mean platelet volume (age 16 weeks) 

 No difference in ability to produce IgG1 or IgG2 antibodies following antigen 

challenge (age 24 weeks) 

 No abnormalities observed by CT scan in 1 male Kcne4-/- mouse nor 1 female 

Kcne4-/- mouse, sedated with 1.25% 2,2,2,-tribromoethanol (20 ml/kg body 

weight), each age 30 weeks.  From report: “No abnormalities seen in gross skeleton, 

thorax, and abdomen. Liver, kidneys, and spleen appear normal in size, shape and 

position. The rate of excretion of contrast media by the kidneys is within normal limits, 

reflecting normal function.” 

 No differences in bone mineral density, percentage body fat, or lean body mass 

(age 15 weeks) 

 No observed deficits in gross neurological function as measured by a functional 

observation battery of tests from the Irwin neurological screen (age 12 weeks) 

 No observed deficits in nociception by hotplate test (latency to limb withdrawal 

on hotplate), age 12 weeks 

 No observed deficits or enhancements in motor strength by inverted screen (age 

12 weeks) 

 No difference in proliferative capacity of skin fibroblasts grown in culture 

following biopsy (age 20 weeks) 

 Pertinent findings from histological post-mortem studies in Kcne4-/- mice include: 

multifocal minimal protein casts and minimal focal regeneration of renal tubule 

(one of two mice); mild (2+) multifocal endometrial hyperplasia (one of one 

female mice); moderate (3+) chronic diffuse inflammation of pancreatic duct (one 
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of two mice); mild (2+) focal spermatocoele (one of one male mice); mild (2+) 

splenic hyperplasia (one of two mice) 

 

Consequences of Kcne4 knockout on cardiac physiology at the whole-animal level  

 

Shortened QT interval 

We recorded electrocardiograms in adult mice under isoflurane anesthesia in both 

strains, and in the C57BL/6 strain at two different ages (8-11 weeks and 30 weeks).  

While no difference in spontaneous arrhythmia susceptibility was noted among genotypes 

for any of the experimental groups, some changes in a number of ECG parameters were 

detected.  As shown in Figure 28 and Table 8, Kcne4-/- mice in all three experimental 

groups exhibited a trend toward shorter QT and QTc intervals versus Kcne4+/+ 

littermates, and in two of the experimental groups (C57BL/6 age 30 weeks and 

129S6/SvEv age 8 weeks) the difference in QTc was statistically significant.  Further, in 

the 129S6/SvEv strain, all other ECG parameters (RR, PR, QRS, QT) were significantly 

shortened in Kcne4-/- versus Kcne4+/+ mice. 

 

Left ventricular dilation and reduced fractional shortening 

Echocardiography performed on conscious adult Kcne4+/+, Kcne4+/-, and Kcne4-/- 

mice of each strain (and at two ages in the C57BL/6 strain, 8 weeks and 30 weeks) 

allowed us to assess whether Kcne4 knockout has any consequences for cardiac chamber 

dimensions or contractility.  As shown in Figures 29 and Table 9, C57BL/6 Kcne4-/- mice 

at age 8 weeks exhibit a significantly dilated left ventricular internal diameter during both 

104



RR PR QRS QT QTc

tim
e 

(s
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

*

C57BL/6, age 8-11 weeks

C57BL/6, age 30 weeks

129/S6, age 8 weeks

Figure 28. Electrocardiography in Kcne4-/- mice. Left, representative recordings from 
wild-type and Kcne4-null animals from each experimental group.  Right, bar charts 
display mean ± SEM for each interval. *, p < 0.05; **, p < 0.01; ***, p < 0.001 for Tukey
pariwise comparison to wild-type following two-way ANOVA (p < 0.05) comparing 
genotypes after allowing for the effects of differences in sex.

Kcne4+/+

Kcne4+/+

Kcne4-/-

Kcne4+/+

Kcne4-/-

g

RR PR QRS QT QTc
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

***

**
**

** *

tim
e 

(s
)

RR PR QRS QT QTc
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Kcne4 +/+

Kcne4 +/-

Kcne4 -/-

tim
e 

(s
)

Kcne4-/-

0.1s

0

0.4

0.8

-0.4

V
 (

m
V

)

0
-0.5

-1

1
0.5

V
 (

m
V

)

-0.4

0

0.4

0.8

V
 (

m
V

)

-0.8

-0.4

0

0.4

0.8

V
 (

m
V

)

0.6
0.4
0.2

0
-0.2
-0.4
-0.6

V
 (

m
V

)

0.8

0.4

0

-0.4

V
 (

m
V

)

105



 +
/+

 +
/-

 -
/-

T
w

o
-W

ay
 

A
N

O
V

A
 +

/+
 +

/-
 -

/-
T

w
o

-W
ay

 
A

N
O

V
A

 +
/+

 +
/-

 -
/-

T
w

o
-W

ay
 

A
N

O
V

A

n
 =

 1
0

n
 =

 4
n

 =
 6

n
 =

 1
2

n
 =

 1
3

n
 =

 9
n

 =
 2

5
n

 =
 1

3
n

 =
 1

8

(6
 M

 +
 4

 F
)

(1
 M

 +
 3

 F
)

(3
 M

 +
 3

 F
)

(9
 M

 +
 3

 F
)

(8
 M

 +
 5

 F
)

(5
 M

 +
 4

 F
)

(1
4 

M
 +

 1
1 

F
)

(9
 M

 +
 4

 F
)

(7
 M

 +
 1

1 
F

)

R
R

 (
s)

 
0.

10
2 

± 
0.

00
6

0.
12

2 
± 

0.
01

1
0.

09
5 

± 
0.

00
8

0.
17

5
0.

10
4 

± 
0.

00
7

0.
10

9 
± 

0.
00

6
0.

09
1 

± 
0.

00
7

0.
11

8
0.

14
4 

± 
0.

00
5

0.
14

6 
± 

0.
00

8
0.

10
7 

± 
0.

00
6

<
0.

00
1

P
R

 (
s)

 
0.

03
1 

± 
0.

00
2

0.
03

8 
± 

0.
00

4
0.

02
8 

± 
0.

00
3

0.
23

5
0.

03
4 

± 
0.

00
2

0.
03

7 
± 

0.
00

2
0.

03
0 

± 
0.

00
2

0.
05

9
0.

03
6 

± 
0.

00
1

0.
03

9 
± 

0.
00

2
0.

02
8 

± 
0.

00
1

<
0.

00
1

Q
R

S
 (

s)
 

0.
01

0 
 ±

 0
.0

01
0.

01
2 

± 
0.

00
1

0.
00

9 
± 

0.
00

1
0.

94
3

0.
01

0 
± 

0.
00

1
0.

01
1 

± 
0.

00
1

0.
00

8 
± 

0.
00

1
0.

01
0

0.
01

2 
± 

0.
00

1
0.

01
3 

± 
0.

00
1

0.
00

9 
± 

0.
00

1
<

0.
00

1

Q
T

 (
s)

 
0.

04
4 

± 
0.

00
4

0.
05

4 
± 

0.
00

6
0.

04
1 

± 
0.

00
4

0.
27

3
0.

05
1 

± 
0.

00
4

0.
05

0 
± 

0.
00

3
0.

