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CHAPTER 1 

 

Introduction 

 

Childhood obesity in the US has nearly doubled over the past 30 years; among adolescents 

obesity has tripled (Ogden et al., 2010; Ogden et al., 2012). In 2012, one-third of children and 

adolescents were overweight or obese, totaling more than 24.6 million children in the US 

(childStats.gov, 2014; Ogden et al., 2014). Seventeen percent of children were obese	(Ogden et 

al., 2014). Worldwide, 42 million children were either overweight or obese in 2013	(World 

Health Organization, 2015). Approximately 67% of children who are overweight and obese 

remain obese as adults	(Juonala et al., 2011). The efficacy of long-term weight loss among adults 

is poor (Fildes et al., 2015), with up to 90% returning to baseline weight within 3 years of 

behavioral treatment (Cooper et al., 2010; Butryn et al., 2011). Therefore the understanding, 

treatment, and prevention of childhood obesity are critical for the treatment of adult obesity. 

Physiological comorbidities. 

Children who are overweight or obese have a higher risk of metabolic syndrome (Weiss et al., 

2004), type 2 diabetes (Juonala et al., 2011; Park et al., 2012; Halfon et al., 2013), hypertension 

(Reinehr and Wunsch, 2010; Wake et al., 2010; Juonala et al., 2011; Park et al., 2012), hyper-

lipidemia (Reinehr and Wunsch, 2010), cardiovascular disease (Park et al., 2012; Ayer et al., 

2015), stroke (Field et al., 2005; Lawlor and Leon, 2005; Falkstedt et al., 2006; Baker et al., 

2007; Li et al., 2007; Ford et al., 2008; Lambert et al., 2008; Virdis et al., 2009; Reilly and 

Kelly, 2010), sleep apnea/snoring (Marcus et al., 2012), musculoskeletal disorders and pain 

(Backstrom et al., 2012; Sabharwal and Root, 2012; Adams et al., 2013), and nonalcoholic fatty 
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liver disease (Koot et al., 2015). Obesity during childhood is associated with earlier and acceler-

ated development of coronary atherosclerosis (McGill et al., 2002) and can lead to coronary 

artery disease by mid-adulthood (Raghuveer, 2010). Being overweight during childhood is 

significantly associated with premature mortality in adulthood (Reilly and Kelly, 2010). On 

average, 58% of obese 15-year-old males, and 84% of obese 15-year-old females, are obese in 

their 40s (Goldhaber-Fiebert et al., 2013). Overweight children have increased lifelong risk for 

diabetes, hypertension, stroke, and coronary heart disease (Field et al., 2005; Lawlor and Leon, 

2005; Falkstedt et al., 2006; Baker et al., 2007; Li et al., 2007; Ford et al., 2008; Lambert et al., 

2008; Virdis et al., 2009; Reilly and Kelly, 2010).  

Psychological comorbidities. 

In addition to these medical risks, the most prevalent, and perhaps most disruptive, co-morbid-

ities related to childhood obesity are psychosocial (Dietz, 1998). Shockingly, self-reported 

quality-of-life for children who are obese is comparable to children receiving chemotherapy 

(Schwimmer, 2003). The stigma of obesity can create feelings of low self-esteem (Mustillo et al., 

2012), social isolation (Goffman, 2009), and victimization (Robinson, 2006). Qualter et al., 

showed an association between increased adiposity and victimization among girls	(Qualter et al., 

2015). Furthermore, they reported that increased victimization contributed to increased weight 

gain, thereby creating a vicious cycle. Compared to children who are healthy weight, children 

who are obese have higher rates of depression	(Halfon et al., 2013). Adolescents who are obese 

are 80% more likely to have thoughts of suicide compared to healthy weight adolescents (Zeller 

et al., 2013). Obese boys are more likely to be bullied and to carry weapons (Farhat et al., 2010). 

Children who are obese, compared to healthy weight children, are more likely to have internal-

izing problems (e.g., feels worthless/inferior); have externalizing problems (e.g., disobedient, 



3	

argumentative, bullies); repeat a grade in school; and miss more school days	(Halfon et al., 

2013). Women who were obese as adolescents are almost three times as likely to develop 

depression, and four times as likely to develop anxiety, compared to women who were healthy 

weight children (Anderson et al., 2007).  

Costs. 

The economic cost of childhood obesity is substantial. The direct costs of childhood obesity, 

which includes outpatient costs, emergency department visits, and drug prescriptions, is $14 

billion	(Trasande and Chatterjee, 2009), and inpatient costs is $238 million	(Trasande et al., 

2009). Finkelstein et al., estimate that the lifetime direct medical cost of an obese 10-year old 

child relative to a 10-year old child who remains at a healthy weight throughout adulthood	is 

greater by $19,000 (Finkelstein et al., 2014). This estimated lifetime cost is greater by $12,600 

when compared to a healthy weight 10-year old who gains weight through adulthood. Janicke et 

al., reported a greater yearly total cost for children who are obese ($3,042) compared to healthy 

weight children ($2,578)	(Janicke et al., 2009). 

Physiology of energy balance. 

Body weight is determined via energy balance, which is achieved when caloric intake equals 

energy expenditure. Caloric intake is the number of calories ingested. Energy expenditure is the 

number of calories burned due to resting metabolism (basal metabolic rate), thermogenesis, and 

physical activity. When caloric intake is greater than energy expenditure, excess calories are 

stored. When caloric intake is less than energy expenditure, stored calories are used. Body 

weight is maintained via homeostatic mechanisms (Leibel et al., 1995) as well as non-homeo-

static eating (Berthoud and Levin, 2012). Both mechanisms are described below.  
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Managing homeostatic and non-homeostatic mechanisms necessitates communication about the 

internal and external environment to the brain	(Berthoud and Levin, 2012). The brain responds to 

external cues about the availability and palatability of food. The brain also responds to internal 

signals from nutrients (e.g., glucose, fatty acids, amino acids), hormones (e.g., insulin, leptin, and 

ghrelin), and neural substrates (e.g., glutamate, gamma-aminobutyric acid [GABA], adenosine 

triphosphate [ATP], transporters, signaling pathways])	(Berthoud and Levin, 2012).  

Homeostatic regulation 

Homeostatic eating is coordinated by neuroendocrine feedback loops involving nutrient and 

hormonal signals indicating energy store levels to the hypothalamus and hindbrain. Robust and 

redundant biological systems have developed to defend energy supply	(Berthoud and Morrison, 

2008). Kennedy suggested, in 1953, that this defended energy supply is controlled by a “set 

point” signal originating from adipose tissue that is monitored by the brain	(Kennedy, 1953). 

This set point theory became more widely accepted with the discovery of leptin, the “satiety 

hormone,” which is secreted primarily by adipose tissue. The dysregulation of this set point often 

promotes an increase in adiposity with an accompanying increase in the set point. Prentice and 

Jebb argued that the development of robust fat storage in humans confers a biological advantage	

(Prentice and Jebb, 2004). They therefore hypothesized that the hunger mechanism, which pro-

motes caloric intake, is more powerful than the satiety mechanism, which curbs eating. There-

fore, when an individual loses weight, homeostatic mechanisms work to regain the previous, 

elevated adiposity-driven set point	(Levin, 2010).  



5	

Non-homeostatic eating 

Non-homeostatic eating, i.e., eating in the absence of energy need, may also contribute to body 

weight. Non-homeostatic eating can be initiated via complex neural systems (Berthoud and 

Levin, 2012). Brain regions involved in non-homeostatic eating include: the hippocampus, 

associated with memory and spatial orientation; ventral striatum, associated with reward and 

reward-motivated behavior; dorsal striatum, associated with habit learning; and the amygdala, 

associated with emotional learning	(Berthoud and Levin, 2012). The prefrontal cortex (PFC) is 

another significant brain region involved in non-homeostatic eating. The PFC is well positioned 

to integrate emotional, cognitive, homeostatic, and environmental information leading to eating 

choices and decisions	(Berthoud and Levin, 2012). Brain regions associated with response 

inhibition, impulsivity, motivation, and reward, are increasingly recognized as potent modulators 

of non-homeostatic eating (Fields et al., 2013; Johnstone et al., 2013).  

Given the central role of the brain in homeostatic and non-homeostatic eating, and the lack of 

efficacious long-term obesity treatment, our hypotheses stem from the overarching position that 

weight loss maintenance involves not only a change in eating habits and physical activity, but 

also a change in brain function. Our research contributes to the understanding of the neurobio-

logical underpinnings of childhood obesity that involves the interplay among response inhibition, 

impulsivity, motivation, and reward, and their relationship with weight and eating habits.  

Brain network vs. discrete brain regions. 

Although discrete brain regions have been associated with homeostatic and non-homeostatic 

eating, the brain functions as a network. Brain regions engage in specialized functions and 

continually communicate with each other, thereby creating an efficient and powerful network. 
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Studying the brain as a network will provide valuable insight into neural connectivity, communi-

cation, and integration. As detailed in Chapter 2, the examination of brain networks has been 

used to identify brain disorders and track brain development. As such, we therefore investigated 

the functional connectivity between pairs of discrete brain regions associated with non-homeo-

static eating. In broad terms, functional connectivity is a methodology that quantifies the 

communication and integration of regions of the brain that may be anatomically and spatially 

distinct. 

Hypotheses. 

We posited that brain networks of children who are overweight or obese are biased toward 

increased drive to eat and away from cognitive control. As such, we hypothesized that the 

functional connectivity associated with the drive to eat, e.g., motivation and impulsivity, would 

be greater than the functional connectivity associated with cognitive control, e.g., response 

inhibition. Our hypotheses were built upon the idea that, while discrete brain regions may (or 

may not) exhibit healthy function, the relative balance among these regions may provide 

additional information about childhood obesity. 

Hypotheses for task-based psychophysiological interaction study 

In our psychophysiological interaction (PPI) study we examined the functional connectivity 

between two pairs of brain regions: (1) the basolateral amygdala (BLA) and nucleus accumbens 

(NAc); and (2) the rostral anterior cingulate cortex (rACC) and NAc. The BLA is associated with 

motivational drive; the rACC is associated with response inhibition; and the NAc is associated 

with reward-motivated behaviors. We detail the function and relationships of these regions in 

Chapter 3. We hypothesized that increased functional connectivity associated with motivational 
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drive to eat and/or decreased functional connectivity associated with inhibition is related to 

increased adiposity and increased unhealthy eating habits. Our PPI study used a food cue task-

based magnetic resonance imaging (MRI) paradigm in which children viewed images of high 

calorie food, low calorie food, and nature. Images of food are prevalent in the daily lives of 

children. Therefore our visual food cue task is an ecologically valid method to probe putative 

differences in the communication and organization of the young obese brain. 

Hypotheses for resting state study 

In our resting state study we examined the functional connectivity between: (1) the frontal pole 

and NAc; and (2) the inferior parietal lobe (IPL) and NAc. The frontal pole is associated with 

impulsivity; the IPL is associated with response inhibition. We detail the function and relation-

ships of these regions in Chapter 4. We hypothesized that increased functional connectivity 

associated with impulsivity and/or decreased functional connectivity associated with response 

inhibition are associated with increased adiposity and increased unhealthy eating habits. We 

hypothesized that even during quiet rest, in the absence of overt food-related stimuli, functional 

connectivity continues to exhibit a bias toward drive with increasing adiposity. 

  

7
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CHAPTER 2 

 

Background, Concepts, and Methodology 

 

Measures of eating behaviors. 

To quantify eating behaviors in our PPI functional connectivity study, we used the Dutch Eating 

Behaviour Questionnaire for Children (DEBQ-C). For our resting state functional connectivity 

study, we used the Child Eating Behaviour Questionnaire (CEBQ). These questionnaires were 

developed to measure eating styles among children through self-reporting (Braet et al., 2008). 

Self-reported behavioral measures are preferable to retrospective food recall as recalls often 

result in an underestimate of food consumption due, in part, to memory bias and social expect-

ations and pressure	(Ahmed et al., 2006). While a 24-hour recall may be more accurate 

compared to a retrospective recall, food consumption can vary greatly from day to day such that 

a single day may not be representative	(Block, 1982). Self-report instruments, such as DEBQ-C 

and CEBQ, identify eating habits rather than actual food intake. Both questionnaires have good 

factorial validity and external validity (van Strien et al., 1986; Schlundt, 1995; Braet and van 

Strien, 1997; Wardle et al., 2001; Carnell and Wardle, 2007).  

Dutch Eating Behaviour Questionnaire for Children (DEBQ-C) 

The DEBQ-C is a validated 20-item questionnaire that measures three aspects of eating behavior: 

external eating (six questions), restrained eating (seven questions), and emotional eating (seven 

questions) (van Strien and Oosterveld, 2008; van Strien et al., 2012). External eating is eating in 

response to the sight or smell of food. Restrained eating is eating less to lose or maintain weight. 
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Emotional eating is eating in response to negative emotions (van Strien and Oosterveld, 2008). 

Each DEBQ-C item is rated on a Likert scale from 1 to 3 where 1 = no; 2 = sometimes; and 3 = 

yes. In our research, we explored the relationship of external eating and restrained eating with 

brain functional connectivity and weight status. We did not include emotional eating in our 

assessments because the initial validation study noted that young children had difficulty compre-

hending questions about emotional eating (van Strien and Oosterveld, 2008). Furthermore, the 

literature shows mixed results between self-reported emotional eating and laboratory-based 

measures of emotional eating (Domoff et al., 2014).  

Studies reported a statistically significant increase in restrained eating scores when comparing 

children who are overweight compared to healthy weight children	(Braet et al., 2008; van Strien 

and Oosterveld, 2008). Braet et al., reported lower external eating scores among children who 

are overweight compared to healthy weight children but increased external eating scores with 

increased body dissatisfaction	(Braet et al., 2008). Van Strien et al., reported increased restrained 

eating scores with decreased snacking	(van Strien and Oosterveld, 2008). They also reported 

increased external eating scores with increased time viewing screen media (watching television 

or using computer).  

Child Eating Behaviour Questionnaire (CEBQ) 

The CEBQ is a validated 35-item questionnaire that measures eight aspects of eating behavior 

(Wardle et al., 2001): 

1. DD Desire to Drink indicates frequent drinking;  
2. EF Enjoyment of Food indicates an overall interest in food;  
3. EOE Emotional Overeating indicates increased eating under negative emotions;  
4. EUE Emotional Undereating indicates decreased eating under negative emotions;  
5. FF Food Fussiness indicates rejection of both new and familiar foods;  
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6. FR Food Responsiveness assesses eating in response to food cues;  
7. SE Slowness in Eating assesses reduced eating due to low interest and/or enjoyment of 

food; and 
8. SR Satiety Responsiveness assesses how well a child controls the amount he/she eats in 

response to eating recently. 
 
Each item is rated on a Likert scale from 1 (never) to 5 (always). “Food approach” behavior is 

indicated by increasing DD, EF, EOE, and FR scores, whereas “food avoidance” behavior is 

indicated by increasing EUE, FF, SE, and SR scores (Wardle et al., 2001). Food approach behav-

iors have been positively associated with increased weight among children and food avoidance 

behaviors have been negatively associated with increased weight (Carnell and Wardle, 2008; 

Sleddens et al., 2008; Webber et al., 2009; Spence et al., 2011; Svensson et al., 2011). The 

CEBQ was administered only to children younger than 12 years old.  

Measure of adiposity. 

Among adults, body mass index (BMI) is a convenient proxy measure for adiposity. However, 

because body composition changes throughout childhood, a measure of adiposity that accounts 

for changes in body composition during childhood growth is needed. Age- and sex-specific BMI 

percentile is one such common measure. However, while BMI percentiles are easier to use in the 

clinical setting, they are not ideal for statistical analyses. For example, percentiles at the 

extremes, e.g., ≥ 99%, are non-linear as this category can include a wide range of weights. 

Instead, BMI z-scores are a continuous measure and therefore not subject to the non-linearity 

problem seen with BMI percentiles. Therefore BMI z-scores are better suited for statistical 

analyses (Wang and Chen, 2012). However, BMI z-scores can be more difficult to explain to the 

public. While BMI z-scores are not a direct measure of adiposity, they are more strongly 

associated with percentage of body fat, as measured by dual-energy X-ray absorptiometry, than 
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BMI percentiles (Heo et al., 2014). We therefore used BMI z-scores as a proxy measure for 

childhood adiposity. We calculated an age- and sex-specific BMI z-score for each child using 

LMS transformation parameters lambda, mu, and sigma (CDC; Kuczmarski et al., 2002). 

For our resting state functional connectivity study, we used continuous BMI z-scores in all 

statistical analyses. However, when reporting summary statistics, children were classified as 

healthy weight with (-1.64 ≤ BMI z-scores < 1.04); overweight with (1.04 ≤ BMI z-scores < 

1.64); and obese with (BMI z-scores ≥ 1.64) (Wang and Chen, 2012). For our PPI functional 

connectivity study, only children who were healthy weight or obese were enrolled in the study; 

children who were overweight were excluded. 

MRI. 

Brief basics of MRI physics 

Hydrogen, made up of a single proton, has a positive charge and spin (i.e., angular momentum of 

the nucleus) and can act as a tiny magnet. As with all charged particles, hydrogen generates a 

magnetic field. The nuclear magnetic moment is proportional to its magnetic field. The nuclear 

magnetic moment of this hydrogen ion, also referred to as a “proton,” will align parallel or anti-

parallel with a strong magnetic field, such as 3 Tesla found in many research MRI scanners. This 

strong external magnetic field is called B0. When an individual is placed in an MRI scanner, 

nuclear magnetic moments from many, many protons in the body will align parallel or anti-

parallel with B0. A state of equilibrium is achieved in which a slight majority of nuclear 

magnetic moments align parallel with B0 compared to those aligning anti-parallel (Figure 2.1A). 

This proton equilibrium is called longitudinal magnetization. The introduction of additional 

energy via a radio frequency (RF) pulse, called B1, is orthogonal to B0 and disrupts the 
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equilibrium (Figure 2.1B). The protons absorb this additional energy and are knocked out of 

alignment with B0 (Figure 2.1C). The xy-component of this disrupted equilibrium is called 

transverse magnetization. When B1 is turned off, the misaligned protons “relax” back to the 

equilibrium state, that is, they realign with B0. This relaxation occurs in two forms. T1 relaxation 

is the regrowth of longitudinal magnetization along B0 (Figure 2.1D). T2 relaxation is the loss of 

transverse magnetization (Figure 2.1F). The energy that was absorbed from the B1 pulse is 

released during relaxation. This released energy is the basis of magnetic resonance imaging. 

 

Figure 2.1: Basics of MRI physics. (A) Protons in the body align with external magnetic field 
B0 and achieve a state of equilibrium called longitudinal magnetization. (B) Additional energy is 
introduced into the system via a radio frequency (RF) pulse, called B1, orthogonal to B0. (C) 
The energy from the B1 pulse disrupts equilibrium and the protons fall out of alignment with B0. 
This disrupted equilibrium is called transverse magnetization. (E) When B1 is turned off, the 
misaligned protons “relax” back to the equilibrium state, that is, they realign with B0. This 
relaxation occurs in two forms. (D) T1 relaxation is the regrowth of longitudinal magnetization 
along B0. (F) T2 relaxation is the loss of transverse magnetization along B1. 

The loss of transverse magnetization, T2, is called spin-spin relaxation. Each proton, also 

referred to as a “spin,” experiences a slightly different magnetic field due to differences in its 

local chemical environment. For example, some protons are in water (H2O); some protons are in 
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hydroxyl groups (-OH); some protons are in methyl groups (-CH3); etc. An additional type of 

relaxation is due to magnetic field inhomogeneities, e.g., inhomogeneities in B0. The combin-

ation of spin-spin relaxation and relaxation due to magnetic field inhomogeneities is called T2* 

(pronounced “T2-star”). T2* relaxation loses transverse magnetization faster than T2 relaxation.  

Brief biology of functional MRI 

The human brain weighs approximately 2% of body weight but it consumes approximately 20% 

of total glucose utilization (Clarke and Sokoloff, 1999). Glucose is the primary energy source of 

the brain, yet the brain does not have a local store of glucose. Glucose is delivered to the brain by 

the blood via vascularization. Huettel et al., succinctly state, “Neuronal activity has metabolic 

consequences” (Huettel et al., 2004). As neuronal activity increases, metabolism increases. 

Increased metabolism is accompanied by increased glucose utilization and increased oxygen 

consumption (Figure 2.2). Glucose and oxygen are replenished via increased blood supply. 

Blood carries oxygen more efficiently when oxygen is bound to hemoglobin. Therefore 

increased blood supply is accompanied by increased oxygenated hemoglobin. Although 

seemingly counterintuitive, increased neuronal activity with its increase in oxygen consumption, 

ultimately results in a net gain of oxygenated hemoglobin. This net gain is due to increased flow 

of oxygenated blood is greater than the initial increase in oxygen consumption. 

Blood Oxygenation-Level Dependent (BOLD) MRI contrast 

The functional MRI scans used in our studies are blood oxygenation-level dependent (BOLD) 

contrast images. This contrast takes advantage of the chemical properties of hemoglobin. 

Hemoglobin is made up of four subunits, each of which contains a heme group. Each heme 

group contains iron (Fe2+). Blood carries oxygen more efficiently when oxygen binds to the 
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heme group, resulting in oxygenated hemoglobin. Oxygenated hemoglobin is diamagnetic 

whereas deoxygenated hemoglobin, with its unbound iron ion, is paramagnetic. Deoxygenated 

hemoglobin increases blood magnetic susceptibility effects and increases magnetic field inhomo-

geneities. Therefore, the amount of oxygen in blood affects a magnetic field. Hence, MRI BOLD 

contrast is dependent on the level of oxygen in the blood. Recall that T2* relaxation is due to 

magnetic field inhomogeneities. Because the level of oxygen in blood affects the magnetic field, 

BOLD contrast is a T2* phenomenon. The T2* BOLD signal decreases faster with increased 

paramagnetic deoxygenated hemoglobin. Conversely, the BOLD signal increases with increased 

diamagnetic oxygenated hemoglobin, as seen with increased neuronal activity (Figure 2.2).  

 

Figure 2.2: Biology of MRI. Increased neuronal activity results in increased in oxygen (O2) 
consumption, increased blood flow, and increased blood volume. These increases result in 
increased concentration of total hemoglobin (Hb), increased oxygenated Hb, and decreased 
deoxygenated Hb. The blood oxygenation-level dependent (BOLD) signal increases with 
increased oxygenated hemoglobin. 

It is important to note that BOLD MRI does not measure neuronal activity directly. Rather, 

BOLD contrast is a correlate of neural activity. While neuronal activity can be measured directly 

with electrodes, electrode placement is invasive. Neuronal activity can also be measured via 
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electroencephalography (EEG) and magnetoencephalography (MEG), which are non-invasive 

and have excellent temporal resolution, on the order of nanoseconds. However, EEG and MEG 

have poor spatial resolution. BOLD MRI is non-invasive, has good spatial resolution, but poorer 

temporal resolution, on the order of seconds.  

BOLD functional MRI paradigm for food cue study 

Functional MRI (fMRI) data is time series data, i.e., data that are collected over time. For our 

PPI study, fMRI data of the whole brain is collected every 2 sec over 5 min (Figure 2.3A). The 

fMRI time series data is the intensity of the BOLD signal at a specific location in the brain 

acquired at each 2-sec interval (Figure 2.3B). Our PPI study uses a task-based paradigm: BOLD 

signals are acquired from the brain while the participant performs a particular task of interest, 

viewing pictures. Figure 2.3C shows a mean BOLD time course from the nucleus accumbens 

acquired during the food cue task. The BOLD signal acquired during this task is compared to the 

BOLD signal acquired during a baseline task, thereby quantifying the change in blood oxygen-

ation during the task of interest. For example, we investigated the change in BOLD signal in the 

nucleus accumbens when children viewed images of high calorie food compared to the baseline 

task of viewing images of low calorie food. Cognitive tasks, such as viewing images of food, 

result in changes in neuronal activity and its associated increase in blood supply to brain regions 

such as the nucleus accumbens. This increase in blood supply results in increased oxygenated 

hemoglobin that is quantified as an increase in the BOLD fMRI signal. 

BOLD functional MRI paradigm for resting state study 

For our resting state study, fMRI data of the whole brain is collected every 1.4 sec over 9.4 min. 

