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1. Introduction 

In this chapter, the background of research fields related to the ring-shaped silicon 

photonic crystal devices are introduced. As the ring-shaped photonic crystal devices are 

integrated optical devices belong to the big family of photonic integrated circuits, we will 

first the field of photonic integrated circuit (PIC) and what are its similarities/differences 

compared to microelectronics. Second, as the ring-shaped photonic crystal devices used 

silicon as the optical material, the overall historical background of silicon photonics will 

be presented. In that section, the advantages and challenges of silicon photonics 

compared to other material platform will also be discussed. Finally, the background of 

optical resonators and photonic crystals will be introduced, as ring-shaped silicon 

photonic crystal devices are special type of optical resonators by employing photonic 

crystal structures. At the end of this chapter, thesis objectives and outline will be 

presented. 

 

1.1 Photonic integrated circuits 

Photonic integrated circuits (PIC) are devices that integrate multiple photonic functions 

by integrating different optical device elements in a same planar platform, which is 

analogous to an electronic integrated circuit (IC) in microelectronic industry. The major 

difference between a PIC and an electronic IC is that a PIC provides functionality on 

optical signals rather than electrical signals in an electronic IC. Also, PIC integrates 

various discrete optical devices such as the lasers, amplifiers, photodetectors, optical 
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modulators, optical filters etc., while electronic IC primary integrates millions to billions 

of transistors in a single tiny chip. Table 1.1 shows the overview of technology 

comparison between photonic (including PIC) and microelectronic industry. 

 Photonic components Electronic IC 

Repeatable building blocks 
None 

(laser, photodetector, 
modulator, filter, etc.) 

Transistors 

Dominant material 
platforms 

None 
(InP, GaAs, polymer, Si, etc.) Silicon 

Dominant manufacturing 
processes 

None 
(Hybrid, monolithic, active, 

passive, etc.) 
CMOS 

Table 1.1. Comparison between photonic industry and microelectronic industry of 
building blocks, material platforms and manufacturing processes. 

 
In the current photonic industry, a variety of materials have been employed in each 

commercial discrete device. For example, the indium phosphide (InP) material has been 

use as a substrate for the lasers emitting in 1550 nm (C-band), lithium niobate (LiNbO3) 

has been employed for making optical modulators, silica used for optical fiber, silica-on-

silicon used for passive devices etc. Table 1.2 shows the summary on materials of 

different discrete photonic devices. From table 1.2, most of the materials used in 

commercial discrete photonic devices are not compatible to achieve other functionalities. 

For example, lithium niobate is superb for making optical modulators, however, it is not 

capable for using as the laser materials. On the other hand, even the III-V semiconductors 

fulfill all the required functions, the fabrication processes of making different 

components are different, and it results in big challenges of integration. Due to these 

limitations, the development of PIC over the last 20-30 years was relatively slow 
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compare with electronic IC industry. So it is commonly accepted that the development 

and implementation of photonics will be strongly enhanced if the industrial model of 

electronic IC can be applied to PIC [1], as microelectronic industry already has a 

dominant material platform and standardized fabrication process. 

 Lasers Detectors Modulators Amplifiers Passive 
devices 

III-V 
semiconductors Dominant Dominant Available Dominant Available 

Lithium niobate   Dominant  Available 

Polymers   Available  Available 

Silica-on-silicon     Available 

Erbium-doped 
materials Available   Dominant Available 

Table 1.2. Summary of material platforms used by various discrete photonic components 

 

Figure 1.1 shows the schematics of a PIC on a polymer platform by hybrid integration 

[2]. This tunable optical transmitter contains at least seven different materials for 

different functions include the laser, an external tunable cavity, an isolator and a 

modulator.   
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Fig. 1.1. Optical network unit assembled on the polymer-based hybrid integration 
platform. (a) The schematic layout and (b) photograph of the assembly [2]. 

 

This polymer-based PIC was fabricated by a hybrid fabrication process. Although it 

provided a lower fabrication cost and better functionality than discrete components, a PIC 

fabricated by monolithic process would still be required to provide even better system 

functionality and lower cost. 

In the early 2000s some convergence appeared to use InP as the substrate material for 

monolithic PIC. Figure 1.2 shows the historical trend and timeline for monolithic, 

photonic integration on InP [3]. The development of PIC on InP substrate started in 

1980s, with the integration of electronic devices with laser diodes and photodetectors as 

so-called optoelectronic ICs (OEICs).  

 



	 5 

 

Fig. 1.2. Historical trend and timeline for monolithic, photonic integration on InP 
[3]. The vertical axis represents the number of photonic components to be 

integrated. 
 

In late 1980s, the three-section tunable distributed Bragg reflector (DBR) laser was 

introduced. A while later, the electroabsorption modulator (EAM) integrated to a 

distributed feedback (DFB) laser was also demonstrated. More components started to be 

integrated into the InP-based PIC including the semiconductor optical amplifier (SOA) 

and arrayed waveguide grating (AWG). Recently [3], the research team in University of 

California, Santa Barbara (UCSB) reported an 8 x 8 monolithic tunable router with about 

200 components in a single PIC chip. It is no doubt that InP-based PIC platform is an 

ideal candidate for telecommunications usage in 1.3-1.6 µm wavelength. However, it also 

has certain limitations that not only limit the development of PICs, but also become a 
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roadblock of the whole photonic industry. 

In the photonic industry, other material platforms such as silica have also been widely 

used as different photonic functional devices such as AWG for wavelength division 

multiplexing (WDM) applications. Since 2000 [1], another material platform –	 silicon-

on-insulator (SOI) has attracted lots of attention on its potential as a substrate for PIC 

because of low cost and high-density integration. The details on PIC developed on SOI 

and related research field, silicon photonics, will be discussed in next section. 

Unlike in electronic IC, where silicon is a dominant material accounting for over 95% 

of the whole market of semiconductor chips [1], today’s	PICs	use	a variety of materials 

such as silica (on silicon substrates), III-V-based semiconductor materials such as gallium 

arsenide (GaAs) and indium phosphide (InP), polymers, lithium niobate and SOI. 

Different materials have their advantages and limitations on the functions to be 

integrated. For example, the InP platform enables monolithic integration of the lasers, 

modulators, photodetectors and other passive components. However, the relatively high 

fabrication cost limits the potential usage of these devices in telecommunications and 

computer interconnect regime. Table 1.3 lists the comparison among various PIC 

material platforms.  
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 Cost CMOS-
compatible 

Integration 
density 

Primary Usage 

III-V 
semiconductors 

High No High Integrated WDM 
transceiver 

Silica-on-silicon Low Yes Low Passive devices 
(e.g. AWG) 

Polymers Low No Low 
Modulators and 

hybrid integration 
platforms 

Lithium niobate Extremely 
High No Low 

High speed 
modulators (for 

advanced formats) 

Silicon-on-
insulator 

Low Yes High Low-cost optical 
interconnects 

Table 1.3. Comparison among various PIC material platforms. 

 

InP-based PICs dominant	 today’s	 market in high-end optical communications 

systems. However, there are suggestions [1, 4-6] that photonics can be further employed 

in computing systems as interconnects to solve the existing signal latency problems in 

microelectronic industry. In an overview, the scale of optical interconnects decrease from 

rack-to-rack, computer-to-computer, board-to-board (inside computer), chip-to-chip and 

finally on-chip interconnects. As the scale of optical interconnect decreases, the number 

of required interconnects exponentially increases. Therefore, cost becomes a primary 

concern in interconnect applications. The secondary concern is the compatibility with 

existing electronic platform if the on-chip interconnects is finally to be achieved. 

For the first concern, InP based PIC does not fulfill as the wafer and fabrication costs 

are inevitably high. For the second concern, as mentioned above, silicon dominates the 

microelectronic industry of over 95% of the whole market. Although III-V 

semiconductors are compatible for electronic device integration in PICs, to integrate with 
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existing electronic ICs is still a big challenge. To solve these problems and to achieve an 

eventual success of on-chip interconnects, recent research pay more attention on silicon-

based PIC. The related field –	silicon photonics, is not only aiming to provide functional 

devices for communications system, but also the potential as optical interconnects. The 

history and current research progress of silicon photonics are discussed in next section. 
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1.2 Silicon photonics 

Although the field of integrated optics (the technology used in PIC) has been established 

in 1969 [7], the proposed use of silicon as a photonic material platform for 

telecommunications wavelengths in 1.3-1.6 µm (O-band to C-band) only started 16 years 

later by Soref in 1985 [8-9]. During that time, silicon has already dominated 

microelectronic industry and silicon based photonics devices like charged-coupled device 

(CCD) image sensors were commercially available. The reasons of why silicon ‘cannot’ 

be the photonic material in telecommunications wavelengths were due to three basic 

physical limitations: 

 

1) Silicon is an indirect-bandgap semiconductor therefore it lacks of efficient light 

sources 

2) Silicon has a bandgap of 1.12 eV thus it does not detect light in telecommunications 

wavelengths (1.3-1.6 µm) 

3) Silicon is a centro-symmetric crystal so it does not exhibit linear electro-optic 

(Pockels) effect 

 

For the first material limitation, indirect bandgap of silicon indicates that the radiative 

recombination of electrons and holes across the bandgap is weak, resulting in extremely 

low internal quantum efficiency in bulk silicon (10-6). Consequently, silicon lacks of 

efficient LEDs or electrically pumped lasers. It has been a serious deficiency of using 

silicon as a PIC platform since, without light sources, a complete suite of photonic 

components is not available for monolithic on-chip integration. 
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To discuss the second material limitation, the fact that silicon is transparent above 1.1 

µm is like a situation of paradox. Because silicon is transparent in telecommunications 

wavelengths (1.3-1.6 µm) means that silicon can be used as low-loss optical waveguides, 

and no material can be transparent to light and detect light at the same time. The major 

difference of silicon compared with InP platform is that InP-based PIC has capability of 

bandgap engineering by changing the composition of III-V alloys. Silicon-based platform 

dose not have this capability therefore it does not provide the functions of wave guiding 

and light detection on the same material wafer. 

For the third material limitation, silicon does not exhibit Pockels effect –	a traditional 

means of achieving modulation of refractive index in a waveguide-based device. The 

limitation prohibits the usage of silicon as an electro-optical modulator. Although thermal 

tuning in silicon is available, the speed is limited to 1MHz [5] so it is not suitable for 

high-speed modulation. Silicon needs another mechanism to achieve refractive index 

modulation in order to provide functions on high-speed active tuning/modulation. 

Because of the above reasons, the research effort in photonic devices on silicon was 

only modest after the initial work by Soref. There were early work on the passive 

components, photodetectors by complementary metal-oxide-semiconductor (CMOS) 

compatible materials and optical modulators by carrier effect in silicon [10]. 

Besides the deficiency of using silicon as a photonic material in telecommunications 

wavelengths, silicon has several major advantages that include the mature fabrication 

technology on silicon by the microelectronic industry (CMOS fabrication process started 

to dominate in 1990s) and availability of making low-loss passive devices. 

Optoelectronic IC (OEIC) to integrate the electronic and photonic components in the 
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same platform becomes a huge advantage of silicon. As silicon already dominates the 

microelectronic industry, the development of photonic devices in silicon could enhance 

both the performance and cost efficiently by the concept of OEIC. Figure 1.3 shows the 

related concept, a silicon-based OEIC “superchip” proposed by Soref in 1993 [11]. 

 

 

Fig. 1.3. Silicon-based optoelectronic IC  “superchip” proposed by Soref in1993 
[11] 

 

In year 2000, the manufacturing technologies of high optical quality SOI became 

mature. A commercially available SOI wafers for photonic usage provide another 

advantages for silicon photonics –	 high integration density. This became a catalyst of 

research in silicon-based photonic devices. 

Consequently, the research on photonic devices on silicon increased rapidly after year 

2000. The explosion of research efforts led to a stand-alone research field – silicon 

photonics [12]. The driving force of silicon photonics at that time was mainly by the 

development of high-volume OEIC and commercial PICs in SOI platform. The field is 

still very active today and many of the fundamental physical limitations in silicon have 

been solved by tremendous research efforts over the past 20 years. 
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For light generation, in order to provide a light source on silicon PIC, integrating the 

III-V semiconductor lasers to silicon PIC chips by hybrid fabrication method is one of the 

promising solutions [13]. Although the hybrid method may potentially lead to higher 

complexity and fabrication costs, the integration of III-V semiconductor lasers to silicon 

PIC is still a good approach to realize a complete suite of PIC in silicon in current 

technology limitation. 

For light detection, it is feasible for the silicon PIC to detect the light signal in 1.3-1.6 

µm by using an integrated germanium (Ge) or silicon-germanium (SiGe) photodetector 

[14]. Ge and SiGe have advantage of fully compatibility with CMOS process. The state-

of-the-art performance of Ge photodetector modules on silicon substrates is already 

largely compatible with III-V semiconductor-based photodetectors [5] and capable for 

detecting 40 Gb/s NRZ signals. 

For light modulation, as a semiconductor, the refractive index of silicon can be 

altered by the mean of adding or subtracting its free-carriers. The corresponding effect –	

free-carrier plasma dispersion effect [10] becomes a major modulation mechanism in 

silicon for making optical modulators. By optimizing the electrical and photonic 

structures, one can attain above 40 Gb/s modulation by all silicon based optical 

modulators [15]. 

Figure 1.4 shows the overview of	 Luxtera’s	 silicon PIC that demonstrated in 2005 

[16]. The silicon PIC was fabricated by a CMOS-compatible fabrication process. It 

consists of components of all-silicon modulators, Ge photodetectors, passive photonic 

devices and electronic circuits. A light source was made by flip-chip bonding techniques 

of III-V semiconductor lasers emitting in 1.55 µm. This silicon PIC consequently was re-
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packaged as active optical cables to provide low-cost optical interconnects in computing 

centers and data centers. 

 

Fig. 1.4. Overview of Luxtera’s silicon PIC demonstrated in 2005 [16] 
 

As cost is a big advantage of silicon photonics against III-V semiconductor based 

photonics, in the followings detailed descriptions of manufacturing cost will be 

discussed. 

The manufacturing costs of PIC can be basically determined by three factors: (a) the 

cost of substrate per area, (b) the cost of fabrication processes on the substrate per area 

and (c) the integration densities of the functional PIC chip. Thus, the total manufacturing 

cost per each functional PIC chip can be represented as: total cost = (((a) + (b)) x (c)). 

Therefore, one need to minimize the substrate and fabrication costs and maximize the 

integration densities of the devices layout in order to get the minimum costs of the PIC 

chips. However, the cost of substrates is largely determined by the commercial market. 
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As an example, silicon wafers are much cheaper than III-V semiconductor wafers as the 

microelectronic industry is dominant by silicon. 

Table 1.4 lists the comparison of wafer costs of various kinds of semiconductor 

wafers. The largest available wafer sizes in both R&D and commercial markets are also 

listed. 

 
Wafer sizes 

(R&D) 
Wafer sizes 

(commercial) 
Wafer costs 

(USD) 

Substrate costs 
per 1mm2 

(USD) 

Silicon 450 mm 300 mm 150 0.0015 

Silicon-on-
insulator 

450 mm [17] 300 mm 1200 0.012 

Indium 
phosphide 150 mm 100 mm 450 0.045 

Gallium 
arsenide 200 mm 150 mm 450 0.02 

Table 1.4. Comparison between various cost of semiconductor wafers 

 

The substrate cost per area for SOI wafers is half of GaAs wafers and one third of InP 

wafers. In addition, the fabrication cost in SOI is also way cheaper than in III-V 

counterparts by taking advantages of mature CMOS fabrication process and well-

developed facilities. For point (c), in order to maximize the integration density, the 

primary limitation is on the refractive index of core and cladding of optical waveguides. 

