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CHAPTER I 

 

INTRODUCTION 

 

Serotonin 

Serotonin is an indoleamine neurotransmitter that was first isolated by 

Maurice Rappaport in 1948 from blood serum (Rapport, 1948), and initially 

characterized as a vasoconstrictor, which led to its descriptive name, serotonin 

(from a serum agent that affects vascular tone). It was later identified as 5-

hydroxytryptamine (5-HT) and found extensively in the gastrointestinal tract, 

where it is made in enterochromaffin cells, followed by platelets and the nervous 

system. 5-HT containing neurons originate in the midline raphe nuclei of the brain 

stem and project to portions of the hypothalamus, the limbic system, the 

neocortex, and the spinal cord.  

 The initial step in the synthesis of 5-HT is the facilitated transport of the 

amino acid L-tryptophan from blood into brain. The biochemical pathway for 5-HT 

synthesis initially involves the conversion of L-tryptophan to 5-hydroxytryptophan 

(5-HTP) by the enzyme tryptophan hydroxylase, which serves as the rate limiting 

step. The subsequent and final metabolic step in the synthesis involves the 

decarboxylation of 5-HTP into 5-HT by the enzyme aromatic L-amino acid 

decarboxylase. 

 5-HT appears to have been conserved throughout evolution. 5-HT and its 

receptors can be found in lower organisms including Caenorhabditis elegans 
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(nematodes), Plathyhelminths (flatworms), Aplysia californica (mollusks), and 

Drosophila melanogaster (Weiger, 1997). In these organisms, 5-HT modulates 

various behaviors such as feeding, biting, escape swimming, and egg laying. The 

study of these lower organisms has enhanced our understanding of 5-HT 

functions in both invertebrates and vertebrates.  

The pharmacology of 5-HT is quite complex, and its actions are largely 

mediated by a diverse family of 5-HT receptors. Serotonergic action is controlled 

by its reuptake into the presynaptic terminal by the 5-HT transporter (SERT) 

(Schloss and Williams, 1998). The huge body of ongoing research on this 

neurotransmitter, its receptors and transporter has led to the practical application 

of controlling, modulating, and normalizing 5-HT through pharmaceutical agents. 

Selective serotonin reuptake inhibitors (SSRIs), monoamine oxidase inhibitors 

(MAOIs), and tricyclic antidepressants (TCAs) have successfully been used for 

the treatment of depression. Also, there has been much scientific interest in other 

mental health areas, particularly concerning schizophrenia and psychedelic 

drugs. 5-HT receptors have been associated with the mechanism of action of 

atypical antipsychotic drugs as well as hallucinogens. This underscores the 

importance of 5-HT and its pathways for the normal function of the brain. 

 

Serotonin Receptors 

 5-HT interacts with a wide array of receptor subtypes, mediating a diverse 

range of physiological functions. Seven distinct families of 5-HT receptors have 

been identified (5-HT1-5-HT7). These subfamilies are characterized by common 
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gene organization, pharmacological properties, and second messenger signaling 

pathways (for review, see Hoyer et al., 1994; Hoyer et al., 2002). All 5-HT 

receptors, with the exception of 5-HT3, belong to the G-protein-coupled receptor 

(GPCR) superfamily. 5-HT3 receptors, on the other hand, are ligand-gated ion 

channels (Table 1).  

The 5-HT1 receptor subfamily is the largest subclass of 5-HT receptors, 

consisting of five receptor subtypes, termed, 5-HT1A, 1B, 1D, 1E, 1F. Members of the 

5-HT1 receptor family share 40-63% homology and couple primarily to Gi/o to 

negatively regulate adenylyl cyclase thus inhibiting (cAMP) formation.  

5-HT4, 5-HT6, and 5-HT7 receptors couple predominantly to Gs to 

positively activate adenylyl cyclase. However, due to their difference in sequence 

(<35%) and pharmacological action, they are classified in different subfamilies.  

5-HT5 receptors were first identified in 1992 (Plassat et al., 1992) and are 

still being characterized. There are two subtypes of 5-HT5 receptors, 5-HT5A and 

5-HT5B. Both subtypes have been cloned from the rat and the mouse; however, 

only the 5-HT5A receptor has been cloned from the human (Rees et al., 1994). 

Recently, the human 5-HT5A receptor has been shown to couple to both Gi/o and 

Gq/11 (Noda et al., 2003). In addition, Waeber and colleagues have shown that 5-

HT5A receptors have high affinity for Lysergic Acid Diethylamide (LSD) (Waeber 

et al., 1998) 
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Table 1 
Serotonin Receptor Family 

 
 

Receptor Family 
 

Receptor subtype 
 

Signal Transduction 

 
5-HT1A 

 
5-HT1B/D 

 
5-HT1D 

 
5-HT1E 

 
 
 
 
 

5-HT1 

 
5-HT1F 

 
 
 
 

 
Inhibition of 

Adenylyl Cyclase 

 
5-HT2A 

 
5-HT2B 

 
 
 

5-HT2 
 

5-HT2C 

 
 

Activation of 
Phospholipase Cβ 

 
5-HT3 

  
Ligand Gated Ion Channel 

 
5-HT4 

  
Activation of Adenylyl 

Cycalse 

 
5-HT5A 

Inhibition of Adenylyl Cyclase
 

Activation of PLCβ 

 
 

5-HT5 
 

5-HT5B 
 

Unknown 

 
5-HT6 

  
Activation of Adenylyl 

Cyclase 

 
5-HT7 

  
Activation of Adenylyl 

Cyclase 
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5-HT2 receptor family 

The 5-HT2 receptor family consists of three subtypes: 5-HT2A, 5-HT2B, and 

5-HT2C (Hoyer et al., 1994). 5-HT2 receptors share a high level of sequence 

homology (~50%) and pharmacological profiles, and preferentially couple to 

PLCβ activation via Gq/11 (Conn and Sanders-Bush, 1984). The 5-HT2A receptor 

was first identified as the D receptor by Gaddum and Picarelli (1957), named 

because of the sensitivity of this receptor subtype to the blocker dibenzyline. The 

5-HT2B receptor was initially referred as the 5-HT2F receptor [or serotonin 

receptor like (SRL)] (Foguet et al., 1992), and the 5-HT2C receptor was previously 

referred as the 5-HT1C receptor (Pazos et al., 1984); however, cloning of the 

mouse, rat, and human 5-HT2C receptor led to the conclusion that the 5-HT2C 

receptor is more closely related to the 5-HT2 than the 5-HT1 subfamily 

(Humphrey et al., 1993). 

 

5-HT2A receptors 

5-HT2A receptors have been implicated in many peripheral as well as 

central functions including smooth muscle contraction, platelet aggregation, 

regulation of sleep, control of sexual activity, motor behavior, and psychiatric 

disorders such as epilepsy, anxiety, depression, and schizophrenia.  

The 5-HT2A receptor was first cloned from the rat brain by Princhett et al., 

(1988), and its sequence was later corrected by Julius et al., (1990). 5-HT2A 

receptors have also been cloned from human (Saltzman et al., 1991), mouse 
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(Foguet et al., 1992), hamster (Chambard et al., 1990), and rhesus monkey 

(Johnson et al., 1995) with the rat and the human gene sharing 87% homology.  

 

Receptor Distribution 

Peripherally, 5-HT2A receptors are found on platelets and throughout the 

gut and vasculature of smooth muscle. Centrally, 5-HT2A receptors are highly 

expressed in the cortex, caudate nucleus, olfactory tubercle, nucleus 

accumbens, and hippocampus (Pazos et al., 1985). Cortical pyramidal neurons 

constitute the major source of 5-HT2A receptor-expressing neurons, where the 

receptors are located both presynaptically and postsynaptically. However, in the 

prelimbic prefrontal cortex of the rat, 5-HT2A receptors are predominantly 

expressed on postsynaptic structures (Xia et al., 2003). These receptors have 

been implicated as heteroreceptors in the regulation of glutamatergic signaling 

(Aghajanian and Marek, 1999b; Scruggs et al., 2000; Zhang et al., 2001; 

Boothman et al., 2003) 

 

Signal transduction 

5-HT2A receptors activate a variety of signaling pathways by interacting 

with multiple G-proteins. The classical pathway associated with 5-HT2A receptor 

signaling is the stimulation of phospholipase Cβ via Gαq/11 in most tissues and 

cells in which it is expressed (Conn and Sanders-Bush, 1984; Grotewiel and 

Sanders-Bush, 1999; Chang et al., 2000a). The cloned rat and human receptors 

also stimulate PLC when expressed heterologously in mammalian cells 
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(Wainscott et al., 1993; Kursar et al., 1994; Kellermann et al., 1998). PLCβ then 

promotes the hydrolysis of the membrane phospholipid, phosphatidylinositol 4,5-

bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate 

(IP3). DAG then activates protein kinase C (PKC) while IP3 binds its intracellular 

receptor to promote intracellular calcium release.  

In addition to PLC activation, 5-HT2A receptors have been shown to couple 

to additional signaling pathways including activation of PLD via Gα13 (Kurrasch-

Orbaugh et al., 2003; Robertson et al., 2003) and activation of PLA2 leading to 

arachidonic acid release (Berg et al., 1998; Tournois et al., 1998) (Figure 1).  

5-HT2A receptors have also been implicated with the regulation of L-type 

Ca2+ channels in some cell types (Eberle-Wang et al., 1994; Jalonen et al., 1997; 

Watts, 1998). In addition, increases in Ca2+ levels evoked by 5-HT2A receptors 

have been linked to subsequent openings of K+ channels in C6 glial cells 

(Bartrup and Newberry, 1994), and to an inward current mediated by Ca2+-

activated Cl- channels in Xenopus oocytes (Montiel et al., 1997). 

5-HT2A receptors regulation occurs in response to both antagonists and 

agonists. Peroutka and Snyder (1980) were the first to demonstrate that chronic 

treatment with 5-HT2A antagonists led to receptor desensitization (for review, see 

Gray and Roth, 2001). This phenomenon seems unique to 5-HT2 receptors, and 

has made them the focus of a variety of investigations into the desensitization 

process. In addition, this feature may play important roles in 5-HT2A receptor 

signaling and in the mechanism of action of certain antipsychotic medications. 

For some time, it has been clear that 5-HT2A receptors are desensitized primarily 
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 PLCβPLD 
G13  Gq/11  Gi/0? 

 PLA2 

Arachidonic Acid 

cGMP 

PIP2 

IP3 DAG 

      Ca2+           PKC 
    release 

Rho/ARF 

Phosphatidylcholine 

Phosphatidic     Choline 
     Acid 

Figure 1: 5-HT2A/2C Singaling Pathways 
5-HT2A/2C receptors activate various G-proteins to stimulate downstream effectors. PLC, phospholipase C; PIP2, 
phosphatidylinositol 4,5-bisphosphate; DAG, diacyl glycerol; IP3, inositol 1,4,5-trisphosphate; PKC, protein kinase 
C; cGMP, guanosine-3’,5’-cyclic monophosphate; PLD phospholipase D; PLA2, phospholipase A2

8 



 9

following PKC activation (Kagaya et al., 1990; Kagaya et al., 1993; Rahimian and 

Hrdina, 1995), though cell-type specific effects have been noted. Furthermore, 

although arrestins are apparently involved in the short-term regulation of many 

GPCRs, studies from Bhatnagar and colleagues (2001) demonstrated that 5-

HT2A agonists and antagonists induce internalization via an arrestin-independent 

pathway; however, the dominant negative dynamin appears necessary for 

receptor internalization and increased rate of receptor resensitization.  

 

Electrophysiological Responses 

There is evidence for 5-HT2A-mediated excitation of neurons in certain 

brain regions, although, in rat piriform cortex pyramidal cells, (±)1-(2,5-

dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and LSD induce inhibitory 

postsynaptic potentials (IPSPs) by directly exciting GABAergic interneurons 

(Marek and Aghajanian, 1996). However, 5-HT2A receptor activation causes 

different effects in other parts of the brain. For instance, in medial prefrontal 

cortex (mPFC) pyramidal cells, 5-HT2A receptor activation causes some IPSPs, 

but primarily causes an increase in the amplitude and especially in frequency of 

spontaneous excitatory postsynaptic potentials (EPSPs). (Figure 2; Aghajanian 

and Marek, 1997; Aghajanian and Marek, 1999b; Marek and Aghajanian, 1999; 

Marek and Aghajanian, 1998). In addition, in vivo microdialysis studies of 

Scruggs and colleagues (2003) supporting a role for glutamate demonstrate that 

DOI induces an increase in extracellular glutamate in the medial prefrontal cortex 

of awake rats. The increase in glutamate levels elicited by intracortical DOI were  
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5-HT 

 Glutamate 
   + 

5-HT2A 
 DOI (Hallucinogens) 

Figure 2: Schematic representation of 5-HT2A-mediated glutamate release 
Systemic and intracortical administration of the hallucinogen DOI increases extracellular glutamate 
levels in the cortex, consistent with the hypothesis that hallucinogens activate the cortex by 
increasing glutamate release from thalamocortical neurons. The ability of DOI to increase glutamate 
levels is blocked by pretreatment with MDL 100907, indicating a 5-HT2A-mediated effect. 

10 
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blocked by treatment with the selective 5-HT2A antagonist MDL 100,907. 

 

5-HT2B receptors 

5-HT2B receptors exhibit about 70% homology to 5-HT2A and 5-HT2C 

receptors, and also appear to couple functionally to phosphoinositide hydrolysis.  

The presence of 5-HT2B receptors in the brain has been controversial, but limited 

amounts are believed to be found in mouse and human brains (Loric et al., 1992; 

Bonhaus et al., 1995). However, their expression appears to be restricted to the 

cerebellum, lateral septum, medial amygdala, and dorsal hypothalamus. 5-HT2B 

receptors have been implicated in the mediation of the mitogenic effects of 5-HT 

during neural development.  

 

5-HT2C receptors 

5-HT2C receptors are almost exclusively expressed in the central nervous 

system. High levels of 5-HT2C receptor are found in the choroid plexus, with lower 

expression in the cortex, amygdala, hippocampus, nucleus accumbens, and the 

substantia nigra (Pazos et al., 1984; Conn et al., 1986; Hoyer et al., 1994; 

Abramowski et al., 1995). Human 5-HT2C receptors have been cloned and 

display high homology with 5-HT2A receptors (57%). In response to agonists, 5-

HT2C receptors activate PLCβ (Conn et al., 1986), and this activation was 

definitely demonstrated to occur via Gαq by Chang et al. (2000). 5-HT2C 

receptors have also been associated with PLA2-mediated arachidonic acid 
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release (Berg et al., 1996), and activation of PLD via Rho/ARF proteins (McGrew 

et al., 2002) (Figure 1) 

5-HT2C receptors undergo a unique process of post-transcriptional 

modification called RNA editing. This process leads to the generation of multiple 

receptor variants (for review, see Niswender et al., 1998). The variant edited 

receptors exhibit profound functional consequences including altered pattern of 

activation of heterotrimeric G-proteins and differential abilities to bind various 

ligands thus affecting downstream processes such as mobilization of intracellular 

calcium and stimulation of inositol phosphates (Fitzgerald et al., 1999; Price et 

al., 2001; McGrew et al., 2004; Niswender et al., 1998).  

