
Probing Planetary Formation and Evolution: Transiting Planets and Occulting Disks

By

Joseph E. Rodriguez Jr.

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Physics

May, 2016

Nashville, Tennessee

Approved:

Keivan G. Stassun, Ph.D.

Joshua Pepper, Ph.D.

David A. Weintraub, Ph.D.

Andreas A. Berlind, Ph.D.

David J. Ernst, Ph.D.



DEDICATION

This dissertation is dedicated to the many people who have advised me, supported me,

and encouraged me to pursue my passion for research in the field of astrophysics. Specif-

ically, I want to thank my Mom (Jeannie), Dad (Joe) and Sister (Jenny) for always sup-

porting me and pushing me towards success. I also want to thank Swata Patel for always

standing by my side and helping me make one of the best decisions of my life, transferring

to Vanderbilt University.

My appreciation to Keivan G. Stassun and Joshua Pepper for giving me the opportunity

to pursue my Ph.D. at Vanderbilt under their advisement. I will always be grateful for the

time, effort, and support that has been critical to my success. In addition, I would like to

thank rest of the members of my dissertation committee, David A. Weintraub, Andreas A.

Berlind, and David J. Ernst for their time, advice, and expertise.

ii



ACKNOWLEDGMENTS

KELT-South is hosted by the South African Astronomical Observatory and we are

grateful for their ongoing support and assistance.

We acknowledge with thanks the variable star observations from the AAVSO Interna-

tional Database contributed by observers worldwide and used in this research. This research

was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS),

funded by the Robert Martin Ayers Sciences Fund. This paper uses observations obtained

with facilities of the Las Cumbres Observatory Global Telescope.

This publication makes use of data products from the Wide-field Infrared Survey Ex-

plorer, which is a joint project of the University of California, Los Angeles, and the Jet

Propulsion Laboratory/California Institute of Technology, funded by the National Aero-

nautics and Space Administration. This publication makes use of data products from the

Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and

the Infrared Processing and Analysis Center/California Institute of Technology, funded by

the National Aeronautics and Space Administration and the National Science Foundation.

This work has made use of NASA’s Astrophysics Data System and the SIMBAD database

operated at CDS, Strasbourg, France.

This paper makes use of data from the first public release of the SuperWASP data [But-

ters et al., 2010] as provided by the SuperWASP consortium and services at the NASA Exo-

planet Archive, which is operated by the California Institute of Technology, under contract

with the National Aeronautics and Space Administration under the Exoplanet Exploration

Program.

Support for CARMA construction was derived from the Gordon and Betty Moore Foun-

dation, the Kenneth T. and Eileen L. Norris Foundation, the James S. McDonnell Founda-

tion, the Associates of the California Institute of Technology, the University of Chicago, the

states of California, Illinois, and Maryland, and the National Science Foundation. Ongoing

iii



CARMA development and operations are supported by the National Science Foundation

under a cooperative agreement, and by the CARMA partner universities.

We have used observational data from the ASAS photometric survey and we are thank-

ful for the observations and data reduction performed.

The CSS survey is funded by the National Aeronautics and Space Administration under

Grant No. NNG05GF22G issued through the Science Mission Directorate Near-Earth Ob-

jects Observations Program. The CRTS survey is supported by the U.S. National Science

Foundation under grants AST-0909182 and AST-1313422.

The DASCH project at Harvard is grateful for partial support from NSF grants AST-

0407380, AST-0909073, and AST-1313370.

Development of ASAS-SN has been supported by NSF grant AST-0908816 and CCAPP

at the Ohio State University. ASAS-SN is supported by NSF grant AST-1515927, the Cen-

ter for Cosmology and AstroParticle Physics (CCAPP) at OSU, the Mt. Cuba Astronomical

Foundation, George Skestos, and the Robert Martin Ayers Sciences Fund.

iv



TABLE OF CONTENTS

Page
DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Disk Eclipse Search with KELT (DESK) Survey . . . . . . . . . . . . . . . . 1
1.2 Transiting Exoplanets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Occultation of the T Tauri Star RW Aurigae A by its Tidally Disrupted Disk . . . . 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Characteristics of the RW Aur System . . . . . . . . . . . . . . . . . . . . 6
2.3 Photometric Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Archival Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 KELT-North . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Results: Variability Before and During the Dimming Event . . . . . . . . . . 10
2.4.1 Pre-Dimming Variability . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 2010-2011 Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Interpretation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Favored Interpretation: Occultation by the RW Aur A Tidally Dis-

rupted Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Alternate Explanations . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2.1 Occultation by Stellar Companion . . . . . . . . . . . . . . . . 20
2.5.2.2 Alternate Stellar Parameters of RW Aur A . . . . . . . . . . . . 21
2.5.2.3 Occultation from Outer Edge of RW Aur A’s Circumstellar Disk 22
2.5.2.4 A Warp in the Inner Circumstellar Disk . . . . . . . . . . . . . 23
2.5.2.5 UXor Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Recurring Occultations of RW Aurigae by Coagulated Dust in the Tidally Dis-

rupted Circumstellar Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Photometric Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 KELT-North . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Kutztown University Observatory . . . . . . . . . . . . . . . . . . . . 33
3.2.3 American Association of Variable Star Observers (AAVSO) . . . . . . . 34

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 2010-2011 Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 2012-2013 Small Dimming . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 2014-2015 Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Interpretation: Occultation by the RW Aur A Tidally Disrupted Disk

Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Evidence for Grain Growth in the Tidally Disrupted Disk . . . . . . . . 43

3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 V409 Tau As Another AA Tau: Photometric Observations of Stellar Occultations

by the Circumstellar Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Known Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 V409 Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 AA Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Photometric Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Archival Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 KELT-North . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 CARMA 3mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 AA Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 V409 Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2.1 Out-of-Dimming Variability . . . . . . . . . . . . . . . . . . . 59
4.4.2.2 2009-2010 Dimming Event . . . . . . . . . . . . . . . . . . . 61
4.4.2.3 2012-2013 Dimming Event . . . . . . . . . . . . . . . . . . . . 62
4.4.2.4 Spectral Energy Distribution Analysis . . . . . . . . . . . . . . 64

4.5 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 AA Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 V409 Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5 An Extreme Analogue of ε Aurigae: An M-giant Eclipsed Every 69 Years by a

Large Opaque Disk Surrounding a Small Hot Source . . . . . . . . . . . . . . . . 74
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Characteristics of the TYC 2505-672-1 System . . . . . . . . . . . . . . . . . 75
5.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 KELT-North . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 American Association of Variable Star Observers (AAVSO) . . . . . . . 76
5.3.3 Digital Access to a Sky Century at Harvard (DASCH) . . . . . . . . . . 77
5.3.4 Catalina Real-time Transient Survey (CRTS) . . . . . . . . . . . . . . . 77
5.3.5 All-Sky Automated Survey for SuperNovae (ASAS-SN) . . . . . . . . 78
5.3.6 Broadband Photometry from the Literature for Spectral Energy Distri-

bution Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 SED Analysis and Implications . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 Orbital Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Interpretation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.1 Favored Interpretation: A Red Giant Eclipsed by a Pre–Helium-White-

Dwarf Companion Surrounded by a Large Opaque Disk . . . . . . . . . 87
5.5.2 Alternate Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vi



5.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6 KELT-14b and KELT-15b: An Independent Discovery of WASP-122b and a New

Hot Jupiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Discovery and Follow-Up Observations . . . . . . . . . . . . . . . . . . . . 94

6.2.1 KELT-South . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2 Photometric Follow-up . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.2.1 LCOGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2.2 PEST Observatory . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.2.3 Hazelwood Observatory . . . . . . . . . . . . . . . . . . . . . 99
6.2.2.4 Adelaide Observations . . . . . . . . . . . . . . . . . . . . . . 100

6.2.3 Spectroscopic Follow-up . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.3.1 Reconnaissance Spectroscopy . . . . . . . . . . . . . . . . . . 100
6.2.3.2 High Precision Spectroscopic Follow-up . . . . . . . . . . . . . 103
6.2.3.3 CYCLOPS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.3.4 CORALIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.1 SME Stellar Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 SED Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.3 Evolutionary State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.4 UVW Space motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Planetary Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.1 EXOFAST Global Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.2 Transit Timing Variation Analysis . . . . . . . . . . . . . . . . . . . . 114

6.5 False Positive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6.1 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6.2 Opportunities for Atmospheric Characterization . . . . . . . . . . . . . 120
6.6.3 Spectroscopic Follow-up . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



LIST OF TABLES

Table Page

2.1 KELT-North photometric observations of RW Auriga . . . . . . . . . . . . . 10

3.1 List of observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The properties of the reference stars. The quoted apparent magnitudes were

obtained from the AAVSO Variable Star Database (A. A. Henden 2010, pri-

vate communication). The cited sources are as follows: †APASS, ††Tycho-2,

†††TASS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 CTTS that are candidate UXor stars (G or later) . . . . . . . . . . . . . . . . 48

4.2 KELT-North Table of Observing Seasons . . . . . . . . . . . . . . . . . . . 54

4.3 KELT-North photometric observations of V409 Tau and AA Tau . . . . . . . 55

4.4 Archival flux measurements of V409 Tau used in the SED analysis. . . . . . 65

5.1 Archival flux measurements of TYC 2505-672-1 used in the SED analysis. . 80

6.1 Stellar Properties of KELT-14 and KELT-15 obtained from the literature. . . 96

6.2 KELT-South BLS selection criteria . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Photometric follow-up observations and the detrending parameters found by

AIJ for the global fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Spectroscopic follow-up observations . . . . . . . . . . . . . . . . . . . . . 100

6.5 KELT-14 radial velocity observations with CYCLOPS2. . . . . . . . . . . . 101

6.6 KELT-15 radial velocity observations with CYCLOPS2 and CORALIE. . . . 102

6.7 Median values and 68% confidence interval for the physical and orbital pa-

rameters of the KELT-14 system . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8 Median values and 68% confidence interval for the physical and orbital pa-

rameters of the KELT-15 system . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



6.9 Transit times for KELT-14b. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



LIST OF FIGURES

Figure Page

1.1 CHARA observations of ε Aurigae during the beginning of the most recent

eclipse showing the disk of the companion crossing the face of the star.

The white circle outlines the primary stars extent and the white lines are

the model of the disk superimposed on the image. From Kloppenborg et al.

[2010]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 (Top) AAVSO (Black), KELT-North (Blue), SuperWASP (Red) and the

Wesleyan Van Vleck (Green) light curves of RW Aur from 1950 to 2012.

The KELT and SuperWASP light curves do not resolve the A and B com-

ponents. The shaded region in the upper plot corresponds to the six KELT

seasons which is shown in the bottom plot. (Bottom) The KELT-North,

SuperWASP and AAVSO light curves plotted for the six KELT-North ob-

serving seasons. The dimming of the star is seen from late 2010 through

early 2011 in the KELT-North and AAVSO light curves and is centered on

early January of 2011. The median KELT and SuperWASP errors are ∼0.01

Mag. For better visualization of the true nature of the data, the errors are

not plotted. The shaded region in grey is the location of the main dimming

event is seen in late 2010 through early 2011. A zoom in of this region is

shown in Figure 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

x



2.2 The resulting periodograms from the Lomb-Scargle analysis of the AAVSO,

KELT-North, SuperWasp and Van Vleck photometric data. The vertical

dashed line represents a 2.7 day periodicity that has been previously re-

ported as half the rotation period of the star. We recover this period in

the Wesleyan U − B light curve data. The features seen at 1.0 c/d are the

(high-frequency) aliases of long-term variation caused by diurnal sampling. 14

2.3 KELT-North (blue) and AAVSO (black) light curves zoomed in on the

eclipse. In grey dashed highlights is the estimated ingress of 20 days and

the two red vertical lines mark the estimated eclipse duration. The KELT

observation have an error of 0.04 Mag while the most AAVSO data do not

have reported errors. The faintest points observed during the dimming are

near the observational limit of KELT. . . . . . . . . . . . . . . . . . . . . 16

2.4 Schematic of the RW Aur A disk geometry, showing to scale, the height

required for a feature at the edge of the disk to cause the observed occultation. 22

2.5 Calculated width of the occulting body as a function of semi-major axis for

the given observed occultation duration of ∼180 days, assuming Keplerian

motion. The vertical lines correspond to the maximum disk radius of 41

to 57 AU, based on the two possible inclinations that Cabrit et al. [2006]

estimated for the disk (45◦ and 60◦). . . . . . . . . . . . . . . . . . . . . . 28

3.1 The KUO field-of-view for RW Aur. The standard reference stars are la-

beled as A, B, C, and D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



3.2 The KELT-North (Blue) and AAVSO (Black) observations plotted for the

9 KELT-North seasons. The three gray-shaded regions correspond to the

2010-2011, 2012-2013 and 2014-2015 large dimming events. The AAVSO

and KUO data are in Visual and V-band magnitudes while the KELT-North

observations are in instrumental magnitudes, that we approximate to the

V-band but no attempt has been made to place all the data on the same

absolute scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 A zoom-in of Figure 3.2 in late 2012 to early 2013 showing a small dim-

ming of the RW Aur system. The shaded region is the estimated ingress

(the period of time for the dimming). . . . . . . . . . . . . . . . . . . . . . 37

3.4 (Top) Recreation of Figure 3 from Paper I showing the 2010-2011 large

dimming event. (Bottom) Zoom in of the last two KELT-North seasons

showing the 2014-2015 dimming. . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 The KUO BVRI light curves of RW Aur covering the 2014-2015 large dim-

ming event. These observations do not resolve the RW Aur system. . . . . . 40

3.6 The KUO B−V(top) and V −R (bottom) color curve of RW Aur A during

the 2014-2015 dimming. The BVR brightness of RW Aur B [Antipin et al.,

2015] has been subtracted from the KUO observations . . . . . . . . . . . 44

4.1 KELT-North (Black), SuperWASP (Blue), CRTS (Red) and the ASAS (Green)

light curves of V409 Tau (Top) and AA Tau (Bottom) from 2004 to 2013.

A vertical offset has been applied to the KELT, SuperWASP and ASAS

data to match pre-dimming magnitudes of AA Tau to the V band observa-

tion by CRTS. The same vertical offset has been applied to the V409 Tau

observations. Only the CRTS data are in V-band magnitudes whereas the

other observations are in very broad band magnitudes that we approximate

to V-band but no attempt has been made to place all the data on the same

absolute scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xii



4.2 LS periodicity analysis of the KELT-North photometric data. Top Row: LS

periodogram of for the Full KELT-North AA Tau data set (Left) and KELT-

North season 1 (right). The vertical red dashed line corresponds to the 8.2

day period found by Vrba et al. [1993]. Bottom Row: KELT-North season

1 V409 Tau data set (Left) and KELT-North season 5 (Right). The vertical

red dashed line is the 4.574 day period found by Xiao et al. [2012]. The

large peak at 1.0 and 2.0 cycles/day in all periodograms is a diurnal alias of

the long period variability. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 KELT-North Season 1 light curve of AA Tau phased to an 8.21 day period

recovered from LS analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 (Top) KELT-North (Black) and CRTS (Red) light curves of AA Tau during

the 2011 sudden dimming event. (Middle) A zoom-in of the first full KELT-

North season during the dimming. (Bottom) A zoom-in of the second full

KELT-North season during the dimming. . . . . . . . . . . . . . . . . . . . 59

4.5 KELT-North Season 5 light curve of V409 Tau phased to a 4.723 day period

recovered from our LS analysis. A 5 harmonic Fourier series was fit to the

data to remove long term trends. . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 KELT-North (Black), CRTS (red) and the ASAS (green) light curves of

V409 Tau during the first (top) and second (bottom) dimming events. The

shaded region corresponds to the estimated duration of the events ingress. . 63

4.7 Spectral Energy Distribution fit for the V409 Tau system. Symbols with

error bars represent flux measurements with uncertainties, and inverted tri-

angles represent 3σ upper limits (see Table 4.4). The dashed curve repre-

sents the photosphere while the gray curves represent all of the star+disk

models that are consistent with the data to application of the Teff , AJ , and

distance criteria. The solid curve represents the final best-fit SED including

all observational constraints (see the text). . . . . . . . . . . . . . . . . . . 66

xiii



4.8 The posterior distributions of mass, age, and radius, and our determined

parameters (w/ 68% confidence interval uncertainties) . . . . . . . . . . . . 69

4.9 A diagram displaying the theoretical warp or “wedge-shaped” feature in

the V409 Tau disk that has a shallow leading edge or “wedge angle”. Not

to scale. Φ corresponds to the leading edge angle or wedge angle. . . . . . . 70

5.1 (Top) The KELT-North (Blue), DASCH (Black), CRTS (Red), AAVSO (Vi-

olet), and ASAS-SN (Yellow) observations plotted from 1890 to 2015. The

green line represents a LC model of the combined photometric data. (Bot-

tom) The photometric observations covering the most recent eclipse. The

KELT-North observations during the eclipse are below the faintness limit

of KELT and are therefore only upper limits. Only the AAVSO, CRTS, and

ASAS-SN data are in the Visual and V-band magnitudes. We approximate

the all observations to the AAVSO V-band to match the quiescent magni-

tude of the AAVSO data but no attempt has been made to place all the data

on the same absolute scale. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Spectral Energy Distribution fit for TYC 2505-672-1. The upper red curve

has Teff = 3600 K while lower red curve is the same model but scaled down

by a factor of 50. The blue curve is the best fit to the GALEX fluxes; it has

Teff = 8000 K. The magenta dashed curve is a low-mass M-dwarf with an

accretion rate of 10−6 M� yr−1. The dotted magenta curve shows what it

would take for a cool star with a low accretion rate to match the GALEX

points (a solar-type star accreting at 3 × 10−8 M� yr−1). . . . . . . . . . . 81

xiv



5.3 (Top) KELT-North (Blue), DASCH (Black), CRTS (Red), AAVSO (Vio-

let), and ASAS-SN (Yellow) lightcurves phased to a period of 69.068 years

(Bottom) Zoom in of the eclipse. The green line represents a LC model

of the combined photometric data. The KELT-North observations during

the eclipse are below the faintness limit of KELT and are therefore only

upper limits. For a better visual representation of the in-eclipse structure,

the KELT upper limit observations are not included in the bottom figure.

Only the AAVSO, CRTS, and ASAS-SN data are in the Visual and V-band

magnitudes. We approximate the all observations to the AAVSO V-band to

match the quiescent magnitude of the AAVSO data but no attempt has been

made to place all the data on the same absolute scale. . . . . . . . . . . . . 87

6.1 Discovery light curve of KELT-14b (Top) and KELT-15b (Bottom) from the

KELT-South telescope. The light curves are phase-folded to the discovery

periods of P = 1.7100596 and 3.329442 days respectively; the red points

show the light curve binned in phase using a bin size of 0.01. . . . . . . . . 94

6.2 (Top) The follow-up photometry of KELT-14b from the KELT follow-up

network. The red line is the best model for each follow-up lightcurve.

(Bottom) The individual follow-up lightcurves combined and binned in 5

minute intervals. This combined and binned plot represents the true nature

of the transit. The combined and binned light curve is for display and is

not used in the analysis. The red line represents the combined and binned

individual models (red) of each follow-up observation. . . . . . . . . . . . 95

xv



6.3 (Top) The follow-up photometry of KELT-15b from the KELT follow-up

network. The red line is the best model for each follow-up lightcurve.

(Bottom) All the follow-up lightcurves combined and binned in 5 minute

intervals. This best represents the true nature of the transit. The combined

and binned light curve is for display and is not used in the analysis. The red

line represents the combined and binned individual models (red) of each

follow-up observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 (Top) the AAT radial velocity measurements (the median absolute RV has

been subtracted off) and residuals for KELT-14. The best-fitting orbit model

is shown in red. The residuals of the RV measurements to the best fit-

ting model are shown below. (Bottom) The KELT-14 AAT measurements

phase-folded to the final global fit ephemeris. . . . . . . . . . . . . . . . . 103

6.5 (Top) the AAT (black) and CORALIE (red) radial velocity measurements

(the median absolute RV has been subtracted off) and residuals for KELT-

15. The best-fitting orbit model is shown in red. The residuals of the RV

measurements to the best model are shown below. (Bottom) The KELT-15

AAT (black) and CORALIE (red) measurements phase-folded to the final

global fit ephemeris. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 The AAT Bisector measurements for the (Top) KELT-14 and the com-

bined AAT and CORALIE bisector measurements for (Bottom) the KELT-

15 spectra used for radial velocity measurements. We find no significant

correlation between RV and the bisector spans. . . . . . . . . . . . . . . . . 107

6.7 The SED fit for (top) KELT-14 and (bottom) KELT-15. The red points show

the photometric values and errors given in Table 6.1. The blue points are

the predicted integrated fluxes at the corresponding bandpass. The black

line represents the best fit stellar atmospheric model. . . . . . . . . . . . . 110

xvi



6.8 The theoretical H-R diagrams for (top) KELT-14 and (bottom) KELT-15

using the Yonsei-Yale stellar evolution models [Demarque et al., 2004].

The logg∗ values are in cgs units. The red cross represents the values from

the final global fit. The blue cross is the position and errors of the SME

analysis when logg∗ was fixed at the initial global fit value and the green

cross is when logg∗ was not fixed. The dashed lines at the edge of the gray

shaded region represent the 1σ uncertainties on M? and [Fe/H] from the

global fit. The various ages along the tracks are represented by the blue

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Transit time residuals for KELT-14b using our final global fit ephemeris.

The times are listed in Table 6.9. . . . . . . . . . . . . . . . . . . . . . . . 114

6.10 The inflation irradiation history for (top) KELT-14 and (bottom) KELT-15

shown for test values of log Q′? of 5 to 8. The model assumes the stellar

rotation is negligible and treats the star as a solid body. Also the model

assumes a circular orbit aligned with the stellar equator. For both KELT-

14b and KELT-15b, we find an the insolation received is above the empir-

ical threshold (horizontal dashed line) determined by Demory and Seager

[2011]. The vertical line represents the estimated current age of the system. 121

6.11 The expected day-side thermal emission from the planet in the K-band (as-

suming no redistribution of heat) for all known transiting planets brighter

than a K-band magnitude of 11. Along with KELT-14b and KELT-15b,

we highlight WASP-33b, one of the hottest known transiting planets and

KELT-7b, another very hot and very bright planet discovered by the north-

ern component of the KELT survey. Data are from this paper and the NASA

Exoplanet Archive, accessed on 2015 August 27. . . . . . . . . . . . . . . 122

xvii



Chapter 1

Introduction

1.1 Disk Eclipse Search with KELT (DESK) Survey

It is known that planets form from the gas and dust in the protoplanetary disks sur-

rounding young stellar objects (YSOs). What is not clear is what governs the large diver-

sity of planet types and of planetary system architectures that are now being discovered

by the thousands. The circumstellar environment involves a variety of processes that lead

to the evolution of the protoplanetary disk over time—processes including accretion onto

the star, dispersion by stellar winds and radiation, magnetic fields, outflows, and in many

cases stellar companions—and that can manifest as disk substructures, gradients, and other

properties that could reveal the mechanisms that influence planet formation and diversity

therein.

Figure 1.1: CHARA observations of ε Aurigae during the beginning of the most recent
eclipse showing the disk of the companion crossing the face of the star. The white circle
outlines the primary stars extent and the white lines are the model of the disk superimposed
on the image. From Kloppenborg et al. [2010].
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One method to constrain the planet-building properties of these disks is to observe them

as they fortuitously eclipse their stars (Figure 1.1). Such events are very rare—only a few

have been discovered. Fortunately, the advent of wide-field time domain surveys provides

a ideal tool to search for rare eclipse events. The Kilodegree Extremely Little Telescope

(KELT) survey in particular provides a unique combination of sky coverage, cadence, and

baseline that is well-suited to search for these rare disk-eclipsing systems. Using the KELT

survey I have been leading the Disk Eclipse Search with KELT (DESK) survey [Rodriguez

et al., 2015a]. Using the data from KELT, we have been performing a search to find deep,

long duration dimming events representing occultations of stars by circumstellar material.

This survey was inspired by the discovery of J1407, the first circumplanetary disk system

[Mamajek et al., 2012]. After searching through only ∼50% of the available KELT data,

the DESK survey has already discovered and analyzed four large dimming events around

the young stars RW Aurigae, V409 Tau, AA Tau, and a ∼69 year period eclipsing binary

[Rodriguez et al., 2013, 2015b,c, 2016].

1.2 Transiting Exoplanets

With the success of the Kepler mission, the exoplanet field has shifted focus from pure

discovery to a combination of discovery, demographic analysis, and detailed characteriza-

tion, especially for exoplanet atmospheres. Unfortunately, a large portion of the discovered

extra-solar planets are too faint to permit atmospheric characterization. The goal of the

KELT survey is to discover transiting extrasolar planets around bright stars (V=8-11). The

KELT survey is comprised of two telescopes, KELT-North and KELT-South, and together

they are surveying over 70% of the sky with a ∼20 minute cadence and up to a 10 year

baseline [Pepper et al., 2007, 2012]. Such bright targets are optimal for subsequent char-

acterization of a planet’s atmosphere through a variety of techniques, including secondary

eclipse observations and transmission spectroscopy. To date, the KELT Survey has discov-

ered 16 transiting planets around bright stars with 10 in press [Siverd et al., 2012, Beatty
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et al., 2012, Pepper et al., 2013, Collins et al., 2014, Bieryla et al., 2015, Fulton et al., 2015,

Kuhn et al., 2015, Eastman et al., 2015, Rodriguez et al., 2015b]

An important aspect of the KELT survey is the ability to search for planets around hot

host stars (Te f f > 6000K) that were previously avoided by other transit and radial velocity

exoplanet surveys. These stars represent a very large part of parameter space for planets

and their hosts that remains largely unexplored, and this includes importantly the not yet

retired A stars. Of the 16 confirmed exoplanets by the KELT survey, 9 of them have a Te f f

> 6000K. Hotter stars are rotating significantly faster (Vsini ∼ 100 km/s) causing the lines

typically used for RV measurements to become weaker and broader making precise RV

measurements difficult. With improved RV measurement techniques, photometric confir-

mation of the ephemeris, and measurements of the Rossiter-McLaughlin effect, confirma-

tion of exoplanets around hot rapidly rotating stars is more feasible especially for larger,

more massive planets. It has been proposed that hotter, more massive stars host a different

population of planets than cooler, low mass stars [Winn et al., 2010]. The discoveries from

the KELT survey provide a direct sample to test this hypothesis.
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Chapter 2

Occultation of the T Tauri Star RW Aurigae A by its Tidally Disrupted Disk

2.1 Introduction

Classical T Tauri stars (CTTS) are a type of active pre-main sequence stars that show

a large excess of infrared (IR) radiation and were first identified by the broad Hα emis-

sion line widths in their spectra. The large IR flux in the spectra of CTTS is normally

attributed to thermal emission from their dusty circumstellar disks. A large excess of ul-

traviolet (UV) radiation is often observed and is believed to be a result of material in the

disk being accreted onto the surface of the star, producing hot spots [Bertout et al., 1988].

Irregular photometric variability that is characteristic of CTTS has a typical amplitude of

less than one magnitude and a time-scale of days to weeks [Herbst et al., 1994]. T Tauri

stars are known to have significant magnetic activity which can produce cool star spots and

enhanced chromospheric emission. Weak-line T Tauri stars (WTTS), which are typically

found in the same star-forming clouds as CTTS, were first distinguished from CTTS by

having very narrow Hα emission widths [Walter, 1986, Herbig and Bell, 1988]. They were

then found to be bright x-ray emitters and show little to no UV or near-IR excess emission.

These observational results are generally interpreted as indicating that WTTS are no longer

accreting and are either diskless or have disks with very little mass in the form of small,

hot dust grains [Haisch et al., 2001]. It is generally believed that CTTS evolve into WTTS

when the disk is no longer a significant component of the system, as a result of accretion

onto the star, planet formation, and dispersal.

From surveys, it appears that most nearby T Tauri stars are members of close binary

systems [Ghez et al., 1993, Leinert et al., 1993, Richichi et al., 1994, Simon et al., 1995,

Ghez et al., 1997b] . These companions can influence the stellar environment and affect

the stellar properties determined for the primary star if not taken into account [Ghez et al.,
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1997a]. Depending on the parameters of the companion star’s orbit, the companion can

significantly disrupt the primary star’s circumstellar disk. Simulations show that a fly-by of

a stellar companion can tidally disrupt the circumstellar disk around a star, leaving behind

a truncated, more compact disk and a long tidal arm feature trailing out from the disrupted

material [Clarke and Pringle, 1993].

Occultations of stars by their disks, though rare, provide a powerful tool for probing the

structure of circumstellar disks. To date, only a few long-duration, deep eclipses of young

stars have been discussed in the literature. Most such eclipses appear to be periodic, with

the occultation attributed to a disk around a stellar companion or occultation of a star by

its own disk. One well known example of this is ε Aur, an F0 giant that experiences long

and deep eclipses every 27.1 years. The eclipse has a duration of almost two years and a

depth of 0.8 - 1.0 magnitude [Carroll et al., 1991]. The eclipse is attributed to a companion

star with its own circumstellar disk [Kloppenborg et al., 2010]. KH 15D is another system,

discovered in 1995, which experiences complex eclipsing events with changing properties

[Kearns and Herbst, 1998]. That system consists of a non-eclipsing binary star pair that

is repeatedly occulted on the binary orbital period by the sharp edge of the circumbinary

disk. Long-term secular changes in the occultations are caused by the slow precession of

the circumbinary disk across our line of sight [Chiang and Murray-Clay, 2004, Winn et al.,

2004]. There are a few other examples of periodically occulting systems (see, e.g. Bouvier

et al. [2007], Plavchan et al. [2008], Grinin et al. [2008]).

Some young stars experience occultations that are not periodic (or at least not known

to be). In 2007, a pre-main sequence star (2MASS J14074792-3945427) exhibited a long

and extremely deep occultation [Mamajek et al., 2012]. This eclipse was observed by the

SuperWASP photometric transit survey [Butters et al., 2010] and the ASAS photometric

survey [Pojmanski, 2002]. The eclipse lasted ∼54 days and had a ∼4 mag maximum depth.

The cause of the eclipse is thought to be a circumplanetary disk, in the process of formation,

analogous to the rings around Saturn. Photometric variability was seen during the eclipse

5



and attributed to gaps in the large ring system around the hypothesized planet [Mamajek

et al., 2012].

Such systems provide insight into the nature of proto-planetary and circumstellar envi-

ronments and can be used as tools to probe the structure and composition of circumstellar

disks. In this paper we present new observations of the bright system, RW Aur, indicating

a long and deep occultation (Figure 2.1) somewhat similar to the one seen by Mamajek

et al. [2012]. To our knowledge this paper is the first analysis of the event, which was first

reported by Aleks Scholtz1. We interpret the event as an occultation of RW Aur A by a

portion of its tidally disrupted disk.

