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CHAPTER I 

 

BACKGROUND AND OBJECTIVES 

 

 The wealth of information offered to the life sciences by the success of the 

Human Genome Project4, 5 has lead to the revolutionary field of proteomics, the analysis 

of all proteins in a living system, which includes their post-translational modifications, 

spliced variants, covalent and non-covalent associations, spatial and temporal 

distributions within cells and how these are affected by changes in their environment6. 

The thousands or more proteins encoded by the genome are involved in numerous 

activities within tissue, and their expression levels and molecular forms are a 

consequence of genomic factors, post-translational modifications, regulatory processes, 

environmental factors and temporal processes7, 8. The net sum of these gives rise to a 

proteome expression level and distribution that reflects the integrated metabolic state of 

the cells in that tissue at any given time, such as in diseased or normal tissue.  

 Advanced technologies, including gel electrophoresis and mass spectrometry, are 

now used to facilitate a better understanding of human disease through proteomic 

analyses. Numerous collaborative efforts are underway, such as the Human Proteome 

Organization9, 10, to discover arrays of proteins that may serve as disease markers or 

therapeutic targets. Other organizations, such as the Human Proteome Atlas11 and the 

NCI Clinical Proteomics Technologies Initiative, specifically target cancer biomarkers. 

Despite these endeavors, little effort has been focused on the proteomics of cellular 

environments around tumor margins. Matrix-assisted laser desorption/ionization time-of-
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flight mass spectrometry (MALDI-TOF MS) is one of the few proteomic technologies 

that provides the precise spatial information needed to examine the proteomics of tumor 

progression and invasion. The application of MALDI-TOF MS to the proteomic analysis 

of tumor margins will be discussed in this chapter. 

 

Clinical Proteomics 

 There are several subsets of proteomics research. Many efforts focus on the large-

scale identification of proteins and their posttranslational modifications within a cell, 

tissue, or other biological sample (urine, serum, etc.) followed by characterization. The 

subset of structural proteomics involves determining the structure of these individually 

characterized proteins, while functional proteomics focuses on identifying protein 

functions and their biological interactions (pathways)12.  Though many research efforts 

remain focused on hypothesis-driven projects involving single or classes of proteins and 

their pathways, the field now includes discovery driven research. This field uses high-

throughput approaches such as 2D gel electrophoresis and mass spectrometry to compare 

the proteome expression levels and distributions of biological systems at any given point, 

such as different disease states. 

 These high-throughput approaches are used in the recently emerged field of 

clinical proteomics, which deals with the hypothesis that proteins can provide diagnostic 

and/or therapeutic solutions to cancer and other diseases, focusing on the comparison of 

the differential display of protein levels in different biological states (e.g. normal versus 

cancer). In differential display proteomics, one would hope to find unique markers 

(biomarkers), perhaps resulting from posttranslational modifications of proteins in the 
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cancerous cells or loss-of-function proteins, which are not present in one state in relation 

to the other.  Complete loss of function, however, is not always observed, thus most 

studies now aim to discover proteins that are significantly up-regulated or down-

regulated in the test system as compared to the control. It is also unlikely that a single 

protein biomarker will provide the sensitivity and specificity required for disease 

detection and prognosis; thus the focus is shifting from methods that analyze one marker 

at a time to high-throughput protein pattern-matching approaches, such as 2D gel 

electrophoresis and mass spectrometry, that facilitate the simultaneous measurement of a 

range of possible disease markers directly related to disease and cancer processes7, 12, 13.  

 

Update on Clinical Proteomic Technologies 

 

Gel Electrophoresis Approaches 

 

Polyacrylamide gel electrophoresis 

Conventionally, 2D polyacrylamide gel electrophoresis (2D PAGE) has been the 

protein separation technology most associated with proteomics and biomarker discovery. 

2D PAGE has been widely used over the last 40 years to resolve several thousand 

proteins from a single sample. In the first dimension of this 2D technology, proteins 

undergo isoelectric focusing (IEF), which separates biological species according to their 

net charge, or isoelectric point. During the second dimension, which is orthogonal to the 

first, proteins are separated by molecular weight. Gels are then stained with a visible or 

fluorescent dye, allowing for visualization of protein spots on the gel. Protein spots of 
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interest are then excised from the gel, digested, analyzed by mass spectrometry and 

identified by searching theoretical sequence databases. This technology has facilitated the 

identification of many proteins in tissues or subcellular fractions. For the field of clinical 

proteomics, 2D PAGE has been used to compare the relative abundances of proteins in 

related samples, such as differentiation between prostate cancer and benign prostate 

hyperplasia14, analysis of cerebrospinal fluid to find commonalities between 

Schizophrenia and Alzheimer’s disease15, determining markers of chronic lymphocytic 

leukaemia16 and of metastatic head and neck squamous cell carcinoma17.  

Despite its contributions, this technology has some major limitations in its ability 

to contribute to clinical proteomics. One pitfall is that it only produces qualitative data, 

thus providing no quantitative information relating to the extent of change in particular 

protein between disease states. A second drawback of the 2D PAGE approach is its 

considerable gel-to-gel variability. Lastly, normalization of gels is difficult to achieve 

because the most commonly used stain, coomassie blue, is protein dependent. The sum of 

the factors adds too much variability to the system, rendering it inadequate for differential 

analyses desired for clinical proteomics18.  

 

Two-dimensional difference in-gel electrophoresis 

 Circumventing the drawbacks of conventional 2D PAGE technology, 2D 

difference  in-gel electrophoresis (DIGE)19 offers high reproducibility and an increased 

dynamic range. This technology uses pre-electrophoretic labeling of samples with one of 

three fluorescent CyDyes (Cy2, 3, and 5). Two CyDye labels are available: N-hydroxy 

succinimidyl ester reagents that label the έ-amine groups of lysine residues and free N-
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termini, and maleimide reagents for labeling cysteine sulfhydryls. In a typical DIGE 

experiment, the protein mixtures to be compared are labeled with either Cy3 (e.g. cancer) 

or Cy5 (e.g. normal). The Cy2 is used on a pooled sample comprising equal amounts of 

each protein mixture20. This internal standard is used to correct for inter- and intra-gel 

variability. From the image information, spot volumes from each dye are calculated and 

compared. The presence of the same pooled standard on each gel allows for various 

statistical analyses despite having samples separated on different DIGE gels.   

This technology has been successfully applied to various clinical proteomics 

studies, including human breast cancer21, human esophageal cancer22, and human colon 

cancer23.  Although 2D gel electrophoresis has the highest resolving power of any 

multidimensional proteomic separation methods at up to 10,000 proteins, its limited 

loading capacity hampers its ability to identify low-abundant proteins. There are also 

difficulties in analyzing proteins with extreme isoelectric points, molecular weights 

(optimum 20,000 to 100,000 Da) and hydophobicities24. Although 2D gel electrophoresis 

separation technologies followed by mass spectrometry identification has been the most 

commonly used method for protein separation and protein identification, this method of 

proteome analysis remains challenging due to the individual extraction, digestion and 

analysis of each gel spot, which is a tedious and time-consuming process.   
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Mass Spectrometry Approaches 

 

Multidimensional liquid chromatography-tandem mass spectrometry 

 Many efforts have been underway to utilize multidimensional liquid 

chromatography (LC) approaches coupled to mass spectrometry to separate and 

characterize proteomes. In contrast to the tedious protein identification steps required 

post 2D gel electrophoresis techniques, this approach has the ability to identify proteins 

within a single, automated step. In brief, samples of interest (tissues, cells, subcellular 

fractions, or fluids) are homogenized and then, in most cases, digested into peptides. 

Peptides are then separated by two orthogonal chromatography steps followed by tandem 

mass spectrometry, which involves further fragmenting the peptides in order to obtain 

more database sequence coverage. This method can be done online or off-line.  The on-

line approach minimizes sample handling, limiting sample loss, because peptides elute 

from the LC directly into the mass spectrometer. This approach is limited to lower 

loading capacities. The off-line approach eliminates these major problems, but results in 

some sample loss. The method used will ultimately depend on the sample to be analyzed 

and the research objectives24-28. 

 While the second dimension separation is conventionally reversed-phase LC, 

several options are available for the first dimension separation step. Conventional 

approaches utilize liquid-phase ion-exchange chromatography as the first dimension, 

which allows for collecting fractions of peptides by varying isoelectric points in an off-

line approach. In the second separation, each of the fractions from the first dimension is 

subjected to reversed phase LC. This step is usually done on-line with a mass 
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spectrometer to obtain MS/MS information as peptides elute from the column. Other first 

dimension separations that have been combined with reverse-phase LC include size 

exclusion chromatography28, affinity chromatography (e.g. immobilized metal-affinity 

chromatography)29, and more recently immobilized pH gradient gel (IPG) isoelectric 

focusing (IEF). The latter approach offers increased confidence for protein identification 

by significantly reducing the rate of false positives. More detailed information on IEF 

peptide separation with IPG gels can be found elsewhere30-33. 

 A differential proteomics approach to the multidimensional LC-MS/MS 

technology is achieved by isotopic labeling.  Labeling approaches include reagents, such 

as ICAT34 and ITRAQ35, as well as metabolic labeling and enzymatic methods that 

include SILAC36 and trypsin-catalyzed 16O-to-18O exhange37. These approaches label 

specific residues, such as cysteines, lysines, amine- and carboxy-termini, of two different 

protein mixtures with either a light (e.g. 12C) or heavy (e.g. 13C) isotope tag. Depending 

on the label, the two mixtures are labeled then digested or digested first and then labeled. 

The two differentially labeled samples are mixed together and fractionated using 

multidimensional LC with subsequent relative quantitation of protein or peptide levels 

and identification by mass spectrometry.  Clinical proteomics-based research involving 

these technologies include markers for persistent Mycobacterium tuberculosis38, cisplatin 

resistance in ovarian cancer cells39, TGF-beta induction of epithelial-mesenchymal 

transition in lung cancer cells40, endometrial cancer41 and metastatic prostate cancer42. 

Although, theoretically, there is an unlimited dynamic range with this technology, most 

proteins identified are high molecular weight proteins, as their digested peptide fragments 

tend to saturate the protein mixture analyzed; thus, few low molecular weight (<20,000) 
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proteins are detected. Many reagents needed for labeling are expensive and the labeling 

processes can be laborious and time consuming, though this is not always the case.  

 

Accurate mass tag 

An alternative, label-free approach has been developed, which uses relative 

peptide peak intensities, after a normalization procedure, from peptides that have been 

analyzed by high resolution mass spectrometry with high mass accuracy. The differential 

quantitative analysis of samples using this technology involves three steps. First, a 

complex protein mixture from the system of interest is enzymatically digested and 

analyzed by 2D LC-MS/MS using an FTICR mass spectrometer. The resulting spectra 

are searched against protein databases, which allows for the creation of a customized 

protein database with accurate mass and normalized elution time lists of the system being 

studied. Next, enzymatic digests from the control and experimental state of the system 

(e.g. normal versus cancerous) are analyzed by LC-FTICR. Peptide identities are 

determined by searching against the customized database. Finally, abundance ratios are 

determined using peptides that are consistently identified in replicate experiments. 

Abundance ratios of peptides and their corresponding proteins are calculated to compare 

the two proteomes under comparison (e.g. normal versus cancer)43.  Although this is a 

potentially invaluable approach to clinical proteomics, it is not practical for most labs, as 

FT instruments are extremely expensive. 
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Mass Spectrometry Approaches without Prior Separation 

 The coupling of 2D gel electrophoresis and LC to mass spectrometry has played a 

major role in examining differentially expressed proteins in disease, cancer and toxicity 

studies, but since then, efforts have also focused on employing high-throughput MS 

technologies to directly analyze human samples (e.g. tissues, sera, urine) for differential 

proteome analysis of complex samples without prior separation. MALDI-TOF MS is 

high-throughput and robust. In contrast to the previously mentioned technologies, this 

approach also requires less tedious sample preparation and requires no prior separation 

steps. Utilizing MALDI-TOF MS, direct tissue profiling/imaging allows for in-situ 

molecular analysis to investigate the proteome while retaining spatial information, a 

characteristic lacking in classical proteomic tools.  

 

MALDI-TOF 

• Sample Preparation 

 In preparation for MALDI, the protein mixture of interest is mixed in about a 

1:5000 ratio with a small, acidic and energy absorbing organic molecule, called the 

matrix compound. Typical matrices used are 3,5-dimethoxy-4-hydroxycinnamic acid for 

proteins (sinapinic acid, SA), α-cyano-4-hydroxycinnamic acid for peptides, and 2,5-

dihydroxybenzoic acid for smaller organic molecules such as drugs. The matrix used 

depends on the chemistry of the analyte such as size, hydrophobicity, and salt content. A 

drop (~100-500 nL) of the analyte/matrix mixture is then placed onto a conductive 

MALDI target plate, where the matrix and analyte will then co-crystallize as the solvents 

evaporate.  
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• MALDI  

After sample preparation, the MALDI target plate is then placed into the mass 

spectrometer and irradiated with a series of brief laser pulses. The type and wavelength of 

the laser employed is important because molecular desorption is dependent on the 

wavelength used. Although most commercial instruments use ultraviolet lasers 

(commonly, nitrogen or frequency-tripled Nd:YAG), some infrared lasers have been 

utilized.  When the laser strikes the matrix crystals, the matrix crystals absorb the energy 

to photoionize. The plume of matrix and analyte molecules enter into the gas phase, 

where ions are formed through gas phase proton-transfer reactions, creating mostly singly 

charged analyte ions44-46.  A depiction of MALDI is summarized in Figure 1.  

• Time-of-flight mass analyzer 

The process of MALDI creates packets of large molecular weight ions in 

frequent, nanosecond laser pulses, requiring a mass analyzer, such as TOF analyzer47, 

illustrated in Figure 2. After ions are created in the MALDI ion source, the ions are 

accelerated into a field-free drift tube of fixed dimension (L) flanked on one end by a 

MALDI ion source and the other end by an ion detector48, 49. The ion source and drift-

tube are operated under high vacuum (10-7 to 10-8 Torr). Upon entry into the TOF mass 

analyzer, ions fly through a field-free drift tube prior to impacting the detector.  

 The total flight time (T) of an ion traveling through the system is a combination of 

the flight time spent in the ion source (ts) and the flight time spent in the drift tube (tL) 

before hitting the detector.  

T = ts + tL 
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The time ions spend in the source (ts) is a combination of the mass (m) of the ion and its 

acceleration. Assuming the desorption process includes negligible initial velocity, ts can 

be expressed as:  

ts = 2d√(m/2qU) 

where d and U correspond to the fixed dimension of the ion source and the fixed positive 

or negative potential bias on the sample plate, respectively. When leaving the source, an 

ion with mass (m) and charge (q) will have kinetic energy (KE) 

KE = mv2/2 = qU 

In the field-free drift tube of fixed dimension (L), where the velocity (v) of each ion is 

constant, the time-of-flight (tL) can be defined as: 

tL = L/v = L√(m/2qU) 

When combining the time spent in the source and the time spent in the drift tube, the total 

time-of-flight is expressed as: 

T = (2d + L)√(m/2qU) 

In summary the total flight time is proportional to the squared-root of the mass-to-charge 

ratio: 

T ∝ √ (m/q) 

Thus, as the equation suggests, larger molecules will reach the detector slower than 

smaller molecules. Once the ions hit the detector, spectra are recorded as the mass-to-

charge (m/q or m/z) of the ions and their relative intensities50-52.  

 As mentioned, the goal of clinical proteomics is to find biomarkers indicative of 

disease states.  All of the aforementioned clinical proteomic technologies have a common 

disadvantage: regardless of the analyte source, such as primary tumors, all samples must 

be homogenized. As discussed below, these issues have been overcome by the ability to 
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analyze biomolecules directly from tissue specimens, without the need for 

homogenization. 
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Figure 1: Sample/matrix co-crystallization and ionization. Matrix/analyte co-
crystals on the MALDI plate surface are irradiated with a laser pulse. Desorption of 
the matrix and analyte molecules occurs followed by ionization of the analyte 
molecules through proton-transfer reactions with the matrix molecules. 
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Figure 2: Schematic of a TOF analyzer. The instrument has two parts: 1.) an ion 
source of fixed length (d) where the desorption/ionization events occur and 2.) a field-
free drift tube of fixed length (L). From the source, ions are accelerated through the 
drift tube and hit the detector. Based on flight time, the mass-to-charge value for each 
ion is calculated, and the resulting mass spectrum is generated. 
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Direct Tissue Analysis by Mass Spectrometry for Clinical Proteomics 

 

Direct tissue analysis by MALDI 

The ability for MALDI-TOF technology to analyze complex biological samples 

such as cells and biological fluids has led to its use for direct tissue analysis. This 

approach eliminates the need for tedious and often time consuming sample preparation 

steps prior to analysis, offering the ability to analyze proteins and peptides while 

maintaining their spatial orientation within the tissue. Direct tissue analysis is referred to 

in two ways: profiling and imaging. As seen in Figure 3, profiling refers to sampling the 

area of tissue in discrete spots, whereas, imaging is a high resolution profile, in which the 

laser rasters at a defined spatial resolution across the entire surface of the tissue covered 

with matrix. The actual ion image is created using custom software that allows 

visualization of the spatial distribution and relative intensity of a particular ion across the 

tissue surface.  

Direct tissue analysis by MALDI was introduced by Caprioli et al.53 and is 

beginning to be used by other laboratories54-58. This technology has been used to detect 

drugs and their metabolites59, 60 as well as intact proteins and peptides53, 59, 61-66 directly 

from tissue. Profiling and imaging mass spectrometry have contributed greatly to clinical 

proteomics.  Examples include: Schwartz et al. identified prognostic markers for patients 

with brain tumors67 as well as potential diagnostic markers that differentiate between 

different glioma grades65; Xu and colleagues identified biomarkers indicative of 

glomerulosclerosis from laser capture microdissected cells68; protein expression changes 

detected by this technology have been linked to the prediction of tumor response to 
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molecular therapies59; protein profiles generated on an experimental animal model 

showed its potential in understanding Parkinson’s disease progression69; Yangisawa and 

colleagues70, 71 obtained profiles that were able to classify and predict histological groups 

as well as nodal involvement and survival in resected non-small-cell lung cancer; the 

effect of TGF-beta in mammary tumor development was also examined with this 

technology72. More recently, direct tissue analysis has shown potential to assess the 

proteomic characteristics of microenvironments around tumor margins that may go 

undetected by histological analyses [Figure 4]3.   
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Figure 3: Schematic involved in direct tissue profiling and imaging by MALDI 
MS. Adapted, with permission, from Caprioli et al.1. Copyright 2004 American 
Chemical Society 



 

18 

 

Figure 4: Preliminary analysis of tumor margins by profiling/imaging MALDI 
MS. This figure illustrates the potential ability of MALDI MS to characterize protein 
localization in the tumor microenvironment. (A) Optical image of H&E stained image 
marked by a pathologist. (B) Signals consistent with previously identified proteins are 
shown. Three-dimensional surface contour representations, created from ion density 
maps, are based on pixel intensity of the signal of interest. As shown, acyl-CoA binding 
protein is present only in tumor, whereas MLC 2 is present only in normal. Other 
proteins demonstrate a gradient-like distribution from tumor into the histologically-
defined normal tissue. (Reprinted, with permission, from Caldwell et al.3) 
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Direct tissue analysis by SIMS 

 A second approach to direct tissue analysis is time-of-flight secondary ion mass 

spectrometry (TOF-SIMS), which is similar to MALDI, but instead of using a pulsed 

laser, SIMS uses a pulsed primary ion beam (e.g. gallium or indium) to desorb/ionize the 

sample surface. The resulting “secondary” ions are then accelerated into the TOF 

analyzer. Primary ion sources are typically operated in the energy range of several 

hundred eV to several keV. The yield of secondary ions increases with increasing energy, 

but high energies result in more sample damage. The use of higher mass primary ion 

sources also enhances the yield of total secondary ions as well as having the capability to 

increase the secondary ions created in higher mass ranges of the sample73, 74.  

SIMS technology has been around since the 1970s but was primarily used for 

polymers and organic materials. With the invention of more efficient mass analyzers, 

such as TOF, SIMS was used for more variety of applications, such as biomaterial 

research.  Until recently, TOF-SIMS still suffered from the poor secondary ion 

production efficiency of the traditional gallium or indium ion beams, which limited the 

mass to low molecular weight species. Major breakthroughs have come more recently by 

the addition of gold cluster and bismuth ion guns as well as matrix enhanced SIMS (ME-

SIMS). More detailed information on these can be found elsewhere73. These advances 

have expanded the application of TOF-SIMS to direct tissue profiling/imaging of 

biomolecules. Mouse brain images have been obtained showing images of ions from 

cholesterol, fatty acids, sulfatides, phosphatidylinositols, and triglycerides74. Muscle 

tissue from mice with muscular dystrophy has also been imaged75. At current, the TOF-
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SIMS direct tissue technology is in the development phase, but holds potential to provide 

complimentary information to the current MALDI imaging technology. 

In comparison to MALDI, the ionization process is not as soft and generates many 

fragment ions rather than intact molecules. The current secondary ion production is also 

lower than desired, there are not as many higher molecular weight molecules produced, 

which limits its mass range (up to 1000 Da). An advantage of this is the lack of need for 

matrices, whose ions tend to dominate the lower mass as well as create adducts in 

MALDI. This could allow TOF-SIMS to be complimentary to MALDI when it comes to 

the tissue analysis of lower molecular weight biomolecules such as cholesterol, 

phospholipids, fatty acids, etc. Another advantage is the potential nanometer lateral 

resolution for bioimaging in contrast to the micrometer lateral resolution in MALDI 

imaging. This technology, however, needs further development before it can successfully 

facilitate biomarker discovery for high-throughput clinical proteomics applications. 

The strength of direct tissue analysis by mass spectrometry is the ability to obtain 

spatial information of biomolecules by directly analyzing tissue specimens. While this 

technology has been useful in obtaining biomarker information for cancer and other 

diseases, it has not been utilized for assessing molecular distributions in and around 

tumor margins.  This would provide a further understanding of how the molecular 

characteristics around tumor margins differ from what can be observed histologically and 

how these characteristics change with higher stage tumors. As indicated, a preliminary 

study with one sample shed light on the potential of direct tissue analysis by MALDI-

TOF MS to investigate these unknowns.  A more in-depth investigation, using clear cell 

renal cell carcinoma, established the methodology to examine these unknowns and 
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illustrated the ability of direct tissue analysis by MALDI-TOF MS to facilitate such a 

study. These results will be described in Chapter IV.  

 

Biocomputational Analyses  

The large, complex datasets produced by clinical proteomic studies described 

above require robust bioinformatics tools to assess the patterns and decipher the proteins 

that are important in differentiating one disease state from another. For clinical proteomic 

biomarker discoveries, resulting MS data from both diseased and non-diseased samples 

are compared, using computer algorithms, to discern a pattern consisting of several 

discrete MS peaks (amplitudes increased or decreased) that are significantly different 

between the two groups of subjects. The ability to process and decipher this vast amount 

of proteomic data was initialized for genomic microarray data, which produces similarly 

complex sets of data. Many of these algorithms have since been adapted for proteomic 

dataset analyses. Numerous methods have been developed and are still being developed, 

but some scrutiny exists because each biostatistics method can produce different results. 

Thus, it is important to consider carefully the methods used, and perhaps apply more than 

one algorithm in order to be more confident of the final results. A more detailed 

discussion of data treatment and analysis will be found in Chapter III. 
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Clear Cell Renal Cell Carcinoma 

 

 In 2005, there were approximately 36,160 new cases and 12,660 deaths in the 

United States attributed to cancer in the kidney or renal pelvis76. Of these, approximately 

75-80%2, 77 are renal cell carcinoma (RCC), which includes a group of unique 

histological subtypes: clear cell (conventional) RCC, papillary (chromophil) RCC, 

chromophobe cell RCC, collecting duct RCC, medullary RCC, mucinous tubular and 

spindle cell RCC and other unclassified tumors78.  The majority (80%) of RCC cases are 

classified as clear cell RCC (ccRCC)77, called such because of the high content of lipids 

and cholesterol, creating a clear cytoplasm78. Clear cell RCC is also the most malignant 

of renal tumors, having the worst prognosis of all subtypes.  

 

An Update on ccRCC 

 

Genetics of ccRCC 

 Clear cell tumors occur in a hereditary form or a sporadic form. The inherited 

ccRCC is associated with the von Hippel-Lindau (VHL) syndrome79. Besides possible 

tumor development in the kidneys, individuals with VHL may also develop tumors in the 

cerebellum, spine, retina, inner ear, pancreas or adrenal glands80, and are always those of 

the clear cell subtype81, with affected individuals being at risk for up to 600 clear cell 

renal carcinomas per kidney82. Approximately 90% of sporadic ccRCC tumors involve 

the short arm of chromosome 3 (3p)83-85.  
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Physical Attributes of ccRCC 

 In many cases ccRCC is clinically silent for years and discovered through 

symptoms from metastasis86; however, when symptoms are present, ccRCC may present 

itself with pain, as a palpable mass, or with hematuria. Grossly, the majority of ccRCC 

tumors are solitary and randomly distributed in the renal cortex. The mass is usually 

present as a rounded, lobulated, yellow mass that may protrude from the renal cortex. The 

size of the tumor can range from millimeters to weighing several kilograms. Although a 

yellowish color is typical, most tumors have a diversified coloration due to the presence 

of hemorrhage and necrosis. The majority of ccRCC masses may be well-confined from 

adjacent tissues or invade the adjacent renal tissue in an infiltrative manner. Most ccRCC 

tumors demonstrate a compact alveolar structure, containing numerous capillaries and 

thin-walled blood vessels in the surrounding stroma. This is a diagnostic feature 

commonly retained in the ccRCC metastases. Clear cell tumors occur with equal 

frequency in either kidney, with bilateral tumors existing in 0.5-3% of patients2, 78, 86, 87.  

 Microscopically, ccRCC tumors have transparent cytoplasms, containing variable 

amounts of cholesterol, glycogen, neutral lipids, and phospholipids, with cells having 

well-defined cell membranes. Some cells will have a granular eosinophilic material 

around the nucleus and are characteristic of higher nuclear grade tumors. In clear cell 

tumors, the nuclei are round and oval and somewhat regular, but heterogeneity can exist 

within a single tumor, such as in ccRCC where sarcomatoid differentiation can occur, as 

discussed below2, 78, 87. 
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Clinical Assessment of ccRCC 

 Preoperative assessment of RCC patients has three major aims: diagnosis of RCC, 

assessment of the tumor stage, and determination of details needed to plan the operation. 

Renal cell carcinoma is resistant to non-surgical methods, and needle biopsies of renal 

masses are prone to inaccuracy and so are not recommended for treatment decisions88, 

thus, these tumors are primarily managed by surgery89. Once the diagnosis of RCC has 

been made, the staging is accomplished using radiologic assessment (MRI and 

multidetector computed tomography) of the local coverage, determination of whether or 

not there is venous or nodal involvement, and assessment of the lungs and liver for 

potential metastatic lesions89.  

The conventional and non-subjective diagnostic system used is the TNM staging 

system, which is the most important prognostic factor due to its positive correlation 

between the tumor at the time of diagnosis and its future prognosis. Although various 

schemes have been applied, the most widely used system is based on that proposed by the 

International Union Against Cancer (IUAC) and the American Joint Committee on 

Cancer (AJCC).  The TNM (primary tumor, lymph node, metastases) system is based on 

anatomical examination and imaging, with the stages noted by pT, pN  and pM.  Many 

combinations of T, N, and M exist, but each combination can fit into one of four stage 

groups [Figure 5]. This system was established in 1978, but has undergone numerous 

modifications, with the current system being modified in 2002, and remaining under 

constant review2.  

Post surgical excision, the Fuhrman system90 is conventionally used to classify 

tumors (fixed an paraffin-embedded) based on cellular morphology, including nuclear 
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size, contour, and the presence of nucleoli. Grade I tumors have small (~10 µm), uniform 

nuclei, with inconspicuous or no nucleoli visible2, 78, 86. Grade II tumors have larger 

nuclei (~15 µm) with variable sizes with some nucleoli visible at high magnification 

(400x). Grade III tumors present larger and more pleomorphic nuclei with prominent 

nucleoli visible at lower magnification (100x). Large, multilobulated nuclei are seen in 

Grade IV tumors, which sometimes demonstrate spindling and severe nuclear anaplasia, 

resembling a sarcoma, which is then referred to as the sarcomatoid variant of ccRCC. 

When tumor heterogeneity is present, Grade IV is always assigned78, 86.  In contrast to the 

TNM staging, the histology grading system is much more subjective and tends to vary 

between pathologists, meaning that two pathologists may assign two different grades to 

the same tumor based on their individual assessments. 
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Figure 5: 2002 TNM classification and stage groupings for clear cell renal cell 
carcinoma. (Adapted from Grignon et al2)
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The Need for ccRCC Tumor Markers 

 The determination of molecular markers that can be used to determine 

progression of a disease or its arrest, are essential to evaluate patients with RCC both to 

initiate new adjuvant treatments and to predict disease evolution. As mentioned, clinical 

staging is a valuable tool for ccRCC because of its high correlation with patient 

prognosis; however, no molecular markers are available to confirm the diagnosis or aid in 

further understanding of how this cancer spreads anatomically. Furthermore, new 

adjuvant therapies are greatly needed because ccRCC is virtually resistant to 

conventional chemotherapy or immunotherapy, thus known molecular markers that 

coincide with tumor stating could help determine which treatment would best suit 

individual needs based on the tumor characteristics, both anatomically and molecularly91.   

Over several decades, many possible prognostic factors have been studied but few 

of them have maintained an independent significance in terms of overall survival as 

assessed by multivariate analysis92-94. With this said, the clinical means used to assess 

these tumors remain to be stage, histological grade and performance status of the patient. 

There has yet to be identified any molecular or cytogenetic tumor marker that can help 

diagnose, manage or confirm ccRCC.  

 

Gene Expression Profiling of RCC 

 Until recently, most molecular studies on RCC only classified renal cell tumors as 

one group from normal kidney but did not focus on genes specific to individual subtypes, 

which is crucial information for diagnosis, prognosis, and therapy of RCC, because each 

subtype has a different clinical outcome.  Recently, Schuetz et al.95 used oligonucleotide 
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microarrays to analyze 31 adult renal tumors consisting of ccRCC, papillary RCC, 

chromophobe RCC, oncocytoma, and angiomyolipoma tumors. Their results showed that 

ccRCC over-expressed 402 and under-expressed 220 genes. The over-expressed genes 

included mostly immune response genes, such as major histocompatibility complex II 

genes, and angiogenic factors. The clear cell subtype also expressed markers of proximal 

nephron epithelium, such as cubilin (CBLN) and megalin/low-density lipoprotein related 

protein 2 (LRP2), which were consistent with histogenetic models that relate ccRCC 

subtype to proximal nephron epithelium. Overexpression of angiogenic factors and 

receptors were also observed.  

 In a microarray analysis of 33 RCCs (clear cell and chromophobe) and 9 normal 

kidneys samples, Yao et al.96 found 149 genes to be three fold higher in ccRCC than in 

chromophobe RCC and normal kidney. Out of those genes, adipose differentiation-

related protein and nicotinamide N-methyltransferase were selected for further analysis 

and their overexpression was confirmed by real-time quantitative PCR and 

immunohistochemistry. The adipose differentiating-related protein is a lipid storage 

protein whose transcription is considered to be regulated by the von Hippel-

Lindau/hypoxia-inducible factor pathway, suggesting the possibility that sustained 

upregulation of this gene following VHL inactivation is involved in the morphological 

appearance of ccRCC.  