 

Pharmacology of 5-HT2A vs 5-HT2C receptors 

 

Ligands 

No truly selective 5-HT2A or 5-HT2C agonist has yet been found. 5-HT acts 

as a full agonist at both receptors; however, 5-HT binds 5-HT2A and 5-HT2C 

receptors with quite different affinities (63-250 nM for 5-HT2A and 2-56 nM for 5-

HT2C). There are agonists that selectively activate 5-HT2A and 5-HT2C receptors 

over other 5-HT receptors (e.g., DOI, DOM, DOB), but these agents do not 

discriminate between these two receptor subtypes.  

To address the lack of agonist selectivity in the 5-HT2 receptor family, 

selective antagonists have been synthesized (Table 2). One of the most selective 

classes of 5-HT2A receptor ligands is the N-alkylpiperidines. The most commonly  
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Table 2 
 

pKi of various ligands for 5-HT2 receptors 
 
  

5-HT2A 
 

 
5-HT2B 

 
5-HT2C 

 
5-HT2A receptor 

MDL 100907            

Spiperone 

Ketanserin 

 
 

9.4 

8.8 

8.9 

 
 

5.5 

Not Determined 

5.4 

 
 

5.9 

6.9 

7.0 

 
5-HT2B receptor 

5-MeOT 

a-Methyl-5-HT 

SB 204741 

BW 723C86 

 
 

7.4 

6.1 

< 5.3 

< 5.4 

 
 

8.8 

8.4 

7.8 

7.9 

 
 

6.2 

7.3 

< 6.0 

< 6.9 

 
5-HT2C receptor 

SB 242084 

RS 10221 

Ro 60-0175 

 
 

6.8 

6.0 

6.0 

 
 

7.0 

6.1 

5.8 

 
 

9.0 

8.4 

8.8 

 
5-HT2B/2C receptor 

SB 200646A 

mCPP 

SB 206553 

 
 

5.2 

6.7 

5.8 

 
 

7.5 

7.4 

8.9 

 
 

6.9 

7.8 

7.9 

 
Non-selective 

LY 53857 

ICI 170809 

Ritanserin 

Mianserin 

DOI 

 
 

7.3 

9.1 

8.8 

8.1 

7.3 

 
 

8.2 

Not Determined 

8.3 

7.3 

7.4 

 
 

8.1 

8.3 

8.9 

8.0 

7.8 
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used drug of this class is ketanserin, which possesses a 100-fold higher affinity 

for the 5-HT2A receptor over the 5-HT2C receptor. Another common 5-HT2 

antagonist is spiperone, which displays about 500-2000 fold selectivity for the 5- 

HT2A receptor versus the 5-HT2C receptor. However, a major drawback for 

spiperone is that it is also a potent dopamine D2, 5-HT1A, and 5-HT7 antagonist 

(Metwally et al., 1998). Various tricyclic agents (e.g., tricyclic neuroleptics and 

tricyclic antidepressants) also bind 5-HT2A receptors. To date, one of the most 

selective 5-HT2A receptor antagonists is MDL 100907 with 300-600 fold higher 

affinity for the 5-HT2A receptor over the 5-HT2C receptor (Marek and Aghajanian, 

1994). In the mid-1990s, MDL 100907 was tested in clinical trials as a possible 

non-dopaminergic antipsychotic drug for patients with schizophrenia. However, 

due to its insufficient efficacy, these studies were terminated.  

At this time, no 5-HT2C-selective agents have been identified. MK212 and 

Ro 600175 are considered moderately selective 5-HT2C agonists. mCPP is often 

used as a non-selective 5-HT2C agonist for behavioral studies, and it has been 

suggested that the anxiogenic effects of mCPP are mediated by post-synaptic 5-

HT2C receptors (Gibson et al., 1994). SB 200646A was initially reported to be a 

selective 5-HT2C receptor antagonist with about 50-fold selectivity over the 5-

HT2A receptor, but it was later found to have similar affinity for the 5-HT2B 

receptor. SB 206553 is also an antagonist at 5-HT2B/2C receptors. To date, SB 

242084 is the most selective antagonist at 5-HT2C receptors, and it has been 

shown to display anxiolytic-like properties in animal models of anxiety (Kennett et 

al., 1997). 
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Hallucinogenic Drugs 

Hallucinogenic drugs (psychedelics) are among some of the oldest drugs 

known to mankind, and they have a long history of traditional use in native 

medicine and religion, where they are prized for their perceived ability to promote 

physical and mental healing. Hallucinogens such as mescaline, a naturally 

occurring psychedelic found in several cactus species (i.e., Peyote and San 

Pedro), have been used in Native American ritual ceremonies since the 1800’s. 

The earliest known depiction of San Pedro cactus is on a stone tablet found in 

Peru dating to 1300 B.C. In addition, ritual objects containing images of Peyote 

have been found dating back to 500 B.C. In the 1960’s and 70’s there was 

extensive usage of hallucinogens as part of the counter-culture hippie movement. 

During the "acid tests" of this era, hallucinogenic drugs were used for mind 

exploration.  

The best definition of what is considered a classic psychedelic is the 

following -- “a psychedelic drug is one which, without causing physical addiction, 

craving, major physiological disturbances, delirium, disorientation, or amnesia, 

more or less reliably produces thought, mood, and perceptual changes otherwise 

rarely experienced except in dreams, contemplative and religious exaltation, 

flashes of vivid involuntary memory and acute psychoses” (Grinspoon ,1979). 

Despite their high degree of psychological safety and low addiction potential, 

hallucinogenic drugs have been placed in the most restrictive category (schedule 

I of the Controlled Substances Act) by law enforcement officials.  
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 Hallucinogenic drugs are known to alter the subjective qualities of 

perception, thought or emotion, leading to altered states of consciousness or 

hallucinations.  However, despite the name, at typical doses very few 

hallucinogens trigger true hallucinations; rather the effects are more akin to 

delusion. In addition, the nature of the hallucinations produced is dependent on 

the specific compound. Some of the physiological effects of hallucinogens 

include dilation of pupils, appetite loss, increases in blood pressure and body 

temperature, and excitation of the sympathetic nervous system. 

 Scientific interest in hallucinogenic drugs developed slowly. Mescaline 

was first extracted and isolated in the late 1800’s by Arthur Heffter, and in 1919 it 

became the first psychedelic to be synthesized. For the next 35 years it remained 

a somewhat obscure compound known primarily to the psychiatric community. 

Then, in 1953 the popular novelist Aldous Huxley was introduced to mescaline by 

the psychiatrist Humphry Osmond. Soon thereafter Huxley became a pioneer of 

self-directed psychedelic drug use "in a search for enlightenment", famously 

taking 100 micrograms of LSD as he lay dying. His psychedelic drug experiences 

are described in the essays The Doors of Perception and Heaven and Hell. The 

title of the former became the inspiration for the naming of the rock band, The 

Doors. Some of his writings on psychedelics became frequent reading among 

early hippies. 

In 1938, the Swiss chemist Dr. Albert Hofmann at the Sandoz 

Laboratories in Basel fist synthesized LSD as part of a large research program 

searching for medically useful ergot alkaloid derivatives. Its psychedelic 
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properties were unknown for 5 years until Hofmann, acting on what he has called 

a "peculiar presentiment," returned to work on the chemical. He attributed the 

discovery of the compound's psychoactive effects to the accidental absorption of 

a tiny amount through his skin in 1943, which led to him testing a larger amount 

(250 µg) on himself for psychoactivity (Hofmann, 1979). For the first few years 

following the discovery of LSD, it was used for purely scientific purposes; 

however, in the 1950s some psychotherapists began to utilize LSD as an adjunct 

to psychotherapy. Several mental health professionals involved in LSD research, 

most notably Harvard psychology professors Drs. Timothy Leary and Richard 

Alpert, became convinced of LSD's potential as a tool for spiritual growth. In 

1961, Dr. Timothy Leary received a grant from Harvard University to study the 

effects of LSD on humans. 3,500 doses were given to over 400 people. Of those 

tested, 90% said they would like to repeat the experience, 83% said they had 

"learned something or had insight," and 62% said it had changed their life for the 

better.  Recreational LSD use in the USA peaked in the 1970s, but its use 

decreased sharply as cocaine became the most common substance of choice 

among drug users. Underground recreational and therapeutic LSD use has 

continued in many countries, supported by a black market and demand for the 

drug. Legal, academic research experiments on the effects and mechanisms of 

LSD are also conducted, but rarely involve human subjects. 

 Psychedelic (mind manifesting) hallucinogens are classified as drugs 

whose primary function is to alter thought processes. The term is derived from 

Greek psyche (mind) and delein (to manifest), or delos (beautiful). The chemical 
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structures of psychedelics are classified into two categories: the tryptamines and 

the phenethylamines (Figure 3; for review, see Nichols, 2004). Many of the 

tryptamines and phenethylamines cause remarkably similar effects, despite their 

different chemical structure. However, most users report that the two families 

have subjectively different qualities in the "feel" of the experience which are 

difficult to describe. 

Substitutions to the tryptamine molecule give rise to a group of 

compounds collectively known as tryptamines. Tryptamine alkaloids found in 

fungi, plants and animals are commonly used by humans for their psychotropic 

effects. Prominent examples include 5-methoxy-DMT (5-MeO-DMT), psilocybin 

(from "magic mushrooms"), and N,N-dimethyltryptamine (DMT; from numerous 

plant sources, e.g. chacruna, often used in ayahuasca brews). The tryptamine 

backbone can also be identified as part of the structure of some more complex 

compounds, for example: ergoline alkaloids like LSD and related compunds. 

Substituted phenethylamines are a broad and diverse class of compounds 

that include stimulants, hallucinogens, entactogens, bronchodilators, and 

antidepressants. The phenethylamines hallucinogens include the natural 

occurring compound mescaline, as well as the highly popular club drug 3,4-

methylenedioxy-n-methylamphetamine (MDMA), better known as ecstasy.  

Amphetamine derivatives and selective 5-HT2 agonists including DOI, 1-(4-

bromo-2,5-dimethoxyphenyl)-2-aminopropane (DOB), and 1-(2,5-dimethoxy-4-

methylphenyl)-2-aminopropane (DOM) also belong to this category. 
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Figure 3 

The Chemical Classes of Hallucinogens 
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5-HT2 receptors: Clinical implications 

5-HT2A receptors play a role in many peripheral as well as central nervous 

system functions including smooth muscle contraction, platelet aggregation, 

appetite control, thermoregulation, sleep, cognition, and mood. They are also 

involved in various neuropsychiatric disorders such as depression and 

schizophrenia. Over fifty years ago, based on the behavioral abnormalities 

observed in normal individuals following LSD administration, along with the 

similarities in chemical structures between LSD and 5-HT, Wooley and Shaw 

(1954) suggested that 5-HT mediated certain mental processes, and that 

psychosis was caused by a disturbance in the serotoninergic system in the brain.  

More recently, it was suggested that the “positive” hallucination-like symptoms 

observed in acute schizophrenia may be due to a dysfunctional 5-HT2A receptor 

signaling system in apical dendrites of pyramidal cells (Jakab and Goldman-

Rakic, 1998). In addition, clozapine, the classical atypical antipsychotic drug 

(Meltzer et al., 1989), and a large number of new antipsychotic agents, such as 

olanzapine and risperidone, have 5-HT2A receptor antagonism properties. These 

agents have been evaluated in patients with schizophrenia, providing evidence 

for the importance of this receptor in antipsychotic drug action.  

Since the early stages of hallucinogenic drug research, the serotonergic 

system has been closely associated with neuropsychiatric disorders as well as 

with the mechanism of action of hallucinogenic drugs. The first evidence that 

hallucinogens act through 5-HT2 receptors came from Glennon’s group in 1983. 

In this study, rats were trained to discriminate the hallucinogen DOM from saline. 
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The authors showed that pretreatment with the 5-HT2A/2C receptor antagonist, 

ketanserin, blocked the DOM stimulus. Sadzot et al. (1989) then reported that 

there is a direct correlation between human hallucinogenic potency of classical 

hallucinogens and 5-HT2A receptor affinities (Figure 4).  

Given that 5-HT2 receptors are the only shared targets between 

phenethylamine hallucinogens and LSD (as well as other indolamine 

hallucinogens), it is believed that 5-HT2A/2C receptors are the main sites of action 

for hallucinogenic drugs since the 5-HT2B receptor is weakly expressed in the 

brain (Table 3). Consistent with this idea, there is now vast evidence from 

biochemical, electrophysiological, and behavioral studies that hallucinogens, 

such as LSD, have a key site of action as agonists at 5-HT2A receptors in the 

brain (for review, see Marek and Aghajanian, 1996; Aghajanian and Marek, 

1999a; Nichols, 2004). Moreover, some hallucinogenic drugs, such as DOI, bind 

only 5-HT2 receptors, and are known to exert their behavior mainly through 5-

HT2A receptors (Johnson et al., 1987).  5-HT2A receptors are considered the 

primary site of action for hallucinogenic drugs for various reasons. First, there is 

clear predominance of 5-HT2A receptors over 5-HT2C receptors in the cortex, 

where hallucinogens are thought to exert their main action (Pompeiano et al., 

1994; Wright et al., 1995). More importantly, Ismaiel et al. (2003) showed that 

spiperone, with about 2000-fold selectivity for the 5-HT2A receptor over the 5-

HT2C receptor, blocks the discriminative stimulus induced by the hallucinogen 

DOM. In addition, the highly selective 5-HT2A antagonist MDL100907 was shown  
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Figure 4 

 
Relationship between human hallucinogenic potency  

and 5-HT2A receptor binding 
 
 
 
 
 
 
 

 
 
 
 
 
The affinities of various hallucinogens for the 5-HT2A receptor correlate with the 

behavioral effects produced in drug discrimination experiments 
 

 

Adapted from Sadzot et. al., (1989) 
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Table 3 
 

A comparison of human doses of selected hallucinogens with 
their potency using drug discrimination tests in LSD-trained rats 
 
 
 

Drug 
Ki  

5HT2A 
(nM) 

Ki  
5HT2C 
(nM) 

Drug 
discrimination
ED50 (µM/kg)

Potency relative 
to LSD* 
(rat drug 

discrimination) 

Human 
dose 
(mg) 

Potency 
relative 
to LSD 

(human) 

EthLAD — — 0.02 185 0.04-
0.15 140 

AllyLAD — — 0.013 285 0.08-
0.16 110 

LSD 2-4 3-6 0.037 100 0.06-
0.20 100 

ProLAD — — 0.037 100 0.10-
0.20 90 

DOB 0.6 1.3 1.06 2.3 1-3 7 

DOI 0.7 2.4 0.28 9.2 1.5-3 6 

DOM 19 — 0.89 3.3 3-10 2 

Psilocin 15-25 10 1.0 2.6 10-15 1 

DMCPA — — 0.66 4.5 15-20 0.7 

MEM 73 124 12 0.2 20-50 0.4 

MMDA-2 — — 7 0.4 25-50 0.4 

Mescaline 550 300 34 0.08 200-400 0.04 

 
(* Where potency of LSD=100. (ED50 of LSD x 100) / (ED50 of compound X) = Potency relative 
to LSD) 

 

Adapted from Nichols (2004) 
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to abolish the discriminative cue induced by DOI in rat drug discrimination studies 

(Schreiber et al., 1994), whereas the selective 5-HT2C antagonist SB 200,646 

failed to block the discriminative stimulus effect of DOI (Kennett et al., 1994). 