The paper is organized as follows. We introduce the known characteristics of the RW

Aurigae system in §2, illustrating the complex stellar environment. In §3, we describe the

photometric observations, and then discuss the photometric properties of the data in §4. In

§5, we present several interpretations of the light curve and discuss their plausibility. We

summarize our results and conclusions in §6.

2.2 Characteristics of the RW Aur System

The RW Aur system (α = 05h 07m 49.566s, δ = +30◦ 24′ 05.18′′) is at a distance

of 142 ± 14 pc [Wichmann et al., 1998], and has a complex stellar environment. It is a

binary system, comprising one CTTS (RW Aur B) orbiting another CTTS (RW Aur A)

[Duchêne et al., 1999]. The primary component (RW Aur A) has a spectral type between

K1 and K4 [Petrov et al., 2001], V ∼10.5 [White and Ghez, 2001] and an inferred mass

of ∼1.3-1.4 M�, determined by comparing broadband near IR observations to pre-main

sequence models [Ghez et al., 1997a, Woitas et al., 2001]. The A component shows clear

IR excess indicative of a circumstellar disk, with a mass of Md ∼3 × 10−4 M�[Williams

and Andrews, 2006]. This disk radius is calculated to be ≤ 57 AU, making it one of the

smallest detected around a T Tauri star [Cabrit et al., 2006]. RW Aur A exhibits some
1A huge eclipse in the young star RW Aur. http://dx.doi.org/10.6084/m9.figshare.92169
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extreme features, including an accretion rate of 2-10 × 10−7 M�yr−1, one of the highest

known for a T Tauri star, [Hartigan et al., 1995] and also bright bipolar jets [Woitas et al.,

2002]. López-Martı́n et al. [2003] determined that the bipolar jets coming from RW Aur

A are inclined to our line of sight by 46◦ ± 3◦, using the ratio of the proper motion and

the radial velocities. These jets extend out at least 145′′ from RW Aur A and contain knots

of emission out to ∼100′′ [Mundt and Eislöffel, 1998, Woitas et al., 2002]. Transverse

velocity shifts have been detected for this jet, which indicate that it may be rotating and

that the jet is originating from the disk surface within 1.6 AU from the star [Cabrit et al.,

2006, Woitas et al., 2005]

RW Aur B is 1.5”(∼200 AU) [Duchêne et al., 1999, Cabrit et al., 2006] from RW Aur

A and has an inferred mass of 0.7-0.9 M�[Ghez et al., 1997a, Woitas et al., 2001]. It is a

late K star (K6 ± 1 [White and Hillenbrand, 2004]) with V ∼13.7 [White and Ghez, 2001].

Ghez et al. [1993] found faint K-band emission 0.12” from RW Aur B and interpreted this

to be a third stellar component to the system, RW Aur C. Other authors have also claimed

the presence of a third component in the system, but clear evidence is lacking. Furthermore,

later observations failed to confirm the third component [Ghez et al., 1997a].

The RW Aur system has been found to vary in many observational characteristics. Beck

and Simon [2001] found that the RW Aur system showed peak-to-peak variations of 2-3

mag on timescales of months using Harvard photographic observations from 1899 to 1952

(See Figure 3 of Beck and Simon [2001]). The standard deviation of these variations is

∼0.7 mag. Petrov et al. [2001] observed periodic variability in the radial velocity of RW

Aur A of 2.77 days as well as periodicity in the U − V and B− V colors of 2.64 days.

The combined RW Aur system shows an overall non-periodic, photometric variability that

Herbst et al. [1994] determined arises from the A component. The erratic variability has

been attributed by different authors to the accretion of the disk onto the star or circumstellar

extinction from strong disk winds [Herbst et al., 1994, Petrov and Kozack, 2007]. These

are discussed in more detail in §4.1.
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Cabrit et al. [2006] conducted millimeter observations of the RW Aur system using

the IRAM Plateau de Bure Interferometer (1.3 mm, 2.66 mm). They find in the 1.3 mm

observations that RW Aur A has an outer truncated circumstellar disk extending out 41 -

57 AU in radius, inclined by 45◦ - 60◦ to our line-of-sight, and what appears to be a large,

tidally disrupted trailing “arm” that is wrapped around the star (see Figure 1.a from Cabrit

et al. [2006]). This arm-like feature has a three-dimensional-length of ∼600 AU, and is

almost certainly the result of a recent stellar fly-by of RW Aur B [Cabrit et al., 2006]. This

fly-by also caused the RW Aur A disk to be truncated near the periastron separation. While

a large portion of the arm is redshifted, indicating it is wrapped around and behind the A

component, there is a small portion that is connected to the northeast side of the RW Aur

A disk which is blue-shifted by up to 3.1 km s−1 relative to the star. This feature resembles

the destructive outcome of a coplanar eccentric fly-by similar to simulations from Clarke

and Pringle [1993], where all material outside the periastron distance is fully disrupted

and drawn out into a coherent tail in the direction of the companion’s orbit. The RW Aur

system therefore provides an excellent example of a T Tauri disk that has experienced a

recent dynamical disruption.

2.3 Photometric Observations

Several photometric surveys have observed RW Aur over both short and long time

scales going back to 1899. The light curve data are shown in Figures 2.1 and 2.3.

2.3.1 Archival Data

The Wide Angle Search for Planets (SuperWASP) is a wide field photometric survey

designed to detect transiting extrasolar planets over a large fraction of the sky. SuperWASP

observed RW Aur for one shortened season in 2004 and then two later seasons in 2006

and 2007. The SuperWASP public archive data is described in detail in Butters et al.

[2010]. The SuperWASP observations have a cadence of a few minutes in the V band
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and do not resolve the RW Aur system, thus the light curve incorporates light from all

system components. The median error for SuperWASP is ∼0.01 Mag.

The American Association of Variable Star Observers (AAVSO) is a non-profit organi-

zation dedicated to the goal of understanding variable stars. The AAVSO archive contains

observations of RW Aur going back to 1937, with the observations increasing in cadence

around 1954. The AAVSO data consist of V band and visual observations. Only some of

the AAVSO data have corresponding uncertainties reported.

Wesleyan University’s Van Vleck Observatory has monitored many known T Tauri stars

with the 0.6 meter Perkin Telescope. The resulting observations are included in a public

archive of UBVRI photometry. RW Aur A was observed from January 1965 until October

of 1994, with varying frequency. A detailed description of the archive is described in detail

in Herbst et al. [1994].

The AC and AM photographic plate series at the Harvard College Observatory have ob-

servations of RW Aur from 1899 to 1952, resulting in 162 observations. The photographic

observations were obtained using the 1.5 inch Cooke lens, corresponding to a plate scale

of 600”/mm. The B band magnitudes were estimated by analyzing over 150 archival plates

and comparing them to the known B magnitudes of nearby stars (Not shown in Figure 1,

see Figure 3 of Beck and Simon [2001]).

2.3.2 KELT-North

The Kilodegree Extremely Little Telescope (KELT-North) is an ongoing survey, search-

ing for transiting planets around bright stars (V = 8-10). KELT-North uses a Mamiya 645

80mm f/1.9 lens, and has a 42 mm aperture and a large field of view (26◦ × 26◦) with a

plate scale of 23”per pixel [Pepper et al., 2007].

RW Aur is located in KELT-North Field 04, which is centered on (α = 5hr 54m 14.466s,

δ = +31◦ 44′ 37′′). KELT-North observed this field from October 10, 2006 to September

23, 2012, obtaining 8,001 images. The data were reduced using a heavily modified version
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of the ISIS software package, described further in §2 of Siverd et al. [2012]2. The obser-

vations are in a broad R-band filter, with a ∼15 minute cadence and the typical error is less

than 0.04 Mag. The KELT-North observations also fail to resolve the RW Aur system. The

KELT-North data is presented in Table 1.

Table 2.1: KELT-North photometric observations of RW Auriga

BJDTDB KELT V Maga Poisson Errorsb

2454035.812879 10.326 0.008
2454035.817502 10.327 0.008
2454035.822123 10.324 0.008
2454035.826745 10.319 0.008
2454035.831367 10.311 0.008
2454035.835989 10.294 0.007
2454035.840612 10.286 0.007
2454035.845235 10.281 0.007
2454035.849855 10.286 0.007
2454035.854477 10.283 0.007

Notes. Table 1 is published in its entirety in the electronic edition of this paper. A portion is shown here for
guidance regarding its form and content.

aRelative KELT Instrumental magnitude corrected to Johnson V-magnitude. Absolute accuracy to ∼0.2 mag.
Relative accuracy to ∼0.04.

bPoisson errors to instrumental KELT magnitudes. True per-point magnitude errors must fold in 0.036 mag
systematic errors.

2.4 Results: Variability Before and During the Dimming Event

Here we discuss the variability characteristics of the deep dimming event. We also

describe the general photometric variability of RW Aur A. In Section 5 we discuss the

dimming in the context of an interpretation in which the star has been occulted by a portion

of its tidally disrupted disk.We focus our analysis on four data sets: KELT-North, AAVSO,

SuperWASP, and Wesleyan (Van Vleck).

2Much of the software is publicly available at the following address: http://verdis.phy.vanderbilt.edu
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2.4.1 Pre-Dimming Variability

CTTS can have erratic photometric variations on the time scale of a few days [Herbst

et al., 1994]. The light curve for RW Aur shows this photometric variability and it is

observed in all four data sets (Figure 2.1). The variability seen in the four data sets for RW

Aur has a peak-to-peak amplitude of 1-2 mag, on the timescale of days to weeks, with a

standard deviation of ∼0.4 mag.

Two possible explanations for the non-coherent photometric variability are circumstel-

lar extinction and varying accretion onto the surface of the star. Herbst et al. [1994] argued

convincingly that the non-coherent variability is caused by irregular accretion onto the sur-

face of RW Aur A, creating hot spots that rotate into and out of view. Herbst et al. [1994]

performed an analysis of the UBVRI photometric observations finding that the photometric

variations are roughly divided evenly (with relatively large amplitude) between positive and

negative excursions relative to a well defined median level. This is a defining characteristic

of accretion-driven variability, as opposed to circumstellar obscuration-driven variability

which tends to produce mainly dimming of the star, or flare driven-variability which tends

to produce mainly brightening events. Importantly, the Hα flux appears to be correlated

with the brightness of the star at all wavelengths [Herbst et al., 1982]. This is very strong

evidence in favor of an interpretation in which the photometric variability of RW Aur A

is principally connected to variations in its accretion rate. Petrov and Kozack [2007] and

Grinin et al. [2004] suggest that the photometric variability is the result of a strong disk

wind lifting material from the disk across the star causing circumstellar extinction. Such

disk winds are a known feature of CTTS but at odds with the accretion variability interpre-

tation of Herbst et al. [1994].

Some accreting stars can show periodic modulations in their light curves due to hot

accretion spots on the stellar surface rotating in and out of view on the stellar period.

To look for such periodicity we use a Lomb-Scargle periodogram as presented in Lomb

[1976], Scargle [1982], Press and Rybicki [1989]. This Lomb-Scargle method performs
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Figure 2.1: (Top) AAVSO (Black), KELT-North (Blue), SuperWASP (Red) and the Wes-
leyan Van Vleck (Green) light curves of RW Aur from 1950 to 2012. The KELT and Super-
WASP light curves do not resolve the A and B components. The shaded region in the upper
plot corresponds to the six KELT seasons which is shown in the bottom plot. (Bottom)
The KELT-North, SuperWASP and AAVSO light curves plotted for the six KELT-North
observing seasons. The dimming of the star is seen from late 2010 through early 2011 in
the KELT-North and AAVSO light curves and is centered on early January of 2011. The
median KELT and SuperWASP errors are ∼0.01 Mag. For better visualization of the true
nature of the data, the errors are not plotted. The shaded region in grey is the location of
the main dimming event is seen in late 2010 through early 2011. A zoom in of this region
is shown in Figure 2.3.

spectral analysis on unevenly sampled time series data and allows us to effectively identify

weak periodic signals. We performed this analysis on the KELT, AAVSO, SuperWASP and

Wesleyen photometric data.

We do not see any significant periodicity in the full KELT-North RW Aur light curve,
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nor in the KELT-North light curve with the dimming in late 2010 removed aside from the

1 day diurnal sampling effect. The AAVSO and SuperWASP light curves also do not show

any periodic signal. We do, however, confirm a ∼2.7 day periodic variability seen by Petrov

and Kozack [2007] in the Weslyan University (B−V) and (U − B) curves. The KELT and

SuperWASP light curves each exhibits a small peak between 2.69 and 2.72 days. Though

not individually statistically significant, their presence does lend additional credence to this

signal. A periodicity at twice this value (∼5.5 days) has been reported as the rotation period

of the star [Petrov et al., 2001, Gahm et al., 1999]. We are unable to identify this periodicity

in the individual U, B, or V Weslyan University light curves (Figure 2.2), which could be

the result of the rotational modulation signal being masked by the stochastic accretion

variability.

While the periodicity analysis does not shed much new light on the physical origin of

the variability, the overall available evidence appears to favor an interpretation in which the

photometric variability is tied to variations in the accretion rate. Spectroscopic monitoring

observations obtained during the deep dimming event corroborate this interpretation also,

as discussed in the next section.

2.4.2 2010-2011 Dimming

In late September 2010 the light curve of the RW Aur system became fainter, dropping

from a median brightness of V = 10.4 to V = 12.5 mag (Figure 2.1). This decrease lasted

for ∼180 days, ending in late March 2011. A good deal of structure and variability, on

similar time scales as the ingress and egress, 10-30 days, is apparent during the dimming

(Figure 2.3). The peak-to-peak depth of the fading is ∼4 mag and has a sustained duration

of many months. Therefore, the dimming event has a much deeper and longer duration

than the out of event stochastic variations that present a peak-to-peak amplitude of 1-2 mag

and a standard deviation of ∼0.4 mag on shorter timescales.

During the dimming, the system’s brightness decreases to V ∼12.5 (Figure 2.3). For
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Figure 2.2: The resulting periodograms from the Lomb-Scargle analysis of the AAVSO,
KELT-North, SuperWasp and Van Vleck photometric data. The vertical dashed line repre-
sents a 2.7 day periodicity that has been previously reported as half the rotation period of
the star. We recover this period in the Wesleyan U−B light curve data. The features seen at
1.0 c/d are the (high-frequency) aliases of long-term variation caused by diurnal sampling.

reference, the B component by itself was previously measured to be V ∼13.7 [Ghez et al.,

1997a]. Assuming the dimming is only due to a decrease in the brightness of the A com-

ponent, we calculate that the V magnitude of the A component, during the dimming event,

is ∼12.9. That corresponds to a decrease in flux of the A component of 91%, making it

∼1.5 times brighter than the B component during the 2010-2011 event. The large ampli-

tude non-periodic short-timescale variability that is so ubiquitous outside the 2010-2011

dimming, appears to significantly diminish but is still present. This is expected if the short-

term variability, originating from the A component, is subjected to significant dilution from

the combined system with the B component during the dimming. This supports the inter-

pretation that the A component is the source of the non-periodic variability. At the same
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time, we do observe structure during the dimming, in particular a 1-1.5 mag brightening

and then re-dimming toward the end which occurs with a characteristic timescale of ∼10

days, very similar to the main ingress timescale. Below we discuss the possibility that this

structure during the dimming may imply substructure in the occulting body.

RW Aur A was serendipitously monitored spectroscopically during October through

December of 2010 by Chou et al. [2013]. Although the authors were unaware of the 2010-

2011 dimming, their spectroscopic observations by chance coincide precisely with the first

half of the deep dimming event, including most of the ingress and the point of maximum

depth. Their analysis of 14 different emission lines tracing accretion, infall and outflow,

are broadly consistent with both the nature of the line profiles and with the short timescale

variability observed by others many years before (see references in Chou et al. [2013]).

In addition, their observed correlations between the various emission lines are consistent

with a largely steady magnetospheric accretion model over the course of the observations.

They do infer variations in the magnetospheric accretion of order 20 percent, comparable

to previous accretion variability measurements for RW Aur A and with the accretion vari-

ability interpretation for the general photometric variability of the system [Herbst et al.,

1994]. More fundamentally, these serendipitous spectroscopic observations suggest that

the accretion behavior of RW Aur A was not connected with the source of the pronounced

photometric dimming event.

It is clear that a dimming this large is not present prior to 2010 in the combined light

curves from KELT-North, AAVSO, Van Vleck and SuperWASP. Although there is sub-

stantial variation seen in the full light curve across 60+ years (Figure 2.1), we observe no

comparable events in duration or depth. We verify that by examining time spans in the full

data set that might appear to represent similar eclipses, but a detailed look shows that those

events clearly do not resemble the deep long and coherent event in 2010 to 2011. Since

we can place a lower limit on the duration of the fading to be ∼180 days from the KELT

and AAVSO light curves, we searched for a gap in the combined light curve, large enough,
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that a similar previous event may have occurred but have been missed. We examine the

RW Aur light curve, using all four data sets, and find no gap in the observations greater

than 180 days since 1961. Prior to 1961, the only photometric observations of this target

are the Harvard photographic observations and a much sparser set of AAVSO observations.

Those data span the years 1899 to 1961, with frequent gaps of 200+ days. We can therefore

conclude, that if the 2010 to 2011 event repeats it would have a minimum period of ∼50

years.

Figure 2.3: KELT-North (blue) and AAVSO (black) light curves zoomed in on the eclipse.
In grey dashed highlights is the estimated ingress of 20 days and the two red vertical lines
mark the estimated eclipse duration. The KELT observation have an error of 0.04 Mag
while the most AAVSO data do not have reported errors. The faintest points observed
during the dimming are near the observational limit of KELT.

2.5 Interpretation and Discussion

2.5.1 Favored Interpretation: Occultation by the RW Aur A Tidally Disrupted Disk

In this section we present what we regard as the most plausible interpretation of the

2010-2011 dimming event, namely an occultation of RW Aur A by a fragment of the tidal

arm that resulted from its disrupted circumstellar disk. This known feature of the circum-
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stellar environment provides the necessary ingredients of a large opaque body, with a sharp

edge moving perpendicular to the line of sight, to be able to naturally explain many of the

features of the observations. We explore alternate interpretations in §5.2, but here we inves-

tigate the necessary properties of the occulting body and discuss how well these properties

agree with those observed for RW Aur A’s tidally stripped arm.

We calculate the key characteristics of the occulter by modeling the dimming as an

occultation of RW Aur A by a large body which possesses a sharp edge that is oriented

perpendicular to the direction of motion. From the photometric observations, we are able

to determine three important features about the occulter: transverse velocity, semi-major

axis and width. From the light curves, we estimate the ingress to be between 10-30 days

and the total duration to be about 180 days. As a result of the cadence and gaps in observing

between the KELT-North data and AAVSO, the values determined for these two parameters

are based on a visual inspection of the light curves. We choose to define the end of the

dimming event to be after the two large variations at ∼5600 and ∼5640 (JD- 2450000)

(Figure 2.3) since this type of variability is not seen anywhere in the light curve outside

the dimming event and thus can be attributed to the mechanism responsible for the event.

We also observe that the variations during the dimming (including the substructure near the

end of the event), all share the same characteristic timescale of the ingress/egress (10-30

days).

Using the known mass and age of RW Aur A (1.3-1.4 M�, 4.5-6.2 Myr [Ghez et al.,

1997a, Woitas et al., 2001]), we refer to the Dartmouth Stellar Evolution Program’s (DSEP)

young stellar models to find that the radius should be between 1.5-1.7 R�[Dotter et al.,

2008]. These specific models give a log(Teff) of 3.67-3.70 that is consistent with the effec-

tive temperature determined for RW Aur A by Liu and Shang [2012]. For our calculations,

we adopt a mass of 1.35 ± 0.135 M�(error estimate for isochrone fitting) and a stellar

radius of 1.6 ± 0.32 R�(conservative error estimate for the stellar evolution models).

We use the stellar radius and the minimum timescale of the ingress and characteristic
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variation seen during the occultation (10 days) to calculate the maximum transverse veloc-

ity of the occulter to be 2(1.6 R�)/10 days = 2.58 ± 0.52 km s−1. Furthermore the calculated

velocity of the occulter and the total observed duration of the occultation yields a physical

width of the occulting body of 2.58 km s−1 × 180 days = 0.27 ± 0.05 AU. Assuming Ke-

plerian motion and a circular orbit, a velocity of 2.58 km s−1 implies a semi-major axis of

180.5 ± 28.9 AU:

1.35 M�G(10days)2

4(1.6R�)2 ∼ 180.5AU. (2.1)

Using instead the estimated maximum ingress timescale (30 days) we calculate a minimum

transverse velocity of 0.86 ± 0.17 km s−1, semi-major axis of 1624.7 ± 260.1 AU and a

occulter width of 0.089 ± 0.02 AU. At 180 AU, the occulter would be more than three times

as far from RW Aur A as the maximum estimated extent of the circumstellar disk (57 AU,

see §2). Unless the occulter is moving at an extremely oblique angle, these values should

be roughly accurate to within a factor of a few.

Cabrit et al. [2006] conducted millimeter observations of the RW Aur system and found

that the system appears to have undergone a complex interaction with its companion, RW

Aur B, that resulted in a short truncated circumstellar disk around RW Aur A (inclined by

45◦ - 60◦) and a large (600 AU along the spine) tidally disrupted arm that wraps around

behind the A component (see §2). The arm is believed to be mostly wrapped behind the A

component, although a small portion appears to be in front. The portion of the arm in front

of the A component has a blue shifted velocity relative to RW Aur A of ≤ 3.1 km s−1 which

is similar to our calculation of the occulter’s transverse velocity. The 0.86 km s−1 velocity,

for the 30 day ingress calculation, is also consistent since Cabrit et al. [2006] measured a

range of blue shifted velocities in their millimeter observations.

The observations of the tidal feature are consistent with the simulations of a coplanar

stellar interaction conducted by Clarke and Pringle [1993]. There is no indication that the

orbit and disk plane are not in the same plane, which is the most probable configuration.
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Bisikalo et al. [2012] found that the orbit of the binary is retrograde to the orbit of the

circumstellar disk around RW Aur A. The simulations by Clarke and Pringle [1993] for

a co-planar, retrograde interaction, not only produce a tidal arm, but also show that the

interaction disrupts a significant amount of material out of the disk plane (see Figure 7

from Clarke and Pringle [1993]). Therefore it is plausible that material was disrupted out

of the disk plane into our line-of-sight even though the system is significantly inclined.

Although the distance between RW Aur A and the arm is unknown, simulations by

Clarke and Pringle [1993] show that in an eccentric stellar interaction, the disrupted arm

spirals outward from the primary component and its closest point would be outside the

extent of the disk. Thus our calculated semi-major axis of ∼180 AU (or larger for 30 day

ingress) is consistent with simulations of the hypothesized interaction. Without more infor-

mation about the system configuration during the flyby, we have no definitive knowledge

of the full three-dimensional direction of movement for the blueshifted component of the

arm. We therefore expect that it is unlikely that the velocity vector is extremely oblique.

Thus, we expect that the transverse velocity we calculate is within a factor of a few of the

true velocity. Since our calculated velocity is quite similar to the radial velocity seen in the

Cabrit et al. [2006] observations, that congruence supports the conclusion that the disrupted

arm (likely a fragment of the full arm) and the occulter are the same body.

The occultation displays a large maximum depth (∼2 mag) and a long duration (180-

210 days), with some substructure occurring on a timescale similar to the ingress, 10-30

days (Fig 2.3). There are large amplitude variations observed near the end of the dimming

(5590 - 5650 JD UTC-2450000). These features appear to repeatedly brighten from the

maximum dimming depth to the median out of occultation magnitude suggesting that the

occulter has substructure and potentially gaps. The faintest points during the occultation are

near the edge of KELT’s detectability, compromising our ability to characterize any short

period variability during the dimming. Within this interpretation, the brightness variations

seen during the occultation are due to the substructure of the tidal arm fragment.
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Having made several simple assumptions (sharp leading edge, Keplerian motion, etc.),

our calculated properties of the occulter are consistent with the observed properties of the

tidal arm from Cabrit et al. [2006]. The distance between RW Aur A and the occulting

body derived in this section (∼180 AU) is comparable to the separation between the RW

Aur A and RW Aur B components (∼200 AU). This location implies that the occulting body

cannot be a circumbinary object and is probably a fragment of one of the components of

the system. Therefore we believe that the best explanation for the occultation mechanism,

producing the 2010-2011 occultation, is that a fragment of the tidally disrupted arm crossed

in front of RW Aur A.

2.5.2 Alternate Explanations

We have presented evidence for an interpretation in which the deep, long duration dim-

ming of RW Aur A is due to occultation by its tidally disrupted circumstellar disk. We now

explore alternate explanations for these observations.

2.5.2.1 Occultation by Stellar Companion

We can rule out the possibility that the occulter is comparable in size to RW Aur A

because the combined ingress/egress timescale would need to be similar to the entire du-

ration of the dimming. If the cause of this event was the result of an eclipse of the A

component by a large unseen stellar companion, this would require the companion to have

extreme stellar parameters. We can model the system as a large stellar disc passing in front

of a smaller one (RW Aur A). This allows us to use the same calculations as in §5 for the

velocity, semi-major axis and diameter (projected width) of the occulting star. The same

calculations apply because the eclipsing star’s leading edge would be perpendicular to is

tangential motion. The occulting star would thus need to be moving ∼2.5 km s−1 and have

a diameter of ∼0.27 AU, corresponding to a radius ∼58 R�, a giant star. The star would

also need to be dark and cause the large variations at the end of the dimming (Figure 2.3).
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From these observed and calculated characteristics, we are confident the occulter is not an

unseen stellar companion.

2.5.2.2 Alternate Stellar Parameters of RW Aur A

We address the assumptions in our calculations of the occulter distance from from RW

Aur A. In §5 we determined that the occulting body must be more than three times as far

from the star as the outer edge of the known circumstellar disk. Since that calculation is

based on our determination of the linear velocity of the occulter, which in turn depends on

the radius of the star, we ask whether our stellar radius estimate (1.6 R�) could be incorrect.

Given the observed maximum extent of the disk of 57 AU [Cabrit et al., 2006] and assuming

Keplerian motion, we calculate that RW Aur A would need a radius of at least ∼2.75 R�for

the occulter to be located at the edge of the disk.

However, a star with a radius 2.75 R�would be much more intrinsically luminous. A

star with a radius of 2.75 R�, log(Teff) of 3.684, and an apparent magnitude of V = 10.4,

would be at a distance of ∼218 parsecs, which is much larger than the measured distance

to RW Aur of ∼140 pc [Wichmann et al., 1998]. Furthermore, according to the Dotter

et al. [2008] stellar models, a radius of 2.75 R�implies a stellar age of ∼9.5 × 105 years.

RW Aur is part of the Taurus-Auriga association, where star formation is thought to have

first occurred on the outer edge and progressed inward. The youngest estimated age for

the Taurus-Auriga stellar association is ∼1 Myr for the center of the association; however,

RW Aur is located on the outer edge of the region, where star formation is believed to have

occurred much earlier and corresponds to an age closer to 10 Myr [Palla and Stahler, 2002].

Since a radius of 2.75 R�is not consistent with either the apparent magnitude or age of RW

Aur A, it is not likely that the estimated radius is incorrect.
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Figure 2.4: Schematic of the RW Aur A disk geometry, showing to scale, the height re-
quired for a feature at the edge of the disk to cause the observed occultation.

2.5.2.3 Occultation from Outer Edge of RW Aur A’s Circumstellar Disk

We explore the possibility that a large feature at the edge of the circumstellar disk

around RW Aur A has occulted the star. Even though the disk is inclined to our line of

sight, pre-transitional disks are not uniformly flat, and tend to flare as a function of semi-

major axis. An example of this is clearly seen in Espaillat et al. [2010] which shows that

the height of the disk is 13.8 AU at a semi major axis of 71 AU but only 0.009 AU at 0.1

AU from the star.

To determine the plausibility of a a feature at the edge of the RW Aur A circumstellar

disk causing the occultation seen in late 2010, we model the feature to be in a Keplerian

orbit, at the farthest estimated extent of the disk (57 AU) and calculate the additional height

required to cross the face of the star. For our model, we consider a conservative disk

inclination from Cabrit et al. [2006] for RW Aur A of 60◦ and a flared disk height of 15 AU

above the mid-plane at the outer edge. We assume that the disk flares out linearly to 15 AU.

The flared disk height we use is an extreme example of what is seen in other disks [Espaillat

et al., 2010]. Using geometric arguments, we calculate that the necessary increase in height

for a feature at the disk edge to occult the star is 15.5 AU in addition to the extreme flaring
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already assumed for the disk (Figure 2.4).

Using instead the argument of Keplerian motion, a feature at the edge of the disk would

have an orbital velocity of ∼4.66 km s−1, corresponding to a width of ∼0.49 AU. This

results in the postulated feature with a projected height and width of ∼15 AU and ∼0.5

AU respectively. A feature with these dimensions would be so tall and thin as to be highly

implausible.

2.5.2.4 A Warp in the Inner Circumstellar Disk

RW Aur A appears to have undergone a close interaction with its companion, RW Aur

B, in the recent past. Here we consider the plausibility that a warp in the inner part of

the RW Aur A disk, caused by the flyby, could cause the dimming seen in 2010-2011.

The models by Clarke and Pringle [1993] for a retrograde, co-planar orbit show that even

though all disk material outside periastron is fully disrupted, the interaction has little effect

on the disk interior to this. Therefore, the Clarke and Pringle [1993] simulations predict

that an interaction of this type would not warp or twist the innermost part of the disk. Other

mechanisms such as a misaligned magnetic field, stellar radiation, or planetary companions

could cause a warp. The longevity of a warped circumstellar disk is dependent on the

mechanism that causes it.

A misaligned magnetic field, where disk material is funneled onto the stellar surface,

would show variations on the timescale of days to a few weeks (e.g., AA Tau; Bouvier et al.

[2003]) because this is the Keplerian timescale in the disk at a distance of a few stellar radii,

which is the extent of the star-disk magnetic interaction. The magnetic misalignment effect,

such as is seen around AA Tau, could not result in the 180 day dimming of RW Aur A.