 Gene expression profiling of ccRCC tumor tissue from 10 patients by Diegmann 

et al. identified CD70 as a diagnostic biomarker for ccRCC, followed by confirmation 

using real-time RT-PCR and immunohistochemistry (IHC). Other genes found 

differentially expressed in their studies, between ccRCC tumor and normal kidney, that 
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were also identified by others include VWF, VEGF, VCAM1, PAI1, HEVIN, CCND1, 

CALB1, CXCR4, collagen types II and IV, integrin type alpha I, alpha 5 and beta 2, and 

FRA2, but half of these genes showed greater than twofold expression in only 50-70% of 

the patients studied.  

 In another study, Kosari and colleagues77, were able to correlate survivin (BIRC5) 

with ccRCC aggressiveness by gene expression analyses. Survivin, a member of the 

inhibitor of apoptosis protein family, has been associated with aggressive behavior in 

tumors of the larynx97, prostate98, lung99, and stomach100. Several genes showed increased 

expression in aggressive (high TNM stage) primary tumors (n = 9) as compared with 

nonaggressive (low TNM stage) tumors (n = 10) ccRCC. These included IL8 (chemokine 

for inflammatory cells), SAA2 (serum amyloid A2), and CSK2 (CDC28 protein kinase 

regulatory subunit 2). Many genes were found to have decrease expression, including 

NX17 (kidney specific membrane protein) and PLN (phospholambin). In this study, they 

used three different biostatistics algorithms and reported the best candidate biomarkers 

common to all three of the algorithms.  

 

Proteome expression profiling 

Proteins are encoded by genes, but their cellular production and activity is often 

controlled independently. Because proteins are the direct effectors and mediators that 

determine disease phenotypes, it is advantageous to take a proteomic approach to 

establish markers for diagnostics and prognostics. Numerous investigations have been 

undertaken to search for a protein marker for RCC, which would be useful, not only to 

use in conjunction with diagnosis and prognosis, but also as potential targets for therapy. 
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Most of these studies, however, are nonspecific, and investigate RCC as a group and not 

as individual subtypes. Another problem is the lack of sensitivity of some of these 

biomarkers to be used in the clinical setting such as for histopathological analysis by 

immunohistochemistry.  

In a study, Sarto et al.101 used 2D PAGE to study the normal and tumor kidney 

tissues from ten patients with RCC of different subtypes. For protein identification, the 

authors used one or more of the following techniques: gel comparison with other SWISS-

2D PAGE reference maps, amino acid composition, N-terminal sequence analysis, and 

immunostaining. Their studies showed a loss of expression of four proteins occurring in 

RCC. Only two of them, ubiquinol cytochrome c reductase and mitochondrial NADH-

ubiquinone oxidoreductase complex I, were successfully identified. Seliger and 

colleagues102 used 2-DE followed by peptide mass fingerprinting (PMF) using MALDI-

TOF MS of human cell lines from primary RCC lesions and normal renal epithelium to 

identify and validate the variable expression patterns of fatty acid binding proteins in 

RCC. While cell lines are valuable research systems, primary tissue samples are desired 

because they incorporate human heterogeneity into the study.  

In a study with clear cell renal cell tumors, Hwa et al.103 used 2D PAGE followed 

by MALDI-MS PMF analysis to obtain the proteome profiles of surgical specimens from 

ccRCC and surrounding normal kidney from a small set (n = 7) of patients.  Two 

proteins, vimentin and alpha-1 antitrypsin precursor, were dominantly expressed in 

ccRCC. Proteins with repressed expression in ccRCC as compared to normal were 

aminoacylase-1, anoyl-CoA hydratase, aldehyde reductase, tropomyosin alpha-4 chain, 

agmatinase and ketohexokinase. The current number of reports applying whole proteome 
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analysis to clear cell and other renal tumors has been limited due to the lack of animal 

models for any subtype of RCC. Since primary tumors represent human and cellular 

environment heterogeneity, surgical tissue specimens are desired, yet it is difficult to 

obtain the quantity needed for statistical validation. Information on other RCC proteomic 

studies can be found elsewhere2, 78, 87, 104, 105.  

 Despite the recent advances in RCC studies using integrated functional genomics 

and proteomics, the discovery of an early biomarker or set of biomarkers suited for use in 

the clinical setting for diagnosis or confirmation of the prognostic-like staging of any of 

the RCC subtypes has yet to transpire. Thus, more proteomic studies, with a larger set of 

samples, focusing on individual subtypes of RCC as well as addressing the molecular 

characteristics indicative of  tumor stage are much needed104. This study aims at utilizing 

direct tissue analysis by MALDI-TOF MS to facilitate the discovery of biomarkers 

indicative of the clear cell subtype and its different tumor stages, which coincide with 

patient prognosis. 

 

Problems with the Surgical Management of Tumors 

 One of the major issues in clinical oncology and pathology is ensuring complete 

tumor removal, which is essential for decreasing tumor recurrence rates106.  Currently, 

histopathological assessment of hematoxylin and eosin stained sections of the resected 

tumor is the primary post-operative, and in some cases intraoperative, method for 

assessing surgical margin status. Depending on the type of tumor, the margins analyzed 

can be taken one to two centimeters away from the gross tumor margin. If a microscopic 

tumor is present at the surgical margins, the rate of local recurrence increases and the 
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survival rate decreases107. Incomplete removal significantly influences the likelihood of 

local recurrence in many cancers, such as lung108,  breast109, soft tissue110, 111, head and 

neck107, 112, and brain113. Depending on the type of tissue, recurrence can occur a few 

months to a few years after removal of the primary tumor.  Given that molecular 

alterations precede phenotypic changes, the environments outside of the histological 

tumor margin may not yet appear abnormal upon histological assessment, which renders 

conventional histological methods inadequate in being the only determinant in successful 

resection. With the lack of understanding on how seemingly normal cells become 

transformed into malignant cells outside the tumor margin and the inability of 

pathologists to visualize this transformation, molecular markers have the potential to 

change the way clinicians analyze margin status by providing an additional, and yet 

complimentary, way to identify aberrant tissue environments outside of the histological 

tumor margin107.  

 

Clinical Concern for RCC Margin Status 

Due to the oncologic success of the radical nephrectomy procedure for renal cell 

carcinoma, it has become the standard treatment for RCC. However, for patients with 

RCC in a solitary functioning kidney, or those with RCC arising bilaterally (both 

kidneys), alternative approaches are needed. This was the initial reason for establishing 

the use of nephron sparing surgery (NSS) (also called partial nephrectomy), however, 

uses for this technique have broadened over time and now include avoiding complete 

removal of the kidney in patients without the aforementioned imperatives. These patients 

include individuals in whom the normal contralateral kidney could be under potential 
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future threat from hypertension, diabetes mellitus, or hereditary cancer like von Hippel-

Lindau syndrome.  Lastly, more kidney tumors are caught early on while they are small 

and radical nephrectomy represents over treatment. For these small tumors, NSS is also 

more appropriate because it can prevent potential problems such as hyperfiltration injury 

to the contralateral kidney89.  

 Unlike radical nephrectomies, the oncologic effectiveness of NSS has been 

questioned, with the main concern being tumor involvement of the surgical margin. 

Surgeons have no true guidelines on how large of a surgical margin is needed to ensure 

complete removal of the tumor. While sparing as much of the kidney as possible, 

clinicians also need to ensure that the tumor is completely removed in order to eradicate 

the possibility of recurrence.  Traditionally, it has been recommended that the tumor be 

resected with at least a 10 mm margin of normal parenchyma114, however recent data 

provides evidence that a smaller margin might be adequate115-117. The optimal approach 

to ensure an uninvolved margin would be to perform an excision with a generous portion 

of normal tissue around the tumor, however, this would result in the loss of more healthy 

nephrons, which is not a realistic option for patients with solitary kidneys or those with 

renal insufficiency118.  

 

In-Situ Molecular Assessment of Tumor Margins by MALDI MS 

 Proteomic tools would be invaluable to discover how proteins change within 

tumor margins and the cellular characteristics in the environments that are just outside of 

the histologically-defined tumor boundary. Such studies would provide an estimate of 

how far outside the histologically-defined margin that cells are compromised. To 
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accomplish this task, proteomic methods must first be developed and applied to a system 

to determine the effectiveness of the methodology and how it can be applied to any 

system.  

 

Summary and Research Objectives 

 Proteomics tools, such as 2D gel electrophoresis and LC-MS/MS strategies, have 

been successfully applied to facilitate the discovery of potential disease biomarkers; 

however, many of these tools are not very high-throughput and offer no information on 

the spatial distribution of biomolecules. The introduction of direct tissue analysis by 

MALDI-TOF MS for clinical proteomics has overcome high-throughput limitations 

while allowing for the collection of spatial information. Multiple sample analyses can be 

obtained in a day, which includes sample preparation and MS analysis. Direct tissue 

analysis by MALDI MS has proven useful for discovering protein patterns that 

distinguish between disease states, such as tumor and normal, as well as patterns that 

correlate with tumor stage and patient survival. The major strength of this technology, 

which is the ability to incorporate spatial information of biomolecules, has not been used 

to investigate one of the major problems facing clinicians and cancer patients, that is, 

how far outside of the histologically-defined tumor margin should surgeons resect to 

ensure complete tumor removal. 

 This research focuses on the application of profiling/imaging MALDI MS direct 

tissue analysis to the examination of tumor margins, using clear cell renal cell carcinoma, 

while also discovering molecular species that may distinguish between tumor stages and 

tumor grades. The goal of this study is to develop a methodology that can be applied to 
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any tumor margin system, with slight modifications. Clear cell renal cell carcinoma is not 

an attractive tumor for this study when considering its incidence and mortality as 

compared to other tumors; however, tumor margin status in ccRCC is now a concern due 

to the increasing demand for nephron sparing surgeries. Since the clinical management of 

this tumor is radical nephrectomy, ccRCC is an ideal system for this study due to the ease 

of acquiring the samples needed in contrast to other systems. The overall goal of this 

study was to determine the molecular characteristics of the cells outside of the tumor 

margin that appear histologically normal yet may actually be compromised.  It is thought 

that there are molecular signatures and indicators of abnormal cellular development 

outside of the histological tumor margin, and that these molecular signatures can be 

correlated with tumor aggressiveness.  

  

Using profiling/imaging MALDI MS, this research was conducted under the following 

objectives: 

 

I. Determine if there are molecular indicators of aberrant cellular environments 

outside of the histological tumor border 

II. Correlate molecular expression patterns with pathology-based tumor 

classification 

III. Determine expression patterns of biomolecules that traverse the tumor margin 

into the adjacent normal tissue and correlate these with pathology-based tumor 

classification 
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Successful completion of these objectives will provide a methodology by which 

tumor margin characteristics can be investigated in other cancers. Identifying molecular 

patterns specific to ccRCC will enhance the ability to accurately diagnose patients by 

providing an additional molecular markers. Identifying characteristics of the cellular 

environment outside of the histologically-defined margin will not only provide new 

biological insights into the way margins are currently assessed, but provide a method by 

which the molecular events around the margin may be assessed in tumor types. In the 

long term, new molecular markers are needed to augment the current histopathological 

assessments of tumor margins to ensure complete tumor removal. These features will also 

allow for future, functional studies to better understand the mechanisms of local ccRCC 

tumor spread. 
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CHAPTER II 

 

TISSUE PREPARATION AND MASS SPECTROMETRY ANALYSIS 

 

Sample preparation procedures for direct tissue analysis by MALDI MS must be 

optimized for each tissue type to achieve sensitive and reproducible results required for 

protein profiling and subsequent statistical analyses. This chapter describes aspects of 

tissue sample preparation and MS analysis, including MALDI target plate selection, 

matrix solution deposition, and MS parameters to fine-tune for optimal signal. Lastly, this 

chapter includes a discussion on aspects of experimental design needed to minimize 

biases prior to statistical analysis.   

  

Tissue Preparation 

 Tissue preparation procedures are important in experimental design. Proper 

handling of tissue will maintain the in vivo state of the sample, the three-dimensional 

shape of the sample and the spatial orientation of the biological compounds. Thorough 

forethought must be given to how the sample is collected, sectioned, and thaw-mounted 

onto a MALDI target plate, as well as what type of target plate is used and how the 

matrix is applied. Finally, the importance of consistency in preparation will be discussed. 

 
 
Tissue Collection 
 
 Depending on the study, the tissue specimens collected for research come from 

animal models or humans and similar considerations apply to both, but the collection of 
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human specimens, which were used in this study, is more difficult to control. Many 

studies require interdepartmental collaborations, as well as, patient consent. The first 

priority of clinical staff is the well-being of the patient, but after tissues are taken for 

clinical diagnosis, an additional specimen is acquired for research purposes. When 

surgically excising and storing the specimen, it is important to maintain the three-

dimensional shape of the tissue and minimize protein degradation. As the focus is on the 

well-being of the patient, the first priority of the operating room staff is to get the 

resected tissue to the pathologist for evaluation. Post-resection, the tissue will usually sit 

at room temperature for some time prior to piecing off the sample needed for pathological 

analysis. After a sample is set aside for pathology, it is kept on ice, and a piece of this 

sample is removed for the requesting researcher. The research specimen is then held on 

ice or in a refrigerator until it is snap-frozen in liquid nitrogen. Ideally the procurement 

process should take a maximum of 30 minutes, though few studies have examined how 

quickly the molecular content of surgical specimens degrades. Nonetheless, short 

procurement times will minimize protein degradation and maintain consistency in 

specimen collection that could otherwise be a source of variability in the final 

experimental results. 

Sample freezing is accomplished by one of two methods. In the first method, the 

tissue is loosely wrapped in aluminum foil and slowly frozen by lowering the tissue into 

liquid nitrogen over a one-minute time period. The alternative approach is to create a 

floating aluminum foil boat for the sample to lie in, which will gently freeze it in 

approximately one minute. Rapidly immersing the tissue into the liquid nitrogen is not 

recommended because it often shocks the tissue, causing sample cracking and brittle 
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edges119, 120. Snap-freezing tissue specimens into liquid nitrogen helps preserve the shape 

and greatly slows biological degradation. Degradation is not a concern for DNA-based 

analysis, but is a great concern for RNA and protein analyses.  

Once the sample is frozen, it can be stored at –80°C for years without significant 

degradation119, 120.  The sample should be placed into a freezer-safe container large 

enough to contain the specimen without compromising its shape. Placing the sample into 

a conical tube is not recommended because it destroys the tissue shape. If the sample is 

previously wrapped in aluminum foil, the wrapped specimen may be placed into a large 

container for labeling. Alternatively, the sample may be removed from the aluminum foil 

boat and placed into the container.  

The sample collection process described above is ideal, but not always followed. 

Often, the collection is out of the researcher’s hands and left solely to the tissue 

repository or collection facility. It was discovered in this study that many institutions 

offering to collect specimens for research opportunities are not properly designed to 

achieve procurement time under one to two hours, while others routinely procure samples 

within 30 minutes. This inconsistency indicates a need for these facilities to have uniform 

standard operating procedures. Consistency in collection procedures will ultimately 

minimize variability for RNA and proteomic studies. It is ultimately the responsibility of 

the repositories to create a general guideline for tissue collection, freezing, and storage 

prior to handing the sample over to the researcher121. Specimens used in this study were 

frozen at -80°C within 30 minutes of surgical resection. 
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Tissue Sectioning 

 For direct tissue analysis by MALDI MS, frozen tissues are sectioned using a 

cryostat for subsequent mounting onto MALDI target plates. Cryostats allow for accurate 

sectioning of samples at a given thickness while maintaining the spatial orientation of the 

tissue. Samples are attached to a movable holding stage and sliced with a stationary 

stainless steel microtome blade. The sample stage and the cryostat chamber temperature 

are generally held between –15ºC and –25ºC, depending on the tissue type. Fatty tissues 

require lower temperatures, in order to maintain spatial integrity. The temperature 

settings used for ccRCC samples in this study were –16ºC for the sample holder and         

–18ºC for the chamber temperature.  

 Sectioning may be performed in two ways: manual rotation of the sample holder 

wheel, or by automated, motor driven movement. Manual rotation of the wheel may 

introduce variability in the section due to variable force and speed used to turn the wheel. 

Motor-driven sectioning, however, introduces a consistent turning of the wheel. This 

allows for more reproducible sectioning, which eliminates additional variability in the 

overall experimental design. Motor-driven sectioning was performed in this study except 

in cases where tissue specimens and/or the cryostat anti-roll bar were difficult to work 

with. 

 Traditional microtome sectioning in pathology labs for histological staining uses 

an embedding medium, such as paraffin, which maintains the sample at room temperature 

and is ideal for preserving the tissue morphology for histological evaluation. However, 

the use of such polymers is not compatible with MALDI MS, as they cause ion 

suppression, thus, fresh frozen samples are required for MALDI MS analysis. Optimal 
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cutting temperature polymer (OCT) is the medium used for cryo-sectioning frozen 

samples for histological or other types of evaluation. OCT is also a polymer and, as 

mentioned, will suppress ion formation in the MALDI source122. It is therefore 

recommended that the sample be carefully mounted onto the sample holder so that the 

OCT touches only the bottom portion of the sample, avoiding any contact with the 

surface being sectioned for MALDI analysis [refer to Figure 12-1a].  

 The section thickness depends on the sample and the methods used. Thicker 

sections result in less tearing, making them easier to manipulate onto the MALDI plate. If 

the section is too thick, it will take longer to dry, promoting potential protein migration, 

and may not be as electrically conductive once in the mass spectrometer. Thinner 

sections, in contrast, are more difficult to maneuver and may tear easily; therefore, for 

MALDI applications, tissues are optimally cut between 10 and 30 µm. With the average 

mammalian cell diameter between 10 and 20 µm, the majority of cells in the section are 

sliced open, exposing the intracellular components122.  A thickness of 12 µm was used for 

this study. 

 It has been suggested that the blade used in the sectioning process may smear 

proteins across the tissue surface. Although sectioning of samples has been performed 

routinely in immunohistochemistry and autoradiography studies with little to no 

indication of protein delocalization, the sectioning process was validated for this study. 

To ensure that the blade did not cause protein delocalization for this study, one section of 

a ccRCC sample that contained tumor and adjacent normal was sectioned and thaw-

mounted onto a gold-coated MALDI plate. The tissue block was then rotated 90º or 180º 

and another section was obtained and mounted onto the same MALDI plate. An array of 
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matrix spots (method described below) was deposited on both tissues and analyzed by 

MALDI-TOF MS. Ion-density maps were created from the spectral information obtained 

at each matrix coordinate to demonstrate the localization of proteins. This experiment 

was repeated in triplicate on three different days, and a representative result is shown in 

Figure 6. Resulting images show no evidence of protein delocalization due to the cryostat 

blade. 
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Figure 6: Cutting Validation. A.) Representative ion density maps from reference 
section. B.) Representative ion density maps from the section that was cut 180° to the 
section imaged in A. C.) C1 is an optical image of the sections on the target plate prior 
to imaging; the second section was rotated 180° with reference to the top section. 
There is approximately a 144 µm distance between the two sections. C2 is a 
representative, histologically-marked H&E section of the specimen analyzed.  This 
figure demonstrates that there was no protein delocalization observed due to the cryo-
sectioning process. 
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Tissue Transfer and Mounting onto a MALDI Plate 

 There are two methods for the transfer and thaw mounting of tissues onto MALDI 

plates. In the first method, the room temperature MALDI plate is placed over the frozen 

section, which adheres to the plate as it thaws. In the second method, the frozen section is 

cautiously picked up with small paint brushes and placed on top of the MALDI plate, 

which has been held at the chamber temperature prior to thaw-mounting (see below). The 

former method is not ideal. First, it is difficult to control the placement of tissue onto the 

plate because most MALDI plates are opaque (gold-coated or stainless steel), although 

recent plates include ITO-coated glass. Secondly, this method leaves behind ice crystals 

on the cryostat stage that may result in the loss of water-soluble proteins123. This method 

is also difficult to control, rendering it less reproducible than the second option. 

 The second method, in which the frozen section is transferred to the plate with 

small paint brushes before thaw-mounting, does not result in protein loss; however, it 

requires care and skill to maneuver the sections without tearing them. Prior to thaw-

mounting, tissue must be transferred in a way that it retains its shape, without tears and 

rolled-up edges. When these deformities occur, they can potentially mask important 

tissue-specific mass spectra, possibly affecting the final analysis. Distortions can also 

make it difficult to compare to subsequent sections placed on glass microscope slides for 

histology. After mounting, the plate and tissue are quickly warmed together with the 

finger or palm of one’s hand on the back side of the plate to thaw mount the tissue onto 

the plate. This tissue-transfer method was applied to the ccRCC biopsies in this study. 
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Choosing a MALDI Target Plate 

 There are two types of MALDI plates: metal (usually stainless steal or gold-

coated) and glass (e.g. ITO-coated)123. Recent studies have illustrated the affects of 

sample thickness and preparation methods on the ionization efficiency of metal 

substrates124; however, stainless steel plates  (matte and polished) are used less frequently 

in direct tissue analysis by MALDI because the poor contrast between the plate and the 

tissue makes it difficult to see with the MALDI instrument cameras and in digital 

snapshots123. The polished gold-coated plates provide ample contrast for the desired 

digital snapshots and visualization, as well as ability to visualize differences in tissue 

morphology like tumor and non-tumor regions.  

A disadvantage to working with the metal plates is the need for subsequent 

sections to be collected on a microscope slide for histological staining in order to 

correlate cellular morphology with resulting MALDI spectra. Adding a conductive 

surface, such as ITO, to a glass slide makes it compatible with the MALDI process. With 

these plates, there is an option of using a MALDI-compatible nuclear stain, which allows 

for histology and MALDI analysis on the same section123. Despite the reported 

compatibility, it cannot be ignored that these stains induce noticeable signal differences 

compared to fresh frozen tissues, so the most optimal analysis is the native section, 

without addition of histological stains125.  

An additional concern when choosing a plate is its matrix spotting performance. 

With different coating properties of the ITO-coated and gold-coated MALDI plates, the 

matrix spotting performance is likely to be different with each surface and different tissue 

types. Each plate type was examined for renal tumor sections containing adjacent normal 
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renal tissue. The two types of MALDI plates containing the renal tissue of interest were 

robotically spotted126 (discussed below) at a 400 µm spot-to-spot distance. The spots on 

the ITO-coated plate were not homogeneous and were placed in a disordered array with 

spots running into each other. This observation could be due to an extended drying time 

of spots on glass as compared to metal plates126. The seeding technique126 applied prior to 

spotting on the ITO-coated slides slightly improved spotting; however, the gold-coated 

plates provided more homogeneous crystals in an ordered array without the need for 

seeding [Figure 7], which can introduce variability in the sample preparation process. The 

gold-coated MALDI plates were chosen for this study; therefore subsequent sections 

were obtained in the cryostat for conventional histological staining (hematoxylin and 

eosin) on microscope slides. 
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Figure 7: ITO-coated MALDI plate versus gold-coated MALDI plate. A.) Optical 
image of a spotted section on an ITO-coated glass plate. B.) Optical image of a spotted 
section on a gold-coated stainless steel-plate. This figure illustrates the superiority of the 
gold-coated plates over the ITO-coated glass plates for optimal matrix spotting onto 
ccRCC samples, even when the seeding technique is applied for matrix deposition as in 
A. 
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Tissue Washing 

 Depending on the tissue type and biomolecules of interest, it is often 

advantageous to wash the tissue sections prior to matrix deposition to remove salts and 

other contaminants, as well as, excess hemoglobin from the tissue surface that can cause 

a high spectral baseline and signal suppression. Although sinapinic acid (SA), the matrix 

of choice for protein analysis, is tolerant of salts and other contaminants127, 128, the 

removal of these via washing does enhance signal quality122. The conventional tissue 

washing method involves two separate 70% ethanol (200-proof or reagent grade) 

emersions for 20-30s followed by 10-15s in 95% 200-proof ethanol (or 100% if using 

reagent grade ethanol). Using 100% 200-proof ethanol may over-dehydrate the tissue. 

Since ethanol is a known tissue fixative often used in histology129, delocalization of 

proteins is not likely to be significant; however, proteins soluble in these aqueous 

solutions may be removed during the washing step. Previous studies have shown that 

there is minimal protein loss during this process, but different tissues may behave 

differently, so the washing procedure should be confirmed for each tissue type122, 123, 125. 

 To validate the tissue washing step, two sections of a ccRCC sample that 

contained tumor and adjacent normal were sectioned and thaw-mounted onto a gold-

coated MALDI plate. One section was washed as described above (2 x 70% ethanol for 

20s, 1 x 95% ethanol for 10s) and the other was not washed. To determine the extent of 

protein loss in the washing step, the ethanol solutions were combined after washing and 

speed vacuumed to dryness. The solution was reconstituted in acetonitrile and analyzed 

by MALDI-TOF MS.  An array of matrix spots was deposited on both the washed and 

non-washed tissues and analyzed by MALDI-TOF MS. Images were assembled and ion-
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density maps were created to demonstrate the localization of remaining proteins. The 

average spectra from the washed and non-washed tissue were compared for overall signal 

enhancement or loss. The washed tissue showed more overall signal enhancement and 

better spectral quality than the unwashed tissue. The spectra acquired from the ethanol 

wash solutions were compared to the averaged spectra from both washed and non-washed 

tissues. This experiment was repeated in triplicate, on three separate days, and results 

from a representative experiment are shown in Figure 8. Results illustrate the following: 

1.) the proteins remaining after washing show no evidence of protein delocalization due 

to the washing procedure; 2.) no significant protein loss occurred, other than a few low 

m/z signals; 3.) washing did enhance MS signal. Overall, there was some loss of protein 

signal in the low m/z region due to washing, but the overall enhancement of signal due to 

washing outweighed the few protein losses. 
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Matrix Solution 

 Another important aspect of sample preparation is the matrix concentration and 

solvent composition. Crystal coverage and crystal homogeneity of individual spots are 

influenced by these factors. As previously mentioned, SA is the optimal matrix for 

protein/tissue applications. Previous studies have also shown that higher matrix 

concentrations result in higher quality protein spectra with a saturated solution (25-30 

mg/mL) yielding the highest number of ion signals with best resolution compared to 

lower SA concentrations122.  

While there are many options for the matrix/solvent combination, the goal of the 

matrix solution is to solubilize the analyte of interest, or in this case, to extract as many 

proteins as possible from their native microenvironment within the tissue. Solvent 

conditions will then vary depending on the analyte of interest or the tissue type being 

analyzed. Various solvent/water compositions have been examined, which showed that 

50% acetonitrile/water or 50% ethanol/water compositions were optimal. Both of these 

options consistently show no overall improvement over the other, so acetonitrile is the 

conventional organic solvent used in direct tissue analysis by MALDI MS122. Signal 

quality from ccRCC tissues was examined for varying acetonitrile concentrations (50-

70%), but none showed significant improvement over the 50% composition (data not 

shown). 

As the addition of trifluoroacetic acid (TFA) to the matrix solution aids in the 

ionization process, its concentration may affect the protein profile. A TFA concentration 

of 0.1-1.0% is optimal for MS analysis of tissue, with the 50% ACN/0.1% TFA 

composition most widely used130. For the ccRCC samples, various TFA concentrations 
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were examined in a range of ACN concentrations, and none showed overall improvement 

over the 50 % ACN/ 0.1% TFA solution (data not shown).  

 

Matrix Application on Tissue 

 

Manual Deposition Techniques 

 Prior to analysis by MS, matrix must be applied onto the tissue surface in a 

reproducible manner in order to achieve homogeneous crystallization. For direct tissue 

MS applications, there are two conventional strategies used to apply matrix to the tissue 

surface: depositing small droplets of matrix on specific regions of the tissue, and coating 

the entire tissue surface with matrix solution [see Figure 3].  The latter mentioned method 

is best applied when high-resolution images are desired. Descriptions of this method can 

be found elsewhere122. In the former method, small droplets of matrix (100-250 nL) are 

manually deposited, with a low-volume pipette, on discrete morphological regions of the 

tissue, from which protein and/or peptide signals in that defined region are to be obtained. 

Placement of matrix spots can be obtained via pathology-guided assistance from an 

adjacent, histology stained tissue, or from the tissue itself employing the MALDI-friendly 

dyes on ITO-coated plates. This method allows for a quick assessment of the protein 

content within a tissue section for further facilitating a comparison between different 

tissue states, such as disease vs. normal or treated vs. untreated.  

 Aside from being low-throughput and having poor reproducibility, another 

important drawback with manual matrix deposition is the matrix spot size, generally 1 

mm in diameter. Given that the average cell diameter is about 10 µm, depending on the 
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cell cycle, a 1 mm diameter matrix spot will limit the specificity obtained in profiling 

experiments. With smaller diameter spots, it is possible to obtain more cellular specificity 

within the micro-environment of a morphological region.  Attempting to address this 

need is the utilization of syringe pumps, to which a small capillary is connected for the 

placement of smaller, more reproducibly placed matrix droplets. This approach provides 

more specificity and reproducibility than manual deposition, but more optimal 

approaches, in terms of matrix spot size and spot-placement reproducibility, have been 

recently attained using robotic devices126, 131. 

 

Robotic Deposition Technologies 

 Although many automated devices are capable of generating and accurately 

depositing droplets onto a surface with precision, few are applicable for direct tissue 

analysis. Contact deposition methods that require a pin or capillary to facilitate reagent 

transfer through physical contact with the sample are often not reproducible and the 

physical contact with the tissue surface may cause cross-contamination and destruction of 

tissue integrity. Non-contact printing devices, however, hold promise for direct tissue 

applications. These devices include piezoelectric, thermal ink jet, solenoid valve, 

photolithography and pulsed field ejectors. With these, cross-contamination and tissue 

destruction are not a concern because there is no contact with the tissue.  

 Two non-contact robotic multi-spotters, designed for high-throughput and 

reproducible sample preparations for microarray and MS applications, were available for 

this study that have been applied to direct tissue analysis: an acoustic reagent multi-

spotter (ARM)126, custom-made at Labcyte Inc. (Sunnyvale, CA) and a chemical inkjet 
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printer (CHIP)131, 132 by Shimadzu Biotech (Kyoto, Japan) [Figure 9]. In brief, the ARM 

technology, which was used for this study, deposits reagents without the use of a 

capillary or nozzle. Instead, it utilizes short pulses of focused acoustic energy directed 

onto a liquid surface from under an open reservoir containing the matrix solution.  

To operate the instrument, the MALDI plate, facing downward, is first positioned 

in the inspection position on an X-Y translational stage, where a color CCD telescope 

captures digital images of the tissue sections and then displays them in the control 

software on the computer monitor. Matrix deposition locations are chosen by clicking the 

desired pixel in the captured image or by clicking and dragging a large rectangular array 

of spots at the desired spot-to-spot distance. Matrix spot coordinates and parameters are 

saved into a file and the MALDI plate is then transferred to a second holding position on 

the X-Y translational stage, facing downward, into the printing position located above the 

reservoir, which is above the ejector [Figure 9]. Prior to deposition, the ejector must be 

tuned for the minimum rf energy needed to produce a stable droplet. With the matrix 

solution in the reservoir, the rf energy is manually adjusted until the threshold energy is 

reached. This occurs when the rf amplitude is sufficient to cause the point of the liquid 

cone to break away as a spherical droplet. A transparent lid, containing a 400 µm 

diameter hole in the center for droplets to pass through, is then placed on top of the 

reservoir to minimize solvent evaporation, which will adversely affect the tuning. It was 

observed in both the previous study126 and in this study that the tuning will last for about 

120,000-150,000 shots, or approximately 5-6 hours of continuous spotting. More detailed 

information on the ARM can be found elsewhere126. 
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The CHIP multi-spotter is a microjet device [Figure 9], which utilizes 

piezoelectric drop-on-demand-type ink-jet technology for rapid liquid microdispensing131, 

132. Most recently, this technology has been used to deposit matrix arrays on tissue 

surfaces for direct tissue analysis by MALDI-TOF MS133. The CHIP instrument is 

designed with piezoelectric microjets, four total, connected to individual reagent 

reservoirs and an air pressure/vacuum control unit for fluid stabilization within each of 

the microjet devices. Fluid dispensing and motion of the MALDI target plate (positioned 

face-up below the microjets) in the X-Y translational directions are controlled by 

integrated software and controller boxes. Two cameras allow for visualization of droplet 

formation and a top view of the MALDI target plate, respectively. Image-capture 

software is used to define X and Y coordinates for automated spot delivery. Tuning is 

performed with the software to produce the desired droplet as it is microdispensed from 

one of the glass capillary piezoelectric devices. More information on this technology can 

be found elsewhere131.  

