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CHAPTER I

INTRODUCTION

1.1 Motivation

Research in the area of uncertainty quantification and the application of stochas-

tic methods to the study of engineering systems has gained considerable attention

during the past twenty years. This can be attributed to the necessity and desire to

design engineering systems with increasingly complex architectures and new materi-

als. These systems can be multi-level, multi-scale, and multi-disciplinary in nature,

and may need to be decomposed into simpler components and subsystems to facilitate

efficient model development, analysis and design. The development and implementa-

tion of computational models is not only sophisticated and expensive, but also based

on physics which is often not well-understood. The study of engineering systems is

further complicated by several issues: (1) presence of various sources of error and un-

certainty that need to be rigorously accounted for; (2) limited availability of full-scale

system tests/data; (3) budget and time constraints that limit modeling and/or testing

resources; and (4) availability of information at multiple levels, that need to be care-

fully and meaningfully integrated for uncertainty quantification and decision-making

purposes.

A comprehensive framework for the treatment of uncertainty is essential to facil-

itate design, risk assessment and management, inspection and maintenance schedul-

ing, and operational decision-making in engineering systems. Quantification of mar-

gins and uncertainties (QMU) has been advocated as a systematic framework to aid

system-level uncertainty quantification and decision making under uncertainty [1].
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This dissertation focuses on advancing the state of the art in uncertainty quantifica-

tion methods, in order to facilitate quantification of margins and uncertainty, and aid

risk-informed decision-making in engineering systems. Several computational meth-

ods are proposed to overcome different challenges in the areas of uncertainty repre-

sentation, quantification, and integration in hierarchical system models. A Bayesian

approach is pursued for the treatment of uncertainty; this approach emphasizes the

use of subjective probabilities rather than objective probabilities. While the con-

cept of objective probabilities is based on the relative frequency of occurrence of an

event, the concept of subjective probabilities is based on the analyst’s degree of belief

regarding the event.

A major advantage of the Bayesian approach is that it provides an efficient com-

putational tool in the form of a Bayesian network (sometimes, simply referred to as

Bayes network or Bayes net), which facilitates the integration of multiple compu-

tational models, various sources of uncertainty and errors, and experimental data,

towards overall uncertainty quantification of the system-level prediction. This disser-

tation makes use of the Bayesian approach and proposes new computational methods

for quantification of the various types of uncertainty, integration of the various sources

of uncertainty across multiple models and thereby, provides information in order to

facilitate risk-informed decision-making during the different stages of the life cycle of

engineering systems.

The rest of this chapter develops the different objectives of this dissertation. Sec-

tions 1.2 and 1.3 briefly discuss the various aspects of uncertainty quantification and

integration respectively. Section 1.4 delineates the various research objectives and

Section 1.5 enumerates the significant contributions and highlights of this research.

Section 1.6 describes the organization of this dissertation.
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1.2 Uncertainty Quantification

The sources of uncertainty in the design, analysis, and operation of engineering

systems are broadly classified into two types. The first type, aleatory uncertainty,

is due to the presence of physical variability and inherent randomness in nature. If

the outcome of an experiment differs each time the experiment is run, then this is

an example of aleatory uncertainty. This type of uncertainty is irreducible. The

second type, epistemic uncertainty, is due to lack of knowledge regarding a particular

quantity and/or a physical phenomenon. This type of uncertainty could be reduced

(and sometimes eliminated) if and when new information is available. While the

topic of aleatory uncertainty has been extensively studied for the past fifty years,

the topic of epistemic uncertainty has been gaining significant attention only during

the recent years. There are several types of situations where epistemic uncertainty

may be present, and correspondingly, researchers have pursued different types of

mathematical approaches (both probabilistic and non-probabilistic) for the treatment

of epistemic uncertainty.

One important objective of this dissertation is to develop a unified framework for

the representation and quantification of uncertainty. This dissertation makes a more

detailed classification of the various types of uncertainty in engineering systems, as

follows:

1.2.1 Physical Variability

As mentioned earlier, this type of uncertainty is referred to as aleatory uncertainty.