Interestingly, in mouse drug discrimination studies, 5-HT2C receptors appear to 

have a small, but significant, role in mediating the discriminative stimulus induced 

by DOI (Smith et al., 2003). Furthermore, in human studies, Vollenweider et al. 

(1998) showed that psychosis-like symptoms induced by psilocybin treatment 

were blocked by ketanserin, which in humans has 10-30 fold higher affinity for 

the 5-HT2A receptor over the 5-HT2C receptor, leading the authors to conclude 

that psilocybin-induced psychosis is due to 5-HT2A receptor activation, 

independent of dopamine stimulation. 

Density and distribution of 5-HT2A receptors have also provided insight into 

the role of the serotonergic system in various psychiatric disorders. For instance, 

5-HT2A receptor density decreases have been demonstrated in patients with 

autism (McBride et al., 1989), whereas increases in 5-HT2A receptor density have 

been found in schizophrenic (Arranz et al., 2003), major depressive disorder 

(Hrdina and Vu, 1993), and suicidal patients (Mann et al., 2001). 

Altered 5-HT2A receptor density, observed in major depressive disorder 

patients, has been shown to be “corrected” by various serotonergic drugs with 

anti-depressive properties. For instance administration of either tricyclic 

antidepressants or selective serotonin reuptake inhibitors (SSIRs) leads to a 

decrease in 5-HT2A receptor density (Yatham et al., 1999; Meyer et al., 2001). 

Likewise, treatment with the 5-HT2A antagonist nefazodone not only leads to 



 25

decreases 5-HT2A receptor density (Eison et al., 1990; Meyer et al., 1999), but it 

is as efficacious as SSRIs for the treatment of depression (Baldwin et al., 1996). 

These data suggests that 5-HT2A receptors are important mediators of the 

behavioral effects induced by hallucinogenic drugs, as well as the pathogenesis, 

treatment, and behavioral abnormalities observed in psychiatric disorders. 

 

Role of 5-HT2 receptors in hallucinogenic behavior 

 

Sensorimotor gating 

 Sensorimotor gating refers to the state-dependent regulation of 

transmission of sensory information to the motor system. An operational measure 

of sensorimotor gating is prepulse inbition of the startle response (PPI). PPI is a 

normal modulation of the startle reflex exhibited by both humans (Graham, 1975) 

and animals (Hoffman and Ison, 1980). In brief, PPI refers to the normal 

decrease in a startle response to a sudden stimulus, when that startling stimulus 

is preceded by a much weaker stimulus (“prepulse”). Patients with schizophrenia 

exhibit deficits in PPI (Kumari et al., 2000), in which prepulses do not diminish 

the startle reflex to the extent that they do in non-schizophrenics (Braff et al., 

1978). In addition, pharmacological agents with antipsychotic properties have an 

ability to reverse drug-induced PPI disruptions (Swerdlow et al., 1992). The 

finding that PPI could be disrupted in rats by NMDA antagonists and certain 

serotonergic agents, including hallucinogenic drugs, led to an interest in PPI as a 
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possible model for the sensorimotor gating deficits observed in schizophrenic 

patients (Markou et al., 1994). 

 

Prepulse inhibition: In the PPI procedure, a rodent is placed in a small chamber 

or inside a tube where it is exposed to a brief pulse of noise.  The test is used to 

assess the animal’s ability to filter environmental information (gating). In the 

prepulse inhibition of the startle response, a weak acoustic stimulus (prepulse) 

decreases the reflexive response (startle) produced by a second, more intense, 

stimulus (the pulse).  

DOI and DOB have extensively been shown to disrupt PPI in the rat 

(Sipes and Geyer, 1994; Johansson et al., 1995; Sipes and Geyer, 1995; Padich 

et al., 1996; Wadenberg et al., 2001), while the preferential 5-HT2C agonist 

mCPP showed no effects on PPI, despite producing dose-dependent decreases 

in startle reactivity (Sipes and Geyer, 1994). The effect of DOI on PPI was shown 

to be mediated by 5-HT2A receptors as MDL 100907, but not SDZ SER 082 (5-

HT2C antagonist) antagonized DOI’s effect on PPI (Sipes and Geyer, 1995). It 

was later found by Sipes and Geyer (1997) that direct infusion of DOI into the 

ventral pallidum disrupted PPI without having effects on startle reactivity, leading 

the authors to conclude that 5-HT2A receptors within the ventral pallidum are key 

players for the modulation of PPI. In addition, LSD-induced disruption of PPI 

appears to also be mediated by 5-HT2A receptors. In rat PPI experiments, LSD 

effects were completely reversed by pretreatment with the selective 5-HT2A 

antagonist MDL 100907. In contrast, pretreatment with antagonists at 5-HT2C (SB 
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242084), 5-HT2B/2C (SDZ SER 082), 5-HT1A (WAY 100135), and 5-HT6 receptors 

(RO 04-6790) all failed to influence LSD-induced disruption of PPI (Ouagazzal et 

al., 2001). Interestingly, there appear to be species differences in the 

hallucinogen-induced effects on PPI between rats and mice. 5-HT2 agonists, 

such as DOM and DOI, do not appear to alter PPI in either inbred or outbred 

mouse strains (Dulawa and Geyer, 2000), even though such drugs have 

consistently been shown to disrupt PPI in rats (for review, see Geyer et al., 

2001). In addition, 5-HT1A agonists appear to have opposing effects on PPI 

depending on the species studied as 5-HT1A agonists, including 8-OH DPAT and 

flesinoxan, impair PPI in rats, but increase PPI in mice (Nanry and Tilson, 1989; 

Rigdon and Weatherspoon, 1992; Dulawa et al., 1998).   

 

Operant behavior 

Operant behavior is characterized by a form of learning in which a 

spontaneous behavior is followed by a stimulus that changes the probability that 

the behavior will occur again. Operant drug discrimination is the animal model 

with the most predictive validity and specificity for investigation of the 

psychoactive effects of drugs, and it plays an important role in drug discovery 

and investigations of drug abuse. Drug discrimination has proven to be a useful 

tool to study the neural mechanisms that mediate the action of hallucinogens.  

 

Drug Discrimination: The drug discrimination method is a way for training 

experimental subjects to recognize drug effects and to measure the effects in a 
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precise, reliable and quantitative manner. In this task, there are typically two 

response options available in an operant chamber. When an animal is pretreated 

with a drug, one response option (i.e., left lever press) is food (or water) 

reinforced. The other response option (right lever press) is not reinforced. When 

the animal is treated with saline (no drug), the reinforcer relation is switched; i.e., 

right lever presses are reinforced, whereas left lever presses are not. Rodents 

(like humans) can learn to discriminate drug versus no drug, ultimately pressing 

the food-associated lever with over 90% accuracy. 

5-HT2A receptors are considered to be key mediators of the discriminative 

stimulus induced by hallucinogens. Although hallucinogens are shown to activate 

various serotonin receptors, particularly 5-HT2A and 5-HT2C, behavioral studies 

using antagonists selective for each receptor subtype have shown that the 5-

HT2A receptor is the main mediator of the discriminative stimulus effects of 

hallucinogenic drugs including LSD, DOI, and DOM (Ismaiel et al., 1993; 

Schreiber et al., 1994; Smith et al., 1998; Smith et al., 1999). However, it was 

recently shown by Smith et. al., (2003) that in mouse drug discrimination studies, 

5-HT2C receptors appear to have a small, but significant, role in mediating the 

discriminative stimulus induced by DOI (Smith et al., 2003). Moreover, 

Benneyworth et.al., (2005) have shown that in mice, the stimulus effects of LSD 

have both a 5-HT2A and a 5-HT1A receptor component. 
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Anxiety-like behaviors 

The corticolimbic pattern of 5-HT2A receptor distribution in the brain 

suggests that activation of these receptors may be implicated in the 

neuropathology, regulation, and treatment of a variety psychiatric disorders 

including anxiety. DOI, and other selective 5-HT2 agonists, have been shown to 

effects have been suggested to be 5-HT2A receptor-mediated.  

 

Elevated plus maze: This is a standard test of fear and anxiety in which the 

animal is placed in the center of an elevated 4-arm maze in which 2 arms are 

open and 2 are enclosed (Figure 5). The maze is equipped with infrared 

photobeams, and the rodent’s behavior is recorded and analyzed automatically 

by a computer.  In addition to recording other behaviors that may reflect general 

motor activity, the number of times the animal enters each of the arms and the 

time spent in each arm is noted. 

DOI has been shown to act as an anxiolytic-like drug in the elevated plus 

maze test with potency comparable to that of benzodiazepines (Onaivi et al., 

1995; Nic Dhonnchadha et al., 2003a); 5-HT2A receptors appear to be 

predominantly involved in the mediation of these effects.  Antagonist studies 

indicate that anxiolytic-like effects in the elevated plus maze are blocked only by 

selective 5-HT2A receptor antagonists. On the other hand, selective antagonists 

for 5-HT2C and 5-HT2C/2B receptors did not have an effect on DOI-induced 

anxiety-like behavior (Nic Dhonnchadha et al., 2003b). 
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Figure 5: Elevated Plus Maze 
The elevated plus maze consists of two open arms and two closed arms emanating from a central 
platform to form a plus shape. The maze is built from black Plexiglas, and equipped with infrared 
photobeams. The entire maze is elevated 50 cm above the floor. Light beam breaks are recorded and 
analyzed automatically by Motor Monitor software 
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Four Plates Test: The four plates test is an animal model of anxiety in 

which the exploration of a novel surrounding is suppressed by the delivery of a 

mild electric foot shock. This test involves the animals’ conditioned response to  

stressful events, and anxiolytic-like activity is reflected by a compound’s ability to 

induce an anti-punishment effect.  

DOI has been shown to produce a dose-dependent induction of accepted 

punished passes in the four plates test. This effect was not observed with 

preferential 5-HT2C agonists including mCPP and RO 60-0175. Furthermore, the 

anti-punishment action of DOI was abolished by pretreatment with selective 5-

HT2A receptor antagonists, while 5-HT2C and 5-HT2B/2C antagonists failed to have 

an effect (Nic Dhonnchadha et al., 2003b).  

 

Stereotypical behaviors 

Stereotypical behavior or stereotypy is repetitive motor behavior without 

obvious purpose or function often seen in captive animals, particularly those held 

in small enclosures with little opportunity to engage in more normal behaviors. 

Stereotypical behaviors are also observed following treatment with 5-HT2 

agonists including certain hallucinogens.  

 

Head-twitch response: The head-twitch response is a stereotypical behavior 

characterized by a very rapid rotational movement of the head. The drug-elicited 

head-twitch response is a selective behavioral model for 5-HT2 agonist activity in 

the rodent, and several previous studies have established that direct and indirect 
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5-HT agonists induce this effect (Peroutka et al., 1981; Green et al., 1983) 

(Darmani et al., 1990a; Darmani et al., 1990b; Darmani et al., 1996). Moreover, 

induction of a head-twitch response in rodents appears to be a common property 

of hallucinogenic drugs, and studies employing antagonists selective for 5-HT2A 

(SR 46349B, MDL 100907) and 5-HT2C (SB 200,646A) receptors have shown 

that DOI-induced head-twitch response is mediated by 5-HT2A receptors 

(Schreiber et al., 1995; Dursun and Handley, 1996; Dave et al., 2002). This 

action appears to be mediated by 5-HT2A receptors located in the medial 

prefrontal cortex. Direct bilateral administration of DOI into the medial prefrontal 

cortex of rats produces a dose–dependent induction of head-twitches which is 

blocked by the 5-HT2A antagonist MDL 100907 but not with the 5-HT2C/2B 

antagonist SDZ SER 082 (Willins and Meltzer, 1997). 

 

Ear-scratch response: A less investigated stereotypical behavior induced by 

hallucinogens is a rapid scratching movement of the head and/or neck with a 

hindlimb. This effect, alternatively referred as scratch reflex, scratch-reflex 

stereotypy or the ear-scratch response, was first observed following mescaline 

administration by Deagan and Cook (1958). Pharmacological studies to 

determine the mechanism of action of hallucinogen-induced ear-scratch 

response are still needed. However, a study from Darmani et al., (1994) suggests 

that this effect may be due primarily to 5-HT2C receptor activation. 
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Heterotrimeric G-proteins 

 Heterotrimeric G-proteins represent an ancient protein family highly 

conserved throughout evolution. G-proteins tranduce signals from a wide array of 

G-protein coupled receptors (GPCRs), initiating a plethora of second messenger 

cascades. Alfred Gilman and Martin Rodbell were awarded the Nobel Prize in 

Physiology and Medicine in 1994 for their colaborative research on the discovery 

of G-proteins. G-protein-mediated signal transduction has been widely studied 

and reviewed (for example, see Birnbaumer, 1992; Neer, 1995; Wettschureck 

and Offermanns, 2005). Heterotrimeric G-proteins, consisiting of three subunits, 

Gα, Gβ, and Gγ, act as molecular switches between their active and inactive 

states in response to guanine nucleotides [exchange of guanosine diphosphate 

(GDP) for guanosine triphosphate (GTP)] (Figure 6). To date, multiple isoforms of 

each subunit have been identified in mammalian cells, 17 α subunits, 5 β 

subunits and 12 γ subunits (Table 4; Hamm, 1998; Wettschureck and 

Offermanns, 2005). There are also "small" G proteins or small GTPases, like 

Ras, that are monomeric, but also bind GTP and GDP and are involved in signal 

transduction (Macara et al., 1996). 