03
9 

± 
0.

00
4

0.
05

4
0.

05
2 

± 
0.

00
2

0.
05

5 
± 

0.
00

3
0.

04
0 

± 
0.

00
3

<
0.

00
1

Q
T

c 
(s

) 
0.

04
3 

± 
0.

00
2

0.
04

9 
± 

0.
00

4
0.

04
1 

± 
0.

00
3

0.
40

3
0.

04
9 

± 
0.

00
2

0.
04

7 
± 

0.
00

2
0.

04
0 

± 
0.

00
2

0.
03

6
0.

04
3 

± 
0.

00
1

0.
04

6 
± 

0.
00

2
0.

03
8 

± 
0.

00
2

0.
00

9

p
p

p

T
ab

le
 8

. M
ea

n
 ±

 S
E

M
 f

o
r 

m
aj

o
r 

E
K

G
 in

te
rv

al
s,

 p
lu

s 
p

-v
al

u
e 

fo
r 

tw
o

-w
ay

 A
N

O
V

A
 c

o
m

p
ar

in
g

 g
en

o
ty

p
es

 a
ft

er
 

al
lo

w
in

g
 f

o
r 

th
e 

ef
fe

ct
s 

o
f 

d
if

fe
re

n
ce

 in
 s

ex
.

C
57

B
L

/6
, 8

-1
1 

w
ee

ks
C

57
B

L
/6

, 3
0 

w
ee

ks
12

9/
S

6,
 8

 w
ee

ks

106



Kcne4 +/+

Kcne4 +/-

Kcne4 -/-

Kcne4 Genotype

+/+ +/-  -/-

H
R

 (
b

p
m

)

400

500

600

700

Figure 29. Echocardiography results from conscious C57BL/6, 8-week-
old mice. A, Representative dynamic M-mode images from wild-type and 
Kcne4-null mice.  B, Cardiac dimensions and working parameters calculated 
from M-mode recordings. n = 6 male + 6 female mice per group; *, p < 0.05; 
**, p < 0.01; ***, p < 0.001 for Tukey pairwise comparison to wild-type 
following two-way ANOVA comparing genotypes after allowing for effects of 
sex. LVID, left ventricular internal diameter; FS, fractional shortening; EF, 
ejection fraction; HR, heart rate.
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diastole and systole, as well as reduced fractional shortening and ejection fraction 

compared to Kcne4+/+ littermates.  A similar trend toward reduced fractional shortening 

and ejection fraction was observed for C57BL/6 Kcne4-/- mice at age 30 weeks (Figure 

30), though the differences were not statistically significant.  No differences in left 

ventricular internal diameter nor fractional shortening or ejection fraction were observed 

in 129S6/SvEv mice (Figure 31), and no difference in heart rate was observed in any of 

the experimental groups.  Importantly, the echocardiography studies also allowed us to 

monitor for arrhythmias in conscious mice, and none were detected in any of the 

experimental groups. 

 

Consequences of Kcne4 knockout on cardiac physiology at the cellular level 

 

Shortened action potential duration 

We performed preliminary current-clamp experiments on ventricular myocytes 

isolated from adult C7BL/6 and 129/S6 Kcne4+/+ and Kcne4-/- mice, including two age 

groups for the C57BL/6 strain (6-7 weeks and 13-15 weeks).  Figure 32 and Table 10 

illustrate our findings for action potential duration, resting membrane potential, and peak 

membrane potential for each experimental group.  A significant shortening of the action 

potential was observed for Kcne4-/- mice in the C57BL/6 age 13-15 week group, but not 

in the others.  
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Figure 30. Echocardiography results from conscious C57BL/6, 30-week-
old mice. A, Representative dynamic M-mode images from wild-type and 
Kcne4-null mice.  B, Cardiac dimensions and working parameters calculated 
from M-mode recordings. Kcne4+/+ and Kcne4+/-, n = 6 male + 6 female mice 
per group; Kcne4-/-, n = 5 male + 4 female mice. LVID, left ventricular internal 
diameter; FS, fractional shortening; EF, ejection fraction; HR, heart rate.
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Kcne4+/+ Kcne4-/-

A

B

Figure 31. Echocardiography results from conscious 129S6/SvEv, 8-
week-old mice. A, Representative dynamic M-mode images from wild-type 
and Kcne4-null mice.  B, Cardiac dimensions and working parameters 
calculated from M-mode recordings. n = 6 male + 6 female mice per group. 
LVID, left ventricular internal diameter; FS, fractional shortening; EF, ejection 
fraction; HR, heart rate.
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 +/+  -/- t-test  +/+  -/- t-test  +/+  -/- t-test

n = 12 n = 15 n = 9 n = 11 n = 23 n = 18

(2 mice) (2 mice) (2 mice) (3 mice) (3 mice) (3 mice)

APD50 (ms) 11.0 ± 0.62 14.1 ± 1.21 0.064 13.1 ± 1.11 10.5 ± 1.12 0.122 8.14 ± 0.38 8.23 ± 0.46 0.885

APD90 (ms) 36.5 ± 3.39 44.2 ± 3.82 0.152 45.7 ± 4.65 31.6 ± 4.14 0.035 19.2 ± 1.26 21.0 ± 1.69 0.380

Resting Vm (mV)  -61.7  ± 1.01  -62.4 ± 0.57 0.485  -59.7 ± 1.46  -61.6 ± 0.68 0.231  -63.0 ± 0.64  -60.9 ± 0.44 0.013

Peak Vm (mV) 49.7 ± 1.92 56.4 ± 1.79 0.016 48.1 ± 3.69 49.4 ± 3.04 0.788 47.9 ± 1.37 47.7 ± 2.07 0.926

Table 10. Mean ± SEM for action potential parameters in ventricular 
myocytes from adult mice, plus p-values for student-t test comparing 
genotypes.

C57BL/6, 6-7 weeks C57BL/6, 13-15 weeks 129/S6, 8-10 weeks

p p p
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No change in Ito, Isus, or IK1 

We performed preliminary voltage-clamp experiments on ventricular myocytes 

isolated from adult C57BL/6 Kcne4+/+ and Kcne4-/- mice.   Figure 33 illustrates our 

findings for Ito, Isus, and IK1.  No significant differences in current density were observed 

at any test potential for any of the potassium currents.   

 

Discussion 

An important basic observation from these studies is that Kcne4-null mice can live 

a normal lifespan with no major gross deficits.  However, the collection of findings from 

focused phenotyping studies point to possible physiologic functions for Kcne4 in the 

mouse and help us assess our hypothesis that Kcne4 may be an endogenous negative 

regulator of repolarizing currents in the cardiac action potential.   

The broad set of data we acquired from Lexicon is useful as a preliminary screen of 

a number of physiological systems, but these data must be interpreted in the context of a 

major limitation: that the studies were performed on F2 mice on a hybrid background.  