The inputs to the engineering system may be random (for e.g. fluctuations in loading),

the parameters may have variability (for e.g. elastic modulus), and this leads to an

uncertain output. It is common to represent such random variables using probability

distributions.
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1.2.2 Data Uncertainty

Data uncertainty is of two major types. The most commonly considered type of

data uncertainty is measurement errors (both at the input and output levels). It

may be argued that measurement errors occur due to natural variability and hence,

must be classified as a type of aleatory uncertainty. Since measurement errors are

associated with data collection, this dissertation classifies measurement error as a

type of data uncertainty; however, the treatment of measurement errors is similar

to that of aleatory uncertainty. The second type of data uncertainty occurs during

the characterization of variability. Sometimes, the available data (sparse point data

and/or intervals) may be insufficient to precisely estimate the distribution parame-

ters of probability distributions, thereby leading to statistical uncertainty. This is

an example of epistemic uncertainty (i.e. uncertainty reducible in the light of new

information); if sufficient data is available, then the distribution parameters can be

estimated precisely.

1.2.3 Model Uncertainty

The engineering system under study is represented using a mathematical model,

and the corresponding mathematical equations are solved using computer codes.

Model uncertainty is an example of epistemic uncertainty and comprises of three

different types of errors/uncertainty. First, the intended mathematical equation is

solved using a computer code which leads to rounding off errors, solution approxima-

tion errors and coding errors; this issue is addressed in the model verification process.

Second, the model parameters may not be readily known, and field data may need to

be collected in order to calibrate them; this issue is addressed in the model calibration

process. Third, the mathematical equation itself may not be an accurate representa-

tive of reality, which leads to model form error; this issue is addressed in the model
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validation process. It is essential to account for the sources of physical variability

and data uncertainty during model verification, validation, and calibration activities.

The combined effect of solution approximation errors, model form errors, and model

parameter uncertainty is referred to as the overall model uncertainty.

1.2.4 Goals in Uncertainty Quantification

The overall goal in uncertainty quantification is to mathematically represent and

quantify the various sources of uncertainty (both aleatory and epistemic) and compute

the combined effect of the various types of uncertainty on the system-level response.

The various activities related to uncertainty quantification are (1) identification and

quantification of the different types and sources of uncertainty; (2) model verifica-

tion, validation, and calibration leading to quantification of associated model errors

and uncertainty; and (3) quantifying the combined effect of the various sources of

uncertainty using an uncertainty propagation method. Note that model verification

can be performed prior to testing; on the other hand, test data is essential for both

model validation and calibration.

1.3 Uncertainty Integration

Sometimes, engineering systems are developed hierarchically, based on compo-

nent, subsystem, and system-level models. Hence, several computational models are

developed, and these models, in turn, form the basis for the analysis and design of

the system as a whole. The various sources of uncertainty discussed in Section 1.2

are present in each level of the system hierarchy, and hence, the various uncertainty

quantification activities such as verification, validation, calibration, uncertainty prop-

agation, etc. need to be performed at each level of the hierarchy. The system-level
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prediction is dependent on the information available at all lower levels, and hence,

it is important to integrate the results from the uncertainty quantification activities

at multiple levels, in order to quantify the overall uncertainty in the system-level

response prediction.

1.3.1 Hierarchical System Configurations

The development of the methodology for the integration of uncertainty quantifica-

tion activities depends upon the interaction between the various models in the system

hierarchy. These models may combine and/or interact in several possible ways, lead-

ing to three fundamentally different configurations. Note that a typical engineering

system may consist of a combination of such configurations; however if the funda-

mental methodology for the treatment of each of these configurations is developed,

then it is possible to generalize such methodology to any complex combination of

configurations.

1. Non-sequential Hierarchy: In this type of hierarchy, a set of parameters are

common across multiple levels of modeling; there is no direct relation between

the outputs of these models. Note that each level may have its own set of “local”

parameters and/or inputs in addition to the common parameters. Typically,

along the hierarchy, the complexity of the underlying physical phenomenon

increases, and consequentially, the complexity of the computational model and

the cost of testing increase. For example, a coupon, a beam, and a plate made

of the same material constitute a non-sequential hierarchy.

2. Sequential Hierarchy or Feed-forward Coupling: In this type of hierarchy,

the output of a lower-level model becomes an input to a higher-level model.