Resting state paradigms do not include an explicit task. Instead, participants are asked to rest 
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quietly, typically with eyes closed, to stay awake, and to think about nothing in particular. 

Neuronal activity exists even in the absence of an explicit task. This neuronal activity throughout 

the “resting” brain is not random noise and can therefore be quantified via fluctuations in the 

BOLD signal. Biswal et al., observed that while participants were resting quietly, BOLD signals 

from the motor cortex were correlated with signals in other brain regions associated with motor 

function (Biswal et al., 1995). As a result, Biswal et al., suggested that the brain, even at rest, 

exhibits meaningful neuronal activity and that this neuronal activity reflects inherent brain 

function along with its attendant networks (Fox and Raichle, 2007).  

 

Figure 2.3: BOLD functional MRI. (A) Functional MRI (fMRI) data of the whole brain is 
collected every 2 sec. (B) FMRI time series data is the intensity of the BOLD signal at a specific 
location in the brain (blue dot) acquired at each 2-sec interval. (C) A mean BOLD time course 
from the nucleus accumbens acquired over 5 min. 

Functional connectivity 

Donald Hebb, a neuropsychologist known for his work in associative learning, put forth the idea 

that cells that fire together, wire together (Hebb, 2005). The underpinnings of functional connec-

tivity exploit this idea and flip it around: cells that wire together, fire together. However, given 
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the spatial resolution of MRI, we cannot image individual neuronal cells. Instead we examine 

brain regions that are made up of hundreds of thousands of neurons. The basis of fMRI func-

tional connectivity becomes: brain regions that wire together, fire together. Note, however, that 

functional connectivity can exist between brain regions that are not structurally wired together as 

each brain region may be wired to or influenced by a third, common region. Detailed examples 

are discussed below. 

We quantify “fire together,” and therefore functional connectivity, via statistical correlation. If 

the BOLD signal from Region A is strongly correlated with the BOLD signal from Region B, 

then we are more confident that Region A and Region B fire together and are functionally 

connected (Figure 2.4). However, if the BOLD signal from Region A is not correlated with the 

BOLD signal from Region C, then we are not confident that Region A and Region C fire 

together. We therefore have low confidence that Region A and Region C are functionally 

connected (Figure 2.4).  

This method of determining functional connectivity is called seed-based correlation analysis 

(Cole et al., 2010). In our example, Region A is the seed. We create a functional connectivity 

map where each location in the map corresponds to a voxel location in the brain (Figure 2.5). 

The values in the functional connectivity map are correlation coefficients quantified by the 

correlation of the BOLD signal from seed Region A with the BOLD signal from each voxel 

location in the brain.  

Other methods that identify functional connectivity are: independent component analysis (ICA), 

frequency domain analysis, regional homogeneity (ReHo) analysis, and graph theoretic analysis. 

For excellent reviews of functional connectivity and its associated analysis methods, see Cole et 
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al. (Cole et al., 2010) and van den Heuvel and Hulshoff Pol (van den Heuvel and Hulshoff Pol, 

2010). 

 

Figure 2.4: Functional connectivity. We quantify functional connectivity via the statistical 
correlation. Region A and Region B are strongly correlated (r = 0.74) and therefore functional 
connected. Region A and Region C (red dot; red curve) are not correlated (r = 0.17) and 
therefore not functional connected.  

 

Figure 2.5: Functional connectivity map. The values in the functional connectivity map are the 
correlation coefficients. Region A is the seed.  Regions B and C are targets. The value of voxel B 
is 0.74, the correlation between Region A and Region B (green dot; green curve). The value of 
voxel C is 0.17, the correlation between seed Region A and Region C (red dot; red curve). 
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Resting state functional connectivity 

Resting state functional connectivity has been used to: 

1. Assess interactions among brain regions; 
2. Identify brain networks; 
3. Detect brain disorders; and 
4. Track brain development. 

 
Resting state functional connectivity has been used to assess interactions among brain regions. 

Greicius et al., demonstrated that resting state functional connectivity reflects structural connec-

tivity between regions associated with episodic memory processing	(Greicius et al., 2009). 

O’Reilly et al., revealed a complex relationship between functional and structural connectivity 

by examining resting state interhemispheric functional connectivity before and after severing the 

corpus callosum in rhesus monkeys (O'Reilly et al., 2013). They found that corpus callosotomy 

significantly reduced interhemispheric functional connectivity. However, this effect was blunted 

if the anterior commissure was left intact, resulting in near normal functional connectivity. The 

work by O’Reilly et al., and others (Hagmann et al., 2008; Tyszka et al., 2011; Hermundstad et 

al., 2013), suggests that functional connectivity, while strongly associated with structural con-

nectivity, is a superset of structural connectivity. That is, functional connectivity can be found 

between brain regions that do not have direct white matter axonal connections.  

Resting state functional connectivity has also been used to identify brain networks. Beckmann et 

al., noted functional networks that are consistent across subjects at rest (Beckmann et al., 2005). 

Interestingly, some of these resting state functional networks resemble task-based functional 

networks such as the visual systems, auditory system, sensory-motor system, and regions associ-

ated with executive control (Beckmann et al., 2005). Raichle et al., suggested a “default mode” 

to describe the non-random neural activity associated with the resting state (Raichle et al., 2001). 
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Greicius et al., demonstrated decreased neural activity in the default mode network (DMN) 

during task-based (also called “task-positive”) cognitive processing (Greicius et al., 2003). The 

DMN is a network of brain regions that are more active during rest, when not focused on the 

outside world and external stimuli. The DMN has been attributed to a low-level state of watch-

fulness (Buckner et al., 2008). The DMN has also been associated with the maintenance of one’s 

sense of self via cognitive processes such as self-reflection, retrieving autobiographical 

memories, gauging the perspectives of others, daydreaming, and thinking about the future 

(Buckner et al., 2008; Raichle, 2015). 

Resting state functional connectivity has been used to detect brain disorders. Neurological or 

psychiatric pathology in one area of the brain can produce network dysfunction, thereby 

producing a unique neural signature when compared to healthy individuals. When comparing 

children with autism to typically developing children, Uddin et al., reported increased functional 

connectivity during resting state within several brain networks	(Uddin et al., 2013). These resting 

state networks included the DMN, salience, motor, and visual networks. Furthermore, the 

authors showed that differences in resting state functional connectivity in the salience network 

identified children with autism from typically developing children with a classification accuracy 

of 78%, with 75% sensitivity, and 80% specificity. Rashid et al., were able to classify individuals 

with schizophrenia, bipolar disorder, or as healthy controls based on features within resting state 

functional connectivity maps (Rashid et al., 2015). Their most accurate method had a classifica-

tion accuracy of 89%, with 89% sensitivity, and 94% specificity. Hafkemeijer et al., reported 

differences in functional connectivity when comparing resting state scans from patients with 

Alzheimer’s disease to patients with behavioral variant frontotemporal dementia	(Hafkemeijer et 
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al., 2015). Both disorders are different forms of early-onset dementia with overlapping symp-

toms such as memory difficulties and behavioral issues.  

Resting state functional connectivity has been used to track brain development. Betzel et al., 

have demonstrated age-related changes in both functional and structural connectivity	(Betzel et 

al., 2014). They found that functional connectivity within resting state networks decrease while 

functional connectivity between resting state networks increases. They also reported a decrease 

in structural connectivity, quantified by the density and weight of white matter axon tracts, with 

increasing age. Qin et al., reported differences in functional connectivity patterns of the baso-

lateral amygdala (BLA) and centromedial amygdala (CMA) when comparing children with 

adults	(Qin et al., 2012). The BLA is associated with perception, evaluation, and regulation of 

emotionally salient stimuli. The CMA is associated with the expression of fear. They reported 

stronger similarity and fewer distinctions between BLA and CMA resting state functional 

connectivity networks in children compared to adults. They also showed greater functional 

connectivity between the BLA and CMA in children compared to adults.  

In our resting state functional connectivity study, we investigated functional connectivity while 

children were quietly resting with their eyes closed. We measured functional connectivity among 

three brain regions: (1) inferior parietal lobe (IPL), associated with response inhibition (Garavan 

et al., 2002; Swick et al., 2011; Steele et al., 2013; van Belle et al., 2014); (2) frontal pole, asso-

ciated with impulsivity (Coccaro et al., 2007; Jimura et al., 2013; Weygandt et al., 2015); and (3) 

nucleus accumbens (NAc), associated with reward and reward-motivated behaviors (Cardinal et 

al., 2002; Kalivas and Volkow, 2007). Chapter 4 details the methodology of this study. 
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Psychophysiological interaction (PPI) functional connectivity 

Psychophysiological interaction (PPI) measures the change in functional connectivity between 

two brain regions during different psychological contexts	(Friston et al., 1997). PPI analysis 

reveals which regions have a more or less similar activity pattern, i.e., functional connectivity, 

with the seed region as a function of a specific task. The physiological aspect of PPI shows that 

neural activity will fluctuate “in synch” if two brain regions are functionally connected. The 

psychological aspect of PPI shows that this “in synch” fluctuation may depend on the task.  

We used a food cue task as the psychological aspect of our PPI study. We investigated the 

change in functional connectivity when children viewed images of high calorie food compared to 

the baseline task of viewing images of low calorie food. We measured the change in functional 

connectivity among three brain regions: (1) rostral ACC (rACC), associated with response inhi-

bition (Goldman-Rakic, 1987; Kiehl et al., 2000; Etkin et al., 2006; Langenecker et al., 2007; 

Hwang et al., 2010; Goldstein and Volkow, 2011); (2) basolateral amygdala (BLA), associated 

with motivational drive (Talmi et al., 2008; Stuber et al., 2011; Britt et al., 2012; Prevost et al., 

2012); and (3) nucleus accumbens (NAc), associated with reward and reward-motivated 

behaviors (Cardinal et al., 2002; Kalivas and Volkow, 2007). We discuss the definition, function, 

and relation of these regions in Chapter 3. 

We based our PPI analysis on the guidelines by O’Reilly et al. (O'Reilly et al., 2012). To explain 

PPI analysis, we will hypothesize that two regions, the BLA and NAc, interact more while 

participants view high calorie food images compared to viewing low calorie food images. If true, 

we expect PPI analysis to show that the BOLD signal from the BLA will be more strongly 

correlated with the BOLD signal from the NAc when participants view high calorie food images, 
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and less correlated when viewing low calorie food images. We designated the NAc as the seed 

region. First, we created a psychological time course to define the high calorie vs. low calorie 

contrast, [HICAL > LOCAL]. We set this psychological time course to +1 when participants 

viewed high calorie food images, and set to -1 when they viewed low calorie food images 

(Figure 2.6A; grey sticks). Next, this [HICAL > LOCAL] psychological time course was convolved 

with the canonical hemodynamic response function (HRF) (Figure 2.6A; red curve). The canon-

ical HRF is a theoretical model that characterizes the neural response to a stimulus, e.g., viewing 

an image of food. Recall that our images are derived from BOLD contrasts where intensity 

values are dependent on the level of oxygen in the blood. Put simply, the canonical HRF simu-

lates the effects of increased blood flow in response to neural activity. One characteristic of the 

HRF is a 4-6 sec lag, as seen in the resulting model of the psychological time course convolved 

with the HDF (Figure 2.6A). We then created the physiological time course by extracting the 

mean BOLD signal during the 5-min food cue scan from the NAc seed region (Figure 2.6B; blue 

curve). If the neural response of the NAc increases while viewing high calorie food images, then 

we would expect the NAc-based physiological time course to be correlated with the convolved 

[HICAL > LOCAL] psychological time course. Next, we created an interaction time course that is 

the term-by-term multiplication of the psychological time course with the physiological time 

course (Figure 2.6C; green curve).  

Note that PPI analysis is correlation analysis. However we performed this correlation using the 

general linear model (GLM) rather than using simple correlation. Using the GLM mechanism 

allowed us to include additional regressors to better describe our model. Specifically, we 

included as regressors of no interest the time courses from which the interaction regressor was 

created: the mean time course from the seed region NAc and the [HICAL > LOCAL] time course. 
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By adding these regressors of no interest, the variance explained by the interaction regressor is 

over and above what is explained by the main effects of seed-related functional connectivity and 

the psychological task. We also included [HICAL AND LOCAL] as a regressor of no interest to 

explain the shared variance between HICAL and LOCAL. 

 

Figure 2.6: Psychophysiological interaction (PPI) term. (A) The psychological time course 
that describes the high calorie vs. low calorie contrast. Grey vertical sticks represent times at 
which food cues were displayed. We convolved the psychological time course by the canonical 
hemodynamic response function (HRF) to simulate the effects of increased blood flow in 
response to neural activity (red curve). (B) The physiological time course is the mean BOLD 
signal from the NAc seed region (blue curve). (C) The interaction time course (green curve) is 
the term-by-term multiplication of the psychological time course (red curve) with the physio-
logical time course (blue curve). 

We created a “PPI map” using GLM in which the interaction time course was designated as the 

seed time course. The GLM operation computed the association of this interaction time course 

with the BOLD signal from each voxel location in the brain. Voxels with larger correlation 

coefficients represent brain regions that exhibit neural responses that are in sync, i.e., function-

ally connected, with that of the NAc when participants viewed high calorie food images.  

28
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We cannot infer directionality from functional connectivity analysis, i.e., we do not know if 

Region A influences Region B, or vice versa. Therefore PPI functional connectivity analysis may 

be interpreted two ways	(Friston et al., 1997). One interpretation is a context-sensitive change in 

connectivity	(Friston et al., 1997). This interpretation suggests that functional connectivity 

between two regions, e.g., BLA and NAc, is modulated by the psychological context, e.g., 

viewing high calorie food images (Figure 2.7A). Another interpretation is the modulation of 

context-specific response	(Friston et al., 1997). This interpretation suggests that the responsive-

ness of the BLA to the psychological context of viewing high calorie food images is modulated 

by the seed region, NAc (Figure 2.7B). This implies that the BLA is modulated via afferents 

from the NAc. Note that both interpretations are mathematically plausible, however one interpre-

tation may be more biologically plausible. For example, if the BLA did not receive efferent 

connections from the NAc, the second interpretation would be less likely. 

 

Figure 2.7: Two possible interpretations of PPI functional connectivity results. (A) Context-
sensitive change in connectivity. (B) Modulation of context-specific response. 
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Neuroimaging of childhood obesity. 

Why study children? 

Neuroimaging studies among adults have contributed tremendous insight into obesity; for review 

see (Carnell et al., 2012). However, as brain structure and function change throughout develop-

ment (Luna et al., 2001; Giedd, 2004), our understanding of neural mechanisms in adults may 

not apply to children. Indeed, neurological maturation continues into early adulthood (Giedd, 

2004; Lenroot and Giedd, 2006), with the prefrontal cortex, a brain area associated with execu-

tive control, maturing later than the limbic system, associated with drive and reward (Lenroot 

and Giedd, 2006). The most common behaviors associated with the immature adolescent brain 

are impulsive behaviors.  

Brief review of childhood neural activation studies 

There are many foundational studies that elucidate the neural underpinnings of childhood obesity 

by identifying discrete brain regions. For a review of childhood obesity fMRI activation studies, 

see (Bruce et al., 2011); for more recent studies, see (Batterink et al., 2010; Yokum et al., 2011; 

Bruce et al., 2013); and for studies examining neural response to actual food intake, see (Stice et 

al., 2008; Stice et al., 2010; Stice et al., 2011). Taken together, these studies have identified 

differences between children who are obese and healthy weight within discrete brain regions 

associated with response inhibition (e.g., anterior cingulate cortex, inferior parietal lobe), impul-

sivity (e.g., inferior frontal gyrus, superior frontal gyrus), motivation (e.g., amygdala), and 

reward (e.g., striatum, orbitofrontal cortex, insula). 
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Review of childhood functional connectivity studies 

However, the brain is made up of networks of brain regions (Seeley et al., 2009). Functional 

connectivity analyses generate inferences about brain networks thus providing new insight into 

the communication and organization of the brain (van den Heuvel and Hulshoff Pol, 2010). 

There are many functional connectivity studies comparing adults who are obese with healthy 

weight adults (Stoeckel et al., 2009; Kullmann et al., 2012; Nummenmaa et al., 2012; Garcia-

Garcia et al., 2013a; Garcia-Garcia et al., 2013b; Kullmann et al., 2013; Carnell et al., 2014; 

Tuulari et al., 2015). However, to date there are only three functional connectivity studies 

investigating childhood obesity, reviewed below. 

Olde Dubbelink, et al., examined resting state functional connectivity in girls, ages 9-12 years, 

using magnetoencephalography (MEG) (Olde Dubbelink et al., 2008). They reported increased 

synchronization in the delta and beta frequency bands among girls who were severely obese 

compared to healthy weight girls. Using fMRI, Zhang et al., examined resting state functional 

connectivity among children with Prader-Willi syndrome compared to their healthy weight 

siblings (Zhang et al., 2013). They reported decreased functional connectivity in the default 

mode network and the motor sensory network, and both increased and decreased functional 

connectivity in the prefrontal cortex network among children with Prader-Willi syndrome. Also 

using fMRI, Black et al., examined resting state functional connectivity among severely obese 

children compared to healthy weight children (Black et al., 2014). They reported increased 

functional connectivity among regions associated with cognitive control and reward anticipation 

among children who were obese. We discuss our results in relation to these studies in Chapter 5. 
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All three studies investigated resting state functional connectivity. All three studies compared 

children who were severely obese with healthy weight children. No studies looked at children 

across a continuous range of adiposity, which includes children who are overweight, as we do in 

our resting state functional connectivity study. No studies examined task-based PPI functional 

connectivity as we do in our food cue task-based study. 

Neurosynth. 

Overview of Neurosynth’s meta-analysis technique 

We used Neurosynth (neurosynth.org) (Yarkoni et al., 2011) to identify a priori brain regions 

associated with phenotypes of interest, e.g., impulsivity, response inhibition, or motivation. 

Neurosynth is an aggregator that automatically synthesizes results from published neuroimaging 

studies, performs automated meta-analyses, and creates probabilistic mappings between pheno-

types and neural states (Yarkoni et al., 2011).  

An overview of Neurosynth’s aggregator function, built on text mining and machine learning, is 

as follows (Figure 2.8). First, Neurosynth extracts coordinates of peak neural activity from 

published neuroimaging papers (Figure 2.8A). For each peak coordinate, Neurosynth creates an 

“activation map” where each voxel in the brain is set to 0 or 1. A voxel is set to 1 if it is within 

some user-defined distance from the peak activation, e.g., 10 mm from the extracted peak coordi-

nate. Otherwise, the voxel is set to 0. Next, Neurosynth parses text from these published papers 

and identifies terms of high frequency, e.g., “response inhibition” (Figure 2.8B). Neurosynth 

then generates a list of terms that occur in 20+ papers (Figure 2.8C). For each paper, Neurosynth 

creates a “feature map” of these terms where each cell is set to 0 or 1 (Figure 2.8D). A cell is set 

to 1 if the paper contains the term or 0 if it does not.  
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Figure 2.8: Overview of Neurosynth’s aggregator function. 

Neurosynth then creates a 2⋅2 contingency table of counts for each term for each voxel (Figure 

2.8E). The count is the number of papers that have “activity” at this voxel for this term. With this 

table, Neurosynth performs a chi-squared test of independence comparing (coordinate with term) 

vs. (coordinate without term). If statistically significant, then a dependency exists between the 

activity at that coordinate and the term. From this statistical analysis, Neurosynth provides both 

forward and reverse inference maps. The forward inference map indicates the probability of acti-

vation in a particular brain region given a particular term, i.e., !" #$%&'#%&() %*"+ . The reverse 

inference map indicates the probability of finding a specific term given activation a particular 

brain region, i.e., !" %*"+ #$%&'#%&() . The reverse inference map provides inference about 

which brain regions are selectively, and not just consistently, associated with a particular term.  
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Use of Neurosynth 

We investigated the functional connectivity between regions associated with specific pheno-

types: response inhibition, impulsivity, motivation, and reward. We performed Neurosynth meta-

analyses to identify neural regions associated with these phenotypes. We then localized regions 

of interest via Neurosynth’s resulting inference maps. Using the resulting inference map, we 

selected a voxel located at a peak z-score and created a spherical ROI with radius 5 mm (volume 

= 648 mm3 = 81 voxels).  

Of note, Neurosynth does not allow for additional filters in the specification of its meta-analyses, 

such as limiting its analyses to “children-only” studies. However, its resulting inference maps are 

in Montreal Neurological Institute (MNI)-space, a common coordinate system used in MRI brain 

image analysis. We spatially normalized the brain scans of our participants to a child-specific 

brain template (Fonov et al., 2009; Fonov et al., 2011), also in MNI-space, thereby allowing the 

use of Neurosynth results in our cohort of children. As noted previously, our understanding of 

adult neurofunctionality may not apply to children. However, using functional regions identified 

by Neurosynth is one way to contribute to the limited study of functional connectivity in child-

hood obesity by objectively building upon the vast corpus of neuroimaging research.  

Research model and neural model. 

The aim of our research was to better understand neural functional connectivity between regions 

of the brain associated with non-homeostatic eating in relation to eating habits and adiposity 

among children (Figure 2.9, upper). We therefore defined a neural model comprised of three a 

priori-defined regions. For our PPI functional connectivity analysis, the three regions were: (1) 

rostral anterior cingulate cortex (rACC), associated with response inhibition (Goldman-Rakic, 
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1987; Kiehl et al., 2000; Etkin et al., 2006; Langenecker et al., 2007; Hwang et al., 2010; 

Goldstein and Volkow, 2011); (2) basolateral amygdala (BLA), associated with motivational 

drive (Talmi et al., 2008; Stuber et al., 2011; Britt et al., 2012; Prevost et al., 2012); and (3) 

nucleus accumbens (NAc), associated with reward and reward-motivated behaviors (Cardinal et 

al., 2002; Kalivas and Volkow, 2007) (Figure 2.9; lower). The selection and function of these 

regions are detailed in Chapter 3. 

 

Figure 2.9: Research and neural models for psychophysiological interaction (PPI) study. 
Upper: Research model showing relationships among PPI functional connectivity, eating 
behavior, and adiposity. Lower: Neural model made up of three regions: (1) rostral anterior 
cingulate cortex; (2) amygdala; and (3) nucleus accumbens. 

For our resting state functional connectivity analysis, the three regions we examined were: (1) 

inferior parietal lobe (IPL), associated with response inhibition (Garavan et al., 2002; Swick et 

al., 2011; Steele et al., 2013; van Belle et al., 2014); (2) frontal pole, associated with impulsivity 

(Coccaro et al., 2007; Jimura et al., 2013; Weygandt et al., 2015); and (3) nucleus accumbens 

(NAc), associated with reward and reward-motivated behaviors (Figure 2.10; lower). The 

selection and function of these regions are detailed in Chapter 4. 



36	

 

Figure 2.10: Research and neural models for resting state study. Upper: Research model 
showing relationships among resting state functional connectivity, eating behavior, and 
adiposity. Lower: Neural model made up of three regions: (1) inferior parietal lobe; (2) frontal 
pole; and (3) nucleus accumbens. 

Mediation analysis. 

Since changing one’s eating habits alone does not typically produce long-lasting weight loss, we 

hypothesized that neurobiological factors are also at play. Specifically, we posit that functional 

connectivity within a brain network mediates the relationship between eating behaviors and 

adiposity. Statistically, a mediator helps explain how or why a relationship exists between two 

variables (Baron and Kenny, 1986). In contrast, a moderator explains when certain effects will 

occur, thereby affecting the strength or direction of a relationship (Baron and Kenny, 1986).  

Because robust mediation analysis requires large sample sizes (Fritz and MacKinnon, 2007), we 

did not perform mediation analysis in our food cue task PPI functional connectivity analysis 

data. However, we did perform mediation analysis in our resting state functional connectivity 

data as an exploratory analysis, in advance of additional data. Mediation can be assessed when 

statistically significant relationships are found in all three Paths A, B, and C, shown in Figure 
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2.10, where the relationships between pairs of pathways are adjusted for the third pathway 

(Taylor and MacKinnon, 2012; Valeri and VanderWeele, 2013). If our brain network is a 

mediator, then the association between eating behavior and adiposity (Path C, Figure 2.10) will 

decrease after controlling for the effects of neural resting state functional connectivity (Baron 

and Kenny, 1986).  