If the warp is caused by the presence of planetary companions, the stability of the warp

should be related to the stability of the planets’ orbit and therefore the warp should last

many orbital periods [Burrows et al., 1995, Mouillet et al., 1997]. Armitage and Pringle

[1997] showed that radiation-induced warping is possible in high luminosity stars (L∗ &
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10 L�) as long as the central star’s intrinsic luminosity is much higher than what is created

by accretion from the disk. This was an alternate explanation for the warp seen in the disk

around β Pictoris [Armitage and Pringle, 1997].

To explore the possibility that the occultation is caused by a warp, we adjust our inter-

pretation from §5.1 and now model the occulter as an opaque body with a sharp leading

edge moving across the face of the star at an oblique angle. The obliquity of the leading

edge allows the occulter to move at a higher velocity, thus potentially placing it closer to

the star. To determine whether a warp is plausible or not, we must determine two key

characteristics, the additional height required to cross into our line-of-sight and width of

the warp. As we place a warp closer to the star, the orbital velocity increases, which as

a result would increase the calculated occulter width (Figure 2.5). For a warp to be plau-

sible, it would likely need a larger width then height. Assuming the same scenario as in

the previous sub-section, where the disk flares out linearly to a height of 15 AU, we deter-

mine through geometric arguments that the only location where the calculated width of the

occulter is larger than the line-of-sight height is at a distance from the star of ≤11 AU.

This would require the leading edge of the occulter to cross at a highly oblique angle,

≤15◦ angle relative to the direction of motion. This semi-major axis for the feature cor-

responds to an orbital period of ≤31 years, well within our window of observations and

so we should have observed it to repeat. It does not seem plausible that the presence of

planets could create and dissipate a warp in less then one orbital period, especially since a

planet-induced warp should be stable for longer than its orbital period.

The accretion rate is too high and luminosity of RW Aur is too low for it to cause a

radiation induced warp in its inner disk. Also, the stability of the warp by induced radiation

would be very long and should have been observed more than once in 50+ years of constant

observation. In both potential disk warping mechanisms (planetary companions and stellar

radiation), the lifetime of the warp would be much longer then the orbital timescale and

would have been observed more than once. Therefore, we do not believe that a warp is a
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likely interpretation of the 2010-2011 dimming.

Finally, we examine the possibility that the circumstellar disk around RW Aur A has

eclipsed the star once due to a large precession of the disk. From our calculations, we are

confident that the occulter is not located inside the disk around RW Aur A (minimum semi-

major axis ∼180 AU compared to the maximum radius of the disk, 57 AU [Cabrit et al.,

2006]). We have determined that due to the inclination of the disk, any warp would need to

be extremely large to cross our line of sight. This would also require an extreme precession

of the circumstellar disk to force it into our line of sight. Thus precession is not a plausible

explanation.

Given the extreme disk distortions required by these scenarios, we can conclude that

the circumstellar disk around RW Aur A is not a likely explanation for the 2010-2011

dimming.

2.5.2.5 UXor Variation

UX Orionis stars are a class of pre-main sequence stars, typically Herbig Ae/Be objects,

that experience large dimming events, sometimes described as Agol-type minima, in the V

band of up to 3 mag, lasting on timescales of days to months. These events manifest as

sudden drops in the visual brightness followed by a slow recovery. The minima events

are aperiodic but recurring and not known as one-time phenomena. During these minima

events, as the light decreases, the star becomes redder, then bluer, and the polarization

increases. High dust column densities cause the initial dimming and reddening of light,

while the bluing during minima and polarization is caused by an increase in the scattered

light [Grinin et al., 1998, Waters and Waelkens, 1998].

Some UXor stars such as SV Cep show long term periodicities in their light curves on

the timescale of years [Rostopchina et al., 1999]. Even though UXor stars are usually early

type, there are a few known late type stars that display UXor variations, such as the late

K stars UY Aurigae [Ménard and Bastien, 1987], AA Tau [Bouvier et al., 1999] and the
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M2 star DF Tau [Chelli et al., 1999]. Also, even though one of the explanations for the

deep minima in UXor stars requires the disk to be edge on, the variations typically occur in

pre-main sequence stars that are surrounded by circumstellar disks at an inclination of 45◦

- 68◦ [Natta and Whitney, 2000].

RW Aur A would be one of the rare late-type stars showing UXor variability. There

are some apparent similarities in the long term light curve of the UXor star SV Cep when

compared with our observations of RW Aur A. Both SV Cep and RW Aur A show minima

lasting 100-400 days and long term changes in the median base line [Rostopchina et al.,

1999]. Even in the extreme case of SV Cep, which experiences rare deep minima, it still

shows 3 events in 36 years [Rostopchina et al., 1999]. We have examined the entire 50+

year light curve of RW Aur and find nothing resembling the depth and duration of the

2010-2011 dimming. Thus if RW Aur A is a UXor star, it would have the longest time

lapse between minima known.

An explanation of UXor minima is that they are the result of hydrodynamical fluctua-

tions in either the inner rim or outer edge of the star’s circumstellar disk [Dullemond et al.,

2003]. Taking a conservative disk inclination for RW Aur A of 60◦ (See figure 2.4), we

determined in section §5.2.3 that a feature at the edge of the RW Aur A disk, even with an

extremely flared disk, would have to protrude an additional 15.5 AU from the disk to cross

the star. A 15.5 AU protrusion is far larger then any known hydrodynamical fluctuations

of a circumstellar disk. Therefore we explore the possibility that the disk of RW Aur A

has a puffed-up inner rim causing the occultation. Dullemond et al. [2003] determined that

the height of the inner rim would be Hrim ∼ 0.2 Rrim with a hydrodynamical fluctuation of

∼0.1 Rrim. We use the conservative inner radius of the RW Aur A disk of 0.103±0.005 AU

from Eisner et al. [2007]. This results in a maximum puffed-up inner rim height of 0.031

AU. Using the same inclination of the RW Aur disk, this would result in a relative height

of 0.027 AU to our line of sight. At 0.103 AU from the star, in a disk inclined by 60◦ , the

height necessary to cross our line-of-sight is 0.0555 AU. Even using the most conservative
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values, the required height to cause extinction is still twice the maximum puffed-up height

of the inner rim for the RW Aur A disk. Moreover, this puffing would need to have occurred

only once for some unknown reason. However, the accretion rate onto the star during the

occultation did not change appreciably (See §4.2). Thus, it is unlikely that the dimming

observed is the result of circumstellar extinction from a hydrodynamically puffed-up inner

disk rim.

Unfortunately, we do not have any color or polarization observations of the system

during the large dimming event and therefore cannot look for the reddening during the

beginning of the dimming or color reversal and increased polarization of the light at the

maximum depth. These types of observations would allow us to definitively determine if

the 2010-2011 event is a UXor minimum. However, when comparing our observations to

known UXor stars, if the 2010-2011 dimming was a UXor minima, it should have occurred

more than once in the 50+ years of consistent observations. Also, RW Aur A does not fit

the typical profile of a UXor star and therefore, we do not believe it to be a new UX Orionis

star.

2.6 Summary and Conclusions

The new observations of the RW Aur system from KELT-North show that a long (∼180

days) deep (∼2 magnitude) dimming occurred in late 2010 to early 2011. The event is also

visible in the AAVSO archive which contains photometric observations of RW Aur.

We have determined that the most plausible explanation for this event is that a fragment

of the arm from the tidally disrupted circumstellar disk, thought to be caused by a recent

fly-by of the B component, crossed the face of the A component. The observations from

Cabrit et al. [2006] show a tidally disrupted “arm” feature, 600 AU long, that is connected

at the Northeast position of the A component and wraps around behind the star towards

the B component. We calculate a maximum linear velocity of the occulter of 2.58 km s−1,

consistent with the maximum blue-shifted velocity, relative to RW Aur A, of the tidally
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Figure 2.5: Calculated width of the occulting body as a function of semi-major axis for
the given observed occultation duration of ∼180 days, assuming Keplerian motion. The
vertical lines correspond to the maximum disk radius of 41 to 57 AU, based on the two
possible inclinations that Cabrit et al. [2006] estimated for the disk (45◦ and 60◦).

disrupted arm, ∼3.1 km s−1 [Cabrit et al., 2006]. Assuming Keplerian motion, the occulter

is located at a distance of ∼180 AU from RW Aur A, which is over twice the maximum

radius of the observed circumstellar disk, but could still be located in this tidal feature.

The simulations performed by Clarke and Pringle [1993] predict that the tidally dis-

rupted arm, produced from a close stellar fly-by of a companion, would have a relative

width of 0.05 the periastron distance. Cabrit et al. [2006] calculated that the periastron

distance, during the stellar fly-by of RW Aur B, would have been 100-140 AU. From our

maximum linear velocity, we calculate the thickness of the arm fragment to be 0.27 AU

(∼0.003 the periastron distance). Evidently the tidal arm has remained fairly coherent de-

spite the tidal disruption event. These observations may indicate that we are witnessing

the leading edge of the tidally disrupted arm occulting the star, and that future occultations
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may arise from other portions of the tidal arm. Therefore, we encourage observers to obtain

multi-filter photometric observations of RW Aur in hopes of better characterizing future ob-

scurations of the star. These results also motivate additional detailed simulations to extend

the early work of Clarke and Pringle [1993] along with a reexamining of the spectra taken

by Chou et al. [2013] that coincide with the first half of the dimming event, including the

point of maximum depth. Since the authors of Chou et al. [2013] were unaware of the dim-

ming event, a comparison of their results with out-of-occultation observations may show

spectroscopic signatures of the occulting body. This rare observation provides insight into

the dynamics of proto-planetary environments in binary star systems.
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Chapter 3

Recurring Occultations of RW Aurigae by Coagulated Dust in the Tidally Disrupted

Circumstellar Disk

3.1 Introduction

The circumstellar environment of young stars of a few Myrs old (T Tauri stars) involves

complex dynamical interactions between dust and gas that directly influences the formation

of planets. Past studies have shown that binarity is a common property of T Tauri stars

(Ghez et al. 1993, Leinert et al. 1993, Richichi et al. 1994, Simon et al. 1995, Ghez

et al. 1997). The process of planetary formation can be significantly altered when the

circumstellar disk is gravitationally influenced by a stellar companion [Clarke and Pringle,

1993, Dai et al., 2015]. Specifically, strong binary interactions with disks are also likely

to influence planetary core formation and chemical composition by stirring up and heating

materials, enhancing planetesimal collisions. The prototype example of this type of system

is RW Aurigae, a binary system of two Classical T Tauri Stars (CTTS), RW Aur A and

B [Duchêne et al., 1999]. Detailed millimeter mapping by Cabrit et al. [2006] showed

evidence of a recent close stellar fly-by of RW Aur B which disrupted the circumstellar

material around RW Aur A, leaving a short truncated circumstellar disk and a large ∼600

AU long tidal arm extending from RW Aur A.

The system parameters are comprehensively described in §2 of Rodriguez et al. [2013].

Briefly, the RW Aur system is comprised of at least two components (RW Aur A and B)

separated by ∼1.5”(∼200 AU) [Cabrit et al., 2006]. Bisikalo et al. [2012] measured that

the separation of RW Aur A and B over ∼70 years has increased by ∼0.002”yr−1. At the

angular separation and 140 pc distance, the Keplerian orbital period would be > 1500 years

[Bisikalo et al., 2012]. It is likely that the orbit is likely coplaner, prograde, and either

unbound or highly eccentric [Dai et al., 2015]. This suggests that the orbit of RW Aur A
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and B is inclined to our line-of-sight, like the disk around RW Aur A, at 45◦–60◦ [Cabrit

et al., 2006].

In 2010 the RW Aur system dimmed by ∼2 mags for a period of ∼180 days, marking

the first event of this kind observed in this system dating back to the late 1890’s [Beck

and Simon, 2001]. Rodriguez et al. [2013] (hereafter Paper I) interpreted that dimming

as an occultation of RW Aur A by disrupted circumstellar material from the close fly-by

encounter of the two stars RW Aur A and B. Using simple kinematic arguments, Paper I

determined that the occulting object, likely a clump of circumstellar material, was ∼0.3 AU

in width, moving at a few km/s. If in a Keplerian orbit, it would be ∼180 AU from RW Aur

A . Using simple geometric and kinematic arguments, it was determined that the occulting

feature could not be located in the circumstellar disk around RW Aur A and therefore may

not be in Keplerian orbit.

Recent hydrodynamical simulations by Dai et al. [2015] support the interpretation that

a star-disk tidal encounter during a fly-by of RW Aur B could explain the unusual mor-

phology of the RW Aur system. They found a strong agreement between their simulations

and the millimeter observations by Cabrit et al. [2006], which first proposed the star-disk

fly-by scenario. The model predicts that the line of sight to RW Aur A currently intersects

a bridge of stripped-off material between the two stars. Dai et al. [2015] argue that the

bridge structure may have small clumps of dense material that could occult the primary

star. These simulations support the original hypothesis presented in Paper I and predict

the possible occurrence of additional dimming events. In addition, numerical simulations

of eccentric binary interactions of classical T Tauri stars suggest that the interaction can

create accretion streams of inner disk material onto the stellar photosphere. These streams

would be created near apastron and eventially form into “ring-like” structures around each

star [Sytov et al., 2011, Gómez de Castro et al., 2013].

In this paper, we present new high-cadence photometry of the RW Aur system showing

a shallow dimming in 2012-2013 and a second, larger dimming event in 2014-2015. The
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Table 3.1: List of observations

Filter Exposure Time (s) Number of Exposures
B 25 587
V 15 602
R 15 631
I 15 604

2014-2015 event was first reported by Petrov et al. [2015] and resembles the dimming

observed in late 2010 (Paper I). We apply similar geometric and kinematic arguments as

we did for the 2010 event to show that the new dimmings are consistent with another clump

of material from the tidally disrupted disk.

3.2 Photometric Observations

Several photometric surveys have observed RW Aur over both short and long timescales

going back to 1899. Here we describe the observations used in our analysis.

3.2.1 KELT-North

Starting in 2003, the Kilodegree Extremely Little Telescope (KELT)-North survey has

been continuously observing the entire sky between a declination of +18 and +44, search-

ing for transiting Hot Jupiters around bright stars (8<V<10). Each KELT-North field spans

26◦ × 26◦ with 23”per pixel. All observations are in a broad R-band filter with a ∼15 min

cadence [Pepper et al., 2007, 2012]. RW Aur is located in KELT-North Field 04, which

is centered on α = 5hr 54m 14.466s, δ = +31◦ 44′ 37′′ J2000. We obtained 9619 images

of field 04 from UT 2006 October 27 to UT 2014 December 31. The data acquisition and

reduction is described in detail in §2 of Siverd et al. [2012]. The KELT-North observations

do not resolve individual stars in the RW Aur system.
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3.2.2 Kutztown University Observatory

RW Aur was observed in BVRI using the 0.61 m Ritchey-Chrétien optical telescope at

the Kutztown University Observatory (KUO) in Kutztown, Pennsylvania. A total of 2305

data images were obtained, as listed in Table 3.1, over 43 nights between UT 2014 February

25 and UT 2015 March 30.

Figure 3.1: The KUO field-of-view for RW Aur. The standard reference stars are labeled
as A, B, C, and D.

The telescope’s f/8 focal ratio, coupled with the camera’s array of 3072 × 2048 (9 µm)

pixels, yields a field of view of 19′.5 × 13′.0. The CCD was kept at an operating temper-

ature of -15◦C and dark, flat, and bias calibration frames were applied to all data images

in the usual way. A sample data image is given in Figure 3.1, labeling RW Aur and four

standard reference stars. The known magnitudes of the reference stars are listed in Table

3.2. A standard method of aperture photometry was employed, and the instrumental mag-

nitudes were color-corrected using several Landolt standard fields. The KUO observations
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do not resolve the RW Aurigae system.

The observed BVRI light curves are displayed in Figure 3.5 and the B−V color curve

is shown in Figure 3.6.

Figure 3.2: The KELT-North (Blue) and AAVSO (Black) observations plotted for the 9
KELT-North seasons. The three gray-shaded regions correspond to the 2010-2011, 2012-
2013 and 2014-2015 large dimming events. The AAVSO and KUO data are in Visual and
V-band magnitudes while the KELT-North observations are in instrumental magnitudes,
that we approximate to the V-band but no attempt has been made to place all the data on
the same absolute scale.

3.2.3 American Association of Variable Star Observers (AAVSO)

AAVSO is a dedicated, non-profit orginization with the primary goal of understanding

all types of variable stars. The archive consists of data from astronomers, both amateur

and professional, around the world. Reported observations for RW Aur begin in 1937 and

the data used in this work are either in the V band or visual observations. The AAVSO

observations do not resolve the RW Aur system.

3.3 Results

In this section we review the results from the 2010-2011 eclipse and present new obser-

vations from the KELT-North Survey showing two additional dimming events in 2012-2013
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Table 3.2: The properties of the reference stars. The quoted apparent magnitudes were
obtained from the AAVSO Variable Star Database (A. A. Henden 2010, private communi-
cation). The cited sources are as follows: †APASS, ††Tycho-2, †††TASS.

Reference Star Label
A B C D

Tycho-ID TYC 2389-936-1 TYC 2389-589-1 N/A TYC 2389-630-1
R.A. (J2000) 05:07:24.62 05:07:50.55 05:07:35.27 5:08:05.17
DEC. (J2000) 30:20:28.1 30:19:02.5 30:24:47.0 30:18:40.6
B 10.135 (±0.064)†† 12.571 (±0.050)† 13.286 (±0.048)† 12.226 (±0.043)†

V 9.617 (±0.040)†† 12.046 (±0.012)† 12.901 (±0.017)† 11.437 (±0.011)†

R — 11.665 (±0.072)† 12.582 (±0.069)† 10.980 (±0.050)†

I 8.942 (±0.092)††† 11.307 (±0.101)† 12.281 (±0.096)† 10.552 (±0.071)†

(B−V) 0.518 (±0.075) 0.525 (±0.051) 0.385 (±0.051) 0.789 (±0.044)

and the 2014-2015 dimming event first announced by Petrov et al. [2015].

3.3.1 2010-2011 Dimming

Photometric analysis of the RW Aur system by the KELT-North and AAVSO surveys

showed that in late 2010 the RW Aur system dimmed from V ∼ 10.4 to V ∼ 12 for ∼180

days. Since RW Aur B is too faint (V ∼ 13.7) to affect the total brightness of the system

(V ∼ 10.4), we assumed the entire dimming was caused by a decrease in flux from RW Aur

A. This corresponded to an 86% reduction in the star’s flux. Spectroscopic observations by

Chou et al. [2013], which coincided with the first half of the 2010-2011 dimming, suggest

that the accretion behavior of RW Aur A was consistent with previous observations prior to

the large dimming. This provides evidence that the dimming is independent of the close-in

star-disk accretion process. Paper I modeled the dimming as an occultation of RW Aur A by

a large body which possessed a sharp leading edge perpendicular to its direction of motion.

Combining this model with kinematic and geometric arguments, Paper I argued that RW

Aur A was occulted by a large (∼0.3 AU wide) body moving at a maximum velocity of

∼2.6 km s−1 and if in Keplerian orbit, would be located ∼180 AU from the star. Since the

known short disk (57 AU, Cabrit et al. [2006] around RW Aur A is quite inclined to our
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line of sight (> 30◦), in Paper I we argued that the occulting body could not lie within the

disk plane.

3.3.2 2012-2013 Small Dimming

In the two seasons following the 2010-2011 dimming, the median brightness of the

RW Aur system was slightly fainter then the median brightness of the season prior to the

dimming (V ∼ 10.5). In early December of 2012, the brightness of the RW Aurigae system

dimmed from a median brightness of V = 10.5 to V = 11.2 mag for ∼40 days (See Figure

3.3). As with the 2010 eclipse, if we assume the entire event is the result of only RW

Aur A dimming, then RW Aur A dimmed by ∼50%. Although our ability to estimate the

ingress timescale is hindered by the known short-timescale photometric variability, we can

constrain the ingress duration to be 10-20 days. We also estimate the egress to be similar in

duration to the ingress. This event is about a third of the depth of the 2010-2011 event and

significantly shorter in duration. However, the 10-20 day ingress timescale is similar to the

ingress timescale of the 2010-2011 event. We adopt the same occultation model as in §5.1

of Paper I, that is a large body with a sharp leading edge perpendicular to its direction of

motion passing in front of RW Aur A. Since the ingress/egress timescale is similar to what

was determined for the 2010-2011 event, this implies that the occulting bodies that caused

the 2010-2011 and 2012-2013 dimmings are moving at a similar velocity and are located

at a similar semi-major axis (that are 2.6 km s-1 and 180 AU, respectively). The duration

of the 2012-2013 event is only ∼40 days, which implies that the occulting body is 2.6 km

s−1 × 40 days = 0.06 AU in width (as compared to the ∼0.3 AU width estimated for the

occulting body of the 2010-2011 event).

3.3.3 2014-2015 Dimming

As first reported by Petrov et al. [2015], after the seasonal observing gap in mid-2014

the RW Aur system appeared significantly dimmer then in the previous observing season.
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Figure 3.3: A zoom-in of Figure 3.2 in late 2012 to early 2013 showing a small dimming
of the RW Aur system. The shaded region is the estimated ingress (the period of time for
the dimming).

From analyzing the Hα and He I line at 5875Åbefore and during the 2014 dimming, they

find no evidence that the known high accretion rate of RW Aur A has changed during the

time of the dimming. This suggests that the dimmings are unrelated to the accretion process

which takes place close to the star. Their observations of the Na I D lines and the Ca II K

line provide evidence that the stellar winds of RW Aur A have changed significantly and

propose that the increased wind velocity is pushing dust from the disk across our line of

sight. Resolved UBVRI photometric observations of the RW Aur system during the 2014-

2015 dimming indicated that RW Aur A was dimmer by >2 magnitudes in all bands and

was actually fainter than its companion RW Aur B on UT 2014 November 14 (V∼13.7)

[Antipin et al., 2015]. X-ray observations during RW Aur’s bright state and during the

2014-2015 dimming show that the absorbing column density increased during the dim state

and was consistent with the interstellar medium’s gas-to-dust ratio [Schneider et al., 2015].

Moreover, the resolved photometry by Antipin et al. [2015] suggests that the dimming

resulted from foreground grey extinction and also provides evidence that all three dimming

events are the result of only RW Aur A becoming dimmer while the brightness of RW Aur
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B remained constant.

Figure 3.4: (Top) Recreation of Figure 3 from Paper I showing the 2010-2011 large dim-
ming event. (Bottom) Zoom in of the last two KELT-North seasons showing the 2014-2015
dimming.

Combining the KELT, AAVSO and KUO observations, we find that the combined RW

Aur system dimmed by ∼2 mag in the KELT-North observations (Broad R Band), similar in

depth to the 2010-2011 dimming (See Figure 3.2). Similar to the season prior to the 2010-

2011 dimming, the RW Aur system was slightly brighter at a V ∼ 10.4 prior to the 2014-

2015 dimming. Using KUO, we conducted multi-band (BVRI) photometric monitoring

of the entire RW Aur system prior to and during the 2014-2015 dimming. We find that
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the depth is ∼2.3 mag in B, ∼2.0 mag in V , ∼1.75 mag in R and ∼1.5 mag in I. Antipin

et al. [2015] showed that during the beginning of the 2014-2015 dimming, RW Aur A

had dimmed by ∼3 mag and was actually fainter then RW Aur B in all bands in which

we observed in (BVRI). Therefore, since our observations do not resolve the system, this

depth difference is likely a result of the fact that the light from RW Aur B is included in

our measurement. In §4.2 we discuss that in fact it appears the dimming evolved with time,

steadily becoming more grey.

Similar to the 2010-2011 dimming, the short-term non-periodic photometric variability

that is so prominent outside the 2010-2011 dimming and prior to the 2014-2015 dimming

is still apparent during the new event but has diminished significantly in amplitude. During

the 2010-2011 dimming, a few large 1-1.5 mag brightening and re-dimming features were

observed and attibruted to sub-structure in the occulting body (Paper I). In the AAVSO

and KUO observations of the 2014-2015 dimming, we observe a ∼0.5 mag peak-to-peak

amplitude brightening and then dimming event over an ∼80 day period beginning at JD-

2450000 of ∼6970. Interestingly, this is similar in depth and duration to the entire event

seen in 2012-2013. Observations at the end of the 2014-2015 observing season from KUO

and AAVSO appear to suggest that the RW Aur system may have begun to return to its

original median brightness.

As with the previous two dimming events, we model the 2014-2015 dimming as an

occultation of RW Aur A by a large body with a sharp leading edge perpendicular to its

direction of motion. Unfortunately, the potential ingress and egress of this dimming ap-

pear to have occurred in the 2014 and 2015 seasonal observing gaps. Therefore, without

an estimate of the ingress or egress timescale, we cannot calculate a transverse velocity

of the occulting body. However, from the 2010-2011 and 2012-2013 dimming events, we

calculated that the ingress timescale was between 10 and 30 days, which corresponds to a

transverse velocity of 0.8-2.6 km s−1. From the KELT-North, AAVSO, and KUO observa-

tions, the 2014-2015 dimming lasted at least the entire duration of the observing season,
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∼250 days. Using this duration and adopting the calculated transverse velocity from the

analysis of the 2010-2011 dimming suggests that the minimum width of the occulter is at

least 2.6 km s−1 × 250 days = 0.38 AU (0.8 km s−1 × 250 days = 0.12 AU) since our total

duration is only a lower estimate.

Figure 3.5: The KUO BVRI light curves of RW Aur covering the 2014-2015 large dimming
event. These observations do not resolve the RW Aur system.

3.4 Discussion

In Paper I, we argued that the 2010-2011 dimming was caused by a consolidation of

tidally disrupted material occulting RW Aur A. ”In this section, we argue that the recent

dimming events observed here, and first mentioned by Petrov et al. [2015], support this

interpretation. We also discuss the possiblity of grain growth in the disrupted material.

3.4.1 Interpretation: Occultation by the RW Aur A Tidally Disrupted Disk Material

Using the IRAM Plateau de Bure Interferometer, the RW Aurigae system was mapped

in 12CO and dust continuum [Cabrit et al., 2006]. Their observations showed a long

tidal arm wrapped around RW Aur A. Through comparison with numerical simulations
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by Clarke and Pringle [1993], they proposed that RW Aur A recently experienced a fly-by

from RW Aur B. This interaction would have significantly disrupted the disk originally

around RW Aur A, resulting in the truncated disk and the large tidal arm. Also, the spec-

troscopic observations during the eclipse show that the accretion rate of RW Aur A did not

change during the dimming [Chou et al., 2013]. Based on the millimeter and spectroscopic

observations, Paper I proposed that the 2010-2011 dimming was caused by an occultation

of the primary star, RW Aur A, by tidally disrupted material. This hypothesis has been sup-

ported by the hydrodynamical simulations by Dai et al. [2015] which suggest the occulting

body to be a bridge of disrupted material connecting RW Aur A and B. The simulations

also predict the possibility of additional dimming events.

Photometric monitoring of the RW Aur system from KELT-North, KUO and AAVSO

show two additional dimming events that occurred after the 2010-2011 dimming event.

From the 2012-2013 dimming, we estimate a similar ingress timescale as we did for the

2010-2011 event. We do not have coverage of ingress/egress for the 2014-2015 event

due to the seasonal observing gaps. The similarities in the initial dimming duration for

the 2010-2011 and 2012-2013 events suggest that the occulting bodies for both events are

moving at similar velocities and likely at similar distances from RW Aur A (if we assume

the occulting material to be in a Keplerian orbit). Therefore, it is likely that the cause of

both (and possibly all three) dimming events are related.

In this work and in Paper I, we made some simple assumptions (sharp leading edge and

Keplerian motion) to determine some characteristics of the occulting bodies that caused the

three dimming events observed. Our calculated transverse velocity from the 2010-2011 and

2012-2013 dimmings are consistent with the measured velocities of the tidally disrupted

material from the millimeter observations by Cabrit et al. [2006]. This velocity suggests a

semi-major axis of ∼180 AU, which is less than the projected separation of RW Aur A and

B (∼200 AU) but larger then the estimated extent of the known disk around RW Aur A (57

AU, Cabrit et al. [2006]). The hydrodynamical simulation by Dai et al. [2015] of the RW
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Aur eccentric fly-by nicely replicates the millimeter observations by Cabrit et al. [2006]

and support the interpretation that the 2010-2011 occultation was caused by an occultation

of RW Aur A by tidally disrupted material. The simulations also suggest the possibility

of additional dimming events in the future. Our observations and analysis of the 2012-

2013 and 2014-2015 dimmings are consistent with the simulations and interpretation first

proposed in Paper I.

Since no other dimming event was observed for ∼50 years prior to 2010 (Paper I) and

two more dimmings have occurred since, it is probable that the 2010-2011 event was the

leading front of tidally disrupted material and more dimming are likely to occur. From

the hydrodynamical simulations, Dai et al. [2015] suggested that the occulting mechanism

may be a bridge of material connecting RW Aur A and B. Although this structure is poorly

resolved in the simulations, they estimate it to be ∼100 AU wide (∼0.7′′ in the plane of the

sky). If the 2010-2011 dimming was caused by the leading edge of this bridge of material,

and is moving 0.8-2.6 km s−1 as our calculations have shown, it will take 180-600 years

for the trailing edge of the bridge to fully cross our line of sight. In ∼5 years, we have

observed 3 separate dimming events with 3 different durations. Therefore, it is possible

that >50 more dimmings of RW Aur could occur over the next century.

Young stellar objects have also been seen to eject blobs of gas with very high velocities.

An example of this is HH 30, a young system in which gas blobs with sizes similar to our

solar system being ejected from the star at ∼220 km s−1 [Burrows et al., 1996]. These blobs

are mesured to be ∼0.4′′ in width (or ∼56 AU wide using the ∼140 parsec distance to the

Taurus molecular cloud) [Burrows et al., 1996, Elias, 1978]. If we assume that the cause of

the RW Aur dimmings is caused by similarly sized gas blobs, the time required for one blob

to cross our line of size at the observed velocity for the HH 30 gas blobs would be ∼1.2

years. This duration is similar to the duration of the 2010-2011 and 2014-2015 dimming

events of RW Aur. Therefore, it is possible that the occulting body could be an ejected blob

of gas from RW Aur A. This would also cause the spectroscopic signatures of gas in the

42



line of sight that have been observed by Petrov et al. [2015] for the 2014-2015 dimming.

However, we emphasize again that spectroscopic accretions signatures have been found to

not correlate in time with the occultation events [Chou et al., 2013], which suggests that

the occulting material is not directly related to accretion phenomena which are generally

believed to drive outflows and ejections.