Usually, the two levels consist of different physics, thereby rendering the system
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multi-disciplinary. For example, the rise in the temperature of a wire due to heat

conduction leads to a change in the resistance and hence, the current carrying

capacity of the wire.

3. Feedback Coupling: In this type of hierarchy, the two models (usually, gov-

erning two different physics) are interconnected in such a way that the input of

one becomes an output to the other; hence, from a hierarchical point of view,

both the models are considered to be “at the same level”. For example, in

fluid-structure analysis, the displacement (output of structural analysis) and

pressure (output of fluid analysis) fields are dependent on each other. Feedback

coupling necessitates iterative analysis between the two models until both the

solutions converge.

Feedback coupling and feed-forward coupling are also referred to as strong and weak

coupling respectively, in the literature [2].

1.3.2 Goals in Uncertainty Integration

In an engineering system, information is available in the form of input data, out-

put data, models, expert opinion, etc. at multiple levels. The goal in uncertainty

integration is to efficiently integrate all the above information in an uncertainty quan-

tification framework, and provide information in order to guide in system analysis,

design, testing operations, and maintenance scheduling.

1.4 Research Objectives

The overall goal of this dissertation is to develop a framework for uncertainty quan-

tification and integration, in order to provide information necessary for risk-informed

decision-making during various stages in the life-cycle of engineering systems. The
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various objectives of this dissertation are grouped under two headings: uncertainty

quantification and uncertainty integration.

1.4.1 Uncertainty Quantification

The first major objective is to develop a rigorous framework for uncertainty quan-

tification and propagation with respect to component-level or subsystem-level analysis

which require single-level models. Statistical methods are developed for the treatment

of data uncertainty and model uncertainty. Then, the effects of the various sources

of uncertainty are combined in uncertainty propagation to quantify the uncertainty

in the output. Uncertainty quantification must also be accompanied by a sensitiv-

ity analysis of the various sources of uncertainty. The method of global sensitivity

analysis has been used by several researchers to quantify the sensitivity of output to

the inputs and parameters; this dissertation refers to this analysis as forward sensi-

tivity analysis. The proposed methods for data uncertainty quantification and model

uncertainty quantification are applied to fatigue crack growth analysis under uncer-

tainty, as a case study. The various activities related to uncertainty quantification

are addressed under the following topics:

1. Data Uncertainty due to sparse and interval data

2. Model Uncertainty - Model verification, validation, and calibration

3. Case Study - Fatigue crack growth analysis

1.4.2 Uncertainty Integration

The second major objective focuses on the integration of uncertainty quantifica-

tion activities across the different hierarchies of modeling discussed earlier in Sec-

tion 1.3.1. A Bayesian network-based approach is developed to integrate multiple
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models, various sources of uncertainty including model errors, and testing data, in

order to quantify the uncertainty in the system-level response. One challenge with re-

spect to the use of a Bayesian network is that it cannot account for feedback coupling

due to its acyclic nature. Hence, a new decoupled approach is developed for multi-

disciplinary analysis, in order to address this challenge. If the tests available at lower

levels can be used to quantify the uncertainty in the system-level prediction, then it

should be possible to prioritize tests in order to achieve a reasonable level of reduction

in the variance of the system-level prediction. Hence, the Bayesian network approach

is used to guide resource allocation for test selection and prioritization. It is observed

that some parameters are more sensitive to the data; further, this issue is compli-

cated by the presence of other types of uncertainty. Hence, a rigorous framework is

developed to study the sensitivity of the calibration parameter to the various sources

of uncertainty and the data; this task is referred to as “inverse sensitivity analysis”

in this dissertation. The various activities related to integration of uncertainty are

addressed under the following topics:

1. Integration of uncertainty quantification activities

2. Multi-disciplinary systems analysis

3. Resource allocation for test prioritization

4. Inverse sensitivity analysis

1.5 Highlights of the Dissertation: What’s New?

1. A new likelihood-based methodology is developed for the representation and

quantification of epistemic uncertainty due to sparse and interval data (Chap-

ter III). Three cases – (1) single distribution type (Section 3.4); (2) multiple
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competing distribution types (Section 3.6); and (3) non-parametric type with-

out any assumption regarding distribution type (Section 3.7) – are considered.