Given that significant physiological differences exist among the C57BL/6 and 

129S6/SvEv strains, variability in genetic background among mice in the F2 generation 

makes it difficult to attribute any differences observed among groups of mice specifically 

to their Kcne4 genotype.  With this limitation in mind, specific findings that are worth 

follow-up studies in congenic strains include decreased body temperature and resting 

heart rate, elevated blood phosphorous and calcium levels, and reduced blood glucose 

levels in Kcne4-/- mice.  Collectively, these findings point toward potential metabolic 

disorders, which could involve impaired thyroid, parathyroid, or kidney function. 
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In considering specifically the effect of Kcne4 knockout on cardiac 

electrophysiology, the preliminary studies reported here provide some evidence to 

support our hypothesis that Kcne4 is an endogenous negative regulator of repolarizing 

currents in the mouse cardiac action potential.  The observation of a shortened QTc (rate-

corrected QT) interval by ECG in Kcne4-/- mice of both strains under isoflurane 

anesthesia (Figure 28) is consistent with that hypothesis: shortened repolarization time 

could be attributable to the absence of an inhibitor of repolarizing currents.   

The finding of a shortened QTc interval in Kcne4-/- mice by ECG is further 

supported by the observation of a shortened APD90 in isolated ventricular myocytes from 

C57BL/6 Kcne4-/- mice at age 13-15 weeks (Figure 32).  It is difficult to explain why 

shortening of the action potential was not also observed in 129S6/SvEv Kcne4-/- mice 

(given the observation of a shortened QTc interval in these mice), though a number of 

experimental limitations may play a role.  The data in Figure 32 reflect recordings made 

from cells that were isolated from just two or three mice per group.  A small sample size 

may magnify any effects attributable to variability in cell quality and/or cell origin (eg. 

epicardium versus endocardium), which cannot be ruled out given the challenging nature 

of the myocyte isolation procedure. 

These experimental limitations (small n, variable cell populations, imperfect 

recording techniques) may also explain why we did not observe any differences in K+ 

currents recorded in ventricular myocytes from adult C57BL/6 Kcne4+/+ versus Kcne4-/- 

mice (Figure 33), despite having observed a shortened action potential in Kcne4-/- mice.  

Alternatively, it is possible that Kcne4 knockout has no effect on ventricular K+ currents, 
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and the findings of shortened repolarization time by action potential and ECG recordings 

were merely artifacts.  Further studies are needed to resolve these inconsistencies and 

secure a complete set of reliable data. 

 

There were a number of findings from our cardiac phenotyping studies that we did 

not anticipate.  One example is the ECG finding of a shortened RR interval in Kcne4-/- 

mice in the 129S6/SvEv strain, with concurrent shortening of the PR and QRS intervals.  

These findings may indicate that pacemaker cells are firing at a higher frequency in 

Kcne4-/- mice, or that conduction from the sinus node through the AV node is occurring 

at a faster rate.  It should be noted that calculating the rate-corrected QTc interval allows 

for assessing the relative length of the QT interval compared to the overall RR length.  

Whereas the finding of shortened PR and QRS intervals can be attributed to shortening of 

the entire cardiac electrical cycle, the finding of a shortened QTc implies that other 

factors are at play to specifically shorten ventricular repolarization. 

The finding of a shortened RR interval in 129S6/SvEv Kcne4-/- mice is inconsistent 

with the report from Lexicon that Kcne4-/- mice have a lower resting heart rate, and also 

with our own findings from echocardiography studies (Figures 29, 30, 31) that there are 

no differences in resting heart rate among Kcne4 genotypes in either strain.  One 

interpretation that can reconcile these three conflicting findings is as follows: the results 

from the echocardiograms may be considered the ‘true’ or most meaningful data 

reflecting resting heart rate, since these experiments were performed in conscious mice 

from congenic backgrounds, whereas the Lexicon studies used mice from hybrid 

backgrounds, and our ECG finding of increased heart rate in Kcne4-/- mice may reflect a 
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difference in response to isoflurane anesthesia rather than resting heart rate.  

Alternatively, the dramatic inconsistency among these three studies of heart rate may 

reflect major limitations inherent in one or all of our experimental approaches. 

We also observed unexpectedly that Kcne4 knockout mice exhibit impaired 

myocardial contractility by 8 weeks of age.  Cardiac chamber dimensions of conscious 

mice measured via echocardiography suggest that C57BL/6 Kcne4+/- and Kcne4-/- mice 

have increased LV internal diameter during diastole and systole (LVIDD, LVIDS, 

respectively) and decreased LV fractional shortening (FS) and ejection fraction (EF) 

compared to wild-type (Kcne4+/+) littermates (Figures 29, 30, 31). While we did not 

anticipate this finding, we hypothesize that impaired myocardial contractility could be an 

additional functional consequence of enhanced repolarizing currents (such as Ito) in 

Kcne4-/- mice caused by dampened intracellular calcium transients and impaired 

excitation-contraction coupling, consistent with the relationship between Ito and Ca2+ 

signaling in rodents described by others156,173-176.  Further discussion of this hypothesis 

and a description of future studies that could be performed to test it directly can be found 

in Chapter V. 

 

Overall, we cannot draw many final conclusions but are presented with a number of 

interesting leads from the work reported here following initial characterization of the 

Kcne4 knockout mouse.  Important future directions not already mentioned include 

studying the electrophysiology of neonatal cardiac myocytes, which, compared to adult 

cells, express a different cohort of K+ channels and rely on a unique set of currents for 

repolarization (including IKs).  It is possible that Kcne4 is an important modulator of 
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neonatal K+ currents and that electrophysiological findings in Kcne4-/- mice may be more 

pronounced in this setting.  Other important considerations when interpreting any 

phenotyping data from the Kcne4-/- mouse include the possibility that the expression of 

other Kcne genes may change in compensation for the lack of Kcne4, as well as the 

important limitations described previously related to the imperfect parallels between 

human and mouse cardiac electrophysiology. 
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CHAPTER V 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

KCNE1-KCNE5 comprise a family of KV channel modulating proteins that evoke 

diverse functional effects, are expressed by a broad range of human tissues, and in some 

cases are known to contribute to cellular functions that are required for normal 

physiology. Though KCNE4 demonstrates a remarkable ability to extinguish distinct K+ 

currents in heterologous expression systems, we lack a clear understanding of both its 

mechanism for doing so and its physiologic significance. This project sought evidence 

that could improve our understanding of the physiological functions of KCNE4, through 

identification of its protein interacting partners and an assessment of the consequences of 

Kcne4 knockout in mouse cardiac physiology. 

 

A membrane-based yeast two-hybrid (MbYTH) screen for protein interacting 

partners of KCNE4 using a cDNA library from adult human brain yielded 98 clones that 

were positive for an interaction with KCNE4 based on both a primary growth assay and a 

secondary lacZ expression assay. Among those 98 clones we pursued follow-up analysis 

for 20, and ultimately identified their parent genes. These putative KCNE4 interacting 

partners include five membrane-associated proteins, eleven cytoplasmic proteins, three 

nuclear proteins, and one protein of unknown localization (Table 4). The set of 

interacting proteins did not include any KV channels as we had hoped, in order to identify 
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novel channel targets of modulation by KCNE4. However, identification of non-KV 

channel protein interacting partners did provide useful leads toward understanding other 

aspects of the function of KCNE4 – for example, its trafficking, its regulation, and 

potential cellular functions beyond direct modulation of channel activity. 