Paper I investigated a series of other possible explanations for the 2010-2011 dimming

event that are also ruled out for the additional two dimmings presented in this work. How-

ever, spectroscopic observations prior to and during the 2014-2015 dimming event show

evidence that the stellar wind of RW Aur A has changed. Therefore, an alternative expla-

nation for the 2014-2015 dimming is that enhanced stellar winds ejected large dust grains

from the RW Aur A disk causing the occultation [Petrov et al., 2015]. We do not rule this

interpretation out but suggest that the consistency between the millimeter observations of

the disrupted material by Cabrit et al. [2006], our observed and calculated properties of

the occulting bodies, and the agreement with the hydrodynamical simulations by Dai et al.

[2015] of the eccentric star-disk encounter, favor the tidally disrupted disk explantion as

the cause of all three dimming events. Since there is no evidence of prior occultations for

the last 50+ years (Paper I), and now we have several such events within the last few years,

it is likely that we are observing the leading edge of the bridge structure, and the successive

occultations presented here and in Paper I represent smaller coherent structures within it.

3.4.2 Evidence for Grain Growth in the Tidally Disrupted Disk

Although our color observations do not resolve the RW Aur system, observations by

Antipin et al. [2015] show that RW Aur B has remained constant during the 2014-2015

dimming, indicating that the color changes observed are likely not due to RW Aur B. Using

the measure BVR magnitudes for RW Aur B (14.5, 13.8 and 12.92 respectively, [Antipin

et al., 2015]), we subtract the brightness of RW Aur B from the KUO BVR observations

to create the B−V an V −R color plots seen in Figure 3.6. The B−V color of RW Aur
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Figure 3.6: The KUO B−V(top) and V −R (bottom) color curve of RW Aur A during the
2014-2015 dimming. The BVR brightness of RW Aur B [Antipin et al., 2015] has been
subtracted from the KUO observations

increased from a quiescent value of ∼ 0.6 prior to the dimming, to ∼1.2 early in the 2014-

2015 dimming, and then monotonically declined back toward the original value except for

a brief reversal (JD-2450000 ∼ 7060) suggesting some inhomogeneity in the dust grain size

distribution within the occulting material (see Figure 3.6). Meanwhile, the V mag of the

star during the middle of the dimming remained roughly constant, dimmed by ∼2.0 mag

(see Figure 3.5). That the total extinction is roughly constant but the color of the extinction
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is changing indicates that the total absorption column is roughly constant throughout the

occultation but that the ratio of total-to-selective extinction changes. The initial change in

B−V from 0.6 to 1.0 indicates a B−V color excess, E(B−V) = 0.4. With AV = 2.0, we

have a ratio of total-to-selective extinction, R(V) = AV/E(B−V) = 2.0/0.4 = 5. This is

the standard value typically adopted for dust grains in molecular clouds and star forming

regions, which suggests the presence of dust grains, and not just molecular material, in the

environment of this young system. The E(B−V) value then drops steadily to ∼0.2 and

perhaps less, giving R(V) > 2.0/0.2 > 10. In other words, the occulting material becomes

steadily more grey. Rather, the shift in observed R(V) indicates that the dust grains at the

leading edge of the occulting feature are relatively small and representative of dust in star

forming regions, whereas the material deeper into the occulter is likely comprised of larger

grains, which could be dust grains onto which ice mantles have developed, and/or larger

coagulated grains or pebbles (assuming the extinction is optically thin). Another possibility

is that the steadily greyer extinction is caused by having a larger fraction of the occulting

material be optically thick as the dimming progressed. Antipin et al. [2015] find that the

RW Aur A spectral energy distribution changes during the 2014-2015 occultation and they

suggest both a grey extinction and a selective extinction, similar to our results here. We do

not know whether this evolved protoplanetary material existed prior to the tidal disruption

event, or if the growth of the dust grains was aided by the disruption event. The evidence

suggests that the building blocks of planetary material can exist in the space between binary

stars, perhaps through fly-by interactions such as that seems to have occurred in the RW

Aur system.

3.5 Summary and Conclusions

With the deep dimming event observed in 2010-2011 (Paper I), the intrigue surrounding

the RW Aur system has dramatically increased. New photometric observations from KELT,

AAVSO and KUO show two additional dimming events in 2012-2013 and 2014-2015 (the
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2014-2015 dimming was first announced by Petrov et al. [2015]). From our analysis, the

observations of the additional dimming events are consistent with an occultation of RW

Aur A by tidally disrupted material lying far outside the extent and plane of its short cir-

cumstellar disk. This interpretation has been supported by hydrodynamical simulations of

the proposed RW Aur star-disk interaction [Dai et al., 2015].

Multiband photometric observations during the 2014-2015 dimming showed that the

occulting material became steadily more grey as the dimming progressed. This suggests

that the outer portion of the occulting body consists of small dust grains while the core

is primarily made up of (either or all three) large dust grains, dust enveloped in ice or is

optically thick. Either way, the observations are consistent with evolved protoplanetary ma-

terial and the evolution of this material may have been expedited by the tidal interaction.

The recurring dimmings of RW Aur A will continue to increase the interest surrounding

this unique system. Continued monitoring of RW Aur will provide insight into the effect

the tidal interaction will have on the evolution of planetesimals from the disrupted mate-

rial. Future high spatial resolution observations of this system would be of great value in

clarifying the nature of the circumstellar environment.
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Chapter 4

V409 Tau As Another AA Tau: Photometric Observations of Stellar Occultations by the

Circumstellar Disk

4.1 Introduction

The circumstellar environments of young stellar objects (YSOs) involve complex dy-

namical interactions between dust and gas that directly influence the formation of planets.

UX Orionis stars (UXors), which are one specific category of YSOs, are a class of pre-main

sequence stars that have circumstellar disks and experience large aperiodic photometric

dimming events. These events range in depth and duration but can be up to 3 magnitudes

in the V-band on timescales of days to months. Most UXor stars exhibit infrared excesses

in their spectral energy distributions (SEDs) that are generally interpreted as being due to

emission from circumstellar disks. Some UXor stars show minima lasting months to years

with long-term (decade) changes in median base line brightness [Rostopchina et al., 1999].

During the minima, a color reversal from red to blue is normally observed together with an

increase in polarization. The initial dimming and reddening of light is thought to originate

from high column densities of dust, while the bluing during minima and the polarization

are caused by an increase in the scattered light [Bibo and The, 1991, Grinin et al., 1991,

1998, Waters and Waelkens, 1998].

Hydrodynamical fluctuations in the stars’ circumtellar disks have been suggested to ex-

plain the large dimming events seen in UXor stars [Dullemond et al., 2003]. Occultations

of the host star by dust clumps in their circumstellar disk has also been proposed as an-

other explanation. [Wenzel, 1969, Grinin, 1988, Voshchinnikov, 1989, Grinin et al., 1998,

Grady et al., 2000]. If the dimmings are caused by features in a geometrically thin disk,

then the disk would need to be seen very nearly edge-on [Grinin et al., 1991, Grinin and

Rostopchina, 1996, Herbst and Shevchenko, 1999, Bertout, 2000]. However, the UXor
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Table 4.1: CTTS that are candidate UXor stars (G or later)

Target Spectral Type Reference
CO Ori G5 Eaton and Herbst [1995]
RY Tau F8-K1 Eaton and Herbst [1995]
RY Lupi G0 Eaton and Herbst [1995]
DK Tau K6 Oudmaijer et al. [2001]
CB 34V G5 Tackett et al. [2003]
SU Aur G2 Unruh et al. [2004]
UY Aur G5 Berdnikov et al. [2010]
AA Tau K7 Bouvier et al. [2013]

V409 Tau M1.5 This work
Notes. The spectral types listed here are from SIMBAD except for AA Tau and V409, the

references for which are provided in §2.

variations described above typically occur in optically visible pre-main sequence stars that

are surrounded by circumstellar disks viewed at less edge-on inclinations of 45◦ - 68◦, in-

dicating the disks must be flared and/or possess warps or large-scale features with large

vertical scale heights [Natta and Whitney, 2000]. Even though UXor stars are usually early

type Herbig Ae and Be stars, a few are Classical T Tauri Stars (CTTS) that display similar

photometric variability, such as the late K star AA Tau [Bouvier et al., 1999]. It has been

found that about 10% of late type CTTS display the UXor photometric dimming variability,

perhaps reflecting the required geometric and line-of-sight orientation [Bertout, 2000]. A

list of CTTS that are candidate UXors is provided in Table 1.

One way to better understand the structure and evolution of circumstellar disks is to

observe a star being occulted by circumstellar material. AA Tau is one of the most best-

studied stellar systems displaying both short and long term photometric variability, a com-

mon characteristic of T Tauri stars [Vrba et al., 1993, Bouvier et al., 1999, 2003, 2007].

Based on long-term monitoring, AA Tau had remained at a constant brightness from 1978

until 2011 [Grankin et al., 2007, Bouvier et al., 2013]. In 2011, AA Tau dimmed by ∼2

mag [Bouvier et al., 2013] and has not returned to its normal brightness as of UT 2013

December 9 (The end of our data set). Bouvier et al. [2013] concluded that the dimming is

likely the result of a density increase in the occulting region of the circumstellar disk that is
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located at least 8 AU from the host star, assuming the occulter is in a Keplerian orbit. Based

on the 2 years of constant brightness, Bouvier et al. [2013] conclude that the azimuthal ex-

tent of the occulter is at least 30◦. During this dimming, the system experiences a color

reversal from red to blue, a known characteristic of UXor stars [Bouvier et al., 2013].

Another example of a young star being occulted by circumstellar material is the well-

studied system RW Aurigae. In late 2010, the known T Tauri system RW Aurigae, which

contains at least two stellar components (RW Aurigae A and B), experienced a ∼2 magni-

tude dimming event for ∼180 days [Rodriguez et al., 2013]. The RW Aurigae system has

been photometrically observed since the late 1890’s [Beck and Simon, 2001], but no event

of similar depth and duration had ever been seen prior to 2010. Detailed investigations of

the system suggest that there was a recent close fly-by of RW Aur A by RW Aur B, tidally

disrupting the outer portions of the circumstellar disk of RW Aur A [Cabrit et al., 2006].

The dimming was attributed to a portion of the tidally disrupted circumstellar disk occult-

ing the primary component, RW Aur A. Subsequent modeling of the star-disk encounter

by Dai et al. [2015] supports this interpretation. This system shows that binary star inter-

actions can sculpt circumstellar disks. There are other systems in the literature that display

both periodic and non-periodic large dimming events, which as of yet are unexplained, that

may also be caused by circumstellar material [Carroll et al., 1991, Kearns and Herbst, 1998,

Chiang and Murray-Clay, 2004, Winn et al., 2004, Bouvier et al., 2007, Grinin et al., 2008,

Plavchan et al., 2008, Kloppenborg et al., 2010, Mamajek et al., 2012, Rattenbury et al.,

2014].

Objects like AA Tau and RW Aur, that display large photometric dimming events

caused by their circumstellar disks, give us opportunities for studying the evolution of the

circumstellar environments of young stars and perhaps even embryonic planets in disks.

In this paper, we present new photometric observations of the 2011 dimming of AA Tau.

The observations of the sudden dimming of AA Tau support the previous interpretation by

Bouvier et al. [2013] that the dimming is caused by a region of enhanced density in the

49



circumstellar disk. We also present new photometric observations of V409 Tau that show

that it underwent two separate dimming events. In the observations of V409 Tau we present

below, we see two clear dimming events that are separated by a short period of time and

are similar to the dimming event of AA Tau. Our observations of V409 Tau prior to the

two dimming events are much sparser in cadence but appear consistent with the typical

short-term variability associated with late type T Tauri stars. We interpret the dimming

of V409 Tau, analogously to the dimming event of AA Tau, as likely due to photometric

variability resulting from density variations in the disk of V409 Tau.1 These long dimming

events are known characteristics of UXor stars, and thus we can add V409 Tau to the short

list of late-type stars showing this behavior.

The paper is organized as follows. We introduce the known characteristics of the V409

Tau system in §2, illustrating the complex stellar environment. In §3, we describe the

photometric observations, and then discuss the photometric properties of the data in §4. In

§5, we present several interpretations of the light curve and discuss their plausibility. We

summarize our results and conclusions in §6.

4.2 Known Characteristics

In this section, we present a review of the known physical and observational parameters

of the stars V409 Tau and AA Tau.

4.2.1 V409 Tau

V409 Tau (α = 04h 18m 10.785s, δ = +25◦ 19′ 57.39′′; V∼13.34 [Zacharias et al.,

2012]) was determined by Kenyon et al. [1994] to be a member of the Taurus-Auriga as-

sociation using IRAS observations. Spectroscopic observations by Luhman et al. [2009]

1Throughout this paper, we refer to the reductions of brightness of V409 as “dimmings”, and not
“eclipses”. Although we propose that the observed dimmings are caused by eclipses of the star by inter-
vening material, we avoid the term “eclipse” when referring to the observations to maintain generality in the
descriptions of the data.
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show V409 Tau to be a M1.5 star, with Teff = 3632 K, and provide strong evidence con-

firming it as a member of the Taurus-Auriga association. Gorynja [1968] first classified

V409 Tau as a variable star. Using the Trans-atlantic Exoplanet Survey (TrES), Xiao et al.

[2012] measured periodic photometric variability of 4.754 days with an amplitude of 0.3

mag. Andrews et al. [2013] estimated the age of V409 Tau to be variously 1.86 Myr, 5.012

Myr, and 3.47 Myr using three separate pre-main sequence stellar models [D’Antona and

Mazzitelli, 1997, Baraffe et al., 1998, Siess et al., 2000]. From these models, the stellar

mass was estimated to be ∼0.40 M�, ∼0.63 M�and ∼0.43 M�respectively.

4.2.2 AA Tau

AA Tau is a low-mass, photometrically variable, system in the Taurus-Auriga associ-

ation that has been previously classified as a UXor star. It has a spectral type of ∼K7,

V∼12.2, Teff = 4030K, radius of 1.85 R�and a mass of 0.85 M�[Bouvier et al., 1999].

Both photometric and spectroscopic monitoring provide evidence that the system is expe-

riencing magnetospheric accretion [Bouvier et al., 2003]. The outer portion of the AA Tau

disk has an inclination of ∼ 71◦ while the inner part of the disk is warped and misaligned

with respect to the outer disk [Cox et al., 2013]. Bouvier et al. [1999] observed a ∼8.5

days, ∼1.4 mag quasi-periodic variability in the UBVRI filters where the B−V color only

showed a 0.1 mag change on the timescale of weeks. This ∼8 day photometric periodicity,

first reported by Vrba et al. [1993], has been attributed to the magnetically warped inner

disk periodically occulting the host star [Bouvier et al., 2007]. These eclipses have pre-

sented with varying depths, which provides evidence that the occulter is changing size or

opacity on the timescale of days. It is likely that the inner warp and the accretion streams

from the disk onto the stellar surface are at similar locations in the inner disk, orbiting with

a period of ∼8 days. The accretion is likely varying, directly affecting the warp, and likely

causing the change in the eclipse depth [Bouvier et al., 2007]. In a study of > 500 variables

in the Orion Nebula Cluster, Rice et al. [2015] identify 73 young stars that show AA Tau
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like short quasi periodic dimming events.

In 2011, AA Tau dimmed by ∼2 mag. Bouvier et al. [2013] claim that the near-IR

colors during AA Tau’s dimmed state and an observed bluer slope in the red/NIR spectrum

from XSHOOTER [D’Odorico et al., 2006, Vernet et al., 2011] suggest that the system is

experiencing 3-4 mags of visual extinction compared to its normal bright state. Bouvier

et al. [2013] argue this because they required a much higher extinction (Av > 3) to match

the red and near-IR wavelength regimes in the XSHOOTER spectrum. They argue that

the reason the system only shows ∼2 mag depth event in the V band (and not a 3-4 mag

event) is that the system experiences a color reversal becoming bluer at optical wavelengths

during the dimming. This color reversal is a common feature of UXor stars.

Importantly, while the ∼8 day quasi-periodic variability was not observed during the

initial stage of the 2011 dimming event [Bouvier et al., 2013], it was seen during a later

stage of the dimming event in late 2012/2013, for a 3 month period by Bouvier et al. [2013].

This indicates that the source of the long timescale dimming is likely situated outside the in-

ner disk region that is the likely source of the short-timescale accretion variability. Indeed,

on the basis of Keplerian arguments, Bouvier et al. [2013] suggested that the obscuring

material must be situated at ∼8 AU from the star.

4.3 Photometric Observations

V409 Tau and AA Tau have been observed in several photometric surveys over the past

two decades. We present new photometric data for both targets in Figure 4.1.

4.3.1 Archival Data

The All Sky Automated Survey (ASAS) is a photometric survey with the goal of ob-

serving as much of the southern sky as possible in order to study any and all kinds of

photometric variability in the I-band. Pojmanski [1997] describes the data acquisition and

reduction techniques. ASAS observed V409 Tau from UT 2002 December 13 to UT 2009
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Figure 4.1: KELT-North (Black), SuperWASP (Blue), CRTS (Red) and the ASAS (Green)
light curves of V409 Tau (Top) and AA Tau (Bottom) from 2004 to 2013. A vertical
offset has been applied to the KELT, SuperWASP and ASAS data to match pre-dimming
magnitudes of AA Tau to the V band observation by CRTS. The same vertical offset has
been applied to the V409 Tau observations. Only the CRTS data are in V-band magnitudes
whereas the other observations are in very broad band magnitudes that we approximate to
V-band but no attempt has been made to place all the data on the same absolute scale.

September 12, obtaining 153 observations. ASAS also observed AA Tau from UT 2002

December 13 to UT 2009 November 30, collecting 376 observations.

The Catalina Real-time Transient Survey (CRTS) is a wide-field photometric survey

designed to detect variable sources on the time scale of minutes to years using a V-band

filter. The data used in the work described here were from Catalina Survey Data Release

22. More information on the CRTS observations and data reduction can be found in Drake

et al. [2009]. CRTS observed V409 Tau from UT 2005 April 9 to UT 2013 September 27,

acquiring 350 observations. CRTS observed AA Tau from UT 2005 April 8 to UT 2013

December 9, obtaining 429 observations.

The Wide Angle Search for Planets (SuperWASP) is a photometric survey for transit-

ing extrasolar planets with a cadence of a few minutes in broad filter centered on 550nm.

SuperWASP observed V409 Tau, first in 2004 from July 29 to September 30 and then again

2http://nesssi.cacr.caltech.edu/DataRelease/
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from UT 2006 September 17 to UT 2007 January 24, for a total of 3695 images of V409

Tau. SuperWASP observed AA Tau in 3 separate seasons: UT 2004 August 2 to UT 2004

September 4, UT 2006 September 11 to UT 2007 February 15 and UT 2008 February 18

to UT 2008 March 17, acquiring 2744 observations. The SuperWASP public archive is

described in Butters et al. [2010].

Using the 40/50/100 cm Schmidt telescope at Asiago, Romano [1975] obtained 24 non-

filtered observations of V409 Tau from UT 1962 October 22, until UT 1964 July 13. The

observations showed a brightening from 1962 to 1964. This data is not publicly available

and therefore we do not include it in our light curve analysis. We refer back to these

observations when interpreting our results to understand the V409 Tau system in §5.2.

Table 4.2: KELT-North Table of Observing Seasons

Season UT Start Date UT End Date
1 2006 October 26 2007 January 17
2 2007 September 19 2008 February 2
3 2008 September 24 2009 March 26
4 2009 September 22 2010 March 16
5 2010 October 2 2011 March 17
6 2011 September 22 2012 March 21
7 2012 September 17 2013 January 9th

4.3.2 KELT-North

The Kilodegree Extremely Little Telescope (KELT-North) project is an ongoing, wide-

field (26◦ × 26◦) survey for transiting planets around bright stars (V = 8-10). The survey

uses two telescopes, KELT-South (Sutherland, South Africa) and KELT-North (Sonita, Ari-

zona), and observe in a broad R-band filter, with a ∼15 minute cadence and a typical pho-

tometric precision for stars of V ∼ 11 of ∼ 0.04 mag [Pepper et al., 2007, 2012]. The KELT

data are reduced using a heavily modified version of the ISIS software package [Alard and

Lupton, 1998, Alard, 2000], described further in §2 of Siverd et al. [2012]3. V409 Tau

3Much of the reduction software is publicly available: http://verdis.phy.vanderbilt.edu
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and AA Tau are both located in KELT-North Field 03, which is centered on α = 3h 58m

12s, δ = 59◦ 32′ 24′′. For the work presented in this paper, all of the KELT observations

come from the KELT-North telescope. KELT-North observed this field for 7 seasons from

UT 2006 October 26 to UT 2013 January 9, obtaining ∼9100 images. All data shown has

a relative photometric error less than 20% RMS. Table 2 shows the start and end date for

each KELT-North season. A portion of the KELT-North photometric data set is shown in

table 3.

Table 4.3: KELT-North photometric observations of V409 Tau and AA Tau

JDTT V409 Tau V409 Tau AA Tau AA Tau
Relative Maga Photometric Errorsb Relative Maga Photometric Errorsb

2454034.731241 -0.181 0.054 0.084 0.044
2454034.735862 -0.209 0.053 0.026 0.041
2454034.740481 -0.205 0.046 0.109 0.044
2454034.745101 -0.195 0.052 0.081 0.044
2454034.758962 -0.209 0.049 0.138 0.064
2454034.763581 -0.239 0.047 0.030 0.039
2454034.768202 -0.205 0.048 0.082 0.043
2454034.772822 -0.228 0.044 0.096 0.0439
2454034.791297 -0.235 0.047 0.094 0.044
2454034.795917 -0.158 0.051 0.135 0.044
Notes. The data shown in Table 3 is published in its entirety in the electronic edition of

this paper for both V409 Tau and AA Tau.
aRelative KELT-North Instrumental magnitude. The median of the KELT-North

Instrumental magnitude has been subtracted off.
bPhotometric errors for instrumental KELT-North magnitudes. True per-point magnitude

errors must fold in 0.036 mag systematic errors.

4.3.3 CARMA 3mm

We observed the V409 Tau system using the Combined Array for Research in Millime-

ter Astronomy (CARMA) for ∼3.5 hours in the 3mm continuum. Specifically, we used the

CARMA 15 E configuration consisting of nine 6.1m and six 10.4m antennas. All obser-

vations were taken on UT 2014 August 8. Along with observing V409 Tau, we observed

Uranus, 3C84 and 0510+180 as the flux, passband and gain calibrators, respectively. The
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observations and flux value presented in this paper were reduced and measured using the

MIRIAD software program, described in detail by Sault et al. [1995].

4.4 Analysis and Results

Here we present and discuss the photometric properties of AA Tau and V409 Tau (data

shown in Figure 4.1). Our analysis focuses on the SuperWASP, ASAS, CRTS and KELT-

North photometric data.

4.4.1 AA Tau

AA Tau has been classified previously as a UXor star, displaying both short term quasi-

periodic variability and non-periodic large dimming events. The KELT-North photometric

data confirm known characteristics of the AA Tau system presented in the literature.

First, after a long quiescent period, AA Tau decreased in brightness by ∼2 mag in

2011 [Grankin et al., 2007, Bouvier et al., 2013]. Second, the pre-dimming obervations

of AA Tau in all data sets show a ∼1.0 mag amplitude variability that is common to most

classical T Tauri stars, as first shown by Herbst et al. [1994]. YSOs will display both

periodic and non-periodic variability, typically on the timescales of days to weeks. We

use the Lomb-Scargle (LS) period search in the VARTOOLS analysis package to search

for periodic variability [Hartman, 2012]. The Lomb-Scargle (LS) periodicity analysis is

designed to search for small sinusoidal periodic signals in unevenly sampled time-series

data [Lomb, 1976, Scargle, 1982, Press and Rybicki, 1989]. The goal of our LS analysis

was to recover the previously known ∼8 day period for AA Tau. Our LS analysis of the first

KELT-North season of AA Tau shows a periodicity of ∼8.2 days (Figure 4.2). The phased

light curve of AA Tau at a period of 8.21 days is shown in Figure 4.3. This is similar to

the periodicity found by Vrba et al. [1993], Bouvier et al. [1999] and is interpreted as the

magnetically warped inner disk occulting the host star at a semi-major axis of a few stellar

radii. The large peaks at 1.0 and 2.0 cycles/day in all periodograms is a diurnal alias of the
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long period variability. Finally, the pre-dimming observations of AA Tau in all data sets

show variability of up to 1.0 mag amplitude that is common characteristic of most classical

T Tauri stars, as first shown by Herbst et al. [1994].

Figure 4.2: LS periodicity analysis of the KELT-North photometric data. Top Row: LS
periodogram of for the Full KELT-North AA Tau data set (Left) and KELT-North season 1
(right). The vertical red dashed line corresponds to the 8.2 day period found by Vrba et al.
[1993]. Bottom Row: KELT-North season 1 V409 Tau data set (Left) and KELT-North
season 5 (Right). The vertical red dashed line is the 4.574 day period found by Xiao et al.
[2012]. The large peak at 1.0 and 2.0 cycles/day in all periodograms is a diurnal alias of
the long period variability.

We confirm the previous dimming event in KELT-North survey data. The KELT-North

and CRTS observations of AA Tau show that the dimming event began in late November

of 2010 and has remained consistently fainter through the end of our photometric observa-
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Figure 4.3: KELT-North Season 1 light curve of AA Tau phased to an 8.21 day period
recovered from LS analysis.

tions, December 2013 (see Figure 4.4). This means the sudden dimming event has lasted

∼3 years and is likely still occurring.

During the dimming, we do not recover the ∼8 day periodicity. During the dimming

event, AA Tau is near the sensitivity limit of KELT-North. Therefore, we cannot conclu-

sively rule out the possibility of a periodicity during the dimming. However, the ∼1 mag

variability that is characteristic of T Tauri stars, is clearly observed in both the KELT-North

and CRTS data sets. Moreover, Bouvier et al. [2013] did clearly observe the ∼8 day quasi-

periodic variability during a 3 month period in 2012/2013. They suggest the reason that

the 8-day periodicity is not observed throughout the 2011 dimming is that the observed

light has become dominated by scattered light originating from high latitudes on the star.

Consequently, the 8-day modulation of the equatorial latitudes by the magnetically warped

inner disk seen during AA Tau bright state is not continuously observed, even though the

8-day periodicity does in fact continue [Bouvier et al., 2013].
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Figure 4.4: (Top) KELT-North (Black) and CRTS (Red) light curves of AA Tau during
the 2011 sudden dimming event. (Middle) A zoom-in of the first full KELT-North season
during the dimming. (Bottom) A zoom-in of the second full KELT-North season during the
dimming.

4.4.2 V409 Tau

In the KELT-North and CRTS data, we observe two separate instances where V409 Tau

has clearly dimmed below the known brightness level for an extended period of time. In this

section, we discuss the observational characteristics of these events. We also analyze the

general photometric variability seen both during and outside the two prominent dimming

events.

4.4.2.1 Out-of-Dimming Variability

Young stars tend to display both periodic and aperiodic photometric variability, both of

which can be caused by circumstellar extinction and accretion of material onto the star’s

surface [Herbst et al., 1994, Grinin et al., 2004, Petrov and Kozack, 2007]. Xiao et al.
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[2012] found a 4.754 day, 0.3 mag amplitude periodicity in TrES photometric observations

of V409 Tau [Alonso et al., 2007]. The goal of our LS analysis was to recover the pre-

viously known period for V409 Tau. Using LS analysis to search for periodicities of less

than or equal to 1000 days, we do not find any evidence of a significant periodicity in the

combined KELT, SuperWASP, CRTS, and ASAS photometric data sets. However, using

only the KELT-North season 1 data we recover a 4.5 day period and using only KELT-

North season 5, we recover a 4.7 day period (see Figure 4.2). We fit a Fourier series, with

5 harmonics, to remove long term trends in season 5 of KELT. A phased plot (4.737 day

period) of the KELT-North season 5 data (with the long term trends removed) is shown in

Figure 4.5. These periods are similar to the period seen by Xiao et al. [2012].

Prior to the dimming events seen in 2009 and 2012, V409 Tau appears to display some

photometric variability with amplitude varying from 0.5-2 mags. This variability is also

seen during both dimming events. Unfortunately, we have not found any archival photo-

metric observations of V409 Tau prior to 2002, which hinders our ability to determine the

longevity of the variability we present here. There are reported observations from UT 1962

October 22 until UT 1964 July 13 by Romano [1975]. These observations display a light

curve that begins at a magnitude of ∼15 and ends at ∼13.5. Interestingly, this feature has

similar properties to the dimming events seen by the KELT-North and CRTS data.

The V409 Tau light curves do show dimming features of much shallower depths and

shorter duration in the KELT, SuperWASP, CRTS, and ASAS from 2002 to 2007. The data

sampling is much sparser during this period, which hinders our ability to determine if these

are true variations or if they are just artifacts of the data quality and sampling. Between

the 2010 and 2013 events, for about ∼500 days, V409 Tau brightened back to its normal V

mag of ∼12. During this period, the typical chaotic variability is clearly observed.
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4.4.2.2 2009-2010 Dimming Event

In late January 2009, V409 Tau dimmed significantly from a pre-dimming brightness of

V ∼11.8 down to V ∼13.2 (Figure 4.6a). In the KELT-North and CRTS data, this dimming

begins at a JD∼2454850 (Terrestrial Time (TT)). It is clear, however, that this dimming

event has a peak depth below the long-term median of ∼1.4 mag and that it sustained

for over a year. Since there is no known companion to V409 Tau, we assume the entire

dimming is caused by a decrease in the brightness of the host star, corresponding to a

decrease in flux of 72%.

After the ∼200 day long observing gap beginning at JD∼2454900 (TT), V409 Tau is

clearly fainter by ∼1.4 mag and stays fainter through the extent of the observing season

(until JD∼2455300 (TT)). Over the course of this observing season (KELT-North observing

season 4), where V409 Tau is in a dim state, the brightness of the system increases by a few

tenths of a magnitude. After the following seasonal observing gap, V409 Tau is back at its

nominal pre-dimming brightness level of V∼11.7, the median brightness of KELT-North

observing season 3. Due to the end of the seasonal observing gap, we cannot determine

exactly when the dimming event of V409 Tau ended and can only place an upper limit on

the duration of the event.

If the event began at JD∼2454850 (TT), then the maximum duration we estimate is

∼630 days (the red vertical lines in Figure 4.6), however this is necessarily an upper limit

on the dimming duration. We estimate the ingress of this event to be ∼240 days (grey

shaded region in Figure 4.6) but this is not well constrained due to the seasonal observing

gaps, and could have been much shorter.