 Receptor-activated G-proteins are bound predominantly to the intracellular 

face of the plasma membrane, where they directly interact with the receptor and 

with effector components of the signaling pathway. Ligand binding to the GPCR 

induces a conformation change in the receptor that allows the G-protein to bind 

to the receptor. The G-protein then releases its bound GDP from the Gα subunit, 

and binds a new molecule of GTP. GTP binding leads to a conformational 
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Figure 6: Heterotrimeric G-protein activation cycle 
RGS, Regulators of G-proteins; GDP, guanosine diphosphate; GTP, guanosine triphosphate 
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change in Gα, which decreases its affinity for both the receptor and Gβγ subunits. 

This exchange triggers the dissociation of the Gα subunit, the Gβγ dimer, and the 

receptor. In its active state, the receptor has decreased affinity for its agonist, 

which leads to ligand release. Both Gα-GTP and Gβγ can then activate different 

effector pathways to modulate different signaling cascades and intracellular 

processes. The Gα subunit eventually hydrolyzes the attached GTP to GDP by 

its intrinsic GTPase activity, allowing it to reassociate with Gβγ to start a new 

cycle. However, by itself, the intrinsic level of GTP hydrolysis by the α subunit is 

often too slow for the efficient cycling of G-proteins. Another mechanism of GTP 

hydrolysis is carried out by regulators of G-protein signaling (RGS), which  

markedly accelerate α subunit GTP hydrolysis thus terminating its signaling, and 

indirectly terminating Gβγ signaling as well. 

 

GPCRs Structure and Function 

 All G-protein-coupled receptors share different structural features, 

including a central core domain consisting of seven transmembrane α-helices 

connected by three intracellular and three extracellular loops of varying length 

with an intracellular carboxyl terminus and an extracellular amino terminus. The 

5-HT2A receptor belongs to the rhodopsin-like, or Class A, family of GPCRs. 

Class A GPCRs are characterized by their sequence homology, which includes 

shared cysteine residues in extracellular groups 1 and 2, a DRY motif in 

intracellular group 2, and a NPXXY motif in transmembrane 7  (Figure 7; 

Bockaert and Pin, 1999). While in other types of receptor ligands bind externally  
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Figure 7: Class A GPCR conserved domains and residues 
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to the membrane, the ligands of GPCRs typically bind within the transmembrane 

domain. Once the ligand is recognized, the receptor shifts conformation and thus 

mechanically activates the G-protein, which detaches from the receptor to induce 

an intracellular response. When receptors are exposed to ligands for prolonged 

periods of time, they undergo a receptor-regulation process named 

desensitization. There are two recognized forms of desensitization: 1. 

Homologous desensitization, in which the activated GPCR is “turned off” or  

desensitized and 2. Heterologous desensitization, where the activated GPCR 

causes the inhibition of a different GPCR to signal. The key reaction of this 

desensitization is the phosphorylation of the intracellular receptor domain by 

protein kinases (Ferguson, 2001). 

 

Classification of G-proteins  

 G-protein classification was historically determined by the functional 

interaction of the Gα subunit with specific effector molecules. Both Gα and Gβγ 

regulate various effectors including PLCβ (Katz et al., 1992) and adenylyl cyclase 

isoforms (Tang et al., 1992). Despite this, heterotrimeric G-proteins are classified 

into four families based on the sequence alignment, biochemical, and functional 

criteria of their unique α-subunits: Gαs, Gαi/Gαo, Gαq/Gα11, and Gα12/Gα13 (Table 

4).  

 The widely-expressed G-proteins of the Gi/o family mediate receptor-

dependent inhibition of adenylyl cyclase (Sunahara et al., 1996). The function of 

members of the Gi/Go family has often been studied using a toxin from  



 38

Table 4 
G-Protein Families 

 
 
G-protein 

family 

 
Subtype 

 
Consequence of 

Activation 

 
Tissue 

Distribution 

 
Comments 

 
Gαs 

 
Ubiquitous 

 
 
 

Gs 
 

Gαolf 

 
 

Adenylyl Cyclase Brain/ 
Olfactory 

 
 
Cholera Toxin 

Activation 

 
GαoA,B 

 
Gαi1,2,3 

 
Gαt1,2 

 
 
 
 

Gi/o 

 
Gαz 

 
  To be determined 
   
 
   Adenylyl cyclase 
 K Channels 

 Ca2+ channels 
 
 Adenylyl cyclase 

 

 
Brain 

 
Wide 

 
 

Retina 
 
 

Brain/Retina 

 
 
 
 

Pertussis 
Toxin inhibition

 
Gαq 

 
 

Gα11 
 

Gα14 

 
Gα15 

 
 
 
 
 
 

Gq 

 
Gα16 

 
 
 
 
 
 

  Phopholipase Cβ 

 
Ubiquitous 

 
 

Ubiquitous 
 

Stroma/ 
Epithelial 

 
Myeloid 

 
 

Myeloid 

 

 
Gα12 

 
Ubiquitous 

 
 

G12 
 

Gα13 

 
 
Rho GTP exchange 

Catalyst  
Ubiquitous 

 

β1-β4, 
β6 

 
80% homology

 
 

Gβ  
β5 

  
 

Ubiquitous  
53% homology

 
Gγ 

 
γ1-γ12 

  
Ubiquitous 
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Clostridium botulinum (pertussis toxin; PTX) which is able to ADP-ribosylate most 

of the members of the Gαi/o family close to their carboxy termini, which results in 

the inhibition of coupling of the G-protein to the receptor. Unlike most G-proteins, 

members of the Go family appear to regulate effector activation via Gβγ.  Whether 

Gαo can regulate effectors directly is currently not clear (Wettschureck and 

Offermanns, 2005). A PTX-insensitive member of the Gi/o family is the less widely 

expressed Gz. Gz is mainly expressed in the brain, retina and platelets (Gagnon 

et al., 1991). Members of the Gs family mediate receptor-dependent adenylyl 

cyclase activation which results in increases in intracellular cAMP concentration. 

Gs subunits contain sites for cholera toxin (CTX)-dependent ADP ribosylation, 

which leads to the inhibition of GTPase activity and reassembly with Gβγ 

subunits.  

 The G12/G13 family is often activated by receptors that couple to Gq/11 and 

are expressed ubiquitously. The study of G12/13 signaling has been challenging 

since, at this time, there are no specific inhibitors of these G-proteins available. 

Furthermore, receptors coupling to G12/13 usually activate other G-proteins as 

well. Most of the information about the G12/13 family has been obtained with the 

use of constitutively active Gα12 and Gα13 mutants. These studies showed that 

G12 and G13 induce a variety of signaling pathways linked to the activation of 

several downstream effectors including phospholipase A2 (PLA2), Na+/H+ 

exchanger, and c-jun NH2-terminal kinase (Dhanasekaran and Dermott, 1996; 

Hooley et al., 1996; Fromm et al., 1997). Members of the Gq/11 family will be the 

focus for the rest of this discussion. 
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Gq/11 Family 

Receptors coupled to members of the Gq/11 family mediate a wide range of 

cellular responses including cell growth and proliferation, neuronal signaling, 

hematopoietic cell differentiation, leukocyte activation, platelet aggregation, 

glucose secretion, and smooth muscle contraction among other physiological 

responses. Within this family, Gαq and Gα11 signaling are the most widely 

studied. Gα14 and Gα15 signaling are less understood; however, based on their 

common abilities for PLCβ activation, they are generally assumed to be 

functionally similar to Gαq and Gα11 (for review, see Hubbard and Hepler, 2006) 

 

Distribution 

Members of the Gq/11 family have very different tissue and cell expression 

patterns (Table 5). The α-subunits of Gq and G11 are ubiquitously distributed 

among tissues. (Wilkie et al., 1991). They share 88% amino acid sequence 

identity and are expressed together in almost every cell type (Strathmann and 

Simon, 1990; Wilkie et al., 1991) with the exception of platelets which selectively 

express Gαq but not Gα11 (Milligan et al., 1993; Ushikubi et al., 1994). 

Quantitative measurements of regional distribution of Gαq and Gα11 in the rat 

brain showed that Gαq is more widely expressed than Gα11 with ratios levels of 

Gαq to Gα11 varying from 5:1 to 2:1 (Milligan, 1993). Gα14, Gα15, and Gα16 

distribution patterns are more limited. Gα14 expression has been found in spleen, 

lung, kidney, pancreas, liver, testis, and bone marrow (Wilkie et al., 1991), 

whereas Gα15/α16 expression is found exclusively in tissues rich in hematopoietic  
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Table 5 

 
Biochemical and Cell Signaling Diversity of Gαq family members 

 
 

 
Gα property Gαq Gα11 Gα14 Gα15/16 

Effector coupling PLCβ PLCβ PLCβ PLCβ 

Receptor coupling Selective Selective Limited 
selectivity Non-Selective 

Tissue distribution Ubiquitous Ubiquitous Kidney,liver, 
lung 

Hematopoietic 
cells 

Amino acid sequence identity with Gαq 100% 90% 80% 57% 

N-terminal AA sequence identity (first 40 
AA) 100% 83% 65% 35% 
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cells (Amatruda et al., 1991; Wilkie et al., 1991; Tenailleau et al., 1997). Since 

the Gq/11 signaling pathway is the classical pathway associated with 5-HT2A  

receptor signaling, I will focus on these G-proteins for the remainder of this 

discussion.  

 

Gq/11 signaling pathways 

The Gq/G11 family of G-proteins couples membrane receptors to isoforms 

of phospholipase Cβ (for review, see Exton, 1996; Rhee, 2001). Receptors that 

are able to couple to the Gq/G11 family do not appear to discriminate between 

Gαq and Gα11 (Wange et al., 1991; Wu et al., 1993; Offermanns et al., 1994; Xu 

et al., 1998). In general, receptors that activate inositol lipid signaling and calcium 

release in a PTX-insensitive manner are considered to be linked to Gαq family 

members.  

 As illustrated in figure 8, activated Gαq family members stimulate all four 

isoforms of PLCβ (β1-β4) to hydrolyze  phosphatidylinositol 4,5-bisphosphate 

(PI(4,5)P2) into inositol trisphosphate (IP3) and diacylglycerol (DAG) (Rhee, 

2001). IP3 binds IP3 receptors and promotes calcium release from intracellular 

calcium stores, while DAG activates protein kinase C (PKC) enzymes. In 

addition, several studies have linked Gq activation to the mitogen-activated 

protein kinase (MAPK) cascade in cultured cells, although it is believed that this 

occurs downstream from PLC activation (Buhl et al., 1995; Wan et al., 1996).  

Gαq family members have been shown to not only regulate kinase 

pathways, but they themselves are regulated by phosphorylation. Both Gαq and 
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  Gαq/11 

GTP 

 

PLCβ1−4 PIP2 

DAG

PKC

+ 

MAPK          P 

Transcription           Cell 
Factors                     growth 

IP3 

Ca2+ 

 CaM 

 

 CaM Smooth Muscle 
contraction 

cAMP PKA

   MLCK 

Figure 8: Gq signaling pathway 
PLC, phospholipase C; PIP2, phosphatidylinositol 4,5-bisphosphate; DAG, diacyl glycerol; IP3, inositol 1,4,5-
trisphosphate; PKC, protein kinase C; MAPK, mitogen-activated protein Kinase; cAMP cyclic adenosine monophosphate; 
PKA, protein Kinase A; CaM, calmodulin-dependent protein; MLCK, myosin light-chain kinase 
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Gα11 are tyrosine phosphorylated at Y356 in vitro and in vivo (Umemori et al., 

1997). This event appears to be necessary for full PLC stimulation by Gαq and 

Gα11 following carbachol treatment, but is also tightly regulated by phosphatases. 

Moreover, various studies indicate that Gαq negatively affects 

phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, which 

areimportant regulators of cell survival signaling pathways and growth response 

mechanisms (Hampoelz and Knoblich, 2004). In addition, apoptosis of 

cardiomyocytes has been associated with Gαq-linked inhibition of the PI3K/Akt 

pathway (Hartmann et al., 2004) 

 

Genetic manipulations for Gαq and Gα11 

Early genetic investigations studying Gαq/11-dependent physiology with 

knockouts were characterized by embryonic lethality. Double homozygous mice 

with mutations for Gαq and Gα11 die at embryonic day 10.5 due to cardiomyocyte 

hypoplasia, and mice with one intact allele of either of the two genes die shortly 

after birth due to cardiac malformation (Offermanns et al., 1998). However, single 

gene knockouts have been proven to be successful alternatives for studying the 

physiological roles of Gq and G11 in vivo.  

 Selective disruption of Gαq leads to the most pronounced phenotype, and 

their generation is depicted in figure 9. In brief, a targeting vector containing a 

10.4-kb Gαq genomic DNA fragment disrupted by a neomycin phototranferase 

gene was constructed. Three independently targeted embryonic stem cells 

generated by homologous recombination carried the targeted mutation of the 
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Gαq gene through the germ line. Western blot analyses from whole brain and 

cellular membranes demonstrated that there was no detectable Gαq protein in 

homozygous mutant [Gαq(-/-)] mice.   

 Mice heterozygous for the Gαq mutation [Gαq(+/-)] appear normal and 

show no abnormalities over a 20-month period. On the other hand, homozygous 

knockout mice have increased bleeding and deficits in platelet aggregation. Gαq(-

/-) mice show increased mortality during the first postnatal day, and the mortality 

appears to result from internal bleeding occurring during birth trauma (60-70% of 

homozygous mutants survive the postnatal period) (Offermanns et al., 1997c). 

Mice lacking Gαq exhibit defective lung function due to a loss of response to 

allergen changes (Borchers et al., 2003). These animals also exhibit slowed 

growth rates possibly due to impaired Gαq-dependent signaling in the 

hypothalamic/pituitary axis (Wettschureck et al., 2005). These symptoms are less 

pronounced in the mixed C57BL6/129Sv background (Melvin Simon, personal 

communication) 

Gαq knockout mice display awkward jerky movements and loss of balance 

during rearing. They also exhibit signs of ataxia with typical wobbling and 

tottering steps. Mutant mice cannot walk in a straight line and tend to drag their 

feet. Despite motor coordination and signs of ataxia, Gαq knockouts showed no 

obvious morphological defects in their peripheral and central nervous system. In 

addition, extensive examination of the cerebral cortex by histological, 

immunohistochemical, and electron microscopic techniques indicated that 
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deletion of the Gαq gene does not affect gross development of cerebellar 

anatomy, cell production, and cytodifferentiation (Offermanns et al., 1997a). 

 Mice genetically deficient in Gα11 exhibit normal growth characteristics and 

do not display any apparent physiological deficiencies (Offermanns et al., 1998). 