 

The MbYTH ‘hit’ with the most obvious potential for intersection with KCNE4 was 

calmodulin (CaM), which is a known modulator of voltage-gated ion channels including 

KCNQ1. Interactions between accessory subunits (e.g., KCNE) and other regulatory 

proteins associated with macromolecular channel complexes such as IKs are emerging as 

another layer of complexity in regulating channel function. We demonstrated a Ca2+-

dependent biochemical interaction between KCNE4 and CaM (Figure 21) and that 

KCNQ1 functional modulation by KCNE4 is impaired both upon mutation of a candidate 

CaM-interaction site (L[69-72]A) in the juxtamembrane region of KCNE4 (Figure 24) 

and by acutely chelating [Ca2+]i to displace CaM from KCNE4 (Figure 26). These 

findings suggest a connection between the mechanism of KCNQ1 inhibition by KCNE4 

and the activating effect of CaM on the channel. Whereas we had previously assumed 

that the inhibition of KCNQ1 by KCNE4 is caused by a direct effect of KCNE4 on the 

channel, the data in this study introduce the new possibility that KCNE4 inhibits KCNQ1 

by disrupting CaM-mediated activation. 

 

Analysis of a Kcne4-/- mouse constituted our other approach to uncovering the 

physiologic significance of KCNE4. We hypothesized that Kcne4 may be an endogenous 

negative regulator of repolarizing currents in the cardiac action potential, and that Kcne4-
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null mice might display a shortened QT interval, with possible implications for 

arrhythmia susceptibility or excitation-contraction coupling. Although the Kcne4-null 

mice did not display an increased susceptibility to arrhythmia versus their wild-type 

littermates, ECG analysis revealed that Kcne4-null mice of both the C5BL/6 and 

129S6/SvEv strains have a shortened QTc interval compared with wild-type mice under 

isoflurane anesthesia (Figure 28). Our hypothesis was also supported by the observation 

of a shortened APD90 in isolated ventricular myocytes from C57BL/6 Kcne4-null mice at 

age 13-15 weeks (Figure 32), though this finding was not consistent across both mouse 

strains. 

Unexpectedly, we also observed that C57BL/6 Kcne4-null mice have impaired 

myocardial contractility by eight weeks of age (Figure 29). Cardiac chamber dimensions 

of conscious mice measured by echocardiography suggest that C57BL/6 Kcne4+/- and 

Kcne4-/- mice have increased left ventricular (LV) internal diameter during diastole and 

systole and decreased LV fractional shortening (FS) and ejection fraction (EF) compared 

to wild-type littermates. 

 

Unanswered questions that remain or have been generated by this work include: 

What can we learn about KCNE4 in human cardiac electrophysiology from the Kcne4 

knockout mouse? What is the molecular etiology of left ventricular dilation and reduced 

fractional shortening in Kcne4 knockout mice? What are the non-cardiac phenotypes of 

the Kcne4 knockout mouse? How do KCNE4, KCNQ1, and CaM interact to yield the 

functional findings in Chapter III? What is the physiologic significance of the Ca2+- 
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sensitivity of KCNQ1 inhibition by KCNE4 and the KCNE4-CaM interaction? What is 

the functional significance of the other 19 KCNE4 MbYTH hits? 

 

Future Directions 

 

Biochemical and Functional Validation of KCNE4 interaction with MbYTH ‘hits’ 

The degree to which an apparent connection between KCNE4 and the other 19 

MbYTH hits exists varies considerably among the putative interaction partners. The 

appearance of several DNA-binding proteins among the ‘hits’ is particularly interesting 

in light of a previous study which described the ability of a C-terminal fragment of the 

voltage-gated calcium channel CaV1.2 to translocate to the nucleus and regulate 

expression of a number of genes through its interaction with other nuclear proteins130. A 

similar function is conceivable for KCNE4, especially because it has a long C terminus 

(unique among the KCNE proteins), the importance of which is not known. Because 

demonstration of an interaction with transcription factors has the potential to 

revolutionize our understanding of the function of KCNE4, studies are proposed here to 

pursue biochemical and functional validation of the interactions between KCNE4 and 

DNA-binding proteins SIRT2, GTF2H4, and CEBPZ. 

We can begin by validating the biochemical interaction between KCNE4 and each 

of the putative nuclear interaction partners by coimmunoprecipitation studies. The 

specificity of each interaction can be checked against the other KCNE proteins, which 

will also help elucidate which structural domains of KCNE4 are necessary for interaction 

with each nuclear protein. Subsequently, we can generate KCNE4 truncation constructs 
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by incremental removal of N- and C-terminal sequences and assess their interaction with 

the nuclear protein to define a minimal KCNE4 peptide sequence that is required for its 

biochemical interaction with the nuclear protein. 

If interaction between KCNE4 and any of the nuclear proteins is confirmed, then 

we can assess whether a KCNE4 cleavage product (including the minimal KCNE4 

sequence identified above) is detectable in native cells. Several different approaches can 

be used to this end: we can probe nuclear extracts from native cells using an antibody 

against the appropriate portion of KCNE4 and look for full-length KCNE4 plus the 

cleavage product by Western blot; alternatively, we can study localization of KCNE4 in 

intact cells by immunofluorescence to determine if KCNE4 localizes to the nucleus. 

If nuclear localization of a KCNE4 cleavage product is observed, then we can seek 

to identify genes it might regulate. As an initial approach, we can use microarray analysis 

to compare gene expression in cells transfected with full-length KCNE4 versus a 

truncation mutant that demonstrates deficient interaction with the DNA binding protein, 

and also versus cells transfected with empty vector. Any gene that is found to be 

significantly up- or down-regulated in the presence of KCNE4 can be further validated as 

a target of transcriptional regulation by KCNE4 using quantitative RT-PCR analysis or a 

reporter assay using the firefly-luciferase gene fused to the promoter/enhancer region of 

the target gene to assess relative expression in the presence versus absence of KCNE4. 

Anticipated Results: If we can demonstrate a biochemical interaction between 

KCNE4 and any of the DNA-binding proteins that were identified in the MbYTH screen 

as putative interacting partners, then we will have an intriguing lead toward a new role 

for KCNE4 as a potential transcriptional regulator. We expect that an interaction between 
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KCNE4 and a nuclear protein could only take place if a cleavage event liberated a portion 

of KCNE4 to translocate from the membrane to the nucleus. Identification of up- or 

down-regulated genes following KCNE4 expression may provide direct evidence linking 

KCNE4 to new cellular functions, which may or may not be related to any of the 

phenotypes observed in the Kcne4-/- mouse.  

Experimental Limitations: Proteolytic cleavage of the KCNE4 C-terminus to allow 

translocation to the nucleus and transcriptional regulation may only occur under certain 

cellular conditions. It may thus be difficult to determine and apply the conditions (eg. 

stimulation by a specific agonist, or free [Ca2+] within a certain range) needed to detect 

an interaction between KCNE4 and the candidate nuclear proteins or to elicit changes in 

the expression profile of a target gene, and negative results will be difficult to interpret. 