A significant amount of structure can be seen during the dimming. Unfortunately, dur-

ing the dimming event, the star’s brightness is quite low, nearly consistent with zero flux

for KELT-North, thus complicating the analysis. The CRTS observations appear to show

a slightly deeper event then seen in KELT-North. This is likely attributed to the CRTS

data being in the V filter while the KELT-North observations are in a broad R filter. How-
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ever, there is a short-term variability in the KELT-North and CRTS data starting around

JD∼2455170 (TT) and ending at JD∼2455289 (TT), and that is similar in amplitude to that

seen outside of the dimming. This variability may continue for a longer but the KELT-

North and CRTS data sets ended due to the seasonal observing window. In any case, there

is evidence for continuing variability during the dimming, as in AA Tau, and that is similar

in nature to the short timescale variations seen outside of the dimming event.

Figure 4.5: KELT-North Season 5 light curve of V409 Tau phased to a 4.723 day period
recovered from our LS analysis. A 5 harmonic Fourier series was fit to the data to remove
long term trends.

4.4.2.3 2012-2013 Dimming Event

In May 2012, V409 Tau experienced another large dimming event, from a pre-dimming

brightness of V ∼11.8 down to V ∼13.2 (Figure 4.6b). This event is quite similar to the 2010

event discussed in the previous subsection. We estimate the ingress of this event to be ∼275

days, slightly longer than the 2009 event, but again this parameter is not well constrained.

This event lasted through the extent of the KELT-North and CRTS data sets. Similar to

the 2009-2010 dimming, the CRTS observations appear to show a slightly deeper event

then seen in KELT-North. For this dimming event, both the ingress and potential egress
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appear to be located in the seasonal observing gaps for V409 Tau, hindering our ability

to determine key characteristics such as the duration ingress and egress. Thus, we cannot

determine whether this dimming event was of a similar duration to the 2010 event, which

were separated by ∼1000 days. We can rule out the possibility that this specific ∼600 day

long, 1.4 mag depth dimming event is periodic because we should have detected another

event around JD∼2454200(TT). Although there is a gap in the combined photometric cov-

erage from all data sets around this time, it is not large enough to completely miss another

event similar in duration to what was seen in 2010 and possibly 2012. However, a ∼1.5 mag

brightening event was observed from 1962 till 1964 by Romano [1975] using observations

from the 40/50/100 cm Schmidt telescope at Asiago. It is possible that Romano [1975]

measured the recovery of another dimming even and this type of dimming is periodic in

V409 Tau. However, with the lack of photometric coverage between the early 1960’s and

the start of our photometric data set (2002), it difficult to be conclusive.

Figure 4.6: KELT-North (Black), CRTS (red) and the ASAS (green) light curves of V409
Tau during the first (top) and second (bottom) dimming events. The shaded region corre-
sponds to the estimated duration of the events ingress.
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4.4.2.4 Spectral Energy Distribution Analysis

We assembled the available broadband flux measurements of V409 Tau (not observed

during one of the large dimming events) from the literature and also measured a new flux

at 3 mm using the CARMA array (see Table 5.1). We fit these fluxes using the star+disk

spectral energy distribution (SED) model grid of Robitaille et al. [2006a, 2007], based

on the radiation transfer code of Whitney et al. [2003b,a]. Briefly, these SED models

represent young stars with disks and/or envelopes for physical parameters spanning a large

range of stellar masses, temperatures, and luminosities, and for disk parameters spanning

a large range of sizes, structures, accretion rates, and inclinations on the plane of the sky.

Additional free parameters include the line-of-sight extinction and distance to the system.

Figure 4.7 shows the observed SED and the family of best-fit models satisfying a

goodness-of-fit criterion of ∆χ2/χ2
min < 3 per data point [see, e.g., Robitaille et al., 2007, for

discussion of this statistical criterion]. Note that the SED models included in the Robitaille

et al. [2006a] grid extend only to λ = 1mm so Figure 4.7 extends only to 1 mm. The SED

models in gray represent the various star+disk parameter combinations that are formally

consistent with the data according to the above χ2 criteria.

To further narrow the range of possible SED models, we additionally required the model

SED parameters to include a stellar Teff within 300 K of that determined by Luhman et al.

[2009], a total line-of-sight extinction within 0.3 mag of the AJ = 1.3 also determined

by Luhman et al. [2009], and a distance of 140±40 pc (i.e., within 40 pc of the nominal

Taurus-Auriga association distance). Applying these additional constraints significantly

reduces the SED models that can fit the data to within the χ2 goodness-of-fit criterion

above, leading to a single model in the Robitaille et al. [2006a] grid (solid black SED in

Figure 4.7). This model has a disk that is inclined at an angle of 81◦, i.e., nearly edge-on.

We take this as suggestive that the V409 Tau disk is fully consistent with being nearly, but

not precisely, edge-on while satisfying the other observed constraints for the system. The

new CARMA observation at 3 mm is not included in the fit but is consistent with a simple
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Table 4.4: Archival flux measurements of V409 Tau used in the SED analysis.

Band Fluxa Errorb Reference
NUV 0.030 0.021 GALEX

u′ 17.5 1.0 SDSS
g′ 15.5 0.7 SDSS
r′ 13.0 0.7 SDSS
i′ 12.0 0.7 SDSS
z 11.7 0.7 SDSS
J 10.7 0.5 2MASS
H 9.6 0.5 2MASS
KS 9.0 0.5 2MASS

WISE1 8.3 0.3 WISE
WISE2 8.0 0.3 WISE
WISE3 5.6 0.3 WISE
WISE4 3.8 0.3 WISE
IRAC1 8.1 0.3 Spitzer
IRAC2 7.8 0.3 Spitzer
IRAC3 7.3 0.3 Spitzer
IRAC4 6.3 0.3 Spitzer
MIPS1 4.4 0.3 Spitzer
MIPS2 1.7 0.3 Spitzer
MIPS3 −1.45 Upper limit Spitzer

0.89 mm 48.8 mJy 22.2 mJy Luhman et al. [2009]
1.3 mm 18.7 mJy 1.4 mJy Luhman et al. [2009]
3 mm 2.87 mJy 0.28 mJy this work

aMagnitudes unless otherwise indicated.
bSingle-epoch errors have been inflated to reflect time variability of the source.

extrapolation of the best-fit model.

4.5 Interpretation

In this section we present the most plausible interpretation of both the sudden dimming

event of AA Tau and the dimming events seen from V409 Tau. For AA Tau, we concur

with the previous observations and interpretations by Bouvier et al. [2013] that the dim-

ming is likely caused by an occultation of the host star by a higher density region of the

circumstellar disk. For V409 Tau, we also interpret the dimming events to be caused by an

occultation of the host star by a one or more features in the circumstellar disk, predicted
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Figure 4.7: Spectral Energy Distribution fit for the V409 Tau system. Symbols with error
bars represent flux measurements with uncertainties, and inverted triangles represent 3σ
upper limits (see Table 4.4). The dashed curve represents the photosphere while the gray
curves represent all of the star+disk models that are consistent with the data to application
of the Teff , AJ , and distance criteria. The solid curve represents the final best-fit SED
including all observational constraints (see the text).

from our SED analysis. Below we explore the involvement of each system’s circumstellar

disk in the large dimming events observed.

4.5.1 AA Tau

Bouvier et al. [2013] suggests that the deep and sudden dimming of AA Tau is likely

due to an increase in extinction from an overdense region in the known circumstellar disk

on a Keplerian timescale. In this section, we calculate the parameters of this feature from

the KELT-North and CRTS data, assuming the feature is located in the disk plane. We

compare our results with the work done by Bouvier et al. [2013].

Using observations from the Crimean Astrophysical Observatory (CrAO), Bouvier et al.
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[2013] determined that AA Tau took ∼200 days to reach minimum brightness. From the

KELT-North and CRTS data, we visually estimate the ingress of the AA Tau dimming to

be ∼300 days long, beginning in late November or early December of 2010. Since AA

Tau was in a consistently bright state for 24 years and the host star is ∼0.8 M�, Bouvier

et al. [2013] determined that the occulter would have a semi-major axis ≥ 7.7 AU. Given

the known inclination of the circumstellar disk around AA Tau, we can estimate the height

of the feature that caused the dimming, assuming it is located in the disk plane. Using a

semi-major axis of 7.7 AU and a disk inclination of ∼ 71◦, this would require a scale height

of ∼7.3 AU for the occulter to cross the line of sight. The duration of the event is ∼800 days

and it has not begun to recover to its pre-dimming median brightness through the extent of

our data set. Using a stellar mass of 0.85 M�and a semi-major axis of 7.7 AU, this would

require the azimuthal extent of the feature to be over 46◦, or > 6 AU.

Given the measured and calculated parameters of the occulting feature, we can model

the dimming event as an occultation of the host star by a large body in a Keplerian orbit.

This body cannot have a leading edge perpendicular to its direction of motion because

it would be moving too slowly to be located within the body of the circumstellar disk.

Rather, we model the occulting object to have a leading edge that is slightly inclined from

its direction of motion, i.e., “wedge” shaped. Assuming the feature causing the dimming

is located within the estimated radius of the AA Tau disk, i.e., within 215 AU [Kitamura

et al., 2002], and assuming an ingress timescale of 200 days, this would require the leading

edge of the feature to be <4.6◦ (<3.2◦ for ingress of 300 days), close to parallel with

its direction of motion. Using an ingress duration of 200 days and a wedge angle of 5◦,

the transverse velocity of the occulter would be 2(1.84R�)/(Tingress sinθ) ∼1.7 km s−1.

Assuming Keplerian motion, this would place the occulting object near the edge of the

circumstellar disk. For the body to be located at 7.7 AU, the minimum semi-major axis

determined by Bouvier et al. [2013], the leading edge of the occulter would need to have

a wedge angle of <1◦. The long duration of the AA Tau dimming can be interpreted in
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multiple ways, including a wedge, a fuzzy edge, and/or scattered light. Since we can’t

definitively determine which of these is correct, we adopt the wedge model presented above

as a way of developing an illustrative model that is representative of the timescales and

spatial scales involved.

4.5.2 V409 Tau

From the SED analysis, we have shown that V409 Tau has an infrared excess indicative

of a circumstellar disk, specifically one that is nearly edge-on. We interpret the dimming

events as occultations of the host star by one or more features in the circumstellar disk.

This interpretation is supported by our observations since the ∼1 magnitude variability,

seen prior to the dimming events, is apparent during the dimming. We believe the short-

term variability arises on or near the stellar surface. Therefore, an occultation by material

much farther away in the disk would have no effect on the fractional amplitude of the short

term variability.

Through simple kinematic and geometric arguments, we are able to estimate certain pa-

rameters of the occulting body. One key parameter necessary for calculating the properties

of the occulting body is the radius of V409 Tau. Using prior observables of Log(Te f f ) =

3.56 ± 0.02, Log(L/ L�) = -0.59± 0.08 and [Fe/H] = -0.01 ± 0.05 for V409 Tau [Andrews

et al., 2013, D’Orazi et al., 2011], we use the Dartmouth Stellar Evolution Programs young

stellar models within a Markov Chain Monte Carlo (MCMC) to derive posterior distribu-

tions for the mass, age and radius of V409 Tau (see Figure 4.8) and the most probable

parameters (with 68% confidence interval uncertainties) [Dotter et al., 2008]. From this

analysis, we determine an age of 2.78+6.10
−0.42 Myr, a mass of 0.57+0.16

−0.13 M�and a radius of

1.11+0.20
−0.07 R�.

We can repeat the same kind of model calculations for V409 Tau as we did for AA

Tau. That is an occultation of the host star by a large body in a Keplerian orbit, possessing

a slightly inclined wedge-shaped leading edge. Beginning with the 2009 dimming, we
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Figure 4.8: The posterior distributions of mass, age, and radius, and our determined param-
eters (w/ 68% confidence interval uncertainties)

estimate the ingress timescale to be ∼240 days. Since we do not have an estimate of the

outer disk radius for V409 Tau, we constrain the feature to the known radius of the AA Tau

circumstellar disk, ∼215 AU [Kitamura et al., 2002]. At 215 AU, this would require the

leading edge of the occulter to have a wedge angle < 2.8◦ for an ingress of 240 days (see

§4.2.2). We estimate the ingress of the 2012 event to be close to 275 days (see §4.2.3) which

constrains the leading edge wedge angle to be < 2.5◦. Both of these estimated leading-edge

wedge angles correspond to the feature being located at the outer edge of the circumstellar
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disk.

Observations by Romano [1975] show a brightening of V409 Tau from a visual mag-

nitude of 15 to ∼13.5 over the time-span of 630 days. From their data, it is possible that

they observed the end of another dimming event. If they did observe another dimming

event, then the full duration would likely be longer than the 2009 and 2012 events seen in

the KELT-North and CRTS data. Without other photometric observations between our data

and the observations in the 1960’s by Romano [1975], we are unable to better constrain a

potential periodicity. There is just over 46 years between the end of the 1962 brightening

event and the end of the 2009 event. Since there are two consecutive potential occultations

of V409 Tau in our data and one from the 1960’s data by Romano [1975], if we assume

they are all related, we can interpret them in two ways: 1) They are caused by two sepa-

rate features orbiting in similar locations of the circumstellar disk. 2) A single feature is

responsible for all three events.

Figure 4.9: A diagram displaying the theoretical warp or “wedge-shaped” feature in the
V409 Tau disk that has a shallow leading edge or “wedge angle”. Not to scale. Φ corre-
sponds to the leading edge angle or wedge angle.

If the 2009 and 2012 events are from two separate features within the circumstellar

disk with a minimum period of ∼46.25 years (the time between the 1962 and 2009 events),
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assuming Keplerian motion and using our derived parameters for the stellar mass of V409

Tau, this would require the semi-major axis of the occulting feature to be >10.7 AU. At this

distance from the star, the feature would have a very shallow “wedge-shaped” leading-edge

angle of ∼0.6◦ corresponding to a transverse velocity of 2(1.11R�)/(Tingress sinθ) ∼6.9

km s−1. Using the full estimated maximum duration of the 2009-2010 dimming, ∼630

days, this would require the feature to have a width of ∼2.5 AU (see Figure 4.9. The begin-

ning of the 2012 dimming is ∼1130 days after the 2009 one. Using the same assumptions

as above and that the second feature is orbiting with a period ∼1130 days longer than the

first, this would require a semi-major axis of >11.1 AU, velocity ∼6.8 km s−1 and a leading

edge wedge angle of ∼0.5◦. We interpret this feature as two separate warps or perturbations

in the circumstellar disk that have crossed our line of sight. Another possibility is that we

are seeing two separate dust clumps (or high density regions), located in a similar location

of the disk. Simulations show that dust clumps can form in groups and then combine in the

disk over time, which could be the beginning processes of planetary formation [Fromang,

2005].

The second interpretation is that a single feature caused all three dimming events ob-

served. Assuming this scenario would imply a periodicity of ∼1130 days, the time between

the 2009 and 2012 events. This would place the occulting feature ∼1.7 AU from the star.

This would also imply that the duration and depth is changing on a dynamical timescale,

since we should have observed two more dimming events in 2006 and 2002. Examining the

KELT-North observations around those dates, there is a hint of potential dimming events,

but the behavior is more consistent with the ∼1 mag short period photometric variability

that are commonly known for T Tauri stars [Herbst et al., 1994]. However, since the cir-

cumstellar disk around V409 Tau is likely close to being edge-on (from our SED analysis),

any small fluctuation or change in the thickness of the disk would strongly affect the optical

brightness. Nelson et al. [2000] showed that heating and cooling of the inner disk (inside

10 AU from the host star) would show fluctuations in the spatial distribution of the grains
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on the timescale < 10 years. Since both observed dimming events have durations estimated

to be shorter than 10 years, they are consistent with heating and cooling timescales in the

disk.

From our SED analysis (see §4.2.4), our best fit model has a disk inclination of ∼81◦.

Again, this is only suggestive and we only conclude that the disk is likely close to but not

exactly edge-on. From our analysis, we estimate that the feature would be >10.7 AU from

the host star if we interpret the events in our data to be caused by different features in the

disk, but related to the event seen in the early 1960s. If we interpret the events to be caused

by one feature, the estimated semi-major axis of the feature would be 2 AU. Adopting the

the disk inclination of 81◦ at a semi-major axis of 10.7 AU and 2 AU, the required height

of the warp would only need to be 2 AU and 0.3 AU respectively. Therefore, it would

only take a relatively small perturbation to cross our line of sight. Also, we estimate from

kinematics the width of the feature to be 2.5 AU from kinematics. We would expect that

a warp would be wider than tall which is possible in this scenario. These estimates dont

consider that the disk could flare out as a function of radius, which has been seen in many

other disks [Espaillat et al., 2010].

4.6 Conclusions

The study of stars being occulted by circumstellar material can provide useful infor-

mation about the environments and dynamics of YSOs. This information may be of great

value for our understanding of how planetary systems evolve. New observations of AA

Tau from the KELT-North survey allow us to expand on the analysis performed by Bouvier

et al. [2013]. The sudden dimming that began in late 2010 appears to still be occurring

without any signs of recovery. We are able to use the data to constrain proprieties of the

occulting feature, assuming Keplerian motion.

New observations of V409 Tau from the KELT-North survey show that the system expe-

rienced two separate, ≥630 day long ∼1.4 mag dimming events in early 2009 and mid-2012.
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Our observations also show a photometric variability on the timescale of days to weeks oc-

curring before and during the events. Both of these characteristics are a common behavior

of UXor stars. The events were confirmed independently by the Catalina Real-time Tran-

sient Survey. A brightening of V409 Tau was seen in the early 1960’s by Romano [1975].

It is possible that this event was another dimming followed by a brightening. Our SED

analysis models the V409 Tau system to have a nearly edge-on disk. Using KELT-North

photometric observations of AA Tau as a direct comparison, we interpret the V409 Tau

dimming events as occultations of the host star by one or more features in the nearly edge-

on circumstellar disk. We see that both stars display both the short period (days to weeks)

variability and long term dimming events (months to years) that are commonly associated

with T Tauri and UXor stars.

The timescales of the two dimming events in V409 Tau are consistent with a fluctuation

in the disk’s thickness, but it is also possible that they are caused by an occultation of the

host star by a warp or perturbation in the circumstellar disk. The short period chaotic

variability, presumably due to spots and/or accretion on the stellar surface, is also apparent

during the dimming events of V409 Tau, further supporting the occultation scenario by

circumstellar disk structures far from the inner disk where the short-timescale variations

presumably arise.

These results motivate additional observations to monitor the V409 Tau system for an-

other dimming event. Like AA Tau, V409 Tau should serve as a valuable laboratory for

detailed studies of the structure of protoplanetary environments around low-mass pre-main-

sequence stars. The use of photometric surveys like KELT to discover and characterize the

occulation of young stars by their circumstellar disks will be applicable to future surveys

such as the Large Synoptic Survey Telescope (LSST). With LSST, we will be able to sig-

nificantly increase the sample size of these rare and valuable systems.
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Chapter 5

An Extreme Analogue of ε Aurigae: An M-giant Eclipsed Every 69 Years by a Large

Opaque Disk Surrounding a Small Hot Source

5.1 Introduction

One of the most well studied eclipsing binaries (EB) is ε Aurigae (HD 31964). At V

∼ 3 and having the longest known orbital period for an EB (∼27.1 yr), this unique system

has become a prime target for extensive characterization. The primary eclipse has a depth

of 0.8–1.0 mag (visual) and lasts for ∼2 yr. The primary star is an evolved F0 giant first

proposed as being eclipsed by a very large faint companion Carroll et al. [1991]. The

Spectral Energy Distribution (SED) of ε Aur was reproduced using 2 components: a 2.2

M�post-asymptotic giant branch F star, and a 5.9 M�B5V star with a thick semi-transparent

disk [Hoard et al., 2010]. Using the CHARA array to obtain interferometric images during

the 2009-2011 eclipse, Kloppenborg et al. [2010] confirmed the eclipse to be caused by a

dark companion with a tilted disk.

In this work, we present the analysis of TYC 2505-672-1, a system similar to ε Aur,

but with an even longer period of ∼69.1 yr, making it now the EB with the longest known

period. We use catalog photometry fortuitously obtained both during and prior to eclipse

for an analysis of the system spectral energy distribution (SED), and we use extensive

photometric observations from the Kilodegree Extremely Little Telescope (KELT) together

with archival observations spanning 120 yr. The primary component of the system is an M-

type red giant that over the past century has shown two very deep, multi-year-long dimming

events, most recently noted in Astronomer Telegrams by the MASTER Global Robotic Net

[Lipunov et al., 2010]. It has been suggested that the dimmings are caused by either R

Coronae Borealis (RCB) events of the M-giant [Denisenko et al., 2013] or by a very long-

period eclipse of the M-giant by a large, faint companion as in ε Aur [Tang et al., 2013].
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From our SED and light curve analysis, we interpret the dimmings to be caused by a

small, hot companion surrounded by a large opaque disk eclipsing the M-giant primary

star every ∼69 yr. However, as we discuss, the evolutionary status of this hot companion is

unclear, but may be a rare example of a low-mass, recently “stripped red giant” destined to

become a Helium white dwarf, such as that reported by Maxted et al. [2014].

5.2 Characteristics of the TYC 2505-672-1 System

The known properties of the TYC 2505-672-1 (2MASS J09531000+3353527) system

(α = 09h 53m 10.0043s, δ = +33◦ 53′ 52.734′′; V∼10.71) are a bit sparse [Hog et al., 1998,

Høg et al., 2000]. Afanasiev et al. [2013] observed the optical spectra of TYC 2505-672-

1 during the dim state and found it to be consistent with an M1 III red giant. They did

observe H-alpha emission in the spectra and suggest that the M-giant might be entering

an RCB phase. Pickles and Depagne [2010] found from spectral template fitting a best-fit

spectral type of M2 III; in order to be as conservative as possible in estimating the stellar

and system parameters, we adopt a very broad range of spectral types (M0-8IIIe) for the

primary star in the analysis that follows.

5.3 Data

Over the past century, multiple surveys have observed TYC 2505-672-1 at a variety of

cadences (see Figure 5.1). Note that over the ∼120 yr time span of the data there have been

two apparent eclipses, one recently in 2011–2015, and one sparsely sampled around 1942–

1945. We next describe these photometric light curves, and the available catalog broadband

absolute photometric data, in turn.
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5.3.1 KELT-North

The Kilodegree Extremely Little Telescope (KELT-North) is an ongoing photometric

survey searching for transiting planets around bright (V = 8-11) stars. KELT-North uses

a Mamiya 645-series wide-angle lens with a 42mm aperture and a 80mm focal length

(f/1.9), corresponding to a large field of view (26◦ × 26◦) with a plate scale of 23′′ per

pixel. The telescope has a non-standard filter, comparable to an extra-broad R-band, with a

typical photometric RMS precision of <1% for bright stars, but varies substantially across

the KELT field. The survey observes a predefined set of fields with a ∼15 minute cadence

through the entire season of visibility of each field [Pepper et al., 2007]. TYC 2505-672-1 is

located in KELT-North Field 06, which is centered on (α = 09hr 46m 33.752s, δ = +31◦ 39′

24.11′′). KELT-North observed this field from UT 2006 October 27 to UT 2014 December

21, obtaining 9,320 images. The data were reduced using a heavily modified version of

the ISIS software package, described further in §2 of Siverd et al. [2012]. The photometric

scatter (outside the eclipse) of the KELT-North light curve for TYC 2505-672-1 is ∼2%,

roughly consistent with the expected scatter for a target of this brightness located at its

position in the KELT-North field. Observations during the eclipse are at the observational

limit of KELT-North. Therefore, we do not trust the observed in-eclipse variability from

the KELT-North data.

5.3.2 American Association of Variable Star Observers (AAVSO)

The Association of Variable Star Observers (AAVSO) is a worldwide network of ama-

teur and professional astronomers dedicated to the understanding of variable stars. AAVSO

monitored TYC 2505-672-1 from UT 2013 February 08 until UT 2015 September 22, ob-

taining 246 observations in V band (and visual observations). The observations presented

in this work were taken by 18 different observers from the AAVSO network. Many of

the AAVSO members use an web interface photometry tool on the AAVSO website called
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Variable star PHOtometry Tools (VPHOT). The average error from all observers is 0.02

mag with a standard deviation of 0.35 mag.

5.3.3 Digital Access to a Sky Century at Harvard (DASCH)

The Digital Access to a Sky Century at Harvard (DASCH) survey is a digitized version

of the Harvard astronomical photographic plate collection. These observations allow the

astronomical study of objects on the century-long time scale. To date, they have scanned

over 100,000 plates corresponding to over 7 billion measured magnitudes. The DASCH

observations are in the B bandpass and have limiting magnitude of 15 (this value does

vary). The DASCH data release 4 represents observations from 1885 to 1992 (see Grindlay

et al. [2012] for an overview of the survey). The DASCH survey observed TYC 2505-672-

1 from UT 1890 March 08 until UT 1989 December 01, obtaining 1432 observations. Only

some of the observations have listed errors. The average of the listed errors is 0.1 mag with

a standard deviation of 0.03 mag.

5.3.4 Catalina Real-time Transient Survey (CRTS)

The Catalina Real-time Transient Survey (CRTS) is a wide photometric survey consist-

ing of 3 telescopes covering 33,000 Deg2 to find rare transient objects. All transient objects

are openly published within minutes of the observations. See Drake et al. [2009] for im-

formation about the survey and data reduction process. CRTS observed TYC 2505-672-1

from UT 2006 February 22 until 2013 June 05, resulting in 78 measurements. The photo-

metric values are determined using the SExtractor software package [Bertin and Arnouts,

1996]. The average error for the CRTS observations is 0.055 mag with a standard deviation

of 0.005 mag.
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5.3.5 All-Sky Automated Survey for SuperNovae (ASAS-SN)

The All-Sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”; Shappee

et al. [2014]) is a long-term project to monitor the whole sky down to a limiting magnitude

of V ∼ 17 mag with the highest cadence possible using a global network of telescopes

with a modular design. The focus of the survey is to find nearby supernovae (SNe) and

other bright transient sources. Currently, ASAS-SN consists of two fully robotic units on

Mount Haleakala in Hawaii and Cerro Tololo in Chile. Each unit has four telescopes on

a common mount and is hosted by Las Cumbres Observatory Global Telescope Network.

Each telescope consists of a 14-cm aperture Nikon telephoto lens and a 2k × 2k thinned

CCD, giving a 4.5× 4.5 degree field-of-view and a 7.8”pixel scale. These 8 telescopes

allow ASAS-SN to survey 20,000 deg2 per night, covering the entire visible sky every two

days. The pipeline is fully automatic and discoveries are announced within hours of the

data being taken. ASAS-SN has observed the field containing TYC 2505-672-1 141 times

since UT 2012 January 23. For the ASAS-SN data, we remove epochs affected by clouds

and performed aperture photometry using the IRAF apphot package and calibrated the

results using the AAVSO Photometric All-Sky Survey (APASS; Henden et al., 2015). The

average ASAS-SN error for TYC 2505-672-1 is 0.022 mag with a standard deviation of

0.021 mag.

5.3.6 Broadband Photometry from the Literature for Spectral Energy Distribution Mod-

eling

In order to ascertain the physical nature of the system, and in particular to help constrain

the properties of the occulting body, we assembled all of the available photometry from the

literature, which we then use in Section 5.4.1 to model the spectral energy distribution

(SED) of the system. All the broadband measurements are listed in Table 5.1, and they are

organized for convenience according to whether the available measurements happened to
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Figure 5.1: (Top) The KELT-North (Blue), DASCH (Black), CRTS (Red), AAVSO (Vio-
let), and ASAS-SN (Yellow) observations plotted from 1890 to 2015. The green line rep-
resents a LC model of the combined photometric data. (Bottom) The photometric observa-
tions covering the most recent eclipse. The KELT-North observations during the eclipse are
below the faintness limit of KELT and are therefore only upper limits. Only the AAVSO,
CRTS, and ASAS-SN data are in the Visual and V-band magnitudes. We approximate the
all observations to the AAVSO V-band to match the quiescent magnitude of the AAVSO
data but no attempt has been made to place all the data on the same absolute scale.

be obtained during occultation or not.
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Table 5.1: Archival flux measurements of TYC 2505-672-1 used in the SED analysis.

Band Magnitude Errora Source Reference
FUV 21.07 0.29 GALEX Bianchi et al. [2011]
NUV 19.476 0.1 GALEX Bianchi et al. [2011]

u′ 14.778 0.05 SDSS Pickles and Depagne [2010]
g′ 11.501 0.05 SDSS Pickles and Depagne [2010]
r′ 10.181 0.05 SDSS Pickles and Depagne [2010]
z′ 9.575 0.05 SDSS Pickles and Depagne [2010]

BT 13.128 0.279 Tycho-2 Høg et al. [2000]
VT 10.938 0.061 Tycho-2 Høg et al. [2000]
J 7.614 0.05 2MASS Cutri et al. [2003]
H 6.781 0.05 2MASS Cutri et al. [2003]
K 6.567 0.05 2MASS Cutri et al. [2003]

WISE1 9.179 0.065 WISE Cutri and et al. [2014]
WISE2 9.859 0.05 WISE Cutri and et al. [2014]
WISE3 11.559 0.1 WISE Cutri and et al. [2014]
WISE4 12.386 0.05 WISE Cutri and et al. [2014]

In-Eclipse
B 16.382 0.05 APASS Henden et al. [2015]
V 15.032 0.052 APASS Henden et al. [2015]
g′ 15.711 0.05 APASS Henden et al. [2015]
r′ 14.544 0.197 APASS Henden et al. [2015]
i′ 13.755 0.201 APASS Henden et al. [2015]

NOTES
aSingle-epoch errors have been inflated to reflect time variability of the source.

5.4 Results

5.4.1 SED Analysis and Implications

As shown in Table 5.1, we are fortunate to have broadband photometry from the liter-

ature both outside of occultation and during occultation, at wavelengths from the GALEX

FUV band (0.15µm) to the WISE4 band (20µm), providing a rich dataset for modeling the

underlying component(s) of the system. As we discuss in Section 5.5, our modeling of

the SED conclusively shows that there is a small hot star in the system (possibly a white

dwarf), and that this small hot star is likely to be surrounded by a large cool disk.