There are advantages to using the ARM or the CHIP. Both are non-contact 

spotting devices, which eliminate cross-contamination within an experiment or 

destruction of the tissue itself. In terms of spot-to-spot resolution, the lower limit of both 

instruments is around 200-230 µm. Both instruments can operate over several hours 

without operator interference. The CHIP spotter was not tested for this analysis, due to 

availability. The ARM spotter was originally used for this study and was used for all 

subsequent experiments to maintain consistency, although either spotter would have been 

appropriate. 
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Optimizing Parameters for ARM Matrix Deposition 

Optimization of sample preparation procedures prior to and during the matrix 

deposition using the ARM has been examined, but must be evaluated for each matrix 

solution composition. It has been determined that as the percent organic (ACN) in the 

matrix solution decreases, the droplet volume increases, with 50% organic giving droplet 

volumes of 122 +/- 16 pL and a diameter of 61.6 µm. The ejection frequency and the 

number of successive droplets, however, also affect this diameter. Matrix spots increase 

in diameter with increasing number of droplets. Lower ejection frequencies appear to 

have less impact on spot diameters than higher frequencies. It was also determined that 

the density of matrix crystals and the number of MALDI spectra that can be obtained 

before analyte signal is depleted also correlates with the amount of matrix material 

deposited. With increasing droplets per spot, the average diameter increases from 213 µm 

for 9 drops to 291 µm for 60 drops (drops per spot per pass). In general, the optimum 

parameters for profiling experiments that were applied to this study are as follows: 10 Hz 

spotting frequency, 13 droplets/spot with 6 passes (totaling 78 drops/spot)126 [Figure 10]. 
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Figure 10: ARM matrix deposition. Each image represents matrix spots obtained at 
spotting frequency of 10 Hz at 13 droplets/spot. This figure illustrates how each pass 
of matrix deposition affects the uniformity and homogeneity of crystal coverage 
between spots and within a spot. Six passes result in the optimal spotting performance; 
as illustrated, few improvements are observed beyond 6 passes.  
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Automated MS Profiling from ARM Spotted Arrays 

 Automatic matrix printing followed by automated MS analysis offers high-

throughput capabilities for rapid matrix deposition and data acquisition. Prior to MS 

analysis, a registration procedure is required that converts the spot coordinates from the 

tissue to the mass spectrometer. After spotting, the MALDI target plate containing the 

spotted tissue is scanned to obtain a digital image. The image is opened in Image-Pro 

(Media Cybernetics, Inc., Silver Spring, MD) or Adobe Photoshop (Adobe Systems Inc., 

San Jose, CA), where a colored mark is manually placed in the center of each matrix 

spot. The relative center coordinates of each spot are obtained using Image-Pro software. 

This information is used to create a custom geometry plate file required by the instrument 

for automated acquisition. The geometry file can be created manually or with a custom 

program. After loading the geometry file into the instrument control software and the 

plate into the instrument, a registration procedure teaches the instrument which matrix 

spot on the tissue corresponds to a specific spot in the geometry file.  

 Prior to spectral analysis, several automated mass spectrometer acquisition 

parameters must be defined. These include the number of laser shots to average per spot 

and any acceptance criteria, based on signal intensity that can be used to avoid collecting 

spectra of low quality. Matrix spots should be sampled with minimal cross-sampling 

within a spot and no cross-sampling of neighboring spots. With a laser diameter of 70-

100 µm, the matrix spots are generally large enough to allow the collection of 200 to 600 

mass spectra from several discrete locations within each spot without overlap. For this 

experiment, 400 shots per spot were averaged, and acceptance criteria for each spectrum 

were set, including S/N (at a ratio of 10) and resolution (no minimum was set). These 
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criteria should be set at a minimum to avoid introducing operator bias that may mask 

differences due to true biological changes.  

 

MALDI Mass Spectrometric Analysis 

 

Considerations for Optimizing Instrument Parameters 

Prior to collecting spectra, it is essential to consider and eliminate many of the 

challenges brought about by the desorption of proteins from a complex mixture like 

tissue. Although many of the compounds such as salts (which provide Na+ and K+) and 

lipids that adversely affect the MS analysis should be washed off in the ethanol-washing 

step, there remain other proteins and biological compounds within the sample that will 

adversely affect signal. Although ion suppression and adduct formation will always be 

present, the goal of the MS set-up is to optimize parameters in a way to achieve minimum 

interference and achieve reproducible results. Instrument parameters are difficult to 

optimize for all masses across a large mass range, such as mass-to-charge (m/z) 2,000 to 

70,000, and can compromise sensitivity and mass accuracy in some regions within this 

range. However, it is possible to obtain high-quality mass spectra by effectively 

optimizing the instrument parameters.  

 

Optimizing MS instrument parameters 

• Mass range 

Beyond the sample preparation steps, further signal optimization must be done 

with the instrument parameters. As previously mentioned, it is difficult to optimize 
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parameters for a wide mass range; however, depending on the tissue type, acquiring such 

a wide mass range may not be necessary. In renal samples, few signals were observed 

above m/z 25,000, thus the mass range sampled was m/z 2,000-25,000.  

• Laser, acceleration, and delayed extraction parameters 

The overall goal to achieving quality spectra is to enhance sensitivity and signal-

to-noise without a major sacrifice in resolution, while maintaining a relatively flat 

baseline. For any given mass range, on and off tissue, there is a general set of optimal 

values for each parameter to obtain these qualities. In most cases, these values will need 

to be fine-tuned, depending on the tissue type. After choosing the mass range, the 

instrument parameters to optimize for spectral quality on the instrument used in this study 

are as follows: laser attenuator (offset and range), laser focus (range and value), laser 

frequency, laser power, delayed extraction time (ns), ion source voltages 1 (acceleration 

voltage) and 2 (time lag focusing). Important aspects and functions of the more crucial 

parameters are described below.  

When optimizing laser settings, the best spectral quality is often achieved when 

the laser power is set just above the ionization threshold level of the matrix. Excessive 

power will result in saturated peaks with poor resolution and high sample consumption. 

The amount of laser energy needed for the generation of MALDI ions depends on: the 

matrix, which has a well-defined energy threshold; the susceptibility of the analyte to the 

MALDI process; the matrix-to-analyte ratio; and the preparation technique used. 

Additionally, the number of laser shots averaged per spectrum for direct tissue profiling 

ranges from 250-1000, depending on the spectral quality, diameter of the matrix spot, and 

possible time constraints.  
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After ions are formed in the desorption process, they are accelerated into the mass 

analyzer by an acceleration voltage. The acceleration voltage (IS1) is an important 

parameter for resolution. The absolute difference in energy, and consequently in velocity 

and flight time, observed for ions of differing masses increases with rising voltage 

applied for initial acceleration of the ions formed during the desorption/ionization 

process. While these values are preset (20-25 kV), they can be slightly adjusted, while 

detector settings are optimized for specific acceleration voltages.   

Ions of the same mass formed in the MALDI process have a range of translational 

kinetic energies, which contributes to peak broadening and loss of resolution47, 134. In a 

constant potential field, when molecular ions are formed, they are affected by the 

electrostatic field of the ion source and progressively accelerated. In doing so, they 

undergo multiple collisions with residual neutral matrix components of the desorption 

plume, which further widens their overall energy distribution, resulting in peak 

broadening. The initial velocity spread can be compensated for with delayed extraction 

(time-lag focusing). This requires that the source be comprised of two electrostatically 

independent stages. In principle, the ion plume formed during the MALDI process is 

allowed to remain in a field free environment, with equal potentials on the sample plate 

and first electrode, for a period of time (nanoseconds) before being pulsed out. At the end 

of a given delay time specified, the ions are pulsed out of the first stage of the source by 

either dropping the potential of the first electrode, as in the instrument used for this 

study135, or raising the potential on the sample plate. When this occurs, ions with lower 

initial velocity and located closer to the sample plate will be affected by a greater 
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potential than the ions with a higher initial velocity, thus compacting the ion packet as 

they move into the field free region.  

The delayed extraction parameters, set by ion source voltage 2 (IS2) and its 

corresponding pulsed ion extraction delay time, have a significant influence on the 

resolution and must be optimized for the specified mass range. A larger mass ion has 

greater energy and larger energy distribution. Therefore, the larger the ion mass is, the 

longer the delay time or the steeper the potential slope (IS2) needs to be to compensate 

for the large velocity spread and condense the ion packet. Both the voltage and the delay 

time are carefully tuned for optimizing the resolution in a given mass range. Parameters 

chosen for this study are defined in the “Materials and Methods” section. 

 

Concepts of Experimental Design 

 After developing the core methodologies, a crucial point to consider is the 

experimental design. If not carefully planned, painstaking experiments with great 

potential could prove of little value due to potential sources of bias that can distort 

results. Much of this involves thorough application of three principles: randomization, 

replication, and blocking136. Therefore, when planning an experiment, several aspects of 

experimental design, as well as sample collection must be considered to achieve quality 

results that indicate differences due to true biological changes.  

There is no common protocol by which repository facilities collect tissue samples; 

therefore, results from a study that utilized only one collection facility may not be the 

same as results obtained from a duplicate experiment using specimens collected at a 

different institution. Because of this limitation, when planning a study with large numbers 
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of samples, it is desirable to utilize multiple facilities. This minimizes institutional biases 

and reduces the possibility that biomarkers identified from a set of samples are limited to 

a particular institution.  In this study ccRCC samples were collected from multiple 

facilities, though the majority of specimens came from two facilities. 

The order in which samples are analyzed should be considered, because 

proteomic profiles may not be reproducible over time due to inherent instrumental 

variability, such as loss of laser performance, dirty sources, or loss of detector sensitivity 

over time. For this reason, it is ideal that investigators include some specimens in each 

experiment from each group being compared. In other words, in an experiment such as 

this, where tumor stage is a biological question of interest, it is ideal to run samples at 

random rather than analyzing all stage I’s or all stage IV’s, etcetera, at the same time or 

in the same order. Furthermore, analyzing all samples as they come in is not optimal 

randomization either. For studies in which all specimens are collected prior to the start of 

the research, it is advantageous to sample at random for the analysis, where no bias is 

given to a certain biological subset or collection facility. In studies such as this, when 

time constraints are present and samples are consistently coming in, samples should be 

randomized as much as possible. Randomization was difficult to achieve in this study; 

however, samples retrieved from storage for analysis were chosen independently of their 

diagnosis. 

A standard operating procedure that is strictly followed will reduce the number of 

variables or biases that are of concern during the data analysis (discussed in Chapter III). 

The establishment of a single protocol to follow throughout the study is entirely under the 

control of the investigator. The experimental protocol for a study such as this involves: 
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sectioning the biopsy; washing the tissue; matrix application; mass spectral analysis, 

including calibration, which should be done prior to every experiment; pre-processing the 

data; and statistical analysis. The general standard operating procedure schematic for this 

experiment is shown in Figures 11 and 12.   

In summary, experimental designs and implementations that are consistent, where 

protocols were identically implemented and strictly followed for every sample will yield 

results that indicate true biological effects. These experiments must include randomized 

analysis of specimens collected and quality control materials that achieve good 

calibration that is consistent for every analysis. Samples should be run multiple times to 

ensure the stability of a profile within a given specimen. Finally, following data 

collection, the spectra must be preprocessed identically, as discussed in the next chapter. 
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Figure 11: Experimental design and sample layout. Two types of specimens were 
collected for these studies: tumor and attached adjacent normal, patient-matched but 
separated tumor and normal. The first image (left) illustrates the layout of the tumor 
and attached adjacent normal samples, which were randomly placed, in triplicate, on 
the plate to avoid sampling bias when acquiring data in the mass spectrometer. Matrix 
spots were deposited in a thin array spanning the entire section, allowing the collection 
of data from tumor, tumor margin, and normal regions. The patient-matched but 
separated tumor and normal (right) were also randomized on the target plate. Typically 
three (as shown) or four patient’s biopsies, both tumor and normal, were sectioned in 
triplicate and randomly arranged on the plate. Rather than in an array format, as shown 
on the left, the matrix spots were randomly scattered over the surface of each section. 
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Summary and Conclusions 

 Protein profiling directly from tissue surfaces by mass spectrometry provides an 

abundance of molecular information in a high-throughput format. This allows for 

relatively simple analyses of the molecular contents and their spatial orientation within 

biological samples in any given state (e.g. disease, cancer, toxicity). In this chapter, 

however, it is noted that sample handling and preparation are important steps in assuring 

the maintenance of tissue quality and integrity. With proper application of these methods, 

it is possible to achieve high quality data in a high-throughput fashion. The methodology 

discussed in this chapter has been successfully applied toward the molecular analysis of 

tumor, tumor margin, and normal regions of ccRCC. 

 

Materials and Methods 

The MALDI matrix, sinapinic acid (SA), Fluka brand, was purchased from 

Sigma-Aldrich (St. Louis, MO). Arcos Organics brand trifluoroacetic acid (TFA) and 

200-proof ethanol were ordered from Fisher Scientific (Suwanee, GA). Tissues were 

sectioned on a Leica cryostat model CM3050 S (Leica Microsystems, Germany). 

MALDI-TOF mass spectra were acquired using an Ultraflex II TOF/TOF mass 

spectrometer (Bruker Daltonics, Billerica, MA)135, employing smartbeam™ 

technology137 and equipped with a solid state laser (~355 nm). Data were obtained in 

positive linear mode, with an accelerating voltage of 25 kV and optimized delayed 

extraction parameters (IS2 of 23.5 kV and a delay time of 150 ns). In a raster pattern with 

increments of 50 shots/spot, 400 laser shots were averaged for each matrix spot at a laser 

frequency of 200 Hz. 
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CHAPTER III 
 
 
 

PROCESSING AND STATISTICAL ANALYSIS OF MASS SPECTROMETRY 
DATA 

 
 
 
 Profiling MALDI MS technology has contributed to the field of clinical 

proteomics by facilitating the discovery of disease-specific proteome signatures, which 

have the potential to aid in clinical diagnosis. The discovery of these signatures also 

contributes to a better understanding of disease mechanisms and provides prospective 

therapeutic targets. Although direct tissue analysis by MALDI MS technology requires a 

relatively simple sample preparation, its high-throughput platform produces large, 

complex data sets that require robust bioinformatics tools to reduce data complexity and 

mine mass spectral information to extract features (significant m/z values) that 

distinguish between the biological groups studied. Described in this chapter is the process 

involved in preparing spectra for statistical analysis followed by the statistical algorithms 

utilized to mine data for spectral signatures that differentiate the disease states compared. 

  

Processing of Protein Mass Spectra  

 Spectral processing, also termed pre-processing because it is performed prior to 

statistics, is carried out on all data to reduce inter- and intra-experimental variance. 

Variations are produced from ionization effects, background noise, and calibration 

offsets, which result from biological or sample preparation effects.  To reduce the effect 

of spectral variation on statistical analysis, mass spectra are prepared by removing 

background noise, normalizing intensities, and performing an additional calibration. 
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Correcting for these deviations enhances the ability of statistical algorithms to determine 

biological differences rather than experimental variations.  

 

Baseline Subtraction and Noise Detection 

 Prior to spectral recalibration, normalization, and assignment of peak intensity 

values, all spectra must undergo background subtraction. Spectra acquired from MALDI 

MS profiling on tissue possess a severe chemical background, mostly in the low m/z 

region from salts and matrix cluster ions that must be quantified before it can be 

removed. In order to design the appropriate algorithm, the features of the background 

must be understood. 

 Mass spectra generated from biological tissue produces a baseline of variable 

intensity and shape that manifests itself in three general ways. As demonstrated by Norris 

and colleagues138, the background can be a near-zero constant or a slight to intense 

monoisotopic decay, and in some cases, a bump is observed in the intermediate low mass 

range (e.g. m/z 3000-5000). As a result of the variable background shape from spectrum 

to spectrum, a one-value-fits-all strategy to removing it cannot be applied138, 139. Rather 

than designing fixed value, fit-model functions, the desirable baseline subtraction 

algorithm would be more flexible and easily adapted to specific features of each 

spectrum. 

 Despite several attempts to determine an algorithm for background subtraction, 

there remains no collective approach; however, there are three necessary criteria for these 

algorithms140-142. First, algorithms should avoid scenarios where splitting of spectra into 

multiple m/z sections is required to perform baseline subtraction. This approach 
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necessitates stitching spectra back together, which is adds complexity and time.  

Additionally, software packages should utilize spectra in an ASCII text format, so that 

spectra from any type of instrument can be easily exported to an ASCII format and 

baseline subtracted. Since MALDI-TOF MS offers a high-throughput platform for data 

collection, the processing software must also offer the capability. 

 Various commercially available software packages with baseline subtraction 

algorithms have been examined138. The commercially available software package that 

offers these capabilities, as well as a locally-flexible baseline subtraction algorithm is 

ProTS Data (Biodesix, Steamboat Springs, CO). Though the algorithm itself is 

proprietary, some generalizations can be made. The size of the sliding window for 

background subtraction is defined by user determined estimators (10 times the peak width 

at FWHM) at various m/z values across mass range allowing the program to determine 

the background for all subsets of m/z ranges. This gives the program more flexibility for 

different baseline trends [Figure 13]. It is probable that a best-fit regression or lowess-like 

line is estimated for each m/z neighborhood in each m/z range as defined by the user. 

Because peak width is one of the parameters used to estimate the baseline, the method 

will work on variable spectra acquired at different times assuming the spectra have 

similar resolution at any given m/z region. ProTS Data offers the ability to quickly 

compute and export the processed data in a batched process, and its required ASCII 

format provides for the input of a variety of spectra from different mass spectrometer 

manufacturers.  
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Normalization of Intensity 

 After background subtraction, spectral normalization is needed to minimize 

spectrum-to-spectrum variations in peak intensity. Deviations arise from instrument 

changes that may include instrument retuning and laser replacement, uncontrollable 

variations in sample preparation, or biological variability. Eliminating variances will 

enhance the ability of statistical algorithms to extract feature patterns of biological 

significance from absolute peak intensities.  

 Several normalization methods exist, which fall into two categories. Spectra can 

be normalized to a defined reference spectrum, such as an average representative of the 

dataset, or to some reference that is independent of the collective data set, as in a 

constant-value total ion current (TIC).  The methods are comparable, but the TIC method 

eliminates the need for creating an averaged representative from the data set. A 

comparison of multiple normalization methods has been performed138, which included: 

cube root, log, and ln transformations; scaling to a set total ion current value; and scaling 

to the constant, determined noise. Norris and colleagues confirmed that the use of total 

ion current or noise constants for normalization produced the highest correlation and 

linearity of intensities. ProTS Data, the software used for baseline subtraction, provides a 

batch export platform for intensity normalization [Figure 14]. The user defines the total 

ion current normalization value, which is arbitrarily chosen at a fixed value greater than 

individual spectra. 
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Peak Detection 

 A prerequisite to spectral realignment is the separation of protein signals from 

background noise in the protein intensity measurements. For low resolution, high m/z 

spectra generated from biological profiles, the simplest method to identify peaks is to find 

the local intensity maxima that exceed a threshold value. Similar to its background 

subtraction algorithm, ProTS Data uses a locally adapted background algorithm to 

differentiate peaks from irrelevant noise. Through user-defined settings, which include 

peak width at m/z values across the spectrum and a signal-to-noise sensitivity threshold, 

the algorithm can correctly identify excessive noise between large peaks, while retaining 

sensitivity for less intense peaks. 

 Smoothing the spectra prior to the processing steps will further reduce noise and 

enhance the ability of the algorithm to define peaks. By further minimizing electrical and 

chemical noise, smoothing will improve peak signal-to-noise ratios, enhancing the ability 

of peak detection algorithms to correctly identify and label the local peak maxima. For 

this study, smoothing was performed during acquisition, with a low-pass bandwidth filter 

on the digitizer, which discards high frequency noise and improves signal-to-noise in the 

m/z range collected without sacrificing resolution [Figure 15]. When low m/z peptide 

spectra are of interest, smoothing should be performed cautiously, as it may degrade 

isotopic resolution. This study focused on a higher mass region, from 2000-30000, which 

contains protein/peptide signals of low resolution. Inclusion of a low-pass filter 

ultimately enhanced the detection of peaks low in intensity.  
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Spectral Calibration/Realignment 

 High-throughput MALDI-TOF MS experiments, where multiple samples are 

analyzed, on different days, require calibration for precise alignment of experimental data 

in order to perform future statistical analysis and extract protein signatures that 

differentiate the groups compared. In each experiment, samples are placed on one of 

multiple, but theoretically similar MALDI plates, which are then placed onto a moving 

stage in the mass spectrometer. Depending on the sample position, the alignment of 

spectra may shift on different regions of the plate and between samples on different 

plates. This deviation in calibration may be due to several factors, which include 

irregularities in plate flatness, sample topographies and thickness, and matrix 

crystallization. External calibration alone may produce m/z errors up to 500 ppm, 

depending on the MALDI-TOF instrument. Although standard calibrants are useful for an 

initial alignment of spectra, additional methods are needed to reduce the error, which may 

cause problems for qualitative comparisons.  

 Calibration of MS signals can be performed by external or internal calibration. 

Both methods rely on known m/z values of standard peptides/proteins to calibrate spectra 

to common coordinates. External calibration is performed by placing a mixture of known 

calibrants, spanning the mass range of interest, on the sample plate away from the 

analyte. Although external mass calibration is performed prior to each experiment, inter- 

and intra-experimental mass variations still exist, thus, it is necessary utilize an additional 

approach. Internal calibration, where calibrants are mixed with the analyte prior to 

analysis, seems advantageous, but signals from the calibrants are often suppressed by the 

analyte ions and vice versa. There is also potential for calibration signals to overlap with 
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the analyte signals, resulting in erroneous m/z assignments. A post-analysis approach to 

internal calibration is possible using known peaks in the analyte. Unfortunately, when 

dealing with biological samples, it is unlikely that a sufficient number of peaks can be 

accurately assigned to their known m/z values, given that most of the peaks have not been 

identified in that particular sample. Ultimately, an external calibration is essential for an 

initial calibration and an assessment of instrument performance, however, it is necessary 

to utilize an additional approach in conjunction with this method. 

 A practical alternative approach, in addition to external calibrants, would be to 

determine a subset of peaks in common to the dataset, and use these as the reference 

peaks for realigning the spectra. Several algorithms have been established, but few are 

commercially available. In this study, ProTS Data was utilized for spectral realignment. 

Though its algorithm is proprietary, some generalizations can be made on how the 

program is designed for realigning spectra. In brief, representative spectra are loaded into 

the program, which mines the data to determine peaks in common (also termed peak 

clusters) based on user-defined thresholds. The thresholds define the m/z error window 

(e.g. +/- 200 ppm) in which to search for peaks of a given m/z. Depending on the number 

of spectra generated in a study, only a portion of the spectra may be used to define the 

peak clusters. In this case, a pooled set of spectra from each sample can be used to 

represent the dataset. A list of the peak clusters and the corresponding number of spectra 

containing them is presented to the user, who manually determines what peaks to use as 

recalibration features. Chosen peaks must span the entire mass range investigated to 

prevent erroneous assignment of m/z values outside of the chosen calibration points.  
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 Once the calibrants are defined, the calibration peaks are assigned an arbitrary 

mass, defined as either the median or mean value of that peak for the pooled data-set 

representative, and each spectrum is realigned using a quadratic-fitting calibration 

algorithm. An example is of spectra before and after alignment is shown in Figure 16. 

The user may set additional tolerance thresholds for detecting peaks in the spectra that 

should be considered as internal calibrants.  This approach can reduce m/z shifts by 5- to 

10-fold. Depending on the instrument and its corresponding calibration error, the 

realignment can produce inaccurate m/z assignments; therefore, confirmation of m/z 

assignments from the raw data is needed for peaks determined significant from the 

statistics. In this dataset, it was observed that the raw data was well calibrated and 

required minimal realigning, thus peak assignments before and after realignment were no 

more than an average of 0.5 to 2 mass units different.  
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Peak Binning 

 Although mass spectra have been recalibrated, sometimes m/z variations remain 

that must be minimized prior to statistical analysis. Once peak detection parameters are 

defined, processed spectrum files are reduced from a continuous mass spectrum of 

~32,000 data points and exported as ASCII peak list (~300 peaks) files containing the 

peak m/z value and its corresponding intensity. Peaks were aligned or grouped by a series 

of peak bins or mass windows that varied in size, increasing proportionally with m/z 

values. Once the peaks were binned, a spreadsheet of the results was created. The first 

columns of the matrix sheet specified the beginning and ending mass of each bin. Each 

row represented one file or patient; the data in each patient column listed the peak value 

in each of the bins. A separate matrix file was created that included peak intensity 

information. These files were utilized in preparation for statistical analysis. 

 

Statistical Analysis of Processed Data 

 After spectra are processed, statistical analyses are performed on MALDI MS 

profiling data to discover spectral features that that distinguish between biological states. 

Often, the goal of statistics is to extract individual m/z features or abundances that 

differentiate between samples that have been grouped according to their pathological 

classifications. In the case of cancer, for example, information obtained is used to 

develop a model that will aid in predicting a tumor’s molecular classification or a 

patient’s chance of survival based on the MS protein pattern of a biopsy.  

 The goal of this research was to develop and apply an approach by which to 

examine the molecular characteristics of tumor margins in a particular cancer system, 
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clear cell renal cell carcinoma. The statistical analysis of protein mass spectra from this 

data set concentrated on two aims: 1.) determine if there are molecular features that 

differentiate between pathological classifications, and 2.) determine if the molecular 

environment outside of the histological tumor margin expresses tumor characteristics.  

Data is generally separated into two groups, a training set (supervised analysis) to 

develop the classification model and a test set (unsupervised analysis) to verify the 

prediction accuracy of the model. The statistical validation approaches will also be 

discussed. 

 Though numerous and often complex, statistical approaches have been applied to 

the analysis of complex, two-dimensional data, such as microarray and mass 

spectrometry data. This section describes the independent algorithms used to analyze the 

data set produced in this study: significance analysis of microarrays (SAM) and the 

permutation t-test. In any statistical platform, it is advantageous to perform more than one 

statistic test. In this study, results from each statistical method were used to validate and 

compare lists of significant features. Both SAM and permutation t-test algorithms can be 

applied to pairwise comparisons, which minimizes the influence of biological variations. 

 

Significance Analysis of Microarrays  

 Significance Analysis of Microarrays is a statistical technique for finding 

significant genes in a set of microarray experiments.  Originally designed for microarray 

data, this statistical method can easily be adapted to protein expression data; both result 

in a measure of expression level for any given species (gene or protein).  Detailed 

information on the SAM method can be found elsewhere143, but is summarized here.  
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 SAM assigns a score of relative difference ( )id  to each species ( )i  based on the 

ratio of change in species (m/z value) expression to standard deviation in data for that 

species: 

( ) ( ) ( )
( ) 0

21

sis
ixix

id
+

−
=   

where ( )ix1  and ( )ix2  are defined as the average levels of expression for species ( )i  in 

class 1 and class 2, respectively (e.g. tumor and normal; stage II and stage IV).  The 

standard error of difference of mean levels of expression for species ( )i  is represented by 

( )is  and estimated by the following equation: 

( ) ( ) ( )[ ] ( ) ( )[ ]{ }∑∑ −+−=
n nm m ixixixixais 2

2
2

1  

where ∑m
and ∑n

are summations of the expression measurements for samples in 

class 1 and class 2, respectively, ( ) ( )211 2121 −++= nnnna , and 1n  and 2n are the 

numbers of measurements in class 1 and class 2, respectively.  At low expression level, 

the variance of ( )id  can be high due to small ( )is . A positive constant, 0s , is chosen to 

minimize the coefficient of variation of ( )id , hence making the variance of ( )id  

independent of species expression level. 

 Species are ranked by the magnitude of their ( )id  values, so that ( )id  is the ith 

largest relative difference.  In order to assign statistical significance to the ordered 

relative difference, ( )id , SAM computes the expected relative difference ( )id E  under the 

null hypothesis that there is no difference in species expression level between class 1 and 

class 2.  SAM permutes144 the data by scrambling the label of samples and hence assumes 

that all null hypotheses are true and there are no differences in the expression levels of all 
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species between class 1 and class 2.  For each of such permutations, SAM computes a 

score of relative difference ( )id P  for each species and ranks the scores by their signed 

magnitude.  The expected relative difference ( )id E  under the null hypotheses is defined 

as the average of the ranked scores of relative difference over all permuted data. 

dE(i) = ∑pdp(i) / (# of permutations p) 

The species with relative difference ( )id  deviating from its expected value ( )id E  under 

the null hypotheses by a distance greater than a threshold Δ is called significant.  As Δ 

decreases, the number of species called significant will increase at the expense of 

increasing the number of potential false positives. 

SAM uses a false discovery rate (FDR) to correct for multiple comparisons.  The 

false discovery rate measures the proportion of false positives among all species called 

significant.  For a fixed threshold Δ, SAM estimates the false positives by computing the 

average number of species called significant over all permuted data, and then divides it 

by the number of species called significant from the data with original sample labeling.  

SAM estimates FDR for a sequence of different thresholds (Δ), and the optimal threshold 

(Δ) will be the one with estimated FDR equal to or smaller than a pre-specified 

acceptable FDR.  

 For paired data, the expression level of each species ( )i  is associated with an 

index vector { }KK ,...2,2,1,1 −−− .  Observation K−  in class 1 is paired with observation 

K  in class 2.  SAM assigns a score of relative difference ( )id  to each species ( )i  defined 

by the equations: 

( ) ( )kxkxz iiik −−=  
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where ( )kxi  and ( )kxi −  are defined as expression levels of species ( )i  for paired 

observations k−  in class 1 and k  in class 2, respectively.  K  is the number of paired 

samples.  The standard error of mean difference in expression levels between paired 

observations k−  in class 1 and k  in class 2 of species ( )i  is represented by ( )is  and 

determined by the following equation: 

( )
( )

( )1

2

−

−
=

∑
KK

rz
is K

iik

 

The positive constant, 0s , is chosen to minimize the coefficient of variation of ( )id  as 

described above. For paired data, permutation is performed by randomly scrambling 

labels of observations within each k− , k  pair. 

 

Permutation t-test 

 Detailed descriptions of the permutation t-test may be found elsewhere145, but is 

describe here in brief. The permutation t-test utilizes the standard two-sample t-test, 

where the t statistic is defined as: 

21

21
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nn
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−
=  
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where 1x  and 2x  are mean expression levels of species in class 1 and class 2, 

respectively, and 1n  and 2n are number of samples in class 1 and 2, respectively. The 

pooled estimate of standard deviation, ps  , is defined as: 

( )( ) ( )( )
( )2

11

21

2
22

2
11

−+
−+−

=
nn

snsn
s p  

where 1s  and 2s  are estimate of standard deviation of expression levels of species in 

class 1 and class 2, respectively. 