2. A global sensitivity analysis-based methodology is developed in order to quan-

tify the individual contributions of variability and epistemic uncertainty (dis-

tribution type and parameter uncertainty). The methodology is developed for

quantifying individual contributions in a single variable as well as contributions

to the output of a response function (Sections 3.5, 3.6.1.3 and 3.6.2.4).

3. A statistical methodology is developed for model calibration under uncertainty,

by including different types of uncertainty and different types of data situations

such as uncharacterized data, imprecise data, etc. (Section 4.3.8).

4. Two methods – Bayesian hypothesis testing (Sections 4.4.1) and model reli-

ability method (Section 4.4.2) – are investigated for model validation under

uncertainty, and extended to different scenarios, including interval data, un-

characterized data, time series data, etc.

5. The methods for the quantification of data uncertainty and model uncertainty

are applied to fatigue crack growth analysis (Chapter V), as a case study. Pre-

vious work in probabilistic fracture mechanics has considered only physical vari-

ability, and some sources of model uncertainty. Chapter V discusses parameter

estimation, model validation, and crack growth prediction by considering dif-

ferent sources of uncertainty. These methods are developed for crack growth in

structures with complicated geometry and multi-axial variable amplitude load-

ing.

6. A “roll-up” methodology is developed to integrate the results of model verifica-

tion, validation, and calibration activities in order to quantify the uncertainty
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in the system-level prediction (Chapter VI). This methodology is developed for

sequential and non-sequential hierarchical configurations.

7. Multi-disciplinary systems analysis with feedback coupling is considered in Chap-

ter VII, where a new likelihood-based methodology for uncertainty quantifi-

cation and propagation. A decoupled approach is developed to facilitate the

application of Bayesian networks to systems with feedback coupling.

8. A Bayesian network-based optimization methodology is developed for cost-

effective prioritization of tests in multi-level systems, in order to meet the vari-

ance reduction target in system-level prediction (Chapter VIII).

9. A new “inverse sensitivity analysis” methodology is developed to analyze the

sensitivity of model parameters to the other sources of uncertainty and data

(Chapter IX). This is significantly different from the existing methods of global

sensitivity analysis which analyze the sensitivity of model output to model in-

puts and parameters. This inverse sensitivity analysis methodology is useful to

identify important contributors of uncertainty in model calibration. This is use-

ful for dimension reduction and design of experiments. Section 9.4 develops the

methodology for a single-level model, and Section 9.5 extends the methodology

to hierarchical systems built using multiple models.

1.6 Organization of the Dissertation

The remainder of this dissertation is organized into several chapters where com-

putational methods are developed in order to address the research objectives in Sec-

tion 1.4. Prior to the development of new methods, Chapter II provides a review of

well-known topics in the area of uncertainty quantification. These topics include a for-

mal introduction to the fundamental probability theory, the multiple interpretations
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of probability, elementary concepts in the Bayesian methodology, Bayesian networks,

uncertainty propagation and reliability analysis, global sensitivity analysis, Markov

Chain Monte Carlo sampling for statistical inference, and Gaussian process surrogate

modeling. Original research contributions are presented through Chapters III – IX.

Chapter III discusses the treatment of data uncertainty, due to the presence of

sparse point data and interval data for uncertainty quantification including represen-

tation and propagation. Data uncertainty due to measurement errors are discussed

in the subsequent chapter. This is because measurement errors are related to data

from testing; such data is used to quantify model form uncertainty, which is the focus

of Chapter IV. Further, the method of forward global sensitivity analysis is used to

analyze the contributions of the various sources of uncertainty to the overall uncer-

tainty in the model prediction. The methods proposed for uncertainty quantification

are applied to fatigue crack growth analysis in Chapter V, as a case study. Chap-

ters III and IX address the issue of uncertainty quantification and propagation, and

consider only single-level models.

