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CHAPTER I

INTRODUCTION

A computer-based system (CBS) is essentially an integrated system composed of a

computational component (with embedded software), a physical environment, and a sens-

ing and actuation hardware mechanism which establishes an interface between the two.

The physical aspects of a CBS, its hardware and environment, impose constraints or re-

quirements on its embedded software. The role of embedded software then is to configure

and control the computational components of a CBS to meet these physical requirements.

Designing such systems is an inherently complex task, because the constraints posed by

the physical aspects of a CBS cross-cut the entire development process - they generally

cannot be satisfied through a single design decision. To cope with this complexity, devel-

opers must turn to model-based design techniques, which can holistically addresses the

many interdependent physical, functional and logical aspects of CBS design.

The advent of Model Driven Architecture (MDA) marks the beginning of the embrace

of model-based software design techniques by mainstream software developers. As the

central vision of the OMG, MDA proposes the specification of software systems through

modeling and model transformation[15][7]. It advocates the development of domain-

specific software applications through modeling to capture software requirements and de-

sign, platform, and deployment specifications. Generally, MDA limits the role of model

transformations to one-shot mappings from abstract platform-independent models (or

PIMs) to implementable platform-specific models (or PSMs). One theme of MDA is that

OMG’s widely-successful Universal Modeling language (UML), which provides a common

graphical syntax for object-oriented design[16], will be the single, universal, platform-

independent modeling language used by model translators to generate software artifacts

for specific platforms. The basis of this conviction stems from viewing model-based de-

sign in the same light as conventional programming, where language standardization has

been an important issue. However, the scope of model-based design is in fact much

broader. Model-based design encompasses the entire modeling process, which inherently
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includes the selection of essential domain aspects, careful separation of the modeled and

not modeled worlds, and abstraction. UML alone cannot sufficiently model all software

applications, let alone inherently more complicated computer-based systems, primarily

due to its limited scope and flexibility. UML lacks native facilities for describing special-

ized software domains such as distributed real-time systems, and it provides no way to

model the physical properties of embedded systems.

In an effort to provide a mechanism for expanding its limited scope, UML evolved

from a single monolithic language into a familty of closely-related languages which all

extend a common UML core. These languages are known as UML Profiles[16]. UML

Profiles are stereotyped packages that contain model elements extended with stereotypes,

tagged values and constraints. Unfortunately, profiling is not powerful enough to change

the fundamental syntactic and semantic properties of UML because it merely constrains

existing UML constructs rather then modifying or add new ones. Profiling also tends to

create a complex web of interfering standards as different domain modelers profile UML

in different ways to capture the same domain’s concepts.

The realization of the insufficiencies of UML gives rise to the question, what is the

right way to model CBSs? Which modeling language should we use? Modeling lan-

guages designed to capture the interesting properties of software systems, such as UML,

generally lack the necessary facilities for modeling entire CBSs. The models must also

capture the physical properties of the platforms and the embedding environment to make

these properties computable and analyzable. While UML includes some diagram types

useful for modeling dynamic, reactive systems (for example, StateCharts), it is inade-

quate for capturing models with a continuous-time semantics (for example, systems of

ordinary differential equations). Furthermore, the scope of modeling and the level of

abstraction required for designing CBSs are highly domain-specific. We cannot expect

that the same kinds of models and modeling languages which may be effectively used to

design controllers for brake-by-wire systems in cars (where safety, timing and cost are

the critical properties) may be used in designing mobile phones (where cost, power, se-

curity, and feature richness are the most important factors). Finally, mature application
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areas, including engineering disciplines such as control theory or mechanical engineering,

generally have their own equally-mature domain-specific terminology and concepts, and

forcing the use of another unrelated set of concepts for modeling within such a domain

seems both awkward and wasteful. Consequently, it seems that that there is no single,

universal modeling language capable of satisfying the requirements of all CBSs [12].

Designing computer-based systems requires the use of models based on domain knowl-

edge and terminology. This requires the invention of many modeling languages, each

specific to an application domain. The more radical approach of constructing domain-

specific modeling languages (DSMLs) demands an understanding of the fundamentals of

constructing modeling languages and creating standards and tool suites for facilitating

their specification and composition. Model-Integrated Computing (MIC) is a domain-

specific, model-driven approach to system development which uses models and model

transformations as first-class artifacts, and where every model is a valid statement from

some DSML. MIC captures the core characteristics of a domain in the fixed constructs

of a DSML and captures the variability of a domain through the domain models[11][26].

Over the last ten years, MIC metamodeling approaches have been successfully applied in

a variety of application domains[9][35]. Like MDA, MIC views the model development

process as a series of transformations among models — in fact, MIC may be considered a

practical manifestation of the MDA vision. However, the primary different between MIC

and MDA remains the role of DSMLs.

The vision of the domain-specific approach is that only those things important in the

domain are available to the domain modeler, and its primary supporting artifact is the

metamodel. A metamodel is a model of a DSML expressed using some metamodeling

language. Metamodeling provides a uniform way to define new modeling languages. The

latest developments in UML 2[21] depend on this approach, as the UML 2 family of model-

ing languages has been defined using the Meta Object Facility (MOF). MOF has emerged

as the OMG’s standard metamodeling language, and one of the more underutilized MOF

use-cases is the specification of DSMLs which are not part of the standard MDA suite

of languages[17]. In the future, MOF may serve as a widely-adopted tool-independent
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metamodeling language, allowing model data to be freely transferred between compliant

tools using OMG’s XML Metadata Interchange (XMI) technology[22].

We must also consider the need for powerful tool suites which support model-based

design by aiding in specifying, manipulating, transforming, and composing models. With

proper tool support, metamodeling allows DSMLs to be created and maintained quickly

and inexpensively. The primary MIC development tool is the Generic Modeling En-

vironment (GME)[2], a metaprogrammable model builder for designing and modeling

in domain-specific modeling environments. The best method for the rapid creation of

domain-specific environments is to create a metamodeling environment used specifically

to design them. GME supports its own metamodeling environment and language based

on UML class diagrams with class stereotypes and OCL constraints called MetaGME.

Problem Statement

As MOF becomes the widely-adopted, industry-standard metamodeling language,

GME must evolve through metaprogramming and model transformation to support tool-

independent MOF-based metamodels while also maintaining compatibility with technolo-

gies based on its own tool-specific metamodeling language.

This thesis describes the implementation of a MOF v1.4-based[17] alternative meta-

modeling environment for GME through metamodeling and model-to-model transforma-

tion. The transformation allows the new MOF metamodeling environment to leverage

existing tool support for GME modeling environment generation. The implementation

of the MOF sits as an additional layer of abstraction above the existing GME-specific

metamodeling facilities. This work also provides an opportunity to evaluate MOF as a

metamodeling language, particularly in terms of its support for DSML composition. The

approach taken in this thesis demonstrates the power and flexibility granted by metapro-

grammable tool architectures. The primary results of the thesis have been previously

described in other academic publications[32][31].
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Modeling and Composition of DSMLs

Formally, a DSML is a five-tuple of abstract syntax (A), concrete syntax (C ), syntactic

mapping (MC), semantic domain (S ), and semantic mappings (MS) [38]:

L = < A, C, MC, S, MS >

DSML syntax is defined in three parts: abstract syntax, concrete syntax, and syntactic

mapping. The abstract syntax A defines the language concepts, relationships, and any

integrity constraints which restrict the set of well-formed statements from the language.