For our mediation analysis model, we selected eating behavior as the independent variable, X; 

adiposity as the dependent variable, Y; and resting state functional connectivity as the mediator, 

M (Figure 2.11). Note that because we do not know if preexisting neural conditions predispose 

an individual toward unhealthy eating behaviors and/or increased adiposity, or if increased adi-

posity modifies the brain to promote unhealthy eating behaviors, or some combination of both, 

our designation of each variable is subjective. The solid blue arrows along Path A and Path B in 

Figure 2.11 depict the indirect relationship between eating behaviors and adiposity as mediated 

by neural functional connectivity. In mediation terminology, this indirect relationship is also 

called the (ab) path. Path C (Figure 2.11; dotted black line) is the relationship between eating 

behaviors and adiposity when not controlling for the contribution from functional connectivity. 

However, Path C’, not shown, is the relationship between eating behaviors and adiposity after 

controlling for, and thereby removing, the contribution from functional connectivity. In medi-

ation parlance, Path C’ is called the direct relationship. If neural functional connectivity is a 

mediator, then the relationship along Path C’ will be less than the relationship along Path C.  



38	

 

Figure 2.11: Mediation analysis model. Eating behavior is the independent variable, X; 
adiposity is the dependent variable, Y; and resting state functional connectivity is the mediator, 
M. The combination of Path A and Path B (solid blue lines) represent the indirect relationship 
between eating behaviors and adiposity as mediated by functional connectivity. Path C (dotted 
black line) represents the relationship between eating behaviors and adiposity when not 
controlling for functional connectivity. 
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CHAPTER 3 

 

Differences in Response Inhibition-Associated and Motivational Drive-Associated  

Functional Connectivity in Childhood Obesity: 

A Psychophysiological Interaction Functional Connectivity Study 

 

ABSTRACT 

Background and Hypothesis 

Childhood obesity in the US has nearly doubled over the past 30 years; among adolescents 

obesity has tripled. Given critical differences in neural function between adults and children, we 

studied children to better understand the developing neurobiology of obesity. Successful long-

term weight loss may be undermined by non-homeostatic eating. Non-homeostatic eating is 

influenced by impulsive drive to eat and inhibition of this drive. We hypothesized that unhealthy 

eating habits and overeating are associated with disrupted neural functional connectivity.  

Methods 

We used psychophysiological interaction (PPI) functional connectivity analysis to quantify brain 

network integrity between brain regions associated with response inhibition (rostral anterior 

cingulate cortex), motivational drive (basolateral amygdala), and reward (nucleus accumbens). 

We acquired functional magnetic resonance images (fMRI) from 34 children (female = 16; obese 

= 17; mean age = 10.3 [std = 1.3] years) at 3 Tesla while viewing high calorie and low calorie 

food images. Visual food cues affect eating behavior, and more so for children who are obese. 

We assessed the relationships of functional connectivity with external and restrained eating 
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behaviors, as measured by the Dutch Eating Behaviour Questionnaire for Children (DEBQ-C), 

and with adiposity, quantified by BMI z-score.  

Results 

Our results suggest that ineffective response inhibition-associated PPI functional connectivity, 

when viewing high calorie compared to low calorie food images, is characteristic of obesity in 

children, ages 8-12 years old. Furthermore, response inhibition-associated functional connectiv-

ity, more so than motivational drive-associated functional connectivity, may be a key functional 

difference between children who are obese compared to healthy weight children. For example, 

among children who are healthy weight, decreased external eating was associated with increased 

response inhibition-associated PPI functional connectivity. However, among children who are 

obese, increased external eating was associated with increased response inhibition-associated PPI 

functional connectivity, suggesting that integration of response inhibition-associated PPI func-

tional connectivity is ineffective. There were no significant associations between external eating 

and motivational drive-associated PPI functional connectivity for either weight class. 

Conclusions 

These findings suggest that, in addition to changing eating habits and physical activity, strategies 

that overcome altered neural functional connectivity which influence non-homeostatic eating are 

needed to maintain a healthy weight status. Strengthening response inhibition-associated func-

tional connectivity may contribute to novel, efficacious obesity treatment.  
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Background. 

Homeostatic control of eating behavior is largely regulated by the hypothalamus and brainstem 

(Schneeberger et al., 2014). However, eating is also a reward-mediated behavior driven, in part, 

by the balance between motivational drive to eat and inhibition of this drive. Brain regions asso-

ciated with motivational drive, response inhibition, and reward, are increasingly recognized as 

potent modulators of non-homeostatic eating habits (Shin and Berthoud, 2013). Our overarching 

hypothesis is that increased motivational drive to eat and/or decreased inhibition of this drive is 

associated with obesity. 

Additional non-homeostatic factors that influence adiposity status include environmental 

(LeBlanc et al., 2015), genetic (Early Growth Genetics (EGG) Consortium, 2012), cultural (Pena 

et al., 2012), and familial (Latzer and Stein, 2013) factors. One such environmental factor, visual 

food cues, is prevalent in the daily lives of children via the internet, television, and print media. 

Exposure to food cues increases food intake (Polivy and Herman, 2014). Moreover, children who 

are overweight have a stronger behavioral response to food cues than do healthy weight children, 

leading them to eat more following cue exposure (Jansen et al., 2003). Given that visual food 

cues affect eating behavior, a visual food cue task is a powerful and ecologically valid method 

used to probe putative differences in the communication and organization of the obese brain.  

Research model 

The aim of this study was to better understand neural functional connectivity in childhood 

obesity in response to viewing images of high calorie food compared to low calorie food. 

Functional connectivity is at the forefront of neuroimaging analysis, however its use in 

discovering organizational principles underlying brain function remains largely untapped in 
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regard to childhood obesity. Because functional connectivity can vary as a function of task 

(Friston et al., 1997), psychophysiological interaction (PPI) analysis assesses whether the func-

tional connectivity between two brain regions changes from one task to another. We used PPI 

functional connectivity analysis to examine the relationship of adiposity status, eating behaviors, 

and brain functional connectivity within the context of a visual food cue task (Figure 3.1; upper). 

To the best of our knowledge, there are no other published studies that investigate childhood 

obesity using PPI functional connectivity analysis. 

 

Figure 3.1: Model to probe relationship of adiposity status, eating behaviors, and brain 
functional connectivity. Upper: Path A: relationship between functional connectivity and 
adiposity status; Path B: relationship between functional connectivity and eating behaviors; Path 
C: relationship between adiposity status and eating behaviors. Lower: Neural model included: (1) 
rostral anterior cingulate cortex (rACC), associated with response inhibition; (2) basolateral 
amygdala (BLA), associated with motivational drive; and (3) nucleus accumbens (NAc), 
associated with reward-motivated behaviors. PPI: psychophysiological interaction; [RACC:NAC] 
PPI: functional connectivity between rACC and NAc; [RACC:BLA] PPI: functional connectivity 
between rACC and BLA; and [BLA:NAC] PPI: functional connectivity between BLA and NAc. 
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Functional neural model 

We defined a functional neural model comprised of three a priori-defined regions (Figure 3.1; 

lower): (1) basolateral amygdala (BLA), associated with motivational drive (Talmi et al., 2008; 

Stuber et al., 2011; Britt et al., 2012; Prevost et al., 2012); (2) rostral anterior cingulate cortex 

(rACC), associated with response inhibition (Goldman-Rakic, 1987; Kiehl et al., 2000; Etkin et 

al., 2006; Langenecker et al., 2007; Hwang et al., 2010; Goldstein and Volkow, 2011); and (3) 

the nucleus accumbens (NAc), associated with reward-motivated behaviors (Cardinal et al., 

2002; Kalivas and Volkow, 2007). The NAc also integrates inputs from the prefrontal cortex 

(PFC) and limbic regions (Mogenson et al., 1980; Goto and Grace, 2008; Floresco, 2015). There 

are direct glutamatergic projections from the amygdala to the NAc and from the rACC to the 

NAc as well as reciprocal glutamatergic projections between the rACC and amygdala (Cardinal 

et al., 2002; Kalivas and Volkow, 2007).  

Motivational drive is the degree to which one wants and chooses to engage in a particular 

behavior (Mitchell, 1982). In mice, optical stimulation of the pathway from BLA to NAc 

increased motivational drive for self-stimulated sucrose delivery (Stuber et al., 2011) and self-

stimulation of the NAc (Britt et al., 2012). Pavlovian-instrumental transfer (PIT) demonstrates 

that Pavlovian conditioning transfers motivational significance onto instrumental conditioning 

(Talmi et al., 2008). An fMRI PIT paradigm among humans showed neural response in BLA 

increased as PIT effects increased, that is, the instrumental condition was performed more often 

in the presence of the conditioned stimulus than in its absence (Talmi et al., 2008; Prevost et al., 

2012). These studies suggested that increased BLA neural response is associated with increased 

behavioral motivation. Temple et al., reported that motivation to work for food, as measured by 

performance on an operant response computer game that used a progressive ratio schedule of 
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reinforcement, among overweight 8-12 year old children was greater compared to their healthy 

weight peers (Temple et al., 2008). Working with even younger children, Rollins et al., similarly 

showed that increased motivation to work for food was associated with increased weight among 

preschoolers, ages 3-5 years (Rollins et al., 2014). In a 1-year longitudinal study of children ages 

7-10 years, Hill et al., showed that increased motivation to work for food was predictive of 

increased weight gain (Hill et al., 2009). Taken together, this evidence suggests that increased 

adiposity is associated with increased motivational drive, which in turn is associated with 

increased neural response in the BLA. 

Response inhibition is the ability to suppress an inappropriate and/or unwanted action that would 

otherwise interfere with one’s goals (Barratt et al., 1994; Mostofsky and Simmonds, 2008). Hest 

and Garavan reported that cocaine users, compared to drug-naïve controls, showed decreased 

neural activity in the rACC with decreased response inhibition during a Go-No Go task (Hester 

and Garavan, 2004). Similarly, Li et al., reported that male cocaine users, compared to healthy 

controls, showed decreased neural activity in rACC with decreased response inhibition during a 

Stop Signal Task (Li et al., 2007). These studies suggest that decreased neural response in the 

rACC is associated with decreased response inhibition. Studies have shown that increased BMI 

is associated with decreased response inhibition in children via the Stop Signal task (Nederkoorn 

et al., 2006), the Child Behavior Questionnaire (Anzman and Birch, 2009), and the Go-No Go 

task (Batterink et al., 2010; Kamijo et al., 2012a; Kamijo et al., 2012b). Taken together, this 

evidence suggests that increased adiposity is associated with decreased response inhibition, 

which in turn is associated with decreased neural response in the rACC. 

FMRI studies have shown that increased activity in the rACC is associated with a reduction in 

amygdala activity during an emotional conflict Stroop task (Etkin et al., 2006; Egner et al., 
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2008); among individuals with post-traumatic stress disorder (Etkin and Wager, 2007); among 

individuals with phobias in response to phobia-related images (Hermann et al., 2007); and in 

individuals with phobias compared to non-phobic controls (Schienle et al., 2007). This modula-

tory relationship is consistent with studies in rats demonstrating that the stimulation of the 

prefrontal cortex decreases amygdala activity (Quirk et al., 2003) and that the inactivation of the 

rACC enhances amygdala-dependent fear-conditioned learning (Bissiere et al., 2008). This 

evidence suggests that increased neural response in the rACC decreases neural response in the 

amygdala. 

The NAc is associated with reward-motivated behaviors and integrates input from PFC and 

limbic regions. Studies have demonstrated the importance of the NAc in reward-motivated 

behaviors such as response inhibition and motivational drive. For example, in rats, Terregrossa 

and Taylor determined that the influence of the ACC in cocaine cue extinction was due to its 

projections to the NAc (Torregrossa et al., 2013). As noted previously, optical stimulation of the 

pathway from BLA to NAc increased motivational drive for self-stimulated reward (Stuber et al., 

2011; Britt et al., 2012) in mice.  

In light of the above evidence, we designated the NAc as a region that mediates reward-moti-

vated behaviors (Figure 3.1). We designated the BLA as a region that produces motivational 

drive to eat via direct projections to the NAc. And we designated the rACC as a region that 

inhibits response to eating via two proposed mechanisms by: (1) directly inhibiting reward-

motivated behaviors via projections to the NAc; and (2) indirectly inhibiting motivational drive 

via projections to the BLA which, in turn, projects a “weaker input” to the NAc. Our model 

highlights the considerable influence that response inhibition may contribute to adiposity status.  
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Hypotheses. 

Overarching hypothesis 

Our overarching hypothesis is that increased motivational drive to eat and/or decreased inhibition 

is associated with obesity. That is, it is the imbalance between drive to eat and inhibition of over-

eating that determines, in part, feeding behavior and resultant adiposity status. Our specific 

hypotheses are informed by the premise that increased functional connectivity reflects increased 

functional integration (Friston et al., 1997). We hypothesized that increased response inhibition-

associated functional connectivity between rACC and NAc, or between rACC and BLA, will be 

associated with decreased unhealthy eating habits and decreased adiposity. We also hypothesized 

that increased motivational drive-associated functional connectivity between BLA and NAc will 

be associated with increased unhealthy eating habits and increased adiposity.  

We investigated the functional connectivity of three circuits within our neural model (Figure 

3.1): (1) motivational drive-associated PPI functional connectivity between BLA and NAc, 

denoted as [BLA:NAC] PPI; (2) response inhibition-associated PPI functional connectivity 

between rACC and NAc, denoted as [RACC:NAC] PPI; and (3) inhibition of motivational drive-

associated PPI functional connectivity between rACC and BLA, denoted as [RACC:BLA] PPI. 

We used an ecologically valid food cue paradigm, which approximates the real-life experience of 

viewing pictures of food, to probe the functional connectivity between these regions. Addition-

ally, we quantified relationships between functional connectivity by adiposity status with eating 

behaviors as empirical corroboration of our hypotheses.  

We formed a series of testable hypotheses, depicted in Figure 3.2. 
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Figure 3.2: Hypotheses. (A) Relationship of [RACC:NAC] vs. [BLA:NAC] PPI functional 
connectivity by adiposity status; (B) Relationship of [BLA:NAC] vs. [RACC:BLA] PPI 
functional connectivity by adiposity status; (C) Relationship of [RACC:NAC] vs. [RACC:BLA] 
PPI functional connectivity by adiposity status. (D) Relationship of external eating scores vs. 
[RACC:NAC] PPI functional connectivity by adiposity status; (E) Relationship of external eating 
scores vs. [RACC:BLA] PPI functional connectivity by adiposity status; (F) Relationship of 
external eating scores vs. [BLA:NAC] PPI functional connectivity by adiposity status; (G) 
Relationship of restrained eating scores vs. [RACC:NAC] PPI functional connectivity by 
adiposity status; (H) Relationship of restrained eating scores vs. [RACC:BLA] PPI functional 
connectivity by adiposity status; (I) Relationship of restrained eating scores vs. [BLA:NAC] PPI 
functional connectivity by adiposity status. PPI: psychophysiological interaction; NAc: nucleus 
accumbens; rACC: rostral anterior cingulate cortex; BLA: basolateral amygdala. 
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Hypotheses about PPI functional connectivity and adiposity status (Figure 3.1 Path A and 
Figures 3.2 A-C) 

We hypothesized that among children who are healthy weight (HW), in response to viewing food 

cues, increasing [BLA:NAC] PPI will be associated with a concomitant increasing [RACC:NAC] 

PPI (Figure 3.2A). In other words, response inhibition-associated functional connectivity will 

keep pace with motivational drive-associated functional connectivity among HW. In contrast, we 

hypothesized that among children who are obese (OB), increasing [BLA:NAC] PPI will be 

associated with decreasing [RACC:NAC] PPI. In other words, among OB, response inhibition-

associated functional connectivity will not only fail to keep pace with motivational drive-

associated functional connectivity, but it will be blunted. 

When considering functional connectivity between rACC and BLA, we hypothesized that among 

HW, in response to viewing food cues, increased [RACC:BLA] PPI will be associated with 

decreased [BLA:NAC] PPI (Figure 3.2B). While, among OB, increased [RACC:BLA] PPI would 

have no significant association with [BLA:NAC] PPI as we speculate that this functional system 

of checks and balances is faulty. Continuing to consider increased [RACC:BLA] PPI, we hypoth-

esized that [RACC:NAC] PPI would increase among HW, whereas among OB, [RACC:NAC] PPI 

would have no significant association (Figure 3.2C).  

Hypotheses about PPI functional connectivity and external eating behaviors (Figure 3.1 Path B 
and Figures 3.2 D-F) 

Unhealthy eating behaviors include external eating, defined as eating in response to the sight or 

smell of food. Increased BMI is associated with an increase in external eating (Braet and van 

Strien, 1997; Burton et al., 2007). In turn, increased external eating is associated with decreased 

response inhibition (Jasinska et al., 2012) and increased motivational drive (Nijs et al., 2009). 
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We therefore hypothesized that, among HW, increased response inhibition-associated 

[RACC:NAC] PPI, and increased [RACC:BLA] PPI, will be associated with decreased external 

eating (Figures 3.2D and 3.2E). We also hypothesized that, among OB, response inhibition-

associated functional connectivity is ineffective. Therefore we posited that no statistical relation-

ship between [RACC:NAC] and [RACC:BLA] PPI and external eating (Figures 3.2D and 3.2E). 

However, we hypothesized that, among HW, external eating will not be significantly associated 

with increased [BLA:NAC] PPI, whereas, among OB, external eating will increase with 

increased [BLA:NAC] PPI (Figure 3.2F).  

Hypotheses about PPI functional connectivity and restrained eating behaviors (Figure 3.1 Path B 
and Figures 3.2 G-I) 

Restrained eating is defined as eating less to lose or maintain weight. Counterintuitively, 

increased restrained eating is associated with increased BMI (Braet and van Strien, 1997; 

Provencher et al., 2003). This non-intuitive relationship is believed to be due to an eventual loss 

of restraint thereby leading to disinhibited overeating (Shunk and Birch, 2004). Restrained eaters 

also showed decreased response inhibition compared to healthy controls during the Stop Signal 

Task (Nederkoorn et al., 2004). Taken together, these studies suggest that increased BMI is 

associated with increased restrained eating which, in turn, is associated with decreased response 

inhibition. We hypothesized that, among HW, increased [RACC:NAC] PPI, and increased 

[RACC:BLA] PPI, will be associated with decreased restrained eating (Figures 3.2G and 3.2H). 

However, among OB, we hypothesized that increased restrained eating will be associated with 

increased [RACC:NAC] PPI and increased [RACC:BLA] PPI, suggesting ineffective response 

inhibition (Figures 3.2G and 3.2H). Furthermore, we hypothesized that, among HW, restrained 

eating will not be significantly associated with increased [BLA:NAC] PPI (Figure 3.2I). 
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However, among OB, we hypothesized that restrained eating will increase with increased 

[BLA:NAC] PPI because increasing motivational drive to eat is associated with increased BMI, 

which, in turn, is associated with increased restrained eating.  

Hypothesis about adiposity status and eating behaviors (Figure 3.1 Path C) 

In agreement with previous studies (Braet and van Strien, 1997; Shunk and Birch, 2004; Braet et 

al., 2008; van Strien and Oosterveld, 2008) we hypothesized that children who are obese will 

exhibit increased external eating and increased restrained eating habits compared to healthy 

weight children.  

Materials and Methods. 

Participants 

Thirty-four children, in the age range [8-12] years old, were selected from a larger observational 

study of childhood obesity investigating how the brain influences appetite in children who are 

healthy weight or obese. All children assented to the study. A legal guardian provided written 

informed consent after receiving a written description of this study. Participants received finan-

cial compensation. This study was approved by the Institutional Review Board at Vanderbilt 

University and conformed to the provisions of the Declaration of Helsinki (World Medical 

Association, 2013). All participants had normal visual acuity. Only right-handed participants 

were enrolled to minimize laterality variations in brain function. Girls were included only if they 

had not yet reached menarche. All subjects were screened for psychiatric, neurological, chronic 

medical illnesses, and for MRI safety considerations. All participants ate a standardized meal 

approximately 30 min prior to MRI scanning. Each participant rated his or her hunger prior to 

scanning using a visual analog scale. 
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Adiposity and weight status 

We used BMI z-scores as a proxy measure for childhood adiposity. Only children who were 

healthy weight or obese were enrolled in the study; children who were overweight were 

excluded. Children were classified as healthy weight for (-1.64 ≤ BMI z-scores < 1.04); and 

obese for (BMI z-scores ≥ 1.64) (Wang and Chen, 2012). We calculated an age- and sex-specific 

BMI z-score for each child using LMS transformation parameters lambda, mu, and sigma (CDC; 

Kuczmarski et al., 2002). 

Eating behaviors 

We used the Dutch Eating Behaviour Questionnaire for Children (DEBQ-C) to measure two 

aspects of eating behavior: external eating and restrained eating (van Strien and Oosterveld, 

2008; van Strien et al., 2012). External eating is eating in response to the sight or smell of food. 

Restrained eating is eating less to lose or maintain weight. In our study, we explored the relation-

ship of external eating and restrained eating with brain functional connectivity and weight status.  

Functional neural model 

ROSTRAL ANTERIOR CINGULATE CORTEX (RACC) / RESPONSE INHIBITION. 

We used Neurosynth (neurosynth.org) (Yarkoni et al., 2011) to identify an a priori rACC 

region associated with response inhibition. We performed a Neurosynth meta-analysis for the 

term “response inhibition” from 176 studies (Figure 3.3A). We located the rACC in the resulting 

forward inference map and noted the MNI-coordinate of the peak z-score. We created a spherical 

ROI with radius 5 mm (volume = 648 mm3 [81 voxels]) in the right rACC centered on a peak z-

score of 5.84 at (6, 42, 12) in Montreal Neurological Institute (MNI)-space. 
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Figure 3.3: Neurosynth meta-analysis inference maps. (A) Results from meta-analysis of term 
“response inhibition.” (B) Results from meta-analysis of term “motivation.” 

BASOLATERAL AMYGDALA (BLA) / MOTIVATIONAL DRIVE. 

We used Neurosynth to identify an a priori BLA region associated with the term “motivation” 

from 135 studies (Figure 3.3B). We located the BLA in the resulting forward inference map and 

noted the MNI-coordinate of the peak z-score. We created a spherical ROI with radius 5 mm 

(volume = 648 mm3 [81 voxels]) in the right BLA centered on a peak z-score of 12.81 at 

(24, -2, -18) in MNI-space. 

NUCLEUS ACCUMBENS (NAC) / REWARD-MOTIVATED BEHAVIORS.  

The maximum z-scores for the rACC and BLA regions, defined above, were in the right hemi-

sphere. To be consistent with other fMRI studies reporting an almost wholly right-lateralized 

network involved in response inhibition (Casey et al., 1997; Garavan et al., 1999; Kiehl et al., 

2000; Braver et al., 2001; Swick et al., 2011; Criaud and Boulinguez, 2013), we selected the 

right NAc for our functional model. We used the right NAc region from the Harvard-Oxford 

subcortical atlas (Frazier et al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 

2007). The right NAc has a volume of 472 mm3 (59 voxels). 
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Note that rat studies are able to distinguish between the NAc shell and its core. However, given 

the spatial resolution of these fMRI scans, we were unable to resolve the NAc shell from the 

core. The NAc shell is associated with reward salience, wanting, and positive reinforcement 

(Pecina and Berridge, 2005). The NAc core is associated with motor function related to reward 

(Malenka et al., 2009).  

Task paradigm.  

We displayed sets of food and nature images during fMRI scanning (Figure 3.4). Each food 

image was classified according to its energy density (kcal/g), which remains constant regardless 

of portion size. We defined high-energy dense foods as those with an energy density greater than 

200 kilocalories per 100 grams. All high-energy dense food images depicted food with a mini-

mum estimated total caloric content of 500 kilocalories (based upon a standard serving size). We 

defined low-energy dense foods as those with an energy density less than 100 kilocalories per 

100 grams. All low-energy dense food images depicted foods with a maximum estimated total 

calorie content of 200 kilocalories. The determination of energy density and caloric content were 

based on nutritional information from the U.S. Department of Agriculture and nutritional infor-

mation provided by the manufacturers of commercially prepared foods. In addition to the 

primary characteristic of energy density, we chose food images that were visually appealing and 

common in a typical diet for an American child. High-energy dense food images included 

cheeseburgers, pizza, and chocolate cake. Low-energy dense food images included colorful fruits 

and vegetables such as bananas, oranges, and carrots. For the rest of this study, we will refer to 

high-energy dense foods as high calorie foods (HICAL) and low-energy dense foods as low 

calorie foods (LOCAL). All images were selected from the public domain and were matched for 
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luminosity, resolution, and size. For baseline comparison, we displayed an image composed of a 

black background with a white fixation cross in the center (BASELINE). 