Systems represented using multiple models are considered in Chapters VI – VIII,

where the focus is on uncertainty integration. Chapter VI focuses on two types of hier-

archical system models, namely sequential and non-sequential. A Bayesian network-

based computational methodology is developed in order to quantify the system-level

prediction uncertainty, by integrating various uncertainty quantification activities

including model verification, validation, and calibration. The Bayesian network is

acyclic and cannot explicitly include feedback coupling in multi-disciplinary analy-

sis. Therefore, Chapter VII proposes a new likelihood-based decoupled methodology

for uncertainty quantification in multi-disciplinary systems, using which the feed-

back coupling can be replaced with feed-forward coupling, and thus included in the

Bayesian network. Chapter VIII develops an optimization-based methodology for
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prioritization of testing, when component and subsystem tests are used to reduce the

uncertainty in the system-level response.

Testing aids in the calibration of parameters and thereby in the reduction of

uncertainty. The uncertainty in the calibration parameters is affected by the presence

of other sources of uncertainty in the system. In Chapter IX, a new inverse sensitivity

analysis methodology is developed to analyze the sensitivity of model calibration

under uncertainty. The methodology is first developed for a single-level model and

then extended to systems with multiple models. Finally, Chapter X presents a few

summarizing remarks and suggests recommendations for future work.

Each of the above chapters review the relevant literature and discuss the current

state of art prior to the discussion of the proposed methods. In each individual

chapter, the notations and symbols used for method development are introduced

and explained. The numerical examples presented in various chapters illustrate the

proposed methods using engineering applications in civil, mechanical, and aerospace

structures.
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CHAPTER II

BACKGROUND

2.1 Overview

This chapter reviews a few background concepts, which are fundamental to the

development of original research contributions of this dissertation. The goal is not

to provide a detailed tutorial on these topics, but only to discuss the basic governing

mathematical equations, and the relevant references.

The various topics in this chapter are organized as follows. Section 2.2 formally

introduces the fundamental theory of probability, and Section 2.3 discusses the two

different interpretations (frequentist and subjectivist) of probability. While classical

statistics is based on the frequentist interpretation of probability, the subjectivist in-

terpretation is the backbone of Bayesian statistics. As stated earlier in Chapter I,

this dissertation uses the Bayesian paradigm for uncertainty quantification and in-

tegration, and therefore Section 2.4 provides a brief introduction to the Bayesian

methodology. The concept of a Bayesian network is introduced and it is explained

how the Bayesian network can be used for solving forward problems (uncertainty

propagation) and inverse problems (statistical inference). Computational methods

for uncertainty propagation are discussed in Section 2.5; sampling-based methods

and analytical methods are both considered to quantify the output uncertainty by

propagating the uncertainty in the inputs through a computational model. Section 2.6

reviews the global sensitivity analysis methodology which is recommended to be per-

formed in tandem with uncertainty propagation; the focus in global sensitivity anal-

ysis is to apportion the output uncertainty to the uncertainty in the inputs. The
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solution of statistical inverse problems is conventionally facilitated through the use of

Markov Chain Monte Carlo sampling (since analytical methods are computationally

infeasible), which is presented in Section 2.7. Finally, it is explained that the above

methods for uncertainty propagation and statistical inference require several thou-

sands of evaluations of the computational models, and therefore, it may be necessary

to build surrogate models to replace them. Section 2.8 discusses one specific type of

surrogate model, i.e. Gaussian process surrogate model, which will be used to replace

expensive computational models in the rest of this dissertation.

2.2 Fundamentals of Probability Theory

The fundamental theory of probability is well-established in the literature, includ-

ing many textbooks and journal articles. The roots of probability lie in the analysis

of games of chance by Gerolamo Cardano in the sixteenth century, and by Pierre de

Fermat and Blaise Pascal in the seventeenth century.

In earlier days, researchers were interested only in discrete probabilities, and

with the advent of mathematical analysis, the importance of continuous probabilities

steadily increased. This led to a significant change in the understanding and formal

definition of probability. The classical definition of probability was based on counting

the number of favorable outcomes, and it was understood that this definition cannot

be applied to continuous probabilities (refer to Bertrand’s Paradox [3]). Hence, the

modern definition of probability, which is based on set theory and functional mapping,

is more commonly used in recent times.