 

Further characterization of KCNE4-CaM interaction 

 

1. What molecular mechanism links KCNQ1, CaM and KCNE4? 

Our demonstration of a Ca2+-dependent biochemical interaction between KCNE4 

and CaM, and that KCNQ1 functional modulation by KCNE4 is impaired both upon 

mutation of a candidate CaM-interaction site in the juxtamembrane region of KCNE4 and 

by acutely chelating [Ca2+]i to displace CaM from KCNE4, suggests a connection 

between the mechanism of KCNQ1 inhibition by KCNE4 and the activating effect of 

CaM on the channel. Clearly delineating any link between these findings as it pertains to 

the mechanism of KCNE4 inhibition of KCNQ1 is the most important next step for this 

125



work. An enticing hypothesis that could tie these observations together is that KCNE4 

inhibits KCNQ1 by disrupting CaM-mediated KCNQ1 activation. 

Biochemical demonstration of disruption of the CaM-KCNQ1 interaction in the 

presence of KCNE4 would constitute strong evidence in support of our hypothesis, but 

this is difficult to achieve experimentally and there are likely to be multiple confounding 

interpretations of such experiments. For example, biochemical assays such as CaM-

agarose pull-down or co-immunoprecipitation require complete displacement of CaM 

from KCNQ1 in the presence of KCNE4 to yield an observable effect, whereas KCNE4 

may cause a conformational change that is sufficient to prevent transduction of the 

activating signal CaM provides to KCNQ1 without fully disrupting CaM and KCNQ1 

interactions. Further, we do not know the KCNQ1-KCNE4-CaM stoichiometry in 

functional channel complexes. The presence of KCNE4 may displace some but not all 

CaM molecules from a given KCNQ1 channel complex -- enough to affect channel 

function but perhaps leaving enough KCNQ1-CaM complexes intact to produce no 

observable change in a biochemical assay.  Finally, a given cell may express mixed 

populations of KCNQ1 channel complexes – some that include KCNE4 as well as some 

that do not, leaving the possibility that even when KCNE4 is coexpressed some KCNQ1-

CaM complexes will be intact, yielding a positive interaction by biochemical assay. 

Instead, a structural approach will probably be needed to address the question of 

whether the KCNQ1-CaM interaction is disrupted in the presence of KCNE4, and given 

the limitations described previously for solving structures composed of KCNQ1 and 

KCNE subunits, acquiring those data may depend on application of innovative methods 

for structural analysis. In the meantime, we can address the question indirectly by making 
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use of the KCNE1-KCNE4 chimeras we generated for a previous investigation into 

which domains of KCNE4 are required for its inhibitory effect on KCNQ148, and 

exploiting our observation that KCNE1 does not interact biochemically with CaM. By 

studying functional and biochemical properties of each of the chimeric proteins, we can 

assess whether the ability to inhibit KCNQ1 segregates with an ability to interact 

biochemically with CaM.  

Anticipated Findings: If our hypothesis is correct and the mechanism for KCNQ1 

inhibition by KCNE4 involves KCNE4 disruption of the CaM-mediated KCNQ1 

activation, then we expect to find that KCNQ1 inhibitory properties are conferred only to 

those KCNE1-KCNE4 chimeras that can interact biochemically with CaM. Ultimately, 

we can learn from structural studies how CaM mediates its activating effect on KCNQ1, 

and seek evidence that supports our hypothesis that in the presence of KCNE4 that effect 

is disrupted. 

 

2. What is the physiologic significance of the KCNE4-CaM interaction?  

The physiological implications of the interaction between KCNE4 and CaM may be 

significant, but are difficult to assign because of the primary lack of understanding of the 

physiological contributions of KCNE4. In heart, where KCNE4 could modulate 

repolarizing currents such as IKs, and where local free Ca2+ concentrations cycle 

dramatically, the Ca2+-CaM sensitivity described for KCNE4 may enable Ca2+-dependent 

regulation of repolarization time. Because repolarization time is critical for action 

potential duration as well as Ca2+ release and contractility, CaM-KCNE4 interactions 

might constitute part of a feedback loop for regulating intracellular Ca2+. 
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To investigate the physiologic significance of the KCNE4-CaM interaction, we can 

study guinea pig or rabbit myocytes expressing the CaM-insensitive KCNE4 mutant 

L[69-72]A. After applying overexpression techniques described below (biolistics or viral 

delivery of wild-type versus mutant KCNE4 cDNA), we can assess the effects of 

disrupting the interaction between KCNE4 and CaM on myocyte K+ currents, action 

potential duration and morphology, Ca2+ transients, and cell shortening. 

Anticipated Findings: If KCNE4 is an endogenous inhibitor of IKs in guinea pig or 

rabbit cardiac myocytes, then we expect that the CaM-insensitive KCNE4 mutant will 

exhibit impaired IKs inhibition, and we will record enhanced IKs and shortened action 

potentials in myocytes expressing L[69-72]A. Concurrently, we may observe altered Ca2+ 

transients and myocyte contractility due to effects of repolarization time on excitation-

contraction coupling. 

Experimental Limitations: Unless the L[69-72]A mutant exerts a dominant-negative 

effect, we may have to knock down endogenous Kcne4 in conjunction with expression of 

exogenous L[69-72]A in order to uncover its effects on native K+ currents. Lentiviral 

delivery of anti-Kcne4 shRNA sequences can be used to achieve this goal, as described 

below. Additionally, we may have to apply an adrenergic agonist or other factor that can 

upregulate CaM signaling in order to unmask any effects of the CaM-insensitive KCNE4 

mutant on native cardiac myocyte electrophysiology. 
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Further characterization of the Kcne4-knockout mouse 

 

1. What are the implications of shortened repolarization time in Kcne4-null mice 
for human cardiac electrophysiology? 

 
Given the differences between the human and mouse ventricular cardiac action 

potentials (most notably in repolarizing K+ currents, see Figure 27), it is important not to 

over-interpret findings in the Kcne4 knockout mouse when considering how KCNE4 

might contribute to human cardiac physiology. A valuable next step in testing how our 

mouse findings translate to more human-like cardiac electrophysiology is to assess the 

effects of KCNE4 silencing and overexpression in ventricular myocytes with a human-

like electrophysiological profile, for example those from guinea pig or rabbit. 

Guinea pig and rabbit ventricular myocytes are known to express similar 

repolarizing currents to those in humans177,178, and they can be cultured and genetically 

manipulated following isolation. We are currently optimizing protocols for several 

methods of gene silencing and overexpression in rabbit and guinea pig myocytes. 

Overexpression will be achieved either by biolistics or viral delivery of human KCNE4 

cDNA (plus a fluorescent marker to enable selection of cells expressing the exogenous 

subunit). Gene silencing will be achieved using lentiviral delivery of shRNAs targeting 

endogenous Kcne4; infected cells will also express a fluorescent marker and an antibiotic 

resistance gene for selection, and we will confirm Kcne4 knockdown with analysis of 

Kcne4 protein expression by Western blot, and/or of Kcne4 transcripts by quantitative 

real-time RT-PCR. 

Following KCNE4 overexpression or silencing of endogenous Kcne4, we will 

perform voltage-clamp and current-clamp experiments in order to record K+ currents and 
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action potentials, respectively, using methods described in Chapter IV for experiments on 

isolated mouse myocytes. By comparing K+ currents and action potential duration and 

morphology in cells overexpressing KCNE4 versus empty vector, or in cells following 

Kcne4 silencing with targeted shRNA sequences versus scrambled controls, we can 

directly assess the contributions of KCNE4 to the electrophysiology of ventricular 

myocytes in a cellular model with an electrophysiologic profile that closely resembles 

that of human cardiac myocytes.  