On the other hand, mice lacking Gαq and one of the Gα11 alleles display 

craniofacial defects. These defects were absent in Gα11 knockouts with one 

intact allele for Gαq, indicating that the craniofacial phenotype is a result of 

selective loss of Gαq (Offermanns et al., 1998). In addition, Wettschureck and 

colleagues (2004) showed that selective disruption of Gq and G11 in the forebrain 

disrupts maternal behavior in mice with absent or markedly blunted nest building, 

pup retrieving, crouching, and nursing. However, their olfaction, motor behavior, 

and mammary gland function remained undisturbed leading the authors to 

conclude that heterotrimeric G proteins of the Gq/11 family are indispensable for 

the neuronal circuit that connects the perception of neonates to the activation of 

the medial proptic area, which in turn controls maternal behavior.  

 These studies indicate that genetic deletion of a single Gα of the Gq/11 

family often leads to targeted rather than global physiological changes in adult 

animals. This may be reflective of the ability of Gq family members to functionally 

compensate for one another in cells where they are naturally coexpressed.  
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Figure 9 
 

Generation of Gαq knockout mice 
 
 

                          
(Offermanns et.al., 1997) 

 
 
Targeted disruption of the murine G q gene. (A) Part of the wild-type G q locus containing the 
two last exons (wt allele), the targeting construct, and the targeted locus (mut. allele) are shown. 
Neo, neomycin resistance gene. The sizes of the AflII fragments predicted to hybridize to the 
indicated diagnostic probe are shown. Restriction endonucleases: A, AflII; B, BglII; N, NdeI; S, 
SacI; Sm, SmaI; and X, XhoI. (B) Southern blot analysis of AflII-digested genomic DNA from wild-
type (+/+), hemizygous ( /+), and homozygous mutant mice ( / ) with the diagnostic probe 
indicated in A. (C) Western blot analysis of whole brain cholate extracts from wild-type (+/+) and 
homozygous G q mutant mice ( / ) with antibodies recognizing the -subunits of Gq (G q), G11 
(G 11), G13 (G 13), and Go (G o). (D) Western blot analysis of cerebellar membrane fractions from 
wild-type (+/+) and homozygous G q mutant animals ( / ) with antibodies recognizing the -
subunits of Gq

 and G11 (G q/G 11), Go (G o), type 1 metabotropic glutamate receptor (mGluR1), 
phospholipase C- 3 (PLC- 3), and phospholipase C- 4 (PLC- 4). 
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Specific Aims 
 

5-HT2A receptors are known to be a key site of action for hallucinogenic 

drug action in both humans and laboratory animals. There is now vast evidence 

from biochemical, electrophysiological, and behavioral studies that 

hallucinogens, such as LSD and DOI, have a key site of action as agonists at 5-

HT2A receptors in the brain. 5-HT2A receptors are known to couple to various G-

proteins to mediate a wide array of second messenger signaling pathways; 

however, the classical pathway associated with 5-HT2A receptor signaling is 

stimulation of PLCβ via Gαq protein.  

The precise signal transduction pathway involved in the in vivo effects of 

hallucinogenic drugs is not known. The objective of the present study is to 

evaluate the role of Gq proteins in hallucinogen-induced biochemical and 

behavioral effects. As a tool to assess the role of the Gq signaling pathway, we 

have utilized of a lentiviral delivery system of Gq blocking peptides as well as 

genetically modified mice in which the gene encoding for the α-subunit of Gq 

protein has been eliminated [Gαq(-/-)]. 

  

The following specific aims were formulated to better understand the role of 

Gαq protein in hallucinogenic drug action.  

 

1. To evaluate the role of Gq in hallucinogen-induced biochemical assays 

2. To evaluate the role of Gq in hallucinogen-induced behaviors 

3. To establish a viral gene transfer system to block Gq-signaling 



 49

CHAPTER II 

 
 

MANIPULATION OF 5-HT2A SIGNALING BY LENTIVIRAL DELIVERY OF Gq 
BLOCKING PEPTIDES 

 
 
 

Introduction 

Many scientific advances have taken place with the advent of knockout 

mice; however, there still are many disadvantages and limitations to this 

approach. One of the main concerns with knockout technology is that a gene is 

deleted from the earliest moments of embryonic development, which may 

compromise the animal’s survival even to later embryonic stages. Moreover, 

many of the phenotypic outcomes observed in knockout animals may be related 

to developmental deficits. In other words, the absence of important signaling 

molecules might have a critical role in development that is different from their role 

in adult plasticity; consequently, the deletion may interfere with further analyses 

and behavioral experimentation (Chapman, 2002). In order to address these 

issues, Alcino Silva’s group made use of an innovative pharmacogenetic 

approach, which takes advantage of the synergism between pharmacological 

and genetic manipulations (Ohno et al., 2001). By combining a heterozygous 

genotype that does not itself produce a significant phenotype, with the application 

of a subthreshold concentration of a drug that acts upstream or downstream of 

the knockout gene, it is possible to create inducible manipulations with interesting 

and interpretable outcomes (Chapman, 2002). This approach integrates the high 
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temporal specificity of pharmacological manipulations with the molecular 

specificity of genetic disruptions. 

Recent behavioral data obtained in our laboratory suggest that the anterior 

cingulate cortex is a key region for LSD discrimination (Gresch et al., 2006). 

These studies showed that direct microinjection of LSD into the anterior cingulate 

cortex reproduces the effects of systemic LSD administration in drug 

discrimination studies. Additionally, MDL 100907 injected into the anterior 

cingulate cortex blocks systemic LSD (Figure 10). Based on these findings, we 

have concluded that the anterior cingulate cortex is a crucial site in the neuronal 

pathway mediating LSD discrimination. Therefore,  in vivo studies of the lentiviral 

delivery system targeted the anterior cingulate cortex, where 5-HT2A receptors, 

expressed on pyramidal neurons,  have been implicated in hallucinogenic drug 

action as well as in schizophrenia (Selemon et al., 1995; Willins et al., 1997; 

Jakab and Goldman-Rakic, 1998). 

Viral-mediated gene transfer is a powerful way to deliver molecules to the 

CNS in a site-specific manner (Elliott and O'Hare, 1997; Neve et al., 1997; Palfi 

et al., 2002). I used a modification of the inducible pharmacogenetic approach, 

with a lentiviral-mediated gene transfer system as the “pharmacological” 

treatment, in mice heterozygous for the Gαq gene [Gαq(+/-)]. To evaluate the 

effects of local manipulation of Gq levels in biochemical and behavioral assays, 

we used a recombinant replication-deficient HIV-1-based vector containing a 

minigene encoding the last 11 amino acids (LQLNLKEYNLV) of the carboxy 

terminus of the Gα subunit of Gq/11 (GqCT). 
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Figure 10: Intracerebral microinjections of MDL 100907 followed 
by systemic LSD 
Rats were trained to discriminate 0.085 mg/kg LSD s.c. from saline. Following 
acquisition, bilateral canulae were implanted into the anterior cingulate cortex. 
Intra-ACC injection of M100907 blocks systemic LSD. The 5-HT2A receptor 
antagonist, M100907 (M)(0.5 μg/μl/side) was injected bilaterally into the ACC 20 
mins prior to systemically administered LSD (0.04 mg.kg s.c.). Intra-ACC 
injection ofM100907 significantly reduced the ability of rats to discriminate LSD, 
given systemically. * = p < 0.001 compared to intracerebral (ic) ACSF- sc LSD; # 
= p < 0.001 compared to retest ic ACSF- sc LSD; (n = 4-5). 
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Extensive evidence shows that peptides mimicking the last eleven amino 

acids of the Gα-carboxy terminus selectively block signal transduction activation 

mediated by a given G-protein. (Table 6; Gilchrist et al., 1999). The GqCT peptide 

has been shown to effectively and specifically disrupt receptor coupling to the Gq 

heterotrimeric protein (Figure 11 and 12; Gilchrist et al., 1999; Chang et al., 

2000b).  

My proposed modification of the inducible pharmacogenetic approach, 

combining microinjection of a viral gene delivery system and mice hetereozygous 

for Gαq, provides not only temporal but anatomical specificity. The objective of 

this study was to determine the biochemical and behavioral consequences 

following manipulations of Gq/11 signaling in mature mice in a site-specific 

manner. 

 

Materials and Methods 

 
The Lentivirus Construct 
 

Virus was produced in HEK 293T cells by transient transfection. For safety 

reasons, the putative packaging signaling of the HIV-1 virus (ψ), necessary for 

viral RNA packaging, was deleted; and a three-plasmid cotransfection strategy 

was used for vector production to reduce the potential risk of wild type 

recombination (Reiser et al., 1996)  
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Table 6 
 

Carboxy Terminal Amino Acid Sequence of G-proteins 
 
 
 

G-protein Amino Acid Sequence 

αt I  K  E  N  L  K  D  C  G  L  F 

αi1/2 I  K  N  N  L  K  D  C  G  L  F 

αi3 I  A  N  N  L  K  E  C  G  L  F 

αo1 I  A  N  N  L  R  G  C  G  L  Y 

αo2 I  A  K  N  L  R  G  C  G  L  Y 

αz I  Q  N  N  L  K  Y  I  G  L  C 

αq/11 L  Q  L  N  L  K  E  Y  N  L  V 

α12 L  Q  E  N  L  K  D  I  M  L  Q 

α13 L  H  D  N  L  K  Q  L  M  L  Q 

α14 L  Q  L  N  L  R  E  F  N  L  V 

α15/16 L  A  R  Y  L  D  E  I  N  L  L 

αs   Q  R  M  H  L  R  Q  Y  E  L  L 

 
 

 

 



 54

 

 

Gq/11

PLC
β PIP2

    IP3 DAG 

Ca+2 

release PKC 

Gq Blocking 
peptide 

 
 

Gq blocking peptides have been shown 
to disrupt receptor coupling to Gq  
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Figure 11: Inactivation of Gq signaling pathway by Gq blocking peptides 
Gq blocking peptides (LQLNLKEYNLV) competitive bind the receptor preventing Gq protein activation thus 
inhibiting downstream signaling 
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These vector constructs were developed in collaboration with Dr. Zennan  

Figure 12: Effect of Gq carboxyl-terminal (MPS-GqCT) Peptide. 
Primary cultured CPE cells were stimulated with 100 nM 5-HT and assayed for 
PI hydrolysis in the absence or presence of blocking peptides. Schematic 
illustrating the designated point of blockade by MPS-GqCT peptide. MPS-
GqCT inhibits PI hydrolysis in cultured CPE cells as compared with the 
untreated control. Individual responses were normalized to the average control 
value corresponding to that particular experiment and are plotted as 
mean ± S.E. Statistical analyses were performed using one-way analysis of 
variance (ANOVA) with a nonparametric TUKEY test.  
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These vector constructs were developed in collaboration with Dr. Zhennan 

Lai at the National Institutes of Health. The three-plasmid design (Figure 13; 

Reiser et al., 2000) consists of a helper (packaging), which encodes for gag, pol, 

and the poly-A site necessary for transduction. The transducing vector, which 

carries the minigene encoding for GqCT. Transgene expression was driven by a 

neuron-specific enolase (NSE) promoter, which has been shown to be more 

effective in driving gene expression in the brain than the CMV promoter (Lai and 

Brady, 2002). This serves to increase efficiency and potency of gene delivery. 

The vector also carries an internal ribosomal entry site (IRES), which serves to 

drive expression of the enhanced green fluorescent protein (EGFP). Two 

regulatory genes tat and rev; mouse heat-stable antigen, and long terminal 

repeats (LTR) are also part of this construct and are essential for transducing 

vector function. Finally, the third component of the three plasmid design is an env 

expression construct encoding the vesicular stomatitis virus G protein (VSV-G). 

VSV-G recognizes a phospholipid that is present on all cell types, and thus can 

theoretically allow the efficient infection of any mitotic or non-mitotic cell. Its 

expression is driven by the HIV-1 LTR. In addition, a recombinant lentivirus 

expressing the herpes simplex virus type 1 tegument protein VP22 in tandem 

with GqCT was also be generated. VP22 has been shown to exhibit a unique 

property of increasing intercellular spread. The protein is secreted by cells and 

imported into the nuclei and cytoplasm of adjacent cells (Lai et al., 2000). 
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gag                                NnSE

LTR tat

rev

NSE

VP22

EGFP

rev

tat

RRE HSA

B. Transducing vector

GqCT IRES

HIV-1

 Figure 13: Recombinant HIV-1 lentiviral construct: Three plasmid design 
A. Helper construct encodes for the viral outer capsid B. Tranducing vector contains the GqCT carxoxy-terminus blocking 
peptide and the enhanced green fluorescent protein (EGFP) reporter. Their expression is driven by the nuclear-specific 
enolase promoter (NSE). The internal ribosomal entry site (IRES) sequence was inserted to allow for the co-expression of 
individual proteins rather than a tagged GqCT protein. Mouse heat-stable antigen protein (HSA) is another reporter protein 
used to visualize transducing vector expression. C. Envelope construct encodes for the vesicular stomatitis virus G protein 
(VSV-G) 
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Transfection 

 Cells were plated the day prior to the transfection experiment in 12-well 

plates. Once cells reached 60-80% confluency, a 3:1 ratio of fugene-6 to DNA 

(transducing vector) was mixed in serum-free Opti-MEM media (Fugene-6 was 

added to the media prior to adding the DNA). Following a 20 min incubation 

period, 20 μl of Fugene-6/DNA solution was added dropwise onto the media in 

each well. Cells were then assayed 24-48 hours post-treatment.  

 

Lentivirus Production 

 HIV-1 pseudotype helper plasmid DNA (4 μg), Env plasmid DNA (4 μg) 

and vector plasmid DNA (4 μg) were transfected into sub-confluent 293T cells 

using lipofectamine 2000 reagent (Invitrogen. Carlsbad, CA). Approximately 

4x107 cells were seeded into 10 cm petri-dishes 18-24 hours prior to transfection. 

The next day, medium containing the DNA-lipofectamine 2000 complexes were 

removed, and replaced by DMEM containing 10% FBS, 2mM L-glutamine, 0.1 

mM MEM non-essential amino acids, and 1% penicillin/streptomycin. The virus 

stocks were harvested 48 hours post transfection and filtered through a 0.45 μm 

filter. Further vector concentration was achieved by centrifugation at 250,000 rpm 

in a Ti-55 Beckman rotor for 2 hours. After centrifugation, the pellet was 

resuspended in 60 μL of PBS.  
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Stereotaxic Microinjections of the Virus 

The HIV-1-GqCT construct was stereotaxically microinjected unilaterally 

into the anterior cingulate cortex (Figure 14). Mice were anesthetized with 80-100 

mg/kg ketamine plus 10mg/kg xylacine and placed in a stereotaxic device for 

placement of the injection needle. The concentrated virus, in a volume of 3 μL, 

was injected at a rate of 0.5 μL/min), and the needle was left in place for an 

additional 5 mins. The skin was then closed, sutured, and animals were 

monitored until they recovered spontaneous movement. Animals were 

maintained in home cages, usually one to three week after surgery. 