We fit three separate Kurucz atmosphere models to the available data. First, we fit a
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Figure 5.2: Spectral Energy Distribution fit for TYC 2505-672-1. The upper red curve has
Teff = 3600 K while lower red curve is the same model but scaled down by a factor of 50.
The blue curve is the best fit to the GALEX fluxes; it has Teff = 8000 K. The magenta
dashed curve is a low-mass M-dwarf with an accretion rate of 10−6 M� yr−1. The dotted
magenta curve shows what it would take for a cool star with a low accretion rate to match
the GALEX points (a solar-type star accreting at 3 × 10−8 M� yr−1).

cool, low gravity model (logg = 2.5, as appropriate for a modestly-evolved red giant) to

the data obtained outside of eclipse, excepting the GALEX fluxes. Second, we fit the same

model to the data obtained during eclipse. Third, we fit a hot source to the GALEX fluxes,

with the additional constraint that the sum of this hot source and that of the first step are

consistent with the SDSS u-band measurement. In each model fit, the fit parameters were

the effective temperature, the extinction, and a normalization. Note that according to the

Galactic dust maps of Schlegel et al. [1998], the maximum extinction for this line of sight is

AV = 0.04 mag, therefore the precise extinction value is of minor importance. We adopted

solar metallicity for simplicity; these broadband fits are not strongly sensitive to the choice
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of metallicity.

The resulting best SED fits are shown in Figure 5.2. The upper red curve has Teff = 3600

K as appropriate for a red giant, and consistent with the spectral class of M2 III found by

Pickles and Depagne [2010]. The lower red curve is the same model but scaled down by a

factor of 50. The blue curve is the best fit to the GALEX fluxes and to the u-band flux; it

has Teff = 8000 K, such as for a cool white dwarf.

It is possible that the small excess apparent in the SED at 20 µm is due to thermal

infrared emission from the disk around the companion star. It is beyond the scope of this

paper to model such a disk, given the lack of observational constraints on the disk emission.

However, if the disk emits strongly as a nearly “flat-spectrum” source then its emission at

20 µm would be on the order of ∼10−12 erg cm−2 s−1 (based on the peak emission of the

companion), which at 20 µm is ∼20% of the red giant’s photospheric emission and thus

could plausibly account for the modest excess emission observed at that wavelength. Ob-

servations in the near- to mid-IR during eclipse of the red giant primary would definitively

test this possibility.

Our SED analysis provides the following results and interpretations:

(1) UV fluxes. The fact that the system is detected in both the GALEX NUV and FUV

bands clearly indicates the presence of a hot component in the system; an M star alone

cannot explain this UV excess emission. As can be seen from the SED fit, a secondary

star with Teff = 8000 K fits the two GALEX fluxes nicely. It is possible that the UV flux

is arising from something other than a stellar photosphere. Specifically, if accretion is

occurring in the disk around the companion, this could cause a UV flux from photons

inside the disk being scattered and escaping. If the observed UV flux is from accretion

onto a cool star, then the photospheric emission of the star will be lower than that of the

hot component shown in our SED fit, which would then require a very high accretion rate

to reproduce the observed UV flux. Utilizing the SED models of low mass stars with

accreting disks from Robitaille et al. [2006b], we attempted to fit the GALEX fluxes with
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a low-mass star that is actively accreting from a disk. While a comprehensive search of

all possible parameters is beyond the scope of this paper, in general we found that it is not

possible to simultaneously fit both GALEX fluxes with such a model and a reasonably low

accretion rate. A stellar photosphere with a low accretion rate fitting the GALEX fluxes

would require the peak of the photospheric SED to rise far above the blue curve in Figure

5.2 (the magenta dotted line represents a solar-type star accreting at 3 × 10−8 M� yr−1),

which would then be inconsistent with the observed SED in eclipse. In order to keep the

peak of the photospheric SED low, then the shape of the SED must be relatively flat, such as

that shown by the magenta dashed curve, which requires an M-dwarf with a high accretion

rate of 10−6 M� yr−1, which would then deplete the disk on a very short timescale.

(2) Recent and historical eclipses must both be the primary eclipse; there is not yet

an observed secondary eclipse. If the historical eclipse were interpreted as the secondary

eclipse, then one could infer the ratio of Teff from ratio of the eclipse depths. From the full

observed light curve (Figure 5.1), we may hypothesize that we are seeing two eclipses, a

primary eclipse with a depth of ∼5 mag that has just recently occurred, and a secondary

eclipse with a depth of ∼2 mag that occurred 70 years ago. The durations of the two eclipses

are similar (about 4 years long), which would suggest a nearly circular orbit. In that case,

the ratio of eclipse depths (in flux units) is approximately the ratio of surface brightnesses

of the two bodies. We would have in this case a ratio of 100:6, which would imply a Teff

ratio of ∼ 151/4 ≈ 2. This is in fact quite close to the ratio of Teff from the SED fitting above

(8000/3600 ≈ 2).

Another constraint is the ratio of luminosities from the primary eclipse depth. Assum-

ing again that both a primary and secondary eclipse are observed, and that the primary

eclipse is near total (which it appears to be from the roughly flat bottom), then the primary

eclipse would represent a total blocking of the smaller body by the larger one. The ratio

of light lost to light remaining at the bottom of the eclipse is then the ratio of luminosi-

ties of the two bodies. In this case, with a primary eclipse depth of ∼4.5 mag, we have a
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luminosity ratio of ∼100.

In order for all of the above to be internally consistent, the fully eclipsed body would

have to be both the hotter object and the more luminous one. However, as can be seen

from the SED (Figure 4.7), the hot component (blue curve) is only more luminous than

the red one at UV wavelengths. At visible wavelengths the red giant component dominates

by a very large factor. Instead, the observed GALEX fluxes must represent the unob-

structed fluxes of the hot component, because it would have to be fully blocked behind

the red giant if it is the eclipsed body at primary eclipse. However, in that case GALEX

would not have detected the hot component. This then severely limits how luminous the

hot component can be relative to the red giant, and implies that it is the red giant that is

eclipsed at primary eclipse, and that the data do not show any evidence of a visible sec-

ondary eclipse. Indeed, the recently observed eclipse and the historically observed eclipse

both phase together nicely (Fig. 5.3), consistent with them representing the same primary

eclipse separated by ∼69.068 yr.

A possible solution is that the hot component is surrounded by a large, cool disk, and

that this is the body that obscures the red giant at primary eclipse. In that case, the red

giant would simply become much fainter during eclipse (corresponding to the red curve in

Figure 4.7 that matches the APASS SED during eclipse), as a result of being blocked by a

large occulting screen. Indeed, in the faint state, the SED appears dominated by the same

red giant spectrum as in the bright state, only diminished by a factor of ∼50, consistent

with the same dominant light source being mostly blocked by a dark screen. Moreover, the

occulting screen evidently produces a nearly grey extinction, since the shape of the SED

of the red giant component in the faint state is not reddened. We estimate the physical

dimensions of the disk surrounding the hot component in Section 5.5.1.

Finally, we can measure the ratio of the stellar radii from the Stefan-Boltzmann law,

using the measured ratio of luminosities from the SED fits and the ratio of the best-fit

temperatures: Rhot/RRG =
[(

Fbol,hot/Fbol,RG
)
/
(
Teff,hot/Teff,RG

)4
]1/2

, where the “hot” and
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“RG” subscripts refer to the hot companion and the red giant primary, respectively. The

ratio of bolometric fluxes, Fbol is obtained simply by integrating the best-fit SEDs over all

wavelengths, namely 0.00022. The resulting radius ratio is ≈0.003. Assuming a radius for

the red giant primary in the range of 45–170 R� (depending on the assumed mass and age

of the red giant; see below), this translates into a range of radii for the hot companion of

0.13–0.51 R�. This calculation assumes a thermal, photospheric source and that we are

seeing its entire surface (secondary star). It is possible that part of the secondary star is

obscured by the disk around it causing us to underestimate its radius. The uncertainty may

be as large as a factor of ∼2, given the uncertain Teff from the SED fitting. This estimate for

the radius of the hot companion is an order of magnitude smaller than the expected radius

for a main-sequence A type star (Teff ∼ 8000 K, R ∼ 2 R�), and 1–2 orders of magnitude

larger than that expected for standard, cooling white dwarfs (≈0.003–0.03 R�, depending

on mass).

If the companion is actually a cooler star with accretion, then the temperature of the

companion is lower than we have estimated here and consequently its radius would be

larger, perhaps consistent with a standard main sequence cool dwarf. However we do not

consider this likely because of the high accretion rate it would require (see result (1) earlier

in this section). The in-eclipse SED (both optical and UV) can also be fit using a solar pho-

tosphere with a low accretion value of 3 × 10−8 M� yr−1 (magenta dotted curve in Figure

4.7). In this scenario the companion radius would be ∼1 R�. In other words, the dotted

magenta curve suggests that another possible interpretation of the SED during eclipse is

that the red giant primary is 100% extinguished by the disk and that the companion SED is

that of a solar-type star accreting at 3 × 10−8 M� yr−1 (the magenta dotted curve in Figure

4.7). However, this model does not fit the in-eclipse SED as well as our preferred model,

in which the red giant remains partially visible during eclipse (the lower red curve in Fig-

ure 4.7) and the UV flux is provided by a small hot source, which fits the UV part of the

SED extremely well. We discuss below the likelihood that the hot component is instead a
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“stripped red giant” sdB type star.

5.4.2 Orbital Period

From Figure 5.1 and the SED analysis in Section 5.4.1, we interpret the observations

of the two eclipses to be the primary eclipse observed twice. Given the depth of the recent

event (∼4.5 mag), it is possible that TYC 2505-672-1 dimmed below the limiting magnitude

of the DASCH plates (B ∼15 mag). We can also rule out the possibility that the eclipse

happens every ∼34.5 years since we would have seen two additional events around ∼1908

and ∼1979, where we have sufficient coverage to rule out eclipses.

In order to calculate the period, we used a generalized normal distribution to find the

midpoint of the event. A generalized normal distribution provides a good functional fit to

a transit event without relying on any physical models, and the only physical parameters

that are directly measured are the out-of-transit magnitude and the midpoint of transit.

For the more recent event, we combined the light curves from AAVSO and CRTS into a

single light curve, and then used a least-squares-fit optimization to fit a generalized normal

distribution to this data to find that the midpoint of the event is 2456261.12224±2.081 days.

We then fit the same function to the DASCH data, allowing only the baseline magnitude

and midpoint of transit to be changed and preserving the shape of the transit. For the

older event, we found a midpoint of the event of 2431033.91053±4.862 days. Using these

two event midpoints, we calculate the event as having a period of 69.068±0.019 years.

The initial dimming observed by KELT in mid 2011 does not line up with this symmetric

eclipse model fully which might indicate that the eclipse eclipse is not symmetric in shape.
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Figure 5.3: (Top) KELT-North (Blue), DASCH (Black), CRTS (Red), AAVSO (Violet),
and ASAS-SN (Yellow) lightcurves phased to a period of 69.068 years (Bottom) Zoom in
of the eclipse. The green line represents a LC model of the combined photometric data.
The KELT-North observations during the eclipse are below the faintness limit of KELT and
are therefore only upper limits. For a better visual representation of the in-eclipse structure,
the KELT upper limit observations are not included in the bottom figure. Only the AAVSO,
CRTS, and ASAS-SN data are in the Visual and V-band magnitudes. We approximate the
all observations to the AAVSO V-band to match the quiescent magnitude of the AAVSO
data but no attempt has been made to place all the data on the same absolute scale.

5.5 Interpretation and Discussion

5.5.1 Favored Interpretation: A Red Giant Eclipsed by a Pre–Helium-White-Dwarf Com-

panion Surrounded by a Large Opaque Disk

From the SED analysis, we have determined that this system is composed of an M-giant

primary star with a hot (Te f f ∼8000 K) companion that is not contributing a significant
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amount of optical light. This secondary component could be a main-sequence A-type star

or a cool white dwarf. However, as discussed above, the apparent radius of the hot compo-

nent is much too large to be a standard dwarf and much too small to be a main-sequence

star.

Subdwarf B (sdB) stars are usually interpreted as red giants that been stripped of their

hydrogen envelopes, leaving behind an exposed, hot core with an O or B type temperature

but with a smaller radius than that of a main-sequence O or B type dwarf and a much larger

radius than that of a hot white dwarf. It is expected that these objects eventually become

Helium dwarfs (i.e., they are “pre-He-WD”). In this case, however, the temperature is

unusually cool for this scenario even if the radius is consistent. We note that Maxted et al.

[2014] reported a pre-He-WD system with a cool temperature also of ∼8000 K.

Therefore, we suggest that the most plausible interpretation of this system is an eclips-

ing binary with an M-giant primary and pre-He-WD companion that is surrounded by a

large disk. This scenario explains the observed UV excess, the small contribution of the

companion to the optical fluxes and the very deep, long-term dimming events in the light

curves. Since the dimming events show little to no structure (see Figure 5.3), it is likely

the disk around the hot companion is not only large but almost completely opaque. Also,

if the secondary component is an sdB star with a large disk, and the M-giant is roughly

three orders of magnitude brighter in optical flux than the sdB star (see Figure 4.7), the

secondary eclipse would be ∼1 mmag in depth, and thus undetectable in any of our data

sets.

To determine some of the physical properties of the opaque eclipsing body, we model

the 2011–2014 eclipse as an occultation of the M-giant by a large opaque object with a

sharp leading knife-edge, perpendicular to its direction of motion. This model requires

no knowledge of the orbital eccentricity. Using this simple model, we can calculate a

transverse velocity of the occulting body 2×RS tar/T, where T is the estimated ingress or

egress timescale. Afanasiev et al. [2013] measured the spectra of the primary star to be
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consistent with an M-giant. The stellar radius of an M-giant ranges from ∼45 R�(M0 III)

to ∼170 R�(M7/8 III) [Dumm and Schild, 1998]. We estimate the egress of the 2011-

2014 eclipse to be ∼315 days. This translates to a range of transverse velocity of 2.3–8.7

km s−1(for the range of stellar radii). Using the total estimated duration of the eclipse to be

∼3.45 years, we also estimate the extent of the occulting body to be V×T(duration) = 1.7–

6.3 AU (the disk could be inclined with respect to the companion’s orbital motion resulting

in a larger disk). Combining the estimated period of the EB (69.068 years) with a mass

estimate for the M-giant and the hot companion, we can estimate the semi-major axis of

the system, assuming Keplerian motion and a circular orbit. For the hot companion, we

adopt a white dwarf mass range of 0.17–1.33 M�[Kepler et al., 2007, Kilic et al., 2007]

and M-giants can range from 0.8 to 5.0 M�[Bressan et al., 1993, Dumm and Schild, 1998].

Using these mass ranges, this would result in a semi-major axis range of 16.7–31.2 AU.

By applying a simple model, we are able to determine that the occulting body is moving

2.3–8.7 km s−1, is 1.7–6.3 AU wide, and is orbiting at a semi-major axis of 16.7–31.2 AU.

This would suggest that the hot companion has a few AU diameter disk around it. The 4.5

mag depth of the eclipse implies that the occulter almost completely occults the M-giant.

Therefore, if the disk in not inclined to our line-of-sight, the thickness of the disk must be

similar to the diameter of the M-giant (45–170 R�or 0.21–0.8 AU). It is possible that the

disk is inclined to our line-of-sight (∼ 89◦±1.0◦ for ε Aur, see Kloppenborg et al. [2015]).

If the disk is not edge-on, the thickness of the disk could be significantly thinner (or even

thicker) and still cause the eclipse seen. Therefore, we are not able to constrain the disk’s

thickness. In the case of an edge on disk, the disk thickness-to-diameter ratio would be

∼12%.

5.5.2 Alternate Explanations

We have presented evidence in the previous subsection that the large dimming events of

TYC 2505-672-1 are caused by the M-giant primary being eclipsed by a white dwarf with
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a large disk surrounding it. We now explore an alternate explanation for these observations.

Another possible explanation for such large dimming events is that the M-giant primary

is an RCB star or entering the RCB phase [Denisenko et al., 2013]. These are carbon rich

supergiants (usually F or G spectral types) that experience non-periodic, large dimming

events (up to ∼8 mag in depth) caused by the formation of carbon dust in the stellar atmo-

sphere. The dimmings are typically separated by a few years to a decade and are typically

>3 mag in depth. The drop in the RCB star’s brightness is very rapid (a few days to weeks)

while the recovery is much slower (months to years). These stars also are known to pulsate

with amplitudes of ∼0.1 mag [Clayton, 2012]. If we were to believe that TYC 2505-672-1

was a unknown RCB star, the UV excess seen in the SED would be from a faint white

dwarf orbiting it contributing some UV flux. Since the dimmings are separated by much

longer then a few years to a decade, there is no pulsation amplitude observed outside of the

most recent dimming (where we have the best photometric precision), the spectra observed

by Denisenko et al. [2013] indicate that the primary star is an M-giant (not a supergiant,

and the SED analysis supports this), and the most recent dimming show the ingress/egress

timescales to be both much longer and more uniform than observed in known RCB stars,

we do not believe the RCB scenario to be a plausible explanation for the dimming events

observed for TYC 2505-672-1.

5.6 Summary and Conclusions

We have presented new observations of the remarkable eclipsing system TYC 2505-

672-1, an M-giant star that has shown two separate dimming events separated by ∼69.1 yr

over the course of the historical light curve spanning 120 yr. We find that both eclipses

phase up nicely with a period of 69.068 years. The most recent event, which was observed

by KELT-North, CRTS, AAVSO, and ASAS-SN, show that the eclipse lasts ∼3.5 years, has

a depth of 4.5 mag in the optical, and shows little to no structure in the lightcurve during

the eclipse. Our SED analysis (both in and out of eclipse) indicates to two components, one
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with a Teff=3600 K and the other with Teff=8000 K. Combining the SED and photometric

analysis, we determine that the system contains an M-giant primary star and a hot, dim

companion.

Curiously, however, the hot companion has a radius that is much too small to be a main-

sequence dwarf and much too large to be a standard cooling white dwarf. We propose the

best solution is that the M-giant is being eclipsed every ∼69.1 years by a “stripped red

giant” (pre-Helium-white-dwarf, low-mass subdwarf B-type) companion surrounded by

a large, opaque disk. This would explain the UV excess in the SED and the near-total

occultation seen in the photometry, while also explaining the seemingly strange radius of

the hot component.

As with ε Aurigae, this system presents a unique laboratory for understanding the disk

structure of a companion orbiting an evolved star. At a orbital period of ∼69.1 years,

this is now the longest period eclipsing system found to date. We encourage continued

photometric and spectroscopic follow-up of this system, in particular the measurement of

the system’s radial velocity motion. Extrapolating from our calculated period and TC , the

next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (TC

= 2480857.48, UT 2081 December 24).

A mystery remains regarding the evolutionary nature of the hot component within the

opaque disk. Previous examples of pre-He-WDs [Maxted et al., 2014] are in relatively

short-period binary systems (periods of ∼1 day), such that the recent stripping of the red

giant that produced the currently observed hot source can be reasonably attributed to inter-

actions between the close binary components. In the present case, however, the two stars

are evidently very widely separated (semi-major axis ∼20 AU). Perhaps the hot component

is itself in a tight binary within the surrounding opaque disk, or is the result of a white

dwarf merger. It is possible that we are witnessing an object in the very short-lived evo-

lutionary state following the sdB stage leading to the eventual very hot, and then cooling,

white dwarf.
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Chapter 6

KELT-14b and KELT-15b: An Independent Discovery of WASP-122b and a New Hot

Jupiter

6.1 Introduction

The confirmation of over 1000 transiting exoplanets to date is due to the success of

ground-based photometric surveys such as HATNet [Bakos et al., 2004], SuperWASP [Pol-

lacco et al., 2006], XO [McCullough et al., 2006], and TrES [Alonso et al., 2004], and the

space-based missions CoRoT [Baglin et al., 2006] and Kepler [Borucki et al., 2010]. The

field has shifted from pure discovery to understanding the demographics of exoplanets and

atmospheric characterization. However, many of the discovered planets are too faint or too

small for performing atmospheric characterization with current facilities. To date, there are

only 29 giant transiting planets orbiting stars with V < 11.5 in the southern hemisphere1.

It is believed that “hot Jupiters,” gas giant planets that orbit extremely close (orbital

periods of a few days) to their host stars, must form beyond the “Snow Line.” Once formed,

the giant planets can migrate inward through various methods [Tanaka et al., 2002, Masset

and Papaloizou, 2003, D’Angelo and Lubow, 2008, Jackson et al., 2008, Cloutier and Lin,

2013]. It has been proposed that Jupiter experienced migration early in its lifetime, but did

not migrate all the way inward due to the gravitational pull of Saturn [Walsh et al., 2011].

These hot Jupiters, specifically ones orbiting solar-like stars, provide insight into alternate

evolutionary scenarios.

The Kilodegree Extremely Little Telescope (KELT) exoplanet survey, operated and

owned by Vanderbilt University, Ohio State University, and Lehigh University, has been

observing > 60% of the sky with a cadence of 10 to 20 minutes for many years. The

project uses two telescopes, KELT-North at Winer Observatory in Sonoita, Arizona and

1www.exoplanets.org, as of September 2015
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KELT-South at the South African Astronomical Observatory (SAAO) in Sutherland, South

Africa. The survey is optimized for high-precision (≤1% RMS) photometry for stars with

8 ≤ V ≤ 11 to enable transit discovery of giant planets. Each telescope has a 42 mm aper-

ture, 26◦×26◦ field of view, and a pixel scale of 23′′/pixel [Pepper et al., 2007, 2012]. The

first telescope in the survey, KELT-North, has announced six planets orbiting stars brighter

than V = 11 [Siverd et al., 2012, Beatty et al., 2012, Pepper et al., 2013, Collins et al.,

2014, Bieryla et al., 2015, Fulton et al., 2015]. The younger counterpart in the survey,

KELT-South, has already announced one planet, KELT-10b [Kuhn et al., 2015].

In this paper, we present the discovery of a new hot Jupiter by KELT-South, which

we name KELT-15b. We also present another hot Jupiter, which we refer to in this paper

as KELT-14b. Shortly before the completion of this paper, a draft manuscript was posted

to the arXiv [Turner et al., 2015] describing the discovery of three new exoplanets by the

SuperWASP survey. One of the planets they name WASP-122b, which is the same planet

we designate as KELT-14b. Since the data we present in this paper were collected inde-

pendently and the analysis performed before the announcement of WASP-122b, we have

chosen to discuss our findings as an independent discovery of this planet, and we refer to it

here as KELT-14b. However, we acknowledge the prior announcement of it as WASP-122b.

The paper is organized as follows with each section including both discovered systems,

KELT-14b and KELT-15b. In §2 we present our discovery and follow-up observations

(photometric and spectroscopic). We present our stellar characterization analysis and re-

sults in §3. The global modeling and resulting planetary parameters are discussed in §4

with our false positive analysis described in §5. In §6 we describe the evolutionary analy-

sis, long-term follow-up to look for additional companions in each system, and the value

each planetary system has for future atmospheric characterization observations. We sum-

marize our results and conclusions in §7.
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Figure 6.1: Discovery light curve of KELT-14b (Top) and KELT-15b (Bottom) from the
KELT-South telescope. The light curves are phase-folded to the discovery periods of P =

1.7100596 and 3.329442 days respectively; the red points show the light curve binned in
phase using a bin size of 0.01.

6.2 Discovery and Follow-Up Observations

6.2.1 KELT-South

KELT-14 and KELT-15 are located in the KELT-South field 34, which is centered at

J2000 α = 08h 16m 12s δ = -54◦ 00′ 00′′. Field 34 was monitored in two separate cam-

paigns: First from UT 2010 January 03 to UT 2010 February 19 as part of the KELT-South

commissioning campaign, and then again from UT 2012 September 16 to UT 2014 June

14, acquiring a total of ∼5780 images after post-processing and removal of bad images.

Following the strategy described in Kuhn et al. [2015], we reduced the raw images, ex-

tracted the light curves, and searched for transit candidates. Two stars emerged as top can-

94



-3 -2 -1 0 1 2 3
Time - TC (hrs)

1.00

1.05

1.10

1.15

N
o
rm

a
liz

e
d
 f
lu

x
 +

 C
o
n
s
ta

n
t

PEST UT 2015-01-20 (R)

PEST UT 2015-01-25 (I)

PEST UT 2015-03-09 (V)

ICO UT 2015-03-09 (V)

Hazelwood UT 2015-03-09 (V)

Hazelwood UT 2015-03-21 (B)

LCOGT UT 2015-03-29 (g)

Hazelwood UT 2015-04-02 (I)

0.985

0.990

0.995

1.000

N
o
rm

a
liz

e
d
 f
lu

x

-3 -2 -1 0 1 2 3
Time - TC (hrs)

-0.005

0.000

0.005

O
-C

Figure 6.2: (Top) The follow-up photometry of KELT-14b from the KELT follow-up net-
work. The red line is the best model for each follow-up lightcurve. (Bottom) The individ-
ual follow-up lightcurves combined and binned in 5 minute intervals. This combined and
binned plot represents the true nature of the transit. The combined and binned light curve is
for display and is not used in the analysis. The red line represents the combined and binned
individual models (red) of each follow-up observation.
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Table 6.1: Stellar Properties of KELT-14 and KELT-15 obtained from the literature.

Parameter Description KELT-14 Value KELT-15 Value Source Reference(s)
TYC 7638-981-1 TYC 8146-86-1

GSC 07638-00981 GSC 08146-00086
2MASS J07131235-4224350 2MASS J07493960-5207136

αJ2000 Right Ascension (RA) 07:13:12.347 07:49:39.606 Tycho-2 Høg et al. [2000]
δJ2000 Declination (Dec) -42:24:35.17 -52:07:13.58 Tycho-2 Høg et al. [2000]

NUV 17.06± 0.1 N/A GALEX
BT Tycho BT magnitude 11.963 11.889 Tycho-2 Høg et al. [2000]
VT Tycho VT magnitude 11.088 11.440 Tycho-2 Høg et al. [2000]

Johnson V APASS magnitude 10.948 ± 0.05 11.189± 0.05 APASS Henden et al. [2015]
Johnson B APASS magnitude 11.64 ± 0.05 11.745± 0.05 APASS Henden et al. [2015]
Sloan g’ APASS magnitude 11.247 ± 0.051 11.438 ± 0.03 APASS Henden et al. [2015]
Sloan r’ APASS magnitude 10.733 ± 0.053 11.048 ± 0.03 APASS Henden et al. [2015]
Sloan i’ APASS magnitude 10.631 ± 0.05 10.935 ± 0.05 APASS Henden et al. [2015]

J 2MASS magnitude 9.808 ± 0.024 10.205 ± 0.024 2MASS Cutri et al. [2003]
H 2MASS magnitude 9.487 ± 0.024 9.919 ± 0.023 2MASS Cutri et al. [2003]
K 2MASS magnitude 9.424 ± 0.023 9.854 ± 0.025 2MASS Cutri et al. [2003]

WISE1 WISE passband 9.369 ± 0.023 9.775 ± 0.023 WISE Cutri and et al. [2012]
WISE2 WISE passband 9.414 ± 0.021 9.805 ± 0.020 WISE Cutri and et al. [2012]
WISE3 WISE passband 9.339 ± 0.026 9.919 ± 0.048 WISE Cutri and et al. [2012]
WISE4 WISE passband 9.442 ± 0.495 <9.580 WISE Cutri and et al. [2012]

µα Proper Motion in RA (mas yr−1) -13.9 ± 2.2 -3.4 ± 2.3 NOMAD Zacharias et al. [2004]
µδ Proper Motion in DEC (mas yr−1) -1.3 ± 2.0 -2.0 ± 2.9 NOMAD Zacharias et al. [2004]

U∗ Space motion ( km s−1) -4.6 ± 1.9 7.8 ± 3.8 This work
V Space motion ( km s−1) -14.6 ± 0.9 2.6 ± 0.8 This work
W Space motion ( km s−1) -14.0 ± 2.3 -1.5 ± 3.3 This work
Distance Estimated Distance (pc) 201±19 291±30 This work
RV Absolute RV ( km s−1) 34.62 ± 0.13 12.20 ± 0.11 This work
vsin i∗ Stellar Rotational Velocity ( km s−1) 7.7±0.4 7.6±0.4 This work

NOTES
Red value correspond to upper limits (S/N < 2)

∗U is positive in the direction of the Galactic Center

didates from this process: KS34C030815 (TYC 7638-981-1, GSC 07638-00981, 2MASS

J07131235-4224350) located at α = 07h 13m 12.347s δ = -42◦8 24′ 35′′17 J2000, hereafter

as KELT-14, and KS34C034621 (TYC 8146-86-1,GSC 08146-00086, 2MASS J07493960-

5207136) located at α= 07h 49m 39.606s δ= -52◦ 07′ 13′′58 J2000, designated as KELT-15

(see Figure 6.1). The host star properties for both targets are listed in Table 6.1. We used

the box-fitting least squares (BLS) algorithm [Kovács et al., 2002, Hartman, 2012] to select

these candidates, and the BLS selection criteria and values for both are shown in Table 6.2.

To precisely measure the transits of KELT-14b and KELT-15b, we obtained high-cadence,

high-precision photometric follow-up using larger telescopes that cleanly resolve the hosts

from their neighbors. These observations better constrain the period, depth, and duration

of the transit and also rule out various false positive scenarios. To predict the transits, we

use the web interface, TAPIR [Jensen, 2013]. For consistency, all follow-up observations
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Table 6.2: KELT-South BLS selection criteria

BLS Selection KELT-14b KELT-15b
Statistic Criteria KS34C030815 KS34C034621
Signal detection . SDE > 7.0 7.75403 11.04677
efficiency . . . .
Signal to pink-noise SPN > 7.0 8.26194 9.78164
Transit depth . . . δ < 0.05 0.01072 0.00841

χ2 ratio . . . . .
∆χ2

∆χ2
−

> 1.5 2.16 2.56

Duty cycle . . . . q < 0.1 0.03333 0.04667

Table 6.3: Photometric follow-up observations and the detrending parameters found by AIJ
for the global fit.

Target Observatory Date (UT) Filter FOV Pixel Scale Exposure (s) FWHM Detrending parameters for global fit
KELT-14b PEST UT 2015 January 20 R 31 ′ × 21 ′ 1.2′′ 60 6.04 airmass, y coordinates
KELT-14b PEST UT 2015 January 25 I 31 ′ × 21 ′ 1.2′′ 120 7.48 airmass, y coordinates
KELT-14b PEST UT 2015 March 09 V 31 ′ × 21 ′ 1.2′′ 120 5.56 airmass
KELT-14b Adelaide UT 2015 March 09 V 16.6′ × 12.3′ 0.62′′ 60 10.48 airmass, total counts
KELT-14b Hazelwood UT 2015 March 09 V 18′ × 12′ 0.73′′ 120 6.10 airmass
KELT-14b Hazelwood UT 2015 March 21 B 18′ × 12′ 0.73′′ 120 6.31 airmass
KELT-14b LCOGT UT 2015 March 29 g′ 27′ × 27′ 0.39′′ 39 11.24 airmass, pixel width, total counts
KELT-14b Hazelwood UT 2015 April 02 I 18′ × 12′ 0.73′′ 120 7.19 airmass
KELT-15b Adelaide UT 2014 December 27 V 16.6′ × 12.3′ 0.62′′ 60 9.95 airmass, y coordinates, total counts
KELT-15b Adelaide UT 2015 January 06 R 16.6′ × 12.3′ 0.62′′ 120 13.8 airmass, y coordinates
KELT-15b PEST UT 2015 January 16 I 31 ′ × 21 ′ 1.2′′ 120 6.35 airmass, sky counts per pixel, total counts

NOTES
All the follow-up photometry presented in this paper is available in machine-readable form in the online
journal.

were analyzed using AstroImageJ (AIJ) [Collins and Kielkopf, 2013, Collins, 2015]. This

software also provides the best detrending parameters that are included in the global fit (see

§6.4.1). The follow-up photometry for KELT-14b and KELT-15b are shown in Figures 6.2

and 6.3 respectively.