 In the permutation t-test, the standard t statistic is computed on the log-expression 

of each species, because the t-test assumes that the data is normally distributed. Next, 

labels are randomly permuted among the samples and the t statistic for each species in the 

permuted data set is computed.  This process is repeated 10,000 times.  Finally, the p-

value for each species is determined by computing the proportion of the t statistic for that 

species over all permuted data sets which have absolute values equal to or greater than 

the absolute value of t statistic from the originally labeled data set. 

 The paired data analysis using the permutation t-test is similar to that of SAM. 

For paired data, the expression level of each species ( )i  is associated with an index vector 

{ }KK ,...2,2,1,1 −−− .  Observation K−  in class 1 is paired with observation K  in class 

2.  The t statistic for paired data is defined as: 

( ) ( )kxkxz iiik −−=  

K

z
r k

ik

i

∑
=  



 

88 

( )

( )1

2

−

−
=

∑
KK

rz

r
t

K
iik

i  

where ( )kxi  and ( )kxi −  are defined as expression levels of species ( )i  for paired 

observations k−  in class 1 and k  in class 2, respectively.  K  is the number of paired 

samples. For paired data, the permutations are performed by randomly scrambling labels 

of observations within each k− , k  pair. 

The p-values from permutation t test are further adjusted to correct for multiple 

comparison using the method proposed by John Storey146.  This method estimates q-value 

for each species from its corresponding p-value, which is obtained from a certain test.   

The q-value for a particular species is the minimum false discovery rate that can be 

attained when calling all species with equal or smaller q-value significant. 

 

Statistical  Validation and Classification Prediction Accuracy 

 The final step of a statistical analysis is validating the statistical results, which can 

be performed by two different methods. The conventional and ideal method is to split the 

dataset into two groups: 1.) a training set, in which the data are arranged into groups 

based on their classifier (e.g. cancer stage/phenotype); 2.) a test set, in which the data are 

not arranged into groups. The latter set is used to determine how well the statistical 

algorithms designed around the training set will classify the data from the test set into the 

correct classifier groups.  

 In this study, the bootstrap procedure147 was used to validate the process of 

feature identification.  In cases where the sample size is under a couple hundred samples, 
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the bootstrap method is superior to the aforementioned data splitting method, and instead, 

utilizes the entire data set. For this work, the original data were randomly sampled with 

replacement to simulate a virtual sample of size n, where n is equal to the size of the 

original data set.  For each of these bootstrap samples, the same statistical analysis 

procedure was followed to identify the significant feature, thus the SAM and permutation 

t-test statistics were employed.  Features identified as significant by both methods with a 

false discovery rate (FDR) less than 0.01 were considered as potentially significant 

features.  This process was repeated for 100 bootstrap replications in order to observe 

how the features behave over the 100 repetitions.  A highly consistent list of significant 

features from the 100 bootstrap replications implies good reproducibility of the result 

from the original data and highly consistent performance of the statistical analysis 

procedure. 

 After validating each feature, the leave-one-out cross validation (LOOCV) 

method147 was used to assist in evaluating the predictive power of each significant 

feature.  For each significant feature, one sample was left aside and a classifier, using this 

feature as input feature, was trained on the other n-1 samples.  The trained classifier was 

then used to predict the class of the left-out sample.  This process was repeated n times to 

obtain an estimate of the prediction accuracy of the feature.  The support vector machine 

(SVM) was used as the classifier.  SVM projects the training data from the input space to 

a new feature space with higher dimension and tries to find a hyperplane separating the 

training samples in the feature space and establish a class prediction rule.  Once the rule 

is determined, it can be used to predict the class of new sample with unknown class; thus, 

the classification prediction accuracy of that feature is between 1 and 100 percent. Once 
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all of the features have been determined, this same procedure is used to determine the 

class prediction accuracy of a group of features, which will be more powerful for 

separating two groups than a single feature. 

 Once the features used to classify two groups (e.g. tumor and normal) were 

determined multidimensional scaling (MDS) was used to visualize the distances among 

samples.  The p significant features were selected, and the pairwise Euclidean distances 

between n samples p
nxxx R∈,...,2,1 were computed: 

jiij xxd −=  

ijd :distance between samples i and j 

Multidimensional scaling projects data of p dimensions into a lower k-dimensional 

( pk < ) space while trying to preserve the entire original pairwise distance structure.  For 

example in classical metric scaling, MDS seeks values k
nzzz R∈,...,2,1 ( pk < ) to 

minimize a stress function: 

( )∑
≠

−−−
'

2
'' ,

ii
iiiiii zzzzs  

where iiiiii xxxxs −−= '' , , the centered inner product of ix and jx  

The first two MDS coordinates from classical scaling can be plotted to show the 

separation of clusters of samples. 

 

Alternative Statistical Approach 

 In addition to the statistical approaches mentioned above, there was a second 

source of computation. The company, Biodesix, Inc., was also utilized for an independent 

assessment of the data in an effort to obtain further confirmation of the results. They used 
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the same preprocessing software, with slightly different settings. They did not, however, 

use the same statistical approach. Their services were not used for every biostatistical 

computation, but when appropriate the results of their analysis can be found in the 

Appendices. In brief, their methods are described below. 

 Raw spectra were pre-processed using ProTS Marker (Biodesix Inc., Steamboat 

Springs, CO), a modified version of ProTS Data.  Significant features were identified 

using Wilcoxon rank sum test and sorted by their p-values.  Features having p-values less 

than 0.0005 were considered candidate features to be included in the classifier.  ProTS 

Marker uses a modified version of k nearest neighbors (kNN) as classifier.  Given a query 

sample, kNN finds the k samples in the training set closest in distance to the query 

sample, and assigns a class to the query sample using the majority vote among the k 

neighbors.  In case there is a tie, kNN will assign an undetermined class to the query 

sample.  The list of significant features to be included in classifier and the optimal value 

of k were chosen to minimize the leave-one-out cross validation (LOOCV) test error. 

 

Analysis Workflow 

 An overview of the workflow is illustrated in Figure 17. Raw mass spectra were 

converted to ASCII text files prior to any processing. One spectrum was then opened into 

ProTS Data (Biodesix Inc., Steamboat Springs, CO), the processing software, to estimate 

each of the parameters for noise detection, peak detection, and background subtraction. 

After an initial estimation, other individual spectra, from different regions or different 

patients, were imported to confirm or fine-tune the parameters for the configuration file.  

Approximately 100 spectra, representing each of the patient samples, were then used to 
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find peaks in common between spectra for the re-alignment. This file was linked to the 

configuration file, which contained parameters for background subtraction, noise 

estimation, peak detection, normalization, and reference peak values for re-alignment. In 

batch mode, all ASCII-formatted raw spectra underwent background subtraction, 

normalization, and re-alignment. Processed data was exported as ASCII format spectra 

files, which contained the entire spectrum of approximately 32000 data points. 

 Additional computations were performed in the R program, a freeware language 

platform for statistical computing and graphics148. Processed data was arranged into 

several groups for future comparisons: Tumor; Normal, Near Margin Tumor; Near 

Margin Normal; stages and grades I, II, III, and IV. Prior to statistical analysis, spectra 

were averaged, in the R program, from each patient to obtain an averaged spectrum per 

patient in each of the above categories. The averaged spectra were batch processed, using 

ProTS Data, to export an ASCII format peak list file, which contained the peaks detected 

by the peak detection algorithm, and their corresponding absolute intensity values. Peak 

list files were then binned using custom software, which exports a matrix file containing 

each sample and its peak list value in each bin; there was one matrix file created for each 

set of comparisons (e.g. tumor and normal; stage I, III, III, and IV). In the R console, 

using both the binned peak list matrix file and the spectrum files, the area under the curve 

of each peak in the list was calculated. A second matrix file was created, containing each 

peak and its corresponding AUC for every patient. The statistical analyses were then 

carried out in the R console using the AUC matrix file.  
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Figure 17: Data analysis workflow. 
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Summary 

 This chapter described the data-handling process involved in mining complex, 

proteomic mass spectra to extract biologically meaningful information. Spectra should be 

preprocessed to reduce variability and improve spectral quality. The same processing 

method should be applied to every spectrum, or additional variability will be introduced. 

Ultimately, when performed carefully, preprocessing the data will enhance the ability of 

statistical algorithms to identify spectral features of potential biological significance. The 

statistics described in this chapter were used to address several biological questions. The 

results of these analyses are described in Chapter IV. 
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CHAPTER IV 

 

ASSESSING THE MOLECULAR CHARACTERISTICS OF TUMOR MARGINS 
BY MALDI MASS SPECTROMETRY 

 

 Ensuring successful tumor resection is a major concern in clinical oncology and 

pathology. Obtaining tumor-free surgical margins at the time of surgery is essential in 

decreasing tumor recurrence rates106.  Currently, histopathological assessment of 

hematoxylin and eosin stained sections of the resected tumor is the primary method for 

assessing surgical margin status. Depending on the type of tumor, the margins analyzed 

can be taken 1 to 2 cm away from the gross tumor margin. If microscopic tumor is 

present at the surgical margins, the rate of local recurrence increases and the survival rate 

decreases107, indicating current histological analyses may be inadequate in determining 

uncompromised margins. To circumvent this problem, more studies are needed to 

investigate the molecular characteristics that comprise tumors and the normal 

environments adjacent to them. 

The idea of a “field effect” or “field cancerization” was proposed many decades 

ago 149, yet the molecular abnormalities that characterize this field are mostly unknown. 

Depending on the type of tissue, recurrence can occur a few months to a few years after 

removal of the primary tumor, yet there are several possible explanations, including: 1.) 

the resection of a histologically tumor-negative surgical margin leaves behind cells that 

have already undergone malignant transformation at the molecular level prior to 

resection; 2.) the presence of tumor-secreted proteins into the normal environment leaves 

behind an abnormal environment outside of the tumor-negative resection margin; 3.) the 
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presence of the tumor influences aberrant secretions in seemingly normal cells outside of 

the tumor margin. Without understanding how histologically normal cells become 

transformed into malignant cells outside the tumor margin and with the inability of 

pathologists to visualize this transformation with current histological procedures, 

molecular markers have the potential to enhance the way pathologists analyze margin 

status by providing an additional, and yet complimentary, way to identify aberrant tissue 

environments outside of the histological tumor margin107. 

 Previous studies of tumor margins have focused on selective antibodies or single 

proteins, with little or no mention of how far the abnormality extends from the 

conventionally-defined tumor border150-151. High-throughput, global proteome discovery 

tools offer the potential to examine how proteins change in the environments surrounding 

the histologically-defined tumor boundary. To accomplish this task, proteomic methods 

must first be developed and applied to a model system to determine the effectiveness of 

the methodology and applicability to any system.  

 In this study, we have developed an in-situ, direct tissue profiling approach to test 

the hypothesis that there are aberrant molecular characteristics beyond the histologically-

defined tumor margin. Matrix-assisted laser desorption ionization mass spectrometry is a 

high-throughput, sensitive tool that has been successfully applied to numerous clinical 

proteomics investigations and provided a plethora of potential biomarkers for numerous 

diseases from both in-situ and ex vivo conditions. Using this technology, this research 

focused on the analysis of tumor margins in clear cell renal cell carcinoma samples  

 Current surgical management of clear cell renal cell carcinoma is complete kidney 

removal, yet the surgical margin status is of increasing concern due to the rising demand 
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for nephron sparing surgeries. Nephron sparing surgeries remain rare, however, due to 

concern over local recurrence. Since the radical nephrectomy remains to be the dominant 

surgical procedure, ccRCC is an ideal system for this study due to the ease of acquiring 

the samples needed in contrast to other systems.  

 In this study, MALDI-TOF MS was used to examine molecular signatures in the 

histologically defined tumor, normal, and margin tissue environments of ccRCC samples. 

Overall, there were 75 samples analyzed from 75 different patients, each with matching 

tumor and normal tissues. This study determined that there were aberrantly expressed 

molecular characteristics outside of the histologically-defined tumor margin. Using 

specific features, expression patterns were mapped from the tumor into the normal tissue 

to determine how these patterns change with tumor aggressiveness, as defined by 

conventional pathological diagnosis. Furthermore, specific proteomic features were 

discovered that differentiate normal and tumor tissue, as well as between tumor stages 

and grades.  

 

Results 

 

Experimental Design and Sample Preparation 

 Seventy five tumor and matched normal tissues were collected from 75 patients. 

Thirty four of the 75 samples contained tumor with attached, adjacent normal tissue for 

molecular assessment of the histology-marked tumor borders. Each sample was sectioned 

for MALDI-TOF MS analysis.  Serial sections were placed onto a microscope slide and 

stained with hematoxylin and eosin dyes for histology analysis. For each sample, a 
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pathologist marked regions pertaining to normal and tumor, and where applicable, the 

histological tumor border was marked. Regions of hemorrhage, necrosis, and visibly 

abnormal tissue due to high inflammation were marked. Tissues appearing to be poorly 

preserved were excluded. The sections for MALDI-TOF analysis were placed onto gold-

coated MALDI plates and discrete matrix spots were placed in specific regions of the 

tissue to be analyzed [Figure 11]. In situ MALDI-TOF MS analysis of tumor, normal, 

and regions around the histological tumor border was performed. Overall, approximately 

24,000 individual mass spectra were acquired. For statistical analyses multiple spectra 

from each patient and each tissue region were averaged to generate one representative 

peak list and corresponding intensity value per tissue region per patient. A general 

schematic of the experimental design is shown in Figure 12.  For most matrix spots, 

approximately 200-300 individual m/z features were observed between the m/z range 

2,000 and 25,000. To assess the variability of the data, the concordance correlation 

coefficient was determined for the tumor and normal tissue for each patient. For tumor 

tissue, the value ranged from 0.34 (poor) to 0.89 (excellent), with an average of 0.67 and 

a median value of 0.67, without excluding outliers. The normal tissue values ranged from 

0.21 (poor) to 0.91 (excellent) with an average of 0.62 and a median value of 0.64, 

without excluding outliers. The inter-patient concordance coefficient was 0.6 for tumor 

and 0.6 for normal tissues. This indicates an acceptable level of inter- and intra-

variability. 
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Molecular Analysis of Tumor Margins by MALDI MS 

 The overall objective of this study was to determine if there are aberrant 

molecular features present outside of the histological border and then to understand how 

the expression patterns of these features present themselves from tumor into the normal 

tissue. To accomplish this, the molecular profiles from the different regions of tissue 

were compared. For this assessment, only tissue samples consisting of tumor and attached 

adjacent normal were considered (34 samples) [Table 1]. Figure 18 highlights the regions 

of interest for the analysis. These four regions consist of far tumor, near margin tumor, 

near margin normal, and far normal. With the focus being on the molecular 

characteristics of the region outside of the tumor margin, tissue regions were grouped 

independently of their respective tumor grade or stage diagnosis.  

To perform statistical analyses, the mass spectrometric data was processed, 

averaged by region for each patient, and grouped into four categories. A paired analysis 

was performed on the regions as follows: far tumor versus far normal (Figure 19, Table 

2), near margin tumor versus far tumor, near margin tumor versus near margin normal 

(Figure 20, Table 3), near margin normal versus far normal (Figure 21, Table 4). MDS 

plots of the data sets compared in far tumor versus far normal and the far normal versus 

near margin normal statistics are shown (Figures 22 and 23 respectively).  MDS plots 

illustrate how closely related or different the samples are based on the features used in the 

SVM classification prediction. The statistics performed by Biodesix, Inc. can be found in 

Appendix A. 

Statistical data analysis demonstrated that there are unique signatures of 

molecular changes that occur in the regions around the histological tumor border and that 
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there are aberrant features, resembling the tumor, in the normal microenvironment 

outside of the histological tumor border. The comparison between far tumor and near 

margin tumor indicated that there were no significant changes between them.  Several 

possibilities may explain this result. The first possibility is that there are simply no 

differences between the mature tumor and the leading edge of the tumor, though this is 

unlikely. It may be that the changes are subtle enough that the differences are not 

detected. It is possible that the region considered “far tumor” in these samples was not far 

enough away from the growing edge of the tumor to detect differences.  Lastly, the 

subtlety of these differences may require a larger sample pool to detect these changes.  

In contrast to the far tumor and near margin tumor statistics, there were several 

features that differentiated the regions of far tumor and far normal. Features showing the 

best classification accuracy are highlighted in bold in Table 2. Feature-based 

classification prediction accuracy using these features was 91%, indicating the power of 

as few as six features to differentiate between tumor and normal. The comparison 

between the near margin tumor and the near margin normal revealed several differences, 

though consistent with results between far tumor and far normal. For example, features 

that were under-expressed in the near margin tumor were also under-expressed in the far 

tumor. No combination of features from this group was able to more accurately classify 

the two groups than the top individual feature classifier.  

The purpose of comparing the far normal region to the near margin normal region 

was to determine if those differentiating features were also identified as significant in the 

far tumor and far normal comparison. Results of this analysis revealed that many features 

that are down in the near margin normal as compared to the far normal are also down in 
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the far tumor as compared to the far normal. Features determined over-expressed in 

tumor were also determined as over-expressed in the near margin normal.  Nine features, 

represented in bold in Table 4, were able to classify the samples based on their far normal 

and near margin normal regions with a prediction accuracy of 75%. 

When tissue is not collected by the researcher, it is difficult to control whether or 

not the tissue adjacent to the tumor is all cortex or all medulla. Tissue specimens may 

consist of four different adjacent normal tissue patterns: tumor and adjacent cortex, tumor 

and adjacent medulla, tumor and adjacent cortex followed by medulla, or tumor and 

adjacent medulla followed by cortex.   To ensure that the tissue immediately adjacent to 

the kidney, whether it was cortex or medulla, had little influence on the statistics, a far 

normal and near margin normal analysis was performed. Results of the analysis showed 

that most features were the same within both groups, validating the grouping of all 34 

samples independent of their near margin tissue type [Appendix B]. 
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Age # Patients/Samples 
> 60 20 
40-59 12 
< 39 2 
    
Gender # Patients/Samples 
Female 11 
Male 23 
    
Tumor 
Stage # Patients/Samples 
I 16 
II 2 
III 9 
IV 7 
    
Tumor 
Grade # Patients/Samples 
I 4 
II 17 
III 10 
IV 3 
    
Race # Patients/Samples 
W 30 
B 2 
Other 0 
Unknown 2 

Table 1:  Summary of patient information. W: White, B: Black 
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Figure 18: Regions of interest for statistical analysis of tumor margin profiles. 
A.) Optical image of section on MALDI plate with regions of interest marked; B.) 
Optical image of an H&E stained section marked by a pathologist. 
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Figure 19: SAM statistic plot of results of far tumor versus far normal 
tissue. Red circles indicate significant features that are over-expressed in 
tumor. The green circles indicate features under-expressed in the tumor. 
Dotted lines represent the threshold (Δ) based on an FDR <0.01. Features 
have been arranged by their degree of difference in expression. Points to the 
right (top) or left (bottom) of the first point outside of the dotted line are 
called significant. 
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m/z 
Class 

Prediction Expression 
6717 0.88 D 
9368 0.88 D 
5351 0.87 D 
5933 0.87 D 
9616 0.84 D 
4888 0.81 D 
8649 0.81 D 
6658 0.78 D 
8350 0.78 D 

12500 0.78 D 
5260 0.76 D 
9239 0.76 D 

10296 0.76 D 
10610 0.76 D 
12275 0.76 D 
5557 0.75 D 

10089 0.75 D 
10259 0.75 D 
5363 0.74 D 
5493 0.74 D 
9514 0.74 D 
6322 0.72 D 
8577 0.72 D 
8714 0.72 D 

20922 0.72 D 
6831 0.71 D 
6946 0.71 D 
8939 0.71 D 

10275 0.71 D 

m/z 
Class 

Prediction Expression 
5039 0.69 D 
6438 0.69 D 
6572 0.69 D 
8958 0.69 D 
4275 0.68 D 
5048 0.68 D 
6429 0.68 D 
8017 0.68 D 
5151 0.66 D 
8085 0.66 D 
9071 0.66 D 

13440 0.66 D 
8562 0.65 D 

13423 0.65 D 
4670 0.62 D 
4040 0.6 D 
8769 0.6 D 

10739 0.6 D 
7862 0.59 D 
9183 0.59 D 
8544 0.56 D 

14695 0.56 D 
6113 0.54 D 
6644 0.54 D 
5648 0.44 D 
5530 0.69 U 

22198 0.63 U 
4931 0.6 U 
5165 0.49 U 

Table 2: Top differentially expressed features as determined by SAM and the 
permutation t-test in far tumor versus far normal regions. Data is presented 
with respect to the tumor. D: under-expressed in tumor; U: over-expressed in 
tumor. Feature class prediction values are also listed. Values listed had a bootstrap 
count of 99-100 out of 100 times. Values in bold indicate features used for 
classification. Feature: significant m/z value
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Figure 20: SAM statistic plot of results of near margin tumor versus 
near margin normal tissue. Green circles indicate features significantly 
over-expressed in near margin tumor. The red circles indicate features under-
expressed in the near margin tumor. 
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m/z 
Class 

Prediction Expression 
10089 0.74 D 
5260 0.72 D 
5933 0.71 D 
8649 0.69 D 
9368 0.69 D 

10296 0.69 D 
5062 0.68 D 
5039 0.66 D 
6429 0.66 D 
6946 0.66 D 
5351 0.65 D 
5557 0.65 D 
5048 0.63 D 
7862 0.63 D 

20922 0.63 D 
4275 0.62 D 
4670 0.57 D 
6831 0.56 D 
6438 0.51 D 

12345 0.65 U 

Table 3: Top differentially expressed features as determined by SAM and the 
permutation t-test in near margin tumor versus near margin normal regions. 
Data is presented with respect to the near margin tumor. D: under-expressed; U: 
over-expressed. Feature class prediction values are also listed. Values listed had a 
bootstrap count of 99-100 out of 100 times. No combination of features was able 
to classify the groups better than the top individual classifier. 
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Figure 21: SAM statistic plot of results of near margin normal versus far 
normal tissue. Green circles indicate features under-expressed in near 
margin normal tissue. Red circles indicate features over-expressed in the near 
margin normal tissue. 
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m/z 
Class 

Prediction Expression 
6717 0.72 D 
8649 0.72 D 
9744 0.71 D 
9953 0.71 D 
4888 0.69 D 
6429 0.69 D 
5351 0.68 D 
6658 0.68 D 

10610 0.68 D 
12275 0.68 D 
12500 0.68 D 
14695 0.68 D 
5493 0.66 D 
6438 0.66 D 
8577 0.66 D 
6322 0.65 D 
8350 0.65 D 
8958 0.65 D 
9239 0.65 D 
3319 0.63 D 
5363 0.63 D 
5933 0.63 D 
9514 0.63 D 
8017 0.62 D 

10460 0.62 D 

m/z 
Class 

Prediction Expression 
6831 0.60 D 
8238 0.60 D 
9616 0.60 D 
3895 0.59 D 
4040 0.59 D 
8562 0.59 D 
9968 0.59 D 
9368 0.57 D 
9760 0.57 D 

12767 0.57 D 
20922 0.57 D 
5310 0.56 D 
8714 0.56 D 

10834 0.56 D 
19929 0.56 D 
10259 0.50 D 
8033 0.49 D 
8085 0.49 D 
4559 0.47 D 

12345 0.47 D 
3716 0.34 D 

14217 0.66 U 
5062 0.65 U 

11347 0.65 U 
5669 0.60 U 

Table 4: Top differentially expressed features as determined by SAM and the 
permutation t-test in near margin normal versus the far normal tissue. Data is 
presented with respect to the near margin normal. D: under-expressed; U: over-
expressed. Feature classification prediction values are also listed. Values listed had 
a bootstrap count of 99-100 out of 100 times. 
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Figure 22: MDS plot of far tumor versus far normal.  This plot 
demonstrates, in two dimensions, how closely related or how different the 
samples are based on features used for SVM class prediction. Blue circles 
represent normal samples and green circles represent tumor samples. 
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Figure 23: MDS plot of far normal versus near margin normal.  This plot 
demonstrates how closely related, or different, the samples are in two 
dimensions based on features used for SVM class prediction. Blue circles 
represent far normal and green circles represent the near margin normal. 
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Pathology-Based Tissue Classification of MALDI MS Spectra 

 Once it was determined that there were features present outside of the histological 

margin that suggested a compromised environment, the second aim of this study was to 

determine if features that differentiate between tumor stage and/or grade could be 

associated with these tumor features that are present in the normal margin. Secondly, 

there is an immediate need for more reliable molecular markers of ccRCC to assist with 

current methods of pathological diagnosis of these tumors. Current diagnoses of ccRCC 

tumors relies on TNM staging, a definition of the anatomical location and spread of the 

tumor, and histology grading, which is based on cellular morphology.  Both classification 

systems are associated with patient survival, yet the guidelines remain under review2. 

 To perform statistical analysis, mass spectrometry data was processed, averaged 

by sample, and grouped into the following categories: non-tumor tissue (75 samples), 

tumor tissue (75 samples), high grade (grades III-IV), low grade (grades I-II), grade III, 

grade IV, high stage (stages III-IV), low stage (stages I-II), stage III, and stage IV. 

Samples were grouped independently of their acquisition source (Vanderbilt University 

(34 samples), Cooperative Human Tissue Network (3 samples), or Fox Chase Cancer 

Center Tumor Repository (38 samples).  The sample information is summarized in Table 

5. Using the statistics SAM and the permutation t-test, the following comparisons were 

made: non-tumor vs. tumor (pairwise) [Figure 24, Table 6], high stage vs. low stage 

[Figure 26, Table 7], stage III vs. stage IV [Figure 28], high grade vs. low grade [Figure 

29], grade III vs. grade IV. Results reported in the tables represent features that were 

within an FDR of less than 0.01 for both statistic algorithms, unless otherwise noted. 
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 Statistical analysis resulted in reliable separation of most of the comparisons 

performed. Analysis of the tumor and non-tumor groups resulted in a very distinctive 

separation. Out of the features determined as significant, as few as six features (m/z 

values 5351, 6717, 9616, 9368, 4931, 5178 and 12345) were able to classify these two 

groups with 95% accuracy. The MDS plot, based on these features, is shown in Figure 

25.  

 Since the TNM staging system describes, with minimal subjectivity, the extent of 

tumor growth in and around the kidney, including metastasis, it was expected that high 

stage versus low stage would result in a more reliable separation than between stages III 

and IV. The comparison of high stage versus low stage resulted in several differential 

features. The class prediction accuracy of as few as four of these features (m/z values 

7930, 7662, 4385, 4107) was 80%. The MDS plot of feature separation based on the 

values used for classification is shown in Figure 27. Only the SAM statistic [Figure 29] 

was able to determine features that differentiate between stages III and IV.  Six m/z 

values were determined significant, but three of them were doubly-charged peaks of the 

remaining three, which corresponded to hemoglobin. Using all six m/z values, the 

classification accuracy was 62%, but when excluding the doubly-charged peaks, 

hemoglobin alone is incapable of distinguishing between stages III and IV ccRCC 

tumors. Given that there were at least 24 samples in each of the two groups, it is 

surprising that there were not more differential features. The inability to differentiate 

these two groups could indicate that there were not enough samples. The second 

possibility could be that the stage IV tumors are best separated into two groups, those that 

have distant metastases and those that do not. If samples were grouped into Stage III, 
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Stage IV no metastases, and stage IV with metastases, there may be a better separation of 

these groups; however, sample information obtained from the tumor bank facility where 

half of the samples were obtained lacked information on which stage IV samples had 

distant metastases and which did not. 

 Because of the high subjectivity involved in assigning tumor grades, it was not 

expected that there would be many differences between tumors when grouped according 

to their grade diagnosis. The comparison of high grade versus low grade resulted in three 

distinguishing features by the SAM statistic (m/z values 4040, 4107, and 8448) [Figure 

29]. There were no features identified by the permutation t-test. The best classifier of 

these two groups was m/z 8448, with an accuracy of 71%. The MDS plot of these two 

groups using the feature m/z 8448 is shown in Figure 30. Neither the SAM nor the 

permutation t-test were able to identify differential features between grade III and grade 

IV. The inability to determine differential markers between grades III and IV 

recapitulates the clinical pathology of these tumors. Based on current histological 

methods, the grading of ccRCC tumors remains subjective, which may be the underlying 

influence in not being able to distinguish these two grades. 
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Age # Patients/Samples 
> 60 48 

40-59 23 
< 39 4 

    
Gender # Patients/Samples 

Female 24 
Male 51 

    
Tumor 
Stage # Patients/Samples 

I 17 
II 9 
III 25 
IV 24 

    
Tumor 
Grade # Patients/Samples 

I 6-7* 
II 29-32* 
III 26-31* 
IV 8-10* 

    
Race # Patients/Samples 

W 66 
B 2 

Other 1 
Unknown 6 

Table 5: Summary of patient information. W: white, B: black. The asterisk (*) 
represents overlap in the grading system, for example, one tumor might be 
graded as high grade and another as grade II-III. 
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Figure 24: SAM plot of the pairwise comparison of tumor versus normal. Green 
circles represent features under-expressed in the tumor. Red circles indicate features 
over-expressed in the tumor. 
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m/z 
Class 

Prediction Expression 
9456 0.73 D 

20921 0.73 D 
20937 0.73 D 
4275 0.71 D 
5203 0.71 D 
6073 0.71 D 
6438 0.71 D 
8350 0.71 D 
8939 0.71 D 

10275 0.71 D 
5310 0.7 D 
6106 0.7 D 
8714 0.7 D 
3341 0.69 D 
4284 0.69 D 
5038 0.69 D 
5647 0.69 D 
6114 0.69 D 
6430 0.69 D 
6568 0.69 D 
9761 0.68 D 
4041 0.67 D 
5151 0.67 D 
9970 0.67 D 
6312 0.67 D 

10834 0.67 D 
8104 0.67 D 
4670 0.66 D 
6775 0.66 D 
8562 0.66 D 
8769 0.66 D 

m/z 
Class 

Prediction Expression 
5351 0.91 D 
9616 0.88 D 
9368 0.87 D 
6717 0.86 D 
5932 0.85 D 

12272 0.85 D 
6658 0.83 D 
8652 0.83 D 

10610 0.83 D 
12500 0.83 D 
4888 0.81 D 
5362 0.81 D 
8958 0.81 D 
9239 0.8 D 
6830 0.79 D 
7799 0.78 D 
8017 0.77 D 

10258 0.77 D 
6358 0.76 D 
5494 0.75 D 
5557 0.75 D 
9514 0.75 D 

10089 0.75 D 
14692 0.75 D 
5260 0.74 D 
6322 0.74 D 
7174 0.74 D 
8577 0.74 D 
5048 0.73 D 
6946 0.73 D 
9070 0.73 D 

Table 6: Top differentially expressed features as determined by SAM and the 
permutation t-test in non-tumor and tumor tissue. Data is presented with 
respect to the tumor. D: under-expressed; U: over-expressed. Feature classification 
prediction values are also listed. Values listed had a bootstrap count of 99-100 out 
of 100 times. Features in bold were used for the combined class prediction. 
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m/z 
Class 

Prediction Expression 
3808 0.65 D 
6179 0.65 D 
7205 0.65 D 
9953 0.65 D 
4679 0.64 D 
8237 0.64 D 
7343 0.63 D 
9334 0.63 D 

10296 0.63 D 
13439 0.63 D 
9744 0.63 D 
4343 0.62 D 

10739 0.62 D 
9183 0.62 D 
5852 0.62 D 
8544 0.62 D 

13423 0.6 D 
3030 0.59 D 
5656 0.59 D 
4218 0.59 D 
7372 0.59 D 
8181 0.59 D 

13029 0.59 D 
3814 0.59 D 
8087 0.58 D 
4663 0.58 D 
3193 0.57 D 
2815 0.57 D 
2929 0.57 D 
3187 0.56 D 

m/z 
Class 

Prediction Expression 
4431 0.55 D 

16792 0.54 D 
6644 0.53 D 
4128 0.51 D 

21751 0.51 D 
8448 0.46 D 
3848 0.35 D 
7266 0.27 D 
4931 0.74 U 
5178 0.74 U 

12345 0.71 U 
5530 0.69 U 
4385 0.68 U 

11071 0.67 U 
14092 0.67 U 
21265 0.67 U 
4107 0.66 U 
7779 0.66 U 

11651 0.66 U 
4114 0.65 U 
6875 0.65 U 

11388 0.65 U 
22200 0.65 U 
11969 0.64 U 
20198 0.63 U 
4304 0.62 U 
4730 0.61 U 

11986 0.6 U 
2951 0.59 U 

22777 0.59 U 
15333 0.57 U 
4514 0.56 U 

Table 6, continued. 
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Figure 25: MDS plot of tumor versus non-tumor tissue. The plot represents the tissue 
sample separation based on the features used in SVM class prediction. Green circles 
indicate tumor tissue samples and blue circles indicate non-tumor tissue samples. 
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Figure 26: SAM plot of high stage versus low stage. Green circles indicate features 
under-expressed in the high stage tumors, whereas red circles indicate features over-
expressed in the high stage tumors. 
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m/z 
Class 

Prediction Expression 
7560 0.73 D 
7662 0.72 D 
7930 0.76 D 
8136 0.6 D 

15126 0.56 D 
4730 0.76 U 
4385 0.75 U 
3420 0.72 U 
4107 0.72 U 
8448 0.65 U 
4613 0.64 U 

Table 7: Top differentially expressed features as determined by SAM and the 
permutation t-test in low stage (I-II) versus high stage (III-IV) tumors. Data is 
presented with respect to the high stage tumors. D: under-expressed; U: over-
expressed. Feature classification prediction values are also listed. Values listed had 
a bootstrap count of 99-100 out of 100 times. Features in bold were used for class 
prediction. 