 

Phosphoinositide Hydrolysis  

GqCT expressing cells plated in 24 well plates were incubated with DMEM 

(-inositol) and 3H-myoinositol (1μCi/mL) approximately 16 hours prior to assay. 

Following incubation, in order to prevent further metabolism of IP, 10mM lithium 

chloride and 10mM pargyline were added to each well. After 15 min, agonist was 

added. Incubations were continued for 30 min. Reactions were stopped by 

removal of media, and cells were fixed with methanol. Cells were solubilized with 

EBB/trypsin buffer and then sonicated for 5 seconds. Inositol phosphates were 

separated from other cellular components by organic extraction and 

centrifugation. [3H] inositol monophosphates were isolated by anion exchange 

chromatography as previously described (Barker et al., 1994). 750 μL of the 

aqueous layer was removed from each extract and placed in columns. These 

were washed twice with 5mM myo-inositol to elute free inositol; and 5mL of 
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sodium tetraborate/60 mM amonium formate to elute glyceroinositol phosphate. 

Finally, [3H] inositol monophosphate was eluted with 200 mM ammonium 

formate/0.1 formic acid and then counted in a liquid scintillation counter. Data 

was then analyzed using GraphPad Prism 3.0 software. 

 

Virus titering 

20,000 NIH 3T3 cells were seeded in a 24 well-plate on the day prior to 

infection. On day two, virus was diluted in serial dilutions in 300μl of DMEM 

media with 5μg/ml polybrene according to its p24 value and added to the cells 

overnight.  Following incubation, fresh medium was added, and 48 hours after 

inoculation, cells were washed with 1X PBS, detached with trypsin, and fixed with 

4% paraformaldehyde. The number of infected (GFP-positive) cells was then 

determined by fluorescence activated cell sorting (FACS) 

 

Hematoxylin & Eosin Staining 

Fixed coronal sections were cut at 40μm thickness on a vibratome. 

Sections were re-hydrated in two changes of absolute alcohol for 5 min, and then 

dipped into 95% and 70% ethanol solutions for 2 min each. Following re-

hydration, sections were briefly washed in distilled water and stained in Harris 

hematoxylin solution (Sigma. St. Louis, MO) for 8 min. Sections were then 

washed by 5 min exposure to water, briefly submerged in 1% acid alcohol for 30 

sec prior to treatment with saturated lithium carbonate for 1 min. Following a 5 

min water wash and 10 dips in 95% ethanol, sections were counterstained in 
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eosin Y solution (Sigma. St. Louis, MO) for 1 min. Sections were then washed, 

mounted on slides, dehydrated through a series of increasing ethanol 

concentrations, treated with xylenes, and coverslipped with Mounting Medium 

(Richard-Allan Scientific. Kalamazoo, MI) 

 

GFAP Immunohistochemistry 

Mice were anesthetized with 150 mg/kg pentobarbital i.p. before 

transcardiac perfusion with 30 ml of 0.1M phosphate-buffered saline (PBS) 

followed by 30 ml of 4% paraformaldehyde in 0.1M PBS. Brains were removed 

immediately, post-fixed in paraformaldehyde overnight at 4oC, and then 

transferred to increasing concentrations of sucrose. Coronal sections were cut at 

40μm thickness on a vibratome and collected into buffer containing 30% ethylene 

glycol, 30% glycerol, 10% 0.1M PBS, and 30% water. Immunohistochemistry 

was performed on free floating sections. Sections were preincubated for 30 min 

in 0.3% hydrogen peroxide, washed 3 times with PBS, and then incubated for 

one hour in 5% goat serum/2% Triton X-100 to block non-specific binding. 

Sections were incubated for 48h at  4oC in anti-GFAP primary antibody 

(Chemicon. Temecula, CA) diluted in blocking solution 1:2000. Following 3 

washes in PBS, a Vectastain Elite ABC horseradish peroxidase kit (Vector Labs) 

was used for the secondary antibody and avidin–biotin complex steps. The 

colorimetric detection reaction produced 3-3’-diaminobenzidine 

tetrahydrochloride (DAB) as a brown chromagen product. Sections were then 

washed, mounted on slides, dehydrated through a series of solution with 
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increasing ethanol concentrations, treated with xylenes, and coverslipped with 

Mounting Medium (Richard-Allan Scientific. Kalamazoo, MI) 

 

NeuN Immunohistochemistry 

 Brains were fixed and sliced on a vivatrome at 40μM thickness. 

Immunohistochemistry was performed in free floating sections. Sections were 

washed 3 times with 1μM PBS, and then incubated for one hour in blocking 

solution. Sections were then incubated overnight at 4oC in NeuN (Chemicon. 

Temecula, CA) primary antibody diluted 1:2000 in blocking solution. Following 3 

washes with PBS, sections were incubated in the dark at room temperature with 

cy-3 secondary antibody (Jackson Immunoresearch. West Groove, PA) for 2 

hours. Sections were then washed 3 times with PBS, placed on slides, and 

allowed to air-dy.  

  

Statistical Analyses 

All data are presented as mean ± S.E.M. The effects of GqCT expression 

on phosphoinositide hydrolysis were analyzed by a one-way ANOVA followed by 

Tukey’s multiple comparison tests.  
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Results and Discussion 

 Lentiviruses have been shown to be a powerful way to deliver molecules 

to the brain in a site specific manner. In the present study, we used a replication-

deficient HIV-1 virus to deliver Gq/11 blocking peptides into the anterior cingulate 

cortex of Gαq(+/-) mice. This modification of the inducible pharmacogenetic 

approach (Ohno et al., 2001) combines the spatial and temporal specificity of a 

lentiviral construct (as the “drug treatment”) with the molecular specificity of 

genetic disruptions [Gαq (+/-)]. 

Phosphoinositide (PI) hydrolysis assays were performed in cultured cells 

as an initial in vitro validation of the efficacy of the HIV-1-CMV-GqCT-EGFP 

construct. When infecting cells in culture, it was challenging to reach high 

threshold levels of infection necessary to evaluate potential changes in Gq/11-

mediated signaling induced by the expression of the viral construct. Following 

extensive consultation, I found that this is not an uncommon experience when 

working with lentiviruses in vitro. To address this limitation, I decided to 

transiently transfect the transducing vector into cell lines expressing endogenous 

Gq/11-coupled receptors, namely lysophosphatidic acid (LPA) receptor-expressing 

293T cells (Figure 15), and histamine receptor-expressing COS and Hela cells 

(Figures 16 and 17). Transgene expression was, however, limited by transfection 

efficiency in the cell population, and intracellular expression levels were difficult 

to control.  Consequently, expression of the GqCT peptide led to variable results.  

First, LPA-induced PI hydrolysis in 293T cells was significantly decreased in cells  

transfected with the HIV-1-CMV-GqCT-EGFP vector versus cells tranfected with 
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Figure 15: Lysophosphatidic acid-induced 
phosphoinositide hydrolysis in HEK 293Tcells 
HEK 293T cells were incubated with inositol-free DMEM with 1μCi/ml 
[3H]-inositol for 16 hours prior to stimulation with 10 μM histamine. [3H]-
inositol monophosphates were isolated by anion exchange 
chromatography. Basal and LPA-induced PI hydrolysis were decreased 
in cells expressing GqCT; p<0.01, p<0.001 respectively 
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Figure 16: Histmaine-induced phosphoinositide hydrolysis 
in Hela cells 
Hela cells were incubated with inositol-free DMEM with 1μCi/ml [3H]-
inositol for 16 hours prior to stimulation with 100nM histamine. [3H]-
inositol monophosphates were isolated by anion exchange 
chromatography. Histamine-induced PI hydrolysis was decreased in cells 
expressing GqCT; p<0.05 
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Figure 17: Histamine-induced phosphoinositide hydrolysis 
in COS    cells 
COS cells were incubated with inositol-free DMEM with 1μCi/ml [3H]-
inositol for 16 hours prior to stimulation with 100nM  and 1μM histamine. 
[3H]-inositol monophosphates were isolated by anion exchange 
chromatography. Basal and histamine-induced PI hydrolysis were 
decreased in cells expressing GqCT; p<0.01 for basal, p<0.05 for 100nM 
histamine, p<0.001 for 1μM histamine 

 

= 100nM Histamine
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HIV-1-CMV-EGFP (empty vector) (p<0.001). In addition, basal [3H]-IP formation 

was also reduced in GqCT expressing cells (p<0.001) (Figure 15). Similarly, 

histamine-induced PI hydrolysis was decreased in COS (p<0.05 for 100nM; 

p<0,001 for 1uM) (Figure 16) and Hela (p<0.05) cells transfected with the 

transducing vector (Figure 17). Even though basal [3H]-IP formation was reduced 

in COS cells expressing the GqCT peptide (p<0.01), GqCT induced no change on 

basal [3H] IP expression in Hela cells (Figure 17). 

However, results were highly variable, and they were often difficult to 

reproduce due to high cell death or low transfection efficiency. For instance, 

293T cells showed the highest levels of transfection efficiency, but cells often 

detached from wells following tranfection with the viral construct. On the other 

hand, COS and Hela cells were resilient to viral transfections, but transfection 

efficiency lagged suboptimally between 30-40%. 

To validate the lentiviral construct in vivo, I delivered a recombinant 

replication-deficient HIV-1-based vector containing a minigene encoding GqCT 

into the anterior cingulate cortex of mice heterozygous for Gαq (Figure 18). Two 

weeks post-injection, virus infectivity was determined by GFP analyses, and 

assessed transgene expression and function was assessed by c-fos expression. 

GFP analyses showed the viral construct was effective at infecting cells in vivo. I 

consistently observed a large number of fluorescent (EGFP positive) cells along 

the needle track ipsilaterally; while no fluorescent cells were evident 

contralaterally (Figure 18). However, DOI-induced c-fos expression assays 

showed that our lentiviral construct (HIV1-NSE-GqCT-EGFP), as well as virus  
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Figure 18: Lentiviral vector injection into the mouse anterior cingulate cortex 
A Brain section shows a large number of EGFP-positive cells tranduced by the human 
immunodeficiency virus HIV-1-NSE-GqCT-IRES-EGFP. B Colocalization of EGFP positive cells  with 
the neuronal marker NeuN. (scale 60 mm) 

A B 
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alone (HIV1-NSE-EGFP) completely abolished FOS expression in the area of 

infection (Figure 19). Due to this observation, I performed further H&E (Figure 

20) and GFAP stains (Figure 21), which demonstrated that the virus induces 

severe gliosis accompanied by necrosis in the area of infection.  

The cause of virus toxicity is not known, but it may be related to several 

factors. First, in order to obtain high levels of transgene expression, the lentivirus 

was highly concentrated (HIV1-NSE-EGFP= 75 μg/ml, HIV-1-NSE-GqCT-EGFP= 

143.2 μg/ml). It is possible that infection by high titers of virus could have caused 

some post-delivery tissue damage. However, lowering the virus titer was not a 

feasible alternative since it severely decreased the levels of GFP expression in 

target areas; given that Gq blocking peptides disrupt specific protein-protein 

interactions in a competitive manner, we assume that high levels of expression 

are needed.  Another possible cause of the toxic effects observed may be lack of 

virus purity. Recently, Dr Wolfgang R. Dostmann (personal communication) 

informed me that impurities in the viral concentrate could be one of the causes 

leading to toxicity following lentiviral delivery. The severe toxicity I observed likely 

reflects a combination of these factors. 

 Alternatively, a new tool for systematically deciphering gene functions and 

interactions was recently developed with the advent of short hairpin RNAs. 

Hairpin RNAs are precursors to the short interfering RNAs (siRNAs) that are the 

powerful mediators of RNA interference (RNAi). In RNAi, genes homologous in 

sequence to the siRNA are silenced at the post-transcriptional state. Short  
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Figure 19: (HIV)-1-NSE-EGFP injection into the mouse anterior cingulate cortex.    
(A), Representative image showing DOI-induced c-fos expression following treatment with 5mg/Kg DOI, 
(4X). Oval illustrates area of viral infection. (B), Previous image at a higher magnification (10X). (C), GFP 
fluorescence indicating area of infection.  
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Figure 20: Hematoxylin and Eosin (H&E) staining 
HIV-1-NSE-EGFP induces extensive gliosis, characterized by increased numbers of nuclei 
on the area of viral infection. Arrows point at necrosis in the tissue. (A), 5X. (B), 10X 
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Figure 21: GFAP Immunostaining 
(A), Expression of the lentivirus induces gliosis in the area surrounding the injection site (5X). (B), Higher 
magnification showing representative amounts of GFAP immunoreactivity immediately adjacent to the 
injection site (10X). (C), GFP fluorescence indicating area of infection.  

A B C 
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hairpin RNAs can be expressed from lentiviruses, allowing for high efficiency 

transfection in a variety of cell types including neurons. This technique can be 

highly advantageous for studying the role of Gq-signaling blockade in a site-

specific manner. By using a lentivirus expressing siRNA sequence homologous 

to Gαq, we would be able to avoid one of the main limitations of the present study 

- the need for achieving high levels of transgene expression to overcome a 

competitive blockade by Gq/11 blocking peptides, thereby limiting potential viral 

toxicity induced by injection of high concentrations of lentivirus. 
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CHAPTER III 

 

ROLE OF Gq IN HALLUCINOGENIC DRUG ACTION 

 

Introduction 

 G-proteins transduce signals from a wide array of G-protein coupled 

receptors (GPCRs) initiating a plethora of second messenger cascades. The 

Gq/11 subfamily of G-proteins mediates the activation of inositol lipid signaling and 

calcium release in a PTX-insensitive manner. 5-Hydroxytryptamine2A (5-HT)2A 

receptors are a subtype of the 5-HT2 subfamily of receptors, known to stimulate 

the PLC pathway via Gαq (Chang et al., 2000a). There is now vast evidence from 

biochemical, electrophysiological, and behavioral studies that hallucinogens, 

such as lysergic acid diethylamide (LSD), have a key site of action as agonists at 

5-HT2A receptors in the brain (for review, see Marek and Aghajanian, 1996; 

Aghajanian and Marek, 1999a; Nichols, 2004). 