Anticipated Results: If KCNE4 is an endogenous inhibitor of repolarizing currents 

in these species (consistent with our hypothesis and with our findings in mice), we 

anticipate observing reduced K+ currents and increased action potential duration in 

KCNE4 overexpression studies, and enhanced K+ currents and reduced action potential 

duration in Kcne4 silencing studies. 

Experimental Limitations: As with any cells that have been cultured outside of their 

native environment, cardiac myocytes will be imperfect physiologic models by the time 

we record K+ currents and action potentials from them. Nonetheless, we expect these 

studies will provide valuable insight into the contributions of KCNE4 to cardiac 

electrophysiology. 

 

2. What is the etiology of impaired cardiac contractility in Kcne4-null mice? 

Our unexpected observation of left ventricular dilation and reduced fractional 

shortening in Kcne4-/- mice by 8 weeks of age warrants investigation into the connection 

between Kcne4 and myocardial contractility. Given our preliminary observations 

suggesting that Kcne4 is an endogenous negative regulator of cardiac repolarization, we 
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hypothesize that impaired myocardial contractility is a functional consequence of 

enhanced Ito in Kcne4-/- mice caused by dampened intracellular calcium transients and 

impaired excitation-contraction coupling, consistent with the relationship between Ito and 

Ca2+ signaling in rodents described by others156,173-176 and reviewed by Sah et al179.  

Ito is responsible for early phase repolarization during the cardiac action potential, 

and is closely linked to downstream excitation-contraction coupling.  The transient rise in 

intracellular free calcium [Ca2+]i that triggers cardiac myocyte contraction is generated 

primarily by Ca2+ influx from the sarcoplasmic reticulum (SR) through ryanodine-

sensitive Ca2+ release channels (RyR2).  In turn, RyR2 channels are gated by local 

increases in [Ca2+]i that occur with opening of sarcolemmal L-type Ca2+ channels (LTCC) 

in response to membrane depolarization179-182.  The tight regulation of LTCC by 

membrane voltage makes the amplitude, frequency, and time course of calcium transients 

(and by extension, myocyte contractility) susceptible to modulation by the action 

potential profile156,173,174,183.  The early repolarization phase of the cardiac action potential 

is particularly influential in regulating the open probability of LTCC and the efficiency of 

downstream excitation-contraction coupling (ECC)156,173,174,184.  Thus, factors that 

modulate the biophysical properties of Ito can regulate calcium transients and myocyte 

contractility179. 

Factors that decrease Ito and prolong early repolarization in rodents ultimately 

increase Ca2+ transients and potentiate contractile strength, as has been demonstrated in 

several settings: rat myocytes following administration of the Ito blocker 4-aminopyridine 

(4-AP)173, rat myocytes with decreased Ito following myocardial infarction174, and 

myocytes from transgenic mice overexpressing dominant-negative Ito subunits176.  This 
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effect is opposite that which is observed in larger mammals (including rabbits, dogs, and 

humans), in which Ito inhibition decreases Ca2+ transients and impairs ECC and myocyte 

contractility184.  This dichotomy is highlighted by work from the Backx laboratory179. 

There is considerable evidence suggesting that Ito is generated by channel 

complexes consisting of KV4.2 and/or KV4.3 pore-forming subunits, including extensive 

functional data from heterologously expressed candidate KV subunits185-187, observations 

of KV channel expression in native cardiac tissue188,189, results from mRNA knockdown 

and adenoviral gene transfer studies in native cardiac myocytes183,190-192, plus 

observations in transgenic animal models163,166,193,194.  However, Ito exhibits high 

variability in its biophysical properties among species and within cardiac regions of a 

given species91,92,194-197. 

Understanding of the regulation and molecular determinants of Ito is incomplete.  

Recent studies have examined whether the KCNE proteins may contribute to modulation 

of Ito, and electrophysiological data from CHO cells heterologously co-expressing KV4.3 

plus KChIP (a probable accessory subunit in the endogenous Ito channel complex) in 

addition to individual KCNE proteins indicates that each KCNE subunit is capable of 

modulating the biophysical properties of this reconstituted Ito-like current98. KCNE4 has 

been observed to modulate KV4.2-ChIP2 channels (specifically by slowing activation and 

shifting voltage-dependence of activation toward more positive potentials). KCNE4 was 

also found to co-localize with KV4.2 to transverse tubules of rat cardiac myocytes, and it 

was co-immunoprecipitated with KV4.2 and KChIP2 following heterologous expression 

in tsA201 cells97. Our preliminary mouse studies did not indicate that Ito is enhanced in 

cardiac myocytes from Kcne4-null mice, but a number of experimental limitations 
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(described in Chapter IV) could account for the negative results and further study is 

necessary.  

If we demonstrate that Ito is enhanced in Kcne4-null mice, we will pursue our 

hypothesis that Kcne4+/- and Kcne4-/- mice exhibit LV dilation and reduced FS and EF 

because of a functional effect: loss of Ito suppression by KCNE4, accentuated early phase 

repolarization and blunted intracellular calcium transients.  As a consequence, we predict 

that cardiac myocytes from Kcne4-/- mice will display blunted calcium transients and 

reduced cell shortening as compared to wild-type animals in response to electrical 

stimulation. Further, we predict that blocking Ito pharmacologically will restore normal 

contractility and correct aberrations in calcium signaling.  Our Kcne4 knockout mouse 

line enables us to directly test this hypothesis, using the following set of experiments. 

 

A. Further phenotypic characterization 

Because impaired contractility can arise from structural defects of the heart198 

including myocardial fibrosis, we first plan to perform post-mortem analysis of cardiac 

chamber morphology and histology to investigate this possibility. We can analyze major 

morphological features (including myocardium, valves, coronary arteries, and the great 

vessels) by dissection and gross examination.  Separately, we can study tissue sections 

stained with hematoxylin and eosin for histological analysis by standard light microscopy 

and Sirius red for quantification of fibrosis.  We will quantify right and left ventricle 

chamber size, and evaluate the extent of ventricular fibrosis. 

Additionally, to investigate whether there is age-dependence of impaired 

contractility, we can perform echocardiograms on conscious Kcne4+/+, Kcne4+/-, and 

133



Kcne4-/- mice at age 30 weeks and compare these findings stratified by sex and genotype 

with our data obtained on 8 week old mice.  Further, we can assess whether Kcne4 

knockout mice exhibit physiological and pathological signs associated with heart failure, 

by measurement of systemic blood pressure at ages 8 and 30 weeks, and by gross and 

histologic analysis of pulmonary morphology to look for signs of edema. 

Anticipated Results: We predict that gross and histological analysis of cardiac 

morphology will demonstrate that the hearts of Kcne4+/- and Kcne4-/- mice are free of any 

structural defects (such as valvular disease, coronary artery disease, aortic stenosis, or 

fibrosis) that could account for the observed impaired myocardiac contractility. This 

prediction is consistent with our preliminary inspection of the animals over several 

generations that suggest that general health does not deteriorate with advancing age. 