The concrete syntax (C ) defines the specific graphical, textual, or mixed notations used to

depict model elements. The syntactic mapping MC : A → C assigns syntactic constructs

(graphical, textual or both) to the elements of the abstract syntax. DSML semantics

consist of two parts: semantic domain and semantic mapping. The semantic domain S is

usually defined by means of some mathematical formalism in terms of which the meaning

of well-formed domain models is specified. The semantic mapping MS : A → S maps

concepts from the abstract syntax to those of the semantic domain.

DSML syntax provides the modeling constructs which conceptually form an inter-

face to the semantic domain through the semantic mapping. Any DSML which is to be

used in the development of embedded systems requires the precise, explicit, and com-

plete specification (or modeling) of all five components of the language definition. The

languages which are used for defining components of DSMLs through modeling are called

metamodeling languages and the modeled, formal specifications of DSMLs are called

metamodels[15].

The specification of the abstract syntax of DSMLs requires at minimum a metamodel-

ing language which can model concepts, relationships, and integrity constraints. In GME,

UML Class Diagrams and the Object Constraint Language (OCL) form the metamodeling

language. This selection is consistent with UML’s and MOF’s four-layer metamodeling

architecture[17]. The elements of the abstract syntax find their representations among

the elements of the concrete syntax through the syntactic mapping. The mechanism

for accomplishing the syntactic mapping is usually tool-dependent rather than language-

dependent, because the type of representations used depends on the capabilities of the
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modeling tool which will support the DSML (thus MOF provides no facility for specifying

concrete syntax).

Each semantic domain and semantic mapping pair together specify a semantics for

a DSML, and this semantics assigns a precise meaning to all of the well-formed mod-

els which obey the integrity constraints of the modeling language. Naturally, a single

model might have multiple interesting interpretations; therefore a DSML might have a

multitude of semantic domains and semantic mappings associated with it. For example,

both structural and behavioral semantics are frequently associated with DSMLs. The

structural semantics of a modeling language is a set-valued semantics which describes the

meaning of the models in terms of the structure of model instances (all of the possible

sets of components and their relationships, which are consistent with the well-formedness

rules defined by the abstract syntax). Accordingly, the semantic domain for structural

semantics is defined using sets. The behavioral semantics describes the evolution of the

state of the modeled artifacts with respect to some abstraction of time. Hence, behav-

ioral semantics is formally modeled by mathematical structures representing some form

of dynamics.

In this paper, we will focus on metamodeling of the syntactic elements (A, C and

MC : A → C) since they play the key role in tools and model transformations. Issues

related to modeling semantics are discussed elsewhere[38].

Metamodeling Language Criteria

To effectively specify the syntax of DSMLs for graphical modeling tools such as GME,

a metamodeling language should meet the following criteria:

• Provides sufficiently expressive yet generic object-oriented concepts capable of de-

scribing any conceivable domain.

• Enables specification of the diagrammatic representation of the domain concepts.

• Allows for the definition of the well-formedness rules for domain models.

6



• Includes some way to specify different logical views of domain models so modelers

can focus on different relevant aspects of a system. This idea extends into the

metamodeling language itself — the language should also include a similar facility

for separating the concerns of the different interacting aspects of a DSML while it

is being developed.

• Supports the extension, composition, and reuse of completed metamodels.
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CHAPTER II

MOF OVERVIEW

The Meta Object Facility (MOF) is a sister-standard of UML and is maintained by

the same standards-publishing body, the Object Management Group. MDA supplies

both MOF and UML’s profiling mechanism for defining specialized modeling languages;

however, MOF is the true MDA metamodeling language - all the other MDA standards,

including UML[16], CWM[19], and OCL[20], are specified using MOF[7]. A metamodel

which is an instance of MOF formally specifies the abstract syntax of the set of modeling

constructs which constitute a modeling language.

MOF is closely related to UML in that it utilizes the object-oriented UML Class Di-

agram constructs and uses them for modeling abstract syntax. For instances, MOF uses

Classes to model domain concepts, Attributes to model concept properties, and Associa-

tions to model relationships between domain concepts. Consequently, MOF metamodels

are similar to UML Class Diagrams. In fact, the UML Profile for Meta Object Facility

defines a mapping between the elements of the MOF model and the elements of UML

Class Diagrams, and it is possible to use this mapping to derive a graphical concrete

syntax for MOF[23] (this mapping is useful because the MOF specification itself does

not provide a concrete syntax for MOF[17]). MOF, however, strives to be simpler and

smaller than UML Class Diagrams - the minimal metamodeling language.

The OMG ratified the earliest version of MOF in 1997. Prior to MOF, many previ-

ous attempts at model-based design had been centered on the assumption that a single

object-oriented modeling language would be sufficient for modeling all types of data.

These attempts failed because they did not take into account the fact that different types

of computing systems require different types of modeling languages - no object oriented

modeling language (or any other single type of modeling language) is universally ap-

plicable. MOF’s fundamental premise, however, is that there must be multiple different

types of modeling languages, each of which can provide a different view of computing

systems[7].
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MOF also has important relationships to two other MDA standards: XMI and CORBA.

The XML Metadata Interchange specification, which was adopted one year after the ini-

tial adoption of MOF, provides a set of production rules which may be used to serialized

any model defined by a MOF-specified metamodel into a standardized XML format[22].

XMI DTDs or schemas may be derived from metamodels; these are then used to validate

the XMI documents generated from models. The OMG touts XMI as a standard format

for interchanging all types of models between MOF-compliant modeling tools. There

also exists a standard mapping between MOF and CORBA which defines the automatic

generation of CORBA IDL-based interfaces from the abstract syntax specification of any

modeling language defined using MOF. In addition to spelling out the syntax of these

IDL interfaces, the MOF-CORBA mapping also enforces some of the API static semantics

implied by the structure of a metamodel[17].

The MOF Architecture

MOF’s architecture, or its overarching design and intended usage, conforms to the

classic four-metalevel metamodeling framework[17]. Each metalevel in this framework

consists of instances of elements of the next higher level.

• M0 Level: The concrete data of a system of interest at some point in time. Examples

include the contents of a database or the execution of a finite state machine.

• M1 Level: The declarative model which defines a system using domain-specific con-

cepts. One example would be a model of a specific finite state machine. Information

at this level is also known as metadata because it describes the raw system data of

level M0.

• M2 Level: The metamodel for the domain-specific modeling language capable of

expressing the structure of a system’s metadata. The UML model is a classic

example; another example would be a language for modeling finite state machines.

• M3 Level: MOF, a self-describing meta-metamodel for specifying the abstract syn-

tax of domain-specific modeling languages.
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No metalevel beyond M3 is necessary to specify MOF, because MOF is self-describing

(or metacircular)[17]. In essence, a metamodeling language such as MOF is simply a

DSML for the domain of metamodels; as a specifier of all DSMLs, MOF is fully described

using its own modeling concepts.

Basic MOF Concepts

As defined in the v1.4 specification [17], MOF provides the following five basic object-

oriented concepts for use in specifying DSML abstract syntax:

• Classes are types whose instances have identity, state, and an interface. The state

of a Class is expressed by its Attributes and Constants, and its interface is defined

by Operations and Exceptions. Constraints can place limitations on the state of a

Class.

• Associations describe binary relationships between Classes, including composition.

Because MOF Associations have no object identity (that is, they are not first-class

objects), they lack both state and interface. This deficiency makes the specification

of some metamodels more awkward and difficult.

• DataTypes are non-instantiable types with no object identity. By design, the differ-

ent MOF DataTypes encompass most of the CORBA IDL primitive and constructed

types, including enumerations, structures, and collections.

• Packages are nestable containers for modularizing and partitioning metamodels into

logical subunits. Generally, a non-nested Package contains all of the elements of

a metamodel, so Packages are also the modeling concept responsible for enabling

metamodel composition, extension, and reuse.