6.2.2 Photometric Follow-up

6.2.2.1 LCOGT

We observed a nearly full transit of KELT-14b in the Sloan g-band on UT 2015 March

29 from a 1-m telescope in the Las Cumbres Observatory Global Telescope (LCOGT)

network2 located at Cerro Tololo Inter-American Observatory (CTIO) in Chile. The LCOGT

2http://lcogt.net/
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Figure 6.3: (Top) The follow-up photometry of KELT-15b from the KELT follow-up net-
work. The red line is the best model for each follow-up lightcurve. (Bottom) All the
follow-up lightcurves combined and binned in 5 minute intervals. This best represents the
true nature of the transit. The combined and binned light curve is for display and is not
used in the analysis. The red line represents the combined and binned individual models
(red) of each follow-up observation.
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telescopes at CTIO have a 4K × 4K Sinistro detector with a 27′ × 27′ field of view and

a pixel scale of 0.39′′ per pixel. The typical FWHM of the star in this data set was 11.24

pixels. The reduced data were downloaded from the LCOGT archive and analyzed using

the AstroImageJ software. In a portion of the light curve surrounding the transit ingress the

target was saturated, therefore we exclude this portion of the data from the global parameter

analysis in §6.4.1.

6.2.2.2 PEST Observatory

PEST (Perth Exoplanet Survey Telescope) observatory is a home observatory owned

and operated by Thiam-Guan (TG) Tan. It is equipped with a 12-inch Meade LX200 SCT

f/10 telescope with focal reducer yielding f/5. The camera is an SBIG ST-8XME with a

filter wheel having B, V , R, I and Clear filters. The focusing is computer controlled with an

Optec TCF-Si focuser. The image scale obtained is 1.2 ′′ per pixel and a full frame image

covers 31 ′ × 21 ′. For images in focus the usual star FWHM achieved is about 2.5 to 3.5

pixels. The PEST observatory clock is synced on start up to the atomic clock in Bolder,

CO and is resynced every 3 hours. PEST observed full transits of KELT-14b on UT 2015

January 20 (R) and UT 2015 January 25 (I), and a nearly full transit on UT 2015 March 09

(V). PEST observed a full transit of KELT-15b on UT 2015 January 16 (I).

6.2.2.3 Hazelwood Observatory

The Hazelwood Observatory is a backyard observatory with 0.32 m Planewave CDK

telescope working at f/8, a SBIG ST8XME 1.5K × 1K CCD, giving a 18′ × 12′ field of view

and 0.73′′ per pixel. The camera is equipped with Clear, B, V, Rc, and Ic filters (Astrodon

Interference). Typical FWHM is 2.4′′ to 2.7′′. The Hazelwood Observatory, operated by

Chris Stockdale in Victoria, Australia, obtained an ingress of KELT-14b in V-band on UT

2015 March 09, a full transit in the B-band on UT 2015 March 21 and a full transit in

I-band on UT 2015 April 02. The observatory computer clock is synchronised at the start
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Table 6.4: Spectroscopic follow-up observations

Target Telescope/Instrument Date Range Type of Observation Resolution Wavelength Range Mean S/N Epochs
KELT-14 ANU 2.3/WiFes UT 2015 Feb 02 Reconnaissance R∼ 3000 3500−6000Å 75 1
KELT-14 ANU 2.3/WiFes UT 2015 Feb 02 – UT 2015 Feb 04 Reconnaissance R∼ 7000 5200−7000Å 85 3
KELT-15 ANU 2.3/WiFes UT 2014 Dec 29 Reconnaissance R∼ 3000 3500−6000Å 110 1
KELT-15 ANU 2.3/WiFes UT 2014 Dec 29 – UT 2015 Jan 02 Reconnaissance R∼ 7000 5200−7000Å 80 3
KELT-14 AAT/CYCLOPS2 UT 2015 Feb 26 – UT 2015 May 13 High Resolution R∼ 70,000 4550−7350Å 41.6 15
KELT-15 AAT/CYCLOPS2 UT 2015 Feb 27 – UT 2015 May 15 High Resolution R∼ 70,000 4550−7350Å 41.2 14
KELT-15 Euler/CORALIE UT 2015 Sep 04 – UT 2015 Sep 13 High Resolution R∼ 60,000 3900−6800Å 28.25 5

of each observing session and then every 15 minutes using NTP protocol to time.nist.gov.

ACP, ACP Scheduler and MaximDL are used to acquire the images. The camera shutter

latency (0.5s) is allowed for within MaximDL and the adjusted exposure time is recorded

within the FITS header. Experience with another project has shown that the exposure start

time is recorded in the FITS header to within one second of the actual exposure start time.

6.2.2.4 Adelaide Observations

The Adelaide Observatory, owned and operated by Ivan Curtis is located in Adelaide,

Australia (labeled “ICO” in the figures). The observatory is equipped with a 9.25-in Cele-

stron SCT telescope with an Antares 0.63x focal reducer yielding an overall focal ratio of

f/6.3. The camera is an Atik 320e, which uses a cooled Sony ICX274 CCD of 1620×1220

pixels. The field of view is 16.6′ × 12.3′ with a pixel scale of 0.62′′ per pixel and a typical

FWHM around 2.5 to 3.1 ′′. The observatory’s computer clock is synced with an internet

time server before each observation session and has an overall timing uncertainty of a few

seconds. The Adelaide Observatory observed a full transit of KELT-14b on UT 2015 March

09 (V) and full transits of KELT-15b on UT 2014 December 27 (R) and UT 2015 January

06 (R).

6.2.3 Spectroscopic Follow-up

6.2.3.1 Reconnaissance Spectroscopy

Since many astrophysical phenomena can create photometric signals that mimic plane-

tary transits, it is important to follow up all candidates carefully to eliminate false positives.
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Table 6.5: KELT-14 radial velocity observations with CYCLOPS2.

BJDTDB RV RV error Instrument
( m s−1) ( m s−1)

2457079.939623842 34621.30 16.70 CYCLOPS2
2457079.991772522 34658.60 8.20 CYCLOPS2
2457080.950428010 34456.10 5.20 CYCLOPS2
2457081.937382183 34725.20 5.50 CYCLOPS2
2457083.075531623 34431.30 6.00 CYCLOPS2
2457148.892669835 34776.70 9.80 CYCLOPS2
2457148.924568460 34792.00 12.60 CYCLOPS2
2457149.929456027 34505.50 19.10 CYCLOPS2
2457150.967262368 34528.10 13.10 CYCLOPS2
2457151.873724511 34733.40 14.30 CYCLOPS2
2457153.886260897 34794.20 13.20 CYCLOPS2
2457153.916879608 34729.70 14.90 CYCLOPS2
2457154.898109197 34468.40 8.30 CYCLOPS2
2457155.867229521 34533.50 112.90 CYCLOPS2
2457155.900058155 34560.60 111.50 CYCLOPS2

NOTES
This table is available in its entirety in a machine-readable form in the online journal.

After identifying the targets as planet candidates from the KELT photometry, a first stage

of spectroscopic reconnaissance was done using the WiFeS spectrograph mounted on the

2.3m ANU telescope at Siding Spring Observatory [Dopita et al., 2007]. This instrument is

an optical dual-beam, image-slicing integral-field spectrograph. The full WiFeS observing

strategy and reduction procedure is described in Bayliss et al. [2013].

First, observations of both stars were performed at low resolution (R∼ 3000) in the

3500-6000 Å range to determine their stellar type. Both KELT-14 and KELT-15 were

identified with the following parameters: KELT-14 has Teff = 5572±200K, logg∗ = 3.5±0.4

(cgs) and [Fe/H] = 0.0±0.4; KELT-15b has Teff = 6221±200K, logg∗ = 3.4±0.4 (cgs) and

[Fe/H] = 0.0± 0.4. The low resolution spectra provide poor precision on the logg∗ and

therefore, these logg∗ values aren’t very reliable.

Additionally, three observations for each target were performed in medium-resolution

(R∼ 7000) using the red camera arm of the WiFeS spectrograph (5500-9000 Å) across the
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Table 6.6: KELT-15 radial velocity observations with CYCLOPS2 and CORALIE.

BJDTDB RV RV error Instrument
( m s−1) ( m s−1)

2457081.094367965 12320.4 10.8 CYCLOPS2
2457083.091453823 12105.7 17.6 CYCLOPS2
2457148.910598987 12074.4 16.3 CYCLOPS2
2457148.942507928 12247.1 16.6 CYCLOPS2
2457149.947425124 12072.9 25.1 CYCLOPS2
2457150.985251112 12191.4 17.6 CYCLOPS2
2457151.891071429 12281.0 15.0 CYCLOPS2
2457151.953179348 12291.2 12.7 CYCLOPS2
2457153.903635089 12196.2 16.0 CYCLOPS2
2457153.934254059 12188.1 19.9 CYCLOPS2
2457154.912681718 12334.9 13.3 CYCLOPS2
2457154.921681414 12354.9 17.5 CYCLOPS2
2457155.886209486 12085.3 118.0 CYCLOPS2
2457155.918108410 12057.5 114.8 CYCLOPS2

2457269.908610 12096.39 53.81 CORALIE
2457272.903199 12125.96 81.47 CORALIE
2457273.907330 12221.40 57.97 CORALIE
2457276.897042 12216.76 44.60 CORALIE
2457278.894140 12161.43 24.16 CORALIE

NOTES
This table is available in its entirety in a machine-readable form in the online journal.
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Figure 6.4: (Top) the AAT radial velocity measurements (the median absolute RV has been
subtracted off) and residuals for KELT-14. The best-fitting orbit model is shown in red.
The residuals of the RV measurements to the best fitting model are shown below. (Bottom)
The KELT-14 AAT measurements phase-folded to the final global fit ephemeris.

expected orbital phase based on the photometrically detected period. These observations

were aimed at performing multiple radial velocity (RV) measurements of each target to

detect signals higher than 5 km/s amplitude, allowing us to identify grazing binary systems

or blended eclipsing binaries. The typical RV precision achieved with this instrument is

around 1.5 km/s, and both targets showed no significant variations among the three mea-

surements.

6.2.3.2 High Precision Spectroscopic Follow-up

To confirm the planetary nature of the companion, we obtain multi-epoch high-resolution

spectroscopy. These spectra allow us to very accurately measure the radial velocity of the

host star providing us with a precise measurement of the companion’s mass. Also, these
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Figure 6.5: (Top) the AAT (black) and CORALIE (red) radial velocity measurements (the
median absolute RV has been subtracted off) and residuals for KELT-15. The best-fitting
orbit model is shown in red. The residuals of the RV measurements to the best model are
shown below. (Bottom) The KELT-15 AAT (black) and CORALIE (red) measurements
phase-folded to the final global fit ephemeris.

spectra provide a much better estimate of the stellar properties.

6.2.3.3 CYCLOPS2

Spectroscopic observations of KELT-14 and KELT-15 were carried out using the CY-

CLOPS2 fibre feed with the UCLES spectrograph instrument on the Anglo-Australian Tele-

scope (AAT) over two observing runs: UT 2015 February 02 - UT 2015 March 01 and UT

2015 May 6 - UT 2015 May 13 (See Figure 6.4 and 6.5). The instrumental set-up and ob-

serving strategy for these observations closely follow that described in earlier CYCLOPS

radial velocity papers [Addison et al., 2013, 2014].

CYCLOPS2 is a Cassegrain fiber-based integral field unit which reformats a ∼2.5”
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diameter on-sky aperture into a pseudo-slit of dimensions equivalent to 0.6” wide × 14.5”

long [Horton et al., 2012]. CYCLOPS2 has 16 on-sky fibers, plus one fiber illuminated by

a ThUXe lamp. Each fiber delivers a spectral resolution of λ/∆λ ≈ 70,000 over 19 echelle

orders in the wavelength range of 4550−7350Å, when used with the UCLES spectrograph

in its 79 line/mm grating configuration.

We use a ThAr calibration lamp to illuminate all of the on-sky fibers at the beginning

of observations to create a reference ThAr wavelength solution. We then use simultaneous

ThUXe data from each exposure to determine low-order distortions which differentially

calibrate observations through the night onto the reference ThAr solution. These reductions

are carried out using custom MATLAB routines (Wright and Tinney, in prep.). Calibration

precision is estimated from the scatter of fits to the simultaneous ThUXe spectral features

and these are tested against velocity standards taken each night. The typical calibration

precision is < 10 m s−1. This calibration error is combined with the error from a fit to the

cross-correlation profile to give a final uncertainty for each observation.

The cross-correlation profiles are obtained using a weighted cross-correlation [Baranne

et al., 1996, Pepe et al., 2002] of a stellar template produced with synspec [Hubeny and

Lanz, 2011]. The velocities are determined from the fit of a generalised normal distribu-

tion to the cross-correlation profiles and the errors are estimated from the Jacobian matrix

for each fit. We find no correlation between the bisector spans and the measured radial

velocities. This provides strong evidence against a blended eclipsing binary scenario.

6.2.3.4 CORALIE

CORALIE is a fibre-fed echelle spectrograph [Queloz et al., 2001] attached to the Swiss

1.2 m Leonard Euler telescope at the ESO La Silla Observatory in Chile. It has a spectral

resolution of R∼60000, a wavelength range of 3900−6800Å, and is able to measure radial

velocities of bright stars to a precision of 3 m.s−1 or better [Pepe et al., 2002]. In June

2015, the CORALIE spectrograph was equipped with a new Fabry-Peŕot-based calibration
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system [Wildi et al., 2011]. This system replaces the ThAr lamp for the simultaneous

reference method that determines and corrects for instrumental drift occurring between the

calibration and the science exposure [Baranne et al., 1996]. The data-reduction software

has been adapted to take into account the new operational mode and take benefit from

the higher spectral content, and hence the lower photon noise, on the drift measurement,

provided by the Fabry-Peŕot based calibration source. We obtained spectra at five epochs of

KELT-15 from UT 2015 September 02 to UT 2015 September 14. All observations were

reduced and radial velocities were computed in real time using the standard CORALIE

pipeline. The observations from CORALIE are consistent with the CYCLOPS2 measured

radial velocities. The results are shown in Figure 6.5. We find no correlation between the

bisector spans and the measured radial velocities (see Figure 6.6).

6.3 Analysis and Results

6.3.1 SME Stellar Analysis

In order to determine precise stellar parameters for KELT-14 and KELT-15, we use the

available high-resolution, low S/N AAT CYCLOPS2 spectra acquired for radial velocity

confirmation of the two planetary systems. For each CYCLOPS2 dataset, we took the flux

weighted mean of the individual fibers, continuum normalized each spectral order, and

stitched the orders into a single 1-D spectrum. We shifted each resulting spectrum to rest

wavelength by accounting for barycentric motion, and median combined all observations

into a single spectrum with a S/N ∼ 50, sufficient for detailed spectroscopic analysis.

Stellar parameters for KELT-14 and KELT-15 are determined using an implementa-

tion of Spectroscopy Made Easy (SME) [Valenti and Piskunov, 1996]. Our Monte Carlo

approach to using SME for measuring stellar parameters is detailed in Kuhn et al. [2015].

Briefly, we use a multi-trial minimization of 500 randomly selected initial parameter values,

each solving for 5 free parameters: effective temperature (Teff), surface gravity (logg∗), iron
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Figure 6.6: The AAT Bisector measurements for the (Top) KELT-14 and the combined AAT
and CORALIE bisector measurements for (Bottom) the KELT-15 spectra used for radial
velocity measurements. We find no significant correlation between RV and the bisector
spans.
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abundance ([Fe/H]), metal abundance ([m/H]), and rotational velocity of the star (vsin i∗).

We determine our final measured stellar properties by identifying the output parameters

that give the optimal SME solution (i.e., the solution with the lowest χ2). The overall SME

measurement uncertainties in the final parameters are calculated by adding in quadrature

the internal error determined from the 68.3% confidence region in the χ2 map, the median

absolute deviation of the parameters from the 500 output SME solutions to account for the

correlation between the initial guess and the final fit, and an estimate for the systematic

errors in our method when compared to other common stellar spectral analysis tools [see

Gómez de Castro et al., 2013].

Due to the instrument setup used for measuring high-precision radial velocities, the

AAT CYCLOPS2 spectra do not include the full MgB triplet wavelength region, a pressure-

broadened set of lines commonly used in spectral synthesis modeling to constrain logg∗

[Valenti and Fischer, 2005]. The available spectra only include one of the three strong

Mg lines in this region. In order to investigate the effect of this constraint on our stellar

parameters, we run two separate SME runs for both KELT-14 and KELT-15, one with

logg∗ as a free parameter and the other with logg∗ fixed from our preliminary global fit of

the photometric observations.

Our final SME spectroscopic parameters for KELT-14 are: Teff = 5817±90 K, logg∗ = 4.16±0.12,

[m/H] = 0.39±0.03, [Fe/H] = 0.34±0.09 and a projected rotational velocity vsin i∗ =7.7±0.4 km s−1.

Similarly, with a fixed logg∗=4.23; Teff = 5834±75 K, [m/H] = 0.39±0.03, [Fe/H] = 0.34±0.09

and vsin i∗ =7.6±0.4 km s−1. For KELT-15 we find: Teff = 6023±61 K, logg∗ = 3.80±0.08,

[m/H] = 0.06±0.03, [Fe/H] = 0.05±0.03 and vsin i∗ =11.1±0.5 km s−1. With a fixed

logg∗=4.17 we find; Teff = 6102±51 K, [m/H] = 0.02±0.03, [Fe/H] = 0.05±0.03 and

vsin i∗ =11.1±0.5 km s−1. We constrain the macro- and microturbulent velocities to the

empirically constrained relationship [Gómez de Castro et al., 2013]. However, we do allow

them to change during our modelling according to the other stellar parameters. Our best

fitting stellar parameters result in vmac = 4.05 km s−1 and vmic = 1.00 km s−1for KELT-14,
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and for KELT-15 vmac = 4.37 km s−1 and vmic = 1.19 km s−1.

6.3.2 SED Analysis

We construct empirical spectral energy distributions (SEDs) of KELT-14 and KELT-15

using all available broadband photometry in the literature, shown in Figure 6.7. We use the

near-UV flux from GALEX [Martin et al., 2005], the BT and VT fluxes from the Tycho-2

catalogue, B, V , g′, r′, and i′ fluxes from the AAVSO APASS catalogue, NIR fluxes in the

J, H, and KS bands from the 2MASS Point Source Catalogue [Cutri et al., 2003, Skrutskie

et al., 2006], and near-and mid-infrared fluxes in the WISE passbands [Wright et al., 2010].

We fit these fluxes using the Kurucz atmosphere models [Castelli and Kurucz, 2004]

by fixing the values of Teff , logg∗ and [Fe/H] inferred from the global fit to the lightcurve

and RV data as described in §6.4.1 and listed in Table 6.5 and Table 6.6, and then finding

the values of the visual extinction AV and distance d that minimize χ2, with a maximum

permitted AV based on the full line-of-sight extinction from the dust maps of Schlegel et al.

[1998] (maximum AV = 0.50 mag and 0.89 mag for KELT-14 and KELT-15, respectively).

Note that while the final best SED fits below are in fact well fit with AV ≡ 0, we did include

AV as a free fit parameter because of the a priori likelihood of AV as large as 0.50–0.89

mag.

For KELT-14 we find AV = 0.1± 0.1 mag and d = 201±19 pc with the best fit model

having a reduced χ2 = 1.39. For KELT-15 we find AV = 0.18 ± 0.12 and d = 291±30

pc with the best fit model having a reduced χ2 = 0.84. This implies a very good quality

of fit and further corroborates the final derived stellar parameters for the KELT-14 and

KELT-15 host stars. We note that the quoted statistical uncertainties on AV and d are

likely to be underestimated because alternate model atmospheres would predict somewhat

different SEDs and thus values of extinction and distance, but for stars of the masses and

temperatures of KELT-14 and KELT-15 the systematic differences among various model

atmospheres are not expected to be large.
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Figure 6.7: The SED fit for (top) KELT-14 and (bottom) KELT-15. The red points show
the photometric values and errors given in Table 6.1. The blue points are the predicted
integrated fluxes at the corresponding bandpass. The black line represents the best fit stellar
atmospheric model.
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6.3.3 Evolutionary State

To better place the KELT-14 and KELT-15 systems in context, we show in Figure 6.8

the H-R diagrams for the two systems in the Teff versus logg∗ plane. In each case, we use

the Yonsei-Yale stellar evolution model track [Demarque et al., 2004] for a star with the

mass and metallicity inferred from the final global fit (this fit used the SME determined

[Fe/H]and Teff , where logg∗ was not fixed, as priors), where the shaded region represents

the mass and [Fe/H] fit uncertainties. The model isochrone ages are indicated as blue

points, and the final best global fit Teff and logg∗ values are represented by the red error

bars. For comparison, the Teff and logg∗ values determined from spectroscopy alone with

logg∗ not fixed are represented by the green error bars while the blue error bars represent

when the logg∗ was fixed in the SME analysis (Figure 6.8).

KELT-14 is a G2 type star near the main-sequence turnoff but not yet in the Hertzsprung

gap, with an age of ∼ 5.0+0.3
−0.7 Gyr. KELT-15 is a G0 type star with an age of ∼ 4.6+0.5

−0.4 Gyr,

on or near the “blue hook” just prior to the Hertzsprung gap. These classifications are also

consistent with those reported in the catalogs of Pickles and Depagne [2010] and Ammons

et al. [2006]. Note that the observed rotational velocities of the stars (7–11 km s−1; see

Section 6.3.1) are consistent with the 2–15 km s−1 range observed for solar-type stars with

the masses and ages of KELT-14 and KELT-15 [e.g., Soderblom, 1983].

6.3.4 UVW Space motion

To better understand the place of KELT-14 and KELT-15 in the galaxy, we calculate

the UVW space motion. This exercise can allow us to determine the membership and pos-

sibly the age of a star if it is associated with any known stellar groups. To calculate the

UVW space motion, we combine the information presented in Table 6.1 with the deter-

mined distance to KELT-14 and KELT-15 from the SED analysis (201±19 pc and 291±30

pc respectively). We also estimated the absolute radial velocity and error by taking the
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Figure 6.8: The theoretical H-R diagrams for (top) KELT-14 and (bottom) KELT-15 using
the Yonsei-Yale stellar evolution models [Demarque et al., 2004]. The logg∗ values are in
cgs units. The red cross represents the values from the final global fit. The blue cross is the
position and errors of the SME analysis when logg∗ was fixed at the initial global fit value
and the green cross is when logg∗ was not fixed. The dashed lines at the edge of the gray
shaded region represent the 1σ uncertainties on M? and [Fe/H] from the global fit. The
various ages along the tracks are represented by the blue points.
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average and standard deviation of all the measured radial velocities by AAT. This gave us

an estimated absolute radial velocity of 34.62 ± 0.13 km s−1and 12.20 ± 0.11 m s−1for

KELT-14b and KELT-15b, respectively. We calculate the space motion to be U = -4.6 ±

1.9 km s−1, V = -14.6 ± 0.9 km s−1, W = -14.0 ± 2.3 km s−1for KELT-14 and U = 7.8 ±

3.8 km s−1, V = 2.6 ± 0.8 km s−1, W = -1.5 ± 3.3 km s−1for KELT-15 (positive U point-

ing toward the Galactic center). These space motion values give a 99% chance that both

KELT-14 and KELT-15 belong to the thin disk, according to the classification scheme of

Bensby et al. [2003]

6.4 Planetary Properties

6.4.1 EXOFAST Global Fit

To perform a global fit of our photometric and spectroscopic data, we use a modified

version of the IDL exoplanet fitting tool, EXOFAST [Eastman et al., 2013]. More detailed

explanation of the global modeling is provided in Siverd et al. [2012]. To determine a

system’s final parameters, simultaneous Markov Chain Monte Carlo (MCMC) analysis is

performed on the AAT radial velocity measurements and the follow-up photometric obser-

vations. To constrain M? and R? EXOFAST uses either the Yonsei-Yale stellar evolution

models [Demarque et al., 2004] or the empirical Torres relations [Torres et al., 2010]. Each

photometric observation’s raw light curve and the detrending parameters determined from

the light curve are inputs for the final fit. We impose a prior on Teff and [Fe/H] using the

determined values and errors from the SME analysis of the AAT spectra. From analysis of

the KELT-South and follow-up photometric observations, we set a prior on the period. For

both KELT-14b and KELT-15b, we perform four global fits: 1) Using the Yonsei-Yale (YY)

stellar models with eccentricity fixed at zero. We adopt the system parameters from this

globalt fit for all analysis and interpretation for KELT-14b and KELT-15b. 2) Using the YY

stellar models with eccentricity as a free parameter. 3) Using the empirical Torres relations
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with eccentricity fixed at zero. 4) Using the empirical Torres relations with eccentricity as

a free parameter. The results from these four global fits can be seen in Table 6.7 for the

KELT-14 system and Table 6.8 for the KELT-15 system. For the parameters shown in solar

or jovian units, the values for these constants are G M� = 1.3271244 × 1020 m3 s−2, R�=

6.9566 × 108 m, MJ= 0.000954638698 M�, and RJ= 0.102792236 R� [Standish, 1995,

Torres et al., 2010, Eastman et al., 2013]. All determined values for the four separate global

fits are consistent with each other (within 1σ). We adopt the YY circular fit parameters for

each system.
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Figure 6.9: Transit time residuals for KELT-14b using our final global fit ephemeris. The
times are listed in Table 6.9.