Further, we predict that 30-week-old Kcne4+/- and Kcne4-/- mice will display a similar 

degree of LV dilation and FS impairment as 8-week-old mice.  It is also conceivable that 

as the mice age their hearts engage compensatory mechanisms to restore adequate 

contractile strength and cardiac output.  If this is the case, then we can elucidate those 

mechanisms through electrophysiological recordings and measurements of calcium 

transients in cardiac myocytes using approaches outlined below. Similarly, we do not 

anticipate that Kcne4+/- and Kcne4-/- mice will exhibit overt clinical signs of heart failure 

but we need to systematically examine the animals for the potential pathophysiological 

consequences of impaired myocardial contractility to document the full spectrum of the 

phenotype.  
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B. Assessment of Ca2+ signaling and myocyte shortening 

We hypothesize that Kcne4-/- mice have impaired contractility due to diminished 

amplitude of intracellular calcium transients as a consequence of enhanced Ito.  We can 

test this hypothesis by comparing calcium transients and cell shortening in ventricular 

cardiac myocytes from Kcne4+/+ and Kcne4-/- mice. We will perform these studies using 

dual-beam excitation fluorescence photometry and the IonOptix system for measuring 

calcium transients and cell shortening in cardiac myocytes. 

After isolating individual ventricular myocytes from excised hearts of 8-week-old 

Kcne4+/+ and Kcne4-/- mice we will load the cells with the fluorescent calcium ratiometric 

indicator fura-2 acetoxymethyl ester (fura-2) and begin field stimulation with 1Hz pacing.  

After 5 minutes of steady-state pacing, we will obtain 10-second records of calcium 

transients and myocyte shortening, using excitation wavelengths of 360 and 380nm to 

monitor the fluorescence signals of Ca2+-bound and Ca2+-free fura-2.  Subsequently, we 

will expose the myocytes to 10 mM caffeine and record caffeine-induced Ca2+ transients 

to estimate total SR content.  After subtracting background and cellular autofluorescence, 

[Ca2+] will be deduced from the fluorescence ratio (Fratio) at 360nm and 280nm 

excitation199.   

Ca2+ transients and ventricular myocyte shortening will be analyzed using 

specialized data analysis software, allowing us to compare the following parameters 

between Kcne4-/- and Kcne4+/+ cells: diastolic calcium Fratio, peak Fratio of Ca2+ transient, 

time-to-peak, time to 50% peak, time constant of Ca2+ transient decay, time to 90% 

relaxation, SR Ca2+ content, fractional SR Ca2+ release, diastolic myocyte segment 

length, % fractional shortening, time to peak cell shortening, time to 50% peak cell 
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shortening, time to 90% peak cell shortening. If we observe abnormal Ca2+ transients 

and/or impaired cell shortening in Kcne4-/- cells, then we can test whether 

pharmacological Ito blocking agents such as 4-AP and Heteropoda toxin-3 (HpTx-

3)194,200,201 can normalize these cellular phenomena.  

Anticipated Results: We predict that ventricular myocytes from Kcne4-/- mice will 

exhibit a lower peak Fratio corresponding to field-stimulated Ca2+ transients, indicating 

smaller rises in intracellular calcium concentration in these cells as compared with 

myocytes from Kcne4+/+ mice.  Further, we predict that cell shortening will be attenuated 

in Kcne4-/- myocytes.  Time-to-peak Fratio and cell shortening may also be reduced if 

accentuated early repolarization in Kcne4-/- cells promotes shorter open-times for SR and 

plasma membrane Ca2+ channels. We further anticipate that pharmacological Ito blockers 

will normalize these defects and this would provide evidence for a link between this 

repolarizing current and contractile force. 

Experimental limitations: The proposed experiments are based on our observation 

that Kcne4-null mice have shortened action potential duration and our prediction that 

Kcne4 knockout is associated with increased Ito in ventricular myocytes. This association 

may occur because of a direct influence of KCNE4 on potassium channels responsible for 

Ito or alternatively because of an indirect effect, but our studies are not designed to 

differentiate between these two molecular mechanisms. 

For experiments with Ito blockers, we are severely limited by the lack of highly 

specific agents. It may be useful to test whether wild-type mice treated with a 

pharmacological Ito activator exhibit impaired contractility. We are aware of one such 

compound (NS5806 from NeuroSearch), and could potentially use this agent to test 

136



whether Ito augmentation is a plausible mechanism underlying impaired contractility in 

mice.  

We recognize that impaired contractility in Kcne4 knockout mice could have an 

extra-cardiac (neural, humoral, etc) etiology.  To rule out this possibility we could 

engineer a mouse line with cardiac-specific Kcne4 knockout with Cre/lox recombination 

technology and assess whether the contracile phenotype disappears despite normal Kcne4 

expression in extra-cardiac tissues. 

Finally, as addressed above, it is critical to assess any cardiac findings from the 

Kcne4-null mouse in a model that more closely resembles human cardiac 

electrophysiology. If Ito is a target of Kcne4 modulation in mice and its modulation has 

implications for Ca2+ signaling and myocyte contractility, then it is difficult to predict 

what the implications are for human cardiac physiology, for a number of reasons. As 

previously noted, different K+ currents account for repolarization in mouse versus human 

myocytes; additionally, the relationship between repolarization time and contractility is 

dichotomous across rodents and humans. It will thus be critical to study early 

repolarization, Ca2+ signaling, and cell shortening in guinea pig or rabbit myocytes upon 

Kcne4 overexpression or silencing to be able to apply findings in mice toward better 

understanding human physiology. 

 

3. What is the etiology of non-cardiac phenotypes of the Kcne4-knockout mouse? 

For this project we chose to focus on characterizing cardiac phenotypes of the 

Kcne4-null mouse, but recognize that there may be important consequences to Kcne4 

knockout beyond cardiac physiology. The broad expression of KCNE4 (observed most 
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prominently in kidney, skeletal muscle, testis, prostate, spleen, ovary, and uterus) 

suggests that it may contribute to important physiologic processes in a number of tissues. 

Further, other members of the KCNE family have previously been implicated in non-

cardiac physiology – notably, KCNE1 in K+ flux in hair cells of the inner ear that 

contributes to hearing61, KCNE2 in K+ flux that drives thyroid hormone synthesis110 and 

acid secretion by the stomach13, and KCNE3 in skeletal muscle excitability65. 

The data set generated by Lexicon’s multi-system survey of Kcne4-/- mouse 

physiology provides us with several interesting leads, but these data must be interpreted 

in the context of a major limitation: that the studies were performed on F2 mice on a 

hybrid background. Given that significant physiological differences exist among the 

C57BL/6 and 129S6/SvEv strains, variability in genetic background among mice in the 

F2 generation makes it difficult to attribute any differences observed among groups of 

mice specifically to their Kcne4 genotype. Before proceeding with any proposed follow-

up studies, the original findings comparing Kcne4-/- mice to wild-type mice should be 

confirmed in congenic strains. 

The most striking of Lexicon’s findings included: decreased body temperature and 

resting heart rate, and elevated blood phosphate (P04
2-) and free Ca2+ levels in Kcne4-/- 

versus wild-type mice. Collectively, these findings point toward potential metabolic 

disorders, which could signal impaired thyroid, parathyroid, or kidney function. The 

following experiments are proposed to pursue whether the absence of Kcne4 affects any 

of these physiologic systems. 