• Constraints specify the well-formedness rules which restrict the set of valid domain

models.
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Metamodel Composition and Reuse with MOF

MOF provides four features for metamodel composition, extension, and reuse: Class

inheritance, Package inheritance, Class importation, and Package importation.

Both Classes and Packages can exist in OO-style generalization/specialization hierar-

chies which allow a derived Class (or Package) to inherit the structures and relationships

of multiple base Classes (or Packages). Of course, Packages may not inherit from Classes

and vice versa.

Package inheritance is MOF’s facility for metamodel extension — a derived Pack-

age gains all of the metamodel elements defined in the Package from which it inherits.

This facility is subject to constraints that disallow name collisions between inherited

and locally-defined metamodel elements as well as name collisions between metamodel

elements in the different base Packages in the case of multiple Package inheritance.

Class importation allows a Package to selectively acquire only the explicitly-desired

types from another Package for use in Class inheritance, forming Associations, or defining

new Attributes, Parameters, or Exceptions using the imported type.

Package importation is another feature for metamodel composition and reuse. It

is semantically very similar to Package Inheritance, except that the modeling language

described by the importing Package cannot be used to create instances of the Classes

defined in the imported Package. However, the importing Package can subtype each of

the Classes of the imported Package as if it had acquired them through Class importation,

specify the types of typed elements such as Attributes using imported DataTypes, and

define Operations which raise imported Exceptions.

MOF Technical Advantages

This section describes the technical advantages that MOF enjoys over MetaGME, the

current GME native metamodeling language. MetaGME is discussed in more detail in

Chapter 3.
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Meaningful Class Operations

MOF provides the Operation, Parameter, and Exception concepts which may be

used to model an interface to the operational semantics of a modeling language. This

capability could be used to automatically generate full MIC model interpreter APIs. In

the most current version of GME, the full interpreter API cannot be generated from

a MetaGME metamodel - only methods which query the structure or state of domain

models can be generated because MetaGME lacks the capability to model Class interfaces.

Consequently, such interfaces must be added in by hand to the C++ code which can

automatically be generated from a MetaGME metamodel[10].

Metamodel Composition and Reuse Facilities

GME provides a Library Import facility for the reuse of models (including metamod-

els) through extension. Library Import when applied to a metamodel closely resembles

MOF’s Package generalization feature. GME lacks any mechanism comparable to MOF’s

Package importation. However, it should be noted that while MOF’s Package generaliza-

tion disallows namespace conflicts between the base and derived Packages, such conflicts

between and importing and an imported metamodel may be resolved in GME through

the use of the Class Equivalence operator[3]. This operator enables the union of two

metamodels along “join points” which are usually same-named metamodel elements.

Tool Independence

As a language, MOF is not dependent on any specific modeling tool technology. It does

not mandate a concrete syntax. MOF is an industry standard which may be supported

by many different modeling tools. Its metamodeling concepts are basic object-oriented

concepts which may be intuitively grasped by any modern programmer. However, the

Class stereotypes which form MetaGME’s core modeling constructs are tightly bound

to a set of core concepts which are used internally within GME. MetaGME has been

structured with the clear assumption that the languages it specifies will be graphical in

nature.
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Before any tool can claim MOF compliance, it must have the capability to transform

models to and from XMI as well as generate XMI DTDs or schemas for validating models

serialized to XMI. Thus, MOF has the goal of enabling easy, reliable interchange of models

between MOF-compliant tools. The fact that MOF effectively decouples the domain

model from the tool with which it was built is another bonus of MOF’s tool-independent

nature.

MOF Technical Disadvantages

This section discusses disadvantages of using MOF to specify DSMLs.

MOF and DSML Concrete Syntax

As noted previously, MOF lacks any standard mechanism for specifying DSML con-

crete syntax. Thus, if a DSML requires a particular graphical notation, there is no

standard way to declare that notation and map elements of the notation to elements

defined in the metamodel which specifies the language’s abstract syntax. Any tool-based

solution which attempts to address this shortcoming by providing elegant support for

concrete syntax specification in MOF would compromise the tool-independent nature of

any metamodels thus specified - the concrete syntax information would likely be indeci-

pherable to any other tool.

Figure II.1: Finite State Machine Metamodel

Lack of Association Classes

MOF’s lack of support for Associations with state makes the definition of some DSMLs

awkward. For example, consider the simple finite state machine metamodel above (Figure
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Figure II.2: Finite State Machine Metamodel with Labels

II.1). Finite state machines already have a well-defined graphical concrete syntax: States

are represented as the circular nodes of a graph and Transitions between States are

represented as directed arcs between the nodes. Each arc is labeled with a letter of the

input alphabet to represent the event which prompts the traversal of the arc. But how

do we model the fact that every Transition is associated with a label in MOF?

If MOF Associations had state, we could simply give the Transition Association a

string-typed Attribute to store the letter from the input alphabet bound to each Transi-

tion instance. However, in MOF only Classes may have Attributes, so we must add a new

Class, Label, to store this state. To model the fact that every Transition has a Label,

we will need to divide our original Transition Association into two halves as shown in

Figure II.2. Now, when a user wants to model a specific finite state machine, he or she

will have to use twice the number of Associations as well as instantiating the Label Class

for every Transition instance she wants to create between two State instances. Many

DSMLs similarly require stateful Associations, and the inclusion of extra Classes to carry

the burden of this state seems unnecessary and awkward.

Standard Immaturity

Due to a combination of the novelty of MOF and related standards and the lack

of rigorous formality in their specifications, interoperability between “MOF-compliant”

tools is not as dependable as hoped in the MDA vision. The MOF specification and

the XMI specification both take the form of a series of diagrams supported by natural

language descriptions. Due to the imprecise nature of natural language, each includes

a number of ambiguities and contradictions which prevent the specifications from being

implemented uniformly by modeling tool vendors. One result of this is that although the
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most current version of XMI is XMI 2.0, the de facto industry standard is the Unisys

implementation of XMI 1.2.

15



CHAPTER III

GME OVERVIEW

Modeling Tool Architectures and Metaprogrammability

Modeling environments are typically supported by tool architectures which include

several key tool components: a model builder, a model database, a constraint manager,

and a number of model interpreter components[5]. Model builders expose some well-

defined interface which allows modelers to perform standard CRUD (create, request,

update, destroy) operations on model objects which are stored in the model database.

The model builder must incorporate the concepts, relationships, composition principles,

and representation formalisms of the supported modeling language, and the interface

provided by the model builder may be textural, graphical, or mixed. The constraint

manager is responsible for enforcing the well-formedness rules which restrict the set of

valid models of a modeling language. Model interpreters ’execute’ models in order to

solve some problem of interest. When used, they translate system models into executable

applications or input to analysis tools. System models, which serve as input to model

interpreters, form the “problem space”, a representation of that part of the world which

is germane to some specific problem which must be understood and solved. The output of

the model interpreters forms the “solution space”, generally some executable simulation or

analyzable mathematical formalism which provides useful information about the modeled

system. In this sense, model interpreters may be said to implement the operational

semantics of the supported modeling language. GME[2] is one example of a modeling

tool which provides a model builder, model database, constraint manager, and model

interpreter support; its architecture is depicted in Figure III.1.

MIC advocates the use of domain-specific modeling environments (DSMEs) because

these environments are well suited for the design and implementation of complex CBSs.