Fundamental waveguide principle shows that the higher refractive index difference 

between the core and cladding (Δn) would enable higher confinement of optical mode in 

the core region, finally enables smaller size of optical waveguides and smaller bending 

radius. The smaller size and bending radius thus allow a higher integration density, 
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therefore the integration density of a PIC can be accessed by the ratio of Δn/n. 

 Wavelength 
(mm) 

Refractive 
index n Band gap Δn/n	(%) T/O coef. 

dn/dT (K-1) 

Silicon-on-
insulator 

1.1 3.5 Indirect 60 1.86 x10-4 

Indium 
phosphide 1.55 3.1 Direct 0-3 0.8 x 10-4 

Gallium 
arsenide 0.8 3.4 Direct 0-14 2.5 x10-4 

Table 1.5. Comparison among SOI and III-V semiconductor PIC platforms 

 

Table 1.5 shows the comparison among SOI and III-V semiconductor including InP 

and GaAs [2]. Due to the large refractive index difference between Si (3.5) and the 

cladding silicon dioxide SiO2 (1.5), the Δn/n of the SOI PIC platform can be as high as 

60%, which is significantly higher than in InP (3% (channel)) and GaAs (14% (rib)). 

Today’s single-mode optical waveguides in SOI platform has a typical dimension of 500 

nm width and 220 nm height. This sub-micron ‘nanowire’ waveguide provides ultrahigh 

integration density compared with III-V semiconductors. 

From the above analysis, SOI platform provides all the cost advantages than III-V 

semiconductor platforms in substrate costs, fabrication costs and integration density. The 

cost advantages of SOI platform is thus a great advantage of silicon photonics to 

accomplish the goals of optical interconnects. 
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1.3 Optical resonators 

Optical resonators are optical structures that confine light into the structures (cavities) for 

certain optical wavelength/frequency. As the field of optics advances, optical resonators 

can be constructed in many different configurations. In free-space optics, the most 

common types of optical resonators consist of two plane mirrors that facing each other as 

shown in Fig. 1.5. This structure is also known as a Fabry-Perot resonator.  

 

Fig. 1.5. Schematic of the Fabry-Perot resonator. Mirror 1 has non-zero 
reflectivity and mirror 2 is a perfect mirror. 

 

In the structure shown in Fig. 1.5, mirror 1 has non-zero reflectivity and mirror 2 has 

100% reflectivity. The incident beam (with amplitude of Ai) is partially transmitted to the 

cavity through mirror 1. The mirrors reflect the transmitted light for couple times inside 

the cavity. The round-trip phase difference (δ) between the successive waves is δ = 

4πnd/λ, where n is the refractive index of the cavity medium, d is the separation of the 

mirrors and λ is the wavelength of light in vacuum. The reflection intensity R = |Ar/Ai|2 

is at resonance when δ = 2mπ, where Ar is the amplitude of the reflected beam and m is 

an integer. Therefore, the resonance condition can be written as 

λm = 2nd/m,      (1.1a) 
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where λm is the m order of the resonant wavelength.  

And the resonant wavelengths are separated by 

Δλ ~= λ2/2ngd      (1.1b) 

where Δλ is the free spectral range (FSR), λ is the average of two resonant wavelengths, 

and ng is the group index of the cavity. The corresponding group index ng = n – λ(δn/δλ).  

 

Fig. 1.6. Schematic of the ring resonator. Light coupled to the ring resonator by 
evanescent coupling from the coupling waveguide.  

 

Fig. 1.6 shows the schematic of a standard ring resonator coupled with a waveguide. 

The circumference of the ring is L. The principle of ring resonator is very similar to the 

Fabry-Perot etalon as shown in Fig. 1.5, as light are confined in the cavity (ring) as they 

travel along the ring for many cycles. Therefore, the resonance condition and the FSR by 

replacing the cavity length of 2d in equations (1.1a) and (1.1b) by circumference L: 

λm = nL/m      (1.2a) 

Δλ ~= λ2/ngL      (1.2b) 

In optical resonator, a key figure-of-merit is quality factor (Q). Quality factor is the 

measured by energy capacity of the optical resonator, it defines as: 

Q = ωτ = (2πc/λ)τ     (1.3) 
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where ω is the frequency, λ is the resonance wavelength, c is the speed of light in 

vacuum and τ is the photon lifetime. We can also obtain the quality factor by 

transmission spectrum in frequency or wavelength domain as: 

Q = ω/Δω = λ/Δλ     (1.4) 

where λ is the resonant wavelength and Δλ is the full-width at half-maximum (FWHM) 

of the resonance dip/peak.  
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1.4 Photonic crystals 

Photonic crystals (PhCs) are artificially created materials in which the refractive index 

varies periodically between high-index regions and low-index regions [18]. The 

periodicity can be in one, two or three dimensions. Under certain conditions, this 

periodicity results in coherent scattering of electromagnetic wave as it propagates through 

the PhCs, and a complete photonic bandgap (PBG) opens. Light for any wavelength 

within the PBG is prohibited for propagation. Therefore, a PhC can be used as a reflector 

for wavelengths that fall within the PBG. The principle is analogous to that in a 

semiconductor crystal, where a periodic arrangement of atoms presents a periodic 

potential to an electron propagating through it. Thus prohibits the propagation of certain 

waves and forms an electronic band gap. 

The study of photonic crystals was actually more than a hundred years ago. In 1887, 

Lord Rayleigh published one of the earliest analyses of optical properties of multilayer 

films, which is a 1-D photonic crystal. This specific type of photonic crystal can act as a 

mirror (a Distributed Bragg Reflector (DBR)) for light within wavelengths fall in the 

PBG. In 1987, Eli Yablonovitch and Sajeev John published two milestone papers 

concerning about high dimensional periodic optical structures [19, 20], and they created 

the term “photonic crystals”. In 1991, Eli Yablonovitch demonstrated the first 3-D 

photonic band-gap [21]. However this demonstration is in microwave regime rather than 

in optical wavelength, most likely due to difficulties in fabrication of device dimensions 

in optical scale. In 1996, Tomas Krauss made the first demonstration of 2-D PhCs at 

optical wavelength [22]. This type of 2-D slab PhCs has been studied extensively due to 

its excellent compatibility of PIC fabrication process. Figure 1.7 shows the scanning 
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electron microscope (SEM) images of the planar photonic crystal defect waveguides on 

SOI and InP substrate [23,24]. Adding a defect into the PhCs is similar to the doping 

process in semiconductor. In [23,24] the line defects have been added into 2-D PhC 

lattices to form PhC waveguides. PhC waveguides guide light by total internal reflection 

above and below the slab while the 2-D PhCs around the defect lines act as all-direction 

reflectors in the plane of propagation. By similar concept, one can add a point defect to 

the PhCs to form low modal volume cavities as PhC resonators [25].  

 

Fig. 1.7. (a) SEM image of silicon based photonic crystal defect waveguide 
reported in [23]. (b) SEM image of indium phosphide based photonic crystal 

defect waveguide reported in [24]. 
 

One of the most important features of PhCs is its dispersion characteristic. PhCs 

enable a large PBG when the refractive index contrast between high-index regions and 

low-index regions are high. It can be achieved in typical 2-D slab PhCs in SOI or InP 

material platform. In where the high-index regions are Si/InP (index of ~3.5) and the low-

index regions are usually air (index of ~1). This large PBG introduces a strong optical 

dispersion close to the band-edge. The strong optical dispersion leads to “slow-light” 

effect, as the group velocity vg = δw/δk tends to zero at the band-edge [26]. By combing 

with dispersion engineering [27-28], the “slow-light” effect offers numerous applications 
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such as optical buffering, time-domain processing and nonlinear optics performance 

enhancement.  

PhCs offer unprecedented opportunities for molding the flow of light by creating 

defects, dispersion engineering and “slow-light” effect. By combing the fabrication 

advantages in silicon photonics and optical characteristics of PhCs, silicon based PhCs 

have been used in last decade to demonstrate various high performance devices such as 

optical delay lines [29], high quality factor micro-cavities [30] and small modal volume 

cavities [31]. And lead to applications range from optical biosensing [32] to low-energy 

optical modulators [33]. 
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1.5 Thesis objectives 

This thesis describes how we design, fabricate and characterize silicon photonics based 

ring-shaped photonic crystal structures. These devices combine microring structures with 

PhC waveguides and PhC nano-cavities, in order to provide enhanced optical 

characteristics. These optical characteristics thus lead to the demonstration of couple of 

applications on the field of label-free biosensing and optical-interconnects. These ring-

shaped silicon photonic crystal nano-photonic devices, as shown in the remaining of the 

thesis, could open the door for numerous of applications such as optical signal 

processing, low energy optical modulation and lab-on-a-chip biosensing.  

 

1.6 Thesis outline 

This thesis is divided into seven chapters. Chapter 1 is an overall introduction of the 

photonic device researches including the introduction of background and applications of 

the photonic devices, the objectives of the thesis and the structure of the thesis. Chapter 2 

provides the details of research methods applied in this thesis. Chapter 3 presents the 

research results of biosensing experiments by employing photonic crystal microring 

resonators. Chapter 4 presents a novel method of Bloch modes selection by using 

photonic crystal microring resonators. Chapter 5 shows the demonstrations of a broad-

band coupling method to highly dispersive resonators. Chapter 6 presents a novel device 

of embedded one-dimensional photonic crystal cavity, with its potential applications for 

optical-interconnects. Chapter 7 summarizes the thesis and discusses the future work. 
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2. Methods  

In this chapter, the details of methods employed throughout the thesis will be presented. 

Figure 2.1 shows the flow of nano-photonic device researches. It starts from fundamental 

theory, to simulation and design, then finally device fabrication and finally device 

characterization. Usually this linear research flow just indicates one cycle in the whole 

project, as some error or unexpected results may occur at some points of the procedure in 

the flow. For example, a fabrication error in the etching process during the device 

fabrication step may cause an undesired deice dimensions that result in unexpected 

results in experiments. In order to find out the ‘mismatch’ between unexpected 

experimental results and theoretical predictions/simulation results, a ‘debugging’ process 

will be employed, it usually by the mean of extended simulation and post-fabrication 

device metrology. Therefore, in each of projects (chapters) presented in this thesis, the 

actual research flow usually contains few (3-6) cycles of process flow for simulation-

fabrication-characterization, in order to fine tuning all the steps to achieve satisfied 

experimental results. In the following sections, the details of device simulation, 

fabrication and cauterization will be presented and explained.  

 

 

Fig. 2.1. Research flow of nano-photonic device researches. The flow starts from 
fundamental theory, to design and modeling, then finally device fabrication and 

device characterization. 
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2.1 Device simulation 

Device simulation is a key process during the device research process flow, as it defines 

how do we design the device structures and provide us insight on why do we choose the 

structures. Therefore, device simulation serves three major purposes: (1) obtain device 

design parameters, (2) provide theoretical optical characteristic of simulated photonic 

devices and (3) verifying the experimental results and compliment the experimental 

results with data could not obtain experimentally (like optical mode profile with 

nanometers resolution). In this thesis, the simulation methods of finite difference time 

domain (FDTD) is extensively used as it provides excellent predictions on photonic 

crystal (PhC) based nano-photonic devices. Planewave expansion (PWE) method has also 

been employed in some of chapters to calculate the photonic band diagram. Their 

principles will be presented in followings. 

2.1.1 Finite difference time domain method 

In 1966, Kane Yee introduced FDTD method [34], in order to obtain the numerical 

solution of Maxwell’s equations. The FDTD method solves Maxwell’s equations by 

discretizing the equations via central differences in both time and space domains. The 

method computes the electric and magnetic field components at the grid points based on 

the mesh setting of Yee cell, with grid point spacing of Δx, Δy and Δz. Figure 2.2 shows 

the schematic of the Yee cell with dimensions of Δx, Δy and Δz. The magnetic field 

components are computed at points shifted by half of grid size from the electric field grid 

points. 
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Fig. 2.2. Schematic of the Yee cell with dimensions of Δx, Δy and Δz. [modified 
from 35] 

 

In order to obtain stable simulation results, the courant condition has been met. The 

courant condition relates the spatial and temporal step size in the simulation by: 

                                           (2.1) 

where c is the sped of light in free space, Δx, Δy and Δz are spatial grid sizes in x, y and z 

directions. In the FDTD simulation, the computation domain boundaries are assigned as 

perfectly-matched layer (PML). The PML boundary condition act as an extremely lossy 

boundary that in principle would only absorbs/transmits light that pass through this 

boundary without any reflections. In this thesis, the commercially available software 
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package of Lumerical FDTD solutions [36] has been used for all projects for device 

simulations.  

2.1.2 Planewave expansion method 

For periodic structure, like photonic crystal, PWE method would be the ideal simulation 

technique for calculating the photonic band diagram. PWE method computes definite-

frequency eigenstates of Maxwell’s equation in periodic dielectric structures for arbitrary 

wavevectors, using fully-vectorial and 3-D methods [37]. It expands the electric and 

magnetic fields in terms of Fourier series components, then do a direct calculation of the 

eigenvalues of the Helmholtz equation by iterative technique. It is limited by the 

assumption of symmetric boundaries. In this thesis, the open-source software package of 

MIT Photonics-Bands (MPB) [38] has been used for projects that required photonic band 

diagram simulations. The MPB software was developed by Prof. Steven G. Johnson from 

MIT and 1990s and released to public in 1999 to facilitate the research on PhC. 
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2.2 Device fabrication 

Device fabrication is another important step during the device research process flow, as it 

defines the dimensions of actual fabricated device structures. Ideally the fabricated device 

should be identical to the designs that finalized in the design and modeling stage. 

However, due to the limitation of fabrication in every fabrication steps, some biasing 

condition and design of experiments may be required for achieving desired results at the 

end. Therefore, understanding thoroughly about the fabrication limitation and expectation 

would be important for photonic device researches. The detailed device fabrication 

process is shown as follows, the processes were done in the Center for nanophase 

material sciences (CNMS), Oak Ridge National Laboratory (ORNL) [39] and Georgia 

Tech Institute for Electronics and Nanotechnology [40]. 

Commercial silicon-on-insulator (SOI) wafers from SOITEC [41] with a 270nm 

device layer on top of a 3µm buried oxide (BOX) layer were used for the device 

fabrication. Dry-oxidation and a subsequent dip in buffered oxide etch (BOE) were 

performed to thin down the top silicon layer to the desired thickness of 220nm. The nano-

photonic devices were then patterned on the SOI chip using a single step of electron 

beam lithography (EBL) and a reactive-ion-etching (RIE) process.  

Figure 2.3 shows the schematic of the device fabrication process flow of single step 

of EBL and RIE process. First, a high-resolution positive-tone electron-beam photoresist 

(ZEP 520A) was first spin-coated on the wafer at 6000rpm for 45 seconds, which resulted 

in a resist thickness of ~300nm. Second, following a soft-bake at 180°C for 120 seconds 

on a hotplate, the design patterns were exposed using a JEOL JBX-9300FS EBL system. 

The typical dosage used for EBL exposure is 300-340 µC/cm2. Depending on the pattern 
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of nano-photonic devices, proximity effect correction (PEC) technique may be employed 

during the EBL process. In which the dosages of different area of the pattern were altered 

to compensate the proximity effect of electron forward and backward scatterings. After 

the exposure, the wafer was developed by Xylenes for 30 seconds and rinsed by IPA for 

30 seconds. Nitrogen blow-dry was used to dry the surface. The wafer was then dry 

etched for ~2 minutes using a SF6-based inductively-coupled-plasma (ICP) RIE etcher 

Oxford Plasma Lab 100, with a top silicon etch rate of 1100-1500Å/minute. Usually the 

etch rate of silicon etching would be calculated by a dummy wafer run of same etching 

recipe of 2minutes run. Surface profilometer was used to measure the etch depth thus 

obtaining the etch rate. Finally the remaining photoresist on the wafer was removed by 

O2 plasma in the same chamber for ~1 minute. After the fabrication, the devices were 

inspected by scanning electron microscope (SEM) tools immediately to verify the 

dimensions of fabricated structures. 