 

122 

 
 
 

 
 
 

Figure 27: MDS plot of high stage versus low stage. The plot represents the tissue 
separation, in two dimensions, based on the features used in SVM class prediction. Green 
circles indicate high stage tumors and blue circles indicate low stage tumors. 
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Figure 28: SAM plot of stage III versus stage IV.  Green circles indicate features that 
are significantly under-expressed in stage IV tumors as compared to stage III tumors. 
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Figure 29: SAM plot of high grade versus low grade. Red circles indicate features that 
are over-expressed in high grade tumors. 
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Figure 30: MDS plot of low grade and high grade tumors. Green circles represent 
high grade tumors and blue circles indicate low grade tumors. The MDS plot is based on 
features used in class prediction. 
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Assessing Patterns of Molecular Change in Tumor Margins 

 The final objective of this project was to assess how features change in and 

around the tumor margins and how this pattern relates to tumor aggressiveness. It was 

expected that some features would show a correlation to the histological border, while 

others would indicate changes occurring beyond the histological border, namely the 

features whose expression patterns resembled their counterparts in the tumor. A 

schematic of potential trends is seen in Figure 31. As with most tumors, there are no 

molecular markers for tumor aggressiveness in renal cell carcinoma, thus the attempt was 

made to determine if these patterns correlate with the current standards of clinical 

pathology diagnoses, which are Fuhrman grading and TNM staging.  

 The mass spectra were collected in a way that allows for the mapping of feature 

expression from tumor into adjacent normal tissue. As implied, only the samples 

containing tumor and attached adjacent normal were considered. Because visible borders 

that define tumor margins do not follow a straight line, the analysis of feature patterns 

requires that the distance of each matrix spot to the margin be measured accurately. In 

doing so, a feature expression can be mapped according to its distance from the 

histologically-defined tumor margin. To obtain the distance, the optical image of a 

hematoxylin and eosin stained section was used to define the tumor border on the optical 

image of the spotted tissue. A custom program was designed to calculate the distance of 

the matrix spot to the closest point along the defined histological margin. A spreadsheet 

was made containing the distance of each matrix spot and its corresponding mass 

spectrometry file. 
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 To best represent the data, the feature amplitude (log2 scale) from each matrix 

spot was plotted against its distance to the histological margin. A locally-weighted-

regression scatter-plot smoothing (LOWESS) curve was laid over the scatter plot to show 

the trend of change of feature amplitude across the histological margin. The first 

derivative of the LOWESS trend line was plotted to show the position where the 

maximum rate of change of feature amplitude occurs.  An example of this method is 

shown in Figure 32. 
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Figure 31: Potential patterns of molecular features traversing the histological 
tumor margin. T type I defines features over-expressed in tumor that follow the 
histological margin with an immediate change in feature expression; N type I defines 
features under-expressed in tumor that follow the histological margin and immediately 
change in feature expression; T and N type II describe features that begin changing at 
the margin. T and N type III and T type IV define features that begin changing before or 
after the histological margin.  
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A

B

D1063

Figure 32: Demonstration of margin plot analysis. A.) LOWESS fit line of scatter 
plot data. B.) Top: LOWESS line of 40 selected significant features; Bottom: First 
derivative of all LOWESS lines (x-axis error approximately +/- 400 µm). 
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 As described in Figure 31, results were expected to show features that define the 

histological margin and features that change before or after the histological margin. For 

broad interpretation, 40 significant features were plotted for each of the 24 patients 

(Appendix C). These features represented features that were determined as under-

expressed and over-expressed in the ccRCC tumors as well as aberrant molecular features 

present outside of the histological margin. A careful assessment of the data included 

reviewing both the LOWESS and first derivative lines. First derivative lines were auto 

scaled in the y-axis direction for ease of reviewing the data. However, in some cases, this 

enhanced the noise. Secondly, some fluctuations in the first derivative result from slight 

biological variations in the LOWESS line. Upon assessment of the plots, no “T type I” or 

“N type I” trends were observed, instead, there were strong indications that “T type II”, 

“N type II” and “N type III” trends were present. These observed trends are summarized 

in Figure 33.  

 The final objective of this study was to determine if molecular expression patterns 

traversing the histological tumor margin correlated with pathology diagnoses. Molecular 

features of interest included those that were differential between tumor and normal as 

well as those indicating aberrant characteristics in the normal-appearing tissue outside of 

the tumor margin. After observing the LOWESS trends [Figure 32 and Appendix C] and 

reviewing the statistics, the features chosen to assess these patterns were m/z values 

4888, 5351, 6717, 8577, 9368, 10611, and 12274 [Appendix D].  

 Interestingly, depending on the patient, these features exhibited strong patterns of 

“N” types II and III. Multiple characteristics of the plot and of the patient information 

were considered in order to find the best trend in the data. The plot characteristics 



 

131 

monitored were the point at which the maximum rate of change occurred and the point at 

which the feature amplitude began to plateau. Patient information included tumor grade, 

tumor stage, and the TNM tumor size designation. A summary of observations is listed in 

Table 8.  

 There was not a clear correlation between the pathological diagnosis and the 

molecular pattern of expression through the tumor margin. For the features focused on, 

most samples followed an N type III pattern. There was a group of samples in which 

margin trends could not be assessed. This group includes four high stage tumors and 

three low stage tumors as well as three high grade tumors and four low grade tumors.  

Overall, this group may be comprised of two sets of samples. The low stage/grade tumors 

may not present changes because of their low malignancy. Sample ID “D1345” may be 

an example of the observations in the high stage tumors. As seen in the chart, sample 

“D1345”, a high grade and high stage tumor, does not plateau until at least 15000 

micrometers past the histological margin. Sample “D529a” was sampled up to only 5000 

micrometers past the histological margin. Although “D1351” had tissue sampled up to 

10000 micrometers, it was difficult to decipher and the LOWESS lines appeared to be 

relatively flat. Sample “D1925” was also difficult to decipher, with the fluctuations on 

the tumor side of the margin appearing to be biological. The flatness of the LOWESS and 

minimal change in the first derivative seem to indicate that the actual molecular change 

occurs beyond the 10000 micrometer distance.  

 These observations suggest that a distinct pattern exists that may be indicative of 

a molecular margin. With respect to the tumor, features began to change at the margin or 

after the margin. Cases in which features begin to change after the margin would be 
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indicative of more severe tumor invasion. This was observed in several samples. There 

were also samples with no observational change. These may be indicative of two possible 

scenarios. The first scenario includes samples with very low malignant tumors that do not 

yet express these distinct patterns of change. For those samples, there may be more 

specific features that best describe their patterns of change. These features could be 

indicative of less invasive tumors. The second scenario includes samples that are highly 

malignant and their molecular margin lies beyond the tissue available for the analysis. 

The most severe molecular margin existed 15 mm beyond the visually defined tumor 

border and this was the longest extent of adjacent normal tissue analyzed. These results 

highlight the complexity of molecular events that occur around the histological tumor 

margin. Most importantly, the results show that tissue as far as 15000 micrometers away 

from the tumor margin can be compromised by the presence of tumor and go unnoticed 

under current histological analyses. 
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Figure 33: Observed molecular patterns traversing the tumor margin. The dotted 
lines represent features that begin changing before the margin and gradually increase or 
decrease past the margin. 
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Table 8: Table summarizing observed margin plot trends. Size: the size of the tumor 
based on TNM staging; Start: the point at which feature amplitude begins to change; Max 
Change: refers to the maximum point of change; Plateau: the point at which the feature 
amplitude is no longer changing; N/A: distance could not be assessed. 

 
Sample ID Grade Stage Size Max Change (µm) Plateau (µm) 
D1349 2 1 1 0 2500
D0760 4 3 2 0 1100
D1930 2 1 1 800 2200
D0767 1 1 1 1250 7500
D1923 2 3 3 1250 4800
D0530 2 1 1 1250 3000
D1063 2 2 2 1250 4000
D1067 3 3 3 1500 2200
D1922 2 1 1 1800 3800
D0902 2 3 3 1800 4000
D1341 1 1 1 2000 4000
MAD060049 2 2 2 2400 6000
MAD060044 2 1 1 2500 4500
D1062 2 1 1 3000 7500
D1344 2 4 1 4500 6000
D1340 2 4 3 5000 6000
D0901 3 4 4 5000 9000
D1345 4 3 3 11000 15000
D1347 2 4 1 N/A N/A
D0764 1 1 1 N/A N/A
D1064 3 1 1 N/A N/A
D1920 2 1 1 N/A N/A
D0529a 2 3 3 N/A N/A
D1351 3 3 3 N/A N/A
D1925 3 4 3 N/A N/A
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Identifying Differentially Expressed Biological Features 

 To identify significant proteins, three methods were used, as summarized in 

Figure 34. In method A, the proteins from homogenized tissue were digested and loaded 

onto immobilized pH gradient gel strips for isoelectric focusing of the peptides. After 

focusing, the IPG strips were cut into 15 pieces. Peptides were extracted from the gels 

and desalted with C18 resin using a stepwise elution gradient of 20%, 40%, 60% and 80% 

acetonitrile. After desalting, peptides were analyzed by LC-MS/MS on an ion trap mass 

spectrometer. Liquid chromatography was performed on a C18 capillary column coupled 

to the mass spectrometer. Data dependent scanning was used to obtain MS and MS/MS 

spectra of peptides for sequencing. A database search with Sequest was performed to 

match potential proteins to their theoretical sequence. In method B, intact proteins were 

separated by reversed-phase liquid chromatography on a C8 column and fractions were 

collected in a 96-well PCR plate at one minute intervals. To identify wells containing 

proteins of interest, each well was analyzed by MALDI-TOF MS. Fractions containing 

the m/z values of interest were digested with trypsin and analyzed with LC-MS/MS as 

described above. Method C utilized the additional separation power of 1D PAGE to 

further separate proteins in the fractions of interest from LC, as above. After gel 

separation and visualization, bands of interest were cut out. Following in-gel digestion 

with trypsin, resulting peptides were then sequenced by LC-MS/MS as previously 

described. After the database searches, ProteinProphet software was used to determine 

the probability that a protein had been correctly identified based on the available peptide 

sequence152. 
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 When identifying proteins, emphasis was placed on the features determined as 

indicative of aberrant environments outside of the histological margin. Table 9 lists the 

proteins identified by these methods and those previously identified. From this study 14 

proteins were identified. Features identified that were over-expressed in tumor include 

calpactin I, calgizzarin, MIF (macrophage migration inhibitory factor), and thymosin 

beta-10. Features under-expressed in tumor were identified as calcyclin, calbindin, 

cytochrome c, NADH-ubiquinone oxidoreductase MLRQ subunit, a ubiquinol-

cytochrome c reductase complex protein, and several cytochrome c oxidase polypeptides 

(VIC, VB, VIIA2, VIIC, VIII2). The proteins that indicated a compromised environment 

outside of the histological margin were cytochrome c, the cytochrome c oxidase 

polypeptides, and the NADH-ubiquinone oxidoreductase MLRQ subunit.  

 Several of the proteins identified are members of the S100 family of proteins. 

These proteins include calpactin I (S100-A10), calgizzarin (S100-A11), calbindin (S100-

G), and calcyclin (S100-A6). The S100 protein family is comprised of calcium-binding 

proteins with two helix-loop-helix EF-hand motifs. There are approximately twenty 

human S100 family members, sixteen of which (S100A1-S00A16) are clustered on the 

chromosome 1q21 region, where a number of chromosomal abnormalities occur in 

neoplasms. This protein family is responsible for a variety of cellular processes including 

cell proliferation and differentiation and intracellular calcium regulation. Results show an 

increased expression of Calgizzarin in clear cell renal carcinoma. Calgizzarin, the 

S100A11 protein, plays a potential role as a tumor suppressor and its overexpression in 

renal tumors has been observed153.  In this study, Calpactin I was also over-expressed in 

tumor cells. This is consistent with previous studies of renal cell carcinoma. The S100-
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A10 protein forms cellular ligands with annexin II and this complex is known to activate 

plasminogen to form plasmin. The loss of S100A10 from the extracellular surface of 

cancer cells results in a significant loss of plasmin generation. Therefore it is possible that 

the overexpression of S100A10 and annexin II in RCC would be correlated with poor 

prognostic indicators154.  

 Protein S100-G, or calbindin, is a vitamin D dependent calcium binding protein. 

Vitamin D is a factor that inhibits cell proliferation and promotes apoptosis. These 

functions are mediated by the vitamin D nuclear receptor, which is present in healthy 

kidneys. Its binding to DNA is required for proper function. In clear cell renal carcinoma, 

its DNA binding is altered. Although vitamin D expression levels do not change in renal 

tumors, it is expected that decreased vitamin D binding activity will cause abnormal 

activities of vitamin d-downstream genes, such as calbindin155. 

 Calcyclin is a S100A6 calcium binding protein whose activity has been 

implicated in numerous molecular functions including tumorigenesis. Increased levels of 

calcyclin have been associated with decreased metastasis and inhibition of cell migration 

and to anchorage independent growth in human osteosarcoma156. Decreased expression 

of calcyclin has been observed in prostate cancer and its precursors. The mechanism of 

its decreased expression is unknown, yet some suggest that it may involve methylation of 

CpG sites within the promoter region157. 

 Thymosin beta-10 has also been shown to be over-expressed in human renal cell 

carcinoma158. This protein is a member of the thymosin family, which is composed of 

three classes, alpha, beta and gamma. The beta class plays a role in cellular structure. 

Thymosin beta-10 expression is related to cell growth in proliferating tissues and its 
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expression has been reported in tumors. In tumorigenesis, beta thymosins bind and 

sequester G-actin, which plays a role in maintaining cellular structure. It is believed that 

elevated thymosin beta-10 levels in malignant tumors may be correlated with actin 

polymerization. It is known that overexpression of exogenous thymosin beta-10 causes a 

disassembly of actin stress fibers. Disassembly of the stress fibers enhances cell 

migration, which enhances conditions for malignant growth159. 

 Macrophage migration inhibitory factor (MIF) has been implicated in regulating 

tumor migration and expression of angiogenic factors in hepatocellular carcinoma as well 

as in the regulation of host inflammatory and immune responses160. MIF has also been 

linked to processes involved in cell proliferation, differentiation, and tumor 

progression161. The mechanisms of the role MIF plays in tumor progression are unknown, 

but it is possible that increased MIF secretion by tumor cells aids in tumor promotion and 

survival by inducing the release of angiogenic factors162, 163. 

 The loss or decrease in expression of both NADH-ubiquinone oxidoreductase and 

ubiquinol cytochrome c reductase has been identified in clear cell renal cell carcinoma.  

Both are present in mitochondria and take part in electron transport of the respiratory 

chain. The ubiquinol cytochrome c reductase is a component of the ubiquinol cytochrome 

c reductase complex. Its function is to generate an electrochemical potential coupled to 

ATP synthesis to transfer electrons from ubiquinol to cytochrome c. It is localized on the 

inner membranes of mitochondria. NADH-ubiquinone oxidoreductase catalyses the 

transfer of electrons from NADH to ubiquinone101, 105. 

 Cytochrome c and the cytochrome c oxidase polypeptides are also involved in 

electron transport, which is consistent with findings that there is a severe decrease in 
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oxidative phosphorylation in clear cell renal cell carcinomas. The loss of activity of these 

proteins correlate with a severe loss of mitochondrial activity, which seems to favor a 

faster growth or increased invasiveness of these tumors164. These electron transport 

proteins were indicative of aberrant molecular presence outside of the histological 

borders [Figure 35]. 
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Figure 34: Schematic of the three methods used for protein identification.  
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Table 9: Summary of proteins identified. An asterisk (*) indicates a unique peptide. 
Letters A, B, and C in the “Methods” column indicates the protein identification method 
used as described by its corresponding letter in Figure 34.  
 

 
MW Protein Name Accession # 

% 
Coverage 

Peptide Residue 
#'s Method Comment 

11072 S100AA/Calpactin I P60903 18 47-53*, 37-46* C 
Up in 
Tumor 

10090 S100-A6/Calcyclin P06703 24 
41-47, 48-55, 56-
62* C 

Down in 
Tumor 

8577 COX6C P09669 31 18-38 C 
Down in 
Tumor 

9368 

NADH-ubiquinone 
oxidoreductase 
MLRQ subunit O00483 53 

36-47, 48-55, 56-
63, 64-72, 77-81 C 

Down in 
Tumor 

11651 
S100-
A11/Calgizzarin P31949 16 37-52* A 

Up in 
Tumor 

10738 

Ubiquinol-
cytochrome c 
reductase complex 
11 kDa protein P07919 21 61-78 A 

Down in 
Tumor 

8714 

Calbindin/Vitamin 
D-dependent 
Calcium BP O75552 5 35-47 A 

Down in 
Tumor 

12272 Cytochrome C P99999 57 

28-38*, 39-52, 
40-52, 56-73, 80-
86, 92-99 B 

Down in 
Tumor 

10611 COX5B P10606 24 
50-56, 57-68, 58-
68, 75-86* B 

Down in 
Tumor 

6720 COX7A2 P14406 28 34-46*, 47-56* B 
Down in 
Tumor 

5354 COX7C P15954 14 26-34* B 
Down in 
Tumor 

4890 COX82 P10176 13 26-34* B 
Up in 
Tumor 

12345 MIF† P14174   Other 
Up in 
Tumor 

4933 Thymosin β-10† P63313   Other 
Up in 
Tumor 

 

† : Proteins were previously identified by intact fragmentation methods 
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Figure 35: Cytochrome oxidase activity assay confirms localization of features. A.) 
Microscope images of tumor (1) and normal (2) regions of the tissue. B.) Scanned image 
of stained section shows localization. C.) LOWESS trend of features involved in 
mitochondrial electron transport.  
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Materials and Methods 

 To identify proteins of interest, tissue was homogenized with TPER (tissue 

protein extraction reagent) buffer (Pierce Biotechnology, Rockford, IL) according to the 

manufacturer’s protocol. Protein supernatant was fractionated by RP-HPLC on a C8 

column (Grace Vydac, Hesperia, CA). One-dimensional SDS-PAGE separation of 

proteins was carried out on 10-20% Tricine gels (Invitrogen Corporation, Carlsbad, CA). 

In-gel and in-solution digests were carried out with trypsin (Promega Corporation, 

Madison, WI) according to the manufacturer’s protocol. Peptide solutions were analyzed 

on a Deca XP Plus ion trap mass spectrometer and/or an LTQ linear ion trap mass 

spectrometer (Thermo Scientific, Waltham, MA), both equipped with a RP-C18 column.  

 For histochemistry, 4g sucrose was mixed with 90 µl of 0.1M phosphate buffer 

solution at pH 7.4. Then the solution was mixed with 50 mg of DAB/25 mg Cytochrome 

C type III (Sigma-Aldrich Co., C26506). After mixing, the solution was added to the 

slides and shaken for 45 minutes. Slides were removed and rinsed in a series of 3 x PBS 

(phosphate buffered saline), 3 x H2O, 3 x 70% EtOH, 3 x 95% EtOH, and 3 x xylene for 

5 minutes each. 
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CHAPTER V 

 

DISCUSSION AND CONCLUSIONS 

 

Technological Perspectives 

 

Application of MALDI MS to Clinical Pathology 

 The applicability of MALDI MS to the rapid evaluation of tumor margins has 

been proposed165 and the supportive work presented here is the first, in-depth molecular 

assessment of tumor margin microenvironments by MALDI-TOF mass spectrometry. 

The rate of tumor recurrence post resection suggests that there are underlying molecular 

changes that go undetected in conventional diagnostic methods. To determine and better 

understand the molecular changes in and around the tumor margin requires the 

application of molecular technologies. Profiling and imaging MALDI MS technology has 

been applied to multiple diseased tissues and, with biocomputational tools, resulted in the 

identification of disease-state and patient prognostic-specific protein patterns65, 67, 69-71, 125. 

These studies suggest that proteomic information will become increasingly important in 

assessing disease progression, prognosis, and response to therapy.  

 With its ability to rapidly analyze thin tissue sections and provide for the 

visualization of hundreds of proteins simultaneously, it is believed that profiling and 

imaging MALDI MS technology will one day be used in pathology and diagnostic labs to 

enhance the quality of information provided to clinicians to improve upon conventional 

histopathological diagnoses165, 166. Conventional approaches rely on histochemistry and 
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immunohistochemistry procedures, which represent a challenge in the clinical setting. 

Histochemistry, such as hematoxylin and eosin staining, only allows for morphological 

characterization. Immunohistochemistry procedures, however, are difficult to 

standardize, and must be performed separately for each antibody; antibodies are not 

readily available and there lacks a standard, thorough procedure for assessing their cross-

reactivity. Microarray analysis of antibody cross-reactivity produces worrisome results, 

including numerous cross-reactivities with both monoclonal and polyclonal antibodies, as 

well as preferential binding to non-specific proteins167.  MALDI MS technology allows 

for the visualization of hundreds to thousands of individual proteins in the molecular 

weight range from 2000 to 200,000.  Its application to direct tissue analysis allows for the 

direct correlation of individual protein signals with their distributions within specific 

regions of tissue. It is ideal for discovery studies in that it does not require prior 

knowledge of protein composition or require molecular-specific reagents. 

 This study has expanded on the applicability of profiling and imaging MALDI 

MS by demonstrating its ability to monitor patterns of molecular change around 

histological tumor margins to help facilitate the discovery of molecular signatures that 

will accommodate current histological procedures in defining the surgical margin status. 

To date, there have been some attempts to examine tumor margin status via molecular 

methods, but no currently available method demonstrates sufficient molecular sensitivity 

or specificity to challenge the superiority of surgical pathology165.  In this study, MALDI 

MS was used to simultaneously measure hundreds of individual protein signatures, while 

retaining spatial information, in the microenvironments around the histologically-defined 

tumor margin and resulted in the identity and location of abnormal molecular 
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characteristics in the histologically normal tissue. This research shows that profiling 

intact tissue sections by MALDI MS, combined with biostatistics, offers a highly specific 

process of analyzing tumor margins to compliment the current clinical diagnostic tools in 

ensuring successful tumor extirpation. 

 The application of MALDI MS to the analysis of intact tissue sections was first 

reported nearly a decade ago53, and though its potential superiority to IHC and electron 

microscopy as a molecular diagnostic tool has been demonstrated, several areas of 

improvement are needed before it can be of routine use in a clinical pathology lab165, 166. 

To be of value in a diagnostic laboratory, the complete assessment process must be rapid, 

or within a few hours of surgical resection. Although the data collection time has recently 

improved with increased laser repetition rates and enhanced electronics, critical advances 

are needed in terms of data processing. Spectral processing post acquisition involves both 

preprocessing and statistical computations. Currently, the processing time for individual 

samples can take days to complete, yet future software packages, allowing for a more 

automated and high throughput workflow will reduce the processing time to less than an 

hour. Analysis resolution, which is crucial to obtain cellular-specific as opposed to 

microenvironment specific information, is an ongoing improvement. Achievable 

resolution depends on the laser spot size on the target and matrix deposition. Some lasers 

can be focused down to 5 or 10 µm, but result in a sensitivity loss. Future advances in 

optics or sample matrices, such as nanoparticle additives, may enhance sensitivity at 

smaller laser spot sizes. With regards to matrix deposition, spray coating the matrix onto 

tissue allows for limitless resolution, but the most sensitive and reproducible data results 

from robotic deposition technologies, which are currently limited to approximately 200 
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µm in diameter. Continued improvements in the areas of optics, electronics, matrix 

deposition and biocomputations, as well as reductions in cost and instrument size, will 

push MALDI-TOF MS to the forefront of technologies capable of complementing 

histopathological diagnoses. 

 

Importance of Tissue Collection and Preservation 

 Proper and uniform tissue collection and preservation protocols are vital to the 

successful application of proteomic technologies such as direct tissue profiling by 

MALDI MS to clinical diagnosis. Proteomic studies aiming to discover molecular events 

that preclude or directly result in phenotypic changes in tissue specimens must utilize 

samples in which little to no proteolysis, in excess of what occurs in vivo, has taken 

place. The process of degradation is slowed by low temperature, thus keeping the tissue 

specimen at temperatures slightly above freezing and ensuring rapid handling prior to 

snap-freezing in liquid nitrogen is essential to maintain protein integrity. The ability to 

transplant organs shows that tissue can be maintained ex vivo in the absence of blood 

circulation, but longevity differs between tissue types. The exact time that intact tissues 

can remain outside of the body without significant alterations to the proteome, however, 

is still unknown. There is a possibility that metabolites and macromolecules begin 

degrading as soon as the blood supply is no longer available. Metabolite levels can 

change within seconds or minutes, whereas macromolecule alterations occur anywhere 

from minutes to days168, 169. 

 In a surgical setting, some time lapse between tissue resection and freezing is 

inevitable, but a better understanding of protein degradation in tissue is needed to design 
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and implement appropriate, standard sample handling protocols.  Current standards of 

sample handling vary between repositories. As experienced in this study, many 

institutions that collect clinical specimens for research are not designed to achieve a time 

interval of less than two hours, indicating a need for tissue collection facilities to have 

uniform standard operating procedures. Another observation in this study was the lack of 

standard documentation procedures pertaining to the time between surgical resection and 

freezing. Uniform procedures and accurate documentation are essential to minimizing 

variability for proteomic studies. It is most likely that no routine protocols will be 

changed until there is solid evidence in support of a change, and currently, there remains 

to be a collective effort from proteome researchers to address this issue. 

 A second crucial aspect of tissue collection and preservation methods involves the 

conventional formalin fixation and paraffin embedding of resected tissue and the 

incompatibility of this method with proteomic analyses. Proteomic studies utilizing tissue 

require large amounts of sample, which is difficult to attain. There are vast amounts of 

archived tissue available, but the fixative, which covalently cross-links proteins, renders 

them difficult to analyze using routine proteomic protocols169. Formalin fixing and 

paraffin embedding tissue has become the gold standard for tissue storage and 

preservation of cellular morphology, but a new protocol is needed in order to 

accommodate both pathology labs and molecular profiling labs. Several solutions are 

proposed that may circumvent current and future problems with tissue preservation and 

storage. To potentially utilize the enormous amount of archived tissue, there needs to be a 

continued exploration into treatment methods that will allow the currently fixed and 

embedded archival tissue to be utilized in proteomic studies169-172. Secondly, a new 
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method of fixing and preservation is needed by which future samples can be preserved 

and archived. This could be done with new preservation strategies that are compatible 

with both microscopic and proteomic evaluation. Lastly, if these efforts prove to be of 

little value, then the collection and storage of clinical samples must consist of two parts, 

including one sample that is fixed and embedded for pathology use and one that is fresh-

frozen for future proteomic use. Regardless, it is imperative that there be a uniform 

procedure followed by all collection facilities to minimize tissue and biological fluid 

variability and provide researchers with high quality samples. 

 

Biological Perspectives 

 This study utilized MALDI MS to characterize the molecular microenvironment 

adjacent to histological tumor margins to determine if there are indications of aberrant 

molecular expression beyond the histological tumor border. Molecular features in the 

normal region adjacent to the histological tumor border that have an increased or 

decreased expression in correlation to their counterparts in the tumor could represent 

regions of aberrant cellular development. These cells could be morphologically 

indistinguishable from their normal complements, yet retain the potential for tumor 

invasion and metastasis.  

 Results of this study indicated that there were many proteins over-expressed and 

under-expressed in ccRCC tumors as compared to normal; however, those of particular 

interest are the proteins that indicated abnormal tissue in the normal region outside of the 

histologically defined tumor margin. Of the proteins identified, most are involved with 

mitochondrial electron transport. These proteins were consistently under-expressed in the 
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tumor as well as in the histologically normal tissue adjacent to the tumor. The decreased 

expression of proteins involved in electron transport has been observed in tumors of clear 

cell renal cell carcinoma164, 173 but has not been observed in the immediate, adjacent 

normal tissue. 

 

Mitochondrial Electron Transport 

 The electron transport chain, or respiratory system, is a series of membrane-

associated complexes that mediate biochemical reactions to produce ATP. In short, the 

electron transport chain removes electrons from the donor, NADH, and passes them to a 

terminal electron acceptor, O2 via a series of redox reactions. The reactions create a 

proton gradient across the mitochondrial inner membrane, resulting in the transmembrane 

proton gradient used to make ATP via ATP synthase in oxidative phosphorylation174. 

 The process of electron transport consists of four complexes. Complex I, which 

consists of NADH dehydrogenase (synonym: NADH-ubiquinone oxidoreductase), 

removes two electrons from NADH and transfers them to the carrier, ubiquinone. 

Simultaneously, Complex I moves four protons across the membrane to produce a proton 

gradient later used to generate ATP through oxidative phosphorylation. Complex II, 

which consists of succinate dehydrogenase, funnels electrons into the quinone group by 

removing electrons from succinate and transferring them via FAD to the quinone. 

Complex III (cytochrome bc1 complex) removes two electrons from the quinone and 

transfers them to two molecules of cytochrome c, a water-soluble electron transporter 

located on the outer surface of the membrane. Simultaneously, Complex III moves two 

protons across the membrane, producing a proton gradient consisting of four total 
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protons. When electron transfer is somehow hindered in Complexes I and III, there is a 

tendency for premature electron leakage to oxygen, resulting in the formation of 

superoxide. The last complex, Complex IV, consists of cytochrome c oxidase. It is 

responsible for removing four electrons from the four molecules of cytochrome c and 

transferring them to O2, producing two molecules of water. Simultaneously, it also moves 

four protons across the membrane, producing a proton gradient. Finally, this proton 

gradient is utilized by the ATP synthase complex to make ATP via oxidative 

phosphorylation174, 175. 