DSMEs such as MatLab[33] and LabView[30] have enjoyed great success, partially due

to the large markets for the domains they capture. However, the primary drawback

to the domain-specific approach is that building a new language and modeling tool to
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Figure III.1: Modeling Tool Architecture: GME

support a narrowly-used niche domain (for example, a co-design environment specialized

for a single type of missile) might be unjustifiably expensive. At the other extreme, a

general modeling tool with “universal” modeling concepts and components would lack

the primary advantage offered by the MIC approach: dedicated, customized support for

a wide variety of application domains. A third alternative is to use a highly-configurable

modeling tool with model building, constraint management, and model interpretation

components which may be easily customized to support a unique environment for any

given application domain.

Metaprogrammable tools such as the Generic Modeling Environment (GME) rely on

metaprogramming as the mechanism for accomplishing this level of configuration[4]. For

example, GME incorporates a generic set of graphical model-building idioms, a constraint

manager, and a database backend. Users may draw upon the graphical idioms to imple-

ment the structure and representation of domain objects and relationships. They may

also configure the constraint manager to enforce the particular well-formedness rules of

the domain. Finally, they may configure the database backend for storing domain model

objects. Metaprogramming is the process through which the user configures the (A)

metaprogrammable model builder by mapping a DSML into GME’s graphical idioms,

(B) the constraint manager by assigning constraints to the valid domain modeling opera-

tions, and (C) the database backend through the specification of an appropriate database
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schema. The result of this metaprogramming is a valid DSME supported in GME[27].

Other metaprogrammable tools include Dome[24] and MetaEdit+[6].

Origins of Metaprogramming: The Multigraph Architecture

The evolution of GME begins in 1995 with the Multigraph Architecture (MGA), one

of the earliest metaprogrammable modeling tools[27][28]. MGA concentrated on support-

ing model-based design environments for large-scale embedded computing applications

dominated by mature engineering disciplines. Essentially, the operation of MGA divided

into three layers: the meta-level layer for the specification of DSMEs, the domain-specific

modeling layer, and the model execution layer. Early versions supported the use of

an early informal declarative metaprogramming language at the meta-layer which in-

troduced several of the fundamental modeling patterns which dominate GME’s current

native metamodeling language. These patterns included aspects (model views), associ-

ations, membership-based groupings, hierarchically-composable entities (modules) with

connection interfaces, integrity constraints, module interconnections, and specialization.

MGA conceptualized DSMEs as unique combinations of these model composition prin-

ciples. This metaprogramming language effectively supported the informal specification

of the abstract syntax, concrete syntax, syntactic mapping, and static semantics (do-

main constraints) of DSMLs. The MGA meta-level also included a set of meta-level

translators to automatically generate configuration files for its model builder and model

database directly from DSME specifications. Note, however, that the MGA’s earliest

metaprogramming language was not actually a metamodeling language — it was sim-

ply an informal declarative configuration language used to generate configuration files.

Because the language was not formal, there was no way to validate the consistency of

the specified modeling concepts to ensure that the specified environment sufficiently con-

strained domain modelers[13]. Thus, MGA’s structure incorporated only the bottom

three of the four meta-levels advocated in OMG’s modeling formalism.
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Metamodeling Extensions to MGA

In 1998, support for the design of DSMEs through metamodeling was added to

MGA in order to address the shortcomings of the earlier version’s metaprogramming

language[14]. The adopted formal metamodeling language consisted of UML Class Dia-

grams with OCL constraints. Thus, the abstract syntax of MGA DSMEs could be for-

malized as UML-based metamodels through graphical entity-relationship diagrams, and

domain constraints could be formalized in OCL as textual invariant Boolean expressions.

This MGA metamodeling approach required the specification of DSML concrete syntax

as a separate step before a metamodel could be used to synthesize an MGA modeling

environment. The specification was accomplished by mapping the entities and relation-

ships specified in the class diagram to various MGA-specific presentation objects and

patterns. These objects and patterns included general model composition abstractions,

such as hierarchy and aspects, which were carried over from the previous version of MGA.

This transition represented not only an advance in the formality of the MIC model-

based design process, but also a leap forward in the usability of MGA. By using industry-

standard modeling languages for metaprogramming, potential MIC users familiar with

those modeling languages could more quickly and accurately communicate their DSME

requirements to MGA metamodelers. The new approach separated the concerns of ab-

stract syntax, concrete syntax, and static semantics which had been tangled in the previ-

ous metaprogramming language. Metamodeling also opened the door both to metamodel

reuse and to inter-tool transfer of modeling language specifications. Unfortunately, the

mapping of the class diagram into an MGA-specific concrete syntax specification proved

to be a bottleneck — the UML class diagrams did not contribute much to the actual

definition of modeling environments, and concepts such as inheritance had to be enforced

by hand. Consequently, the DSME specification process was still error-prone and slow.

Modern Metamodeling with GME

1999 marked a substantial revision of both the MGA core modeling constructs and the

MGA metaprogramming facilities in an effort to make MIC solutions easier to implement[25].
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The core MGA constructs underwent two types of changes: First, several constructs

changed in name (for instance, the membership-based grouping construct’s name was

changed from “Conditional Controller” to “Set”). Second, several constructs which had

lacked object identity in the previous version of MGA became first-class objects, includ-

ing References, Connections, and Sets. Thus, these constructs became configurable in

name and representation.

The metaprogramming facilities had to evolve to support these changes, but also to

increase usability and expressiveness. A boot-strapping process was used to develop a

CBS to serve as the metamodeling environment for the new MGA tool, the Generic

Modeling Environment (GME). This new metamodeling environment, called MetaGME,

still consists of UML Class Diagrams and OCL constraints, but unifies the functionality

of the two diagrams needed to specify abstract and concrete syntax in the previous MGA

implementation. MetaGME, like MOF, is meta-circular — it has been used to model

itself and is self-defined using its own concepts. The model of GME’s metamodeling

environment is GME’s meta-metamodel. This approach allows some further improvement

by evolving the meta-metamodel and then boot-strapping the improvements into the

metamodeling environment. However, this is still not a trivial task even with the presence

of the reconfigurable meta-metamodel because GME must maintain the ability to support

all existing metamodels. This factor strongly influenced the approach taken in building

a MOF metamodeling environment for GME.

GME is currently the flagship tool of MIC. In addition to serving as a metaprogram-

mable modeling tool in the spirit of the original MGA, GME provides library import

and export facilities and custom model visualizations. There are also facilities for plug-

ging in analysis, verification, and translation tools which interpret domain-specific mod-

els. GME’s metamodeling language, MetaGME, utilizes UML stereotypes to imply part

of the syntax expressed by the metamodel. It also maintains the important modeling

patterns which have been central to MGA since its earliest versions, such as module

interconnection. The meanings of the stereotypes used in MetaGME are[4]:

• Models are hierarchically-compound modular objects.
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• Atoms are elementary, non-decomposable objects.

• FCOs are generic first-class objects which must be abstract but can serve as the

base type of an element of any other stereotype in a specialization relationship.

• References refer to other model objects.

• Connections are analogous to UML Association Classes.

• Aspects provide logical visibility partitioning to present different views of a model.