 

Fig. 2.3. Schematic of the typical fabrication process flow for nano-photonic 
devices. The silicon substrate under the buried oxide layer is not shown in the 

picture. PR: photoresist. 
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2.3 Device characterization 

Device characterization is the final step of the research flow. It means to obtain the 

optical properties of the fabricated photonic devices by different experimental methods. 

In this thesis, the most important optical property of photonic devices is their 

transmission spectra. Transmission spectra provide the information of optical losses, 

wavelength responses and other important figure-of-merits like quality factor and 

extinction ratio of optical resonators. In this thesis, transmission spectra were measured 

using a wavelength scanning technique.  

Figure 2.4 shows the photograph of the experimental setup used to couple light of the 

light source into the device under test (DUT) and couple light out from the DUT to the 

detector. An external-cavity continuous-wave (CW) tunable semiconductor diode laser 

(Santec TSL-510) was used with a wavelength tunable range from 1510nm to 1630nm. 

The output laser beam was guided by a single-mode optical fiber (SMF) to a polarization 

controller to adjust the output polarization. The output polarization was transverse 

electric (TE)-like in all experiments and was calibrated using a free space polarization 

beam-splitter and photodetector. The laser beam was then coupled to the device through a 

10° tilted cleaved-end SMF and an input grating coupler on the sample that was 

fabricated alongside the photonic devices. The grating coupler design reported in [42] 

was followed with appropriate modification of the dimensions for devices on 220nm 

thick SOI. The output signal from the output grating coupler was collected by a cleaved-

end SMF. The positions of the SMFs and sample were controlled by translation stages. A 

long working distance lens and visible-light CCD camera on top of the sample monitored 

the alignment of the sample and fibers. In some of experiments, the long working lens 
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was connected to a beam-splitter and an infrared camera was used to collect the out-of-

plane scattering images of the photonic devices. The transmission intensities were 

measured by a photodetector and recorded by a fast speed data acquisition (DAQ) 

system. The DAQ system provides highest measurement rate of 1MHz, while the usual 

measurement rates used in our experiments were 1kHz and 10kHz. As the wavelength 

sweeping speed of the tunable laser was 5nm/s, the 1kHz measurement rate provided 5pm 

resolution, and the 10kHz measurement rate provided 0.5pm resolution.  

 

Fig. 2.4. Photograph of the experimental setup used to couple light in-to/out-of 
the photonic devices. In the optical system, the light source is the tunable laser 
and the detector is the photodiode. TL: tunable laser. PD: photodetector. PC: 

polarization controller. DUT: device under test.  
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3. Photonic crystal microring resonator for label-free biosensing 

In this chapter, a label-free optical biosensor based on a one-dimensional photonic crystal 

microring resonator with enhanced light-matter interaction is demonstrated. More than a 

2-fold improvement in volumetric and surface sensing sensitivity is achieved compared 

to conventional microring sensors. The experimental bulk detection sensitivity is 

~248nm/RIU and label-free detection of DNA and proteins is reported at the nanomolar 

scale. With a minimum feature size greater than 100nm, the photonic crystal microring 

resonator biosensor can be fabricated with the same standard lithographic techniques 

used to mass fabricate conventional microring resonators. 

 

3.1 Background 

In the last decade, on-chip optical label-free biosensors based on optical resonant cavities 

have drawn a great deal of interest for delivering fast, portable, cost-effective, sensitive 

and accurate diagnostics [43-52]. Label-free biosensors promote simple analyte 

preparation and real-time monitoring of specific binding interactions by transducing the 

presence of specific target molecules based on their capture by surface immobilized 

bioreceptors, as opposed to traditional methods of labeling the target analytes with 

fluorescent or radiative tags [53]. Furthermore, silicon-based biosensors using the silicon-

on-insulator (SOI) platform have the advantages of (1) strong light-matter interaction 

between resonant modes and target analytes, which increases detection sensitivity, and 

(2) compatibility with CMOS fabrications processes, which facilitates low-cost, compact 

and high quality photonic devices. Various types of optical resonant structures in silicon 
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have been proposed and demonstrated as optical label-free biosensors such as microring 

resonators [43-46], one-dimensional (1D) photonic crystal (PhC) cavities [47] and two-

dimensional (2D) PhC cavities [48-52]. Numerous device design approaches have been 

employed to further improve the sensitivity of biosensors by enhancing the light-matter 

interaction between target analytes and optical mode field of resonant cavities. These 

approaches include slot waveguide-based microring resonators [54], suspended micro-

ring resonators with an enhanced evanescent field [55], sub-wavelength grating based 

microring resonators [56], multi-hole defect PhC micro-cavities [57], slotted PhC cavities 

[58] and high-Q PhC cavities [59]. 

In this chapter, a PhC microring resonator (PhCR) [60-63] is demonstrated as a label-

free biosensor for specific molecular detection with enhanced detection sensitivity due to 

its strong light-matter interaction that results from the localized optical mode field 

profiles of the PhC structure. Since a fraction of the optical field in the PhCR is located 

inside the air holes that are accessible for molecular attachment, the PhCR can detect the 

presence of analyte both inside the holes and on the top surface. Importantly, in contrast 

to slots and multi-hole defects that also support increased light-matter interaction for 

sensing, the critical dimensions of PhCRs are compatible with advanced deep ultra-violet 

(DUV) lithography [63,64], which could lead to the production of high-volume, low-cost 

lab-on-a-chip biosensors. Moreover, all of the important properties of conventional 

microring resonators as biosensors are preserved for PhCRs while a significant challenge 

for sensing high concentrations of molecules is removed. Like conventional microrings, 

PhCRs can be easily coupled to a silicon bus waveguide, enabling low optical loss, 

formation of sensor arrays, and error-correcting capabilities [65]. In addition, PhCRs do 
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not have an upper limit on the concentration of analyte that can be detected due to their 

photonic bandgap (PBG) that gives rise to aperiodicity in the transmission resonances; 

the periodic transmission resonances of traditional ring resonators lead to ambiguity 

when measuring large spectral shifts that exceed the free spectra range. Based on the 

aforementioned attributes, PhCRs are promising candidates for highly sensitive 

biosensors in future on-chip diagnostic devices. Although the application of PhCRs as 

bulk refractive index sensors has been studied experimentally [66,67] and theoretically 

[68,69] in a few different geometries, its surface sensing capabilities have yet to be 

demonstrated. As a critical step toward molecular diagnostic applications, it is important 

that label-free biosensing experiments are shown on the PhCR platform. Moreover, 

previously demonstrated PhCR structures with shallow-etched holes or grating designs 

exhibit bulk detection sensitivities of <100nm/RIU [25,26], which are lower than those of 

conventional microring based sensors [43]. Therefore, in this chapter, an optimized PhCR 

structure with stronger light-matter interaction is presented in order to demonstrate that 

PhCRs can achieve superior sensing performance over conventional microring resonators 

in both volumetric and surface sensing experiments. In the following sections, the device 

structure, experimental methods, and results on bulk refractive index sensitivity and 

label-free biosensing of DNA and protein will be presented. 
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3.2 Device structure 

3.2.1 Photonic crystal microring resonator 

Figure 3.1(a) shows the top-view scanning electron microscope (SEM) image of the 

PhCR. The structure is fabricated on a SOI platform with a 220nm thick device layer. 

The silicon layer is etched through to the buried oxide layer. There are N = 100 circular 

air holes on the ring resonator, resulting in a ring radius of ~7.16µm. Figure 3.1(b) shows 

the magnified top-view SEM image of the device at the coupling regime. The periodicity 

of the air holes is a = 450nm, the hole radius is r = 0.3a = 135nm, the width of the ring is 

d = a = 450nm. The width of the coupling waveguide is w = 0.8a = 360nm or w = 0.75a 

= 338nm, both of which led to excellent mode matching between the input waveguide 

and PhCR [60]. The gap separation is g = 0.3a = 135nm, g = 0.4a = 180nm or g = 0.6a = 

270nm. All of these gap separations were close to critical coupling and thus yielded high 

extinction ratios of the resonances. Figure 3.1(c) shows the magnified top-view SEM 

image of the device at the arc of the PhCR. In the SEM image, pattern distortion such as 

irregular air-holes is observed, this could due to fabrication imperfection like proximity 

effect during EBL process. The irregular air-holes could add additional loss to the PhCR 

structure hence reduce the quality factor.  
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Fig. 3.1. (a) Top-view SEM image of the fabricated photonic crystal microring 
resonator. (b) Magnified top-view SEM image of the coupling region of the 
PhCR. (c) Magnified top-view SEM image of the PhCR, pattern distortion is 

observed due to fabrication imperfection. 
 

3.2.2 Control devices 

In order to give a fair comparison of sensing performance between PhCRs and 

conventional microring resonators, the dimensions of the fabricated control microrings 

are largely the same as the PhCR. The ring radius of the control microring is ~7.16µm. 

The width of the control microring is 450nm. The width of the coupling waveguide to the 

control microring is also 450nm. The gap separation between the coupling waveguide 

and the control microring is 100nm. The control devices are fabricated with PhCRs on 

the same die at a close proximity and undergone exactly the same fabrication process. 

During the stage in the biosensing experiment, this makes sure both PhCRs and control 

devices will have very similar condition that would be critical for the sensing results such 

as temperatures and bio-molecules coverage.  
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Additional devices such as microring resonator with width of 500nm and 400nm have 

also been designed and fabricated on the same die. These structures are used to compare 

with the control devices in both bulk sensing and surface sensing experiments. As the 

sensor performance should inversely proportional to the width of microring resonators, 

due to the higher portion of evanescent field into the air of a narrower width waveguide. 

The experimental results match with what one would expect with almost perfect 

consistency in bulk sensing and every step of DNA and protein sensing experiments. This 

provides another experimental verification that the results on PhCR devices are highly 

reliable throughout the whole experimental process.  
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3.3 Simulation results 

3.3.1 Optical mode profiles 

Figure 3.2(a) shows an example of the on-resonance optical mode field profile of the 

PhCR. Figure 3.2(b) shows the magnified optical mode field profile of the PhCR in a 

section of the PhC waveguide. The profile is calculated using three-dimensional (3D) 

finite-difference time-domain (FDTD) analysis [36]. Dimensions of the device used in 

the simulation are similar to the fabricated devices. The interface between Si and air 

regions in the PhCR structure is shown as a solid white line. The resonance wavelength is 

close to the photonic band gap of the structure.  The polarization is TE-like (electric field 

parallel to the device plane).  

 
Fig. 3.2. (a) FDTD calculated optical mode profile when the photonic crystal 

microring resonator is on-resonance. (b) Magnified optical mode field profile of 
the PhCR in a section of the PhC waveguide, which shows that a fraction of the 

optical field is located at the edge of air holes. 
 

As shown in Fig. 3.2(a), a strong beating pattern occurred in the resonance mode of the 

PhCR structure. This beating pattern, created by the forward propagating and backward 
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propagating modes in the resonator due to the strong coupling among them, is an 

important optical characteristic in the PhCR. As in usual microring that formed by a 

standard silicon waveguide, the optical mode at resonance will be uniform across the 

ring. Although this macroscopic mode pattern would not contribute to the enhancement 

(or reduction) of sensing performance of the PhCR, it could leads to some novel 

applications such as on-chip multi-wavelength routing as an add-drop filter. The details 

will be discussed in chapter 4.  

 

3.3.2 Enhanced light-matter interaction 

The potential of using the PhCR as a superior bio-sensor over conventional microring 

resonator is due to its microscopic optical mode distribution rather than its macroscopic 

one. From Fig. 3.2 (b), the mode profile indicates most of the optical energy is localized 

in the silicon region, as the resonance wavelength sits near the dielectric band edge. 

However, the evanescent field of the localized mode still extends to the surrounding air 

holes and provides enhanced modal overlap between the optical mode and the inner 

surface of the air holes where biomolecules can be attached. This additional active 

sensing area leads to an enhancement in sensitivity for PhCR as optical biosensors 

compared to conventional microring devices. 

With this potential enhancement in mind, bulk index sensitivity simulations based on 

3-D FDTD have been performed. A sensitivity of ~190nm/RIU of PhCRs have been 

calculated by modifying the refractive index of upper claddings above the BOX layer. 

Which is about two times higher than conventional microring device with same width. 
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Note that in the fabrication process, EBL overdosing and enlarging air-holes and 

narrower waveguide widths are very typical, thus an even higher experimentally 

measured sensitivity would be expected.  

 

3.4 Surface functionalization methods 

3.4.1 DNA molecules 

For experimental demonstration of surface-based DNA label-free biosensing, a protocol 

similar to that reported in [70] was followed to attach DNA to the PhCR. First, the 

sample was oxidized in air at 500°C for 10 minutes to ensure that the appropriate surface 

passivation and surface chemistry was obtained for subsequent functionalization steps. 

Next, 3-aminopropyltriethoxysilane (3-APTES) was diluted in anhydrous toluene to a 

concentration of 2%, and the sample was soaked in the resulting solution for 15 minutes 

to achieve an amine terminated surface functionalization. Thereafter, the sample was 

flushed with ethanol and DI water several times and cured inside an oven at 150°C for 20 

minutes. A linker molecule, succinimidyl 3-(2-pyridyldithio)propionate (SPDP), was 

dissolved in HEPES buffer, and the sample was then soaked in the solution for 2 hours, 

followed by a 1 hour HEPES buffer soak to remove any unbound molecules. An excess 

(100µM) of 16-mer probe DNA in HEPES buffer was mixed 1:1 by volume with 

disulfide reducing agent TCEP in DI water and ethanol for 30 minutes and then pipetted 

onto the sample. After 1 hour incubation at 37°C, the sample was soaked in HEPES 

buffer for 20 minutes at 37°C, rinsed with DI water, and dried with nitrogen gas to 

remove any remaining unattached molecules. Finally, a 16-mer single-stranded target 
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DNA at a concentration of 500nM was attached to the sample.  We note that the PhCR 

and control microring devices were exposed to identical functionalization processes and 

experimental conditions for all experiments to enable a direct comparison of their 

biosensing performance. 

 

3.4.2 Protein molecules 

For the experimental demonstration of label-free protein detection, the following protocol 

was followed to attach proteins to the PhC microring biosensor. First, the oxidized 

samples were immersed in a freshly prepared piranha solution for 15 minutes to remove 

organic surface contaminants and ensure a chemically clean surface. Following piranha 

clean, the samples were rinsed thoroughly with copious amounts of water and dried under 

nitrogen. Then, 50µL of freshly prepared 2% 3-APTES solution in anhydrous toluene 

was drop cast onto each sample for 15 minutes to provide an amine functionalized 

surface. The excess unreacted 3-APTES was thoroughly rinsed from the samples three 

times with ethanol and DI water. The samples were then dried under nitrogen flow and 

baked in an oven at 100°C for 20 minutes to enable the formation of stable 3-APTES 

cross-links. Next, 50µL of a 200µM biotin solution in phosphate buffer saline (PBS) 

buffer was pipetted onto each sample and incubated for 1 hour. Unattached biotin 

molecules were washed away by rinsing the samples with DI water and ethanol, then 

drying under nitrogen. The samples with covalently bound biotin probe molecules were 

then sequentially exposed to 50µL of varying concentrations (20nM, 100nM, 200nM) of 

target streptavidin molecules solvated in PBS solutions for 1 hour. Excess streptavidin 
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molecules were washed away from the sample surface by thorough DI water and ethanol 

rinse steps. The samples were then dried under nitrogen. Note that for all experiments, 

the same sample was exposed to increasing streptavidin concentrations without removing 

the already captured streptavidin molecules. 