The hallucinogen (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane 

(DOI), a highly selective 5-HT2 agonist (McClue et al., 1989), has been utilized to 

evaluate the role of 5-HT2A receptors in many biochemical and behavioral 

responses in rodents (Darmani et al., 1990a; Darmani et al., 1990c; Darmani et 

al., 1990b; Leslie et al., 1993; Mazzola-Pomietto et al., 1995). Acute 

administration of DOI elicits a 5-HT2A receptor-dependent induction of the 

immediate early gene c-fos and its protein FOS in the rat cortex (Leslie et al., 

1993; Tilakaratne and Friedman, 1996; Scruggs et al., 2000). In mouse 
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behavioral assays, DOI has been shown to exhibit anxiolytic-like properties in 

anxiety paradigms such as the four plates test and the elevated plus maze 

(Onaivi et al., 1995; Nic Dhonnchadha et al., 2003a). Moreover, activation of 5-

HT2A receptors by DOI evokes a head-twitch response in both rats and mice 

(Schreiber et al., 1995; Dursun and Handley, 1996; Kleven et al., 1997).  

The precise signal transduction pathway involved in the in vivo effects of 

DOI and other hallucinogenic drugs is unknown. The objective of the present 

study is to evaluate the role of Gq proteins in DOI-induced biochemical and 

behavioral effects. As a tool to assess the role of the Gq signaling pathway, we 

have made use of genetically modified mice in which the gene encoding for the 

α-subunit of Gq protein has been eliminated [Gαq(-/-)]. 

 

Materials and Methods 

 

Animals 

Gαq(-/-) mice were generated by mating heterozygous [Gαq(+/-)] males 

and heterozygous females to obtain wild-type and knock-out littermates. Mice 

were kept on a C57BL/6x129/Sv background, and their genotype was 

determined by PCR of genomic DNA from tail samples as previously described 

(Offermanns et al., 1997a). Although Gαq(-/-) mice exhibit signs of ataxia and 

motor incoordination, their peripheral and central nervous system morphology is 

largely undisturbed (Offermanns et al., 1997a). However, these ataxic 

characteristics are less severe in the C57BL/6x129/Sv hybrid background. 
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C57BL/6 mice (Harlan, Indianapolis, IN) were utilized for control experiments 

evaluating the role of 5-HT2A receptors in the in vivo effects of DOI. Animals had 

free access to food and water, and were maintained on a 12:12 light/dark cycle.  

An equal number of male and female mice were used for experimental studies; 

the mice were 6-8 weeks of age at the time of testing. All experiments were done 

in compliance with the guide Principles of Laboratory Animal Care (NIH 

publication No. 85-23) and the Vanderbilt University Animal Care and Use 

Committee.  

 

c-fos Immunohistochemistry 

Mice were anesthetized with 150 mg/kg pentobarbital i.p. before 

transcardiac perfusion with 30 ml of 0.1 M phosphate-buffered saline (PBS) 

followed by 30 ml of 4% paraformaldehyde in 0.1M PBS. Brains were removed 

immediately, post fixed in paraformaldehyde overnight at 4oC, and then 

transferred to increasing concentrations of sucrose. Coronal sections were cut at 

40μm thickness on a vibratome and collected into buffer containing 30% ethylene 

glycol, 30% glycerol, 10% 0.1M PBS, and 30% water. Immunohistochemistry 

was performed on free floating sections. Sections were preincubated for 30 min 

in 0.3% hydrogen peroxide, washed 3 times with PBS, and then incubated for 

one hour in 5% goat serum/2% Triton X-100 to block non-specific binding. 

Sections were incubated for 48h at  4oC in anti-FOS primary antibody (Oncogene 

Research Products) diluted in blocking solution 1:30,000. Following 3 washes in 

PBS, a Vectastain Elite ABC horseradish peroxidase kit (Vector Labs) was used 
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for the secondary antibody and avidin–biotin complex steps. The colorimetric 

detection reaction produced 3-3’-diaminobenzidine tetrahydrochloride (DAB) as a 

brown chromagen product. Sections were then washed, mounted on slides, 

dehydrated through a series of solution with increasing ethanol concentrations, 

treated with xylenes, and coverslipped with Mounting Medium (Richard-Allan 

Scientific. Kalamazoo, MI) 

 

Analysis of FOS-Li Positive Nuclei 

Brain sections containing medial prefrontal cortex were analyzed as 

described previously (Gresch et al., 2002). Briefly, bright field images were taken 

using Openlab 2.2.5 software (Improvision. Lexington, MA) with a Coolsnap cf 

camera (Photometrics. Tucson, AZ) mounted on a Zeiss Axioverts S100 

microscope. All settings were kept constant throughout the image collection 

process.  Analysis and quantification of images were performed using Image J 

1.33u (Wayne Rasband, NIH) in mPFC sections that correspond to AP +1.34mm 

relative to bregma (Franklin and Paxinos, 1997). An image of 600μm x 450 μm 

area was analyzed for the number of FOS-Li positive nuclei. Cells with brown 

black nuclei were considered positive FOS-Li. These were determined by using 

the particle count macro in Image J 1.33u where the pixel density threshold had 

been set four times above background levels.  

 

Radioligand Binding 

Frontal cortex was dissected and homogenized in binding buffer (50mM 
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Tris and 10mM MgCl2, pH 7.4). The homogenate was centrifuged at 20,000g for 

20 min at 4oC, and the pellet was resuspended in binding buffer. Protein 

concentration was determined with Bio-Rad protein assay dye reagent (Hercules, 

CA). Membrane preparations (200μg/sample) were incubated with [3H]-

ketanserin (10nM) for 30 min at 37oC. Nonspecific binding was determined with 

10 μM methysergide. Following incubation, free radioligand was separated from 

bound by vacuum filtration through Whatman GF/C glass filters (Brandel, 

Gaithersburg, MD).  Filters were placed in vials and counted in a liquid 

scintillation counter.  

 

Elevated Plus Maze 

The elevated plus maze (Hamilton-Kinder. San Diego, CA) consisted of 

two open arms (37.5 x 5.0 x 0.25 cm) and two closed arms (37.5 x 5.0 x 15 cm) 

emanating from a central platform (5cm x 5cm) to form a plus shape. The maze 

was built from black Plexiglas, and equipped with infrared photobeams. The 

entire maze was elevated 45 cm above the floor. Light beam breaks were 

recorded and analyzed automatically by Motor Monitor software (Hamilton-

Kinder).  

Animals were transported to the experiment room, and following a 

habituation period of 15 min, they were injected i.p. with drug, and placed back 

into their home cages for 30 min after DOI or 5 min after ethanol. Animals were 

individually placed into the central platform of the plus maze and allowed 5 min of 

free exploration. Time and percent time spent in the open arms were used as an 
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index of anxiolytic-like effects, and total distance traveled was used as a 

measure of general activity. After each session, the plus maze was cleaned with 

30% ethanol and allowed to completely air dry prior to placing the next animal for 

testing. 

 

Head Twitch Response 

The head twitch response is a distinctive behavior characterized by a 

rapid, rotational movement of the head, ears, and neck. Mice were injected i.p 

with drug and immediately following treatment, they were transferred to a 3000 

mL glass beaker lined with pinedust bedding for observation. Head twitches were 

counted, in consecutive 5 min bins, for 30 minutes following drug administration 

by two observers (one of them blind to the treatment) with over 95% inter-rater 

reliability.  

 

Drugs 

Drugs were administered i.p. in an injection volume of 10 ml/kg. All drugs 

were diluted in 0.9% saline solution. Ethanol concentration, 15% (w/v), was 

obtained by diluting absolute ethanol (AAPER. Shelbyville, KY) with saline. DOI 

was purchased from Sigma-Aldrich, and MDL 100907 was a gift from Marion 

Merrell Dow (Cincinnati, Ohio).  

 

Statistical Analyses 

All data are presented as mean ± S.E.M. The effects of DOI and ethanol in 
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the elevated plus maze, and the effects of DOI in the head-twitch response test 

were compared by two-way analysis of variance (ANOVA) followed by Bonferroni 

post-hoc tests. The effects of MDL100907 were analyzed by a one-way ANOVA 

followed by Tukey’s multiple comparison tests.  

 

Results 

 

Role of 5-HT2A receptors in DOI-induced behaviors 

Consistent with earlier reports (Nic Dhonnchadha et al., 2003a), DOI 

significantly increased open arm activity in the elevated plus maze. Pretreatment 

with the highly selective 5-HT2A receptor antagonist MDL 100907 abolished the 

anxiolytic-like effects of DOI on elevated plus maze behavior (Figure 22). 

Similarly, DOI induced a robust head-twitch response, which was completely 

blocked by MDL 100907 (Figure 23). 

 

Characterization of DOI-induced FOS expression in mice 

The effect of DOI on FOS expression has not been previously evaluated in 

mice. We therefore performed control pharmacological experiments to establish 

potency. DOI (0, 0.3, 3, 10 mg/kg, i.p. 3 hours pre-test) elicits a dose-dependent 

induction of FOS-Li (Figure 24) nuclei in the medial prefrontal cortex (mPFC) of 

mice (Figure 25). The EC50 value for FOS induction was 5.6 mg/kg. Pretreatment 

with the 5-HT2A receptor antagonist MDL 100907 blocked the ability of DOI 

(5mg/kg) to induce FOS-Li expression in the mPFC (Figure 26).   
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Figure 22: Effect of pretreatment with MDL100907 on the 
anxiolytic-like effects of DOI in the elevated plus maze.  
A Anxiolytic-like effects of DOI (2.5 mg/Kg, i.p. 30 min pre-test) are prevented by 
pretreatment with the 5-HT2A receptor antagonist MDL100907 (0.25 mg/Kg, i.p. 
50 min pre-test). Data shown as means ± S.E.M., n= 6 per group. (*)p<0.05 
relative to saline control group 
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Figure 23: Effect of pretreatment with MDL100907 on DOI-
induced head-twitch behavior.  
DOI-induced head-twitches counted during a 30 min observation period were 
inhibited by pretreatment with MDL100907 (0.25 mg/Kg, i.p. 20 min pre-test). 
Data shown as means ± S.E.M., n= 6 per group. (***)p<0.001 relative to saline 
control group. 
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Figure 24: Quantitative analysis of FOS-Li positive nuclei in the 
medial prefrontal cortex of C57BL/6 mice. 
Dose response of DOI-induced FOS expression in the mPFC. Data shown as    
means ± S.E.M., n=3. 
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Figure 25: A. Schematic representation of regional analysis; box highlights area of 
quantification B. Representative image showing Fos-li containing nuclei in mPFC of 
mice 
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Figure 26: Quantitative analysis of FOS-Li positive nuclei in 
the medial prefrontal cortex of   C57BL/6 mice. 
DOI (2.5 mg/Kg, i.p.) induced FOS-Li expression is inhibited by pretreatment 
with MDL100907 (0.25mg/kg, i.p. 20 min pre-DOI). Data shown as means ± 
S.E.M., n= 6. (**) p<0.01 relative to saline (Sal-Sal).  
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Gαq is required for the anxiolytic-like effect of DOI in the elevated plus maze 

The anxiolytic-like effect of DOI was compared in the elevated plus maze 

using wild-type and Gαq(-/-) mice. Although DOI elicited an increase in both time 

spent in the open arms (p<0.01) (Figure 27A) and percent open arm time 

(p<0.01) (Figure 27B) in wild-type littermates, this effect of DOI was abolished in 

mice deficient for Gαq. In contrast, ethanol (1.5 g/kg, i.p. 5 min pre-test) 

significantly increased the time spent in the open arms (Figure 27A) as well as 

percent open arm time (Figure 27B) in both wild-type and Gαq knockout mice. 

These effects were independent of activity changes; there was no difference in 

total distance traveled between Gαq(-/-) and wild-type littermates following any of 

the treatment conditions (Figure 27C). 

As an additional control, we compared [3H]-ketanserin binding in wild-type 

and Gαq(-/-) mice to determine if altered 5-HT2A receptor expression could 

explain the behavioral difference. There was no significant difference in binding 

of a maximum concentration of [3H]-ketanserin (10nM) between Gαq(-/-) and wild-

type littermates (500±40 fmole/mg protein for Gαq(-/-) vs 486±64 fmole/mg 

protein for WT, n=6; p>0.05) 

 

DOI-induced head-twitch response is decreased in Gαq knockouts 

Intraperitoneal administration of DOI elicited a dose-dependent head-

twitch response in wild-type mice which peaked at 10 minutes (Figure 28A). This 

response was significantly blunted in mice deficient for Gαq (p<0.05 for 1.0 mg/kg  
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Figure 27: Anxiolytic-like activity of DOI on the elevated plus 
maze is absent in mice deficient for Gαq.  
A Time spent in the open arms, and B % time spent in the open arms, as a 
percentage of time spent in the open and close arms (center excluded) during 
the 5 min test session following administration of DOI (2.5 mg/kg, i.p. 30 min pre-
test) or ethanol (1.5 g/kg, i.p. 5 min pre-test). C Exploratory activity measured in 
total distance traveled during the elevated plus maze test. Data shown as means 
± S.E.M., n= 7-12 per group. (*) p<0.05, (**) p<0.01 relative to saline control 
group. 
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Figure 27 - continued 
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Figure 28: DOI-induced head-twitch response is reduced in Gαq 
knockouts 
Mice were injected with DOI (2.5 mg/Kg, i.p.) prior to a 30 min observation 
period. A Number of head twitches in 5 min bins (open symbols DOI=2.5 mg/kg, 
closed symbols DOI=1.0 mg/kg). Main effect of genotype, p<0.0001. B Each 
column represents the total number of head-twitches counted during 30-min test 
time. Data shown as means ± S.E.M., n= 6-7 per group. (*) p<0.05, (***) p<0.001 
relative to wild-type control groups. 
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DOI. p<0.001 for 2.5 mg/kg DOI) (Figure 28B). The percent decrease was 

comparable for the two doses of DOI (40% for 1mg/kg vs 35% for 2.5 mg/kg). 

Thus, the head-twitch response appears to be less sensitive to a loss of Gαq than 

is the elevated plus maze. This conclusion is supported in heterozygous Gαq(+/-) 

mice, in which Gαq protein is reduced by 50% (Offermanns et al., 1997a). The 

DOI-induced head-twitch response was reproduced in Gαq(+/-) mice; however, 

DOI effects in the elevated plus maze were completely eliminated in Gαq(+/-) 

knockouts (Figure 29).  

 

Cortical FOS expression is reduced in Gαq(-/-) mice 

Based on the previous dose response data, an EC50 dose of DOI (5 

mg/kg) was utilized.  DOI markedly increased the number of FOS-Li positive 

nuclei in the medial prefrontal cortex of wild-type mice (p<0.001). This increase 

was abolished in Gαq(-/-) mice (Figure 30).  