 

Figure 3.4: Visual food cue paradigm. (A) Nature image; (B) Fixation cross, used as baseline; 
(C) Low calorie food image; and (D) High calorie food image. 

Each scanning session included four 5-min scans. We used an event-related trial design in which 

participants passively viewed 122 images during each 5-min scan. Each scan included 72 food 

images, 18 nature images, and 32 fixation cross images. Image types were intermixed with no 

duplicate food or nature images. Each food and nature image was displayed for 2 sec; fixation 

cross images were displayed for 2-6 sec. The pseudo-random presentation of images was deter-

mined via optseq2 (http://surfer.nmr.mgh.harvard.edu/optseq), a tool that maximizes 

the power of a task paradigm by scheduling events to reduce unwanted noise and increase 

statistical efficiency. Images were presented via E-Prime (Psychology Software Tools, 

Pittsburgh, PA) and displayed on an Epson DLP projector onto a screen at the back of the 

scanner. Participants viewed the projector via a mirror mounted on the MRI head coil.  
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Magnetic resonance image acquisition.  

MRI scans were acquired on a Philips Intera Achieva 3 Tesla scanner at Vanderbilt University. 

For each subject, a single high-resolution anatomical T1-weighted magnetization-prepared rapid 

gradient-echo (MPRAGE) scan was acquired with 256 mm field of view; 170 slices; and voxel 

size = (1 ⋅ 1 ⋅ 1) mm3. Each subject participated in four 5-min blood oxygenation level-dependent 

(BOLD) T2*-weighted echo planar image (EPI) scans, each acquired with repetition time (TR) = 

2 s; echo time (TE) = 35 ms; flip angle = 79 degrees; 152 dynamics; 33 slices; and voxel size = 

(1.7 ⋅ 1.7 ⋅ 4.0) mm3 providing whole brain coverage.  

MRI image processing and analysis. 

We processed MRI datasets with FMRIB Software Library (FSL) v6.00 (Jenkinson et al., 2012). 

Preprocessing included removal of non-brain tissue (Smith, 2002); spatial smoothing using a 

Gaussian kernel with full-width at half maximum (FWHM) 6.0 mm; 4D grand-mean intensity 

normalization; highpass temporal filtering using Gaussian-weighted least-squares straight line 

fitting with sigma = 60 sec; motion correction (Jenkinson et al., 2002); motion scrubbing (Power 

et al., 2012; Yan et al., 2013); and linear and nonlinear spatial normalization (Jenkinson et al., 

2002; Andersson et al., 2007; Andersson et al., 2008; Greve and Fischl, 2009) to an age-appro-

priate MRI brain atlas for ages [7.5-13.5] years old (Fonov et al., 2009; Fonov et al., 2011). We 

discarded data from six children because they moved more than 2 mm in three or more fMRI 

scans. 

Psychophysiological interaction (PPI). 

Functional connectivity helps characterize how brain regions work together as a network (Biswal 

et al., 1995; Friston, 2011; Smith et al., 2012). This coupling can be quantified by the statistical 
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correlation of BOLD fMRI signals between two brain regions. The pattern of correlation 

throughout the brain is believed to reflect neurons firing together with a common purpose (Saini 

et al., 2004; Lewis et al., 2009; Cole et al., 2010) and can reveal whole-brain connectivity 

patterns (van den Heuvel et al., 2008). Functional connectivity can vary as a function of psycho-

logical context (Friston et al., 1997). Psychophysiological interaction (PPI) analysis allows us to 

assess whether the functional connectivity between two brain regions changes from one psycho-

logical task to another. The “physiological” aspect of PPI reveals the functional connectivity 

between two brain regions as reflected by their synchronous change in neural response. The 

“psychological” aspect of PPI explores whether this in-sync effect depends on the task. PPI 

analysis reveals those brain regions with more or less similar functional connectivity with a 

selected seed region as a function of a specific psychological contrast.  

We performed PPI analysis with two different seed regions. First, we used the NAc as our seed 

region. We investigated the PPI functional connectivity of the NAc seed region with two 

separate target regions: (1) the rACC, associated with response inhibition; and (2) BLA, associ-

ated with motivational drive. We performed a second PPI analysis in which we chose the rACC 

as the seed region to investigate the inhibition of motivational drive-associated PPI functional 

connectivity between rACC and BLA.  

For PPI analysis, fMRI data are acquired while participants perform a psychological task. Our 

psychological task was a visual food cue task that contrasted the neural response while partici-

pants viewed images of high calorie food vs. low calorie food, i.e., [HICAL > LOCAL]. To better 

understand and disambiguate these PPI results, we created additional, separate PPI maps for the 

more fundamental contrasts [HICAL > BASELINE] and [LOCAL > BASELINE]. 
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PPI statistical maps 

Each participant was scanned during four 5-min food cue scans. For each participant, for each 5-

minute scan, we created a PPI contrast map using the general linear model (GLM). We followed 

the PPI analysis guidelines detailed by O’Reilly et al. (O'Reilly et al., 2012). In brief, we created 

a PPI regressor from the psychological contrast of a [HICAL > LOCAL] multiplied by the BOLD 

fMRI signal from the seed region NAc. This resulting PPI regressor is used to identify voxels 

that have a stronger relationship with the seed region when viewing HICAL images compared to 

viewing LOCAL images. We also performed a second separate PPI analysis using the rACC as the 

seed region. 

To reduce noise from non-grey matter activity, additional regressors of no interest were included 

in the GLM: mean relative motion correction distance (Power et al., 2012); scrubbed motion 

(Power et al., 2012; Yan et al., 2013); mean BOLD signal from white matter (O'Reilly et al., 

2010); and mean BOLD signal from cerebral spinal fluid (Dagli et al., 1999). We performed 

separate PPI analyses for the more fundamental contrasts [HICAL > BASELINE] and [LOCAL > 

BASELINE]. Finally, for each participant, we created a mean PPI map from the scan-specific PPI 

maps via fixed-effects GLM.  

Measures of PPI functional connectivity 

To measure response inhibition-associated PPI functional connectivity with the NAc, we used 

the rACC region as the target region within the PPI map created from the NAc seed region. For 

each participant, we computed a mean PPI z-score, denoted as [RACC:NAC] PPI, from the rACC 

region in each of the three psychological contrasts: [HICAL > LOCAL], [HICAL > BASELINE], and 

[LOCAL > BASELINE]. To measure motivational drive-associated PPI functional connectivity with 
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the NAc, we used the BLA region as the target region. For each participant, we computed a mean 

PPI z-score, denote as [BLA:NAC] PPI, from the BLA region in each of the three contrasts. To 

measure the inhibition of motivational drive-associated PPI functional connectivity between 

rACC and BLA, we used the rACC as the seed region and BLA as the target region. We 

computed a mean PPI z-score, denote as [RACC:BLA] PPI, from the BLA region in each of the 

three psychological contrasts.  

Statistical analyses. 

Relationship of PPI functional connectivity and adiposity status (Figure 3.1 Path A) 

To evaluate the relationship between response inhibition-associated and motivational drive-

associated PPI functional connectivity, we computed simple linear regressions of [RACC:NAC] 

vs. [BLA:NAC] PPI via Python’s scipy.stats.linregress (iPython version 3.2.0; scipy 

version 0.15.1; statsmodels version 0.6.1) for each weight class. We calculated the statistical 

difference between the regression slopes, i.e., their effects, of each weight class via a t-test 

(Paternoster et al., 1998). We evaluated the association of [RACC:NAC] vs. [BLA:NAC] PPI in 

each of the three separate psychological contrasts: [HICAL > LOCAL], [HICAL > BASELINE], and 

[LOCAL > BASELINE]. Because participants were selected by discontinuous weight classifications, 

we also tested the equality of means of PPI functional connectivity by weight class via a two-

sample t-test using scipy.stats.ttest_ind. For those comparisons in which the PPI values 

were not normally distributed, we used the Mann-Whitney U test via scipy.stats.mann 

whitneyu. We tested for normality via the Shapiro-Wilk test using scipy.stats.shapiro.  
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Relationship of PPI functional connectivity and eating behaviors (Figure 3.1 Path B) 

To evaluate the relationship between external eating, and restrained eating, with PPI functional 

connectivity, we computed simple linear regressions of eating behavior scores vs. [RACC:NAC] 

PPI, or [BLA:NAC] PPI, or [RACC:BLA] PPI, for each weight class via Python’s scipy.stats. 

linregress. We evaluated the association of each eating behavior score vs. PPI from each of the 

three separate psychological contrasts: [HICAL > LOCAL], [HICAL > BASELINE], and [LOCAL > 

BASELINE].  

Relationship of weight class and eating behaviors (Figure 3.1 Path C) 

We assessed equality of means of external eating, and restrained eating, by weight class via a 

two-sample t-test, or Mann-Whitney U if one or both distributions were not normally distributed. 

We also tested for interactions between weight class and sex via a 2x2 ANOVA using 

statsmodels.stats.anova.  

For all statistical tests, we designated an association as statistically significant if it had a p-value 

≤ 0.05. If (0.05 < p-value ≤ 0.10), then we noted that the association as statistically trending 

toward significance. 

Results. 

Participants 

We acquired data from 34 children (F=16; M=18; HW=17; OB=17), ages [8-12] (mean = 10.3; 

stdev = 1.3) years old (Table 3.1). Figure 3.5 shows the distribution of BMI z-score vs. age for all 

participants. There was no interaction between weight class and sex for age. There was no 

significant difference of main effect for sex. However, there was a trending difference of main 
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effect for weight class in which children who were obese were older (p = 0.097; F = 2.940). 

Hunger ratings prior to scanning did not differ between weight classes (p = 0.326; U = 123.0). 

The average time between meal completion and arrival at the scanner was 13.6 (stdev = 5.6) min. 

To accommodate the schedules of participants, scan times varied. Sixty-two percent of scans 

began between 8:00-11:00; 18% of scans began between 11:00-13:00; 15% of scans began 

between 15:00-16:00; and 6% of scans began between 17:00-18:00. Scans in which the partici-

pant moved more than 2 mm were omitted from analysis. All 34 participants had at least two 

useable fMRI food-cue scans.  

N = 34 (F = 16 / M = 18) Mean (Stdev) Min, Max 

Age (yrs)  10.3  (1.3)  8.2,  12.8 

Weight (lbs) (N=34) 103.5 (41.8) 55.0, 226.8 

    Healthy weight (N=17)  71.9 (11.4) 55.0,  90.0 

    Obese (N=17) 135.2 (36.8) 95.0, 226.8 

BMI z-score (N=34)  0.960 (1.207) -1.200, 2.591 

    Healthy weight (N=17) -0.118 (0.722) -1.200, 1.053 

    Obese (N=17)  2.038 (0.264)  1.710, 2.591 

 
Table 3.1: Participant demographic summary. F: female; M: male; StDev: standard deviation; 
Min: minimum; Max: maximum; BMI: body mass index. 

Relationship of PPI functional connectivity and adiposity status (Figure 3.1 Path A) 

All associations between pairs of physiological PPI measurements, by psychological task, by 

adiposity status, are listed in Table 3.2.  

PPI FUNCTIONAL CONNECTIVITY WITH NAC ASSOCIATED WITH CALORIC CONTENT, [HICAL > 
LOCAL] 

When viewing [HICAL > LOCAL] images, HW showed increasing [RACC:NAC] PPI with 

increasing [BLA:NAC] PPI (p = 0.010; R2 = 0.368; r = 0.607; Figure 3.6A). In contrast, among 
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OB, [RACC:NAC] PPI decreased with increasing [BLA:NAC] PPI (p = 0.032; R2 = 0.271; r 

= -0.521). The difference of effects by adiposity status was statistically significantly different (p 

= 0.001; t = 3.636).  

 

Figure 3.5: Distribution of BMI z-score vs. age. Children were classified as healthy weight for 
(-1.64 ≤ BMI z-scores < 1.04); and obese for (BMI z-scores ≥ 1.64). 

FUNCTIONAL CONNECTIVITY WITH NAC WHEN VIEWING HIGH CALORIE FOOD, [HICAL > BASELINE] 

When viewing [HICAL > BASELINE] images, among HW, there was no statistically significant 

association of [RACC:NAC] vs. [BLA:NAC] PPI functional connectivity (p = 0.133; R2 = 0.144; 

r = 0.379) nor for OB (p = 0.185; R2 = 0.114; r = -0.337). However, the difference of effects by 

adiposity status was trending toward statistical significance (p = 0.052; t = 2.022). 

FUNCTIONAL CONNECTIVITY WITH NAC WHEN VIEWING LOW CALORIE FOOD, [LOCAL > BASELINE] 

When viewing [LOCAL > BASELINE] images, among HW, there was no statistically significant 

association of [RACC:NAC] vs. [BLA:NAC] PPI functional connectivity (p = 0.370; R2 = 0.054; 

r = 0.232) or for OB (p = 0.622; R2 = 0.018; r = -0.134). The difference of effects by adiposity 

status was not significant (p = 0.305; t = 1.043).   
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Figure 3.6: Results of PPI vs. PPI and hypotheses. Left column displays results; right column 
displays associated hypotheses. (A) Relationship of [RACC:NAC] vs. [BLA:NAC] PPI functional 
connectivity by adiposity status; (B) Relationship of [BLA:NAC] vs. [RACC:BLA] PPI function-
al connectivity by adiposity status; (C) Relationship of [RACC:NAC] vs. [RACC:BLA] PPI 
functional connectivity by adiposity status. PPI: psychophysiological interaction; NAc: nucleus 
accumbens; rACC: rostral anterior cingulate cortex; BLA: basolateral amygdala. 
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PPI FUNCTIONAL CONNECTIVITY BETWEEN RACC AND BLA ASSOCIATED WITH CALORIC CONTENT 
[HICAL > LOCAL] 

When viewing [HICAL > LOCAL] images, HW showed no significant relationship between 

[BLA:NAC] vs. [RACC:BLA] PPI (p = 0.839; R2 = 0.003; r = -0.053; Figure 3.6B). However, 

among OB, as [RACC:BLA] PPI increased, [BLA:NAC] PPI increased (p = 0.037; R2 = 0.260; r 

= 0.510). The difference of effects by adiposity status was not statistically significantly different 

(p = 0.142; t = 1.509). 

When viewing [HICAL > LOCAL] images, HW showed increasing [RACC:NAC] PPI with 

increasing [RACC:BLA] PPI (p = 0.021; R2 = 0.308; r = 0.555; Figure 3.6C). However, among 

OB, there was no significant association between [RACC:NAC] vs. [RACC:BLA] PPI (p = 0.257; 

R2 = 0.085; r = -0.291). The difference of effects by adiposity status was statistically 

significantly different (p = 0.017; t = 2.519). 

FUNCTIONAL CONNECTIVITY BETWEEN RACC AND BLA WHEN VIEWING HIGH CALORIE FOOD, 
[HICAL > BASELINE] 

When viewing [HICAL > BASELINE] images, among HW, increasing [RACC:NAC] PPI was asso-

ciated with increasing [RACC:BLA] PPI (p = 0.010; R2 = 0.367; r = 0.606). Among OB, this 

relationship was trending toward a negative association (p = 0.061; R2 = 0.215; r = -0.463). The 

difference of effects by adiposity status was statistically significantly different (p = 0.001; t = 

3.579). 

FUNCTIONAL CONNECTIVITY BETWEEN RACC AND BLA WHEN VIEWING HIGH CALORIE FOOD, 
[LOCAL > BASELINE] 

When viewing [LOCAL > BASELINE] images, among HW, the relationship between [RACC:BLA] 

vs. [RACC:NAC] PPI was trending toward a positive association (p = 0.080; R2 = 0.191; r = 
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0.437). Among OB, there was no significant relationship (p = 0.196; R2 = 0.109; r = -0.330). The 

difference of effects by adiposity status was statistically significantly different (p = 0.029; t = 

2.291). 

Relationship of PPI functional connectivity and external eating (Figure 3.1 Path B) 

All 34 children completed the DEBQ-C. The mean external eating score was 2.07 (stdev = 0.52; 

range = [1, 3]). The mean restrained eating score was 1.73 (stdev = 0.54; range = [1, 3]).  

RESPONSE INHIBITION-ASSOCIATED [RACC:NAC] PPI FUNCTIONAL CONNECTIVITY AND EXTERNAL 
EATING 

All results for external eating scores vs. PPI functional connectivity are listed in Table 3.3. When 

viewing [HICAL > LOCAL] images, HW exhibited trending decreased external eating habits with 

increasing [RACC:NAC] PPI (p = 0.054; R2 = 0.226; r = -0.475; Figure 3.7A). In contrast, OB 

exhibited increased external eating habits with increasing [RACC:NAC] PPI (p = 0.035; R2 = 

0.264; r = 0.514). The difference of effects of these relationships by adiposity status was statisti-

cally significantly different (p = 0.005; t = 3.044).  

When viewing [HICAL > BASELINE] images, HW showed decreased external eating habits with 

increasing [RACC:NAC] PPI (p = 0.019; R2 = 0.317; r = -0.563). In contrast, OB showed 

increased external eating habits with increasing [RACC:NAC] PPI (p = 0.001; R2 = 0.522; r = 

0.722). The difference of effects of these relationships by adiposity status was statistically 

significantly different (p = 0.000; t = 4.073).  

When viewing [LOCAL > BASELINE] images, there was no significant association of external 

eating habits with [RACC:NAC] PPI among HW (p = 0.604; R2 = 0.018; r = -0.135). However, 

among OB, external eating habits increased with increasing [RACC:NAC] PPI (p = 0.050; R2 = 
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0.233; r = 0.482). The difference of effects of these relationships by adiposity status was not 

statistically significantly different (p = 0.123; t = 1.586).  

Physiological 
Functional 

Connectivity 
Contrasted Food 

Images 
Adiposity 

Class p-value R2 r 
ANCOVA 
p (t-stat) 

[RACC:NAC] [HICAL > LOCAL] HW 0.054- 0.226 -0.475 0.005 
(3.044)**   OB 0.035* 0.264  0.514 

 [HICAL > BASELINE] HW 0.019* 0.317 -0.563 0.000 
(4.073)**   OB 0.001** 0.522  0.722 

 [LOCAL > BASELINE] HW 0.604 0.018 -0.135 0.123 
(1.586)   OB 0.050* 0.233  0.482 

[BLA:NAC] [HICAL > LOCAL] HW 0.222 0.098 -0.312 0.588 
(0.548)   OB 0.615 0.017 -0.131 

 [HICAL > BASELINE] HW 0.856 0.002 -0.048 0.623 
(0.496)   OB 0.327 0.064 -0.253 

 [LOCAL > BASELINE] HW 0.235 0.093  0.304 0.190 
(1.340)   OB 0.594 0.019  0.235 

[RACC:BLA] [HICAL > LOCAL] HW 0.352 0.058  0.241 0.130 
(1.558)   OB 0.211 0.102 -0.320 

 [HICAL > BASELINE] HW 0.786 0.005 -0.071 0.561 
(0.588)   OB 0.201 0.106 -0.326 

 [LOCAL > BASELINE] HW 0.222 0.098 -0.313 0.530 
(0.636)   OB 0.745 0.007 -0.085 

 
Table 3.3: Relationships of external eating behaviors to psychophysiological interaction (PPI) 
functional connectivity by adiposity class. ANCOVA tests for significant difference in effects between 
each adiposity class; rACC: rostral anterior cingulate cortex; BLA: basolateral amygdala; NAc: nucleus 
accumbens; [RACC:NAC]: response inhibition-associated PPI functional connectivity between rACC and 
NAc; [BLA:NAC]: motivational drive- associated PPI functional connectivity between BLA and NAc; 
[RACC:BLA]: inhibition of motivational drive-associated PPI functional connectivity between rACC and 
BLA; HICAL: high calorie food images; LOCAL: low calorie food images; BASELINE: image of fixation 
cross; HW: healthy weight cohort; OB: obese cohort; Significance: -: p ≤ 0.10; *: p ≤ 0.05; **: p ≤ 0.01. 
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Figure 3.7: Results of external eating scores vs. PPI and hypotheses. Left column displays 
results; right column displays associated hypotheses. (A) Relationship of external eating scores 
vs. [RACC:NAC] PPI functional connectivity by adiposity status; (B) Relationship of external 
eating scores vs. [RACC:BLA] PPI functional connectivity by adiposity status; (C) Relationship 
of external eating scores vs. [BLA:NAC] PPI functional connectivity by adiposity status. PPI: 
psychophysiological interaction; NAc: nucleus accumbens; rACC: rostral anterior cingulate 
cortex; BLA: basolateral amygdala. 
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INHIBITION OF MOTIVATIONAL DRIVE-ASSOCIATED [RACC:BLA] PPI FUNCTIONAL CONNECTIVITY 
AND EXTERNAL EATING 

There were no significant associations between external eating habits and [RACC:BLA] PPI for 

either adiposity class for any psychological task (Figure 3.7B). These results are listed in Table 

3.3. 

MOTIVATIONAL DRIVE-ASSOCIATED [BLA:NAC] PPI FUNCTIONAL CONNECTIVITY AND EXTERNAL 
EATING 

There were no significant associations between external eating habits and [BLA:NAC] PPI for 

either adiposity class for any psychological task (Figure 3.7C). These results are listed in Table 

3.3. 

Relationship of PPI functional connectivity and restrained eating (Figure 3.1 Path B) 

All results for restrained eating scores vs. PPI are detailed in Table 3.4. When viewing [HICAL > 

LOCAL] images, the association between restrained eating habits and [RACC:NAC] PPI was not 

statistically significant (HW: p = 0.133; R2 = 0.144; r = -0.379; OB: p = 0.103; R2 = 0.168; r 

= -0.409; Figure 3.8A). Among HW, when viewing [HICAL > LOCAL] images, restrained eating 

increased with increasing [RACC:BLA] PPI (p = 0.010; R2 = 0.365; r = 0.604; Figure 3.8B). 

Among OB, when viewing [HICAL > LOCAL] images, the association between increased 

[BLA:NAC] PPI and increased restrained eating was trending toward statistical significance (p = 

0.084; R2 = 0.185; r = 0.431; Figure 3.8C).  