 

3.5 Experimental results and discussion 

3.5.1 Bulk index sensitivity 

Figure 3.3(a) shows a typical transmission spectrum of the PhCR-based biosensor. The 

wavelength resolution is 5pm. The incident power is fixed at 1mW for all experiments. In 

the spectrum, there are no resonances below about 1550nm due to the PBG. Above 

1550nm, there are multiple resonance dips with highly non-uniform free spectral ranges 

(FSRs). The FSR between resonance peaks decreases from ~12nm at ~1595nm to ~3nm 

at ~1555nm. The reduction of FSRs close to the band-edge of the PBG is due to the slow-

light effect of the PhC waveguide embedded in the microring. The calculated group index 

is ~17 (ng ≈ l2/dlL where L is the circumference of the PhCR). For the control microring 

resonator, the FSR between resonance peaks is ~11.5nm across the entire optical 

spectrum. This uniform FSR shows a linear dispersive characteristic, and the calculated 

group index is ~4.6 at 1555nm. Note that the slow light effect for the PhCR does not 

directly contribute to its increased detection sensitivity because the increased group index 

results in both an increase of the phase change in the PhCR and a decrease in the FSR. 

The extinction ratio of the resonance mode in the PhCR next to the photonic band edge is 

~10dB, which suggests a nearly critical coupling condition of the resonator is achieved. 
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However, the loaded quality factor Qload of the same mode is ~1200, which is less than 

that of our previously fabricated PhCRs (Qload ~ 2500) [60]. The lower Qload of this PhCR 

compared to previously fabricated PhCRs may be due to fabrication imperfections and 

enlarged air hole dimensions in these specific devices for biosensing applications. The 

enhanced modal overlap at the silicon-air interface also increases the magnitude of 

scattering losses that result from surface roughness produced during the silicon reactive 

ion etching process in the fabrication. The control mircroing exhibits a loaded quality 

factor of ~35,000 and an extinction ratio of ~15dB for the resonance at 1555nm. 

 

Fig. 3.3. (a) Measured TE-polarized transmission spectrum of the PhCR. PBG: 
photonic band gap. (Inset) Measured transmission spectra of PhCR exposed to DI 

water and different concentrations of salt water solution. Resonances are red 
shifted when salt concentration is increased. (b) Resonance shifts of PhCR and 

control microring exposed to different concentrations of salt water solution. The 
solid lines are linear fits to the data. 

 

In order to obtain the bulk refractive index sensing performance of the PhCR, the 

PhCR along with a conventional microring resonator were exposed to salt water solutions 

with different NaCl concentrations. In the experiment, 0%, 0.5%, 1%, 2% and 4% 
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concentration solutions were used. The transmission measurements of the PhCR and 

control microring devices were immediately started once the solutions were applied on 

the sample. The samples were rinsed by DI water and dried with nitrogen gas between 

measurements, before the next salt water solution was exposed to the samples. After 

rinsing, the resonance wavelength returned to its initial condition, confirming that no salt 

residue remained in the samples. The inset of Fig. 3.2 (a) shows the measured 

transmission spectra of the PhCR exposed to DI water and different concentrations of salt 

water solution. The results indicate the resonance dips red shift when salt concentration is 

increased. Figure 3.3 (b) summarizes the resonance shifts of the PhCRs and control, 

conventional microring resonators as a function of the refractive index of the applied salt 

water solution. Linear fits to the data show that the PhCR has an experimental bulk 

refractive index sensitivity of ~248nm/RIU, while the control microring has a sensitivity 

of ~111nm/RIU. Note that the bulk sensitivity of the control microring is similar to what 

has been previously reported [43]. The more than 2-fold increased bulk detection 

sensitivity of the PhCRs compared to the control microring is largely due to the increased 

area for light-matter interaction between the guided mode and salt water solution exposed 

to the rings. 
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3.5.2 Label-free biosensing of DNA molecules 

In order to examine the surface-sensing capabilities of the PhCR, label-free biosensing 

experiments were first carried out using the specific attachment of DNA molecules. 

Figure 3.4 (a) shows the measured TE-polarized transmission spectra of the PhCR after 

each step of the surface functionalization processes and after capture of the target DNA 

molecules. After oxidation of the sample that blue shifts the resonance (not shown), the 

resonance wavelength red shifts after each molecular attachment step as a thin layer of 

biomolecules functionalized on the PhCR surface increases the effective refractive index 

of the PhCR. Figure 3.4 (b) summarizes the resonance wavelength changes of the PhCR 

and the control microring resonator after each step of the DNA sensing experiment. The 

resonance shifts of the PhCR after (a) 3-APTES, (b) SPDP linker, (c) 100µM probe DNA 

and (d) 500nM target DNA are (a) 0.32nm, (b) 0.22nm, (c) 0.79nm and (d) 0.16nm, 

respectively. The resonance shifts of the control microring are (a) 0.1nm, (b) 0.1nm, 

(c) 0.27nm and (d) 0.08nm, respectively. These results show that the PhCR has a more 

than 2-fold enhancement in surface sensing sensitivity compared to the control microring 

for every step of the DNA sensing experiment. The magnitude of this performance 

enhancement is consistent with the bulk index sensitivity results reported in the previous 

section. 
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Fig. 3.4. (a) Measured TE-polarized transmission spectra of a PhCR after various 
surface functionalization steps and after exposure to 500nM target DNA. (b) 

Resonance red shifts for PhCR and control microring resonators for each step of 
the DNA detection experiment. Three PhCRs were tested in the experiments. 

 

3.5.3 Label-free biosensing of protein molecules 

In addition to the DNA surface sensing experiment, a label-free biosensing experiment 

with proteins was carried out to further demonstrate the surface sensing capabilities of the 

PhCR and to verify the previous experimental results. Figure 3.5 (a) shows the measured 

TE-polarized transmission spectra of the PhCR after each step of the surface 

functionalization processes and after capture of various concentrations of the target 

protein, streptavidin. As expected, the resonance red shifts after each step of the process 

due to the increase in effective refractive index of the PhCR that results from the 

molecular attachments. Figure 3.5 (b) summarizes the resonance wavelength changes for 

the PhCR and conventional microring resonator during the protein sensing experiment. 

The resonance red shifts of the PhCR after (a) 3-APTES, (b) 200µM biotin, (c) 20nM 



	 46 

streptavidin, (d) 120nM streptavidin and (e) 320nM streptavidin are (a) 1.23nm, 

(b) 0.81nm, (c) 0.18nm, (d) 1.77nm and (e) 2.42nm, respectively. The resonance red 

shifts of the control microring are (a) 0.58nm, (b) 0.25nm, (c) 0.08nm, (d) 0.75nm and 

(e) 1.23nm, respectively. The data suggest that most, if not all, biotin probes are 

hybridized with streptavidin targets at a streptavidin concentration between 120 and 

320nM, which is consistent with prior work [70]. Similar to the DNA surface sensing 

experiment, the protein sensing experiment shows that the PhCR has more than a 2-fold 

enhancement in detection sensitivity compared to the control microring for every 

molecular attachment step. Note that a larger resonance shift was experienced after 3-

APTES attachment in the protein experiment.  

 

Fig. 3.5. (a) Measured TE-polarized transmission spectra of the PhCR after 
various surface functionalization steps and after exposure to various 

concentrations of target proteins. (b) Resonance red shifts for PhCR and control 
microring resonators for each step of the protein detection experiment. STV: 

streptavidin.  
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Based on prior work [70], it is expected that an incomplete monolayer of 3-APTES 

was formed in the DNA sensing experiments; however, the same relative coverage was 

likely formed on both the PhCR and the control microring such that a fair comparison of 

sensing performance took place. It is also possible that slightly more than a single layer 

of 3-APTES molecules was attached in the protein experiments but, again, the same 

conditions were applied to the PhCR and control microring ensuring the integrity of the 

sensing comparison. Given that the additional air holes present in the PhCRs led to an 

increase of only ~32% in total accessible surface area for molecular attachment (i.e., at 

the Si-air interfaces) compared to the control microring, the 2-fold detection sensitivity 

enhancement in both bulk sensing and surface sensing experiments indicates that the 

optical mode profile, and more specifically the evanescent field in the photonic crystal air 

holes, plays a significant role in the measured sensitivity enhancement. We note that the 

similar enhancement for bulk and surface sensing is consistent with the field distribution 

shown in Fig. 3.2 (b), which shows that the field enhancement in the air holes occurs near 

the Si-air-interface; hence, no additional sensitivity enhancement is experienced by 

analyte that fills the holes compared to analyte that only binds on the surface of the holes. 

The experimental results reported here are based on a PhCR with resonances near the 

dielectric band edge; it is expected that an even higher sensitivity may be obtained if a 

resonance near the air band edge is used [67,71]. 
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3.6 Conclusions 

The detection sensitivity of PhCR-based biosensors due to bulk refractive index changes 

and specific DNA and protein binding was investigated. The bulk refractive index change 

detection sensitivity of PhCRs is ~248nm/RIU, which is more than 2-fold greater than 

that of conventional microring devices. Label-free biosensing of DNA and protein at the 

nanomolar scale also revealed that PhCRs have a more than 2-fold surface sensing 

detection enhancement over conventional microring devices. The detection sensitivity 

enhancement is attributed to the increased light-matter interaction area where the guided 

mode of the PhCRs interacts with target analyte. With the advantages of high sensitivity, 

CMOS compatibility and efficient coupling to existing silicon photonics platforms, 

PhCRs are promising candidates as optical biosensors in future on-chip diagnostic 

devices. 
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4. Bloch mode selection in photonic crystal microring resonators 

In this chapter, a novel method to select a subset of Bloch modes in silicon-based 

photonic crystal microring resonators (PhCR) is demonstrated. Bloch modes in the PhCR 

are calculated and their intensity beating patterns are analyzed. Based on the different 

spatial intensity distribution for each resonance, a subset of resonances is out-coupled 

using an output coupler waveguide (CWG) which is positioned at an angle θ=90° with 

respect to the input CWG. As shown in theory and experiment, resonances with an even 

mode number are selected while resonances with an odd mode number are rejected. The 

highest contrast between mode selection and mode rejection is ~9dB in experiments. This 

approach opens another design freedom for ring resonator based devices and could 

potentially reduce the footprint of microring resonator-based multiplexers and add-drop 

filters. 
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4.1 Background 

Over the past decade, silicon-based optical microring resonators have drawn a great deal 

of interest for applications in optical signal processing, label-free biosensing, optical 

interconnects and telecommunications [72]. Compared to conventional photonic 

structures such as arrayed waveguide gratings (AWG) and Mach-Zehnder interferometers 

(MZI), optical components based on microring resonators have the advantages of higher 

integration density and lower power consumption. In optical signal processing, microring 

resonators have been demonstrated to enable numerous on-chip functionalities such as 

optical add-drop filters [73,74], electro-optic modulators [75,76], optical delay lines [77], 

optical logic gates [78,79], and optical routers [80]. These functionalities are especially 

critical for integrated silicon-based optoelectronic devices in wavelength division 

multiplexing (WDM) systems. One path forward to further improve the performance of 

microring resonators is to incorporate design modifications that impart new 

functionalities. For example, the photonic crystal microring resonator (PhCR) [60,71,81-

82], which utilizes a one-dimensional photonic crystal (PhC) waveguide instead of a 

conventional silicon waveguide, functions as a standard microring resonator but with a 

smaller footprint and a highly dispersive characteristic. Thus, the PhCR platform has the 

potential to realize compact device integration as well as improved performance metrics 

in optical signal processing and on-chip chemical/biological sensing. While the 

microscopic optical mode profile near the sidewalls of the PhCR has been shown to be 

favorable for increasing the detection sensitivity of microrings in label-free bio-sensing 

experiments [81], the potential advantages of the macroscopic optical mode profile (i.e., 

Bloch modes) of the PhCR for optical signal processing have yet to be explored.  
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The periodic structure of the PhCR leads to a strong slow-light dispersion near the 

Brillouin zone edge and introduces Bloch modes [60,71], yielding intensity beating mode 

patterns [83,84] in the resonator. Due to the substantially different spatial intensity 

distributions for each resonance, it should be possible to preferentially select a subset of 

resonances by strategic placement of output coupling waveguides (CWG) along the 

microring. Such a wavelength selection method would provide more design freedom to 

on-chip optical interconnects and potentially reduce the footprint of microring resonator-

based multiplexers and add-drop filters. 

In this chapter, the design and fabrication of the PhCR are first discussed and the 

optical properties are explained. Next, Bloch modes in the PhCR are identified using 

three-dimensional finite difference time domain (FDTD) calculations. Then, resonant 

mode distributions in the PhCR are analyzed by the fast Fourier transform (FFT) method. 

Finally, by utilizing spatial beating mode patterns in the PhCR with appropriately 

positioned output CWGs, output transmission spectra are calculated and measured, which 

result in the demonstration of Bloch mode selection in the PhCR. 
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4.2 Device structure and transmission spectra 

Figure 4.1(a) shows a top-view scanning electron microscope (SEM) image of a 

fabricated PhCR coupled with a single curved input CWG. The bending radius of the 

input CWG (~7.16µm) is the same as that of the PhCR. The input CWG is coupled at 

polar angle θ=0°. The device was fabricated by a single step of electron beam lithography 

(EBL) followed by reactive-ion-etching (RIE) on a silicon-on-insulator wafer with a 3-

µm buried oxide layer and a 220nm silicon device layer. The silicon device layer was 

etched through to the buried oxide layer. After etching, the remaining photoresist on top 

was removed by oxygen plasma. Figure 4.1(b) shows a magnified SEM image of the 

PhCR at the coupling region. For the design of the PhCR, there are N=100 periodic 

circular holes. The periodicity of the air holes is a=450nm with an air hole radius of 

r=0.3a, the width of the ring (d) is 1.0a and the evanescent gap separation (g) is 0.4a. In 

order to obtain optimal phase matching between CWGs and PhCRs, the widths of the 

CWGs (w) are designed as 0.75a, 0.8a and 0.85a [60].  



	 53 

 

Fig. 4.1. (a) Top-view SEM image of a waveguide-coupled PhCR with 100 
periodic circular holes. (b) Magnified SEM image of the PhCR at the evanescent 
coupling region. (c) Measured TE-polarized transmission spectra of PhCRs with 

w=0.75d, w=0.8d and w=0.85d.  
 

Transmission spectra were measured using a wavelength scanning technique with an 

external-cavity tunable laser (Santec TSL-510, 1510 – 1630nm). The output transmission 

intensities from the devices under test were measured by a photodetector and recorded by 

a computer. Figure 4.1(c) shows the measured transverse-electric (TE) (electric field 

parallel to the device plane) polarized transmission spectra of PhCRs with input CWG 

designs of w=0.75d, w=0.8d and w=0.85d. The spectra show that the band edge of the 

photonic band gap (PBG) is located near 1545nm as no resonances appear at shorter 

wavelengths. Due to the slow-light effect, the free spectral range (FSR) between 



	 54 

resonances is highly non-uniform and becomes smaller as the wavelength approaches the 

band-edge. The maximum calculated group index is ~17. For PhCRs with input CWG 

widths of 0.75d and 0.8d, the resonance mode closest to the PBG has an extinction ratio 

(ER) of ~13dB. The PhCR with input coupling design of w=0.75d provides the best 

broad-band phase matching, achieving >10dB ER for resonances across a wavelength 

range >50nm. The maximum loaded Q-factor of the PhCR is ~2,700, which is limited by 

fabrication imperfections. 
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4.3 Simulation results 

Given the design of the PhCRs and the slow light phenomenon demonstrated in the 

transmission measurements, we expect that each transmission resonance should 

correspond to a distinct and periodic mode pattern, similar to that which has been 

reported in prior work. In order to elucidate the optical properties of each resonance, 3-D 

FDTD simulations were carried out [36]. The design parameters of the PhCR used in the 

simulations were extracted from the SEM images of fabricated devices in order to ensure 

close comparison between experimental and simulation results. The slight difference in 

resonance wavelengths between the experimental and simulation results (~10nm blue-

shifted in simulation) is likely due to slight errors in the dimensions estimated from the 

SEM images and inaccuracies arising from the mesh discretization in the simulation. 