 

Mitochondrial Electron Transport Proteins Identified in this Study 

 Proteins identified in this study that were under-expressed in tumor and involved 

in the electron transport system include cytochrome c, COX5B, COX6C, COX7A2, 

COX7C, COX8-2, a ubiquinol-cytochrome c reductase, and NADH-ubiquinone 

oxidoreductase (MLRQ subunit). Cytochrome c is an electron carrier protein. The 

oxidized form of the cytochrome c heme group accepts an electron from the heme group 

of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this 

electron to the cytochrome oxidase complex, which is the final step in the electron-

transport process176. The cytochrome c oxidase subunits COX5B, COX6C, COX7A2, 

COX7C and COX8-2 are all subunits of Complex IV of the mitochondrial electron 

transport chain177. The function and exact location of the NADH-ubiquinone 

oxidoreductase (MLRQ subunit) protein remains unknown. It is believed to be a subunit 

associated with Complex I of the electron transport chain178-181. The ubiquinol-

cytochrome c reductase is part of Complex III (cytochrome bc1 complex). The proteins 
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identified represent a small fraction of the proteins found to be similarly expressed in the 

tumor and the immediate adjacent normal.  

 

Mitochondrial Deficiency in Cancer 

 Mitochondrial deficiency in cancer cells was recognized almost eighty years ago 

by Otto Warburg182, but only recently has it caught the attention of cancer researchers. 

The Warburg effect is described as the dependency of tumors on glycolysis rather than 

oxidative phosphorylation for ATP even in the presence of oxygen. The production of 

ATP through glycolysis is much more inefficient than its production through 

mitochondrial oxidative phosphorylation. It is perplexing, therefore, as to why cancer 

cells with this deficient energy metabolism, can persevere over other cells to develop a 

malignant population with drug-resistant potential. 

 

Mechanisms of Mitochondrial Deficiency in ccRCC 

 The cause of mitochondrial electron transport deficiency in sporadic ccRCC 

remains unknown, but is believed to be related to mitochondrial DNA defects, mutations 

of nuclear DNA encoding mitochondrial proteins, mutations of proteins involved in their 

biogenesis, or mechanisms regulating protein translation or stability164, 183.   Recent 

evidence suggests that the VHL tumor suppressor protein plays a role in stimulation of 

mitochondrial oxidative phosphorylation complex biogenesis173, 184. Clear cell renal cell 

carcinomas, however, are characterized by inactivation of this tumor suppressor gene. 

The VHL protein (pVHL), together with several other proteins (elongins C and B, Cul2 

and Rbx1) that have E3 ubiquitin ligase activity, targets the alpha subunit of the 
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heterodimeric transcription factor HIF (hypoxia-inducible factor) for ubiquitination and 

subsequent destruction. In normoxic conditions, pVHL directs the ubiquitination of HIFα, 

which is then set for destruction. Under low oxygen conditions, a characteristic of 

tumors, the stabilized HIFα protein subunits accumulate in the nucleus where they form a 

complex with HIFβ. This complex is responsible for transcriptional activation of hypoxia 

adaptation factors. Consequences of this role include an increased synthesis of glucose 

transporters and glycolytic enzymes in order to maintain ATP production in the presence 

of low anaerobic metabolism compared to oxidative metabolism. In general, the hypoxia-

inducible factors include genes involved in angiogenesis, erythropoiesis, glycolysis, cell 

growth and survival, and cell migration (CXCR4), suggesting that the VHL-HIF cascade 

of events are crucial for renal carcinoma progression184. 

 

Electron Transport Deficiency in the Adjacent Normal Kidney 

 Although the mitochondrial electron transport deficiency and related events in 

clear cell renal cell carcinoma have been examined, the mechanisms that trigger the 

events involved in tumor spread or invasion have been less studied. Particularly 

interesting is that results of this work suggest that this system is involved in tumor 

invasion into the adjacent normal tissue. Whether or not the mitochondrial deficiency is 

the primary or secondary cause of the cancer remains under scrutiny; however it now 

appears to be involved in tumor invasion into the adjacent normal tissue. Though there is 

insufficient research available to draw definitive conclusions, several mechanisms, 

including oxygen sensing processes175, 185-187 and pH-mediated invasion188, 189, may be 

involved that give rise to the observations in this study. 
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 Although cells have a limited ability to generate ATP in the absence of oxygen, 

alternative mechanisms take over to sustain this supply when oxygen becomes limited.  

Most cells in the body are capable of sensing oxygen, but the oxygen sensor should 

initiate distinct signaling cascades when a slight deviation from normoxia is detected.  

There is a wide range of oxygen distribution in different tissues, suggesting that the 

threshold of activation may vary from tissue to tissue and cell to cell. The sensing 

mechanisms involved in cancer and how they relate to mitochondrial deficiency are 

unknown, yet a few pathways have been proposed, including prolyl hydroxylases and the 

mitochondria175, 185.  

 The hypoxia inducible factor, responsible for activation of transcriptional 

responses to hypoxia, has been considered as oxygen-dependent; however, in the process 

of determining what activation mechanisms are responsible for its activity during 

hypoxia, it was discovered that the interaction between HIFα and pVHL is mediated by 

the hydroxylation of highly conserved proline residues within the ODD (oxygen-

dependent degradation domain). The hydroxylation of these residues by prolyl 

hydroxylases facilitates interaction with the ubiquitin ligase, controlling protein stability. 

The regulation of prolyl hydroxylase activity by oxygen is therefore responsible for 

controlling the activation of HIF. The prolyl hydroxylases require 2-oxoglutarate and 

oxygen as substrates and a non-heme iron as a cofactor. When the activity of prolyl 

hydroxylases is blocked, there is an accumulation of HIFα followed by the activation of 

HIF-dependent gene expressions, as seen in ccRCC175, 185, 186. 

 To be an oxygen sensor, the protein must be capable of initiating a response at the 

first sign of hypoxia. Research monitoring the sensitivity of prolyl hydroxylases to 
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oxygen levels by HIF stability observed an activation of this system at a very low oxygen 

level of 5%, with maximal activation at 0.5%, which is near anoxia190. This work was 

done in the in vitro environment, utilizing a small peptide from HIF rather than the full 

protein length. These factors may have introduced artificial differences in the enzyme 

activity, but finding a way to truly monitor this process in the intact cell in the in vivo 

environment is proving difficult175. Future work addressing more validated model 

systems will enable a better understanding of this pathway and how initial events 

involving the prolyl hydroxylases in oxygen sensing may contribute to tumor spread into 

the adjacent normal tissue. 

 Evidence has also suggested a mitochondrial role in oxygen sensing. As reviewed 

by Guzy and Shumacker175 various studies have attempted to elucidate the potential 

pathways of mitochondrial oxygen sensing by evaluating the effect of electron transport 

chain complexes on HIF stabilization. In response to the evidence, the authors proposed 

that electron transport chain Complex III acts as an oxygen sensor by releasing ROS in 

response to hypoxia, which stabilizes HIF. During electron transport, a quasi-stable 

ubisemiquinone radical is repeatedly generated. Molecular oxygen, which is located 

within the membrane, is highly electrophilic and can potentially capture the electron from 

ubisemiquinone. The capture of an electron by oxygen yields superoxide, a reactive 

molecule that can potentially act in a signaling role or as a non-specific oxidizing agent 

that can contribute to cell damage. Since the cellular matrix is negative relative to the 

intermembrane space, it is proposed that the superoxide anion will then migrate to the 

intermembrane space, where it would be converted to hydrogen peroxide by superoxide 

dismutase. Hydrogen peroxide may contribute to tumor spread into the adjacent normal 
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tissue because of its capacity to cross membranes and target proteins for oxidation, 

resulting in functional consequences175. Evidence has also indicated that hydrogen 

peroxide may oxidize mitochondrial DNA polymerase γ, which could initiate further 

oxidative stress due to the loss of mitochondrial DNA replication and subsequent energy 

decline191. 

 Though ROS invasion into the adjacent normal tissue is a probable event in 

decreased mitochondrial electron transport and enhanced tumor invasion, an additional 

mechanism, involving tumor acidosis, has been proposed that may likely be involved. 

Although each invasive cancer population appears to be the result of a unique genetic 

pathway traveled during carcinogenesis, most invasive cancers have in common an 

altered tumor metabolism, suggesting its role in favoring tumor invasion. Increased 

glycolysis in the tumor promotes acid excretion, which alters the microenvironment by 

substantially reducing intratumoral pH. This led Gatenby and Gawlinski188 to propose  

that the H+ ions in the tumor extracellular space diffuse along concentration gradients 

into adjacent normal tissues, which can cause cellular degradation or influence molecular 

events. An decrease in pH has been implicated in the reversible loss of VHL function by 

promoting its nucleolar sequestration, also in normoxic environments, with the 

subsequent stabilization of HIF192. Less research has been devoted to this potential 

pathway of invasion, but ccRCC invasion may be precluded by a combination of H+ and 

ROS diffusion into the adjacent normal tissue, resulting in HIF stabilization, retardation 

of the electron transport system, and increased glycolysis. 
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Factors Governing Distance of Compromise from Histological Margin 

 Factors governing how far cells are compromised outside the histological margin 

could be aspects of tumor hypoxia, aggressiveness, or a combination of these factors with 

the host immune system. Currently, there is no marker to define ccRCC tumor 

aggressiveness. In this study, tumor stage and grade were both utilized as an assessment 

of aggression in order to determine if the distance of compromised tissue outside of the 

histological margin could be correlated with aggressiveness; however the distance results 

could not be correlated with tumor stage or grade. This may indicate that the distance of 

compromise is independent of tumor aggressiveness. It could also be an indication of the 

deficiency in the current diagnostic system. The current histopathological inspection of 

the tumor is histological and may not best represent the aggressive nature of the tumor. 

There is a cascade of molecular events occurring in the tumor and its adjacent tissue that 

is not visualized with current histology procedures, thus, the tumor aggressiveness may 

best be defined by these underlying molecular events. Studies such as this may provide 

additional understanding of ccRCC aggression and invasion and may provide additional 

tools by which histologists can assess the tumor and its surrounding environment. 

 

Status of Cells Expressing Aberrant Characteristics in Histologically Normal Tissue 

 Results from this project demonstrate that many intriguing yet complex events 

occur at tumor borders that contribute to the aberrant molecular changes occurring 

outside of the histological margin.  Depending on the tissue and cancer type, these 

biological events may vary and may include one or more events. One hypothesis is the 

aberrant cells outside of the tumor margin are infiltrative tumor cells that go undetected 
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by conventional histology. Alternatively, these cells could be pre-cancerous cells that 

have already undergone malignant transformation at the molecular level yet show no 

phenotypic characteristics of tumor cells. A third hypothesis is that the aberrant cellular 

characteristics of these seemingly normal cells result from cross-talk or secretory 

interactions between the tumor and surrounding tissue.  This signaling pathway could 

cause cells outside of the histological margin to express some features characteristic of 

the tumor, and possibly would no longer be expressed if the tumor were removed. There 

are an increasing number of investigators probing the biology of tumor spread, and 

perhaps one or more of the aforementioned hypotheses will one day explain the 

phenomenon of ccRCC tumor invasion and cancer recurrence. 

 

 

Future Perspectives 

 

Additional Insights into ccRCC Invasion 

 Despite recent discoveries in the tumorigenesis of ccRCC, much remains to be 

understood in what drives the invasion of this tumor.  Though it is known that ROS is 

released from the electron transport chain, it is not understood how this may be induced 

by hypoxia and how this plays a role in oxygen sensing and tumor invasion175. An 

additional system of interest is the chemokine network. Previous studies have shown that 

chemokines play a major role regulating leukocyte trafficking and extravasation into sites 

of tissue inflammation. CXCR4, in particular has been demonstrated in cancer cells as 

mediating factor in tumor metastasis. Evidence suggests that CXCR4 may be regulated 



 

159 

by the HIF-1α subunit in ccRCC193, 194. Collectively, this information suggests that 

CXCR4 may play a crucial role in invasion into adjacent tissue, possibly through oxygen 

sensing or host inflammatory response mechanisms. Another interesting development is 

the role of membrane type-1 matrix metalloproteinase (MT1-MMP) as a key regulator of 

tumor progression through its functions as a matrix-degrading enzyme and as a cleaving 

factor to adhesion molecules and other MMPs. MT1-MMP has been identified as a 

potential transcriptional target of HIF-2alpha and has been indicated as a major mediator 

of tumor cell invasiveness in ccRCC195. Whether these events are triggered by oxygen 

sensing or other pathways is yet to be determined. Studies examining the presence or 

absence of these intriguing factors in the tissue immediately adjacent to the tumor would 

provide additional evidence of their role in tumor invasion. Future studies examining the 

gene expression levels in the tumor, histological margin, and adjacent normal and how 

they correlate to the nuclear encoded proteins identified in this study would provide 

insight into the potential genetic deficiencies of this cancer. Experiments measuring the 

levels of ROS, superoxide dismutase, and acidity of the tumor and adjacent tissue would 

provide additional evidence in support of or against the proposed ROS- and pH-mediated 

invasion mechanisms. 

 

Assessing the Molecular Tumor Margins in Other Cancers 

 MALDI-MS methods for analyzing molecular changes in tumor margins has been 

successfully applied to ccRCC, with results indicating a glycolytic role in tumor invasion, 

either as a direct cause or a early indicator of compromised tissue in the normal 

microenvironment of the tumor. The molecular state of tumor margins is of high interest 
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and importance in all cancer types. Having varying degrees of aggression and potential to 

metastasize, different tumors may exhibit striking differences in their molecular 

signatures between the tumor, the histological margin, and the normally appearing tissue.  

Despite these differences, most tumors share the common characteristic of glycolytic 

dependency188. The high abundance of these features renders them easily detectable by 

mass spectrometry. The methods developed and implemented in this study may be easily 

applied to other cancer types. Results from these studies would provide new insights into 

understanding tumor margins in specific cancers as well as between cancers, while 

providing spatial molecular information that can be compared to conventional 

histochemistry approaches. 

 

Three-Dimensional Imaging of Tumor Margins 

 This project examined molecular profiles of the tumor margin in a narrow, two-

dimensional space. Results showed that tissue outside of the histological margin 

expressed certain tumor features. These aberrant characteristics were observed up to 

approximately 11 mm, depending on the sample, from the histological margin. It is not 

understood how this pattern exists in a three-dimensional distribution. The distance of 

compromise could be uniform in three dimensions or it could vary depending on tumor 

heterogeneity or the adjacent tissue. Experiments involving both invasive and non-

invasive approaches to examining the three-dimensional structure of tumors have been 

performed, yet no molecular approach, such as mass spectrometry has been used to study 

the tumor volume. The three-dimensional visualization of protein mass spectra from 

MALDI MS in-situ analyses has been demonstrated196 and current efforts are underway 
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to improve registration procedures and throughput as well as enhance image resolution to 

allow for substructure visualization. The ability to visualize molecular features of tumors 

in three dimensions would provide new biological insights into tumor invasion with the 

potential to improve the diagnosis of tumors and their classification in three dimensions 

in conjunction with current histochemistry approaches.  

 

Early Detection of Renal Carcinoma 

 Although renal carcinoma is not one of the most prevalent diseases, it is one of 

the most silent killers, and its effects could be greatly minimized by early detection. Each 

year in the United States, there are approximately 30,000 new cases of renal cancer, 

which results in about 13,000 deaths per year. Unfortunately, this cancer, which is 

resistant to therapy, usually remains silent for many years before patients present 

themselves with symptoms due to metastatic disease. Kidney tumors can become quite 

large without causing any discomfort. Currently there are no reliable tests that can detect 

kidney cancer early.  Routine urinalysis may find small amounts of blood in the urine, but 

many other causes of blood in the urine exist besides kidney cancer. Oftentimes, renal 

cancer does not present itself with blood in the urine, and when it does, the cancer is 

already quite large and has metastasized to other parts of the body2, 76.  

 Proteomics has the power to determine potential early markers for renal 

carcinoma subtypes. Ultimately, biomarkers that may be traced from the primary tumor 

to biological fluids represent a noninvasive way to test for renal cancer. Since the kidneys 

serve as blood filterers and urine producers, urinalysis and serum analysis represent 

possible means for the early detection of ccRCC.  Nonetheless, an early screening tool for 
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renal carcinoma would significantly reduce the amount of renal tumors found by chance. 

It is unclear whether or not glycolytic dependency in ccRCC is a result of nuclear- or 

mitochondrial-encoded defects, however, the depletion of these highly abundant electron 

transport proteins may indicate a very early event in tumor spread and may indicate an 

early event in initial, sporadic tumor development.  

 

Conclusion 

MALDI MS profiling of biological tissues has been demonstrated as a useful 

technology to monitor the patterns of molecular change traversing the histological tumor 

margin. The results of this analysis show that there are aberrant characteristics present 

outside of the histological margin. Depending on the sample, these changes were visible 

as far as 11000 micrometers after the histological tumor border. Identification of these 

changes indicated that increased glycolysis at the expense of mitochondrial oxidative 

phosphorylation plays a significant role in ccRCC tumor spread into the normal tissue. 

Assessment of molecular patterns in the tumor microenvironment indicated that there are 

very complex, yet distinctive ways in which molecules are expressed around the 

histological border. Given the vast problem with tumor recurrence, it is imperative to 

discover what drives these events. The mechanisms proposed to give rise to tumor 

invasion and mitochondrial deficiency in adjacent normal tissue include ROS- and pH-

diffusion. Further elucidation of these events will not only provide additional insights 

into the molecular mechanisms of tumor invasion, but also facilitate the discovery of 

molecular markers to aid in current histological procedures that better define molecular 

tumor margins in an effort to reduce local recurrence. Identifying biological changes and 
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understanding the molecular events in and around tumor margins is vital to understanding 

therapeutic resistance and designing new therapeutic agents. 
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Appendix A 
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Comparison of Far Normal (FN) vs. Far Tumor (FT) from Tumor Grades III-IV 
 
Data sets: 
Selected spectra from six samples D1067, D529, D1340, D528, D1344, D1347 
  
Plot of Group Averages: <group 6FN in blue, group 6FT in red> 

  
 
Plot of Group Differences: 

  
 
 
 
 
 
 
 
 
  
  
 



 

166 

Table of features used in classifier and validation. (Selected Wil P < 0.0001): 
MZ ID 6FN 

Avg 
6FT 
Avg 

Wil P T p CV1 CV2 

4112 25 .088 .375 2.520E-11 3.794E-06 .804 1.655 
4385 27 .057 .244 1.255E-05 2.975E-06 .753 1.644 
4887 33 .117 .051 1.863E-08 4.715E-10 .841 .687 
4894 34 .111 .052 4.568E-07 8.163E-05 1.275 1.065 
5042 38 .379 .193 3.507E-13 2.517E-12 .436 1.024 
5061 39 .315 .099 4.284E-11 2.487E-05 1.591 1.32 
5069 40 .56 .089 4.564E-09 7.833E-03 3.239 1.072 
5260 42 .106 .067 1.959E-08 3.088E-09 .512 .526 
5350 43 .572 .142 4.887E-11 2.142E-09 1.237 .532 
5358 44 .425 .217 2.998E-09 1.008E-06 .907 .841 
5668 47 .387 .305 2.507E-05 3.200E-05 .364 .463 
5827 51 .105 .174 1.289E-06 9.425E-08 .568 .653 
5932 52 .152 .061 3.131E-13 1.478E-09 .958 .443 
6321 58 .141 .096 9.066E-06 5.181E-07 .581 .425 
6329 59 .107 .072 3.856E-07 1.537E-06 .559 .594 
6657 63 .178 .069 4.331E-09 2.958E-08 1.066 .67 
6665 64 .155 .076 5.998E-08 3.944E-08 .863 .64 
6716 65 .154 .087 1.640E-10 3.975E-12 .554 .444 
6724 66 .128 .078 1.060E-06 5.448E-07 .678 .623 
6952 70 .162 .085 3.800E-09 2.932E-09 .663 .834 
7566 75 .594 .352 1.370E-05 6.639E-04 1.007 1.161 
7680 77 .22 .302 2.729E-05 3.355E-06 .476 .477 
8015 81 .235 .091 3.918E-08 1.491E-09 .974 .607 
8024 82 .217 .114 4.881E-08 9.459E-09 .765 .59 
8566 89 .704 .466 6.534E-07 8.777E-06 .56 .799 
8586 90 .208 .13 2.755E-05 1.516E-05 .739 .736 
8713 91 .125 .072 1.885E-05 7.219E-05 .908 .993 
9191 93 .143 .073 3.490E-06 3.565E-05 1.09 .963 
9248 95 .103 .055 5.653E-07 3.374E-05 .974 1.031 
9366 97 .222 .068 1.224E-09 1.451E-09 1.127 .479 
9374 98 .195 .075 9.662E-11 1.610E-09 .98 .611 
9620 100 .165 .065 1.156E-13 2.324E-12 .816 .524 
9835 104 .034 .089 3.178E-07 2.879E-10 .84 .901 
9960 106 .214 .27 3.889E-05 1.417E-03 .607 .449 
10090 107 3.213 1.929 3.376E-09 2.514E-06 .471 1.188 
10132 108 .24 .152 1.611E-11 4.181E-06 .491 1.022 
10299 111 .287 .19 3.640E-08 1.246E-04 .586 1.027 
10468 112 .081 .064 8.540E-06 1.114E-02 .481 .875 
11040 114 .117 .263 1.651E-06 3.791E-07 .963 1.012 
11072 115 .333 .909 3.017E-06 3.536E-08 .894 1.098 
11101 116 .076 .341 3.952E-09 4.154E-10 .908 1.207 
11609 121 .178 .307 1.183E-05 5.288E-07 .703 .736 
11653 122 .839 1.618 1.857E-06 6.412E-08 .771 .794 
11732 123 .065 .127 1.728E-05 1.338E-07 .579 .877 
11967 125 .071 .158 1.115E-05 7.505E-07 .895 1.041 
12764 130 .05 .095 4.423E-05 3.885E-06 .685 .984 
13425 134 .102 .068 1.447E-07 4.900E-08 .52 .476 
13904 140 .56 .201 5.107E-15 0.000E+00 .641 .977 
14093 144 .114 .254 3.327E-07 2.577E-10 .684 .802 
14623 148 .07 .121 7.806E-05 1.179E-05 .846 .829 
15171 152 .477 .345 2.985E-06 3.432E-02 .839 1.454 
15276 153 .974 .622 2.442E-15 0.000E+00 .289 .462 
15379 155 .347 .57 5.336E-09 3.199E-10 .473 .543 
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15423 156 .083 .179 9.465E-10 8.153E-10 .801 .784 
19924 170 .06 .099 2.604E-05 8.407E-02 3.163 1.361 
20139 171 .028 .058 9.478E-05 7.494E-06 .897 1.084 
20198 172 .034 .179 1.182E-06 8.037E-06 .723 1.832 
20927 173 .104 .053 4.778E-07 4.130E-08 .826 .676 
21267 175 .017 .027 5.655E-05 7.125E-06 .84 .674 
22202 177 .05 .472 2.389E-12 1.867E-06 .855 1.884 
22268 178 .03 .081 3.791E-06 2.914E-08 .569 1.117 
 
K table :  PDiff: 0; 6FN- group size: 107, 6FT- group size: 107 
k Errors Misses G1 

Errors 
G1 Misses G2 

Errors 
G2 Misses

7 9 0 6 0 3 0 
11 9 0 4 0 5 0 
5 9 0 5 0 4 0 
1 9 0 6 0 3 0 
13 10 0 5 0 5 0 
3 10 0 6 0 4 0 
9 10 0 6 0 4 0 
15 13 0 6 0 7 0 
17 14 0 5 0 9 0 
19 19 0 7 0 12 0 
 
 
 
Complete feature table  
Used as 
Classifier 

MZ ID 6FN 
Avg 

6FT Avg Wil P T p CV1 CV2 

True 15276 153 .974 .622 2.442E-15 0.000E+0
0 

.289 .462 

True 13904 140 .56 .201 5.107E-15 0.000E+0
0 

.641 .977 

True 9620 100 .165 .065 1.156E-13 2.324E-12 .816 .524 
True 5932 52 .152 .061 3.131E-13 1.478E-09 .958 .443 
True 5042 38 .379 .193 3.507E-13 2.517E-12 .436 1.024 
True 22202 177 .05 .472 2.389E-12 1.867E-06 .855 1.884 
True 10132 108 .24 .152 1.611E-11 4.181E-06 .491 1.022 
True 4112 25 .088 .375 2.520E-11 3.794E-06 .804 1.655 
True 5061 39 .315 .099 4.284E-11 2.487E-05 1.591 1.32 
True 5350 43 .572 .142 4.887E-11 2.142E-09 1.237 .532 
True 9374 98 .195 .075 9.662E-11 1.610E-09 .98 .611 
True 6716 65 .154 .087 1.640E-10 3.975E-12 .554 .444 
True 15423 156 .083 .179 9.465E-10 8.153E-10 .801 .784 
True 9366 97 .222 .068 1.224E-09 1.451E-09 1.127 .479 
True 5358 44 .425 .217 2.998E-09 1.008E-06 .907 .841 
True 10090 107 3.213 1.929 3.376E-09 2.514E-06 .471 1.188 
True 6952 70 .162 .085 3.800E-09 2.932E-09 .663 .834 
True 11101 116 .076 .341 3.952E-09 4.154E-10 .908 1.207 
True 6657 63 .178 .069 4.331E-09 2.958E-08 1.066 .67 
True 5069 40 .56 .089 4.564E-09 7.833E-03 3.239 1.072 
True 15379 155 .347 .57 5.336E-09 3.199E-10 .473 .543 
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True 4887 33 .117 .051 1.863E-08 4.715E-10 .841 .687 
True 5260 42 .106 .067 1.959E-08 3.088E-09 .512 .526 
True 10299 111 .287 .19 3.640E-08 1.246E-04 .586 1.027 
True 8015 81 .235 .091 3.918E-08 1.491E-09 .974 .607 
True 8024 82 .217 .114 4.881E-08 9.459E-09 .765 .59 
True 6665 64 .155 .076 5.998E-08 3.944E-08 .863 .64 
True 13425 134 .102 .068 1.447E-07 4.900E-08 .52 .476 
True 9835 104 .034 .089 3.178E-07 2.879E-10 .84 .901 
True 14093 144 .114 .254 3.327E-07 2.577E-10 .684 .802 
True 6329 59 .107 .072 3.856E-07 1.537E-06 .559 .594 
True 4894 34 .111 .052 4.568E-07 8.163E-05 1.275 1.065 
True 20927 173 .104 .053 4.778E-07 4.130E-08 .826 .676 
True 9248 95 .103 .055 5.653E-07 3.374E-05 .974 1.031 
True 8566 89 .704 .466 6.534E-07 8.777E-06 .56 .799 
True 6724 66 .128 .078 1.060E-06 5.448E-07 .678 .623 
True 20198 172 .034 .179 1.182E-06 8.037E-06 .723 1.832 
True 5827 51 .105 .174 1.289E-06 9.425E-08 .568 .653 
True 11040 114 .117 .263 1.651E-06 3.791E-07 .963 1.012 
True 11653 122 .839 1.618 1.857E-06 6.412E-08 .771 .794 
True 15171 152 .477 .345 2.985E-06 3.432E-02 .839 1.454 
True 11072 115 .333 .909 3.017E-06 3.536E-08 .894 1.098 
True 9191 93 .143 .073 3.490E-06 3.565E-05 1.09 .963 
True 22268 178 .03 .081 3.791E-06 2.914E-08 .569 1.117 
True 10468 112 .081 .064 8.540E-06 1.114E-02 .481 .875 
True 6321 58 .141 .096 9.066E-06 5.181E-07 .581 .425 
True 11967 125 .071 .158 1.115E-05 7.505E-07 .895 1.041 
True 11609 121 .178 .307 1.183E-05 5.288E-07 .703 .736 
True 4385 27 .057 .244 1.255E-05 2.975E-06 .753 1.644 
True 7566 75 .594 .352 1.370E-05 6.639E-04 1.007 1.161 
True 11732 123 .065 .127 1.728E-05 1.338E-07 .579 .877 
True 8713 91 .125 .072 1.885E-05 7.219E-05 .908 .993 
True 5668 47 .387 .305 2.507E-05 3.200E-05 .364 .463 
True 19924 170 .06 .099 2.604E-05 8.407E-02 3.163 1.361 
True 7680 77 .22 .302 2.729E-05 3.355E-06 .476 .477 
True 8586 90 .208 .13 2.755E-05 1.516E-05 .739 .736 
True 9960 106 .214 .27 3.889E-05 1.417E-03 .607 .449 
True 12764 130 .05 .095 4.423E-05 3.885E-06 .685 .984 
True 21267 175 .017 .027 5.655E-05 7.125E-06 .84 .674 
True 14623 148 .07 .121 7.806E-05 1.179E-05 .846 .829 
True 20139 171 .028 .058 9.478E-05 7.494E-06 .897 1.084 
False 8032 83 .156 .114 1.007E-04 6.586E-04 .619 .687 
False 10268 109 .247 .174 1.109E-04 7.418E-05 .622 .617 
False 9954 105 .19 .24 1.306E-04 3.307E-03 .666 .503 
False 8961 92 .127 .093 1.486E-04 1.521E-04 .574 .618 
False 9237 94 .102 .075 1.511E-04 1.631E-02 .851 .994 
False 12277 127 .466 .255 1.537E-04 6.629E-06 .923 .768 
False 15128 151 3.243 2.562 1.645E-04 8.970E-02 .85 1.2 
False 13382 133 .077 .063 1.687E-04 5.069E-04 .381 .468 
False 9750 102 .226 .334 2.153E-04 3.842E-03 1.067 .889 
False 9744 101 .211 .281 2.896E-04 3.300E-02 1.109 .852 
False 14229 146 .159 .123 2.920E-04 1.594E-02 .585 .986 
False 7558 74 .536 .403 3.434E-04 5.376E-02 .928 1.262 
False 5651 46 .762 .589 3.937E-04 5.686E-04 .48 .605 
False 4282 26 .108 .076 3.968E-04 3.018E-04 .647 .742 
False 4736 30 .048 .13 4.196E-04 1.582E-05 1.103 1.417 
False 4566 29 .652 .473 4.229E-04 3.510E-02 .941 1.311 
False 22421 179 .029 .09 4.542E-04 3.188E-05 .844 1.615 
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False 8406 86 .074 .111 5.441E-04 5.590E-03 .867 1.078 
False 6431 60 .146 .116 5.441E-04 1.400E-01 .81 1.482 
False 5529 45 .068 .117 6.603E-04 3.505E-06 .551 .848 
False 8448 87 .215 .239 1.126E-03 6.406E-01 1.821 1.425 
False 8091 85 .108 .076 1.285E-03 2.034E-03 .773 .838 
False 9777 103 .117 .083 1.443E-03 8.630E-04 .764 .683 
False 15924 160 .412 .426 1.463E-03 8.366E-01 .86 1.377 
False 12346 128 .382 .566 1.550E-03 8.384E-04 .935 .768 
False 8038 84 .137 .106 1.959E-03 9.793E-03 .688 .731 
False 14217 145 .171 .151 2.619E-03 2.139E-01 .489 .938 
False 11390 120 .644 .536 3.544E-03 1.432E-02 .481 .613 
False 3484 18 .085 .265 3.836E-03 1.668E-02 3.066 2.735 
False 8455 88 .187 .212 3.938E-03 5.554E-01 1.783 1.353 
False 14701 150 .084 .082 4.016E-03 8.888E-01 1.655 .552 
False 6120 54 .137 .112 4.232E-03 2.460E-02 .661 .593 
False 5170 41 .07 .154 4.457E-03 2.040E-03 2.062 1.549 
False 7929 78 .554 .501 4.815E-03 4.317E-01 .851 1.023 
False 13711 135 .139 .197 5.035E-03 8.256E-04 .694 .759 
False 15870 159 2.512 2.444 5.133E-03 8.545E-01 .911 1.253 
False 3433 14 .133 .263 5.298E-03 8.599E-04 1.027 1.426 
False 10281 110 .24 .175 5.538E-03 1.309E-03 .733 .632 
False 14011 142 2.031 1.763 5.538E-03 1.543E-01 .564 .889 
False 15333 154 1.132 1.287 5.861E-03 1.687E-02 .328 .43 
False 7937 79 .575 .434 6.278E-03 2.489E-02 .9 .876 
False 13153 131 .13 .297 6.476E-03 6.512E-03 1.806 1.958 
False 3325 9 .169 .184 7.325E-03 7.371E-01 1.299 2.209 
False 7006 71 .549 .48 7.415E-03 2.005E-01 .609 .928 
False 11349 119 2.363 2.037 7.645E-03 4.139E-02 .422 .642 
False 16077 162 .349 .38 8.678E-03 6.097E-01 .956 1.386 
False 4917 35 .078 .097 8.835E-03 2.213E-02 .69 .707 
False 4747 31 .114 .487 9.049E-03 4.078E-05 1.989 1.834 
False 3421 12 .124 .084 1.000E-02 5.809E-02 1.453 1.385 
False 5819 50 .149 .233 1.164E-02 1.952E-03 .853 1.051 
False 5675 48 .381 .324 1.366E-02 6.416E-02 .559 .709 
False 7655 76 .346 .313 1.381E-02 2.171E-02 .298 .352 
False 19685 169 .024 .036 1.381E-02 1.891E-03 .659 .96 
False 3273 7 .135 .132 1.821E-02 8.941E-01 .892 1.558 
False 21770 176 .034 .031 1.964E-02 2.575E-01 .592 .804 
False 2748 3 .458 .519 2.326E-02 6.155E-01 1.41 2.106 
False 16483 163 .05 .057 2.554E-02 3.829E-01 .697 1.329 
False 4559 28 .919 .59 2.607E-02 3.364E-02 1.534 1.257 
False 11308 118 3.665 3.361 2.716E-02 1.812E-01 .337 .591 
False 15852 158 1.74 2.201 2.772E-02 1.547E-01 .946 1.321 
False 21129 174 .029 .065 2.989E-02 7.574E-06 .548 1.225 
False 23417 181 .018 .022 3.080E-02 2.087E-02 .566 .613 
False 13784 138 2.042 1.864 4.677E-02 3.574E-01 .621 .825 
False 16033 161 .207 .271 5.056E-02 1.279E-01 .95 1.433 
False 3478 17 .082 .173 5.242E-02 1.613E-03 1.026 1.639 
False 2933 4 .085 .103 5.434E-02 3.237E-01 .889 1.63 
False 13360 132 .07 .067 5.887E-02 6.690E-01 .53 .85 
False 5696 49 .167 .142 6.070E-02 8.707E-02 .744 .611 
False 6893 68 .478 .437 6.097E-02 3.824E-01 .655 .837 
False 11265 117 .497 .469 6.340E-02 5.691E-01 .628 .826 
False 6311 57 .082 .072 7.056E-02 2.702E-01 .753 .878 
False 6548 62 .112 .139 7.237E-02 4.409E-02 .731 .808 
False 3577 19 .042 .055 7.768E-02 1.051E-02 .688 .801 
False 14053 143 .398 .392 7.800E-02 8.825E-01 .666 .889 
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False 6541 61 .097 .124 8.499E-02 1.985E-02 .588 .848 
False 4767 32 .106 .072 8.742E-02 1.212E-02 1.187 .835 
False 6112 53 .203 .157 8.812E-02 2.100E-02 .876 .65 
False 16785 164 .054 .067 1.091E-01 2.518E-02 .651 .773 
False 4964 37 .78 1.688 1.163E-01 4.091E-03 2.082 1.659 
False 17940 166 .055 .059 1.172E-01 4.823E-01 .789 .71 
False 14658 149 .07 .068 1.198E-01 8.587E-01 1.41 .552 
False 3895 22 .158 .094 1.207E-01 2.859E-02 1.818 1.008 
False 18418 167 .032 .035 1.243E-01 1.086E-01 .417 .465 
False 12229 126 .339 .261 1.340E-01 1.921E-01 1.552 1.235 
False 17894 165 .094 .095 1.379E-01 9.550E-01 .972 .906 
False 6166 55 .062 .076 1.448E-01 1.131E-01 .893 .961 
False 3427 13 .198 .205 1.509E-01 8.032E-01 .958 1.303 
False 7953 80 .129 .127 1.520E-01 9.080E-01 .951 1.098 
False 3901 23 .124 .122 1.726E-01 8.699E-01 .874 1.207 
False 9521 99 .069 .044 1.882E-01 1.211E-02 1.331 1.049 
False 12689 129 .074 .12 1.900E-01 3.673E-02 1.072 1.748 
False 3319 8 .084 .075 1.948E-01 4.344E-01 1.066 1.094 
False 11818 124 .272 .301 1.967E-01 4.805E-01 1.068 1.011 
False 2477 0 .053 .085 1.991E-01 9.859E-03 1.014 1.362 
False 13726 136 .25 .313 2.016E-01 3.108E-02 .628 .828 
False 3362 10 .114 .234 2.035E-01 2.679E-03 1.201 1.645 
False 2955 5 .059 .088 2.091E-01 2.127E-02 .973 1.315 
False 3439 15 .137 .331 2.098E-01 3.358E-02 2.207 2.689 
False 13981 141 .507 .569 2.149E-01 2.455E-01 .523 .858 
False 23860 182 .02 .021 2.280E-01 6.205E-01 .422 .653 
False 3722 21 .154 .277 2.307E-01 1.658E-02 1.435 1.722 
False 13818 139 .779 .711 2.499E-01 5.287E-01 1.089 .988 
False 13761 137 1.163 1.341 2.570E-01 1.385E-01 .437 .844 
False 6910 69 .188 .203 2.577E-01 5.368E-01 .929 .857 
False 9338 96 .068 .113 2.584E-01 4.999E-03 .734 1.373 
False 3716 20 .111 .135 2.627E-01 3.135E-01 1.343 1.432 
False 15822 157 .361 .622 2.649E-01 8.769E-03 1.17 1.493 
False 3267 6 .185 .083 2.693E-01 7.959E-03 2.087 .925 
False 2554 2 .05 .07 2.722E-01 3.203E-02 .983 1.202 
False 7432 73 .146 .14 2.848E-01 9.038E-01 2.406 2.16 
False 10837 113 .386 .536 3.289E-01 5.892E-02 1.182 1.266 
False 18718 168 .019 .018 3.467E-01 6.483E-01 .608 .609 
False 2512 1 .063 .127 3.475E-01 5.890E-03 1.368 1.747 
False 23121 180 .018 .019 3.723E-01 5.573E-01 .559 .688 
False 3368 11 .13 .434 3.993E-01 1.809E-02 3.065 2.897 
False 7028 72 .132 .143 4.010E-01 3.797E-01 .622 .728 
False 24714 183 .02 .02 4.019E-01 8.829E-01 .498 .664 
False 4042 24 .083 .139 4.234E-01 7.243E-02 1.281 2.164 
False 6226 56 .066 .078 4.355E-01 2.989E-01 1.172 1.178 
False 6879 67 .229 .251 4.433E-01 2.306E-01 .412 .668 
False 3472 16 .084 .093 4.529E-01 4.509E-01 .865 1.133 
False 4937 36 .186 .383 4.687E-01 1.013E-03 1.247 1.473 
False 14490 147 .075 .078 4.960E-01 8.196E-01 1.618 1.237 
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Comparison of Far Normal (FN) vs. Near Margin Normal (NN) in Tumor Grades 
III and IV 