Relationship of adiposity status and external eating (Figure 3.1 Path C) 

There was no significant interaction between adiposity status and sex for external eating (p = 

0.115; F = 2.637). There was no significant difference of main effects for adiposity status (p = 

0.419; F = 0.672) or sex (p = 0.728; F = 0.123) with external eating. 
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Physiological 
Functional 
Connectivity 

Contrasted Food 
Images 

Adiposity 
Class p-value R2 r 

ANCOVA 
p (t-stat) 

[RACC:NAC] [HICAL > LOCAL] HW 0.133 0.144 -0.379 0.860 
(0.178)   OB 0.103 0.168 -0.409 

 [HICAL > BASELINE] HW 0.790 0.005 -0.070 0.829 
(0.218)   OB 0.388 0.050 -0.224 

 [LOCAL > BASELINE] HW 0.133 0.144  0.379 0.344 
(0.961)   OB 0.713 0.009  0.096 

[BLA:NAC] [HICAL > LOCAL] HW 0.801 0.004 -0.066 0.155 
(1.458)   OB 0.084- 0.185  0.431 

 [HICAL > BASELINE] HW 0.917 0.001 -0.027 0.449 
(0.767)   OB 0.322 0.065  0.256 

 [LOCAL > BASELINE] HW 0.872 0.002  0.042 0.783 
(0.277)   OB 0.802 0.004 -0.066 

[RACC:BLA] [HICAL > LOCAL] HW 0.010* 0.365  0.604 0.223 
(1.246)   OB 0.308 0.069  0.263 

 [HICAL > BASELINE] HW 0.115 0.157  0.397 0.826 
(0.222)   OB 0.150 0.133  0.365 

 [LOCAL > BASELINE] HW 0.636 0.015 -0.124 0.346 
(0.956)   OB 0.407 0.046  0.215 

 
Table 3.4: Relationships of restrained eating behaviors to psychophysiological interaction 
(PPI) functional connectivity by adiposity class. ANCOVA tests for significant difference in 
effects between each adiposity class; rACC: rostral anterior cingulate cortex; BLA: basolateral 
amygdala; NAc: nucleus accumbens; [RACC:NAC]: response inhibition-associated PPI 
functional connectivity between rACC and NAc; [BLA:NAC]: motivational drive- associated 
PPI functional connectivity between BLA and NAc; [RACC:BLA]: inhibition of motivational 
drive-associated PPI functional connectivity between rACC and BLA; HICAL: high calorie food 
images; LOCAL: low calorie food images; BASELINE: image of fixation cross; HW: healthy 
weight cohort; OB: obese cohort; Significance: -: p ≤ 0.10; *: p ≤ 0.05; **: p ≤ 0.01. 
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Figure 3.8: Results of restrained eating scores vs. PPI and hypotheses. Left column displays 
results; right column displays associated hypotheses. (A) Relationship of restrained eating scores 
vs. [RACC:NAC] PPI functional connectivity by adiposity status; (B) Relationship of restrained 
eating scores vs. [RACC:BLA] PPI functional connectivity by adiposity status; (C) Relationship 
of restrained eating scores vs. [BLA:NAC] PPI functional connectivity by adiposity status. PPI: 
psychophysiological interaction; NAc: nucleus accumbens; rACC: rostral anterior cingulate 
cortex; BLA: basolateral amygdala. 
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Relationship of adiposity status and restrained eating (Figure 3.1 Path C) 

There was a significant difference of main effects for adiposity status with restrained eating (p = 

0.001; F = 13.239), where OB had increased mean restrained eating scores compared to HW 

(Figure 3.9). There was no significant interaction between adiposity status and sex with 

restrained eating (p = 0.633; F = 0.232). There was no significant difference of main effects for 

sex (p = 0.348; F = 0.909) with restrained eating. 

 

Figure 3.9: Results of restrained eating by adiposity status. Left column displays results; 
right column displays associated hypotheses. Relationship of restrained eating scores by 
adiposity status. 

Discussion. 

We reported novel results from a psychophysiological interaction (PPI) functional connectivity 

study of childhood obesity in order to elucidate brain functional connectivity in response to 

external food cues, ubiquitous in the lives of children in the US. To our knowledge, no previous 

childhood obesity PPI functional connectivity studies have been published. Our results suggest 

that food cue task-based analysis of neural connectivity can identify neural models that are 

associated with childhood obesity. Furthermore, our results suggest that ineffective response 

inhibition-association functional connectivity, when viewing high calorie compared to low 
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calorie food images, is characteristic of obesity in children, ages 8-12 year old. Additionally, 

response inhibition-associated functional connectivity, more so than motivational drive-

associated functional connectivity, may be a key functional difference between children who are 

obese compared to healthy weight children. Targeting these neural networks, e.g., strengthening 

response inhibition-associated functional connectivity, may contribute to novel obesity 

treatment. 

We found that our most significant findings resulted from the [HICAL > LOCAL] contrast. These 

results were driven by high calorie food images, i.e., [HICAL > BASELINE], rather than low calorie 

food images [LOCAL > BASELINE]. This suggests that children as young as 8-13 years old can 

distinguish food by caloric content as reflected by neural response. 

In agreement with our hypothesis, we found that among children who are healthy weight (HW) 

as motivational drive-associated [BLA:NAC] PPI functional connectivity increased, response 

inhibition-associated [RACC:NAC] PPI functional connectivity also increased when viewing 

high calorie compared to low calorie food images (Figure 3.6A), suggesting that response 

inhibition-associated functional connectivity keeps pace with motivational drive-associated 

functional connectivity. Conversely, among children who are obese (OB), response inhibition-

associated functional connectivity is progressively blunted with increased motivational drive. In 

other words, among OB, response inhibition-associated functional connectivity fails to keep pace 

with motivational drive-associated functional connectivity. These results suggest that effective 

neural communication supports healthy weight when both response inhibition-associated 

functional connectivity and motivational drive-associated functional connectivity are in balance. 

We speculate that increased adiposity may be due to imbalanced functional connectivity in 

which response inhibition is ineffective, thereby biasing balance toward motivational drive.  
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To better understand the blunting of response inhibition-associated functional connectivity with 

increasing motivational drive-associated functional connectivity among OB when viewing high 

calorie compared to low calorie food images, we investigated the relationships of [BLA:NAC] vs. 

[RACC:BLA]PPI (Figure 3.6B). Because increased neural response in rACC is associated with 

decreased response in BLA, we hypothesized that, among HW, as [RACC:BLA] PPI increased, 

[BLA:NAC] PPI would decrease. And that, among OB, we hypothesized no significant relation-

ships as we speculated that this functional system of checks and balances is ineffective. Our 

results do not support these hypotheses. Instead, among OB, as [RACC:BLA] PPI increased, 

[BLA:NAC] PPI paradoxically increased. One possible explanation for this increase may be that 

ineffective [RACC:BLA] functional connectivity results in a compensatory increase in functional 

connectivity. We speculate that perhaps, in spite of increased functional connectivity, the 

integration of rACC input to BLA is ineffective. Tuulari et al., also reported increased functional 

connectivity in regions association with appetite control during an eating inhibition task when 

comparing adults who were obese with healthy weight adults (Tuulari et al., 2015). The authors 

suggest that this increase may be compensatory due to increased neural input needed to inhibit 

food intake. 

Additionally, among HW, increasing [RACC:BLA] PPI was not associated with decreasing 

[BLA:NAC] PPI (Figure 3.6B), as we hypothesized. A possible explanation for this may be 

better understood by considering the association between [RACC:NAC] vs. [RACC:BLA] PPI 

(Figure 3.6C) and the possible dual nature of rACC inhibition. We proposed a mechanism of 

direct inhibition from rACC to NAc and indirect inhibition from rACC through BLA to NAc. 

Our results suggest that indirect inhibition may not be as influential in maintaining healthy 

weight (Figure 3.6B), whereas direct inhibition is (Figure 3.6C). Taken together, these results 
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suggest that childhood obesity may be supported by ineffective integration of input from 

response inhibition-associated rACC when viewing high calorie compared to low calorie food 

images.  

Atalayer et al., reported sex-specific differences in PPI functional connectivity in response to 

high and low calorie food images among adults, ages 25-45 years old, who were obese (Atalayer 

et al., 2014). To further investigate this finding, we performed post hoc linear regressions of 

[BLA:NAC] vs. [RACC:NAC] PPI by adiposity class by sex for [HICAL > LOCAL]. Because these 

analyses reduced our sample sizes to 10 participants or fewer, these post hoc analyses must be 

interpreted with caution. We found no significant interaction between adiposity status and sex. 

There was no significant difference of main effects for sex. Although these results must be 

revisited with larger sample sizes, a preliminary interpretation suggests that sex-specific 

differences in PPI functional connectivity when viewing food cues may not yet exist among 

children as young as 8-12 years old. 

Killgore and Yurgelun-Todd reported age-related developmental changes in neural response in 

regions associated with executive control (Killgore and Yurgelun-Todd, 2005). They investi-

gated neural response when viewing images of high calorie foods contrasted with low calorie 

foods among healthy weight girls, 9-15 years old, compared to healthy weight women, 21-28 

years old. To further investigate this relationship, we performed post hoc regression analyses of 

[RACC:NAC] vs. [BLA:NAC] PPI functional connectivity as a function of age. To better match 

Killgore and Yurgelun-Todd’s all-female cohort, we also included an interaction term for sex. 

These analyses reduced our sample sizes to 10 participants or fewer, therefore these exploratory 

analyses must be interpreted with caution. We found no significant relationship with age and no 

significant interaction between adiposity status and sex with age for any of our psychological 
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tasks. The lack of relationship with age may be due to the narrow age range we studied, 8-12 

years old, whereas Killgore and Yurgelun-Todd compared their adolescent cohort to adults. A 

preliminary interpretation suggests that age-associated differences in PPI functional connectivity 

when viewing food cues may not yet exist among children as young as 8-12 years old.  

We also investigated the relationship of external eating habits, i.e., eating in response to the sight 

or smell of food, with PPI functional connectivity during a food cue task. Our results confirmed 

our hypotheses that, among HW, decreased external eating is associated with increased response 

inhibition-associated [RACC:NAC] PPI (Figure 3.7A). However, among OB, increased external 

eating is associated with increased [RACC:NAC] PPI, suggesting that integration of response 

inhibition-associated functional connectivity is ineffective, as characterized by compensatory 

increased functional connectivity. Additionally, our hypothesis that, among HW, external eating 

would decrease with increasing [RACC:BLA] PPI, was not supported by our results (Figure 

3.7B). Rather, there was no association. This result suggests again that indirect inhibition from 

rACC through BLA to NAc may not be strongly influential in maintaining healthy weight. There 

were no significant associations between external eating and motivational drive-associated 

[BLA:NAC] PPI for either weight class (Figure 3.7C), suggesting a more prominent role of 

response inhibition-associated functional connectivity compared to motivational drive-associated 

functional connectivity. We speculate that ineffective response inhibition-associated functional 

connectivity, if it leads to ineffective behavioral inhibition, could contribute to obesity given the 

easy accessibility of abundant high calorie foods. Note also that PPI functional connectivity in 

other motivational drive-associated brain regions, in addition to the amygdala, may be associated 

with external eating.  
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Passamonti et al., reported increased external eating with an increase in PPI functional connec-

tivity between the amygdala and NAc among healthy weight adults, ages 19-39 years old, in 

response to viewing images of appetizing foods vs. bland foods (Passamonti et al., 2009). To 

better approximate Passmonti’s [APPETIZING > BLAND] task, we added a post hoc analysis of 

[FOOD > BASELINE] contrast. We found no significant relationship between external eating and 

[BLA:NAC] PPI when contrasting [FOOD > BASELINE] among HW or among OB, which agrees 

with our original [HICAL > BASELINE] results. Taken together these results suggest that motiva-

tional drive-associated [BLA:NAC] functional connectivity is not the more significant factor in 

external eating among children, but may develop with age.  

We investigated the relationship of restrained eating habits, i.e., eating less to lose or maintain 

weight, with PPI functional connectivity during a food cue task. Our hypothesis that among OB, 

increased restrained eating would also be associated with increased [RACC:NAC] PPI, indicating 

ineffective response inhibition, was not supported by our results (Figure 3.8A). The resulting 

association among OB is similar to that of HW with the caveat that the overall restrained eating 

scores are greater for OB, discussed below. This similarity in the associations of restrained eating 

vs. [RACC:NAC] PPI for both adiposity groups suggests that, in a practical sense, response 

inhibition is ultimately ineffective as some children are obese.  

Neither of our hypotheses about restrained eating habits and indirect inhibition from rACC 

through BLA to NAc, [RACC:BLA] PPI, were supported by our results (Figure 3.8B). While 

there was no association among OB, there was a positive association among HW. There is 

continuing debate as to whether restrained eating is strictly an unhealthy eating behavior. Some 

researchers suggest that restrained eating is a healthy response to our obesogenic environment 

(Johnson et al., 2012). Therefore this positive association may be indicative of a healthy 



83 

response to maintaining healthy weight. Additionally, our results supported our hypotheses that, 

among OB, increased restrained eating is associated with increased [BLA:NAC] PPI (Figure 

3.8C), suggesting that an increase in motivational drive-associated functional connectivity is 

consciously paired to desire to diet among children who are obese.  

We investigated the relationship of adiposity status with external and restrained eating habits. 

We found no difference in external eating scores comparing OB with HW, in contradiction to our 

hypothesis. The discriminative validity of the DEBQ external eating scale has been called into 

question (Jansen et al., 2011); for rebuttal, see (van Strien et al., 2012). While many studies 

reported that increased external eating scores were associated with increased adiposity, some 

studies reported no relationship (Snoek et al., 2013; Witt et al., 2014), or inverse relationships 

(Ledoux et al., 2011). In the rebuttal by van Strien et al., they concluded that the external eating 

score is valid when participants have “sufficiently extreme” external eating scores. We speculate 

that our non-significant results may be attributable to insufficiently extreme scores among our 

participants. However, in agreement with other studies, we found increased restrained eating 

scores comparing OB with HW (Figure 3.9). Our results suggest that dieting occurs among 

children as young as 8-12 years old.  

Strengths and limitations 

To our knowledge, ours is the first published study to investigate childhood obesity using PPI 

functional connectivity analysis. However, a limitation of PPI analysis, and that of all functional 

connectivity methods, is that its results cannot be used to infer directionality of effect. That is, 

PPI results alone cannot indicate whether, say, the rACC influences NAc or NAc influences 

rACC. However, our brain model incorporated circuitry derived from animal studies from which 
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directionality can be determined. Incorporating anatomical circuitry into our model suggests that 

a portion of the observed functional connectivity arises from direct anatomical connections. 

Another limitation is that BMI z-score is an indirect measure of adiposity. Using an imaging-

based measure of adiposity, e.g., whole-body MRI, or leptin levels from a blood draw, might 

provide a more accurate association between brain function and adiposity. A final point of 

consideration is that our a priori brain model includes three brain regions. Investigating a larger 

brain network, perhaps the whole brain, using graph theoretic methods (Alexander-Bloch et al., 

2013) would provide additional information, such as uncovering other regions within a 

functional network that support childhood obesity. 

Conclusion. 

Intensive lifestyle interventions in adults do not typically lead to long-lasting weight loss, and 

co-morbidities such as diabetes and cardiovascular disease develop over many years. Therefore 

an understanding of the developing neurofunctionality of childhood obesity would provide 

unique interventional insight. Furthermore, identification of children at risk for obesity would 

permit the development of novel obesity treatment and prevention efforts. As a first step, we 

investigated a brain model in a cohort of children who are obese and healthy weight using 

psychophysiological interaction (PPI) functional connectivity. Our results showed a marked 

difference in response inhibition- and motivational drive-associated functional connectivity 

among children who are obese compared to healthy weight children in response to images of 

food. We speculate that these differences may translate into eating related behaviors, such as 

external eating, that determine, in part, a child’s overall adiposity. 
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CHAPTER 4 

 

Imbalance in Resting State Functional Connectivity is Associated with  

Eating Behaviors and Adiposity in Children 

 

ABSTRACT 

Background and Hypothesis 

Over the past 30 years, childhood obesity in the US has nearly doubled, while obesity has tripled 

among adolescents. Non-homeostatic eating, influenced by impulsivity and inhibition, may 

undermine successful long-term weight loss. We hypothesized that unhealthy eating habits and 

adiposity among children are associated with functional connectivity between brain regions 

associated with response inhibition, impulsivity, and reward.  

Methods 

We analyzed resting state functional magnetic resonance images from 38 children, ages [8-13] 

years old. Using seed-based resting state functional connectivity, we quantified connectivity 

between brain regions associated with response inhibition (inferior parietal lobe [IPL]), 

impulsivity (frontal pole), and reward (nucleus accumbens [NAc]). We assessed the relationship 

of resting state functional connectivity with adiposity, quantified by BMI z-score, and eating 

behaviors, as measured by the Child Eating Behaviour Questionnaire (CEBQ). We computed an 

imbalance measure—the difference between [FRONTAL POLE:NAC] and [IPL:NAC] functional 

connectivity—and investigated the relationship of this imbalance with eating behaviors and 

adiposity.  
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Results 

As functional connectivity imbalance is increasingly biased toward impulsivity, adiposity 

increases. Similarly, as impulsivity-biased imbalance increases, food approach behaviors 

increase and food avoidance behaviors decrease. Increased adiposity is associated with increased 

food approach behaviors and decreased food avoidance behaviors. 

Conclusions 

In the absence of any explicit food-related stimuli, the developing brain is primed toward food 

approach and away from food avoidance behavior with increasing adiposity. Imbalance in 

resting state functional connectivity that is associated with non-homeostatic eating develops 

during childhood, as early as 8-13 years of age. Our results indicate the importance of identifying 

children at risk for obesity for earlier intervention. In addition to changing eating habits and 

physical activity, strategies that normalize neural functional connectivity imbalance are needed 

to maintain healthy weight. For example, mindfulness training, associated with increased 

response inhibition and decreased impulsivity, may recalibrate neural functional connectivity 

imbalance that, in turn, may contribute to maintaining a healthy weight. 
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Introduction. 

Long-term maintenance of weight loss among adults is poor. Fildes et al., reported that the 

probability of adults who are obese reaching healthy weight is 0.50% for men and 0.80% for 

women (Fildes et al., 2015). Up to 90% of dieters return to baseline weight within 3 years after 

weight loss (Cooper et al., 2010; Butryn et al., 2011).  

The aim of this study was to better understand resting state functional connectivity between 

regions in the brain associated with non-homeostatic eating among children across a range of 

adiposity values. We therefore defined a neural model comprised of three a priori-defined 

regions (Figure 4.1): (1) inferior parietal lobe (IPL), associated with response inhibition; (2) 

frontal pole (fPole), associated with impulsivity; and (3) the nucleus accumbens (NAc), 

associated with reward and reward-motivated behaviors. We also investigated the associations of 

resting state functional connectivity with eating behaviors. Insight into these relationships will 

provide a better understanding of the mechanisms and potential efficacy of novel treatments for 

weight loss and maintenance among children.  

Figure 4.1: Neural model. Upper: We 
hypothesized that resting state functional 
connectivity is associated with adiposity and 
eating behaviors. Lower: The functional 
neural model is comprised of three brain 
regions: (1) inferior parietal lobe (IPL); (2) 
frontal pole; and (3) nucleus accumbens 
(NAc). 
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Response inhibition is the ability to override a planned or already initiated response (Bari et al., 

2011; Swick et al., 2011). Neuroimaging studies show that decreased response inhibition is 

associated with increased BMI (Nederkoorn et al., 2006; Kamijo et al., 2012a; Kamijo et al., 

2012b; Barkin, 2013). Increased neural activity in the inferior parietal lobe (IPL) has been 

consistently associated with increased response inhibition (Garavan et al., 2002; Swick et al., 

2011; Steele et al., 2013; van Belle et al., 2014); when comparing lean adults to obese adults 

(Hendrick et al., 2012); and among patients with restricting type anorexia compared to patients 

with binge/purging eating disorders and to healthy controls (Lock et al., 2011). Taken together, 

this evidence suggests that decreased response inhibition is associated with increased BMI, as 

well as decreased neural response in the IPL. 

Impulsivity is a poorly conceived, risky, or inappropriate action, often resulting in undesirable 

consequences (Daruna and Barnes, 1993). Increased impulsivity is associated with obesity 

among adults and children and decreased weight loss during treatment (Nederkoorn et al., 2006; 

Anzman and Birch, 2009; Batterink et al., 2010; Kamijo et al., 2012a; Fields et al., 2013; 

Thamotharan et al., 2013). The frontal pole, the most anterior part of Brodmann area 10 (BA 10), 

is associated with impulsivity. Decreased neural response in the frontal pole among healthy 

adults was associated with increased impulsivity during a delayed discounting task (Jimura et al., 

2013). Compared to healthy controls, adults with impulsive aggression showed decreased neural 

response in the frontal pole when viewing images of angry faces (Coccaro et al., 2007). 

Decreased neural activity in the frontal pole was associated with poorer weight management in 

women one year after a 12-week diet (Weygandt et al., 2015). Taken together, this evidence 

suggests that increased impulsivity is associated with increased BMI, as well as decreased neural 

response in the frontal pole. 
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The nucleus accumbens (NAc) is associated with reward, food-related reward, and reward-

motivated behaviors (Delgado et al., 2000; Goto and Grace, 2005; Biesdorf et al., 2015) (for a 

comprehensive discussion of its functions, see (Floresco, 2015)). Cauda et al., reported resting 

state functional connectivity and structure-based meta-analytic connectivity between NAc and 

IPL (Cauda et al., 2011). Choi et al., also reported resting state functional connectivity between 

NAc and the frontal pole (Choi et al., 2012).  

We will refer to response inhibition-associated resting state functional connectivity between IPL 

and NAc as [IPL:NAC] resting state functional connectivity (rsFC). Similarly, we will refer to 

impulsivity-associated resting state functional connectivity between frontal pole and NAc as 

[FPOLE:NAC] rsFC. And we will refer to resting state functional connectivity between frontal 

pole and IPL as [FPOLE:IPL] rsFC.  

Given the three paths depicted in our neural model (Figure 4.1), we have a three-pronged, 

interdependent hypothesis. Our hypothesis is built on the premise that increased functional 

connectivity reflects increased functional integration (Friston et al., 1997), and that decreased 

response inhibition and increased impulsivity are associated with increased adiposity. We 

hypothesized that decreased response inhibition-associated [IPL:NAC] rsFC and increased 

impulsivity-associated [FPOLE:NAC] rsFC will be associated with: increased adiposity (Figure 

4.1, Path A); increased food approach behaviors; and decreased food avoidance behaviors 

(Figure 4.1, Path B). Additionally, as increased food approach behaviors and decreased food 

avoidance behaviors are associated with increased BMI among children ages 7-12 years (Webber 

et al., 2009) (Figure 4.1, Path C), we hypothesized a similar association in this study. Further-

more, we hypothesized that imbalance in resting state functional connectivity mediates, in a 

statistical way, the relationship between eating habits and adiposity in children. 
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Materials and Methods. 

Participants 

Data were acquired from the Enhanced Nathan Kline Institute Rockland Sample (NKI-RS) 

(Milham, 2012) from children [8-13] years old. The NKI-RS was designed as a large dataset 

with broad and deep phenotypic measures and state-of-the-art neuroimaging data, in an open 

neuroscience model where all data are shared prospectively (Milham, 2012). A strength of the 

NKI-RS study is its controlled recruitment from across all of Rockland County, NY, which is 

representative of the US population as described by the 2010 US census (Nooner et al., 2012). 

All participants were screened for psychiatric, neurological, and chronic medical illnesses, and 

for MRI safety considerations. Participants were encouraged to eat breakfast before arriving and 

were provided lunch. Institutional Review Board (IRB) approval was obtained at NKI and 

Montclair State University. Participants and their legal guardians provided written informed 

consent. Data were de-identified prior to receipt. 

Adiposity 

We used BMI z-scores as a proxy measure for childhood adiposity. In all statistical analyses, we 

used continuous BMI z-scores. However, when reporting summary statistics, children were 

classified as healthy weight for (-1.64 ≤ BMI z-scores < 1.04); overweight for (1.04 ≤ BMI z-

scores < 1.64); and obese for (BMI z-scores ≥ 1.64) (Wang and Chen, 2012). We calculated an 

age- and sex-specific BMI z-score for each child using LMS transformation parameters lambda, 

mu, and sigma (CDC; Kuczmarski et al., 2002). 
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Eating behaviors 

The Child Eating Behaviour Questionnaire (CEBQ) is a validated 35-item questionnaire that 

measures 8 aspects of eating behavior (Wardle et al., 2001): 

1. DD Desire to Drink indicates frequent drinking;  
2. EF Enjoyment of Food indicates an overall interest in food;  
3. EOE Emotional Overeating indicates increased eating under negative emotions;  
4. EUE Emotional Undereating indicates decreased eating under negative emotions;  
5. FF Food Fussiness indicates rejection of both new and familiar foods;  
6. FR Food Responsiveness assesses eating in response to food cues;  
7. SE Slowness in Eating assesses reduced eating due to low interest and/or enjoyment of 

food; and 
8. SR Satiety Responsiveness assesses how well a child controls the amount he/she eats in 

response to eating recently. 
 
 “Food approach” behavior is indicated by increasing DD, EF, EOE, and FR scores, whereas 

“food avoidance” behavior is indicated by increasing EUE, FF, SE, and SR scores (Wardle et al., 

2001). Food approach behaviors have been associated with increased weight among children and 

food avoidance behaviors have been associated with decreased weight (Carnell and Wardle, 

2008; Sleddens et al., 2008; Webber et al., 2009; Spence et al., 2011; Svensson et al., 2011). The 

NKI-RS study was designed such that the CEBQ was administered only to children younger than 

12 years old.  