 

4.3.1 Transmission spectrum and optical mode profiles 

Figure 4.2 (a) shows the calculated TE-polarized throughput-port transmission spectrum 

normalized to the input intensity. From the transmission spectrum, the maximum group 

index is calculated to be ~65 and the maximum loaded Q-factor is ~6,700. The calculated 

group index is higher in simulation than in experiment due to the slight difference in 

effective index in simulation and experiment, as the effective index determines the 

resonance wavelengths, which in turn determine the FSR, which is used to calculate the 

group index. We note that the reported loaded Q-factor is likely limited by the simulation 

time utilized in this work (24,000 ps), as the calculated intrinsic Q-factor of the PhCR is 

~2×105. 
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Fig. 4.2. 3-D FDTD calculated TE-polarized (a) throughput spectrum of the 
PhCR. Resonance dips are labeled by their mode numbers (m). (b-e) intensity 

(|E|2) mode profiles at resonance wavelengths of 1525.67nm (m=50), 1531.42nm 
(m=48), 1533.44nm (m=47) and 1539.98nm (m=46). The period of intensity 

modulation increases with the resonance wavelength. 
 

Figures 4.2(b)-(e) show the calculated TE-polarized intensity (|E|2) mode profiles in 

the silicon band of the PhCR. The mode profiles show a strong periodic intensity 
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modulation for each resonance. The number of modulation periods is always an even 

number and increases linearly as the resonance wavelength increases. For each intensity 

mode profile, the modulation pattern is oriented with the beating antinode aligned to the 

position of the input CWG (θ=0°). 

 

4.3.2 Spatial Fourier transforms 

In order to further analyze the intensity modulation patterns of the PhCR, the spatial 

patterns (real space) are mapped to the propagation constant distribution (k-space) using 

the spatial Fourier transform method [85]. 

Figure 4.3(a) shows the calculated intensity (|E|2) profiles of the resonances taken at 

the center of the PhC waveguide. The node(s) (minimum intensity) and antinode(s) 

(maximum intensity) of each resonance shown in the intensity profiles are due to the 

beating between the Bloch modes in the PhCR. The strong cross-coupling between the 

counter-propagation waves can be attributed to three primary sources in the PhCR 

structure: (1) reflection from the periodic interfaces, (2) backscattering from the interface 

roughness and (3) backward coupling from the coupling region between the PhCR and 

the input CWG. 



	 58 

 

Fig. 4.3. Calculated (a) intensity (|E|2) profiles and (b) Fourier transform 
amplitudes of the Hz components at the center of the PhC waveguide for the first 
eight resonances in the PhCR. FFT amplitudes of each resonance are normalized 

to the maximum value of the FFT amplitude at 1525.67nm. 
 

Figure 4.3(b) shows the Fourier transform of the Hz field profile for first five 

resonances in the PhCR. The Fourier transform peaks represent the corresponding Bloch 

mode k components. Except for the first resonance, all other Fourier transform spectra 

show two k components in the first Brillouin zone: k1 = m(2p/Na) is the forward 

propagating component and k2 = K – k1 is the backward propagating component, where 
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m is the mode number of the Bloch modes (|m| ≤  N/2) and K = 2p/a is the reciprocal 

space lattice vector. In addition, the number of beating node(s) can be expressed as B = 

(a/2p)|k1-k2| = N – 2m.  As shown in Fig. 4.3(a), one beating antinode is always located 

at θ=180° as B is an even number. Another beating antinode is located at θ=90° when B 

is a multiple of four.  Based on the intensity profiles along the ring as shown in Fig. 

4.3(a), one can expect that an output CWG placed at θ=90° will only select the even (m) 

resonances while an output CWG at θ=180° could select all the resonances. Moreover, if 

an output CWG is placed at θ=60° or at θ=120°, it would only select resonances with m 

equal to multiples of three (e.g., m=3 or m=6). 
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4.4 Device design for Bloch mode selection 

Inspired by the Bloch mode profiles, additional simulations were carried out for PhCRs 

with output CWGs located at polar angles of θ=90° and θ=180° with respect to the input 

CWG, as schematically illustrated in Fig. 4.4.  

 

Fig. 4.4. Schematic of PhCR with two output CWGs that are positioned at polar 
angles of θ=90° and θ=180° with respect to the input CWG.  

 

Figure 4.5 shows the 3-D FDTD calculated TE-polarized throughput transmission 

spectrum, as well as the drop-port in forward propagation (Drop-f) and drop-port in 

backward propagation (Drop-b) transmission spectra in the output CWGs at θ=90° and 

θ=180°. In the Drop-f-port and Drop-b-port spectra, the CWG at θ=90° preferentially 

selects a subset of resonance modes – all even m resonances (beating antinode at θ=90°) 

are selected – while all odd m resonances (beating node at θ=90°) are rejected. All 

resonances are selected when output CWG is place at θ=180°, as there is always a 

beating antinode at θ=180°. The average ratio between the output transmission of odd m 

resonances at θ=180° and rejected odd m resonances at θ=90° is ~15.8dB in forward 
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propagation and ~17.2dB in backward propagation. The transmission ratio is slightly 

reduced in the forward propagation direction because it is possible for a small portion of 

the forward propagating signal from the input CWG to couple to the output CWGs even 

when a resonance condition is not satisfied. 

 

Fig. 4.5. 3-D FDTD calculated TE-polarized (top) throughput spectrum and drop-
port spectra in (middle) the forward/Drop-f and (bottom) the backward/Drop-b 

propagation direction with polar angles of θ=90° and θ=180°. 
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4.5 Experimental results and discussion 

Figure 4.6 shows the top-view SEM of a fabricated PhCR with two output CWGs that are 

located at polar angles of θ=90° and θ=180° with respect to the input CWG. The design 

parameters of the PhCR structure are the same as the aforementioned device shown in 

Fig. 4.1, except for the widths of the CWGs. The widths of the input and output CWGs 

are set to 0.85a instead of 0.75a in the previous device. Choosing the narrower CWGs 

would allow stronger coupling between the PhCR and CWGs, leading to extra optical 

signal coupling to the drop ports regardless of the resonance conditions and therefore 

reduced contrast between mode selection and mode rejection in the device. 

 

Fig. 4.6. Top-view SEM image of the fabricated PhCR with two output CWGs 
located at polar angles of θ=90° and θ=180° with respect to the input CWG.  
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Figure 4.7 shows the measured TE-polarized transmission spectra of the throughput 

port and Drop-f ports with output CWGs at θ=90° and θ=180°. The measured maximum 

group index is ~12 with a maximum loaded Q-factor of ~1,500. The reduced Q-factor 

compared to the device in Fig. 4.1 is mainly due to the addition of the two output CWGs, 

as they reduce the photon lifetime in the resonator by providing additional out-coupling 

channels. Note that the band edge of the fabricated PhCR with two output CWGs is 

~30nm blue-shifted from the device reported in Fig. 4.1 due to the modified design and 

slight changes in the fabrication conditions that often arise in separate fabrication runs. 

Similar to the simulation results in Fig. 4.5, the Drop-f port at θ=90° is selective to 

even m resonances while rejecting odd m resonances, and all resonances are selected in 

the Drop-f port at θ=180°. The highest ratio between the output transmission of odd 

resonances at θ=180° and θ=90° is ~9dB at ~1527nm. The ratio is ~6dB for backward 

propagation waves out-coupled at Drop-b ports. The transmission ratio between the two 

output CWGs is reduced in experiment due to a small amount of leakage of the odd 

modes to the θ=90° Drop-f port, as the large curvature of output CWG could tap out 

power outside the beating node. We note that the first resonance mode above the PBG in 

this device has higher transmission in the Drop-f port at θ=180° than in θ=90°, which 

suggests that it is an odd mode, unlike the simulation results. This discrepancy could due 

to (1) under-coupling of the m=50 resonance mode due to the wider CWGs in experiment 

and (2) the m=50 and m=49 resonance modes being overlapped and leading to a 

superposition of the two modes in the drop port transmission.   

 



	 64 

 

Fig. 4.7. Measured TE-polarized transmission spectra of the PhCR: throughput 
port (green curve), drop port in forward propagation direction at θ=90° (red 

curve) and drop port in forward propagation direction at θ=180° (blue curve). 
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4.6 Conclusions 

In conclusion, a novel method of Bloch mode selection based on a silicon photonic 

crystal microring resonator has been demonstrated. By placing the output coupling 

waveguide at the beating antinode at an angle θ=90° with respect to the input coupling 

waveguide, resonances with an even mode number are selected while resonances with an 

odd mode number are rejected. The highest contrast between mode selection and mode 

rejection is ~9dB in experiment. This concept can be extended to enable further 

refinement in the mode selection by designing output coupling waveguides at other 

positions, enabling additional design freedom in microring-based multiplexers and add-

drop filters. 
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5. Chirped photonic crystal mode converters for broad-band coupling 
with highly dispersive photonic crystal microring resonators 

In this chapter, evanescent coupling between a photonic crystal (PhC) waveguide and a 

PhC embedded microring resonator has been demonstrated on the silicon-on-insulator 

platform. The mode converter comprises 6 linearly chirped air holes that adiabatically 

couple the light between the silicon waveguide mode and the PhC mode. Three-

dimensional finite-difference time-domain simulations reveal a coupling bandwidth of 

>100nm. From our experiment, the optical spectra show a photonic bandgap located 

below ~1590nm. At the resonances in the slow-light regime, a loaded quality factor as 

high as ~2500 was measured and a group index of ~16 in the PhC embedded microring 

resonator was estimated from the non-uniform free spectral ranges. 

 

5.1 Background 

Periodic structures exhibit strong dispersion, enabling dense photonic device integration, 

which is required for complex on-chip optical circuits. In recent years, several on-chip 

photonic devices such as tunable reflectors [86], wavelength selective couplers [87], 

multiplexers [88] and microlasers [89,90] have been demonstrated with periodically 

patterned waveguides and resonators. Previously, a novel microring resonator structure 

patterned with periodic circular air holes was demonstrated on a silicon-on-insulator 

(SOI) platform [60]. By taking advantage of the slow-light effect near the Brillouin zone 

edge, the footprint of the microring resonator can be reduced while preserving its 

capacity to support multiple optical channels in wavelength-division multiplexing 
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(WDM) technology. This structure may also find useful applications in chemical and 

biological sensing [32], as part of the optical field is located inside the lower refractive 

index region (i.e., in air holes) that is accessible for molecular attachment. 

As the device is operated in the slow-light regime, input-/output-coupling from/to the 

outside network could be challenging due to the phase mismatch. In our previous work, 

we achieved phase matching by reducing the width of the silicon waveguide [60]. 

However, this approach has several disadvantages on device performance. First, the 

coupling between the silicon channel waveguide and the PhC waveguide has a narrow 

bandwidth due to different dispersion characteristics. Only a few resonance modes in the 

resonators can be critically coupled with a specific coupling waveguide width. Second, 

when the air hole filling factor in the PhC waveguide increases, the silicon coupling 

waveguide width has to be decreased. Typically this decrease in waveguide width will 

result in large optical propagation loss when the width is narrower than 300nm [91]. 

Consequently, the approach of reducing the coupling waveguide width is not suitable for 

applications requiring broad bandwidth and a large air hole fill factor, such as chemical 

and biological sensing. In this paper, in order to improve the coupling bandwidth and 

provide better control on the coupling between the waveguide and the resonator, we 

design and fabricate a PhC coupling waveguide with chirped PhC mode converters 

attached at both ends.  

This section is organized as follows: In section 5.2 the device design and principle, in 

this case a PhC embedded microring resonator will be presented. The principle of 

adiabatic coupling by using chirped PhC mode converters will also be discussed. In 

section 5.3 the simulation results on chirped PhC mode converters will be presented. 
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These include results of dispersion characteristics and transmission spectra. In section 5.4 

the experimental results will be presented and discussed. These include the transmission 

spectra and out-of-plane near-field scattering images. This chapter will be conclued in 

section 5.5. 

 

5.2 Device design and principle 

In a conventional microring resonator that has been formed by a dielectric waveguide, the 

frequency-wavevector dispersion relation in the telecommunication wavelength range is 

almost linear. Therefore the group index and the free spectral range (FSR) are nearly 

constant in this range. As a result, the resonance dips in the transmission spectrum are 

evenly spaced.  

However, the situation is different when a highly dispersive structure is used to form 

a micro-resonator. Inspired by the one-dimensional PhC waveguide, we patterned 

microring resonators with periodic air holes. The photonic crystal structure enables a 

strong dispersion characteristic near the photonic bandgap (PBG). When the wavelength 

of light approaches the photonic band edge, the group index increases as the group 

velocity is close to zero. As the FSR is inversely proportional to the group index, the 

resonant dips are not evenly spaced in the transmission spectrum and the FSR becomes 

minimum when wavelength of light is near the band edge [60].  

By introducing the slow-light dispersion into the microring resonator, the PhC 

embedded microring resonator can have the same FSR as a larger size conventional 

microring resonator. Hence we can reduce the required footprint of the micro-resonator, 
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especially in some applications where FSR is a major consideration, such as the WDM 

system.  

 

Fig. 5.1. Schematic of the coupling wavevectors between the input waveguide 
and (a) the standard ring resonator and (b) the one-dimensional PhC microring 

resonator. β is the propagation wavevector in the waveguide. β' is the propagation 
wavevector of light traveling in the ring. 

 

In general, we control the coupling strength by matching the phase velocity between 

the waveguide mode and the resonance mode to couple the light into/out from the 

microresonator from/to the outside network. When we consider the standard waveguide-

coupled ring resonators as shown in Fig. 5.1 (a), the phase matching condition is 

achieved (β = β’) when the width of the waveguide is the same as that in the ring (we 

assume the effect of the bending of the ring is minimal). In addition, the coupling 

bandwidth is wide because both the waveguide and the ring have identical dispersion 

properties.  

However, the phase matching is more complicated when we consider the coupling 

between a linear dispersive waveguide and the highly dispersive one-dimensional PhC 

microring resonator as shown in Fig. 5.1(b). As we introduce periodic air holes with 

lower refractive index along the ring, the effective index (as the propagation wavevector, 
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β’) of the ring is significantly reduced. In order to match the phase velocity between the 

ring and the input waveguide, we can reduce the width of the waveguide such that its 

propagation wavevector β is equal to β’ [60]; however, the aforementioned drawbacks of 

reduced bandwidth and limited air hole fill factor result. 

In order to enhance the coupling bandwidth and have more freedom in controlling the 

coupling, here we propose and demonstrate an adiabatic coupling approach by using a 

chirped PhC mode converter. Figure 5.2 shows the schematic of the chirped PhC mode 

converter for coupling between the silicon waveguide and one-dimensional PhC 

microring resonator. The mode converter converts the light from the waveguide 

propagation mode to the PhC propagation mode. It is comprised of several chirped PhC 

air holes with different radius and lattice constant. By using this design, the coupling 

bandwidth of the whole system is now controlled by the mode converter. The design 

parameters of chirped PhC mode converter are based on the dispersion characteristic 

simulations described in next section. 