 
 
Plot of Group Averages: <group 6FN in blue, group 6NN in red> 

  
 
Plot of Group Differences: 
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Table of features used in classifier and validation. (Selected Wil P < 0.0005): 
MZ ID 6FN 

Avg 
6NN 
Avg 

Wil P T p CV1 CV2 

3325 12 .168 .066 5.240E-06 1.148E-05 1.298 1.318 
3427 15 .197 .09 2.280E-08 9.845E-07 .963 1.194 
3580 19 .046 .068 4.035E-05 2.572E-05 .568 .665 
3901 22 .113 .066 7.186E-06 2.319E-05 .819 .98 
4566 27 .652 .48 8.055E-05 3.659E-02 .941 1.207 
4888 31 .12 .046 4.539E-11 3.707E-12 .816 .695 
4917 32 .081 .11 1.985E-04 9.945E-04 .671 .632 
5054 37 .197 .713 9.237E-07 4.629E-05 .777 1.786 
5069 39 .56 .47 3.888E-05 6.288E-01 3.239 1.307 
5351 42 .598 .173 3.606E-10 5.144E-09 1.188 .631 
5357 43 .493 .159 0.000E+00 1.200E-12 .915 .365 
5651 44 .771 .537 5.469E-07 3.199E-07 .483 .498 
5932 49 .152 .075 4.537E-06 3.859E-07 .958 .476 
6324 53 .141 .093 1.671E-07 1.156E-07 .547 .501 
6657 57 .18 .081 3.536E-06 2.929E-07 1.038 .545 
6664 58 .163 .072 3.761E-10 1.846E-09 .877 .546 
6716 59 .155 .079 8.759E-14 2.775E-14 .556 .537 
6724 60 .128 .058 5.884E-15 6.368E-13 .677 .631 
7644 70 .352 .233 2.331E-15 2.220E-16 .274 .418 
8017 75 .246 .106 4.243E-08 4.809E-09 .916 .655 
8091 77 .108 .053 5.503E-09 1.486E-08 .773 .872 
8176 78 .026 .078 1.040E-07 6.594E-09 1.239 1.074 
8404 79 .075 .089 1.187E-04 6.098E-02 .859 .54 
8560 81 .533 .323 8.534E-10 5.576E-08 .55 .774 
8571 82 .689 .49 1.752E-07 4.680E-03 .632 1.168 
8584 83 .229 .147 5.469E-07 1.770E-04 .724 1.015 
8713 84 .124 .057 1.415E-06 4.741E-08 .909 .833 
8958 85 .128 .071 3.613E-09 6.762E-12 .563 .479 
9191 86 .137 .095 4.308E-06 4.677E-02 1.046 1.751 
9366 87 .222 .072 6.353E-09 5.226E-09 1.127 .587 
9618 89 .167 .06 1.754E-14 3.326E-13 .83 .468 
9744 90 .212 .106 5.034E-05 3.683E-05 1.112 1.036 
9750 91 .23 .117 3.677E-05 4.080E-05 1.097 .994 
9775 92 .124 .056 4.428E-12 2.482E-11 .762 .506 
9960 93 .215 .126 7.436E-10 2.144E-09 .604 .539 
10096 97 3.043 2.14 4.885E-07 2.986E-07 .414 .574 
10836 101 .398 .287 1.512E-04 1.311E-01 1.188 2.081 
11308 106 3.638 2.842 4.679E-06 2.873E-05 .338 .519 
12275 114 .476 .178 1.171E-10 1.021E-09 .946 .947 
12346 115 .382 .271 1.689E-04 6.725E-03 .932 .828 
13381 120 .077 .059 1.384E-07 3.587E-05 .373 .572 
13425 121 .102 .059 4.227E-12 1.373E-12 .52 .451 
13437 122 .107 .057 5.496E-13 3.022E-12 .604 .426 
13904 126 .561 .383 5.080E-05 1.507E-04 .643 .816 
15261 136 .777 .547 6.921E-07 5.755E-07 .347 .682 
15379 139 .347 .504 2.360E-05 2.554E-05 .473 .673 
20920 155 .107 .061 1.871E-04 1.529E-06 .856 .539 
22517 160 .054 .096 6.271E-11 1.109E-02 2.509 1.014 
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K table :  PDiff: 0; 6FN- group size: 107, 6NN- group size: 106 
k Errors Misses G1 

Errors 
G1 Misses G2 

Errors 
G2 Misses

1 19 0 11 0 8 0 
3 20 0 14 0 6 0 
5 24 0 15 0 9 0 
9 27 0 20 0 7 0 
7 27 0 19 0 8 0 
15 30 0 19 0 11 0 
11 30 0 19 0 11 0 
13 31 0 21 0 10 0 
17 33 0 20 0 13 0 
19 38 0 22 0 16 0 
 
Complete feature table  
Used in 
Classifier 

MZ ID 6FN 
Avg 

6NN 
Avg 

Wil P T p CV1 CV2 

True 5357 43 .493 .159 0.000E+0
0 

1.200E-12 .915 .365 

True 7644 70 .352 .233 2.331E-15 2.220E-16 .274 .418 
True 6724 60 .128 .058 5.884E-15 6.368E-13 .677 .631 
True 9618 89 .167 .06 1.754E-14 3.326E-13 .83 .468 
True 6716 59 .155 .079 8.759E-14 2.775E-14 .556 .537 
True 13437 122 .107 .057 5.496E-13 3.022E-12 .604 .426 
True 13425 121 .102 .059 4.227E-12 1.373E-12 .52 .451 
True 9775 92 .124 .056 4.428E-12 2.482E-11 .762 .506 
True 4888 31 .12 .046 4.539E-11 3.707E-12 .816 .695 
True 22517 160 .054 .096 6.271E-11 1.109E-02 2.509 1.014 
True 12275 114 .476 .178 1.171E-10 1.021E-09 .946 .947 
True 5351 42 .598 .173 3.606E-10 5.144E-09 1.188 .631 
True 6664 58 .163 .072 3.761E-10 1.846E-09 .877 .546 
True 9960 93 .215 .126 7.436E-10 2.144E-09 .604 .539 
True 8560 81 .533 .323 8.534E-10 5.576E-08 .55 .774 
True 8958 85 .128 .071 3.613E-09 6.762E-12 .563 .479 
True 8091 77 .108 .053 5.503E-09 1.486E-08 .773 .872 
True 9366 87 .222 .072 6.353E-09 5.226E-09 1.127 .587 
True 3427 15 .197 .09 2.280E-08 9.845E-07 .963 1.194 
True 8017 75 .246 .106 4.243E-08 4.809E-09 .916 .655 
True 8176 78 .026 .078 1.040E-07 6.594E-09 1.239 1.074 
True 13381 120 .077 .059 1.384E-07 3.587E-05 .373 .572 
True 6324 53 .141 .093 1.671E-07 1.156E-07 .547 .501 
True 8571 82 .689 .49 1.752E-07 4.680E-03 .632 1.168 
True 10096 97 3.043 2.14 4.885E-07 2.986E-07 .414 .574 
True 8584 83 .229 .147 5.469E-07 1.770E-04 .724 1.015 
True 5651 44 .771 .537 5.469E-07 3.199E-07 .483 .498 
True 15261 136 .777 .547 6.921E-07 5.755E-07 .347 .682 
True 5054 37 .197 .713 9.237E-07 4.629E-05 .777 1.786 
True 8713 84 .124 .057 1.415E-06 4.741E-08 .909 .833 
True 6657 57 .18 .081 3.536E-06 2.929E-07 1.038 .545 
True 9191 86 .137 .095 4.308E-06 4.677E-02 1.046 1.751 
True 5932 49 .152 .075 4.537E-06 3.859E-07 .958 .476 
True 11308 106 3.638 2.842 4.679E-06 2.873E-05 .338 .519 



 

174 

True 3325 12 .168 .066 5.240E-06 1.148E-05 1.298 1.318 
True 3901 22 .113 .066 7.186E-06 2.319E-05 .819 .98 
True 15379 139 .347 .504 2.360E-05 2.554E-05 .473 .673 
True 9750 91 .23 .117 3.677E-05 4.080E-05 1.097 .994 
True 5069 39 .56 .47 3.888E-05 6.288E-01 3.239 1.307 
True 3580 19 .046 .068 4.035E-05 2.572E-05 .568 .665 
True 9744 90 .212 .106 5.034E-05 3.683E-05 1.112 1.036 
True 13904 126 .561 .383 5.080E-05 1.507E-04 .643 .816 
True 4566 27 .652 .48 8.055E-05 3.659E-02 .941 1.207 
True 8404 79 .075 .089 1.187E-04 6.098E-02 .859 .54 
True 10836 101 .398 .287 1.512E-04 1.311E-01 1.188 2.081 
True 12346 115 .382 .271 1.689E-04 6.725E-03 .932 .828 
True 20920 155 .107 .061 1.871E-04 1.529E-06 .856 .539 
True 4917 32 .081 .11 1.985E-04 9.945E-04 .671 .632 
False 9522 88 .068 .028 5.577E-04 2.649E-05 1.352 1.118 
False 5062 38 .308 .741 5.937E-04 4.761E-04 1.612 1.562 
False 7432 66 .146 .079 6.933E-04 8.306E-02 2.396 2.392 
False 19746 153 .026 .035 7.205E-04 1.603E-02 .969 .76 
False 10088 96 3.032 2.286 7.316E-04 1.152E-03 .55 .714 
False 10045 94 .173 .107 8.331E-04 3.300E-04 .922 .901 
False 12649 116 .062 .068 8.394E-04 1.661E-01 .644 .415 
False 15289 137 1.064 .846 9.055E-04 7.496E-05 .272 .565 
False 7684 72 .174 .228 9.617E-04 7.274E-04 .535 .592 
False 13823 125 .603 .456 1.059E-03 9.365E-02 1.132 1.3 
False 4931 33 .132 .212 1.067E-03 2.296E-05 .702 .782 
False 13781 124 1.985 1.669 1.100E-03 8.664E-02 .585 .895 
False 5668 45 .405 .34 1.141E-03 3.968E-03 .393 .487 
False 14630 132 .072 .076 1.275E-03 5.715E-01 .878 .478 
False 10271 99 .25 .18 1.293E-03 1.121E-04 .626 .542 
False 10131 98 .252 .201 1.303E-03 1.341E-03 .494 .52 
False 5042 36 .39 .338 1.352E-03 7.142E-02 .45 .715 
False 11350 107 2.344 2.024 1.740E-03 4.165E-02 .431 .622 
False 3421 14 .124 .052 1.991E-03 1.114E-04 1.453 1.108 
False 6626 56 .039 .108 2.490E-03 4.259E-05 1.496 1.473 
False 11390 108 .656 .551 2.559E-03 1.450E-02 .474 .574 
False 10297 100 .292 .224 3.077E-03 2.345E-03 .61 .618 
False 2272 0 .039 .043 3.205E-03 4.828E-01 1.455 .875 
False 8033 76 .154 .125 3.688E-03 2.053E-02 .619 .713 
False 2477 1 .051 .116 3.737E-03 5.438E-05 1.019 1.32 
False 14012 127 2.068 1.739 4.126E-03 7.289E-02 .578 .841 
False 6113 50 .204 .157 4.610E-03 3.116E-02 .851 .91 
False 4560 26 .955 .884 4.610E-03 7.174E-01 1.511 1.626 
False 22705 161 .028 .036 4.640E-03 6.595E-03 .644 .694 
False 3273 10 .135 .09 7.969E-03 1.226E-03 .897 .834 
False 4937 34 .188 .3 7.969E-03 5.312E-03 1.251 1.126 
False 3439 17 .14 .251 8.367E-03 2.711E-02 2.121 1.672 
False 22199 159 .051 .038 9.896E-03 1.731E-02 .865 .867 
False 21268 156 .017 .027 1.007E-02 5.898E-04 .845 .991 
False 3895 21 .157 .07 1.100E-02 2.770E-03 1.833 1.007 
False 12226 113 .335 .402 1.126E-02 4.300E-01 1.561 1.767 
False 3365 13 .137 .196 1.301E-02 1.127E-01 1.957 1.424 
False 19267 152 .017 .022 1.516E-02 4.340E-03 .465 .611 
False 6953 63 .158 .128 1.639E-02 4.827E-02 .694 .845 
False 14054 128 .391 .346 1.639E-02 2.498E-01 .666 .889 
False 3319 11 .085 .05 1.781E-02 8.883E-04 1.103 .986 
False 10076 95 1.259 .986 1.860E-02 1.316E-01 1.213 1.074 
False 7027 65 .138 .118 2.061E-02 9.632E-02 .595 .808 
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False 3478 18 .081 .126 2.280E-02 2.674E-02 1.141 1.49 
False 6891 61 .463 .413 2.764E-02 2.401E-01 .601 .811 
False 2747 4 .444 .307 2.952E-02 8.273E-02 1.433 1.648 
False 14222 130 .174 .169 3.280E-02 7.492E-01 .519 .789 
False 15332 138 1.133 1.246 3.379E-02 1.187E-01 .327 .518 
False 6312 52 .088 .081 3.463E-02 4.766E-01 .742 1.111 
False 21539 157 .018 .021 3.673E-02 3.006E-02 .529 .569 
False 7006 64 .549 .493 4.182E-02 2.633E-01 .596 .819 
False 11268 105 .538 .449 4.489E-02 3.157E-02 .607 .591 
False 4767 30 .105 .104 6.086E-02 9.595E-01 1.176 .875 
False 6911 62 .173 .147 6.140E-02 2.424E-01 .951 1.092 
False 23369 162 .017 .021 6.248E-02 3.711E-02 .695 .78 
False 3722 20 .153 .092 6.386E-02 1.084E-02 1.426 1.249 
False 16790 147 .055 .06 6.470E-02 2.389E-01 .643 .56 
False 3434 16 .134 .189 6.640E-02 7.184E-02 1.121 1.449 
False 11818 112 .275 .344 6.669E-02 2.524E-01 1.08 1.572 
False 11609 109 .173 .156 8.574E-02 2.835E-01 .68 .748 
False 2553 3 .05 .057 8.679E-02 3.239E-01 .983 .955 
False 5696 47 .167 .143 1.049E-01 9.274E-02 .744 .515 
False 11678 111 .171 .212 1.073E-01 6.657E-02 .797 .877 
False 13720 123 .202 .195 1.106E-01 7.259E-01 .655 .839 
False 16488 146 .051 .064 1.110E-01 9.603E-02 .729 1.177 
False 11259 104 .401 .341 1.162E-01 7.976E-02 .677 .644 
False 2957 8 .058 .07 1.184E-01 2.957E-01 .972 1.459 
False 5675 46 .374 .351 1.210E-01 4.738E-01 .589 .724 
False 14092 129 .112 .143 1.219E-01 2.531E-02 .682 .819 
False 12684 117 .075 .074 1.260E-01 9.326E-01 1.082 1.922 
False 2929 6 .062 .067 1.302E-01 5.060E-01 .877 .789 
False 4115 24 .087 .078 1.331E-01 2.129E-01 .6 .702 
False 6548 55 .112 .101 1.345E-01 3.262E-01 .731 .847 
False 2935 7 .086 .114 1.474E-01 1.066E-01 1.164 1.308 
False 11652 110 .841 .796 1.500E-01 6.255E-01 .776 .87 
False 5170 40 .07 .225 1.511E-01 1.307E-04 2.068 1.701 
False 8448 80 .215 .146 1.601E-01 1.100E-01 1.821 1.446 
False 14696 133 .089 .066 1.661E-01 1.775E-01 1.924 .596 
False 7930 73 .585 .623 1.678E-01 6.142E-01 .839 .974 
False 4282 25 .109 .116 1.769E-01 6.135E-01 .636 1.038 
False 4747 29 .114 .15 1.786E-01 2.788E-01 1.984 1.708 
False 4673 28 .068 .093 1.809E-01 4.281E-02 .769 1.268 
False 2783 5 .064 .048 1.857E-01 1.079E-01 1.491 .864 
False 15128 134 3.24 3.417 1.880E-01 6.728E-01 .857 .968 
False 13150 119 .132 .144 1.904E-01 8.084E-01 1.814 3.109 
False 7937 74 .575 .548 1.965E-01 6.990E-01 .9 .889 
False 15826 140 .424 .615 1.990E-01 3.236E-02 1.127 1.277 
False 20762 154 .029 .029 2.053E-01 9.458E-01 .437 .553 
False 4041 23 .081 .085 2.254E-01 8.351E-01 1.309 1.77 
False 21774 158 .033 .039 2.288E-01 1.719E-01 .626 1.02 
False 12763 118 .05 .044 2.376E-01 1.990E-01 .695 .686 
False 15172 135 .473 .597 2.383E-01 1.021E-01 .857 1.116 
False 15866 141 2.517 2.867 2.432E-01 3.363E-01 .909 1.035 
False 11038 102 .109 .095 2.502E-01 3.122E-01 .95 .971 
False 6431 54 .147 .146 2.516E-01 9.584E-01 .806 .937 
False 11073 103 .328 .321 2.545E-01 8.575E-01 .869 .803 
False 18423 150 .031 .03 2.830E-01 8.778E-01 .377 .466 
False 5263 41 .112 .141 2.846E-01 1.662E-02 .43 .816 
False 4964 35 .78 2.322 2.952E-01 1.447E-04 2.082 1.63 
False 15913 142 .518 .686 3.123E-01 5.426E-02 .888 1.122 
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False 24664 164 .019 .021 3.147E-01 2.663E-01 .524 .611 
False 6226 51 .065 .076 3.147E-01 3.523E-01 1.188 1.152 
False 18792 151 .018 .021 3.266E-01 1.614E-01 .545 .68 
False 7580 69 .133 .14 3.395E-01 6.994E-01 .882 1.074 
False 15929 143 .369 .497 3.404E-01 4.045E-02 .854 1.126 
False 17924 149 .074 .063 3.560E-01 1.381E-01 .884 .594 
False 7566 68 .594 .585 3.576E-01 9.187E-01 1.007 .95 
False 5820 48 .151 .139 3.676E-01 4.734E-01 .837 .87 
False 7559 67 .57 .647 3.794E-01 3.491E-01 .924 1.014 
False 16077 145 .343 .447 4.033E-01 6.565E-02 .949 1.066 
False 2512 2 .065 .06 4.033E-01 6.503E-01 1.295 1.256 
False 14491 131 .075 .11 4.051E-01 1.130E-01 1.604 1.745 
False 23831 163 .021 .022 4.128E-01 4.647E-01 .502 .646 
False 17878 148 .095 .077 4.224E-01 9.767E-02 1.029 .702 
False 7666 71 .377 .391 4.224E-01 5.329E-01 .343 .469 
False 16032 144 .21 .297 4.346E-01 2.089E-02 .958 1.1 
False 3267 9 .185 .081 4.372E-01 7.958E-03 2.086 1.187 
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Appendix B 
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Comparison of Far Normal (FN) vs. Near Margin Normal (NN) of Cortex Border 
Tissue (TC) from Tumor Grades III-IV 

 
Data sets: 
Near Margin Normal (NN) -- selected spectra from samples D1067, D529, D1340 
Far Normal (FN) -- selected spectra from samples D1067, D529, D1340 
 
Plot of Group Averages: <group 3TC FN in blue, group 3TC NN in red> 

  
Plot of Group Differences: 
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Table of features used in classifier and validation  
(Selected features with Wil P < 0.00002) 
MZ ID 3TC FN 

Avg 
3TC NN 
Avg 

Wil P T p CV1 CV2 

3427 17 .177 .061 2.471E-06 4.776E-06 .935 .949 
4888 39 .111 .051 1.226E-08 1.778E-08 .589 .573 
5351 52 .437 .205 1.533E-05 1.847E-05 .824 .529 
5357 53 .34 .174 4.718E-10 1.486E-09 .508 .346 
5647 56 .598 .409 1.127E-06 9.381E-07 .31 .461 
6320 66 .132 .085 1.519E-08 6.641E-06 .394 .589 
6716 72 .165 .088 1.370E-07 4.595E-08 .498 .535 
6724 73 .117 .059 3.310E-07 7.382E-08 .561 .552 
7643 84 .349 .244 4.444E-06 8.221E-07 .295 .425 
7761 87 .2 .074 1.533E-05 7.748E-04 1.244 1.177 
8560 98 .469 .24 1.619E-05 2.036E-05 .697 .757 
9184 104 .186 .045 4.989E-06 8.926E-05 1.339 .835 
9367 106 .179 .077 2.399E-06 3.619E-05 .931 .571 
9616 107 .131 .067 9.199E-09 2.280E-08 .549 .416 
9775 110 .114 .061 3.763E-07 1.233E-07 .526 .497 
9953 111 .244 .116 5.948E-09 1.546E-08 .548 .625 
9958 112 .269 .137 3.298E-09 2.477E-08 .522 .55 
11305 125 3.757 2.609 1.619E-05 5.925E-05 .355 .575 
13425 142 .083 .05 7.539E-07 6.481E-07 .458 .488 
22506 184 .037 .118 2.546E-06 2.786E-05 1.326 1.079 
 
K table :  PDiff: 0; 3TC FN- group size: 54, 3TC NN- group size: 53 
k Errors Misses G1 

Errors 
G1 Misses G2 

Errors 
G2 Misses

3 15 0 11 0 4 0 
5 17 0 12 0 5 0 
1 18 0 10 0 8 0 
7 20 0 15 0 5 0 
11 21 0 14 0 7 0 
15 22 0 16 0 6 0 
17 22 0 15 0 7 0 
19 23 0 16 0 7 0 
13 23 0 15 0 8 0 
9 24 0 16 0 8 0 
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Complete feature table  
Used as 
Classifier 