 

 

138



A. Decreased body temperature and bradycardia 

The findings of decreased body temperature and bradycardia are suggestive of 

hypothyroidism. Roepke et al.110 recently demonstrated that K+ flux through a channel 

complex comprised of KCNQ1 and KCNE2 subunits is necessary for I- uptake by 

thyrocytes and normal thyroid hormone synthesis, which leads us to hypothesize that 

KCNE4 may be an endogenous modulator of this current, possibly causing impaired 

thyroid hormone synthesis in Kcne4-/- mice. Further phenotypic characterization of 

Kcne4-/- mice at both the whole-animal and molecular levels will allow us to test this 

hypothesis. 

Assessment of thyroid function in Kcne4-/- mice should include analysis of the gross 

morphology of the thyroid and histology of thyroid follicular epithelia. Further, plasma 

levels of T3, T4, and TSH can be measured by ELISA and compared among Kcne4-/- and 

Kcne4+/+ littermates, along with I- uptake by positron emission tomography (PET) 

imaging to detect specific deficiencies. Depending on the findings of these experiments, 

rescue experiments can be performed (e.g. administration of T4 in Kcne4-/- mice if T4 

levels are low) to further assess whether thyroid deficits are responsible for low body 

temperature and bradycardia in Kcne4-/- mice. 

If impaired thyroid function is confirmed in Kcne4-/- mice, further experiments will 

be needed to uncover the molecular link between Kcne4 and thyroid hormone production. 

The TSH-sensitive K+ current generated by KCNQ1-KCNE2 channel complexes in 

thyrocytes may be a target of KCNE4 modulation and is the most obvious candidate 

linking KCNE4 to thyroid hormone production. To study this possibility it will be 

important to assess whether KCNE4 co-localizes or forms complexes with KCNQ1 and 
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KCNE2 in thyrocytes. Further, we can assess KCNE4 modulation of this current under 

basal and TSH-stimulated conditions using the rat thyroid-derived cell line FRTL5 and 

KCNE4 overexpression and gene silencing approaches described above for guinea pig 

and rabbit cardiac myocytes. 

Anticipated Results: If low body temperature and bradycardia in Kcne4-/- mice are 

attributable to primary hypothyroidism, we would expect these studies to show reduced 

T3 and/or T4 levels, elevated TSH levels, and enlarged thyroid glands and/or abnormal 

gland architecture in Kcne4-/- mice. Further, we would expect to be able to normalize 

body temperature and heart rate upon administration of synthetic thyroid hormone. If 

KCNE4 contributes to thyroid hormone synthesis by modulation of thyrocyte KCNQ1-

KCNE2 channels, we would expect to find co-localization of these subunits in native 

thyrocytes and altered biophysical properties of the current upon KCNE4 overexpression 

or silencing in FLTR5 cells. 

Experimental Limitations: These studies consider primary hypothyroidism as a 

potential etiology for reduced body temperature and bradycardia, but related possibilities 

not addressed include pituitary dysfunction causing secondary hypothyroidism, or 

systemic defects in responsiveness to thyroid hormone. Because the thyrocyte KCNQ1-

KCNE2 channel complex provides an obvious potential link to primary hypothyroidism, 

this etiology should be assessed first. 

 

B. Impaired Ca2+ and PO4
2- homeostasis 

Parathyroid hormone (PTH) and calcitonin are two important regulators of plasma 

Ca2+ and PO4
2- levels, and thus they capture our attention when considering findings of 
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elevated Ca2+ and PO4
2-  in Kcne4-/- mice. The parathyroid releases PTH upon sensing 

low free Ca2+ in the blood, and the effects of PTH include: stimulating osteoclasts to 

release Ca2+ and PO4
2-  from bone into the blood, stimulating vitamin D production by the 

kidney, which in turn stimulates intestinal epithelial cells to synthesize a Ca2+-binding 

protein to increase Ca2+ absorption from the gut, and stimulating the kidney to reabsorb 

more Ca2+ and excrete more phosphate in the urine. Conversely, calcitonin (produced by 

parafollicular cells in the thyroid) acts to reduce free Ca2+ levels in the blood by 

inhibiting release of Ca2+ and phosphate by osteoclasts and inhibiting tubular 

reabsorption of Ca2+ and phosphate in the kidney. 

Although none of these processes has been directly linked to K+ channel activity, 

we can speculate which points along the pathways might be affected by KCNE4 function, 

potentially contributing to a phenotype of increased Ca2+ and PO4
2-  in Kcne4-/- mice.  

They include: impaired calcium sensing by the calcium-sensing receptor (CaR), which 

acts upstream of PTH and calcitonin release in the parathyroid and thyroid parafollicular 

cells; hyperactive PTH production; hypersensitive or constitutively active PTH receptors 

in osteoclasts or kidney; augmented vitamin D production by the kidney; impaired 

calcitonin production; or impaired responsiveness to calcitonin in osteoclasts or kidney. 

The molecular mechanisms that regulate many of the processes described above are 

poorly understood, especially with respect to any dependence on K+ flux. Thus we must 

begin with a very broad investigation of the etiology of increased Ca2+ and PO4
2-  in 

Kcne4-/- mice, for example by comparing basal PTH, calcitonin, and vitamin D levels in 

Kcne4-/- versus Kcne4+/+ mice. Additionally, we can assess gross morphology and 

histological features of the parathyroid and parafollicular cells of the thyroid from Kcne4-
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/- mice for evidence of pathology. Expression of KCNE4 in these tissues plus osteoclasts 

should also be surveyed, as no studies have yet reported on KCNE4 expression by these 

cell types. Finally, bone density and calcification should be examined in Kcne4-/- mice for 

signs of excessive PTH stimulation of osteoclasts. 

Anticipated Findings: The experiments described here should help identify if PTH, 

calcitonin, or Vitamin D are implicated in the findings of elevated Ca2+ and P in Kcne4-/- 

mice. If one function of KCNE4 is to contribute to regulation of any of these factors, we 

might expect to see differences in their levels among Kcne4+/+ and Kcne4-/- mice. If such 

differences are observed, rescue experiments where applicable (i.e., administering a 

hormone found to be deficient in Kcne4-/- mice) might be useful in corroborating the link 

to elevated blood levels of free Ca2+ and PO4
2-. 

Experimental Limitations: We are limited to a very broad assessment of potential 

pathways that Kcne4 may contribute to in Ca2+ and PO4
2-  homeostasis, due to limited 

existing data describing molecular mechanisms that underlie these processes in normal 

physiology. Whereas these studies might identify gross abnormalities (such as impaired 

hormone production), more subtle defects will be more difficult to detect. For example, if 

Kcne4 modulates a K+ current that normally attenuates the intestinal epithelial response 

to vitamin D, the Kcne4-null mouse might have an augmented response to vitamin D (ie. 

excessive absorption of Ca2+) without showing abnormal levels of vitamin D or PTH. 

Further, these studies likely will not provide satisfying answers as to how Kcne4 

contributes to Ca2+ and PO4
2- homeostasis at the molecular level, but the findings they 

generate can be used to guide further investigation. 
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