The design parameters of the one-dimensional PhC microring resonator in this paper 

are the same as in [60]. The structure is built on the SOI platform with a 250nm thick 

device layer. The silicon layer is etched through to the buried oxide layer for the 

waveguides/ring/air holes (i.e., the silicon etch depth is 250nm). There are N = 100 

circular air holes on the ring resonator, resulting in a ring radius of ~7.16µm. The 

periodicity of the air holes is a = 450nm, the hole radius is r = 0.3a = 135nm, the width 

of the ring is w = a = 450nm.  
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Fig. 5.2. Schematic of the PhC mode converters for coupling between silicon 
waveguide and one-dimensional PhC microring resonator. The mode converter 

converts the waveguide wavevector β into PhC wavevector β’. 
 

5.3 Simulation results 

In order to obtain the design parameters of the chirped PhC mode converter, we 

calculated the dispersion characteristics of the one-dimensional PhC waveguide. The 

simulations were done by MIT Photonic-Band (MPB) software that utilizes the plane-

wave expansion (PWE) method [37]. Figure 5.3 (a) shows the calculated contour map of 

the wavevector k of the chirped PhC waveguide at the band edge frequency ωo. The 

polarization is transverse-electric (TE) like (electric field parallel to the device plane). 

The y-axis represents the normalized lattice constant a’ and the x-axis represents the 

normalized hole radius r’. This frequency ωo is corresponding to the band edge frequency 

of the unchirped one-dimensional PhC waveguide to form the microring resonator with 

design parameters shown in section 5.2. At frequency ωo, the wavevector of the 

unchirped PhC waveguide is ko. The color area in the contour map depicts the possible 

solutions of the chirped PhC waveguide. The solutions of the chirped PhC have band 

edge frequency ω larger than ωo, while wavevector k is also larger than ko.  
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Fig. 5.3. (a) Contour map of wavevector k of the chirped PhC at the band edge 
frequency. The 6 linear chirped parameters (0.37r, 0.90a), (0.63r, 0.92a), (0.77r, 

0.94a), (0.82r, 0.96a), (0.90r, 0.98a) and (1.00r, 1.00a) are circled. ωo is the 
band edge frequency of unchirped PhC. ko is the band edge wavevector of 

unchirped PhC.  (b) Calculated band diagram of the 6 selected chirped PhC 
parameters and the dielectric waveguide. ωo is the band edge frequency. kphc is 

the band edge wavevector in the unchirped photonic crystal waveguide. kwg is the 
wavevector of the silicon channel waveguide. 

 
 

In this work, we selected six solutions (including the original unchirped PhC) for the 

linearly chirped PhC waveguide to form the mode converter. These six linear chirped 

parameters (r’, a’) are (0.37r, 0.90a), (0.63r, 0.92a), (0.77r, 0.94a), (0.82r, 0.96a), (0.90r, 

0.98a) and (1.00r, 1.00a) and are represented by the circles in the contour map of Figure 

3(a). The normalized lattice constants of six holes linearly increase from 0.90a to 1.00a, 

and corresponding air hole radii were selected to provide evenly spaced projected 

wavevectors at frequency ωo. These parameters correspond to a smallest air hole radius of 

50 nm, which is within the fabrication limitation of the-state-of-the-art electron beam 

lithography.  

Based on these parameters, we calculated the corresponding dispersion curves of the 

chirped PhC and the dispersion curve of the dielectric waveguide as shown in Figure 
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3(b). At the band edge frequency ωo, the wavevector is coupled from/to kphc of the 

unchirped photonic crystal waveguide to/from kwg of the dielectric waveguide. In order to 

understand the coupling efficiency and bandwidth, we simulated the transmission spectra 

by using the finite-difference time-domain (FDTD) method. 

We simulated the transmission spectra using a three-dimensional FDTD method [36]. 

The design parameters are the same as depicted in Section 2 and Section 3.1. The input 

polarization is TE-like. Figure 5. 4(a) shows the schematic of our structure under the 

simulation environment. Our structure consists of 11 air holes in the coupling waveguide, 

where 10 of them are used to form two sets of chirped PhC mode converters. The gap 

separation between the coupling waveguide and PhC ring is 135nm, which has been 

selected to provide high extinction ratio of resonance dips. 

Figure 5.4 (b) shows the transmission spectrum from this structure and Figure 5.4 (c) 

shows the transmission spectrum of the control structure with only the coupling 

waveguide. The spectra show that the photonic band edge is located at ~1690nm. We 

note that this band edge is ~150nm red-shifted compared to our bandgap simulations 

reported in [60]. We suspect the deviation could due to differences in the simulation 

environment such as mesh size and bending of PhC waveguide in the ring.  

In Fig. 5.4(b), we observed resonance peaks and resonance dips with non-uniform 

FSRs in the wavelength range of ~1690nm to 1850nm. They are associated with the PhC 

microring resonator as the resonance peaks and dips do not appear in the control 

spectrum. The FSR of resonances is ~22nm at wavelength of ~1830nm and is reduced to 

~5.5nm at wavelength of ~1690nm. Thus the group index of PhC mircroring resonator 

increases from ~3.4 at wavelength of ~1830nm to ~11.6 at wavelength of ~1690nm. The 



	 74 

increase of group index is due to the slow-light effect near the band edge. The highest 

simulated loaded quality factor is ~1000 at resonance wavelength of ~1695nm. While at 

resonance wavelength of ~1840nm, the simulated loaded quality factor is only ~110. The 

enhancement of quality factor close to band edge can be due to (1) better confinement in 

the PhC microring resonator at shorter wavelength and (2) slow-light effect [6]. At 

wavelengths close to band edge, resonance peaks appear instead of resonance dips. We 

suspect this effect is due to the bandgap mismatch between the straight PhC waveguide 

and bended PhC microring resonator. We suggest that the bandgap matching can be 

improved by bending the coupling PhC waveguide to the same curvature as the 

microring.  

From the transmission spectrum in Fig. 5.4 (b), the resonance dips have high 

extinction ratio (>10dB) for wavelengths from ~1730nm to ~1810nm, which indicates a 

similar coupling condition in this wavelength range. As the quality factor is significantly 

decreased at longer wavelengths close to 1850nm, the critical coupling condition changes 

and the extinction ratios of resonance dips decrease. When we take into account the 

resonance peaks from wavelengths of ~1680nm to ~1730nm, the chirped PhC mode 

converter provides a coupling bandwidth of >100nm between the silicon waveguide and 

the PhC ring. 
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Fig. 5.4. (a) Schematic of chirped PhC mode converters and PhC microring 
resonator under FDTD simulation environment. (b) 3D FDTD simulated TE-

polarized transmission spectrum of chirped PhC mode converters coupled with 
PhC microring resonator. (c) 3D FDTD simulated TE-polarized transmission 

spectrum of control structure without the PhC microring resonator. 
 

We labeled the first few slow-light modes as mode A (1703.32nm), mode B 

(1711.24nm) and mode C (1721.91nm) near the band edge in Fig 5.4 (b), and we 

simulated their corresponding steady-state intensity profiles as shown in Fig. 5(a)–(c).  

 

Fig. 5.5. Simulated steady-state intensity profiles of the structure at wavelength 
of (a) 1703.32nm, (b) 1711.24nm and (c) 1721.91nm. The input beam is 

launched from top left to top right in each profile. 
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The intensity profiles confirm that the input beam has been coupled into the PhC ring 

resonator at resonance peaks/dips. The mode profiles have even number of nodes across 

the ring, resulted from the beating of forward and backward light in the resonator. When 

the resonance wavelength decreases, the number of nodes across the ring also decreases. 

As the mode profiles show 14 nodes at 1721.91nm, 12 nodes at 1711.24nm and 10 nodes 

at 1703.32nm. These phenomena are in good agreement with our previously calculated 

results under a different simulation platform [60]. 

 

5.4 Experimental results and discussion 

Figure 5.6 (a) shows the top-view scanning electronic microscope (SEM) image of our 

fabricated chirped PhC mode converters with PhC microring resonator. The measured 

waveguide width is 460nm for both the PhC waveguide in the ring and the waveguide in 

coupling region. The measured coupling gap separation is 188nm. For the air holes to 

form the PhC microring resonator, the measured radii are around 150nm. The radius of 

the microring resonator is around 7.15mm. The strong charging effect under the SEM 

image suggests that the silicon device layer has been etched down to the buried oxide 

layer. 

Figure 5.6 (b) shows the zoom-in top-view SEM image of the coupling region 

between the chirped PhC mode converters and PhC microring resonator. The measured 

air hole radii for the chirped PhC mode converters are 58nm, 96nm, 118nm, 121nm, 

134nm and 147nm, respectively. From the measurements, the fabricated air hole radii for 

the mode converters are ~10-20nm larger than our design values. The coupling gap 
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separation is ~30nm wider, and the air hole radii on PhC microring resonator are ~15nm 

larger. From the zoom-in image, we also found that the shape of the air hole is slightly 

distorted. We believe that such deviations in the hole radii and waveguide width can be 

attributed to artifacts in the fabrication process, such as the overdose and the proximity 

effect in the EBL exposure, or the isotropic etching in the RIE process. 

 

Fig. 5.6. (a) Top-view SEM image of fabricated chirped PhC mode converters 
with PhC microring resonator. (b) Zoom-in top-view SEM image of the coupling 

region. 
 

5.4.1 Transmission spectrum 

Fig. 5.7(a) shows the measured TE-polarized transmission spectrum of the PhC 

microring resonator coupled to chirped PhC mode converters shown in Fig. 5.6. The 

wavelength resolution is 0.1nm. In the spectrum, we observed almost zero transmission 

from 1510nm to 1590nm. From 1590nm to 1630nm, there are several resonance peaks 

with high extinction ratio. The FSRs between resonance peaks are non-uniform and range 

from 8nm at longer wavelength to <4nm at shorter wavelength close to 1590nm. The 
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non-uniform FSRs suggest the PhC microring resonator introduces the resonance peaks. 

The experimentally measured spectrum is similar to our calculated one for wavelengths 

close to and shorter than the band edge. From this result, we deduce the photonic 

bandgap is located at wavelengths below ~1590nm. The wavelength of the band edge is 

~100nm blue-shifted compared to our FDTD simulation results presented in section 5.3. 

Such blue-shift can be attributed to larger air hole dimensions of the fabricated device. 

We also note that the wavelength of the band edge is ~50nm longer than the one in our 

previous experimental results reported in [60] with same design parameters. Such red-

shift of the band edge could be due to the different thickness of the device layers of the 

two different sets of SOI wafers that were used. Due to the red-shift of the band edge, 

only a ~40nm of wavelength range outside bandgap can be measured from our setup. 

This induces the difficulty to compare the coupling bandwidth of the chirped PhC mode 

converters between experiments and simulations. We suggest a modified design of 

chirped PhC mode converters and PhC microring resonator could induce the blue-shift of 

band edge to ~1530nm in future experiment. The new designs have larger air hole size 

and narrower waveguide width on a SOI substrate with thinner device layer.  

We remark that the resonance peaks shown in the spectrum may also result from 

structures other than the PhC microring resonator such as the mode converters itself. 

However, the FSRs of resonance peaks do not match with the dimension of any other 

structures in the design layout to form a Fabry-Perot like response. Moreover, near-field 

scattering images shown below support this conclusion. 
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Fig. 5.7. (a) Measured TE-polarized transmission spectrum of the PhC microring 
resonator coupled by chirped PhC mode converter. PBG: photonic bandgap. (b) 
Measured TE-polarized transmission spectrum with close-up wavelength range 

from 1590nm to 1630nm. The resonances are identified with asterisks. 
 

Figure 5.7 (b) shows the measured spectrum in the wavelength range from 1590nm to 

1630nm, for wavelengths outside the bandgap region. The wavelength resolution is 

0.02nm. We identified the resonances with asterisks in the figure. A loaded quality factor 

of ~2500 was measured at wavelength of ~1595nm. For wavelengths around 1600nm and 

1610nm, we observed doublets for these resonance peaks. The doublets are likely to 

result from the mode splitting caused by the strong cross coupling between degenerate 

forward and backward modes in our structure [92]. 

 

5.4.2 Out-of-plane infrared image  

In order to verify the resonances and photonic bandgap, we performed an experiment 

to image the out-of-plane near-field scattering. Figure 5.8 (a) shows the near-field image 

of the PhC microring resonator at wavelength of ~1585nm, where the wavelength is 
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within the bandgap. Figure 5.8 (b) shows the near-field image at wavelength of ~1614nm, 

where a resonance peak appears in the spectrum. We observed that there was no scattered 

light from the PhC microring resonator when the wavelength of light is within bandgap, 

as shown in Fig. 5.8(a). The scattered spot in the image was from the PhC mode 

converter region that contributed to the high out-of-plane radiation. When the wavelength 

is outside the bandgap, there was scattered light from the PhC microring resonator when 

the wavelength of the input beam matches the wavelength of a resonance peak in the 

spectrum, as shown in Fig. 5.8(b). Thus these images confirm the existence of the 

bandgap and that the peaks in the spectrum are from the resonances of the resonator.  

 

 

Fig. 5.8. Out-of-plane near-field scattering images of the PhC microring 
resonator at wavelength of (a) 1585nm (within the photonic bandgap) and (b) 
1614nm (outside the photonic bandgap).  (c) Group index calculated from the 

measured spectra. 
 

Figure 5.8 (c) shows the measured group index of PhC microring resonators as a 

function of normalized wavelength (to the first resonance wavelength near the band edge) 
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for three different designs with varying coupling gap separations from 160nm to 340nm. 

We calculated the group index by the non-uniform FSRs from the measured spectra and 

also the radiated light. The largest estimated group index is ~16. As the group index of a 

silicon channel waveguide is about 4, we achieved a 4 times enhancement of group index 

in the PhC microring resonator due to the slow-light effect. 

 

5.5 Conclusions 

We propose and experimentally demonstrate evanescent coupling between a silicon 

waveguide and a PhC microring resonator through chirped PhC mode converters on the 

SOI platform. Our theoretical studies reveal the chirped PhC mode converter has a broad 

coupling bandwidth of >100nm. Experimental results show coupling of light from the 

silicon waveguide to the PhC microring resonator with a photonic band edge located at 

~1590nm, a loaded quality factor of 2500 and a group index of ~16 in the slow-light 

regime. The structure may provide applications in optical signal processing and 

chemical/biological sensing. 
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6. Embedded one-dimensional photonic crystal cavity 

In chapter 3-5, the applications of photonic crystal microring resonator (PhCR) on label-

free biosensing and optical-interconnects are presented. PhCR shows superior 

performance over conventional platform on bio-sensing, and also demonstrates a novel 

Bloch modes selection method. These emphasize the importance of optical characteristics 

such as the light-matter interaction and the field distribution of a photonic structure in 

numerous applications. While PhCR structure combines the 1-D photonic crystal 

waveguide with microring resonator, it is also feasible to build a novel nano-photonic 

device by combing a 1-D photonic crystal nano-beam cavity and a microring structure. 

This device, name as embedded one-dimensional photonic crystal cavity (EPhCC), shows 

a surprising high quality factor for a range of graded mirror period over conventional 1-D 

photonic crystal nano-beam cavity. Moreover, unlike the conventional waveguide butt-

coupled cavity, the EPhCC structure can be conveniently implemented in a wavelength-

division multiplexing (WDM) system. It is crucial for applications in optical-

interconnects such as low-footprint multi-wavelengths low-energy optical modulation.  
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6.1 Background 

In last two decades, one-dimensional (1-D) and two-dimensional (2-D) photonic crystal 

(PhC) cavities at optical wavelength have been studied extensively due to its excellent 

compatibility with nano-fabrication process [93-109]. By creating a defect to the periodic 

dielectric function and minimizing radiation losses, Quality factor of ~106 with mode 

volume of ~(λ/n)3 PhC cavities have been recently demonstrated [110]. Compared to 2-D 

PhC cavities, 1-D PhC cavities offer advantages of reduced footprint, lower mass and 

simplified geometry. These lead to demonstration of numerous applications including 

optical-interconnects, sensing, and cavity opto-mechanics. However, most reported 1-D 

PhC cavities (“nano-beam”) were based on waveguide butt couple configurations [110]. 