The NKI-RS study did not acquire food recall surveys. However, the CEBQ was developed to 

measure eating styles among children through parental-reporting (Wardle et al., 2001). Reported 

behavioral measures are preferable to retrospective food recall as recalls often result in an under-

estimate of food consumption due to, in part, memory bias and social expectations and pressure	

(Ahmed et al., 2006). While a 24-hour recall may be more accurate compared to a retrospective 

recall, food consumption can vary greatly from day to day such that a single day may not be 
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representative	(Block, 1982). Self-report instruments, such as the CEBQ, identify eating habits 

rather than actual food intake. The CEBQ has good factorial validity and external validity (van 

Strien et al., 1986; Schlundt, 1995; Braet and van Strien, 1997; Wardle et al., 2001; Carnell and 

Wardle, 2007). 

Neural model 

We defined an a priori model with three brain regions associated with: (1) response inhibition; 

(2) impulsivity; and (3) reward-motivated behaviors (Figure 4.1). The specific determination of 

these three regions is discussed below. Because we are interested in the functional organization 

of the brain, we defined regions based on functionality rather than anatomy, particularly as 

anatomically-defined regions may encompass functionally heterogeneous areas. To this end, we 

used Neurosynth (neurosynth.org) (Yarkoni et al., 2011), which identifies functionally related 

brain regions via meta-analytic methods across more than 11,000 neuroimaging studies. We 

identified functional regions using Neurosynth’s reverse inference maps. The forward inference 

map defines regional co-activations from a psychological term, whereas the more selective 

reverse inference map defines a psychological term from regional co-activations 

(http://neurosynth.org/faq/#q15).  

To investigate the possibility that our results were due to global, brain-wide phenomena, we 

defined a second model as a negative control. We selected a priori brain regions not typically 

associated with response inhibition or impulsivity, auditory and foot motor cortex, while 

retaining the same reward region, NAc. 
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INFERIOR PARIETAL LOBE (IPL) / RESPONSE INHIBITION 

Because the IPL is associated with response inhibition, we used Neurosynth to identify an a 

priori region in the IPL via a meta-analysis using the term “response inhibition.” Using the 

resulting reverse inference map from 176 neuroimaging studies, we identified the IPL and noted 

its most statistically significant voxel. We then created a spherical ROI with radius 5 mm 

(volume = 648 mm3 [81 voxels]) centered on the peak z-score of 6.6 at (38, -54, 44) in Montreal 

Neurological Institute (MNI)-space (Figure 4.2). 

  
Figure 4.2: Brain regions in our neural model associated with non-homeostatic eating and in our 
negative control model. MNI = Montreal Neurological Institute; L = left hemisphere.  

FRONTAL POLE / IMPULSIVITY 

Because the frontal pole is associated with impulsivity, we used Neurosynth to identify an a 

priori region in the frontal pole via a meta-analysis using the term “impulsivity.” Using the 

resulting reverse inference map from 76 neuroimaging studies, we identified the frontal pole and 
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selected its most statistically significant voxel. We created a spherical ROI with radius 5 mm 

(volume = 648 mm3 [81 voxels]) centered on a peak z-score of 5.4 at (-32, 62, -6) (Figure 4.2). 

NUCLEUS ACCUMBENS (NAC) / REWARD-MOTIVATED BEHAVIORS 

The NAc is associated with reward, food-related reward, and reward-motivated behavior. We 

used the right NAc region as defined in the Harvard-Oxford subcortical atlas (Frazier et al., 

2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 2007) (volume = 472 mm3 [59 

voxels]) (Figure 4.2). After reviewing results using the right NAc, we examined an alternative, 

post hoc functional neural model using the left NAc. The left NAc region as defined in the 

Harvard-Oxford subcortical atlas has a volume of 544 mm3 [68 voxels]. 

Note that animal studies are able to distinguish the NAc shell from its core. However, given the 

current spatial resolution of these fMRI scans performed at 3 Tesla, we were unable to resolve 

the NAc shell from the core in intact humans. The NAc shell is associated with reward salience, 

wanting, and positive reinforcement (Pecina and Berridge, 2005). The NAc core is associated 

with motor function related to reward (Malenka et al., 2009).  

NEGATIVE CONTROL NEURAL MODEL 

Our negative control model was comprised of three regions: (1) auditory cortex; (2) foot motor 

cortex; and (3) NAc (Figure 4.2). We used Neurosynth to identify an a priori brain region associ-

ated with “auditory cortex.” We created a spherical ROI with radius 5 mm (volume = 648 mm3 

[81 voxels]), centered on a peak z-score of 19.6 at (60, -14, 4) (Figure 4.2). We also identified an 

a priori brain region associated with “foot” motor cortex. We created a spherical ROI with radius 

5 mm (volume = 648 mm3 [81 voxels]), centered on a peak z-score of 8.3 at (-6, -20, 54) (Figure 

4.2). We used the same right NAc region as defined above.  
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Magnetic resonance images 

MRI scans were acquired on a Siemens 3T MAGNETOM TrioTim at NKI and Montclair State 

University. A high-resolution anatomical T1-weighted magnetization-prepared rapid gradient-

echo (MPRAGE) scan with TR = 1900 ms and voxel size = (1 ⋅ 0.98 ⋅ 0.98) mm3 was acquired 

from each participant. Each subject participated in a 9.4-min blood oxygenation level-dependent 

(BOLD) resting-state multiband (Xu et al., 2012) T2*-weighted echo planar image (EPI) scan, 

collected with repetition time (TR) = 1400 ms; echo time (TE) = 30 ms; flip angle = 65 degrees; 

multi-band acceleration factor = 4; 404 dynamics, 64 slices, and voxel size = (2 ⋅ 2 ⋅ 2) mm3. 

Children were scanned while resting quietly with eyes closed with no overt stimuli.  

MRI preprocessing 

We processed the MRI datasets with FMRIB Software Library (FSL) v6.00 (Jenkinson et al., 

2012). Preprocessing included removal of non-brain tissue (Smith, 2002); spatial smoothing 

using a Gaussian kernel of full-width at half maximum 3.0 mm; 4D grand-mean intensity 

normalization; highpass temporal filtering using Gaussian-weighted least-squares straight line 

fitting with sigma = 200 sec; motion correction (Jenkinson et al., 2002); and linear and nonlinear 

spatial normalization (Jenkinson et al., 2002; Andersson et al., 2007; Andersson et al., 2008; 

Greve and Fischl, 2009) to an age-appropriate MRI brain atlas for ages [7.5-13.5] years old 

(Fonov et al., 2009; Fonov et al., 2011). We discarded any scan during which a participant 

moved more than 2 mm.  

Resting state functional connectivity 

Biswal et al., observed that BOLD fMRI signals from the motor cortex during quiet rest were 

strongly correlated with signals in other brain regions associated with motor function (Biswal et 
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al., 1995). This observation gave rise to the idea of “resting state” brain function: when the brain 

is not engaged in an explicit task, the low-frequency changes in neural response reflect inherent 

brain function along with its attendant networks (Fox and Raichle, 2007). The functional 

coupling between distal brain regions can be quantified by the statistical correlation of BOLD 

fMRI signals. The pattern of correlation throughout the brain, called functional connectivity 

(Biswal et al., 1995; Friston, 2011; Smith et al., 2012), is believed to reflect neurons firing 

together with a common purpose (Saini et al., 2004; Lewis et al., 2009; Cole et al., 2010), and 

can reveal whole-brain functional connectivity patterns (van den Heuvel et al., 2008). 

For each participant, we calculated mean BOLD signals from each region in our neural model. 

To reduce noise from non-grey matter activity, we regressed out the following confounders: 

mean relative motion correction distance (Power et al., 2012); mean BOLD signal from white 

matter (O'Reilly et al., 2010); and mean BOLD signal from cerebral spinal fluid (Dagli et al., 

1999). We removed unwanted signal fluctuation due to respiration and heartbeat via a 0.10 Hz 

lowpass filter (Van Dijk et al., 2010). Using partial correlation, we calculated the functional 

connectivity between pairs of BOLD signals from the three regions: (1) IPL and NAc, denoted as 

[IPL:NAC] rsFC; (2) frontal pole and NAc, denoted as [FPOLE:NAC] rsFC; and (3) IPL and 

frontal pole, denoted as [FPOLE:IPL] rsFC. We used partial correlation to remove common 

effects from the other region within the model. For example, the resulting [IPL:NAC] rsFC is the 

correlation between IPL and NAc over and above any correlation with the frontal pole, i.e., 

controlling for the effects of the frontal pole.  

We examined the partial correlation coefficient, often denoted as ρXY.Z, as it is a measure of the 

strength of the relationship between BOLD signals X and Y, after controlling for another BOLD 

signal, Z. ρXY.Z is bounded by [-1, +1]. A ρXY.Z approaching ±1 indicates that X and Y are 
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approaching a perfect linear relationship. A related, although different, measure is β, the effect 

(or slope) of BOLD signal X on BOLD signal Y, after controlling for BOLD signal Z (Eq. 1). β 

can be estimated via a simple general linear model (GLM):  

! = # + %& + '( + ) (4.1) 

Equation 4.1. A simple general linear model. 

β is unbounded and indicates the change of the expected value of Y for each 1-unit change in X 

after controlling for Z. β is also called an “effect,” i.e., when X is changed by +1 unit, the effect 

on Y is a change of β units. β and ρXY.Z are related as shown in Eq. 2 (Kenney and Keeping, 

1962). β and ρXY.Z are equal only when std(X) and std(Y) are equal. 

% = *+,.. ∙ 012 +
012 ,  (4.2) 

Equation 4.2. Relation of β and ρXY.Z where std(X) is the standard deviation of X and std(Y) is 
the standard deviation of Y. 

We chose not to investigate β as it is conceivable that the effect can be transformed via a change 

in neural response (e.g., via a neural gain function) while the strength of the relationship remains 

unchanged. Changes in neural response may be altered due to different levels of CO2 in the 

blood (Davis et al., 1998; Cohen et al., 2002); changes in vasoconstriction, e.g., from caffeine 

use (Laurienti et al., 2002; Mulderink et al., 2002); or changes in metabolic demand (Ogawa et 

al., 1990). However, the partial correlation coefficient, ρXY.Z, quantifies the strength of the 

relationship between X and Y regardless of the effect quantified by β.  

We computed partial correlation coefficients via MATLAB’s partialcorr (Release 2014a, The 

MathWorks, Inc., Natick, MA). We designated functional connectivity as statistically significant 
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if the association has a p-value ≤ 0.05. If (0.05 < p-value ≤ 0.10), then we designated functional 

connectivity as trending toward statistical significance. 

Relative difference in brain functional connectivity 

To capture in a single measure the relative difference in functional connectivity between 

response inhibition-associated [IPL:NAC] rsFC and impulsivity-associated [FPOLE:NAC] rsFC, 

we calculated a simple difference measure that reflects resting state functional connectivity 

imbalance:  

34567 = 	 9:;<=: ?7@ 	ABCD − F:5: ?7@ 	ABCD	  (4.3) 

Equation 4.3. Difference between rsFC measures indicating imbalance in resting state functional 
connectivity. 

DELTA values can range from [-2, +2] where positive values indicate greater impulsivity-

associated [FPOLE:NAC] rsFC relative to response inhibition-associated [IPL:NAC] rsFC; 

negative values indicate greater [IPL:NAC] rsFC relative to [FPOLE:NAC] rsFC. For example, if 

the BOLD signal from the frontal pole is perfectly in-sync with the BOLD signal from the NAc, 

then [FPOLE:NAC] rsFC = +1. And if the BOLD signal from the IPL is perfectly out-of-sync with 

the BOLD signal from the NAc, then [IPL:NAC] rsFC = -1. In this example, then: 

34567 = 	 9:;<=: ?7@ 	ABCD − F:5: ?7@ 		ABCD = +1 − −1 = +2 (4.4) 

Equation 4.4. Example of maximal difference between rsFC measures that is biased toward 
impulsivity-associated [FPOLE:NAC] functional connectivity. 

DELTA = +2 indicates that the two functional connectivity measures to the NAc are maximally 

different with greater “in sync” functional connectivity between the frontal pole and NAc. To 

clarify, DELTA is not a measure of functional connectivity. Rather, DELTA is a single measure that 
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indicates the relative imbalance between the two functional connectivity measures with respect 

to the NAc. DELTA = 0 indicates that impulsivity-associated [FPOLE:NAC] functional connectiv-

ity is in balance with response inhibition-associated [IPL:NAC] functional connectivity, regard-

less of the actual value of the functional connectivity measures. For example, DELTA = 0 when 

[FPOLE:NAC] = [IPL:NAC] = 0.80, or when [FPOLE:NAC] = [IPL:NAC] = -0.10. We computed 

simple linear regressions between adiposity and DELTA via Python’s scipy.stats. 

linregress. 

Statistical analyses 

RELATIONSHIP OF ADIPOSITY WITH BRAIN FUNCTIONAL CONNECTIVITY (FIGURE 4.1, PATH A). 

To evaluate the relationship between adiposity, measured by BMI z-score, and resting state 

functional connectivity, we computed simple linear regressions between BMI z-scores and 

functional connectivity values, [IPL:NAC] rsFC, [FPOLE:NAC] rsFC, and [FPOLE:IPL] rsFC, via 

Python’s scipy.stats.linregress (iPython version 3.2.0; scipy version 0.15.1; 

statsmodels version 0.6.1). We also computed linear regressions between BMI z-score and 

DELTA, the relative imbalance in functional connectivity. To evaluate the effect of age on the 

relationships between BMI z-score and rsFC and DELTA, we computed ordinary least squares 

(OLS) linear regression via Python’s statsmodels.formula.api.ols. 

RELATIONSHIPS OF EATING BEHAVIORS WITH BRAIN FUNCTIONAL CONNECTIVITY (FIGURE 4.1, 
PATH B). 

To evaluate the relationship between eating behavior and resting state functional connectivity, 

we computed simple linear regressions between CEBQ scores and each of the functional 

connectivity values, [IPL:NAC] rsFC, [FPOLE:NAC] rsFC, and [FPOLE:IPL] rsFC, via Python’s 

scipy.stats.linregress. We also computed linear regressions between CEBQ scores and 
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DELTA, the relative imbalance in functional connectivity. In the initial validation of the CEBQ by 

Wardle et al., they noted that only FF showed a sex difference, which was greater among boys (t 

= 2.4; p ≤ 0.02) (Wardle et al., 2001). We therefore performed a post hoc linear regression with 

interaction analysis of brain functional connectivity by sex with FF via Python’s statsmodels. 

formula.api.ols.  

RELATIONSHIP BETWEEN EATING BEHAVIORS AND ADIPOSITY (FIGURE 4.1, PATH C). 

To evaluate the relationship between eating behavior and adiposity, we computed simple linear 

regressions between CEBQ scores and BMI z-scores via Python’s scipy.stats.linregress. 

We also performed post hoc linear regression with interaction analysis of FF by sex with BMI z-

score via Python’s statsmodels.formula.api.ols.  

BRAIN FUNCTIONAL CONNECTIVITY MEDIATION BETWEEN ADIPOSITY AND EATING BEHAVIORS. 

Mediation can be assessed when statistically significant relationships are found in all three paths, 

A, B, and C, in Figure 4.1. We performed mediation analysis using Bootstrap Regression 

Analysis of Voxelwise Observations (BRAVO), v2.0 (Gianaros et al., 2013). To determine the 

significance of the relationships of each path, we ran BRAVO’s bootstrap permutation tests with 

10,000 simulations.  

Results. 

Participants 

Data from 38 children (F=17; M=21), ages [8-13] (mean=11.2; std=1.7) years old, were acquired 

from the NKI-RS (Table 4.1). Figure 4.3 shows the distribution of BMI z-score vs. age. There 

was no significant relationship of BMI z-score with age (p = 0.766; R2 = 0.002; N = 38). Nor is 

there a relationship of BMI z-score with sex (girls: p = 0.981; R2 = 0.000; N = 17; boys: p = 
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0.730; R2 = 0.006; N = 21). Five of the 38 participants (13%) were classified as obese. This is 

comparable to 17% of US children who were classified as obese in 2010 (Ogden et al., 2012). 

Six of the 38 participants (16%) were classified as overweight, which is comparable to 15% of 

US children classified as overweight in 2010	(Ogden et al., 2012). Twenty-four of the 38 partici-

pants (63%) completed the CEBQ as the CEBQ was administered only to children younger than 

12 years old (mean=10.1; sd=1.1 years old). Of these 24 children, 11 (46%) were girls and 13 

(54%) were boys. Of the 24 children who were administered the CEBQ, 3 (12.5%) were classi-

fied as obese; 3 (12.5%) were classified as overweight; and 18 (75%) were classified as healthy 

weight. Forty-two percent of participants were scanned between 8:30-10:00 am; 18.4% were 

scanned between 10:00 am-noon; 39.5% of participants were scanned between noon-2:00 pm. 

Adiposity is associated with resting state functional connectivity (Figure 4.1, Path A) 

Table 4.2 lists the relationships between adiposity and [IPL:NAC] rsFC. Table 4.3 lists the 

relationships between adiposity and [FPOLE:NAC] rsFC. Table 4.4 lists the relationships between 

adiposity and [FPOLE:IPL] rsFC. Table 4.5 lists the relationships between adiposity and DELTA. 

Increasing BMI z-scores trended toward significance with decreasing response inhibition-

associated [IPL:NAC] rsFC (p = 0.084; R2 = 0.080; r = -0.284; Table 4.2; Figure 4.4A). In 

contrast, increasing BMI z-scores trended toward significance with increasing impulsivity-

associated [FPOLE:NAC] rsFC (p = 0.089; R2 = 0.078; r = 0.280; Table 4.3; Figure 4.4B). There 

was no significant relationship between BMI z-scores and [FPOLE:IPL] rsFC (p = 0.525; R2 = 

0.011; r = -0.106; Table 4.4). BMI z-scores increased with increasing DELTA (p = 0.035; R2 = 

0.117; r = 0.342; Table 4.5; Figure 4.4C). There was no significant association of age in the 

relationship between BMI z-score and any rsFC measure or DELTA (all p ≥ 0.688). 
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Sex (N=38) Count (%)  

Female 17 (44.7)  

Male 21 (55.3)  

Handedness (N=36)   

Right 30 (83.3)  

Left  5 (13.9)  

Ambidextrous  1 ( 2.8)  

Race (N=38)   

American Indian or Native Alaskan   3 ( 7.89)  

Asian   2 ( 5.26)  

Black or African American  16 (42.11)  

Native Hawaiian or Other Pacific Islander  0 ( 0.00)  

White 17 (44.74)  

Other Race  0 ( 0.00)  

(N=38) Mean (sd) Min, Max 

Age (yrs) 11.2 ( 1.7)  8.4, 13.9 

Weight (kg) 44.0 (13.9) 25.9, 81.7 

BMI z-score  0.4 ( 1.1) -1.4,  2.4 

BMI% 59.9 (30.4)  8.4, 99.2 

Tanner stage (N=36)   

Girls (N=17) 2.3 (1.0) 1, 4 

Boys (N=19) 2.2 (1.2) 1, 5 
 

Table 4.1. Clinical and demographic summary. F: female; M: male; sd: standard deviation; BMI: 
body mass index. 

Eating behaviors are associated with resting state functional connectivity (Figure 4.1, Path B) 

FOOD APPROACH EATING BEHAVIOR ENJOYMENT OF FOOD (EF) 

Table 4.2 lists the relationships between eating behaviors and [IPL:NAC] rsFC. Table 4.3 lists 

the relationships between eating behaviors and [FPOLE:NAC] rsFC. Table 4.4 lists the relation-

ships between eating behaviors and [FPOLE:IPL] rsFC. Table 4.5 lists the relationships between 

eating behaviors and DELTA. 
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Figure 4.3: Distribution of BMI 
z-score vs. age. Children were 
classified as healthy weight for 
(-1.64 ≤ BMI z-scores < 1.04); 
overweight for (1.04 ≤ BMI z-
scores < 1.64); and obese for 
(BMI z-scores ≥ 1.64).  

 

 

 
Table 4.2. Relationships of adiposity vs. [IPL:NAC] rsFC, and eating behaviors vs. [IPL:NAC] 
rsFC. rsFC: resting state functional connectivity; IPL: inferior parietal lobe; NAc: nucleus 
accumbens; CEBQ: Child Eating Behaviour Questionnaire; indicators for statistical significance:  **: 
p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

  

Neural model: [IPL:NAC] resting state functional connectivity  

 r R2 p  

N = 38 BMI z-score vs. [IPL:NAC] -0.284 0.080 0.084 †  

CEBQ eating behaviors vs. [IPL:NAC] r R2 p  

N = 24 DD: Desire to Drink  0.043 0.002 0.843  

Food 
A

pproach 

 EF: Enjoyment of Food -0.472 0.223 0.020 * 

 EOE: Emotional Overeating -0.371 0.138 0.074 † 

 FR: Food Responsiveness  -0.427 0.182 0.037 * 

N = 24 EUE: Emotional Under-Eating  0.047 0.002 0.827  

Food 
A

voidance 

 FF: Food Fussiness  0.224 0.050 0.294  

 SE: Slowness in Eating  0.345 0.119 0.098 † 

 SR: Satiety Responsiveness  0.352 0.124 0.092 † 
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Table 4.3. Relationships of adiposity vs. [FPOLE:NAC] rsFC, and eating behaviors vs. 
[FPOLE:NAC] rsFC. rsFC: resting state functional connectivity; fPole: frontal pole; NAc: nucleus 
accumbens; CEBQ: Child Eating Behaviour Questionnaire; indicators for statistical significance:  **: 
p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

 

 
Table 4.4. Relationships of adiposity vs. [FPOLE:IPL] rsFC, and eating behaviors vs. 
[FPOLE:IPL] rsFC. rsFC: resting state functional connectivity; fPole: frontal pole; IPL: inferior 
parietal lobe; CEBQ: Child Eating Behaviour Questionnaire; indicators for statistical significance:  
**: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

Neural model: [FPOLE:NAC] resting state functional connectivity  

 r R2 p  

N = 38 BMI z-score vs. [FPOLE:NAC]  0.280 0.078 0.089 †  

CEBQ eating behaviors vs. [FPOLE:NAC] r R2 p  

N = 24 DD: Desire to Drink -0.208 0.043 0.330  

Food 
A

pproach 

 EF: Enjoyment of Food  0.361 0.130 0.083 † 

 EOE: Emotional Overeating  0.296 0.088 0.160  

 FR: Food Responsiveness   0.256 0.066 0.227  

N = 24 EUE: Emotional Under-Eating -0.216 0.047 0.311  

Food 
A

voidance 

 FF: Food Fussiness -0.474 0.224 0.019 * 

 SE: Slowness in Eating -0.416 0.173 0.043 * 

 SR: Satiety Responsiveness -0.425 0.181 0.038 * 

Neural model: [FPOLE:IPL] resting state functional connectivity  

 r R2 p  

N = 38 BMI z-score vs. [FPOLE:IPL] -0.106 0.011 0.525   

CEBQ eating behaviors vs. [FPOLE:IPL] r R2 p  

N = 24 DD: Desire to Drink -0.110 0.012 0.608  

Food 
A

pproach 

 EF: Enjoyment of Food -0.234 0.055 0.271  

 EOE: Emotional Overeating -0.070 0.005 0.746  

 FR: Food Responsiveness   0.002 0.000 0.992  

N = 24 EUE: Emotional Under-Eating -0.337 0.114 0.107  

Food 
A

voidance 

 FF: Food Fussiness  0.071 0.005 0.743  

 SE: Slowness in Eating  0.067 0.005 0.754  

 SR: Satiety Responsiveness  0.035 0.001 0.871  
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Table 4.5. Relationships of adiposity vs. DELTA, and eating behaviors vs. DELTA. DELTA: 
difference in resting state functional connectivity measures; fPole: frontal pole; IPL: inferior parietal 
lobe; NAc: nucleus accumbens; CEBQ: Child Eating Behaviour Questionnaire; indicators for 
statistical significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

EF scores increased with decreasing response inhibition-associated [IPL:NAC] rsFC (p = 0.020; 

R2 = 0.223; r = -0.472; Figure 4.4D; Table 4.2). In contrast, the relationship between EF scores 

and impulsivity-associated [FPOLE:NAC] rsFC trended toward a positive increase (p = 0.083; R2 

= 0.130; r = 0.361; Figure 4.4E; Table 4.3). There was no significant relationship between EF 

and [FPOLE:IPL] rsFC (p = 0.271; R2 = 0.055; r = -0.234; Table 4.4). EF scores increased with 

increasing DELTA (p = 0.017; R2 = 0.232; r = 0.482; Figure 4.4F; Table 4.5). 