Figure III.2: Metamodeling with GME

GME-based metamodeling is demonstrated in Figure III.2. The metamodel

MetaGMEMMDSML of a DSML consists of the abstract syntax MetaGMEADSML, concrete

syntax MetaGMECDSML, and syntactic mapping MetaGMEMCDSML specified using the UML

constructs of MetaGME. The MetaGMEMMDSML metamodel is translated by the T1 meta-

level translator (called the meta-interpreter) into a configuration file for GME (repre-

sented in Figure III.2 by the box labeled “GME/Meta”). Using this configuration file,

GME configures its graphical model builder, model database, and constraint manager to

function as the domain-specific modeling environment for the metamodeled domain. (A

simplified diagram of the metamodeling process can be seen in Figure 1.B)

There exists a large body of existing GME-based DSML-s[34][8]. There also exist

a number of related modeling tools, including the model-to-model transformation tool
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GReAT[1]. Because of this large volume of existing DSMLs and tools which depend

on the existing GME metamodeling language, a whole-sale replacement of MetaGME is

not desirable. This thesis describes work to update the MIC metamodeling facilities to

incorporate the MOF standard alongside the UML/OCL-based MetaGME.
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CHAPTER IV

GME-MOF

This chapter describes the implementation of a functional MOF-based metamodeling

environment for metaprogramming GME. GME-MOF leverages the existing GME meta-

modeling language and meta-level translators for the realization of new GME DSMEs[32][31].

Solution Overview

As described previously, any functional GME metaprogramming system must incor-

porate two key components. The first component is a metamodeling environment (ideally,

a graphical environment) which supports the specification of abstract syntax, concrete

syntax, and syntactic mappings. The second component is a translation tool capable of

generating from the metamodel of a target domain the configuration file which customizes

GME to serve as the DSME for that domain. MetaGME itself defines a metamodeling

environment with sufficient expressive power to fully model MOF. So, while the MOF

specification uses MOF to model itself, GME-MOF includes a new GME metamodeling

environment which expresses the MOF model using MetaGME’s constructs. Further-

more, because MetaGME by design already reflects the full range of configurations which

can be realized by GME, the easiest way to acquire the necessary translation tool is

by defining a model-to-model transformation algorithm from MOF-specified metamodels

into MetaGME-specified metamodels.

Transforming a MOF-specified metamodel into a MetaGME metamodel enables the

conscription of MetaGME’s existing meta-interpreter to generate the GME configura-

tion file. The transformation algorithm is quite straightforward because both MOF

and MetaGME are sister-languages of UML Class Diagrams. GReAT was the natural

choice for implementing this metamodel translation algorithm - it enabled the easy and

rapid creation of the executable metamodel translation tool, named MOF2MetaGME.

MOF2MetaGME itself is easy to analyze, maintain, and evolve as the two languages it

bridges evolve.
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The shaded components in Figure IV.1 represent the new facilities required to im-

plement MOF for GME: MetaGMEMMMOF is the MetaGME-specified MOF model and

T2 is the MOF2MetaGME transformation algorithm from MOF-specified metamodels

to MetaGME-specified metamodels. T1 is MetaGME’s meta-interpreter, the meta-level

translator which generates the GME configuration files from the translated metamodels.

This configuration file customizes GME’s graphical model builder, constraint manager,

and model database to support the modeled DSME.

Figure IV.1: Building the MOF-Based Metamodeling Environment

Appendix A describes the implementation of the GME-MOF metamodeling environ-

ment, and Appendix B describes the implementation of MOF2MetaGME.

Figures IV.2, IV.3, and IV.4 compose a small example which illustrates the full func-

tion of GME-MOF. Figure IV.2 is a small part of a MOF-based implementation of UML

class diagrams used as the input to MOF2MetaGME, and Figure IV.3 is the correspond-

ing output produced by MOF2MetaGME. Note the high degree of symmetry between

the two diagrams. Figure IV.4 demonstrates the graphical DSME interpreted from the

MetaGME metamodel shown in Figure IV.3.
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Figure IV.2: UML Class Diagrams in MOF

Figure IV.3: UML Class Diagrams in MetaGME

Figure IV.4: UML Class Diagrams DSME
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Solution Advantages

GME-MOF successfully enables MOF-style metamodel specification in GME by reusing

the entire existing GME metaprogramming toolset. Consequently, it does not require any

major overhaul of the GME core constructs which would break compatibility with exist-

ing GME DSMEs. GME-MOF implements MOF as an additional layer of abstraction

over MetaGME.

Furthermore, GME-MOF takes advantage of MOF’s light-weight extension mecha-

nism, the Tag, to include some GME-specific syntax information in MOF metamodels.

The GME-MOF metamodeling language includes augmented MOF Classes, Associations,

Packages, Constraints, and Attributes with additional fields which may be conceptual-

ized as MOF Tags. These fields specify GME tool-specific information and facilitate

mapping into MetaGME. In this way, GME-MOF allows the specification of concrete

syntax without deviating from the MOF standard.

GME also supports an extension mechanism similar to MOF Tags through the GME

Model Registry. Like MOF Tags, GME registry entries are simple name-value pairs.

MOF2-MetaGME makes use of the GME registry to store encoded information about the

MOF DataTypes, Operations, Parameters, and Exceptions expressed in a MOF meta-

model when it performs the transformation into MetaGME. Then, the BONExtender, a

meta-level translator which generates domain-specific model interpreter C++ APIs from

MetaGME metamodels, can recover this information and include it in the generated API.

Usually these operations, exceptions, and data types would need to be hand-woven into

the automatically-generated C++ class definitions rendered by the BONExtender, which

is a tedious and brittle process. In this way, users tangibly benefit from modeling Class

operations and data types in their MOF metamodels, even though operation modeling

is not supported by MetaGME. This feature allows more model interpreter code to be

autogenerated from models rather than being hand-written.
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Solution Limitations

The limitations of GME-MOF largely stem from the dissonance between MOF as a

tool-independent metamodeling language and MetaGME as a metamodeling language

tightly coupled to a graphical modeling tool. The translation from MOF into MetaGME

is not isomorphic — MOF provides some constructs and capabilities that MetaGME lacks

(and vice-versa). MOF allows a wider range of potential attribute types, the concepts

of derived attributes and associations, singleton classes, and classifier-scoped attributes.

None of these concepts are supported for domain modeling in GME. Likewise, MetaGME

provides facilities for multi-view modeling, concrete syntax specification, and some syn-

tax identifiers which carry special meaning as GME graphical modeling idioms. As a

result of these differences, users can construct valid MOF metamodels which cannot be

fully rendered as GME DSMEs. In these cases, the MOF2MetaGME translator simply

discregards the use of any feature which cannot be mapped into features supported by

MetaGME.

Additionally, neither MOF nor MetaGME are stable languages. The OMG will soon

release an updated version of MOF, MOF 2.0[18]. MetaGME itself constantly evolves in

small ways in response to user requests and to maintain synchrony with the internal GME

modeling constructs. Consequently, both the GME-MOF metamodeling environment

and the MOF2MetaGME transformation require consistent updates to support the most

current versions of both languages. Fortunately, both GME metamodels and GReAT

transformations were designed with system evolution in mind.

Case Study and Evaluation

This section describes the specification of a simple DSME for hierarchical finite state

machines (HFSM) using GME-MOF. The metamodel for this DSME is evaluated in

comparison to a HFSM metamodel built natively using MetaGME.
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HFSM in GME-MOF

The GME-MOF metamodel for HFSM is built from three packages (Figure IV.5):

• Primitives, which merely stores primtive DataType definitions such as String and

Integer

• Event, which contains a simple metamodel for fully-ordered sequences of events

• HFSM, which defines hierarchical finite state machines by reusing the definitions

from the Event package.

Figure IV.5: Packages used to define HFSM

The internals of the Event package appear in Figure IV.6. This metamodel speci-

fies that event instance may be created with instances of InputSequence and may form

Sequence relationships with one another. The Sequence relationship may be used to pro-

vide a total ordering of the Events in an EventSequence, as the multiplicity settings of

Sequence specify that each Event may be directly preceded by at most one other Event.

The metamodel uses the Delay attribute of Event to capture any time delay which should

occur between Events. Delay is typed using the Integer PrimitiveType imported from

the Primitives package. Tags were used to tailor this metamodel for transformation into

MetaGME to achieve the following effects:

• Event maps into a MetaGME Atom.