An evanescent coupled configuration would be required when employing nano-beam 

structure into a WDM system. Although the intrinsic quality factor and mode volume of 

the waveguide butt coupled nano-beam and the evanescent coupled based nano-beam are 

highly similar, as shown in later sections of this chapter, the coupling waveguide the at 

the proximity of the nano-beam cavity in evanescent coupling would strongly reduce the 

photon lifetime in the cavity thus results in a low quality factor cavity. As high quality 

factor is essential for number of on-chip photonic applications such as cavity opto-

mechanics and non-linear optics, better schemes of coupling waveguide designs or nano-

beam designs are necessary. In this chapter, we proposed and demonstrated a novel 

photonic device – embedded one-dimensional photonic crystal cavity (EPhCC). It is 

similar to and function as a 1-D nano-beam resonator but with superior quality factors 

and similar mode volumes over a wide range of graded mirror period that one would 
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usually employed. Moreover, EPhCC structure, unlike conventional nano-beam, provides 

good compatibility to the WDM system due to its evanescent coupling scheme. 

In the following sections, designs, simulation and experimental results of EPhCC 

structures will be presented and discussed. The comparison between EPhCC and 

conventional nano-beam structures will also be provided. A shifted-holes scheme to 

further enhancing the quality factor of EPhCC will be discussed. Continue work for 

enhancing its optical performance by modifying the coupling waveguide orientation will 

also be suggested. 
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6.2 Device structures 

There are two types of 1-D PhC cavities will be studied in this paper – (1) conventional 

waveguide butt coupled nano-beam and (2) the purposed novel EPhCC structure. 

Schematic diagrams of these structures are depicted in Fig 6.1. All the design parameters 

that are crucial to optical characteristics of the cavities are identical for both conventional 

nano-beam and EPhCC. Fig. 6.1(a) shows the top-view schematic of a conventional 

waveguide butt coupled nano-beam. The nano-beam has a high index region as silicon 

(index of ~3.5) and a low-index region as air (index of ~1). The nano-beam configuration 

and key design parameters such as period a, air holes filling factors and waveguide width 

w are based on prior work reported in [111]. By minimizing the radiation loss of cavity 

with quadratic variation of filing factor, this cavity design could provide >107 intrinsic 

quality factor. In the schematic in Fig. 6.1(a), there are 30 air holes in the nano-beam, as 

one graded mirror segment consists of 15 air holes. The waveguide extends from the 

graded mirror segments to the input and output for butt coupling. This nano-beam 

structure is the most common configuration due to its convenient coupling scheme and 

will be used as a control structure in this chapter. 

 

Fig. 6.1. Schematic of (a) the conventional waveguide butt coupled nano-beam, 
and (b) the embedded one-dimensional photonic crystal cavity. All two 

schematics have identical design parameters of waveguide width, graded mirror 
period and air holes filling factor. The area in red color represent high index 

region (silicon) and the area in grey and black colors represent low index region 
(air). 
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Fig. 6.1(b) shows the top-view schematic of an EPhCC. As in Fig. 1(a), the EPhCC 

has a high index region as silicon (index of ~3.5) and a low-index region as air (index of 

~1). One could imagine that the EPhCC is constructed by rolling up a conventional nano-

beam to form a ring-shaped nano-beam. Therefore the radius of the ring-shaped EPhCC 

is equal to the 1/2π of the total length of the nano-beam. The design parameters of both 

nano-beam and EPhCC such as waveguide width, graded mirror period and air holes 

filling factor are identical for fair comparison. In the EPhCC, the distance between last air 

holes in the left-hand graded mirror and right-hand graded mirror is equal to the period of 

the PhC structure.  

The evanescent coupling nature of EPhCC could potentially provide a better control 

of coupling strength, thus extinction ratios of resonances, between the coupling 

waveguide and the EPhCC cavity over conventional butt coupled nano-beam structures. 

Due to the ring-shaped design, in order to use a coplanar coupling waveguide for 

evanescent coupling, the coupling waveguide can only be placed near the bottom (south) 

side of EPhCC in the schematic. Fig. 6.2(a) shows the schematic of coupling waveguide 

placed at the bottom (south) side of the EPhCC, one can control the width of coupling 

waveguide and the gap separation between the coupling waveguide and the nano-beam to 

obtain a desire coupling condition.  
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Fig. 6.2. (a) Schematic of the EPhCC with a coplanar coupling waveguide placed 
at the bottom (south) side of the nano-beam. (b) Schematic for a WDM system 

that employing a single coupling waveguide evanescently coupled to four 
EPhCCs with different resonance wavelengths. EPhCC with different colors 

represent different resonance wavelengths. 
 
By employing evanescent coupled waveguide, EPhCC has advantage of compatibility 

for WDM system in on-chip optical-interconnects. Furthermore, one can design the 

resonance wavelength of the nano-beam cavity by slightly modifying the width, filing 

factors and air holes positions regarding to the center of the ring (in shifted-hole EPhCC 

design). These modification and wavelength tunings are done without any major 

compensation on quality factor and mode volume (in the case of shifted-hole design, the 

quality factor could actually be enhanced). Fig. 6.2(b) shows the schematic diagram for 

such an example of a WDM system that employing a single coupling waveguide 

evanescently coupled to four EPhCCs with different resonance wavelengths. Such system 

has an advantage of much smaller footprint over conventional WDM system that 

employing multiplexer/de-multiplexer such as arrayed waveguide grating or Mach-

Zehnder interferometer. One can also utilize the free-carrier-plasma-dispersion effect in 

silicon [10] to modulate the resonances of each EPhCC by electro-optic modulation. 
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6.3 Simulation results 

6.3.1 Calculated intrinsic quality factor 

In order to elucidate the optical properties such as resonance wavelengths, quality factors, 

mode volumes, transmission spectra and mode profiles of conventional nano-beam and 

EPhCC, 3-D finite difference time domain (FDTD) simulation were carried out [36]. In 

this paper, all the calculations are for transverse-electric (TE) mode (electric field parallel 

to the device plane). Throughout the simulation, we set w=700nm and a=330nm as 

depicted in [111]. The filling factor of air holes are 20% at the center of cavity and 10% 

at the edge of graded mirror, that result in air hole radii of ~121nm at the center and 

~86nm at the edge. These designs parameters are well within the limitation of our 

fabrication process and potentially could be able to be manufactured by state-of-the-art 

CMOS fabrication foundry [64]. 

Fig. 6.3(a) shows the 3-D FDTD calculated quality factors of the fundamental mode 

with different graded mirror period for conventional waveguide butt coupled nano-beam 

and EPhCC. In the FDTD simulation, magnetic dipoles were used as optical sources and 

quality factors were calculated by examining the optical power decay as a function of 

time. The graded mirror periods used in the simulations were 6, 8, 10, 12, 15, 20 and 25. 

For both structures, the quality factors increase as the number of graded mirror period 

increase. As the graded mirror period increase, the reflection coefficient of graded mirror 

increases, hence enhancing optical confinement and quality factors. At graded mirror 

period of 20, EPhCC shows more than two times higher in intrinsic quality factor than 

straight-shaped nano-beam counterparts. As the calculated quality factor of nano-beam is 

~1x106, while the calculated quality factor of EPhCC is ~2.2x106. Note that the quality 
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factors calculated here are representing the intrinsic quality factors, a modification of the 

structure such as adding a coupling waveguide for coupling light in-to/out-of evanescent 

coupled nano-beam would further decease its loaded quality factors. The calculated mode 

volume for conventional butt coupled nano-beam and EPhCC are ~0.05 µm3 or ~0.013 λ3 

(λ is 1.55µm). The mode volumes are relatively irrelevant to the graded mirror period 

when the period is higher than 12, as most of the fundamental mode field energy are 

concentrated in the silicon region between the left and right graded mirror segments. 

  

Fig. 6.3. (a) 3-D FDTD calculated quality factors of the fundamental mode with 
different graded mirror period for butt coupled nano-beam and EPhCC. (b) .The 
ratio of calculated quality factors of EPhCC and butt coupled nano-beam. (Inset) 
TE-polarized |E|2 mode profiles of the fundamental mode of conventional nano-

beam and EPhCC.  
 

Fig. 6.3(b) shows the ratios of calculated intrinsic quality factors of EPhCC and 

conventional nano-beam. The EPhCC structure shows a superior intrinsic quality factor 

over conventional nano-beam for period between 8-20. We contributed the quality factor 

enhancement is due to the increase of reflection coefficient of ring-shaped graded mirror 

in the EPhCC structure, as the end of left graded mirror attached to the other end of right 
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graded mirror that effectively increase the mirror period. The resulted mirror reflectivity 

enhancement in EPhCC overcomes the additional bending loss due to high-curvature and 

achieves a highest of ~27 fold improvement over conventional nano-beam at mirror 

period of 15. Note that the enhancement factor decreases when graded mirror period 

increases from 15 to 25. This is because the mirror reflectivities are almost unchanged 

among these designs, but the bending losses of the ring-shaped EPhCC become the major 

source of optical loss in the cavity. However, in order to maintain a small footprint for 

dense integration for on-chip optical-interconnects applications, a graded mirror period of 

<20 would be desirable, in where EPhCC provide significant improvement of quality 

factor over conventional nano-beam structures. 

Inset of Fig. 6.3(b) shows the TE-polarized |E|2 mode profiles of the fundamental 

mode of conventional nano-beam and EPhCC. For the conventional nano-beam, the 

optical field is localized between two graded mirror segments and gradually decayed 

from the center of the nano-beam to the two ends of graded mirrors. Similar to the 

conventional nano-beam, the optical field of EPhCC is also localized between two curved 

graded mirror segments. Which suggests the nature of optical confinement in EPhCC is 

similar to conventional nano-beam. The optical field in the EPhCC is also gradually 

decayed from the center of the nano-beam to two ends of curved graded mirrors as light 

guided within the ring-shaped structure. Moreover, the optical field in EPhCC is slightly 

shifted away from the center of the nano-beam to the outer rim of the ring due to the high 

curvature. This could potentially reduce the quality factor due to mode asymmetry and 

leads to the design of shifted-holes EPhCC for compensation. 
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6.3.2 Coupling waveguide designs for evanescent coupling to EPhCC 

For EPhCC structures, coupling waveguide designs are important for achieving high 

extinction ratio (ER) and loaded quality factor in the transmission of the micro-cavities. 

In this sub-section, simulations of ERs and quality factors for different coupling 

waveguide designs are presented. The simulation results were used as a guideline for 

design parameters that employed in device fabrications. They also provide insight on how 

the presence of coupling waveguides could affect the optical characteristics of EPhCC. 

Fig. 6.4(a) shows the calculated extinction ratio and calculated loaded quality factor 

of the coupled fundamental mode of evanescent coupled EPhCC with different coupling 

waveguide designs. The period of the graded mirror is 15. The coupling waveguide 

widths are from 700nm to 350nm. The gap separation between the coupling waveguide 

and the nano-beam is fixed at 100nm. When the coupling waveguide width is decreased 

from 500nm to 400nm, the ER increases from ~0.3dB to ~4dB, and the loaded quality 

factor decreases from ~5,000 to ~1,000. This reduction of loaded quality factor is due to 

the increase of coupling strength from the cavity to the coupling waveguide, thus 

increases the total loss of the cavity and reduces its quality factor. For coupling 

waveguide width of >500nm, the calculated loaded quality factors also suggested the 

introduction of coupling waveguide into the structure significantly reduce the loaded 

quality factors of EPhCC. As the highest loaded quality factors of ~5,000 at 500nm 

coupling waveguide width is three orders lower than the intrinsic quality factor of 

1.36x106. In addition, when the coupling waveguide width increased from 500nm to 

700nm, even the coupling coefficient from the waveguide to the cavity decrease, the 

loaded quality factor further reduced from ~5,000 to ~2,000. This suggests the increase of 
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coupling waveguide width would further increase the radiation loss of the cavity. We 

suspect the significant reduction is related to the mode distribution of EPhCC, as shown 

in inset of Fig. 6.3(b), the optical field of EPhCC shifted to the outer rim of the ring due 

to the high curvature of bending. It results in a stronger modal overlap between the 

coupling waveguide and EPhCC. The ER results shown in Fig. 6.4(a) also suggests that a 

coupling waveguide width of <400nm is necessary to achieve high extinction ration of 

resonance dip in transmission spectrum. However, due to the narrow gap separation of 

100nm in the simulation, the presence of coupling waveguide would also increases the 

radiation loss of the cavity. Therefore a stronger coupling into the cavity for achieving 

higher ER is required.  

 

Fig. 6.4. (a) (left y axis) 3-D FDTD calculated extinction ratio and (right y axis) 
loaded quality factor of the coupled fundamental mode of the evanescent coupled 
EPhCC with different coupling waveguide designs. The gap separation between 
the coupling waveguide and the nano-beam is 100nm. (b) 3-D FDTD calculated 
(left y axis) loaded quality factor and (right y axis) resonance wavelength of the 
coupled fundamental mode of the evanescent coupled shifted-holes EPhCC with 
shifted-holes designs. The gap separation between the coupling waveguide and 

the nano-beam is 200nm. 
 

In order to experimentally achieve both high ER and high loaded quality factor, the 

actual deigns for device fabrication consist of coupling waveguide widths as 300nm to 
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400nm, and separation gaps as 50nm to 500nm. There are two approaches could 

potentially eliminate the effect of quality factor reduction due to presence of coplanar 

coupling waveguides. First, we can couple the light in-to/out-of the EPhCC cavity by a 

coupling waveguide that positioned above (out-of-plane) or below (in-plane) the EPhCC. 

As the evanescent field in both out-of-plane and in-plane direction of EPhCC cavity 

would be weaker for TE-mode. The disadvantage of this approach is a complicated 

fabrication process. As precise control of thin film thickness like poly-silicon waveguide, 

oxide layer thickness is required. Second approach is by designing shifted-holes EPhCC 

that could compensate the shifting of optical mode, thus reducing its modal overlap with 

the coupling waveguide. The principle and simulation results of this structure will be 

shown in the next section. 

6.3.3 Design of shifted-holes EPhCC for enhancing quality factor 

In shifted-holes EPhCC, the air holes are shifted toward the outer rim of the ring-shaped 

EPhCC from its original positions in the original non-shifted design. By shifting the air 

holes toward the other rim, the effective index of inner rim regions increases and the 

effective index of outer rim regions decrease. It thus compensates the increased effective 

index of outer rim regions introduced by high-curvature in EPhCC structure. Fig. 6.4(b) 

shows the 3-D FDTD calculated loaded quality factor and resonance wavelength of the 

coupled fundamental mode of the evanescent coupled shifted-holes EPhCC with different 

shift-holes designs. The period of the graded mirror is 15. The coupling waveguide width 

is 300nm. The gap separation between the coupling waveguide and the shifted-holes 

EPhCC is 200nm. The shift-holes designs are 0nm (no shift), +5nm, +10nm, +15nm, 
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+20nm, +30nm, +50nm, +70nm, where the + sign means air holes shifted out from the 

center of the ring. As shown in Fig. 6.4(b), as the hole shifted from 0nm to 70nm from 

the center, both the quality factor and resonance wavelength are linearly increased. The 

quality factor has been improved from ~1,200 at 0nm shift to ~1,650 at 70nm shift, this 

correspond to 38% of enhancement. The resonance wavelength has been red-shifted from 

~1530nm at 0nm shift to ~1552nm at 70nm bias, this correspond to a factor of 0.31. As 

the coupling waveguide width and gap separation remain unchanged among all designs, 

the red-shifted of resonance wavelengths suggests a higher portion of optical mode has 

been confined in the silicon when the magnitude of hole shift increase, this is well match 

with our intuitive explanation provided above. This resonance wavelength-tuning feature 

of shift-holes EPhCC designs can also be used to employ a WDM system as depicted in 

Fig. 6.2(b). For example, a 20nm shift-hole design would induce a resonance red-shifted 

of ~6.3nm.  
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6.4 Experimental results and discussion 

Fig. 6.5(a) shows the top-view scanning electron microscope (SEM) image of the 

fabricated conventional butt coupled nano-beam. The structure is fabricated on a SOI 

platform with a 220nm thick device layer. The silicon layer is etched through to the 

buried oxide (BOX) layer. The details of fabrication process can be found in chapter 2. 