FOOD AVOIDANCE EATING BEHAVIOR SATIETY RESPONSIVENESS (SR) 

Increasing SR scores trended toward significance with increasing [IPL:NAC] rsFC (p = 0.092; R2 

= 0.124; r = 0.352; Figure 4.4G; Table 4.2). In contrast, SR scores decreased with increasing 

[FPOLE:NAC] rsFC (p = 0.038; R2 = 0.181; r = -0.425; Figure 4.4H; Table 4.3). There was no 

significant relationship between SR and [FPOLE:IPL] rsFC (p = 0.871; R2 = 0.001 r = 0.035;   

Neural model:  DELTA = [FPOLE :NAC] – [IPL:NAC]  

 r R2 p  

N = 38 BMI z-score vs. DELTA  0.342 0.117 0.035 *  

CEBQ eating behaviors vs. DELTA r R2 p  

N = 24 DD: Desire to Drink -0.153 0.023 0.477  

Food 
A

pproach 

 EF: Enjoyment of Food  0.482 0.232 0.017 * 

 EOE: Emotional Overeating  0.386 0.149 0.062 † 

 FR: Food Responsiveness   0.392 0.154 0.058 † 

N = 24 EUE: Emotional Under-Eating -0.160 0.026 0.455  

Food 
A

voidance 

 FF: Food Fussiness -0.417 0.174 0.043 * 

 SE: Slowness in Eating -0.447 0.200 0.028 * 

 SR: Satiety Responsiveness -0.456 0.208 0.025 * 
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Table 4.4). SR scores decreased with increasing DELTA (p = 0.025; R2 = 0.208; r = -0.456; Figure 

4.4I; Table 4.5). Our post hoc analysis of FF scores with functional connectivity by sex showed 

no statistically significant main effects for functional connectivity or for sex (all p ≥ 0.388).  

Adiposity is associated with eating behaviors (Figure 4.1, Path C) 

Table 4.6 lists the relationships between BMI z-score and each CEBQ score. BMI z-scores 

increased with increasing food approach behaviors in a statistically significant way (all p ≤ 

0.002), with the exception of DD (p = 0.917). Concomitantly, BMI z-scores decreased with 

increasing food avoidance behaviors SE (p = 0.002; R2 = 0.353; r = -0.594) and SR (p = 0.005; 

R2 = 0.311; r = -0.558). EUE and FF show no statistically significant relationships (EUE: p = 

0.176; FF: p = 0.103). Our post hoc analysis of BMI z-scores as a function of FF by sex showed 

no statistically significant main effects for FF or for sex (FF: p = 0.427; t = -0.811; sex: p = 

0.835; t = -0.211) and no significant interaction between FF and sex (p = 0.758; t = -0.312). 

 
Table 4.6. Relationships between adiposity and eating behaviors. CEBQ: Child Eating Behaviour 
Questionnaire; indicators for statistical significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

BMI z-score vs. CEBQ eating behaviors  

 r R2 p   

N = 24 DD: Desire to Drink  -0.022 0.001 0.917  

Food 
A

pproach 

 EF:  Enjoyment of Food   0.591 0.349 0.002 ** 

 EOE:  Emotional Overeating   0.623 0.388 0.001 ** 

 FR:  Food Responsiveness   0.698 0.487 0.000 ** 

N = 24 EUE:  Emotional Under-Eating   0.286 0.082 0.176  

Food 
A

voidance 

 FF:  Food Fussiness  -0.341 0.116 0.103  

 SE:  Slowness in Eating  -0.594 0.353 0.002 ** 

 SR:  Satiety Responsiveness  -0.558 0.311 0.005 ** 
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Brain functional connectivity mediation between adiposity and eating behaviors 

After regressing out the effects of the third measurement via partial regression, we found no 

relationships in all paths, A, B, and C, which were eligible for mediation analysis. 

Post hoc neural model with left nucleus accumbens 

We performed a post hoc analysis of an alternative model with the left NAc. With one exception, 

there were no statistically significant associations between functional connectivity measures with 

BMI z-scores or with eating behaviors (Tables 4.7, 4.8, 4.9, and 4.10). We found a negatively 

trending relationship between EUE and [FPOLE:IPL] rsFC (p = 0.063; R2 = 0.149; r = -0.386; 

Table 4.9).  

 
Table 4.7. Relationships of adiposity vs. [IPL:NAC] rsFC, and eating behaviors vs. [IPL:NAC] 
rsFC, with left nucleus accumbens. This ad hoc neural model includes the left nucleus accumbens 
(NAc). rsFC: resting state functional connectivity; IPL: inferior parietal lobe; NAc: nucleus 
accumbens; CEBQ: Child Eating Behaviour Questionnaire; indicators for statistical significance:   
**: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

  

Left NAc  |  Neural model: [IPL:NAC] functional connectivity  

 r R2 p  

N = 38 BMI z-score vs [IPL:NAC] 0.000 0.000  0.998  

CEBQ eating behaviors vs. [IPL:NAC] r R2 p  

N = 24 DD: Desire to Drink  0.123 0.015  0.568  

Food 
A

pproach 

 EF: Enjoyment of Food -0.341 0.116  0.103  

 EOE: Emotional Overeating  0.023 0.001  0.915  

 FR: Food Responsiveness   0.076 0.006  0.725  

N = 24 EUE: Emotional Under-Eating  0.072 0.005  0.740  

Food 
A

voidance 

 FF: Food Fussiness  0.123 0.015  0.568  

 SE: Slowness in Eating  0.202 0.041  0.344  

 SR: Satiety Responsiveness  0.140 0.020  0.514  
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Table 4.8. Relationships of adiposity vs. [FPOLE:NAC] rsFC, and eating behaviors vs. 
[FPOLE:NAC] rsFC, with left nucleus accumbens. This ad hoc neural model includes the left 
nucleus accumbens (NAc). rsFC: resting state functional connectivity; fPole: frontal pole; NAc: 
nucleus accumbens; CEBQ: Child Eating Behaviour Questionnaire; indicators for statistical 
significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

 
Table 4.9. Relationships of adiposity vs. [FPOLE:IPL] rsFC, and eating behaviors vs. 
[FPOLE:IPL] rsFC, with left nucleus accumbens. This ad hoc neural model includes the left 
nucleus accumbens (NAc), which was controlled for during partial correlation. rsFC: resting state 
functional connectivity; fPole: frontal pole; IPL: inferior parietal lobe; CEBQ: Child Eating 
Behaviour Questionnaire; indicators for statistical significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

Left NAc  |  Neural model: [FPOLE:NAC] functional connectivity  

 r R2 p  

N = 38 BMI z-score vs. [FPOLE:NAC] -0.001 0.000  0.997  

CEBQ eating behaviors vs. [FPOLE:NAC] r R2 p  

N = 24 DD: Desire to Drink -0.038 0.001  0.860  

Food 
A

pproach 

 EF: Enjoyment of Food -0.272 0.074  0.198  

 EOE: Emotional Overeating -0.328 0.108  0.117  

 FR: Food Responsiveness  -0.352 0.124  0.091  

N = 24 EUE: Emotional Under-Eating  0.030 0.001  0.890  

Food 
A

voidance 

 FF: Food Fussiness -0.093 0.009  0.666  

 SE: Slowness in Eating -0.025 0.001  0.908  

 SR: Satiety Responsiveness -0.016 0.000  0.943  

Left NAc  |  Neural model: [FPOLE:IPL] functional connectivity  

 r R2 p  

N = 38 BMI z-score vs. [FPOLE:IPL] -0.068 0.005 0.683  

CEBQ eating behaviors vs. [FPOLE:IPL] r R2 p  

N = 24 DD: Desire to Drink -0.149 0.022 0.487  

Food 
A

pproach 

 EF: Enjoyment of Food -0.212 0.045 0.320  

 EOE: Emotional Overeating -0.076 0.006 0.726  

 FR: Food Responsiveness  -0.013 0.000 0.952  

N = 24 EUE: Emotional Under-Eating -0.386 0.149 0.063  

Food 
A

voidance 

 FF: Food Fussiness  0.050 0.002 0.817  

 SE: Slowness in Eating  0.040 0.002 0.853  

 SR: Satiety Responsiveness  0.013 0.000 0.951  
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Table 4.10. Relationships of adiposity vs. DELTA, and eating behaviors vs. DELTA, with left 
nucleus accumbens. This ad hoc neural model includes the left nucleus accumbens (NAc). DELTA: 
difference in resting state functional connectivity measures; fPole: frontal pole; IPL: inferior parietal 
lobe; NAc: nucleus accumbens; CEBQ: Child Eating Behaviour Questionnaire; indicators for 
statistical significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

Negative control neural model 

To investigate whether our results were due to global, brain-wide phenomena, we defined a 

second neural model as a negative control. This functional neural network included auditory and 

foot motor cortex regions and the right NAc. With one exception, we found no associations 

between adiposity and functional connectivity, or between eating habits and functional connec-

tivity (Tables 4.11, 4.12, 4.13, and 4.14). EF scores increased with increasing [FOOT:NAC] 

functional connectivity (p = 0.028; R2 = 0.201; r = 0.448; Table 4.11). 

  

Left NAc  |  Neural model: DELTA = [FPOLE :NAC] – [IPL:NAC]  

 r R2 p  

N = 38 BMI z-score vs. DELTA  0.0001 0.000  0.997  

CEBQ eating behaviors vs. DELTA r R2 p  

N = 24 DD: Desire to Drink  0.113 0.013  0.600  

Food 
A

pproach 

 EF: Enjoyment of Food -0.076 0.006  0.726  

 EOE: Emotional Overeating  0.223 0.050  0.294  

 FR: Food Responsiveness   0.277 0.077  0.190  

N = 24 EUE: Emotional Under-Eating  0.033 0.001  0.878  

Food 
A

voidance 

 FF: Food Fussiness  0.147 0.022  0.492  

 SE: Slowness in Eating  0.162 0.026  0.449  

 SR: Satiety Responsiveness  0.111 0.012  0.605  
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Negative control model: [FOOT:NAC] functional connectivity  

 r R2 p  

N = 38 BMI z-score vs. [FOOT:NAC]  0.101 0.010 0.548  

CEBQ eating behaviors vs. [FOOT:NAC] r R2 p  

N = 24 DD: Desire to Drink -0.346 0.120 0.098  

Food 
A

pproach 

 EF: Enjoyment of Food  0.448 0.201 0.028 * 

 EOE: Emotional Overeating  0.202 0.041 0.345  

 FR: Food Responsiveness   0.033 0.001 0.879  

N = 24 EUE: Emotional Under-Eating  0.042 0.002 0.844  

Food 
A

voidance 

 FF: Food Fussiness -0.246 0.061 0.246  

 SE: Slowness in Eating -0.229 0.053 0.281  

 SR: Satiety Responsiveness -0.362 0.131 0.082  
 

Table 4.11. Relationships of adiposity vs. [FOOT:NAC] rsFC, and eating behaviors vs. 
[FOOT:NAC] rsFC, with right nucleus accumbens. rsFC: resting state functional connectivity; 
Foot: foot motor cortex; NAc: nucleus accumbens; CEBQ: Child Eating Behaviour Questionnaire; 
indicators for statistical significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

 
Negative control model: [AUDITORY:NAC] functional connectivity  

 r R2 p  

N = 38 BMI z-score vs. [AUDITORY:NAC]  0.280 0.079 0.088  

CEBQ eating behaviors vs. [AUDITORY:NAC] r R2 p  

N = 24 DD: Desire to Drink  0.026 0.001 0.905  

Food 
A

pproach 

 EF: Enjoyment of Food  0.207 0.043 0.332  

 EOE: Emotional Overeating  0.193 0.037 0.367  

 FR: Food Responsiveness   0.237 0.056 0.264  

N = 24 EUE: Emotional Under-Eating -0.033 0.001 0.879  

Food 
A

voidance 

 FF: Food Fussiness -0.074 0.005 0.731  

 SE: Slowness in Eating -0.130 0.017 0.545  

 SR: Satiety Responsiveness  0.013 0.000 0.953  
 

Table 4.12. Relationships of adiposity vs. [AUDITORY:NAC] rsFC, and eating behaviors vs. 
[AUDITORY:NAC] rsFC, with right nucleus accumbens. rsFC: resting state functional connectivity; 
Auditory: auditory cortex; NAc: nucleus accumbens; CEBQ: Child Eating Behaviour Questionnaire; 
indicators for statistical significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 
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Negative control model: [FOOT:AUDITORY] functional connectivity  

 r R2 p  

N = 38 BMI z-score vs. [FOOT:AUDITORY] -0.078 0.006 0.642  

CEBQ eating behaviors vs. [FOOT:AUDITORY] r R2 p  

N = 24 DD: Desire to Drink -0.059 0.004 0.783  

Food 
A

pproach 

 EF: Enjoyment of Food  0.022 0.000 0.918  

 EOE: Emotional Overeating -0.241 0.058 0.257  

 FR: Food Responsiveness  -0.243 0.059 0.252  

N = 24 EUE: Emotional Under-Eating  0.100 0.010 0.642  

Food 
A

voidance 

 FF: Food Fussiness -0.064 0.004 0.767  

 SE: Slowness in Eating  0.315 0.099 0.134  

 SR: Satiety Responsiveness  0.117 0.014 0.587  
 

Table 4.13. Relationships of adiposity vs. [FOOT:AUDITORY] rsFC, and eating behaviors vs. 
[FOOT:AUDITORY] rsFC, with right nucleus accumbens. rsFC: resting state functional connectivity; 
Foot: foot motor cortex; Auditory: auditory cortex; CEBQ: Child Eating Behaviour Questionnaire; 
indicators for statistical significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 

Negative control model: DELTA = [FOOT:NAC] – [AUDITORY:NAC]  

 r R2 p  

N = 38 BMI z-score vs. DELTA -0.134 0.018 0.424  

CEBQ eating behaviors vs. DELTA r R2 p  

N = 24 DD: Desire to Drink -0.235 0.055 0.268  

Food 
A

pproach 

 EF: Enjoyment of Food  0.145 0.021 0.500  

 EOE: Emotional Overeating -0.001 0.000 0.995  

 FR: Food Responsiveness  -0.138 0.019 0.521  

N = 24 EUE: Emotional Under-Eating  0.049 0.002 0.822  

Food 
A

voidance 

 FF: Food Fussiness -0.106 0.011 0.622  

 SE: Slowness in Eating -0.058 0.003 0.788  

 SR: Satiety Responsiveness -0.237 0.056 0.265  
 

Table 4.14. Relationships of adiposity vs. DELTA, and eating behaviors vs. DELTA, with right 
nucleus accumbens. DELTA: difference in resting state functional connectivity measures; Foot: foot 
motor cortex; Auditory: auditory cortex; NAc: nucleus accumbens; CEBQ: Child Eating Behaviour 
Questionnaire; indicators for statistical significance:  **: p ≤ 0.01; *: p ≤ 0.05; †: p ≤ 0.10. 
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Discussion. 

As a means of better understanding the organization and communication of the young obese 

brain, we investigated a neural model in a cohort of children using a priori-defined, seed-based 

resting state functional connectivity. We focused on the relationships of resting state functional 

connectivity with adiposity and with eating behaviors. We investigated functional connectivity 

between regions associated with response inhibition (inferior parietal lobe [IPL]), impulsivity 

(frontal pole), and reward (nucleus accumbens [NAc]). Our results suggest the following key 

findings.  

Finding 1. Eating behaviors and adiposity 

In agreement with other childhood obesity studies, increasing food approach behavioral scores – 

enjoyment of food (EF), food responsiveness (FR), and emotional overeating (EOE) – and 

decreasing food avoidance behavioral scores – slowness in eating (SE) and satiety responsive-

ness (SR) – are associated with increasing adiposity.  

Finding 2: Resting state functional connectivity and adiposity 

Adiposity is associated with resting state functional connectivity within our neural model among 

children ages 8-13 years old. As response inhibition-associated functional connectivity increases, 

adiposity decreases in a statistically trending relationship. As impulsivity-associated functional 

connectivity increases, adiposity increases in a statistically trending relationship. As the differ-

ence between these two functional connectivity measures – between response inhibition-

associated and impulsivity-associated resting state functional connectivity with the NAc – is 

biased toward impulsivity, adiposity increases in a statistically significant manner. 
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Finding 3: Resting state functional connectivity and eating behaviors 

Eating behaviors are associated with resting state functional connectivity within our neural 

model among children ages 8-13 years old. As response inhibition-associated functional 

connectivity increases, food approach behaviors EF and FR decrease, while food avoidance 

behaviors SE and SR trend toward an increasing relationship. As impulsivity-associated resting 

state functional connectivity increases, food approach behavior EF trends toward an increasing 

relationship, while food avoidance eating behaviors food fussiness (FF), SE, and SR decrease. 

As the difference between these two functional connectivity measures is biased toward 

impulsivity, food approach behaviors increase while food avoidance behaviors decrease in a 

statistically significant manner. 

Finding 4: Resting state functional connectivity relationships are not a global, brain-wide 
phenomenon 

The relationships of resting state functional connectivity with adiposity and with eating behav-

iors are not a global, brain-wide phenomenon, with the exception of enjoyment of food. 

Taken together, these results suggest that, in the absence of any explicit food-related stimuli, the 

developing brain is primed toward food approach and away from food avoidance behavior with 

increasing adiposity. While this bias is advantageous in an evolutionary sense, it is detrimental in 

today’s environment of easy accessibility to high-energy dense food, as indicated by an associ-

ated increase in adiposity and unhealthy eating habits among children. Our results suggest a 

persistent relationship between resting state functional connectivity and enjoyment of food. We 

speculate that this is indicative of the importance of enjoying food to survival. 
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Also of note, resting state functional connectivity imbalance associated with adiposity and eating 

habits develops during childhood, as early as 8-13 years of age. This early development indicates 

the importance of identifying children at risk for obesity for earlier intervention. 

Our results indicate that associations with increased adiposity and unhealthy eating behaviors are 

driven not solely by decreased response inhibition-associated resting state functional connectiv-

ity and not solely by increased impulsivity-associated resting state functional connectivity. 

Rather, increased adiposity and unhealthy eating behaviors are most strongly associated with the 

imbalance between response inhibition- and impulsivity-associated functional connectivity.  

This neural imbalance suggests that mindfulness may help treat and/or prevent childhood 

obesity. Mindfulness is described as paying attention on purpose and being in the present 

moment with acceptance and without judgment (Kabat-Zinn, 2003). Mindfulness is associated 

with increased response inhibition (Sahdra et al., 2011; Friese et al., 2012) and decreased impul-

sivity (Lattimore et al., 2011; Peters et al., 2011; Teper and Inzlicht, 2013). As brain regions 

associated with response inhibition, impulsivity, and reward are recognized as potent modulators 

of non-homeostatic eating habits, mindfulness may recalibrate an imbalance in neural systems 

associated with childhood obesity. The use of mindfulness for weight loss and weight control 

among adults has produced mixed results (Katterman et al., 2014; Olson and Emery, 2015). This 

may indicate the extreme tenaciousness of adult obesity, perhaps reflecting a relative lack of 

“plasticity” in the adult brain, further arguing for the importance of early identification and 

treatment of children at risk for increased adiposity. While mindfulness is readily translatable to 

children, and encourages them to respond to everyday adversity in healthy ways (Greenberg and 

Harris, 2012; Godsey, 2013), few studies report mindfulness for weight loss, weight 

maintenance, or eating healthfully among children.  
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Among food approach behaviors, DD was not associated with brain network imbalance (p = 

0.495), nor with BMI z-score (p = 0.917). Some studies have reported no relationship between 

DD and weight (Sweetman et al., 2008), while others have reported associations with the 

consumption of sweetened drinks with weight (Malik et al., 2013). Given these mixed results, we 

advocate the view put forth by Sweetman et al., that the type of drink consumed influences this 

relationship (Sweetman et al., 2008). Among food avoidance behaviors, EUE was not associated 

with brain network imbalance (p < 0.450), nor with BMI z-score (p < 0.176). While developing 

the CEBQ, Wardle et al., noted that EUE decreased with increasing age. Therefore our results 

may be attributable to the older ages of the children in this study.  

While FF was associated with brain network imbalance (p = 0.046), it was not quite trending 

toward statistical significance with BMI z-score (p = 0.103). In the initial validation of the 

CEBQ, Wardle et al., noted that only FF showed a sex difference, in which boys had higher FF 

scores. Our post hoc analyses showed no significant interactions of FF association by sex. We 

conclude that in our cohort FF is not dependent on the sex of the child. Food fussiness is 

characterized by restricted eating in both the amount and types of food eaten, along with an 

unwillingness to try new food	(Jacobi et al., 2008). Food fussiness is typically associated with 

low weight. However, it has also been associated with increased weight (Rydell et al., 1995; 

Antoniou et al., 2015) as fussy eaters often restrict the consumption of fruits and vegetables. 

Decreased consumption of fruits and vegetables is associated with increased consumption of fats	

(Dennison et al., 1998), contributing to increased adiposity. Our lack of negative association 

between BMI z-scores and FF may be due to restricted eating that includes an increase in high 

energy dense food. 
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Given the relationships among the three principal outcomes in our study – functional connective-

ity, adiposity, and eating behaviors – a logical, subsequent hypothesis is that resting state 

functional connectivity mediates the relationship between adiposity and eating behavior. 

Mediation analysis helps explain how or why a relationship exists between two variables and is 

an obvious next analytical step. Robust mediation analysis requires larger sample sizes than ours 

(Fritz and MacKinnon, 2007). However, in advance of additional data, we investigated our 

mediation hypothesis in an exploratory analysis. To identify candidate relationships for medi-

ation analysis, the relationships between pairs of measurements must be adjusted for the third 

measurement (Taylor and MacKinnon, 2012; Valeri and VanderWeele, 2013). We found no 

model in which all three relationships were significant after adjustment. Potential reasons for this 

outcome are: low power due to a small sample size; mediation is associated with other brain 

regions; or resting state functional connectivity is not a mediator.  

We found no statistically significant associations between eating behaviors and brain network 

imbalance in an alternative model in which the NAc was located in the left hemisphere. These 

results may be due to hemispheric laterality. There are two predominant hypotheses of laterality: 

(1) The left hemisphere is associated with reward / approach; and 
 The right hemisphere is associated with punishment / avoidance. 
(2) The left hemisphere is associated with emotions with positive valence; and 
 The right hemisphere is associated with emotions with negative valence.  
 
However, numerous studies support or contradict either hypothesis (Wager et al., 2003; Balconi 

et al., 2015; Behan et al., 2015; Lindquist et al., 2015). Miller et al., hypothesize that laterality 

may change across temporal and spatial domains, depending upon circumstances (Miller et al., 

2013). In light of this hypothesis, future work is needed to investigate resting state functional 

connectivity in relation to hemispheric laterality.  
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Strengths and limitations 

Our overarching hypothesis is that disrupted resting state functional connectivity within a neural 

model related to non-homeostatic eating is associated with increased adiposity and unhealthy 

eating behaviors among children. Previously published resting state functional connectivity 

studies in childhood obesity compared categorical weight classes: children who were severely 

obese with healthy weight children. Here we examined children across a continuous range of 

adiposity values to better understand functional connectivity and its imbalance as a function of 

adiposity.  

Future work will consider larger brain networks using graph-based analyses and machine 

learning-based connectivity classification. A limitation of all functional connectivity analyses is 

that correlation does not imply causality. It is therefore important not to over-interpret functional 

connectivity results. Nonetheless, functional connectivity can be used to distinguish disease 

states (Craddock et al., 2009) and as a summary of neuronal activity (Friston, 2011). 