• InputSequence maps into a MetaGME Model.

• The Sequence association maps into a MetaGME Connection contained by the

InputSequence Model.
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• The InputSequence Model may appear in the Root Folder of a project.

• Event uses the icon ‘event.bmp’ for its concrete syntax.

Figure IV.6: The Event Package

The metamodel encapsulated by the HFSM package appears in Figure IV.7. It de-

scribes hierarchical States connected by Transitions, including special final and initial

states. HFSM inherits from Event to allow users to model the events which drive a given

state machine. There are several interesting things to note regarding this metamodel.

First, because Transition requires some state, it must be declared as a class and not as

a simple association. Second, the Event attribute of Transition is the imported String

type instead of the Event type inherited from the Event package. This is a concession to

GME, which only supports attributes of type integer, double, float, string, and boolean.

In order to build a correspondence between the event used by a Transition instance and

the Event instances declared in a model, an OCL constraint is defined stating that the

value of a Transition instance’s event attribute must be the same as the name of some

Event instantiated in the model. Finally, State defines an operation, is reachable, which

takes in two States, start and dest, and returns a Boolean. MOF does not allow modeling

of the operational semantics of this operation, but a model interpreter might define it

to perform reachability analysis on a hierarchically-embedded state machine. Tags were

used to tailor this metamodel for transformation into MetaGME to achieve the following

effects:

• State maps into a MetaGME Model.

• The State Model may appear in the Root Folder of a project.
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• TransitionOut and TransitionIn map into MetaGME Connections contained by the

State Model.

• Transitions map into MetaGME Atoms.

• State, FinalState, InitialState, and Transition use icons ‘state.bmp’, ‘final.bmp’,

‘initial.bmp’, and ‘event.bmp’ respectively for concrete syntax.

Figure IV.7: The HFSM Package

Evaluating GME-MOF versus MetaGME

A similar MetaGME metamodel for simple HFSM consists of two the ParadigmSheets

displayed in Figures IV.8 and IV.9.

Figure IV.8: The Event ParadigmSheet
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Figure IV.9: The HFSM ParadigmSheet

Comparing this metamodel to the metamodel used to build HFSM in GME-MOF can

provide a practical evaluation of the relative strengths and weaknesses of GME-MOF. The

HFSM case-study illuminates three primary differences in the metamodeling capabilities

of the two environments:

1. The GME-MOF version of HFSM includes the explicit modeling of a class operation,

is reachable, using first-class language constructs. This eases the specification of a

domain-specific API which could be used by a model-interpreter to provide analysis

capabilities for HFSM models. MetaGME lacks language constructs which deal with

operations.

2. Because MetaGME is the native metamodeling language of GME, there is no need

to keep any lower-level metamodeling language in mind while metamodeling. For

example, in MetaGME, it is natural to model the Event attribute of Transition as

a string-typed attribute, because that is all that MetaGME allows. In order to hold

consistency with the MOF standard, GME-MOF allows another option: the Event

attribute of Transition could have type Event. However, the metamodeler must

keep the restrictions of MetaGME in mind while metamodeling in GME-MOF.

3. As discussed previously in this thesis, the lack of association classes in MOF makes

the specification of stateful relationships somewhat awkward. This awkwardness

manifests itself in the definition of Transition in GME-MOF as a class joined to

State by two associations versus the definition of Transition in MetaGME as a

single stateful connection.
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Although GME-MOF is not entirely an improvement on MetaGME, the HFSM ex-

ample illustrates that it provides a useful technical advantage (class operation modeling)

while allowing useful DSMEs to be specified for GME using a MOF-compliant language.

32



CHAPTER V

DISCUSSION AND FUTURE WORK

This thesis describes work to implement an alternative MOF-based metamodeling

environment for a metaprogrammable modeling tool through metamodeling and model-

to-model transformation. The solution depends on a model transformation from MOF-

specified metamodels to analogous metamodels in a different, tool-specific metamodeling

language. The approach is useful because it enables the reuse of the tool’s existing

metaprogramming facilities and avoids breaking its compatibility with existing DSME

and models. However, there are drawbacks to this solution as well. One is that the

transformation between the two metamodeling languages must be constantly updated,

as both languages will continue to evolve in response to user demands. Another is that

the two metamodeling languages have enough differences that neither can be elegantly

mapped into the other. These concerns give rise to two important questions:

• Do complicated metamodeling languages like MOF or MetaGME make good “core”

metaprogramming languages for metaprogrammable modeling tools?

• How can we design adaptable metaprogrammable tool architectures to minimize

the effect of changing metamodeling languages?

Instead of basing metaprogrammable tools on a high-level, user-friendly metamodeling

language, we might use a minimal language expressing a core abstract metaprogramming

semantics meaningful to any metaprogrammable modeling tool. Alternatively, we might

use a pair languages — one for describing abstract syntax and another for describing

concrete syntax. Because the general requirements of metaprogrammable modeling tools

(entity-relationship modeling, support of CRUD operations on models, constraint man-

agement, etc...) do not change, this minimal metaprogramming language could be stable

and standardized. Then, we could express the semantics of more complicated, user-

friendly languages such as MetaGME and MOF in the primitive constructs defined by
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the minimal metaprogramming language. This approach could yield two primary bene-

fits: 1) The minimal metaprogramming language would define the limits of what features

a higher-level metamodeling language might provide. If some feature cannot be rendered

down and expressed by the abstract metaprogramming semantics, then it should not

be in a metamodeling language. 2) It would easier to define a model-interchange stan-

dard for the simple minimal metaprogramming language than for a complicated language

with many constructs such as MOF. One such commercial metamodeling facility which

attempts to use this approach is XMF[36][37]. This language provides a simplified MOF-

like language for modeling abstract syntax. This core language is then extended with a

seperate concrete syntax modeling language, OCL for specifying well-formedness rules,

an action language called XOCL for modeling operational semantics, and a mapping

language called XMap for specifying model-to-model transformations. All of XMF is

ultimately defined using an even simpler core set of executable metamodeling constructs

called XCore.

We might also consider generalizing the solution presented in this thesis — model-to-

model transformations can mitigate some of the complexity of designing and interfacing

the various components of an adaptable metaprogrammable tool architecture. Solu-

tions implemented through graphical model-to-model transformations are easier to de-

sign, build, understand, and evolve than functionally-similar traditional programming

solutions. Model-to-model transformation languages such as GReAT can leverage the

power of domain-specific modeling to decouple the metamodeling language from the other

components of a metaprogrammable modeling tool. For example, consider the model in-

terchanger, a common modeling tool component which converts models both to and from

some model interchange language. Model interchange languages allow the migration of

models between tools. MOF, for instance, provides a mapping to XMI, the OMG stan-

dard model interchange language. This component can be most easily implemented as

a model-to-model translation between metamodels or domain models and models in the

interchange language. Such a transformation could be easily maintained as the relevant

standards change and evolve.
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APPENDIX A

GME-MOF ENVIRONMENT IMPLEMENTATION

This appendix provides an abbreviated specification of the GME-MOF environment

(minus the details of the UML Class Diagrams-like concrete syntax and the actual OCL

constraint equations) in the form of a series of MetaGME class diagrams, natural language

constraint descriptions, EnumAttribute enumeration labels, and Aspect visualization in-

formation. Detailed information about MetaGME may be found in the GME User’s

Manual[10].

Figure A.1: Abstract Base Classes

Abstract Base Classes (Figure A.1)

Constraints:

Name: MustHaveType

Constrains: TypedElement

Description: A TypedElement must have one and only one type.