For the device shown in the SEM image, the period of the graded mirror is 12. Similar to 

the simulation, the design parameters used for conventional butt coupled nano-beam are: 

w=700nm, a=330nm, and filing factor from 0.2 to 0.1. The designs of graded mirror 

period are 12, 15, 20, 25 and 30. Multiple biasing conditions have been applied to 

structure parameters like air-holes radius and waveguide width w to compensate the 

effect of fabrication imperfection such as over-dosing during the EBL process and non-

ideal anisotropic etching in the RIE process. 

 

Fig. 6.5. (a) Top-view SEM image of the fabricated conventional waveguide butt 
coupled nano-beam. (b) Top-view SEM image of the fabricated EPhCC with a 
coupling waveguide. The period of the graded mirrors are 12 for both devices 

shown. 
 

Fig. 6.5(b) shows the top-view SEM image of the fabricated EPhCC structure. For the 

device shown in the SEM image, the period of the graded mirror is 12. Similar to 
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conventional nano-beam, the design parameters used for EPhCC: w=700nm, a=330nm, 

and filing factor from 0.2 to 0.1. For coupling waveguide designs, the selected waveguide 

widths are 300nm, 350nm and 400nm. The gap separations are 50nm, 70nm, 90nm, 

120nm, 150nm, 200nm, 300nm and 500nm. These design parameters for coupling 

waveguide widths and separation gaps are aimed to extract the highest measurable loaded 

quality factor from EPhCC by covering a wide range of loss/coupling conditions. Similar 

to conventional nano-beam design, multiple biasing conditions have been applied to 

structure parameters like air-holes radius and cavity waveguide width w to compensate 

the effect of fabrication imperfection. 

6.4.1 Conventional waveguide butt coupled nano-beam 

Fig. 6.6(a) shows the measured TE-polarized transmission spectra of the conventional 

waveguide butt coupled nano-beam with different graded mirror period. As the number 

of graded mirror period increases, the free spectral ranges (FSR) between fundamental 

mode and higher order modes reduce. The Fabry-Perot (F-P) responses at longer 

wavelength of >1580nm are due to the strong back reflection of the non-optimized 

grating couplers. The FSR between these F-P peaks are ~0.6nm. With 500mm grating-to-

grating distance and group index of ~4 for silicon waveguide (and taper), the calculated 

FSR of ~0.62nm at 1.58mm matches well with the measured F-P FSR. For the 

fundamental modes, the measured (quality factor; resonance wavelength) of graded 

mirror period of 12, 15, 20, 25 are (2,485;1557.95nm), (9,370;1557.2nm), 

(27,591;1553.96nm) and (48,552;1551.74nm). The resonance peak of the fundamental 

mode could not be identified for graded mirror period of 30 due to weak coupling 
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between the cavity and the butt coupled waveguide. The loaded quality factors of graded 

period of 20 and 25 are 2 order of magnitude lower than the calculated quality factors by 

FDTD method, it is mainly due to the fabrication imperfection and the addition of BOX 

layer as under cladding. The measured loaded quality factors from the conventional butt 

coupled nano-beam in this sub-section will be used as a reference to compare the quality 

factors in (shifted-holes) EPhCC. 

 

Fig. 6.6 (a). Measured TE-polarized transmission spectra of the conventional 
waveguide butt coupled nano-beam with different graded mirror period from 12 
to 30. (b) Measured TE-polarized transmission spectra of four cascaded shifted-
holes EPhCC with different gap separations from 70nm to 200nm. The period of 
the graded mirror is 15. The coupling waveguide width is 400nm. The shift-holes 

designs are 0nm, +20nm, +40nm and +60nm. 
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6.4.2 EPhCC and shifted-holes EPhCC 

Fig. 6.6(b) shows the measured TE-polarized transmission spectra of four cascaded 

shifted-holes EPhCC with different gap separations from 70nm to 200nm. The period of 

the graded mirror is 15. The cascaded system is similar to the schematic depicted in Fig. 

6.2(b), and the spacing between two EPhCC is ~3µm. The coupling waveguide width is 

400nm. The shift-holes designs are 0nm, +20nm, +40nm and +60nm. Form the 

transmission spectra, four distant resonance dips are observed. These four resonances are 

from the fundamental modes of four shifted-holes EPhCC with different shifted-holes 

designs. In the case of 90nm gap separation, the four resonance wavelengths are 

1517.2nm, 1522.5nm, 1528.7nm and 1536.9nm. These correspond to resonance 

wavelength shifts of 5.3nm, 6.2nm and 8.2nm, compared to the calculated resonance 

wavelength shift of ~6.3nm by 20nm hole shift. The difference between calculated and 

measured resonance wavelength shifts are mainly due to fabrication imperfection from 

controlling air-holes dimensions. From Fig. 6(b), the full-width-half-maximum of the 

resonance dips decrease as the gap separation increases, indicate a higher loaded quality 

factor from the EPhCC cavities. As the total loss due to out-coupling and radiation of 

coupling waveguide reduces. 

The loaded quality factors of fundamental modes of shifted-holes EPhCCs for graded 

mirror period of 15 and 20 are summarized in Fig. 6.7 at different coupling conditions. 

Fig. 6.7(a) shows the summary of loaded quality factors of fundamental modes of shifted-

holes EPhCCs for graded mirror period of 15. The loaded quality factors show a 

systematically enhancement with increasing amount of air holes shift. The highest loaded 

quality factors for 0nm, +20nm, +40nm and +60nm shift are 7,262, 12,493, 10,972 and 
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17,750. The loaded quality factors of the +60nm shifted-holes EPhCC provide ~2.4 fold 

enhancement over the no shift design. For graded period of 15, the resonance 

wavelengths of each shifted-holes design are controlled to a range +/- 3nm. This variation 

is a result of the combination of fabrication imperfection and changing of coupling 

waveguide position/width. As the positions/width of coupling waveguide would change 

the effective index of the resonance mode thus drift its resonance wavelength. In 

comparison to the measured loaded quality factor of 9,370 from the conventional nano-

beam, the +60nm shifted-holes EPhCC provides ~89% of enhancement in loaded quality 

factor. 

 

Fig. 6.7. (a) Summary of measured loaded quality factors of fundamental modes 
of cascaded shifted-holes EPhCCs for graded mirror period of 15. (b) Summary 
of measured loaded quality factors of fundamental modes (red, blue and green) 

and second modes (purple, orange and light blue) of cascaded shifted-holes 
EPhCCs for graded mirror period of 20. 

 

Fig. 6.7(b) shows the summary of loaded quality factors of fundamental modes and 

second order modes of shifted-holes EPhCCs for graded mirror period of 20. Due to the 

fabrication variant and the longer graded mirror period, the resonance wavelengths of no 
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shifted-holes design and part of +20nm design are below our measurement range of 

1510nm to 1630nm. As the curvature of the EPhCC has been significantly reduced with 

longer graded mirror period, the resonances from second order modes could be coupled 

by the coupling waveguide and observed in the transmission spectra. Similar to EPhCCs 

with graded mirror period of 15, the loaded quality factors show a systematically 

enhancement by increasing the shift of air holes in both fundamental modes and second 

order modes. The highest fundamental mode loaded quality factors for +40nm and 

+60nm shift are 34,515 and 26,964. For second order modes, the highest loaded quality 

factors for 0nm, +20nm and +40nm shift are 16,073, 18,834 and 51,619. Note that the 

highest measured loaded quality factor of second order mode in +40nm shift EPhCC is 

higher than its highest measured loaded quality factor of the fundamental mode (51,619 

vs. 34,515). This also suggests that the coupling waveguide is the major source of 

radiation loss to the cavity, as the second order mode’s modal overlap with the coupling 

waveguide is smaller than the fundamental mode. In comparison to the measured loaded 

quality factor of 27,591 from the conventional nano-beam, the second order mode of 

+40nm shifted-holes EPhCC provides ~87% of enhancement in quality factor. While the 

fundamental mode of +40nm shifted-holes EPhCC only provides ~25% of moderate 

enhancement. 
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6.5 Conclusions 

In this chapter, a novel photonic device – embedded one-dimensional photonic crystal 

cavity has been proposed and experimentally demonstrated. The EPhCC is similar to and 

function as a small mode volume one-dimensional photonic crystal resonator, but with 

superior quality factors and easy to be implemented in a wavelength-division 

multiplexing system. We experimentally demonstrated a loaded quality factor of ~52,000 

by a shifted-holes design on evanescently coupled EPhCC structure. This provides ~2-

fold enhancement over the conventional straight-shaped nano-beam structure with 

identical design parameters. The measured quality factors are limited by fabrication 

imperfections and coupling schemes as theoretically intrinsic quality factor of EPhCC is 

~106. The cascaded four EPhCCs system also shows feasibility to implement EPhCC in 

WDM system. By combing the advantages of small footprint, high quality factor and 

excellent resonance wavelength control, the EPhCC structure would open the door for 

number of applications in optical-interconnects such as small-footprint multi-wavelengths 

low-energy optical modulation. 
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7. Conclusion 

In this final chapter, the summaries of different projects presented in this thesis are 

provided. Couples of suggestions on the future work that can be followed up from the 

research projects in the thesis are also suggested.  

 

7.1 Summary 

In this thesis, the design, fabrication and characterization of silicon photonics based ring-

shaped photonic crystal structures have been presented. These devices combine microring 

structures with PhC waveguides and PhC nano-cavities, for providing enhanced optical 

characteristics. The photonic crystal microring resonator demonstrated as a highly 

sensitive bio-sensor, with more than 2-fold enhancement over traditional structures in 

silicon. The photonic crystal microring resonator also opens the door of new functionality 

on Bloch-mode selections, which could be useful for on-chip optical interconnects such 

as on-chip optical routings/multiplexing/de-multiplexing. Finally, a novel embedded 

photonic crystal cavity has been proposed and demonstrated with superior quality factor 

over conventional structure. This structure is fully compatible into a small footprint 

WDM system. It thus can be used to construct a compact on-chip multi-channel 

lasers/modulator. The research results reported in this thesis show that by employing 

extensive device engineering, creating novel nano-photonic devices and understanding 

their optical characteristics, we could advance the applications of photonic structures by 

controlling light in a space of nanometer dimensions. Therefore these techniques and 

know-how of photonic designs on nano-photonic structures would eventually solve the 
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existing problems to benefit the fields of medical diagnostics, interconnects and optical 

communications. 

7.2 Future work 

7.2.1 Enhancing the light-matter interaction in PhCR for biosensing 

In chapter 3 we presented the applications of PhCR structures in biosensing. The results 

indicate that a non-optimized PhCR structure could already provide more than 2-fold 

enhancement in bulk index sensing and surface sensing of DNA and protein bio-

molecules. However, there are still several ways to further enhance the sensing 

performance of PhCR structures. 

First, the sensing experiment can be done when the PhCR is operated in the air-band 

mode like in [71]. In the demonstrated results in this thesis, the light was still confined 

majorly in the silicon region of the PhCR structure as the resonances modes were still 

sitting in the silicon band. By modifying the waveguide width and size of air holes 

(filling factors), we could also design a PhCR with resonance wavelengths of air-band 

modes close to 1510nm to 1630nm. Although this approach also increase the difficulties 

of achieving the mode matching between lower-effective index PhC waveguide and 

silicon waveguide, it could be solved by using our reported chirped PhC taper in chapter 

5. As a result, the air-band mode PhCR sensor could retains all the advantages of the 

PhCR provide as a bio-sensor, but with a even higher sensitivity. 

Second, we can combine the advantages of slot-waveguide into the PhCR. As slot 

waveguide structures can confine light into the lower index region by utilizing the 

properties of electric field discontinuity [112]. Therefore the resulted slot PhCR could be 
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in principle working in a silicon band of dispersive curve, but confine most of its light in 

the air regions that could be accessible by bio-molecules to increase its sensing 

performance. Note that this new slot PhCR design may altered the resonance wavelength 

quite a bit so extensive simulation and modeling work have to be done before fabrication 

and experimental demonstration. 

Third, we can also make the PhCR sensor in a suspended platform so all the surface 

around the structure will be exposed to air. In the current demonstration the PhCR was 

attached to the BOX layer so the bottom layer of the structure could not be able to 

interact with the functionalized bio-molecules. This not only decreases the sensing 

performance of the exist structure, but also lowering the quality factor as PhC devices are 

sensitive to asymmetric configuration, which would induce extra radiation losses. 

Therefore, a simple process of buffered oxide etching (BOE) process could provide better 

results in both quality factor and sensitivity.  
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7.2.2 PhCR based add-drop filter arrays for on-chip optical routing 

In chapter 4, we presented the results of Bloch-modes selection by employing the highly 

dispersive PhCR structure. By utilizing the macroscopic beating mode patterns of PhCRs, 

different sub-set of optical modes can be taped out by output coupling waveguides (drop 

ports) at different azimuthal angles. This feature and phenomenon can be useful for on-

chip interconnects such as optical routing and add-drop filters, in where the requirement 

of optical devices footprint would be tight.  

In order to expand the device into a system level building block, we can cascade the 

PhCRs as an add-drop filter arrays like prior demonstrated results by silicon microring 

[113]. Unlike silicon micoring, in the new system of multi-channels PhCR arrays, each 

PhCR can pass/through multiple channels if we design the output coupling waveguides 

positioned as 90 degrees and 180 degrees respect to the input waveguide. Therefore it 

could be significantly reduce the footprint of such a multi-channel arrays routing 

network. System level analysis by transfer matrix and block diagrams will be required to 

design the actual system architecture of there arrays.  
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7.2.3 Embedded nano-beam PhC cavity based optical modulators 

In chapter 6, we proposed, designed and demonstrated a novel embedded photonic crystal 

cavity (EPhCC) structure that has superior quality factor and WDM compatibility over 

conventional nano-beam devices. The results in chapter 6 are aimed to provide a 

systematic study on the optical properties like mode volumes, mode profiles and quality 

factors on the EPhCC devices. However, the EPhCC devices could also be useful for 

many of applications due to its high-Q, low mode volume and compact size.  

One of the major applications that EPhCC can become beneficial is high-speed 

optical modulation. Due to its high quality factor, small mode volume and high extinction 

ratio by controlling its coupling condition, EPhCC could be designed as a compact, high-

speed, low-energy optical modulator. Moreover, since the structure is coupled 

evanescently to the feeding waveguide, it can be cascaded and formed a compact WDM 

system. Therefore it can be combined as a modulators array for multi-channels optical 

modulator too.  

There are couples of different active structures configuration can lead to the optical 

modulation by the free carrier plasma dispersion effect in silicon [10]. Such as forward 

biasing the p-i-n diode for carrier injection [114], reverse biasing a p-n diode [115] and 

carrier accumulation of a capacitor [116]. Among them, the carrier accumulation of 

capacitor would be most suitable for making a modulator although it is difficult to be 

fabricated. It provides the best balance between optical losses, energy consumption and 

modulation speed.  
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