 

Discussion 

5-HT2A receptors are known to be a key site of action for hallucinogenic 

drug action in both humans and laboratory animals.  There is abundant evidence 

from biochemical, electrophysiological, and behavioral studies in rats that 

hallucinogens, including LSD and DOI, are potent partial agonists at 5-HT2A 

receptors in the central nervous system (Aghajanian and Marek, 1999; Sanders-

Bush et al., 1988; Aghajanian and Marek, 1999a). Furthermore, correlations 
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Figure 29: DOI-induced behavioral Effects on Gαq(+/-) 
mice 
A. Anxiolytic-like effects of DOI on the elevated plus maze are absent 
in Gαq(+/-) and Gαq(-/-).Time spent in the open arms during the 5 min 
test session following administration of DOI (2.5 mg/kg, i.p. 30 min pre-
test) . B DOI-induced head-twitch response is unchanged in Gαq (+/-) 
mice. Mice were injected with DOI (2.5 mg/Kg, i.p.) prior to a 30 min 
observation period. Data shown as means ± S.E.M., n=6-12 for EPM 
and n=6-7 for HTR. (*) p<0.05, (**) p<0.01 
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Figure 30: Quantitative analysis of number of FOS-Li 
positive nuclei in the medial prefrontal cortex of wild-type 
and Gαq(-/-) mice.  
Values are numbers of FOS-Li positive cells (mean ± S.E.M. within area of 
analysis; n=6). DOI-induced FOS expression in the medial prefrontal 
cortex is abolished in Gαq(-/-) mice. (***) p<0.001 relative to saline control 
group 
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between human hallucinogenic potency and 5-HT2A receptor binding affinity are 

consistent with the hypothesis that classical hallucinogens exert their 

hallucinogenic effects through 5-HT2A receptors (Glennon et al., 1984; Arvanov et 

al., 1999). In addition, studies in our laboratory with DOI in mice suggest a major 

role for the 5-HT2A receptor in the elevated plus maze and head-twitch response 

(present study), as well as in drug discrimination (Smith et al., 2003).  

5-HT2A receptors are known to couple to multiple G-proteins including Gq, 

G11, and G13 to mediate a wide array of second messenger signaling pathways, 

including stimulation of PLCβ via Gαq protein (Berg et al., 1998; Kurrasch-

Orbaugh et al., 2003; Robertson et al., 2003). However, it is not known what 

intracellular signals mediate the in vivo actions of hallucinogens. In the present 

study, I evaluated the role of the Gαq protein in several behavioral and 

biochemical assays, including the elevated plus maze, head-twitch response, 5-

HT2A receptor binding, and c-fos immunohistochemistry. 

The current studies demonstrate that activation of the Gq signaling 

pathway is required for the mediation of the anxiolytic-like effects of DOI in the 

elevated plus maze. DOI significantly increased time spent in the open arms, as 

well as percent open arm time in wild-type animals; however, these effects were 

absent in Gαq knockout mice. Baseline performance on the elevated plus maze 

and total exploratory activity did not differ between Gαq knockout mice and wild-

type controls suggesting that deletion of the α subunit of Gq does not produce 

alterations in overall anxiety-related behavior. As an additional, positive control to 

determine whether the absence of DOI effects in Gαq knockouts was due to non-
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specific, ectopic effects or developmental abnormalities altering anxiety-related 

behavior, we evaluated ethanol, known to exert its anxiolytic-like effects through 

the ionotropic GABA-A receptor system (Durcan and Lister, 1988; Prunell et al., 

1994). The ability of ethanol treatment to increase open arm activity in the 

elevated plus maze for wild-type mice was reproduced in Gαq knockouts, 

suggesting that the behavioral deficits in Gαq(-/-) mice are specifically related to 

the loss of the α-subunit of the Gq protein. Additional experiments using 

strategies for conditional knockout or knockdown of Gαq signaling are needed to 

entirely rule out developmental issues.   

As with the elevated plus maze, DOI-induced head-twitch response was 

blunted in Gαq(-/-) mice; however, unlike the elevated plus maze results, DOI still 

produced a significant head-twitch response in the knockout mice. Thus it 

appears that the Gq signaling pathway is not the sole mediator of the 5-HT2A 

receptor-dependent behavioral effects of DOI. Gq and G11 proteins are close 

structural and functional analogs that substitute for each other in the intracellular 

signaling cascade. Although these two proteins coexist, Gq expression exceeds 

G11 throughout the brain (Milligan, 1993), including cortical and midbrain areas 

that mediate these behaviors. Compensatory changes, for instance, in G11 or in 

other components of the signaling complex, such as RGS proteins, may differ 

within the relevant brain sites, leading to the differential sensitivity of the two 

behaviors. Alternatively, some other signaling pathway, e.g., G13 activation of 

PLD (McGrew et al., 2002; Kurrasch-Orbaugh et al., 2003) or 5-HT2A receptor–



 96

mediated activation of PLA2 (Berg et al., 1998; Tournois et al., 1998), may 

contribute to the head-twitch behavior. 

Following DOI administration, wild-type mice exhibited a robust increase in 

the number of FOS-Li positive nuclei in the mPFC; however this increase was 

abolished in Gαq(-/-) littermates. Intrestingly, Mackowiak et al. (2002) reported 

that activation of phospholipase A2 via 5-HT2A receptors is engaged in the 

mechanism of DOI-induced FOS expression in the rat cortex.  Since DOI-induced 

FOS expression is essentially eliminated in Gαq(-/-) mice, this suggests that 

phospholipase A2 activation may be downstream of Gq activation in mice. Future 

characterizations of the role of the PLA2 pathway in DOI-induced FOS expression 

and behavior in mice deficient for Gαq should lead to a better understanding of 

the molecular mechanisms responsible for DOI’s effects. 

In conclusion, the present study provides evidence that activation of the 

Gq protein pathway, downstream of 5-HT2A receptors, is a key signaling 

mechanism involved in the mediation of hallucinogen-induced behavioral effects. 

One of the most striking findings is the difference in sensitivity of the two 

behaviors in Gαq null mice. DOI fails to elicit anxiolytic-like behavior in mutant 

mice, whereas the head-twitch response to DOI is reduced less than 50%, 

suggesting that other mechanisms are equally important for mediating this 

behavior. Given that different brain sites mediate these behaviors (Graeff et al., 

1993; Willins and Meltzer, 1997), it is possible that 5-HT2A receptors within these 

sites are differentially coupled to G protein signaling pathways or that different 

compensatory mechanisms exist. Importantly, our studies suggest that the Gq 
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signaling pathway is crucial for the full expression of hallucinogen-induced 

behaviors.  
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CHAPTER IV 

 

SUMMARY AND FUTURE STUDIES 

 

Despite a large body of evidence that points to 5-HT2A receptors as 

mediators of the unique behavioral effects of hallucinogens (for review, see 

Marek and Aghajanian, 1996; Aghajanian and Marek, 1999a; Nichols, 2004), the 

intracellular mechanisms mediating these effects are still undetermined. 

Numerous studies have demonstrated that 5-HT2A receptors couple to various G-

proteins to activate different second messenger cascades. For instance, 

stimulation of 5-HT2A receptors has been associated with PLD activation via 

Gα13, and these receptors are likewise thought to be linked to activation of PLA2 

possibly via Gαi/o. Nevertheless, the most prominent and well understood 

signaling pathway associated with 5-HT2A receptor signaling is activation of PLCβ 

via Gαq (Conn and Sanders-Bush, 1984; Roth et al., 1984). 

The current studies demonstrate that Gαq activation is crucial for the full 

expression of different hallucinogen-induced behaviors. For example, disrupting 

Gαq results in an abolition of DOI-induced anxiolytic-like responses in the 

elevated plus maze task, and likewise Gαq knockouts exhibit decreased levels of 

DOI-induced head twitch-responses. Furthermore, these studies demonstrated 

that there is a difference in sensitivity of the aforementioned behaviors in Gαq null 

mice, suggesting that some of the behavioral effects observed following 5-HT2A 

receptor activation are not exclusively mediated by Gαq. To illustrate, Gαq 
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appears to be the main component mediating DOI-induced anxiolytic-like 

behavior in mice. On the other hand, DOI-induced head-twitch response appears 

to be mediated by various pathways suggesting that other mechanisms are 

equally important for the mediation of this behavior.  

How this differential behavioral sensitivity in Gαq null mice relates to 

human hallucinogenic drug experience is not known.  Recent studies of 

psilocybin in humans suggest that anxiety is a significant symptom (Griffiths et 

al., 2006), although presumably unrelated to the unique psychedelic experience. 

The head-twitch response is a stereotypical behavior that is a well accepted 

behavioral model of 5-HT2A receptor activation in rodents (Schreiber et al., 1995; 

Dursun and Handley, 1996; Kleven et al., 1997), but difficult to relate to the 

human hallucinogenic experience. The introceptive cues, responsible for drug 

discrimination in rodents, are believed to model the subjective effects of drugs in 

humans.  This is based largely on extensive studies showing that discriminative 

stimuli of psychoactive drugs in rats closely parallel the subjective effects 

reported by humans (Barry, 1974; Altman et al., 1976). Therefore, additional 

behavioral studies characterizing the hallucinogen-induced drug discriminative 

cue in Gαq(-/-) mice are planned.   

As with the elevated plus maze, activation of Gq signaling pathway 

appears to be necessary for DOI-induced FOS expression. Since the DOI-

induced FOS expression is mediated by activation of 5-HT2A receptors, and 5-

HT2A receptors couple to Gq protein, a logical conclusion is that these two events 

are directly related. However, Gq protein is coupled to many neurotransmitter 
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receptors, making it impossible to rule out the alternative interpretation that some 

other receptor’s interaction with Gq is the relevant point of intervention leading to 

a disruption of the DOI-induced effects.  Given that the 5-HT2A receptor-Gq 

protein pathway is the likely signaling pathway, it is interesting that Mackowiak et 

al. (2002) reported that the arachidonic acid cascade, downstream from 5-HT2A 

activation of PLA2, is engaged in the mechanism of DOI-induced FOS expression 

in the rat cortex.  Since DOI-induced FOS expression is essentially eliminated in 

Gαq(-/-) mice, this suggests that phospholipase A2 activation may be downstream 

of Gq activation in mice.  Additional studies of the phospholipase C and 

phospholipase A2 pathways in mice deficient for Gαq should enhance our 

understanding of the molecular mechanisms responsible for DOI’s effects. 

Gq and G11 are expressed almost ubiquitously throughout the central 

nervous system. One could argue that due to the high functional redundancy of 

Gαq and Gα11, compensatory mechanisms in which Gα11 substitutes for Gαq 

could be contributing to the effects of DOI on the head-twitch response. Given 

that Gαq/11 knockouts die at day 10.5 of embryonic development (Offermanns et 

al., 1998), a Cre/loxP system (Orban et al., 1992) could be used to generate a 

mouse line which allows for tissue-specific conditional inactivation of Gαq in 

Gα11-deficient mice. Unfortunately, there are several issues with this strategy 

including dwarfism accompanied by a high mortality rate (Wettschureck et al., 

2005). Moreover, since levels of Gαq exceed those of Gα11 by several fold in the 

CNS (Milligan, 1993), it is currently not clear whether Gα11 levels would be too 
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low to compensate for the loss of Gαq or whether both proteins serve at least in 

part non-interchangeable functions.  

Despite numerous controls, it is still debatable that the effects of genetic 

deletion of Gαq, on the earliest stages of embryonic and postnatal development, 

may have affected the outcomes observed in the current studies. To address this 

concern, a modification of the lentiviral strategy to disrupt G-protein activation in 

adult animals should be considered in future experiments. First, after careful 

consideration of recent advances in the gene silencing field, I have decided that 

utilizing lentiviral delivery of G-protein blocking peptides may not be the best 

alternative to disrupt G-protein signaling activation in the mammalian brain. 

Given that blocking peptides disrupt receptor/G-protein signaling in a competitive 

manner, it is quite possible that achieving high enough levels of transgene 

expression following lentiviral delivery may not ultimately be feasible. On the 

other hand, lentiviral delivery of RNAi has successfully been shown to be a 

powerful aid to probe gene function in vivo (Van den Haute et al., 2003; Sapru et 

al., 2006; Szulc et al., 2006; for review, see Sandy et al., 2005). RNA 

interference, or RNAi, is an efficient and potent gene-specific silencing technique 

that uses double-stranded RNAs (dsRNA) to mark a particular transcript for 

degradation in vivo (Hanon, 2002). Key to the technique are dsRNAs 21-25 

nucleotides long, called short interfering RNAs (siRNA), which are produced by 

degradation of long dsRNA. Once formed, the siRNAs associate with a 

multiprotein complex called RISC. This ribonucleoprotein complex then scans the 

mRNA cell-content to degrade the corresponding mRNA target in a highly 
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specific manner. RNAi would allow us to silence specific G-proteins without the 

concern of delivering sufficient quantities of blocking peptides to competitively 

inhibit endogenous Gαq. An additional advantage of the RNAi strategy is that it 

allows us to specifically study the role of G-proteins in the adult animal, without 

potential complications in embryonic development commonly seen in genetically 

engineered knockouts. Furthermore, RNAi would allow us to evaluate the role of 

other G-proteins, downstream from 5-HT2A receptors, in hallucinogenic drug 

action. For instance, 5-HT2A receptor signaling has been shown to be linked to 

the activation of phospholipase D via Gα13 (Mitchell et al., 1998; Robertson et al., 

2003). Given that the knockout of Gα13 in mice results in embryonic lethality at 

midgestation (Offermanns et al., 1997b), and that there are no available PLD 

inhibitors effective in vivo, RNAi appears to be the most viable alternative to 

explore the role of Gα13 in hallucinogen-induced behaviors.  

One caveat of these studies is that Gq protein couples to many other 

GPCRs in addition to the 5-HT2A receptor, and these secondary targets might 

directly or indirectly influence the hallucinogen-induced effects observed in Gαq 

null mice. However, over the years, many studies of the pharmacological 

properties of hallucinogens have failed to implicate any other Gq coupled 

receptor except the 5-HT2C receptor. To address this potential caveat in future 

experiments, we plan to utilize a modification of the pharmacogenetic approach 

described in chapter III, in which mice heterozygous for the 5-HT2A receptor will 

be treated with a lentivirus expressing siRNA against Gαq mRNA in key brain 

regions known to mediate hallucinogen induced behaviors. We expect to observe 
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a synergistic effect of the genotype plus the lentiviral transgene delivery as the 

“drug treatment”. With this strategy, we will be able to formulate more precise 

conclusions about the role of the Gq signaling pathway, downstream from 5-HT2A 

receptors, in hallucinogen induced behaviors.   

Future experiments, such as the ones outlined in this chapter, will further 

our understanding of the intracellular mechanisms underlying hallucinogenic drug 

action. Identifying the consequences of selective disruption 5-HT2A-mediated 

pathways will bring us closer to elucidating both the mechanisms of action of 

hallucinogens, as well as their possible relevance to behavioral abnormalities 

observed in many psychiatric disorders.  
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