Visualization:

TypedElement and BehavioralFeature are visible in the Features Aspect.
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Figure A.2: Association

Association (Figure A.2)

Constraints:

Name: BinaryAssociations

Constrains: Association

Description: Associations must be binary.

Name: NoNameCollisions

Constrains: Association

Description: The contents of a Namespace may not collide.

Visualization:

Associations are visible in the ClassDiagram Aspect.

Class, Attribute, and Operation (Figure A.3)

Constraints:

Name: NotSingletonAndAbstract

Constrains: Class

Description: A class may not be both singleton and abstract.
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Figure A.3: Class, Attribute, and Operation

Name: AllOutParam

Constrains: ExceptionType

Description: An Exception’s Parameters must all have the direction ’out’.

Name: OneReturnParam

Constrains: Operation

Description: An Operation may have at most one Parameter whose direction is ’return’.

Name: NotNull

Constrains: ClassProxy, ExceptionProxy

Description: A proxy may not be null.

Name: LegalProxy

Constrains: ClassProxy, ExceptionProxy

Description: This element must be visible in the current context before it can be proxied.
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Enumeration Labels:

Parameter::direction: in, out, inout, return

Visualization:

ClassType is visible in the ClassDiagram Aspect. ClassType and CanRaise are visible in

the Features Aspect.

Figure A.4: Constant

Constant (Figure A.4)

Constraints:

Name: TypeIsPrimitive

Constrains: Constant

Description: Constants must have primitive types.

Figure A.5: Constraint
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Constraint (Figure A.5)

Constraints:

Name: ValidElement

Constrains: Constraint

Description: Constraints, Imports, Tags, and Constrants may not be constrained.

Enumeration Labels:

Constraint::EvaluationPolicy: immediate, deferred

Visualization:

ModelElement, Constraint, and Constrains are visible in the Constraints Aspect.

Figure A.6: Containment

Containment (Figure A.6)

Constraints:

Name: NoNameCollisions

Constrains: Namespace

Description: The contents of a Namespace may not collide.
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Figure A.7: DataType

DataType (Figure A.7)

Constraints:

Name: NotAbstract

Constrains: DataType

Description: A DataType cannot be abstract.

Name: ContainsStructureField

Constrains: StructureType

Description: A StructureType must contain at least one StructureField.

Name: NotNull

Constrains: DataTypeProxy

Description: A proxy may not be null.

Name: LegalProxy

Constrains: DataTypeProxy

Description: This element must be visible in the current context before it can be proxied.

Name: NotProxied

Constrains: DataTypeProxy
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Description: A DataType Proxy must reference a type, not another proxy.

Visualization:

DataType and IsOfType are visible in the Features Aspect.

Figure A.8: Generalization

Generalization (Figure A.8)

Constraints:

Name: HasDerived

Constrains: Inheritance

Description: Inheritance operator is superfluous or invalid. It must have a derived ele-

ment.

Name: AllowableType

Constrains: Inheritance

Description: Only Classes and Packages may participate in generalization relationships.

Name: SingleBase

Constrains: Inheritance

Description: Inheritance operator is superfluous or invalid. It must have one and only

one base element.
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Name: NoRecursion

Constrains: GeneralizableElement

Description: Recursive inheritance chains are not allowed.

Name: RootCannotGeneralize

Constrains: GeneralizableElement

Description: Root elements cannot be generalized.

Name: LeafCannotSpecialize

Constrains: GeneralizableElement

Description: Leaf elements cannot be specialized.

Name: NoAncestorNameConflicts

Constrains: GeneralizableElement

Description: The names of the contents of the supertypes of a GeneralizableElement may

not collide with one another.

Name: NoInheritedNameConflicts

Constrains: GeneralizableElement

Description: The names of the contents of a GeneralizableElement should not collide

with the names of the contents of any direct or indirect supertype.

Name: NoIllegalDependencies

Constrains: GeneralizableElement

Description: The base type of a GeneralizableElement must lie within the scope of the

derived type.

Visualization:

Supertype, Subtype, and Inheritance are visible in the ClassDiagram Aspect.
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Figure A.9: GME-MOF Aspects

GME-MOF Aspects (Figure A.9)

No constraints, labels, or visualization information.

Figure A.10: Package

Package (Figure A.10)

Constraints:

Name: NotAbstract

Constrains: PContainer

Description: A package may not be declared abstract.
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Name: NotEmpty

Constrains: PContainer

Description: Package is invalid or superfluous. It contains nothing.

Name: CannotImportSelf

Constrains: Import

Description: Packages cannot import or cluster themselves.

Name: SingleSheet

Constrains: PackageSheet

Description: There can only be one PackageSheet in a project.

Name: NotNull

Constrains: Import

Description: An Import may not be null.

Name: CannotImportContents

Constrains: Import

Description: Packages cannot import or cluster Packages or Classes that they contain.

Visualization:

Import, PContainer, and PackageSheet are visible in the ClassDiagram Aspect.

Figure A.11: Tag
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Tag (Figure A.11)

Visualization:

Tag and AttachesTo are visible in both the ClassDiagram and Features Aspect.

Figure A.12: Multi-Aspect Modeling

Multi-Aspect Modeling (Figure A.12)

Constraints:

Name: ModelsHaveAspects

Constrains: ClassType

Description: Only Classes of GME Stereotype “Model” may have Aspects.

Name: MustHaveOpenAspect

Constrains: ClassType

Description: Classes of GME Stereotype “Model” must have at least one open Aspect.

Name: HasMember

Constrains: Aspect
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Description: An Aspect must have at least one Class member.

Name: NotNull

Constrains: AspectProxy

Description: A proxy may not be null.

Name: OneRight

Constrains: SameAspect

Description: The SameAspect operator must have one and only one right operand.

Name: OneLeft

Constrains: SameAspect

Description: The SameAspect operator must have one and only one left operand.

Name: ValidOperands

Constrains: SameAspect

Description: One of the operands of the SameAspect operator must be an AspectProxy

Visualization:

SameAspectBase, Association, ClassType, AspectBase, and has HasAspect are visible in

the Visualization Aspect.

GME Mappings (Figure A.13)

Note regarding GME Mappings: No constraints, labels, or visualization information apply

to these constructs. Inheritance is used to augment some MOF elements with the ability

to specify information relevant to GME, including concrete syntax specifications. The

definitions of each of these additional attributes are given in the GME Manual and User
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Figure A.13: GME Mappings

Guide[10]. Note that these attributes may be conceptualized as MOF Tags applied on an

element-by-element, metamodel-by-metamodel basis.
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APPENDIX B

THE MOF2METAGME TRANSFORMATION

Essentially, MOF2MetaGME expresses a mapping between most MOF language con-

structs and their corresponding MetaGME constructs. Table B.1 provides an overview of

this mapping. Note that MOF Classes and non-aggregate Associations find their coun-

terparts in a number of different MetaGME constructs. For instance, MetaGME Atoms,

Models, etc are all stereotyped UML Class instances. In these cases, user-defined MOF

Tags are used to guide the transformation such that each MOF object maps into the

proper MetaGME construct. MOF Exceptions, StructureTypes, Operations, Aliases,

and EnumerationTypes which do not define the type of an Attribute have no coun-

terparts in MetaGME. So that this information is not lost during the transformation,

MOF2MetaGME encodes it as text-valued entries in the GME Registry. The BONEx-

tender, a GME meta-level translator which generates domain-specific model interpreter

C++ APIs from metamodels, can recover the encoded information and incorporate it

into generated code.