6.4.2 Transit Timing Variation Analysis

We were careful to confirm all observation times are in the BJD TBD format [Eastman

et al., 2010]. All time conversions to BJD TBD were performed in the AIJ reduction using

the timestamps in the image headers. The observatory clocks from our follow-up observers

are synchronised at the start of each observing session to a standard clock (atomic clock
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Table 6.7: Median values and 68% confidence interval for the physical and orbital param-
eters of the KELT-14 system

Parameter Units Adopted Value Value Value Value
(YY circular) (YY eccentric) (Torres circular) (Torres eccentric)

Stellar Parameters
M∗ . . . . . . Mass ( M�) . . . . . . . . . . . . 1.178+0.052

−0.066 1.177+0.059
−0.066 1.202+0.064

−0.062 1.203+0.066
−0.063

R∗ . . . . . . Radius (R�) . . . . . . . . . . . . 1.368+0.078
−0.077 1.378+0.10

−0.099 1.410±0.077 1.418+0.096
−0.094

L∗ . . . . . . Luminosity ( L�) . . . . . . . . . . 1.90+0.28
−0.24 1.93+0.34

−0.29 2.04+0.29
−0.26 2.06+0.34

−0.30
ρ∗ . . . . . . Density (cgs) . . . . . . . . . . . . 0.645+0.11

−0.087 0.63+0.14
−0.11 0.604+0.096

−0.078 0.595+0.12
−0.094

logg∗ . . . . Surface gravity (cgs) . . . . . . . . 4.234+0.045
−0.041 4.228+0.057

−0.054 4.219+0.041
−0.038 4.215+0.051

−0.048
Teff . . . . . Effective temperature (K) . . . . . . 5802+95

−92 5800+96
−92 5815±88 5815±89

[Fe/H] . . . . Metallicity . . . . . . . . . . . . . 0.326+0.091
−0.089 0.324+0.092

−0.089 0.338+0.087
−0.085 0.338+0.086

−0.085
Planet Parameters

e . . . . . . . Eccentricity . . . . . . . . . . . . — 0.041+0.036
−0.027 — 0.039+0.034

−0.026
ω∗ . . . . . . Argument of periastron (degrees) . . — 149+77

−65 — 156+73
−69

P . . . . . . Period (days) . . . . . . . . . . . . 1.7100596+0.0000074
−0.0000075 1.7100597±0.0000074 1.7100596+0.0000074

−0.0000073 1.7100596±0.0000074
a . . . . . . . Semi-major axis (AU). . . . . . . . 0.02956+0.00043

−0.00057 0.02955+0.00048
−0.00057 0.02976±0.00052 0.02977±0.00053

MP . . . . . Mass ( MJ) . . . . . . . . . . . . . 1.196±0.072 1.206+0.079
−0.076 1.217+0.075

−0.073 1.226+0.081
−0.078

RP . . . . . . Radius (RJ) . . . . . . . . . . . . 1.52+0.12
−0.11 1.53±0.14 1.57+0.12

−0.11 1.57+0.14
−0.13

ρP . . . . . . Density (cgs) . . . . . . . . . . . . 0.421+0.11
−0.083 0.414+0.12

−0.091 0.393+0.095
−0.076 0.390+0.11

−0.082
loggP . . . . Surface gravity . . . . . . . . . . . 3.107+0.066

−0.064 3.103+0.075
−0.071 3.089±0.062 3.088+0.068

−0.067
Teq . . . . . Equilibrium temperature (K) . . . . . 1904±54 1910+68

−67 1929+55
−56 1934±65

〈F〉 . . . . . Incident flux (109 erg s−1 cm−2) . . . 2.98+0.36
−0.33 3.02+0.45

−0.40 3.15+0.38
−0.35 3.17+0.45

−0.41
RV Parameters

TC . . . . . . Time of inferior conjunction (BJDTDB) 2457111.5484±0.0050 2457111.5497±0.0052 2457111.5485+0.0049
−0.0050 2457111.5496±0.0051

TP . . . . . . Time of periastron (BJDTDB) . . . . — 2457111.81+0.36
−0.29 — 2457111.84+0.35

−0.31
K . . . . . . RV semi-amplitude (m/s) . . . . . . 179.8±9.0 181.3±9.3 179.7±8.9 181.2±9.2
MP sin i . . . Minimum mass ( MJ) . . . . . . . . 1.177+0.071

−0.070 1.185+0.076
−0.074 1.196+0.073

−0.072&1.204+0.078
−0.075

MP/M∗ . . . Mass ratio . . . . . . . . . . . . . 0.000974+0.000052
−0.000051 0.000981+0.000053

−0.000052 0.000967+0.000051
−0.000050 0.000973±0.000052

u . . . . . . . RM linear limb darkening . . . . . . 0.668±0.011 0.668±0.011 0.668±0.011 0.668±0.011
γAAT . . . . . m/s . . . . . . . . . . . . . . . . 34590.0+6.8

−6.7 34590.3±6.7 34590.0±6.7 34590.3±6.6
γ̇ . . . . . . RV slope (m/s/day) . . . . . . . . . 0.53±0.20 0.52±0.23 0.52±0.20 0.53±0.22
ecosω∗ . . . . . . . . . . . . . . . . . . . . . — −0.019+0.021

−0.028 — −0.018+0.020
−0.028

esinω∗ . . . . . . . . . . . . . . . . . . . . . . — 0.005+0.045
−0.033 — 0.003+0.040

−0.032
Primary Transit

RP/R∗ . . . . Radius of the planet in stellar radii . . 0.1143+0.0029
−0.0026 0.1142+0.0029

−0.0026 0.1141+0.0029
−0.0026 0.1141+0.0030

−0.0026
a/R∗ . . . . . Semi-major axis in stellar radii . . . . 4.64+0.25

−0.22 4.60+0.33
−0.28 4.54+0.23

−0.20 4.51+0.28
−0.25

i . . . . . . . Inclination (degrees) . . . . . . . . 79.67+0.80
−0.77 79.5±1.2 79.36±0.75 79.2±1.1

b . . . . . . . Impact parameter . . . . . . . . . . 0.831+0.020
−0.022 0.831+0.020

−0.022 0.838+0.018
−0.020 0.837+0.019

−0.021
δ . . . . . . . Transit depth . . . . . . . . . . . . 0.01306+0.00067

−0.00059 0.01305+0.00067
−0.00059 0.01302+0.00067

−0.00058 0.01301+0.00068
−0.00058

TO . . . . . . Ephemeris from transits (BJDTDB) . . 2457091.028632±0.00047 — — —
PTransits . . . Ephemeris period from transits (days) 1.7100588±0.0000025 — — —
TFWHM . . . FWHM duration (days) . . . . . . . 0.0626+0.0018

−0.0025 0.0626+0.0017
−0.0025 0.0625+0.0019

−0.0028 0.0625+0.0019
−0.0028

τ . . . . . . . Ingress/egress duration (days) . . . . 0.0262+0.0046
−0.0037 0.0261+0.0046

−0.0036 0.0274+0.0048
−0.0037 0.0274+0.0049

−0.0037
T14 . . . . . Total duration (days) . . . . . . . . 0.0889+0.0025

−0.0026 0.0888±0.0026 0.0900+0.0024
−0.0025 0.0900±0.0025

PT . . . . . . A priori non-grazing transit probability 0.1910+0.0089
−0.0094 0.194+0.020

−0.017 0.1952+0.0086
−0.0089 0.197+0.018

−0.016
PT,G . . . . . A priori transit probability . . . . . . 0.240+0.012

−0.013 0.244+0.025
−0.022 0.246±0.012 0.248+0.023

−0.021
u1B . . . . . Linear Limb-darkening . . . . . . . 0.685±0.026 0.685+0.027

−0.026 0.684+0.026
−0.025 0.684+0.026

−0.025
u2B . . . . . Quadratic Limb-darkening . . . . . 0.134+0.020

−0.021 0.133+0.020
−0.021 0.135±0.020 0.135±0.020

u1I . . . . . . Linear Limb-darkening . . . . . . . 0.294+0.015
−0.014 0.294±0.015 0.293±0.014 0.292±0.014

u2I . . . . . . Quadratic Limb-darkening . . . . . 0.2810+0.0074
−0.0075 0.2810±0.0075 0.2824+0.0070

−0.0072 0.2825+0.0071
−0.0073

u1R . . . . . Linear Limb-darkening . . . . . . . 0.382+0.018
−0.017 0.382±0.018 0.380+0.018

−0.017 0.380+0.018
−0.017

u2R . . . . . Quadratic Limb-darkening . . . . . 0.2777+0.0096
−0.010 0.2776+0.0098

−0.010 0.2789+0.0094
−0.0098 0.2790+0.0093

−0.0099
u1S loang . . . Linear Limb-darkening . . . . . . . 0.602+0.025

−0.024 0.602+0.026
−0.025 0.601+0.025

−0.024 0.601+0.025
−0.024

u2S loang . . . Quadratic Limb-darkening . . . . . 0.188+0.017
−0.018 0.188+0.018

−0.019 0.189+0.017
−0.018 0.189+0.017

−0.018
u1V . . . . . Linear Limb-darkening . . . . . . . 0.484±0.021 0.484+0.022

−0.021 0.483+0.021
−0.020 0.483+0.021

−0.020
u2V . . . . . Quadratic Limb-darkening . . . . . 0.247+0.013

−0.014 0.247+0.013
−0.014 0.248±0.013 0.248+0.013

−0.014
Secondary Eclipse

TS . . . . . . Time of eclipse (BJDTDB) . . . . . . 2457110.6934±0.0050 2457112.384+0.022
−0.029 2457110.6935+0.0049

−0.0050 2457112.384+0.022
−0.029

bS . . . . . . Impact parameter . . . . . . . . . . — 0.842+0.080
−0.063 — 0.845+0.071

−0.059
TS ,FWHM . . FWHM duration (days) . . . . . . . — 0.0609+0.0065

−0.019 — 0.0612+0.0069
−0.019

τS . . . . . . Ingress/egress duration (days) . . . . — 0.0275+0.013
−0.0071 — 0.0286+0.013

−0.0071
TS ,14 . . . . . Total duration (days) . . . . . . . . — 0.0872+0.0035

−0.0048 — 0.0887+0.0034
−0.0045

PS . . . . . . A priori non-grazing eclipse probability — 0.1910+0.0091
−0.0094 — 0.1953+0.0088

−0.0090
PS ,G . . . . . A priori eclipse probability . . . . . — 0.240±0.013 — 0.246±0.012
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Table 6.8: Median values and 68% confidence interval for the physical and orbital param-
eters of the KELT-15 system

Parameter Units Adopted Value Value Value Value
(YY circular) (YY eccentric) (Torres circular) (Torres eccentric)

Stellar Parameters
M∗ . . . . . . Mass ( M�) . . . . . . . . . . . . 1.181+0.051

−0.050 1.218+0.10
−0.071 1.216+0.057

−0.055 1.244+0.092
−0.074

R∗ . . . . . . Radius (R�) . . . . . . . . . . . . 1.481+0.091
−0.041 1.63+0.30

−0.18 1.493+0.082
−0.042 1.60+0.34

−0.17
L∗ . . . . . . Luminosity ( L�) . . . . . . . . . . 2.58+0.35

−0.20 3.11+1.3
−0.69 2.65+0.32

−0.20 3.04+1.4
−0.65

ρ∗ . . . . . . Density (cgs) . . . . . . . . . . . . 0.514+0.034
−0.076 0.40+0.15

−0.14 0.518+0.032
−0.071 0.42+0.15

−0.17
logg∗ . . . . Surface gravity (cgs) . . . . . . . . 4.168+0.019

−0.044 4.100+0.086
−0.11 4.174+0.018

−0.040 4.120+0.084
−0.14

Teff . . . . . Effective temperature (K) . . . . . . 6003+56
−52 6017+58

−57 6021+60
−61 6021+61

−60
[Fe/H] . . . . Metallicity . . . . . . . . . . . . . 0.047±0.032 0.051+0.033

−0.032 0.051+0.034
−0.033 0.051±0.033

Planet Parameters
e . . . . . . . Eccentricity . . . . . . . . . . . . — 0.132+0.13

−0.090 — 0.133+0.14
−0.091

ω∗ . . . . . . Argument of periastron (degrees) . . — 141+71
−42 — 142+76

−42
P . . . . . . Period (days) . . . . . . . . . . . . 3.329441±0.000016 3.329442±0.000016 3.329441±0.000016 3.329442±0.000016
a . . . . . . . Semi-major axis (AU). . . . . . . . 0.04613±0.00065 0.04660+0.0013

−0.00092 0.04657±0.00072 0.04693+0.0011
−0.00095

MP . . . . . Mass ( MJ) . . . . . . . . . . . . . 0.91+0.21
−0.22 0.94+0.26

−0.25 0.93±0.22 0.95+0.26
−0.25

RP . . . . . . Radius (RJ) . . . . . . . . . . . . 1.443+0.11
−0.057 1.59+0.31

−0.19 1.453+0.098
−0.057 1.56+0.34

−0.18
ρP . . . . . . Density (cgs) . . . . . . . . . . . . 0.36+0.11

−0.10 0.28+0.15
−0.11 0.363+0.11

−0.100 0.29+0.16
−0.13

loggP . . . . Surface gravity . . . . . . . . . . . 3.02+0.10
−0.13 2.95+0.14

−0.17 3.03+0.10
−0.12 2.96+0.15

−0.18
Teq . . . . . Equilibrium temperature (K) . . . . . 1642+45

−25 1713+140
−92 1645+41

−25 1699+150
−87

〈F〉 . . . . . Incident flux (109 erg s−1 cm−2) . . . 1.652+0.19
−0.100 1.92+0.58

−0.37 1.66+0.17
−0.10 1.86+0.63

−0.35

RV Parameters
TC . . . . . . Time of inferior conjunction (BJDTDB) 2457029.1663+0.0078

−0.0073 2457029.1691+0.0083
−0.0081 2457029.1663+0.0079

−0.0073 2457029.1688+0.0084
−0.0080

TP . . . . . . Time of periastron (BJDTDB) . . . . — 2457029.49+0.64
−0.29 — 2457029.50+0.71

−0.29
K . . . . . . RV semi-amplitude (m/s) . . . . . . 110±26 113±30 110±26 113+30

−29
MP sin i . . . Minimum mass ( MJ) . . . . . . . . 0.91+0.21

−0.22 0.94+0.26
−0.25 0.93±0.22 0.95+0.26

−0.25
MP/M∗ . . . Mass ratio . . . . . . . . . . . . . 0.00073±0.00017 0.00073±0.00019 0.00073±0.00017 0.00073±0.00019
u . . . . . . . RM linear limb darkening . . . . . . 0.6290+0.0062

−0.0058 0.6275+0.0065
−0.0059 0.6276+0.0066

−0.0060 0.6272+0.0066
−0.0060

γAAT . . . . . m/s . . . . . . . . . . . . . . . . 12204+18
−19 12203±21 12204±19 12204±20

γCORALIE . . m/s . . . . . . . . . . . . . . . . 12216±22 12212±22 12216±21 12211±22
ecosω∗ . . . . . . . . . . . . . . . . . . . . . — −0.073+0.073

−0.10 — −0.074+0.074
−0.10

esinω∗ . . . . . . . . . . . . . . . . . . . . . . — 0.050+0.14
−0.082 — 0.042+0.16

−0.085

Primary Transit
RP/R∗ . . . . Radius of the planet in stellar radii . . 0.1001+0.0022

−0.0021 0.1005+0.0025
−0.0023 0.1001+0.0021

−0.0020 0.1001+0.0022
−0.0021

a/R∗ . . . . . Semi-major axis in stellar radii . . . . 6.70+0.14
−0.35 6.16+0.68

−0.83 6.72+0.13
−0.32 6.29+0.67

−0.99
i . . . . . . . Inclination (degrees) . . . . . . . . 88.3+1.2

−1.7 87.8+1.6
−2.3 88.4+1.1

−1.6 88.1+1.3
−2.2

b . . . . . . . Impact parameter . . . . . . . . . . 0.20+0.18
−0.14 0.22+0.19

−0.15 0.19+0.17
−0.13 0.20+0.17

−0.13
δ . . . . . . . Transit depth . . . . . . . . . . . . 0.01003+0.00044

−0.00041 0.01009+0.00050
−0.00046 0.01001+0.00043

−0.00040 0.01002+0.00044
−0.00041

TFWHM . . . FWHM duration (days) . . . . . . . 0.1552+0.0015
−0.0016 0.1552+0.0017

−0.0018 0.1551+0.0015
−0.0016 0.1550±0.0016

τ . . . . . . . Ingress/egress duration (days) . . . . 0.01635+0.0021
−0.00079 0.01656+0.0026

−0.00093 0.01627+0.0019
−0.00074 0.01631+0.0020

−0.00076
T14 . . . . . Total duration (days) . . . . . . . . 0.1719+0.0025

−0.0021 0.1722+0.0030
−0.0024 0.1717+0.0024

−0.0020 0.1717+0.0025
−0.0021

PT . . . . . . A priori non-grazing transit probability 0.1343+0.0072
−0.0027 0.155+0.058

−0.026 0.1340+0.0066
−0.0026 0.151+0.068

−0.025
PT,G . . . . . A priori transit probability . . . . . . 0.1642+0.0092

−0.0036 0.190+0.070
−0.032 0.1637+0.0084

−0.0033 0.185+0.084
−0.031

u1I . . . . . . Linear Limb-darkening . . . . . . . 0.2500+0.0078
−0.0069 0.2471+0.0086

−0.0079 0.2482+0.0083
−0.0073 0.2468+0.0086

−0.0077
u2I . . . . . . Quadratic Limb-darkening . . . . . 0.2964+0.0027

−0.0036 0.2980+0.0036
−0.0040 0.2972+0.0028

−0.0037 0.2980+0.0034
−0.0039

u1R . . . . . Linear Limb-darkening . . . . . . . 0.3259+0.0092
−0.0080 0.3231+0.0098

−0.0086 0.3237+0.0098
−0.0083 0.3227+0.0098

−0.0085
u2R . . . . . Quadratic Limb-darkening . . . . . 0.3027+0.0033

−0.0046 0.3042+0.0038
−0.0048 0.3037+0.0035

−0.0048 0.3043+0.0037
−0.0048

u1V . . . . . Linear Limb-darkening . . . . . . . 0.4158+0.011
−0.0091 0.4132+0.011

−0.0092 0.4133+0.011
−0.0094 0.4127+0.011

−0.0094
u2V . . . . . Quadratic Limb-darkening . . . . . 0.2858+0.0045

−0.0061 0.2871+0.0044
−0.0061 0.2871+0.0046

−0.0062 0.2874+0.0045
−0.0061

Secondary Eclipse
TS . . . . . . Time of eclipse (BJDTDB) . . . . . . 2457027.5016+0.0078

−0.0073 2457030.68+0.16
−0.22 2457027.5015+0.0079

−0.0073 2457030.68+0.16
−0.22

bS . . . . . . Impact parameter . . . . . . . . . . — 0.25+0.22
−0.17 — 0.22+0.22

−0.15
TS ,FWHM . . FWHM duration (days) . . . . . . . — 0.168+0.046

−0.022 — 0.166+0.052
−0.024

τS . . . . . . Ingress/egress duration (days) . . . . — 0.0193+0.0076
−0.0039 — 0.0185+0.0085

−0.0036
TS ,14 . . . . . Total duration (days) . . . . . . . . — 0.189+0.051

−0.026 — 0.186+0.060
−0.028

PS . . . . . . A priori non-grazing eclipse probability — 0.1394+0.011
−0.0057 — 0.1383+0.011

−0.0051
PS ,G . . . . . A priori eclipse probability . . . . . — 0.1705+0.014

−0.0072 — 0.1690+0.014
−0.0064
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in Boulder, CO for PEST observatory) and typically the synchronization is redone through

out the observing night. From our experience, we have found the time stamp in the image

header and the actual start of observations can differ by a few seconds. Using only the tran-

sit timing data shown in Table 6.9 and Figure 6.9, we determined a separate ephemeris from

our global fit for KELT-14b. To determine an independent ephemeris, we performed a lin-

ear fit to the transit center times inferred from the global fit for each follow-up observation.

With a χ2 of 26.9 and 6 degrees of freedom, we get T0=2457091.028632±0.00046884453

(BJDT DB) and a period of 1.7100588±0.00000247 days. The high χ2 is likely caused by

systematics in the follow-up photometric observations. Although most epochs are consis-

tent with the linear ephemeris listed (see Figure 6.9), we do have a few apparent outliers

(<10 minutes). Significant differences in measured transit times can be a result of the dif-

ferences in the observatory clocks, observing procedures and conditions, and astrophysical

red noise [Carter and Winn, 2009]. We do see these outliers as significant. The high χ2 is

likely dominated by the three transits at epoch -1, and specifically the ICO transit which

differs from the PEST and Hazelwood transits by 8 minutes. However, we find no evidence

of an issue with the observations time stamps and attribute the discrepancy to be a sys-

tematic and not astrophysical in nature. Therefore, we are unwilling to claim convincing

evidence for significant transit timing variations for KELT-14b. With only three transits of

KELT-15b, we do not attempt a TTV analysis.

6.5 False Positive Analysis

A similar signal to a true planetary event can be created by a variety of astrophysical and

non-astrophysical scenarios. All spectroscopic observations of both KELT-14 and KELT-

15 were thoroughly analyzed to ensure that the observed signal was from the target star.

There are no signs of multiple sets of absorption lines. As mentioned in $6.2.3.2, we find

no correlation between the bisector spans and the measured radial velocities (see Figure

6.6). All transit depths across optical band passes are consistent and the global fit logg∗ is
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Table 6.9: Transit times for KELT-14b.

Epoch TC σTC O-C O-C Telescope
(BJDTDB) (s) (s) (σTC )

-29 2457043.146899 67 -5.00 -0.07 PEST
-26 2457048.276707 83 -37.99 -0.45 PEST
-1 2457091.027548 93 -102.01 -1.09 PEST
-1 2457091.033997 134 455.19 3.37 ICO
-1 2457091.027674 121 -91.12 -0.75 Hazelwood
6 2457103.002776 119 311.42 2.60 Hazelwood
11 2457111.550157 169 57.80 0.34 LCOGT
13 2457114.965950 113 -316.62 -2.78 Hazelwood

consistent with the spectroscopic analysis for KELT-14. There is some discrepancy in

the KELT-15 logg∗ from the global fit and SME analysis but this is because the AAT

spectra do not include the gravity sensitive MgB triplet to provide a better constraint on

logg∗. Overall, we find no evidence that KELT-14b and KELT-15b are anything other than

transiting exoplanets, but a better estimate of the logg∗ of KELT-15 using a high-resolution

spectrum covering the gravity sensitive MgB triplet would help confirm the planetary nature

of the companion.

6.6 Discussion

6.6.1 Evolution

As can be seen from the results of the global fit (Table 6.7 and 6.8), KELT-14b and

KELT-15b are highly inflated planets, joining the ranks of other hot Jupiters that manifest

radii much larger than predicted by standard, non-irradiated models. Several authors [e.g.,

Demory and Seager, 2011] have suggested an empirical insolation threshold (≈ 2×108 erg

s−1 cm−2) above which hot Jupiters exhibit increasing amounts of radius inflation. KELT-

14b and KELT-15b clearly lie above this threshold, with a current estimated insolation of

2.98+0.36
−0.33 × 109 erg s−1 cm−2 and 1.652+0.19

−0.100 × 109 erg s−1 cm−2, respectively, from the

global fits, and therefore their currently large inflated radii are not surprising. At the same
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time, the KELT-14 and KELT-15 host stars are both found to be at present in a state of evo-

lution wherein the stellar radii are expanding as the stars prepare to cross the Hertzsprung

gap toward the red giant branch. This means that the stars’ surfaces are encroaching on

their planets, which presumably is in turn driving up the planets’ insolations and also the

rate of any tidal interactions between the planets and the stars.

Therefore it is interesting to consider two questions. First, has KELT-14b’s and KELT-

15b’s incident radiation from their host stars been below the empirical radius inflation

threshold in the past? If either planet’s insolation only recently exceeded the inflation

threshold, the system could then serve as an empirical test bed for the different timescales

predicted by different inflation mechanisms [see, e.g., Assef et al., 2009, Spiegel and Mad-

husudhan, 2012]. Second, what is the expected fate of the KELT-14b and KELT-15b planets

given the increasingly strong tidal interactions they are experiencing with their encroaching

host stars?

To investigate these questions, we follow Penev et al. [2014] to simulate the reverse

and forward evolution of the star-planet system, using the measured parameters listed in

Table 6.7 and 6.8 as the present-day boundary conditions. This analysis is not intended to

examine any type of planet-planet or planet-disk migration effects. Rather, it is a way to

investigate (1) the change in insolation of the planet over time due to the changing luminos-

ity of the star and changing star-planet separation, and (2) the change in the planet’s orbital

semi-major axis due to the changing tidal torque as the star-planet separation changes with

the evolving stellar radius. We include the evolution of the star, assumed to follow the

Yonsei-Yale stellar model with mass and metallicity. For simplicity we assume that the

stellar rotation is negligible and treat the star as a solid body. We also assume a circular or-

bit aligned with the stellar equator throughout the analysis. The results of our simulations

are shown in Figure 6.10. We tested a range of values for the tidal quality factor of the

star divided by the love number, Q′? ≡ Q?/k2, from log Q′? = 5 to log Q′? = 7 (assuming a

constant phase lag between the tidal bulge and the star-planet direction).
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We find that although for certain values of Q′? the planets may have been initially below

the insolation inflation threshold during the first ∼100 Myr, in all cases the planets have al-

ways received more than enough flux from their hosts to keep the planets irradiated beyond

the insolation threshold identified by Demory and Seager [2011].

KELT-15b appears destined to survive for at least the next few Gyr, unless the stellar

Q′? is very small, in which case it is predicted to experience a rapid in-spiral into its host

star. In the case of KELT-14b, the current evolution of the star suggests a concomitant

in-spiral of the planet over the next ∼1 Gyr, and even faster if the stellar Q′? is small. This

planet therefore does not appear destined to survive beyond the star’s subgiant phase. As

additional systems like KELT-14b are discovered and their evolution investigated in detail,

it will be interesting to examine the statistics of planet survival and to compare these to

predictions such as those shown here in Figure 6.10 to constrain mechanisms of planet-star

interaction generally and the values of Q′? specifically.

6.6.2 Opportunities for Atmospheric Characterization

Because of its very high equilibrium temperature (1904 K) and its bright K-band magni-

tude (K = 9.424), KELT-14b is an excellent target for detailed atmospheric characterization.

Specifically we note that it is an especially ideal target for eclipse observations. Measure-

ments during the secondary eclipse of a hot Jupiter provide a direct measurement of thermal

emission from the planet’s dayside and allow constraints on the connection between the at-

mospheric structure and climate and irradiation from the host star. As illustrated in Figure

6.11, KELT-14b has the second largest expected emission signal in the K-band for known

transiting planets brighter than K < 10.5. We therefore encourage follow up of this planet in

eclipse in order to aid comparative studies of exoplanet atmospheres and better understand

the connection between irradiation, albedo, and atmospheric circulation.

With an equilibrium temperature of 1642 K, KELT-15b is not as hot as KELT-14b.

However, it still has a comparably large expected emission signal in the K band that should
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Figure 6.10: The inflation irradiation history for (top) KELT-14 and (bottom) KELT-15
shown for test values of log Q′? of 5 to 8. The model assumes the stellar rotation is negligi-
ble and treats the star as a solid body. Also the model assumes a circular orbit aligned with
the stellar equator. For both KELT-14b and KELT-15b, we find an the insolation received is
above the empirical threshold (horizontal dashed line) determined by Demory and Seager
[2011]. The vertical line represents the estimated current age of the system.
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be detectable with ground-based telescopes. Observing multiple planets in eclipse that

span a range of temperatures and other properties is particularly useful for comparative

exoplanetology.

Figure 6.11: The expected day-side thermal emission from the planet in the K-band (as-
suming no redistribution of heat) for all known transiting planets brighter than a K-band
magnitude of 11. Along with KELT-14b and KELT-15b, we highlight WASP-33b, one of
the hottest known transiting planets and KELT-7b, another very hot and very bright planet
discovered by the northern component of the KELT survey. Data are from this paper and
the NASA Exoplanet Archive, accessed on 2015 August 27.

6.6.3 Spectroscopic Follow-up

From our global fit, we find that KELT-14b has a 0.53±0.20 m s−1day−1 RV slope. It is

possible that this RV trend is from a tertiary component in the system. Another discovery

from the KELT survey, KELT-6b, showed a −0.239± 0.037 m s−1day−1 slope in the RV

analysis [Collins et al., 2014]. Recently, the RV slope of KELT-6 has been confirmed to
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be the result of KELT-6c, a 3.5 year period companion with a minimum mass of MP sin i =

3.71±0.21 MJ [Damasso et al., 2015]. We therefore recommend long term spectroscopic

follow-up of KELT-14 to try and characterize the long term trend we observed. Also, both

KELT-14b and KELT-15b have Rossiter-McLaughlin (R-M) effects that can be detected

with current ground−based facilities (∼90 m s−1). Two of our radial velocity observations

of KELT-15b were taken during the transit and hint at a prograde orbit. However, due to

our limited data acquired in transit, we do not claim KELT-15b to be in a prograde orbit but

suggest future R−M observations to determine the spin-orbit alignment of the system.

6.7 Summary and Conclusions

We present the discovery of two more transiting inflated hot Jupiter exoplanets from

the KELT-South survey, KELT-14b and KELT-15b. KELT-14b, the independent discovery

of WASP-122b [Turner et al., 2015] has a period of 1.7100596+0.0000074
−0.0000075 days, a radius

of 1.52+0.12
−0.11 RJ and a mass of 1.196± 0.072 MJ. KELT-15b has a period of 3.329441±

0.000016 days, a radius of 1.443+0.11
−0.057 RJ and a mass of 0.91+0.21

−0.22 MJ. Additional follow-up

transits are highly desirable for KELT-15b in order to better refine the ephemeris for future

follow-up studies. Both KELT-14b and KELT-15b orbit host stars that are bright in the

near-IR (K = 9.424 and 9.854, respectively), making them attractive targets for atmospheric

characterization through secondary eclipse observations. Both should have large enough

emission signals that they can be observed using ground-based observatories. These newly

discovered planets increase the number of targets suitable for atmospheric characterization

in the southern hemisphere.
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Chapter 7

Conclusion

The DESK and KELT exoplanet discoveries afford us the ability to probe a variety of

different stages of planet formation and evolution. Specifically, the DESK survey targets

the formation of planets in the disks surrounding detected host stars. Although there have

only been a few disk eclipsing events, they have already led to such insights as the discov-

ery of dense planet-forming structures within the tidally disrupted disk of a young binary

star system [Rodriguez et al., 2013], of Saturn-like rings and gaps in the disk surrounding

a young planet [Mamajek et al., 2012], of stratified dust coagulation within a young pro-

toplanetary disk [Bouvier et al., 2013, Rodriguez et al., 2015b], and of an evolved binary

star system with remnant planet-building material [Rodriguez et al., 2016]. The discovery

and characterization of the KELT exoplanets complements the DESK results by providing

insight into the evolution and migration mechanisms once the planets have already formed.

This work has not only already enhanced our knowledge of circumstellar environments

and the early stages of stellar and planetary evolution, it will also provide a testbed for the

next generation of time domain photometric surveys. Specifically, current and upcoming

projects such as PAN-STARRS and LSST will increase the number of stars with long-

baseline photometric observations by at least two orders of magnitude. Furthermore, the

systems studied by the DESK survey will provide excellent targets for NASA’s James Webb

Space Telescope, an observatory which will be able to probe the environments of such

systems in detail. In addition, the techniques and tools developed from this work will

provide a framework to search for these rare systems using data from the Large Synoptic

Survey Telescope (LSST) that will observe the entire Southern sky at a cadence of a few

days. Given the large number of stars LSST will target and its expected lifetime, it should

increase the number of disk eclipsing systems known by an order of magnitude.
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G. Kovács, S. Zucker, and T. Mazeh. A box-fitting algorithm in the search for periodic tran-

sits. Astronomy and Astrophysics, 391:369–377, August 2002. doi: 10.1051/0004-6361:

20020802.

R. B. Kuhn, J. E. Rodriguez, K. A. Collins, M. B. Lund, R. J. Siverd, K. D. Colón, J. Pepper,

K. G. Stassun, P. A. Cargile, D. J. James, K. Penev, G. Zhou, D. Bayliss, T. G. Tan,

I. A. Curtis, S. Udry, D. Segransan, D. Mawet, J. Soutter, R. Hart, B. Carter, B. S.

Gaudi, G. Myers, T. G. Beatty, J. D. Eastman, D. E. Reichart, J. B. Haislip, J. Kielkopf,

A. Bieryla, D. W. Latham, E. L. N. Jensen, T. E. Oberst, and D. J. Stevens. KELT-

10b: The First Transiting Exoplanet from the KELT-South Survey – A Hot Sub-Jupiter

Transiting a V = 10.7 Early G-Star. ArXiv e-prints, September 2015.

C. Leinert, H. Zinnecker, N. Weitzel, J. Christou, S. T. Ridgway, R. Jameson, M. Haas,

and R. Lenzen. A systematic approach for young binaries in Taurus. Astronomy and

Astrophysics, 278:129–149, October 1993.

V. Lipunov, V. Kornilov, E. Gorbovskoy, N. Shatskij, D. Kuvshinov, N. Tyurina, A. Be-

linski, A. Krylov, P. Balanutsa, V. Chazov, A. Kuznetsov, P. Kortunov, A. Sankovich,

A. Tlatov, A. Parkhomenko, V. Krushinsky, I. Zalozhnyh, A. Popov, T. Kopytova,

K. Ivanov, S. Yazev, and V. Yurkov. Master Robotic Net. Advances in Astronomy,

2010:349171, 2010. doi: 10.1155/2010/349171.

142



C.-F. Liu and H. Shang. RW Aur A from the X-Wind Point of View: General Features. The

Astrophysical Journal, 761:94, December 2012. doi: 10.1088/0004-637X/761/2/94.

N. R. Lomb. Least-squares frequency analysis of unequally spaced data. Astrophysics and

Space Science, 39:447–462, February 1976. doi: 10.1007/BF00648343.
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G. Torres, J. Andersen, and A. Giménez. Accurate masses and radii of normal stars: modern

results and applications. Astronomy and Astrophysics Reviews, 18:67–126, February

2010. doi: 10.1007/s00159-009-0025-1.

O. D. Turner, D. R. Anderson, A. Collier Cameron, L. Delrez, M. Gillon, C. Hellier, E. Je-

hin, M. Lendl, P. F. L. Maxted, F. Pepe, D. Pollacco, D. Queloz, D. Sègransan, B. Smal-
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