MZ ID 3TC 
FN 
Avg 

3TC 
NN 
Avg 

Wil P T p CV1 CV2 

True 5357 53 .34 .174 4.718E-10 1.486E-09 .508 .346 
True 9958 112 .269 .137 3.298E-09 2.477E-08 .522 .55 
True 9953 111 .244 .116 5.948E-09 1.546E-08 .548 .625 
True 9616 107 .131 .067 9.199E-09 2.280E-08 .549 .416 
True 4888 39 .111 .051 1.226E-08 1.778E-08 .589 .573 
True 6320 66 .132 .085 1.519E-08 6.641E-06 .394 .589 
True 6716 72 .165 .088 1.370E-07 4.595E-08 .498 .535 
True 6724 73 .117 .059 3.310E-07 7.382E-08 .561 .552 
True 9775 110 .114 .061 3.763E-07 1.233E-07 .526 .497 
True 13425 142 .083 .05 7.539E-07 6.481E-07 .458 .488 
True 5647 56 .598 .409 1.127E-06 9.381E-07 .31 .461 
True 9367 106 .179 .077 2.399E-06 3.619E-05 .931 .571 
True 3427 17 .177 .061 2.471E-06 4.776E-06 .935 .949 
True 22506 184 .037 .118 2.546E-06 2.786E-05 1.326 1.079 
True 7643 84 .349 .244 4.444E-06 8.221E-07 .295 .425 
True 9184 104 .186 .045 4.989E-06 8.926E-05 1.339 .835 
True 7761 87 .2 .074 1.533E-05 7.748E-04 1.244 1.177 
True 5351 52 .437 .205 1.533E-05 1.847E-05 .824 .529 
True 11305 125 3.757 2.609 1.619E-05 5.925E-05 .355 .575 
True 8560 98 .469 .24 1.619E-05 2.036E-05 .697 .757 
False 8568 99 .495 .281 2.011E-05 1.183E-05 .573 .659 
False 5363 54 .151 .085 2.181E-05 2.269E-05 .634 .6 
False 3325 13 .17 .046 2.629E-05 1.492E-04 1.298 1.414 
False 6542 68 .111 .064 5.890E-05 4.756E-05 .578 .786 
False 13380 141 .067 .055 7.972E-05 5.441E-02 .348 .682 
False 3273 11 .17 .067 8.174E-05 2.836E-05 .944 .851 
False 11387 128 .668 .501 2.205E-04 1.285E-03 .373 .547 
False 10834 120 .626 .433 2.783E-04 1.674E-01 .948 1.898 
False 13779 144 1.658 1.138 3.195E-04 4.557E-03 .523 .865 
False 4566 33 .775 .539 5.846E-04 9.544E-02 .95 1.325 
False 13820 145 .43 .29 6.379E-04 3.022E-02 .753 1.156 
False 8713 101 .128 .076 7.264E-04 2.566E-04 .707 .598 
False 11348 127 2.589 1.929 7.422E-04 4.163E-03 .429 .631 
False 9750 109 .319 .155 8.260E-04 4.134E-04 .939 .876 
False 6656 71 .127 .08 9.184E-04 9.511E-04 .723 .534 
False 9744 108 .303 .146 1.230E-03 5.038E-04 .952 .932 
False 7025 78 .148 .103 1.230E-03 2.924E-03 .513 .748 
False 3580 21 .048 .071 1.881E-03 2.348E-03 .492 .691 
False 6897 76 .337 .232 1.919E-03 1.561E-02 .683 .917 
False 8580 100 .197 .139 2.077E-03 1.364E-03 .547 .505 
False 8958 102 .129 .085 2.160E-03 1.602E-04 .575 .435 
False 12271 134 .374 .225 2.382E-03 6.770E-03 .863 1.005 
False 6890 75 .402 .299 2.428E-03 2.162E-02 .539 .793 
False 11318 126 3.302 2.419 2.428E-03 1.566E-03 .426 .582 
False 5668 58 .416 .33 2.833E-03 5.342E-03 .361 .489 
False 5055 47 .275 1.085 2.943E-03 1.107E-03 .646 1.628 
False 14049 148 .372 .286 3.115E-03 5.608E-02 .567 .866 
False 5071 49 .166 .389 3.175E-03 8.886E-03 1.325 1.477 
False 7861 88 .096 .142 3.175E-03 7.502E-03 .825 .671 
False 8090 94 .098 .055 3.423E-03 4.958E-03 .994 .975 
False 14009 147 1.939 1.497 4.436E-03 5.033E-02 .533 .848 
False 3895 24 .251 .08 4.770E-03 1.945E-03 1.523 1.073 
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False 5654 57 .633 .479 5.127E-03 1.085E-02 .508 .611 
False 3716 22 .154 .063 5.127E-03 1.371E-03 1.223 1.121 
False 6112 64 .284 .216 5.913E-03 9.080E-02 .721 .958 
False 15278 160 .936 .743 6.457E-03 9.191E-03 .359 .557 
False 6876 74 .201 .164 7.293E-03 4.240E-02 .416 .612 
False 5062 48 .321 .93 8.364E-03 6.075E-03 1.582 1.626 
False 8015 92 .219 .134 8.949E-03 2.180E-03 .821 .594 
False 13901 146 .426 .31 9.255E-03 2.008E-02 .653 .729 
False 13720 143 .186 .153 1.110E-02 2.194E-01 .673 .977 
False 6547 69 .111 .078 1.147E-02 2.249E-02 .674 .937 
False 10259 117 .208 .149 1.204E-02 1.762E-02 .679 .729 
False 7004 77 .515 .433 1.306E-02 1.656E-01 .5 .8 
False 5695 60 .198 .14 1.327E-02 1.535E-02 .787 .525 
False 4560 32 1.45 1.322 1.579E-02 7.237E-01 1.286 1.408 
False 3319 12 .113 .058 1.629E-02 1.679E-03 1.012 .906 
False 8448 97 .4 .207 1.760E-02 1.310E-02 1.215 1.323 
False 12687 137 .115 .11 1.760E-02 8.829E-01 .902 1.856 
False 7685 86 .189 .226 1.842E-02 7.202E-02 .556 .47 
False 4384 31 .071 .052 1.842E-02 2.831E-02 .73 .687 
False 7497 81 .083 .094 2.111E-02 3.467E-01 .838 .504 
False 11266 124 .54 .412 2.111E-02 2.898E-02 .602 .657 
False 12344 135 .472 .345 2.143E-02 1.029E-01 1.051 .781 
False 2750 6 .386 .364 2.412E-02 8.569E-01 1.406 1.944 
False 14622 154 .079 .087 2.748E-02 5.253E-01 .868 .606 
False 5675 59 .381 .309 3.167E-02 9.604E-02 .594 .713 
False 19920 178 .102 .023 3.167E-02 4.194E-02 2.738 .391 
False 11678 130 .228 .315 3.348E-02 3.127E-02 .75 .755 
False 13150 139 .239 .241 3.395E-02 9.804E-01 1.248 2.566 
False 4041 25 .104 .102 3.998E-02 9.384E-01 1.329 2.007 
False 14683 155 .132 .078 4.052E-02 1.605E-01 2.067 .598 
False 3421 16 .163 .059 4.217E-02 2.724E-03 1.457 1.147 
False 10095 115 3 2.504 4.274E-02 6.190E-02 .36 .635 
False 5048 46 .357 .574 4.331E-02 9.742E-03 .672 .971 
False 22198 183 .064 .042 4.388E-02 2.684E-02 .935 1.018 
False 2477 1 .057 .115 4.505E-02 1.919E-02 1.101 1.447 
False 14218 151 .164 .146 4.565E-02 3.593E-01 .551 .789 
False 3721 23 .156 .084 4.747E-02 2.419E-02 1.3 1.309 
False 14221 152 .159 .14 4.809E-02 3.281E-01 .558 .799 
False 14091 149 .155 .141 5.063E-02 4.264E-01 .505 .748 
False 14210 150 .161 .145 5.129E-02 4.054E-01 .529 .772 
False 11258 123 .42 .332 5.261E-02 7.861E-02 .653 .701 
False 6572 70 .077 .072 5.604E-02 7.572E-01 .779 1.535 
False 11816 131 .366 .512 5.675E-02 1.795E-01 .996 1.371 
False 12763 138 .065 .054 5.891E-02 1.544E-01 .613 .689 
False 3267 10 .313 .096 6.039E-02 4.298E-03 1.678 1.317 
False 7432 80 .239 .135 6.659E-02 1.620E-01 1.984 1.888 
False 15379 162 .415 .489 6.740E-02 1.183E-01 .469 .583 
False 10127 116 .249 .217 6.740E-02 1.551E-01 .421 .584 
False 3363 14 .184 .174 6.822E-02 8.382E-01 1.041 1.79 
False 12225 133 .501 .615 6.904E-02 4.601E-01 1.331 1.482 
False 10274 118 .236 .187 6.904E-02 6.569E-02 .649 .627 
False 11038 121 .161 .133 7.071E-02 2.131E-01 .751 .859 
False 13357 140 .071 .064 7.241E-02 4.763E-01 .547 .922 
False 6430 67 .125 .108 7.503E-02 2.393E-01 .58 .715 
False 4107 26 .104 .066 7.503E-02 6.070E-02 1.259 .895 
False 9072 103 .065 .047 7.681E-02 5.717E-02 .875 .869 
False 8174 95 .045 .086 7.862E-02 2.195E-03 .657 1.061 
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False 15330 161 1.247 1.338 8.140E-02 3.823E-01 .322 .479 
False 3478 20 .13 .128 9.748E-02 9.583E-01 1.032 1.556 
False 5263 51 .11 .165 1.040E-01 7.372E-03 .395 .853 
False 4115 27 .092 .08 1.086E-01 3.205E-01 .658 .824 
False 5819 61 .222 .189 1.086E-01 2.493E-01 .647 .791 
False 21770 182 .024 .024 1.133E-01 8.700E-01 .549 .713 
False 19757 177 .026 .032 1.194E-01 8.336E-02 .483 .673 
False 2744 5 .637 .141 1.232E-01 3.349E-03 1.87 1.168 
False 10088 114 3.278 2.757 1.245E-01 1.284E-01 .501 .68 
False 20185 179 .041 .032 1.297E-01 1.240E-01 .924 .632 
False 5932 63 .112 .082 1.297E-01 2.266E-02 .788 .45 
False 7950 91 .147 .216 1.310E-01 4.083E-02 .867 .961 
False 4253 29 .055 .09 1.405E-01 6.305E-02 1.006 1.35 
False 12643 136 .063 .07 1.405E-01 3.152E-01 .543 .469 
False 10069 113 .611 .442 1.490E-01 2.093E-01 1.368 1.144 
False 10296 119 .281 .253 1.504E-01 3.459E-01 .512 .634 
False 16032 166 .204 .35 1.578E-01 1.092E-02 .921 1.052 
False 5904 62 .076 .1 1.749E-01 1.267E-01 .86 .924 
False 7664 85 .42 .435 1.798E-01 6.230E-01 .29 .41 
False 16825 171 .045 .046 1.983E-01 8.754E-01 .659 .516 
False 3434 18 .179 .188 2.089E-01 8.657E-01 1.071 1.702 
False 16075 167 .343 .542 2.143E-01 2.502E-02 .992 1.001 
False 7559 82 .53 .817 2.143E-01 2.085E-02 .84 .956 
False 4747 36 .164 .158 2.162E-01 9.154E-01 1.829 1.88 
False 4931 41 .139 .188 2.162E-01 6.297E-02 .778 .849 
False 16079 168 .335 .525 2.198E-01 2.749E-02 1.001 1.003 
False 7930 89 .606 .822 2.349E-01 8.814E-02 .893 .902 
False 15113 156 2.263 3.425 2.387E-01 2.592E-02 .806 .963 
False 4937 42 .163 .285 2.465E-01 4.899E-02 1.491 1.32 
False 2512 2 .099 .085 2.811E-01 4.587E-01 1.066 1.189 
False 20763 180 .027 .025 2.811E-01 3.576E-01 .379 .385 
False 15865 164 2.481 3.431 2.938E-01 9.539E-02 .94 .996 
False 11650 129 1.115 1.089 2.960E-01 8.717E-01 .718 .805 
False 5530 55 .083 .084 3.047E-01 9.207E-01 .465 .403 
False 5045 45 .419 .431 3.047E-01 8.196E-01 .514 .719 
False 15120 157 2.735 3.768 3.134E-01 6.988E-02 .782 .939 
False 15922 165 .392 .614 3.179E-01 4.469E-02 .884 1.177 
False 24020 186 .018 .02 3.336E-01 3.843E-01 .567 .634 
False 15127 158 2.84 3.724 3.358E-01 1.199E-01 .779 .938 
False 4219 28 .055 .047 3.358E-01 4.704E-01 1.14 1.257 
False 2553 4 .068 .068 3.404E-01 9.940E-01 .9 .818 
False 4722 35 .064 .061 3.404E-01 8.248E-01 1.21 .942 
False 15171 159 .363 .549 3.473E-01 4.884E-02 .866 1.112 
False 7935 90 .587 .749 3.496E-01 1.740E-01 .915 .908 
False 2783 7 .092 .052 3.542E-01 3.260E-02 1.386 .729 
False 4964 43 1 2.64 3.612E-01 1.943E-02 2.135 1.742 
False 7565 83 .506 .711 3.635E-01 7.343E-02 .836 1.004 
False 8033 93 .139 .151 3.682E-01 5.353E-01 .679 .733 
False 17879 172 .113 .09 3.729E-01 2.308E-01 1.082 .744 
False 4784 38 .084 .087 3.753E-01 7.425E-01 .593 .625 
False 3440 19 .168 .158 3.753E-01 8.814E-01 2.312 1.682 
False 15821 163 .336 .571 3.848E-01 3.403E-02 1.045 1.268 
False 14491 153 .103 .168 3.895E-01 1.164E-01 1.558 1.516 
False 7242 79 .072 .084 3.991E-01 3.449E-01 .673 .874 
False 4767 37 .149 .124 4.015E-01 3.770E-01 1.105 .931 
False 22765 185 .024 .024 4.015E-01 8.755E-01 .548 .558 
False 4672 34 .062 .108 4.088E-01 3.798E-02 .701 1.432 
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False 2272 0 .06 .05 4.136E-01 3.894E-01 1.196 .857 
False 17923 174 .078 .065 4.209E-01 2.584E-01 .943 .641 
False 5039 44 .357 .323 4.209E-01 4.854E-01 .714 .798 
False 8404 96 .109 .103 4.258E-01 6.674E-01 .671 .55 
False 3369 15 .205 .197 4.332E-01 9.284E-01 2.684 1.826 
False 6181 65 .054 .045 4.356E-01 6.365E-01 2.166 1.614 
False 11982 132 .116 .151 4.356E-01 1.894E-01 .854 1.11 
False 2929 8 .073 .062 4.356E-01 3.570E-01 .974 .674 
False 2935 9 .061 .107 4.356E-01 5.869E-02 .991 1.564 
False 16779 169 .062 .061 4.430E-01 8.907E-01 .646 .666 
False 18827 176 .016 .017 4.454E-01 5.578E-01 .419 .577 
False 20915 181 .062 .055 4.578E-01 3.565E-01 .764 .552 
False 9337 105 .076 .078 4.602E-01 8.857E-01 .746 .885 
False 18405 175 .033 .032 4.677E-01 6.717E-01 .517 .392 
False 2532 3 .082 .048 4.801E-01 7.495E-02 1.606 .953 
False 11071 122 .427 .406 4.801E-01 7.523E-01 .924 .753 
False 4281 30 .074 .075 4.801E-01 9.629E-01 .761 .838 
False 16793 170 .064 .064 4.850E-01 9.583E-01 .57 .596 
False 4917 40 .11 .117 4.925E-01 5.814E-01 .473 .637 
False 17904 173 .097 .077 4.925E-01 1.910E-01 .983 .711 
False 5171 50 .084 .258 4.975E-01 1.276E-02 2.246 1.811 
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Comparison of Far Normal (FN) vs. Near Margin Normal (NN) - Medulla Border 
(TM) in Tumor Grade IV 

 
Data sets: 
Near Margin Normal (NN) -- selected spectra from samples D528, D1344, D1347 
Far Normal (FN) -- selected spectra from samples D528, D1344, D1347 
 
Plot of Group Averages: <group 3TM FN in blue, group 3TM NN in red> 

  
Plot of Group Differences: 
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Table of features used in classifier and validation  
(Selected features with Wil P < 0.00002) 
MZ ID 3TM FN 

Avg 
3TM 
NN Avg 

Wil P T p CV1 CV2 

4893 28 .147 .044 6.991E-06 1.779E-04 1.298 .694 
5357 40 .631 .15 6.278E-13 1.471E-09 .831 .372 
5646 41 .582 .33 1.640E-08 3.165E-08 .476 .404 
5933 47 .194 .07 2.755E-07 3.207E-06 .927 .499 
6664 59 .225 .082 1.239E-07 6.015E-08 .765 .568 
6725 60 .133 .055 7.637E-09 1.431E-06 .767 .76 
7643 70 .349 .21 2.223E-12 9.376E-13 .263 .4 
7798 74 .142 .028 3.275E-10 6.308E-08 .959 1.552 
8422 81 .017 .096 3.901E-06 7.936E-07 1.774 1.086 
8560 82 .628 .43 3.677E-06 6.207E-04 .413 .731 
8588 84 .26 .152 2.017E-06 5.707E-05 .53 .842 
8646 85 .199 .052 6.599E-06 3.027E-06 1.081 .567 
8655 86 .166 .055 1.466E-07 6.077E-08 .819 .516 
8957 88 .124 .056 1.326E-07 1.762E-09 .574 .416 
8964 89 .124 .062 1.526E-08 2.248E-08 .571 .413 
9246 91 .161 .05 8.253E-13 1.892E-09 .741 .57 
9373 93 .262 .064 2.942E-07 2.681E-07 .99 .485 
9615 95 .196 .048 1.916E-07 2.189E-08 .898 .555 
9623 96 .19 .059 7.248E-07 1.548E-08 .8 .505 
9772 98 .137 .052 8.069E-06 5.195E-06 .921 .505 
10097 102 3.295 2 8.487E-07 3.303E-07 .42 .516 
12273 126 .564 .137 5.656E-11 1.011E-07 .943 .815 
12282 127 .548 .144 6.415E-12 1.542E-09 .786 .735 
12501 129 .137 .022 5.990E-07 1.559E-06 1.191 1.118 
13427 133 .127 .068 2.610E-08 9.314E-09 .501 .392 
13440 134 .131 .064 1.420E-08 1.131E-08 .572 .404 
15385 151 .219 .447 5.387E-06 1.250E-05 .304 .795 
20925 167 .154 .067 6.945E-08 6.675E-09 .616 .468 
 
K table :  PDiff: 0; 3TM FN- group size: 53, 3TM NN- group size: 53 
k Errors Misses G1 

Errors 
G1 Misses G2 

Errors 
G2 Misses

3 13 0 6 0 7 0 
7 15 0 9 0 6 0 
5 15 0 8 0 7 0 
11 16 0 11 0 5 0 
13 16 0 11 0 5 0 
9 16 0 11 0 5 0 
15 18 0 13 0 5 0 
1 18 0 8 0 10 0 
19 19 0 14 0 5 0 
17 19 0 14 0 5 0 
 
 
 
 



 

186 

Complete feature table  
Used MZ ID 3TM 

FN 
Avg 

3TM 
NN 
Avg 

Wil P T p CV1 CV2 

True 5357 40 .631 .15 6.278E-13 1.471E-09 .831 .372 
True 9246 91 .161 .05 8.253E-13 1.892E-09 .741 .57 
True 7643 70 .349 .21 2.223E-12 9.376E-13 .263 .4 
True 12282 127 .548 .144 6.415E-12 1.542E-09 .786 .735 
True 12273 126 .564 .137 5.656E-11 1.011E-07 .943 .815 
True 7798 74 .142 .028 3.275E-10 6.308E-08 .959 1.552 
True 6725 60 .133 .055 7.637E-09 1.431E-06 .767 .76 
True 13440 134 .131 .064 1.420E-08 1.131E-08 .572 .404 
True 8964 89 .124 .062 1.526E-08 2.248E-08 .571 .413 
True 5646 41 .582 .33 1.640E-08 3.165E-08 .476 .404 
True 13427 133 .127 .068 2.610E-08 9.314E-09 .501 .392 
True 20925 167 .154 .067 6.945E-08 6.675E-09 .616 .468 
True 6664 59 .225 .082 1.239E-07 6.015E-08 .765 .568 
True 8957 88 .124 .056 1.326E-07 1.762E-09 .574 .416 
True 8655 86 .166 .055 1.466E-07 6.077E-08 .819 .516 
True 9615 95 .196 .048 1.916E-07 2.189E-08 .898 .555 
True 5933 47 .194 .07 2.755E-07 3.207E-06 .927 .499 
True 9373 93 .262 .064 2.942E-07 2.681E-07 .99 .485 
True 12501 129 .137 .022 5.990E-07 1.559E-06 1.191 1.118 
True 9623 96 .19 .059 7.248E-07 1.548E-08 .8 .505 
True 10097 102 3.295 2 8.487E-07 3.303E-07 .42 .516 
True 8588 84 .26 .152 2.017E-06 5.707E-05 .53 .842 
True 8560 82 .628 .43 3.677E-06 6.207E-04 .413 .731 
True 8422 81 .017 .096 3.901E-06 7.936E-07 1.774 1.086 
True 15385 151 .219 .447 5.387E-06 1.250E-05 .304 .795 
True 8646 85 .199 .052 6.599E-06 3.027E-06 1.081 .567 
True 4893 28 .147 .044 6.991E-06 1.779E-04 1.298 .694 
True 9772 98 .137 .052 8.069E-06 5.195E-06 .921 .505 
False 6133 49 .099 .046 2.144E-05 6.056E-06 .775 .604 
False 5350 39 .745 .134 2.810E-05 3.963E-06 1.218 .742 
False 13385 132 .088 .063 2.810E-05 3.326E-05 .322 .49 
False 2391 0 .014 .132 3.212E-05 6.258E-04 1.396 1.841 
False 8016 78 .262 .076 4.413E-05 4.259E-06 1.044 .703 
False 5054 33 .119 .351 1.053E-04 4.759E-05 .54 1.119 
False 4931 29 .126 .236 1.163E-04 3.676E-05 .596 .72 
False 3478 16 .042 .131 1.348E-04 6.424E-04 1.042 1.365 
False 8570 83 .926 .708 1.524E-04 6.088E-02 .471 1.009 
False 4887 27 .127 .041 1.720E-04 2.738E-06 .965 .834 
False 9367 92 .266 .066 1.762E-04 7.383E-06 1.153 .59 
False 13153 131 .022 .047 1.941E-04 1.689E-04 .927 .911 
False 3368 11 .051 .231 2.036E-04 9.675E-04 1.945 1.61 
False 15267 148 .925 .625 3.919E-04 1.676E-05 .239 .689 
False 12348 128 .311 .2 4.010E-04 5.481E-04 .584 .674 
False 7173 67 .08 .032 5.028E-04 3.546E-05 .929 .9 
False 8713 87 .122 .038 5.142E-04 4.264E-05 1.114 1.096 
False 10088 101 2.891 1.878 6.860E-04 6.164E-04 .585 .652 
False 5042 32 .324 .247 7.012E-04 1.299E-03 .357 .506 
False 9960 99 .162 .114 7.820E-04 2.416E-03 .582 .51 
False 3439 14 .097 .324 7.991E-04 2.727E-03 1.477 1.603 
False 3427 12 .22 .122 7.991E-04 5.413E-03 .958 1.118 
False 13907 138 .704 .469 8.166E-04 2.546E-03 .548 .843 
False 6657 58 .234 .083 8.901E-04 2.757E-05 1.054 .579 
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False 9751 97 .136 .078 9.492E-04 2.064E-03 .867 .845 
False 10304 107 .29 .181 9.906E-04 1.651E-04 .62 .528 
False 4766 26 .058 .084 1.148E-03 2.802E-03 .432 .648 
False 8349 80 .069 .03 1.198E-03 3.767E-05 .9 .693 
False 10133 103 .262 .192 1.999E-03 1.852E-03 .497 .49 
False 5825 46 .087 .121 3.520E-03 5.308E-03 .611 .55 
False 3434 13 .086 .188 3.725E-03 2.012E-03 .768 1.187 
False 5654 42 .831 .597 4.168E-03 3.073E-03 .561 .527 
False 5069 35 .953 .526 4.407E-03 2.340E-01 2.662 1.015 
False 11303 115 2.887 2.445 5.013E-03 2.002E-02 .275 .453 
False 3362 10 .056 .14 5.199E-03 3.794E-04 .869 1.129 
False 14631 145 .063 .067 5.295E-03 5.942E-01 .774 .405 
False 11312 116 3.581 3.034 6.451E-03 4.474E-02 .342 .504 
False 16793 158 .044 .056 6.924E-03 2.706E-02 .593 .45 
False 9522 94 .096 .036 6.924E-03 3.182E-04 1.174 .974 
False 8039 79 .14 .096 7.172E-03 3.898E-03 .652 .623 
False 10267 104 .252 .164 7.299E-03 7.578E-04 .664 .486 
False 10294 106 .298 .194 8.829E-03 1.696E-03 .7 .553 
False 6179 50 .047 .114 8.829E-03 2.021E-03 .921 1.302 
False 5062 34 .304 .574 9.292E-03 2.544E-02 1.68 1.22 
False 10846 109 .161 .126 9.943E-03 2.747E-02 .51 .631 
False 19746 165 .029 .037 1.063E-02 2.223E-01 1.185 .799 
False 10077 100 1.11 .756 1.081E-02 1.107E-01 1.212 1.153 
False 16506 157 .051 .062 1.428E-02 1.292E-01 .747 .565 
False 12657 130 .056 .068 1.474E-02 8.529E-02 .576 .544 
False 22550 171 .06 .067 1.596E-02 7.135E-01 1.914 .949 
False 4937 30 .205 .297 1.596E-02 6.495E-02 1.071 .954 
False 17542 160 .014 .022 1.622E-02 1.337E-02 .916 .79 
False 4747 25 .063 .143 1.647E-02 1.408E-02 1.393 1.515 
False 20176 166 .033 .039 1.867E-02 9.077E-02 .528 .469 
False 6324 53 .158 .106 1.955E-02 3.813E-04 .604 .356 
False 15292 149 1.095 .838 2.415E-02 8.331E-04 .171 .612 
False 5085 36 .15 .135 2.451E-02 7.274E-01 1.878 .994 
False 6953 64 .2 .159 2.717E-02 9.726E-02 .591 .817 
False 4566 24 .504 .392 2.757E-02 1.614E-01 .859 .982 
False 3325 9 .171 .088 3.463E-02 2.202E-02 1.382 1.2 
False 12231 125 .172 .21 3.561E-02 4.899E-01 .821 1.786 
False 7682 73 .169 .239 3.611E-02 5.958E-03 .454 .691 
False 7930 75 .563 .424 3.712E-02 7.029E-02 .778 .796 
False 15339 150 .978 1.159 3.712E-02 6.833E-02 .33 .549 
False 4012 19 .056 .085 3.764E-02 4.281E-02 .471 1.186 
False 2476 1 .046 .119 3.764E-02 6.071E-04 .92 1.209 
False 9192 90 .13 .144 4.085E-02 6.943E-01 .851 1.549 
False 15853 152 1.768 1.786 4.987E-02 9.591E-01 .911 1.141 
False 11345 117 2.146 2.005 5.321E-02 4.384E-01 .355 .535 
False 21543 168 .019 .023 5.459E-02 5.830E-02 .556 .594 
False 22213 170 .038 .035 5.745E-02 2.995E-01 .401 .414 
False 7662 71 .332 .307 6.042E-02 2.757E-01 .299 .43 
False 2929 5 .05 .073 6.429E-02 2.314E-02 .592 .889 
False 5170 37 .056 .188 6.429E-02 9.204E-04 1.43 1.432 
False 5668 43 .374 .336 7.090E-02 2.010E-01 .395 .467 
False 17204 159 .04 .033 8.081E-02 7.259E-02 .558 .514 
False 15130 146 3.713 3.261 8.369E-02 4.723E-01 .859 .999 
False 15871 153 2.582 2.296 8.967E-02 5.251E-01 .892 1.009 
False 10284 105 .249 .169 9.384E-02 9.934E-03 .803 .546 
False 3901 18 .103 .086 9.597E-02 2.564E-01 .75 .918 
False 14016 140 2.367 2.072 9.705E-02 3.484E-01 .633 .828 
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False 6626 57 .058 .153 9.924E-02 1.172E-03 1.223 1.277 
False 15882 154 2.215 1.946 9.924E-02 4.712E-01 .873 .979 
False 10832 108 .173 .142 9.924E-02 2.408E-01 .813 .958 
False 7937 76 .595 .411 1.003E-01 3.719E-02 .948 .703 
False 4559 23 .452 .446 1.003E-01 9.537E-01 .966 1.249 
False 4964 31 .549 1.979 1.014E-01 3.733E-04 1.424 1.375 
False 4282 22 .144 .157 1.083E-01 5.661E-01 .443 .96 
False 14230 143 .182 .183 1.119E-01 9.899E-01 .557 .829 
False 6881 61 .25 .297 1.131E-01 7.654E-02 .434 .53 
False 13789 137 2.547 2.238 1.155E-01 3.660E-01 .649 .826 
False 6435 55 .172 .138 1.323E-01 1.512E-01 .773 .748 
False 7559 68 .612 .476 1.323E-01 1.895E-01 .981 .936 
False 11385 119 .736 .663 1.478E-01 3.000E-01 .509 .516 
False 15173 147 .582 .649 1.537E-01 5.630E-01 .755 1.102 
False 7953 77 .138 .142 1.613E-01 8.622E-01 1.005 .717 
False 14222 142 .19 .198 1.692E-01 7.390E-01 .491 .752 
False 15928 155 .423 .479 1.822E-01 5.096E-01 .839 1.035 
False 6115 48 .134 .113 1.822E-01 1.659E-01 .62 .625 
False 4046 20 .072 .077 1.856E-01 6.657E-01 .931 .742 
False 11078 112 .241 .233 1.856E-01 7.713E-01 .505 .723 
False 7566 69 .714 .522 1.907E-01 1.025E-01 1.029 .82 
False 18579 164 .02 .023 1.924E-01 2.434E-01 .588 .694 
False 13982 139 .421 .405 2.048E-01 6.891E-01 .406 .598 
False 14489 144 .047 .052 2.102E-01 5.101E-01 .818 .86 
False 11654 122 .589 .528 2.120E-01 3.703E-01 .62 .621 
False 6428 54 .128 .172 2.157E-01 1.393E-01 .965 1.006 
False 6226 51 .075 .088 2.232E-01 4.609E-01 1.142 1.045 
False 3471 15 .081 .236 2.269E-01 1.674E-01 1.012 3.418 
False 11354 118 2.117 2.155 2.405E-01 8.699E-01 .458 .656 
False 16079 156 .348 .355 2.444E-01 9.155E-01 .922 1.07 
False 11069 111 .222 .229 2.504E-01 8.083E-01 .582 .782 
False 23695 172 .023 .026 2.525E-01 2.968E-01 .504 .587 
False 11395 120 .599 .559 2.773E-01 5.533E-01 .582 .615 
False 2935 6 .115 .123 2.880E-01 7.494E-01 1.069 1.08 
False 10894 110 .044 .054 2.923E-01 2.879E-01 .887 1.046 
False 3722 17 .161 .104 2.945E-01 1.273E-01 1.48 1.184 
False 5696 45 .141 .154 2.966E-01 3.379E-01 .404 .504 
False 2780 4 .024 .033 2.988E-01 2.809E-01 1.134 1.593 
False 11609 121 .12 .116 3.077E-01 7.366E-01 .48 .545 
False 3273 8 .121 .12 3.166E-01 9.601E-01 .785 .718 
False 5263 38 .116 .118 3.166E-01 8.312E-01 .455 .652 
False 13760 136 1.185 1.354 3.189E-01 2.179E-01 .428 .629 
False 6911 63 .214 .192 3.211E-01 5.470E-01 .907 .926 
False 17929 163 .063 .056 3.441E-01 3.718E-01 .733 .491 
False 6895 62 .564 .543 3.487E-01 7.795E-01 .655 .761 
False 7008 65 .623 .587 3.534E-01 6.724E-01 .649 .801 
False 2957 7 .061 .082 3.605E-01 2.078E-01 .94 1.27 
False 11822 124 .179 .166 3.796E-01 5.973E-01 .741 .657 
False 6312 52 .086 .101 3.917E-01 4.215E-01 .926 1.138 
False 7029 66 .135 .138 4.014E-01 8.633E-01 .686 .752 
False 13724 135 .235 .251 4.186E-01 6.022E-01 .589 .703 
False 7669 72 .314 .326 4.211E-01 6.782E-01 .41 .513 
False 14060 141 .389 .373 4.211E-01 7.778E-01 .696 .818 
False 4115 21 .085 .079 4.260E-01 4.742E-01 .541 .543 
False 6549 56 .12 .124 4.359E-01 8.547E-01 .737 .725 
False 11814 123 .164 .154 4.459E-01 6.840E-01 .879 .796 
False 11269 114 .52 .486 4.459E-01 5.644E-01 .642 .563 
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False 24758 173 .022 .025 4.534E-01 3.986E-01 .538 .774 
False 2750 3 .453 .542 4.660E-01 6.258E-01 1.62 2.03 
False 2744 2 .085 .092 4.685E-01 6.368E-01 .868 .983 
False 11259 113 .369 .344 4.685E-01 5.771E-01 .701 .586 
False 17918 162 .07 .061 4.811E-01 3.107E-01 .777 .547 
False 17881 161 .082 .069 4.811E-01 2.080E-01 .832 .557 
False 5675 44 .381 .406 4.811E-01 5.908E-01 .514 .652 
False 21778 169 .042 .053 4.886E-01 1.245E-01 .533 .921 
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Appendix C 
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Note: Refer to Figure 32 for graph and axes information pertaining to all figures in 
Appendix C. 
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Note: Refer to Figure 32 for graph and axes information pertaining to all figures in 

Appendix D. 
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