MOF Construct MetaGME Construct
Top-level Package SheetFolder+ParadigmSheet
Nested Package ParadigmSheet
Class FCO, Atom, Model, Set, or Reference
Non-Aggregate Association Connection, SetMembership, or ReferTo
Aggregate Association Containment
Boolean Attribute BooleanAttribute
Integer Attribute Integer FieldAttribute
Double Attribute Double FieldAttribute
String Attribute String FieldAttribute
MOF Constraint MetaGME Constraint
Exception, StructureType, Operation,
EnumerationType, or Alias

GME Registry Node

Table B.1: MOF Construct to MetaGME Construct Mapping
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Basics of GReAT

The Graph Rewriting And Transformation language (GReAT) is a model-to-model

transformation language developed at Vanderbilt University[29]. GReAT supports the de-

velopment of graphical language semantic translators using graph transformations. These

translators can convert models of one domain into models of another domain. GReAT

transformations are actually graphically-expressed transformation algorithms consisting

of partially-ordered sets of primitive transformation rules. To express these algorithms,

GReAT has three sub-languages: one for model instance pattern specification, one for

graph transformation, and one for flow control. The GReAT execution engine takes as

input a source domain metamodel, a destination domain metamodel, a set of mapping

rules, and an input domain model, and then executes the mapping rules on the input

domain model to generate an output domain model.

Each mapping rule is specified using model instance pattern graphs. These graphs are

defined using associated instances of the modeling constructs defined in the source and

destination metamodels. Each instance in a pattern graph can play one of the following

three roles:

• Bind: Match objects in the graph.

• Delete: Match objects in the graph and then delete them from the graph.

• New: Create new objects provided all of the objects marked Bind or Delete in the

pattern graph match successfully.

The execution of a primitive rule involves matching each of its constituent pattern

objects having the roles Bind or Delete with objects in the input and output domain

model. If the pattern matching is successful, then for each match the pattern objects

marked Delete are deleted and then the objects marked New are created. The execution

of a rule can also be constrained or augmented by Guards and AttributeMappings which

are specified using a textual scripting language.

GReAT’s third sub-language governs control flow. During execution, the flow of

control can change from one potentially-executable rule to another based on the patterns
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Figure B.1: MOF Primitive-Typed Attributes Mapped to MetaGME FieldAttributes

matched (or not matched) in a rule. Flow control allows for conditional processing of

input graphs. Furthermore, a graph transformation’s efficiency may be increased by

passing bindings from one rule to another along input and output ports to lessen the

search space on a graph.

An example transformation rule is provided in Figure B.1. This figure displays

the MOF2MetaGME transformation rule responsible for mapping String-, Integer-, and

Double-typed MOF Attributes into MetaGME Field Attributes. The black Classes rep-

resent model patterns playing the Bind role, and the blue Classes are those which play

the New role1. The rule finds any MOF Class containing an Attribute with an IsOfType

connection to a PrimitiveType. The guard ensures that only String, Integer, or Double

PrimitiveTypes are matched. If such a Class exists, then the rule finds the corresponding

MetaGME Class and gives it a Field Attribute of the same type as the matched MOF

Attribute.

1For those viewing this thesis without the benefit of color, the blue Classes are HasAttribute and

FieldAttribute, while the rest of the Classes are depicted in black.
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Figure B.2: MOF2MetaGME

MOF2MetaGME Implementation Overview

This section outlines the MOF2MetaGME transformation algorithm at the block-and-

rule level. Figure B.2 depicts the overarching structure of MOF2MetaGME.

Packages:

For each top-level MOF Package P, generate a new SheetFolder containing a new Para-

digmSheet both having the same name as P. Output all the top-level Packages and their

corresponding SheetFolders.

NestedPackages:

For each MOF NestedPackage NP, generate a new ParadigmSheet with the same name

as NP and contained in the Folder corresponding to the top-level Package which contains

NP. Output all of the Packages (top-level and nested) in the MOF project.

Class:

Find and output all of the Classes contained in the various Packages of the MOF project.
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Stereotypes:

Map each input MOF Class C into either a Model, Atom, FCO, Set, or Reference object O

depending on the value of its GMEStereotype Tag. Contain O within the ParadigmSheet

corresponding to the MOF Package which contains C. Then, for each ClassProxy CP

which refers to C, generate a proxy object PO which refers to O. Contain PO within the

ParadigmSheet corresponding to the MOF Package which contains CP.

Attributes:

For each Boolean-, Double-, Integer-, or String-typed Attribute owned by a Class C,

respectively generate either a BooleanAttribute, Double FieldAttribute, Integer FieldAt-

tribute, or String FieldAttribute owned by the MetaGME object corresponding to C.

Inheritance:

For each pair of MOF Classes Base and Derived such that Derived inherits from Base,

generate an inheritance relationship such that the MetaGME object corresponding to

Derived inherits from the MetaGME object corresponding to Base.

Association:

Find and output all of the Associations contained in the various Packages of the MOF

project.

ConnectionType:

Find the pair of MOF Classes Src and Dst which respectively define the source type and

the destination type of input Association A. If A expresses composition, generate a Con-

tainment connection from the MetaGME object corresponding to Src to the MetaGME

object corresponding to Dst. Otherwise, examine the GMEConnType Tag attached to

A generate as appropriate either a SetMembership connection, ReferTo connection, or

Connection pattern from the MetaGME object corresponding to Src to the MetaGME

object corresponding to Dst.

UserDefinedContainer:

This rule only executes for MOF Associations which map into MetaGME Connection

patterns. Generate a Containment connection from the Connection corresponding to
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input MOF Association A to Model with name equal to the value of A’s attached Assoc-

ClassContainer Tag.

Constraints:

For each MOF Constraint C constraining MOF model element emphE, generate a Con-

straint attached contained by the MetaGME object corresponding to emphE and con-

tained in the ParadigmSheet corresponding to the Package which contains C.

Aspects:

For each Aspect defined in the MOF project, generate a same-named Aspect in the

MetaGME project. The MetaGME objects visualized in the generated Aspect correspond

to the MOF Classes and Associations assigned to the corresponding MOF Aspect. Note

that Aspects are not a native MOF construct; however, Aspect membership may be

represented through the use of MOF Tags.

PContainer:

Find and output all of the Packages and Classes of the MOF project.

Exception:

For each MOF Exception contained by some MOF Package or Class, generate a MOFEx-

ception registry node in the corresponding MetaGME ParadigmSheet or stereotyped ob-

ject. The value of this registry node encodes the fields (Parameters) of the Exception.

These Exceptions may be thrown by MOF Operations, and map into model interpreter

C++ exception classes.

Struct:

For each MOF StructureType contained by some MOF Package or Class, generate a

MOFStructure registry node in the corresponding MetaGME ParadigmSheet or stereo-

typed object. Set the value of this registry node to a C++ struct declaration which

captures the fields of the MOF StructureType.

Method:

For each MOF Operation contained by some MOF Class, generate a MOFOperation

registry node in the corresponding MetaGME object. Set the value of this registry node
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to a C++ method declaration which captures the parameters and return type of the

MOF Operation.

Enum:

For each MOF EnumerationType contained by some MOF Package or Class and not

acting as the type of any MOF Attribute, generate a MOFEnumeration registry node

in the corresponding MetaGME ParadigmSheet or stereotyped object. Set the value of

this registry node to a C++ enum declaration which captures the labels of the MOF

EnumerationType.

Typedef:

For each MOF AliasType contained by some MOF Package or Class, generate a MOFAlias

registry node in the corresponding MetaGME ParadigmSheet or stereotyped object. Set

the value of this registry node to a C++ typdef declaration which aliases the type corre-

sponding to the MOF aliased type.
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