Our mediation hypothesis raises the question: Are differences in functional connectivity integrity 

present at birth or do they develop throughout childhood? Longitudinal studies are needed to 

better understand whether functional connectivity imbalance is present at birth or if imbalance 

develops during childhood. Longitudinal studies, beginning during very early childhood, are 

necessary to identify children who are at risk for developing obesity, to follow the development 

and integrity of resting state functional connectivity, and to develop and assess obesity intervene-

tions. Of note, Figure 4.4C shows a cluster of four children who have lower BMI z-scores but 

higher impulsivity-biased imbalance. Following these participants over time would reveal 

whether these children are at risk for developing obesity. 
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Conclusions. 

Our results establish the interplay among resting state functional connectivity, adiposity, and 

eating behaviors during childhood. We reported novel results from a resting state functional 

connectivity study of childhood obesity in which we examined children across a range of 

adiposity values. To our knowledge, no previous childhood obesity resting state functional 

connectivity studies have examined adiposity as a continuous measure. Our results suggest that 

resting state functional connectivity can identify neural models that are associated with adiposity 

and with eating habits. Furthermore, the identification of an imbalance in resting state functional 

connectivity that is associated with adiposity and unhealthy eating habits contributes to our 

knowledge of non-homeostatic factors involved in childhood obesity. Long-lasting weight loss 

maintenance may be elusive because, in addition to changing eating habits and physical 

activities, one must also change brain function.  
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CHAPTER 5 

 

Discussion 

 

The alarming increase in the prevalence of obesity worldwide requires a better understanding of 

the development, pathophysiology, early recognition, treatment, and prevention of obesity. The 

poor efficacy of long-term weight loss among adults suggests that obesity, at least for the vast 

majority of individuals, may be irreversible. Therefore the best strategy to control the societal 

and economic costs of obesity is prevention. We must therefore examine children to better 

understand the early trajectory of the development of obesity and identify “targets” for preven-

tion. Furthermore, given the almost certain weight regain after loss, the notion of simple energy 

balance, i.e., “energy consumed vs. energy expended” as a model for healthy weight, is insuffi-

cient and incomplete. Because the brain plays a central role in homeostatic and non-homeostatic 

eating, our hypotheses stem from the overarching position that healthy weight maintenance 

involves not only a change in eating habits and physical activity, but also a change in brain 

function. To generate inroads into this overarching hypothesis, we therefore investigated the role 

brain functional connectivity plays in childhood obesity. Functional connectivity identifies 

patterns in neural activity that indicates the integration and communication of brain regions.  

We posit that brain networks of children who are overweight or obese are biased toward 

increased drive to eat and away from control. As such, we hypothesize that the functional 

connectivity associated with the drive to eat, e.g., motivation and impulsivity, is greater than the 

functional connectivity associated with cognitive control, e.g., response inhibition. 
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Summary of results. 

Because food is ubiquitous in the US, we first examined changes in functional connectivity when 

children were exposed to food-related stimuli using food cue task-based psychophysiological 

interaction (PPI) functional connectivity analysis. The results from our PPI analysis suggest that 

ineffective response inhibition-associated functional connectivity, when viewing high calorie 

compared to low calorie food images, is characteristic of obesity in children, ages 8-12 year old. 

Next, to understand the overall disposition of the childhood brain with respect to adiposity, in the 

absence of overt food-related stimuli, we evaluated brain functional connectivity when children 

were at quiet rest using resting state functional connectivity analysis. The results from our resting 

state functional connectivity (rsFC) analysis were consistent with our PPI results suggesting that 

as rsFC imbalance is increasingly biased toward impulsivity and away from inhibition, adiposity 

increases. Additionally, as impulsivity-biased imbalance increases, food approach behaviors 

increase and food avoidance behaviors decrease. Our analyses of independent food cue and 

resting state paradigms allowed us to probe network integrity under two different, but common-

place and complementary, conditions, revealing consistent results.  

Overall contribution of neuroimaging to the understanding of obesity. 

Neuroimaging studies comparing adults who are overweight or obese with healthy weight adults 

have identified differences in brain regions associated with reward (e.g., nucleus accumbens), 

emotional drive (e.g., amygdala), and cognitive control (e.g., prefrontal cortex [PFC] and 

anterior cingulate cortex [ACC]). Furthermore, adult obesity has been associated with differ-

ences in functional connectivity, white matter integrity	(Kullmann et al., 2015), and grey matter 

morphology	(Kurth et al., 2013). While there are fewer studies examining childhood obesity, as 
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this area of research is at an early stage, childhood obesity studies have also identified 

differences in brain regions associated with reward, drive, and cognitive control.  

Foundational childhood obesity neuroimaging studies have begun to lay the groundwork for 

understanding the developing neurobiology of obesity. While the results from childhood obesity 

studies are not as mixed as that for adult studies, these results have not yet coalesced into action-

able insight into the development, early recognition, and prevention of obesity. This lack of 

actionable insight is likely due, in part, to methodological differences and the varied hypotheses 

examined. Furthermore, more robust methods have developed since the implementation of early, 

proof-of-concept childhood obesity studies.  

Improvements in analysis methodology. 

In our research, we addressed some of the methodological weaknesses seen in early childhood 

obesity neuroimaging studies. For example, the earliest childhood obesity studies included only 

healthy weight children. More recent studies have compared children who are obese and healthy 

weight. However, most studies dichotomized their participants into “obese” and “healthy 

weight” groups, as we have done with our psychophysiological interaction (PPI) functional 

connectivity study. With our resting state functional connectivity study, however, we used a 

continuous measure of adiposity thereby allowing for greater statistical power in our analyses. 

Additionally, many studies quantified adiposity via BMI, which is not appropriate for children, 

or BMI percentiles, which is suboptimal for statistical analysis. We used BMI z-scores, which 

are appropriate for children and appropriate for statistical analysis. 

Some of the earliest childhood obesity studies included only girls. Later studies, as well as ours, 

included both sexes. Many previous studies included participants across a large age range, 
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spanning childhood and adolescence, or examined adolescents only. Evidence suggests a 

relationship between childhood obesity and the onset of puberty	(Ahmed et al., 2009), therefore 

the effects of puberty should be considered. In our studies, we included participants in a narrow 

age range, 8-13 years old. In our PPI study, girls who had reached menarche were excluded. 

Tanner stages, a scale that describes the progression of pubertal changes, were acquired from the 

participants in our resting state functional connectivity study. The average Tanner stage was 2, 

indicating minimal progression of sexual characteristics.  

Many childhood obesity studies examined children in a fasted state, either overnight or after 4+ 

hours. Due to the importance of eating for survival, fasting influences numerous regulatory 

processes such as signaling pathways and hormonal and neurotransmitter levels (Woods et al., 

1998; Schwartz et al., 2000). Given the wide-ranging effects of fasting on the central nervous 

system, acquiring brain scans from individuals who are fasted may result in a loss of difference 

in effects or produce extreme effects. In our PPI study, children had just eaten. In our resting 

state functional connectivity study, children followed a naturalistic eating schedule.  

We wish to broach a final methodological concern that pertains to most neuroimaging studies, 

beyond those investigating childhood obesity: the effects of collinearity in the design matrix for 

the general linear model (GLM). When analyzing subject-specific brain data using GLM, one 

creates a model that describes the expected neural response given the experimental paradigm. 

(For more detail about GLM analysis, see Appendix A: Brief Overview of GLM Analysis in FSL’s 

User Guide: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#Appendix_A:_Brief_ 

Overview_of_GLM_Analysis.) For example, if the experimental paradigm includes stimuli, such 

as flashes of light, at 10, 30, and 50 sec from the beginning of the scan, then the design matrix 

should include a variable of interest that describes an expected neural response at approximately 
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15, 35, and 55 sec, where the ~5 sec lag is due to the delay in hemodynamic response of the 

brain. Other variables of interest, called explanatory variables (EVs), are often included in the 

design matrix. Some EVs isolate effects of no interest such as noise in the data. One such EV 

describes subject motion during the scan. Subject motion can be estimated from the subject’s 

scan and is typically described via three translational and three rotational parameters, each with 

respect to the x-, y-, and z-axes. These six parameters are typically included in the design matrix 

as six separate EVs to describe subject motion. There are two methodological weaknesses to this.  

First, the six motion parameters should not be considered separately. The motion parameters 

must be considered in total, which includes order. For example, if given a set of directions, the 

final destination of [turning right, driving 3 miles, turning left, driving 5 miles] is different from 

[turning left, driving 5 miles, turning right, driving 3 miles]. The separate motion parameters are 

convenient but lack crucial ordering information. (The motion parameters are accurately 

described by a 4⋅4 homogeneous transformation matrix, which cannot be used, as is, as an EV.)  

Second, and most concerning, the six motion parameters are typically highly collinear. This 

weakness becomes apparent when estimating the βs in the GLM model: 

! = #$ + & (Eq. 5.1) 

where Y is the acquired signal from the brain, X is the design matrix, β is the effect of the EVs 

defined in X, and ε is the error in the model fit. To estimate the βs, both sides of Eq. 5.1 are 

multiplied by the inverse of X, X-1: 

!$'( = # (Eq. 5.2) 

If the columns within X are strongly collinear, then design matrix X cannot be inverted and the 



141	

GLM fails. However, if the columns within X are collinear but not strongly enough to fail, the 

inverse of X, X-1, may be incorrect and the GLM will estimate inaccurate βs. In other words, 

consider yourself fortunate if your GLM fails rather than proceeding with inaccurate β estimates. 

(To assess collinearity of a design matrix, see Matthijs Vink’s Design Magic: http://www.ni-

utrecht.nl/downloads/d_magic.)  

To avoid both weaknesses, we used a single parameter to describe subject motion, the mean 

relative displacement, calculated by FSL’s motion correction tool, MCFLIRT. For details, see 

FMRIB Technical Report TR99MJ1, Measuring Transformation Error by RMS Deviation, 

http://www.fmrib.ox.ac.uk/analysis/techrep/tr99mj1/tr99mj1.pdf.  

Comparison with childhood obesity fMRI activation studies. 

Traditional activation studies, which report differences in discrete brain regions, while founda-

tional, may provide incomplete evidence about the role the brain plays in childhood obesity. 

Using activation analysis, Bruce et al., compared differences in neural response between children 

who are obese with children who are healthy weight before and after eating (Bruce et al., 2010). 

They hypothesized increased neural response in limbic regions, e.g., amygdala and hippocampus, 

and regions within the PFC, e.g., ACC, among children who were obese, in both the fasted and 

sated states, when viewing images of food. They reported that children who are obese do not 

show decreased neural response in the amygdala and ACC to visual food cues after eating as 

healthy weight children do. We used a similar visual food cue paradigm and investigated psycho-

physiological interaction (PPI) functional connectivity providing complementary insight. We 

examined a neural model consisting of similar brain regions, the basolateral amygdala (BLA) 

and rostral anterior cingulate cortex (rACC), and their PPI functional connectivity with the 
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nucleus accumbens (NAc), after our participants ate a standardized meal. The BLA is associated 

with motivation; rACC is associated with response inhibition; and the NAc is associated with 

reward. We reported that, among children who are obese, [RACC:BLA] PPI functional connec-

tivity increased as [BLA:NAC] PPI functional connectivity increased. We suggested that the 

increasing relationship of [RACC:BLA] vs. [BLA:NAC] PPI is indicative of ineffective 

[RACC:BLA] functional connectivity resulting in a compensatory increase in functional 

connectivity between [RACC:BLA]. Our interpretation may explain the Bruce et al., result of 

increased neural activity (or, as Bruce et al., reported, lack of decrease neural response) in a 

region associated with response inhibition in support of childhood obesity. A conventional 

interpretation of their result is that increased neural activity in a brain region associated with 

response inhibition reflects increased response inhibition, which is incompatible with obesity 

among their young participants. Our interpretation of a compensatory increase of ineffective 

response inhibition-associated functional connectivity may explain Bruce’s increased neural 

activity in a response inhibition-associated region in support of obesity. 

Comparison with other childhood obesity functional connectivity studies. 

To the best of our knowledge, there are no other published childhood obesity PPI functional 

connectivity studies. See below for a comparison with adult PPI obesity studies. To our know-

ledge, there are three published childhood obesity resting state functional connectivity studies. 

Because the image modalities, hypotheses, and regions examined vary from study to study, it is 

difficult to compare results.  

Black et al., compared the resting state functional connectivity of children who are obese with 

that of healthy weight children using bilateral middle frontal gyri as seed regions (Black et al., 

142
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2014). They hypothesized increased rsFC between regions associated with self-control and 

response inhibition, i.e., middle frontal gyrus, and regions associated with reward valuation, i.e., 

orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC). They reported increased 

rsFC among children who are obese between the left middle frontal gyrus and left vmPFC. They 

also reported increased rsFC between the left middle frontal gyrus and left OFC. They reported 

no increased rsFC among healthy weight children compared to children who are obese. Black et 

al. speculated that among children who are obese, regions associated with cognitive control may 

receive greater input from reward motivation regions thereby perhaps resulting in less self-

control and increased valuation of food-related stimuli.  

Of note, as of January 1, 2016, we noted a few errors in the Black et al. publication. As per 

personal correspondence with Dr. W. Kyle Simmons, December 2, 2015, the correct coordinates 

in Talairach space for the left vmPFC are (-7, 21, -14) with a cluster size = 35,462 mm3. The 

correct coordinates for the left lateral OFC are (-31, 33, -4) with a cluster size = 4074 mm3.  

One difference compared to Black et al., is the seed regions. Another significant difference is 

that Black et al., analyzed categorical group differences, i.e., they compared two discontiguous 

adiposity groups, whereas we analyzed adiposity as a continuous variable. Nonetheless, concep-

tually we are in agreement that greater functional connectivity with regions associated with 

reward is associated with adiposity. Our conclusions suggest a more nuanced interpretation in 

that response inhibition, rather than the broader notion of self-control, is impaired. Additionally, 

our results suggest that relative functional connectivity, i.e., the balance of functional connec-

tivity between pairs of regions, is associated with adiposity amount.  
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Zhang et al., compared rsFC among children with Prader-Willi syndrome (PWS) who are obese 

with that of their healthy weight siblings	(Zhang et al., 2013). They defined regions of interest 

based on differences in the amplitude of low-frequency fluctuations (ALFF) between the two 

groups. ALFF analysis quantifies the relative magnitude of resting state neural fluctuations (Yu-

Feng et al., 2015). They reported decreased rsFC among children with PWS, compared to their 

healthy siblings between various pairs of regions.  

It is difficult to directly compare the results from Zhang et al., with our resting state functional 

connectivity results as we investigated different regions. They also examined categorical group 

differences, where one group was severely obese with a genetic disorder, whereas we used 

adiposity as a continuous variable. Although Zhang et al., investigated the rsFC with the IPL, as 

we did, our regions are sufficiently different as the IPL is not a small brain region, covering a 

volume of ~11,000 mm3 (11 ml) in the right hemisphere (Maldjian et al., 2003). Zhang et al., 

investigated MNI coordinate (51, -39, 54) in the supramarginal gyrus in the IPL (Figure 5.1(A)), 

which, according to a meta-analysis performed via Neurosynth (neurosynth.com)	(Yarkoni et 

al., 2011), is strongly associated with nociception (Obermann et al., 2009; Hohmeister et al., 

2010; Uematsu et al., 2011; Sprenger et al., 2015). We investigated (38, -54, 44) in the angular 

gyrus in the IPL (Figure 5.1(B)), associated with response inhibition. Another important 

difference is that we measured the rsFC with respect to a common region, the NAc, whereas 

Zhang et al., investigated rsFC between regions within a single resting state network. However, 

to approximate the work of Zhang et al., we performed an ad hoc analysis of rsFC between our 

frontal pole and IPL regions, [FPOLE:IPL] and made conceptual inferences. 
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Figure 5.1: Locations within inferior parietal lobe. (A) Location of supramarginal gyrus in the 
inferior parietal lobe (IPL), at (51, -39, 54), associated with nociception. (B) Location of angular 
gyrus in IPL, at (38, -54, 44), associated with response inhibition. 

Zhang et al.’s dlPFC location (-38, 49, 31) is associated with response inhibition (Roth et al., 

2007; Steele et al., 2013), as is our frontal pole region at (-32, 62, -6). Zhang et al.’s OFC, at 

(-34, 62, 5), is associated with impulsivity (Torregrossa et al., 2008), and is very close to our 

frontal pole, at (-32, 62, -6), also associated with impulsivity. Zhang et al. reported decreased 

rsFC between the dlPFC and OFC among children with PWS, who are obese, compared to their 

healthy weight siblings. We reported no significant relationship in our ad hoc analysis between 

BMI z-score and rsFC [FPOLE:IPL] (p = 0.525; R2 = 0.011; r = -0.106; N = 38). However, we 

also reported decreased [IPL:NAC] rsFC with increased BMI z-score; increased [FPOLE:NAC] 

rsFC with increased BMI z-score; and increased relative difference, DELTA, with increased BMI 

z-score, where a positive DELTA indicates a bias toward impulsivity-associated frontal pole rsFC: 

)*+,- = 	 /0123: 5-6 	789: − <0+: 5-6 	789:	  (Eq. 5.3) 

The Zhang et al. result suggesting that decreased [DLPFC:OFC] rsFC indicates decreased 
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response inhibition relative to impulsivity is conceptually similar to our [FPOLE:IPL] DELTA 

analysis indicating the same. 

Olde Dubbelink, et al., examined resting state functional connectivity in girls, ages 9-12 years, 

using magnetoencephalography (MEG) (Olde Dubbelink et al., 2008). They reported increased 

synchronization in the delta and beta frequency bands among girls who were severely obese 

compared to healthy weight girls. MEG has superior temporal resolution compared to fMRI, 

therefore discussing results in terms of frequency bands is common with MEG studies but rare 

with fMRI studies. MEG has poorer spatial resolution compared to fMRI, therefore discussing 

results in terms of anything but broad brain regions is common with MEG. Given the differences 

in temporal and spatial resolutions, it is difficult to compare results.  

Comparison with adult obesity PPI functional connectivity studies. 

Although to date there have been no PPI functional connectivity studies comparing children who 

are obese with healthy weight children, there are PPI studies among adults (Nummenmaa et al., 

2012; Atalayer et al., 2014; Carnell et al., 2014; Opel et al., 2015; Tuulari et al., 2015). It is 

difficult to compare results between adult PPI studies and our study as the seed and target 

regions differ and the psychological contrasts are different.  

For example, our PPI study is similar to a study by Passamonti et al., except they did not include 

weight status as a variable of interest among their adult participants (Passamonti et al., 2009). 

Their 21 participants had a mean age of 25.3 years (range [19-39] years) and mean BMI of 24 

(std 4.6) kg/m2. The participants completed the Dutch Eating Behavior Questionnaire (DEBQ) 

(van Strien et al., 1986) and, while in the MRI scanner, they viewed appetizing and bland foods. 

Passamonti et al., assessed the association between PPI functional connectivity and external 
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eating as reported by the DEBQ, as we did. Their psychological contrast compared appetizing 

foods to bland foods. Using the NAc as the source region, as we did, Passamonti et al., assessed 

the PPI functional connectivity with the basolateral amygdala (BLA), associated with motiva-

tional drive, and with the anterior cingulate cortex (ACC), associated with response inhibition. 

These regions are similar to those we used. They reported that when viewing [APPETIZING > 

BLAND] food images, their participants exhibited increasing external eating habits with increasing 

[BLA:NAC] PPI (p = 0.001; R2 = 0.62; r = 0.79; n = 21). In our analysis of the comparison of 

viewing [HICAL > LOCAL] food images, we reported no association between external eating 

habits and [BLA:NAC] PPI for children who were obese or healthy weight (both p > 0.22; both 

R2 < 0.10; n = 17).  

The difference in results may be explained by lack of stated weight status, age differences, 

difference in psychological contrasts, and/or other methodological differences. In the Passamonti 

et al., study, the mean BMI is 24 kg/m2 (std = 4.6 kg/m2). The definition of overweight for adults 

is BMI range [25-30) kg/m2. Given the standard deviation of Passamonti’s reported BMI values, 

and assuming the distribution of their BMIs is approximately normal, it is probable that half the 

participants in the Passamonti et al., study are at least overweight. Nevertheless, when we com-

bined our participants into a single weight group to approximate Passamonti’s study, we still 

found no association between external eating habits and [BLA:NAC] PPI. Passamonti et al., 

reported no association between external eating habits and BMI. In agreement, we also report no 

such association (p = 0.419).  

Passamonti et al., also reported increased external eating habits with decreasing response 

inhibition-associated [ACC:NAC] PPI (p < 0.001; R2 = 0.61; r = -0.78; n = 21). We reported the 

same: increased external eating habits with decreasing [RACC:NAC] PPI, but only among 
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children who were healthy weight (p = 0.054; R2 = 0.226; r = -0.475; n = 17). We found the 

opposite relationship among children who were obese: increased external eating habits were 

associated with increasing [ACC:NAC] PPI (p = 0.035; R2 = 0.264; r = 0.514; n = 17). Without 

the weight status of the participants in the Passamonti et al., study, further interpretation would 

be conjecture. 

Insights into the developing neurobiology of obesity. 

To date, childhood obesity neuroimaging studies largely mimic adult obesity studies, identifying 

differences between obese and healthy weight groups. This is true of our PPI functional connec-

tivity study. However, our resting state functional connectivity study moves beyond conventional 

group analysis by identifying the relationship of continuous adiposity levels with functional 

connectivity imbalance. Our results indicate that adiposity-associated differences in neural 

function fall along a continuum and may not require decades of unhealthy eating. Furthermore, 

this neural difference is not triggered only by food-related stimuli, but exists in the absence of 

food-related stimuli. Because the majority of childhood obesity neuroimaging studies are cross-

sectional, we cannot yet speculate whether neural differences develop during childhood or if 

these differences are inherent.  

Future work. 

Longitudinal studies 

Longitudinal neuroimaging studies, beginning at an early age, are needed to track the neural 

development of obesity. Longitudinal studies might also identify causal relationships between 

obesity and neural function. Figure 5.2 shows the relationship between adiposity and functional 

connectivity imbalance from our resting state functional connectivity study. Note the participants 
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with larger impulsivity-biased imbalance but lower adiposity. Following these participants would 

reveal whether they are at risk for developing obesity. Longitudinal studies might also identify 

novel therapeutic or interventional targets. As discussed in Chapter 4, we suggest that mindful-

ness might help treat and/or prevent childhood obesity by recalibrating this neural imbalance.  

 

Figure 5.2: Adiposity vs. resting state functional connectivity imbalance. Relationship 
between adiposity, quantified by BMI z-score, and resting state functional connectivity (rsFC) 
imbalance where positive values indicate an impulsivity-associated bias. 

True network analysis 

Our resting state functional connectivity analysis examined only three brain regions; our PPI 

analysis also examined three brain regions. The brain is complex and comprised of multiple 

networks. Future work will use analysis techniques that take into account this complexity. 

Graph-based analysis can describe whole-brain networks and assess interactions within and 

across networks. Graph-based analysis can also describe networks at varying spatial and 

temporal resolutions. These are properties that lend themselves to a more realistic representation 

of the brain.  
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One of the reasons we examined a single three-node network was to avoid the penalties incurred 

when correcting for multiple comparisons. In future work, we will use machine learning 

techniques to categorize brain regions into representative classes which will allow for a more 

accurately represented network while restricting it to a manageable size. Additionally, we will 

use multivariate pattern analysis to identify behavioral and/or phenotypic data that are associated 

with these representative brain classes. With these more comprehensive and potentially more 

sensitive analysis tools, we might identify new therapeutic or interventional targets. 

Conclusions. 

Adult obesity has reached epidemic proportions where, in the US, being an overweight or obese 

adult is the rule rather than the exception. The increased prevalence of childhood obesity ensures 

that the obesity epidemic in the US will continue. Given the serious health consequences of 

obesity, the obesity epidemic must be halted and reversed. Efforts to treat obesity, primarily via 

behavioral changes such as eating more healthfully and increasing exercise, have been largely 

unsuccessful. New targets for treatment are needed. We suggest that a “balanced” brain with 

respect to food, in concert with balanced eating and exercise, may be a viable treatment.  

Neuroimaging, particularly functional magnetic resonance imaging, which is non-invasive and 

does not use ionizing radiation, can help us identify and track neural “balance.” Additionally, 

fMRI may allow us to objectively determine the trajectory and effectiveness of obesity 

treatments. Note that we are not proposing fMRI scans as treatment. Rather, we suggest that 

neuroimaging can be an important part of efficient clinical trials.   
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