Discrete probability deals with events where the sample space is countable. Con-

sider the sample space (Ω), which is equal to the set of all possible outcomes. The

modern definition of probability maps every element x ∈ Ω to a “probability value”

f(x) such that:
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1. f(x) ∈ [0, 1] ∀ x ∈ Ω

2.
∑

x∈Ω
f(x) = 1

Any event E can be expressed as a subset of the sample space Ω (E ∈ Ω), and

the probability of the event E is defined as:

P (E) =
∑

x∈E
f(x) (2.1)

Hence, the function f(x) is a mapping from a point in the sample space to a probability

value, and is referred to as probability mass function (PMF).

Continuous probability theory deals with cases where the sample space is continu-

ous and hence uncountable; consider the case where the set of outcomes of a random

experiment is equal to the set of real numbers (R). In this case, the modern definition

of probability is in terms of the cumulative distribution function (CDF), defined as

FX(x) = P (X ≤ x), i.e. the CDF of the random variable X evaluated at x is equal

to the probability that the random variable X can take on a value less than or equal

to x. This CDF necessarily follows the following properties:

1. FX(x) is monotonically non-decreasing, and right continuous.

2. Lim
x→−∞

FX(x) = 0

3. Lim
x→∞

FX(x) = 1

If the function FX(x) is is absolutely continuous and differentiable, then the deriva-

tive of the CDF is denoted as the probability density function (PDF) fX(x). There-

fore,

fX(x) =
dFX(x)

dx
(2.2)
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For any set E ⊆ R, the probability of the random variable X being in E can be

written as:

P (X ∈ E) =

∫

x∈E
dFx(x) (2.3)

If the PDF exists, then

P (X ∈ E) =

∫

x∈E
fX(x)dx (2.4)

Note that the PDF exists only for continuous random variables, whereas the CDF

exists for all random variables (including discrete variables) whose realizations belong

to R. A PDF or CDF is said to be valid if and only if it satisfies all of the above

properties. The above discussion can be easily be extended to multiple dimensions

by considering the space R
n.

The above principles of probability theory are not only fundamental to this disser-

tation, but will be repeatedly used in several chapters. For instance, in Chapter III,

the focus is on constructing probability distributions, and hence all of the above

equations will be used (sometimes as optimization constraints, as in Eq. 3.30).

2.3 Interpretations of Probability

The previous section formally defined probability in terms of cumulative distribu-

tion function and probability density function. What is the meaning of this probabil-

ity? Though the concepts of probability are well-established in the literature, there

is considerable disagreement among researchers on the interpretation of probability.

There are two major interpretations based on physical and subjective probabilities

respectively. It is essential to understand the difference between these two interpre-

tations before delving deeper into this dissertation; this is mainly because the latter

philosophy is widely used in this research work. In fact, this dissertation advocates the
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latter philosophy because of its ability to integrate the various sources of uncertainty

across multiple levels of models that represent the overall engineering system.

2.3.1 Physical Probability

Physical probabilities [4], also referred to objective or frequentist probabilities,

are related to random physical systems such as rolling dice, tossing coins, roulette

wheels, etc. Each trial of the experiment leads to an event (which is a subset of the

sample space), and in the long run of repeated trials, each event tends to occur at a

persistent rate, and this rate is referred to as the “relative frequency”. These relative

frequencies are expressed and explained in terms of physical probabilities. Thus,

physical probabilities are defined only in the context of random experiments. The

theory of classical statistics is based on physical probabilities. Within the realm of

physical probabilities, there are two types of interpretations: von Mises’ frequentist [5]

and Popper’s propensity [6]; the former is more easily understood and widely used.

In the context of physical probabilities, the mean of a random variable, sometimes

referred to as the population mean, is deterministic. It is meaningless to talk about

the PDF of this mean. In fact, for any type of parameter estimation, the underlying

parameter is assumed to be deterministic and only an estimate of this parameter

is obtained. The uncertainty in the parameter estimate is addressed through confi-

dence intervals. The interpretation of confidence intervals is, at times, confusing and

misleading, and the uncertainty in the parameter estimate cannot be used for further

uncertainty quantification. For example, if the uncertainty in the elastic modulus was

estimated using a simple axial test, this uncertainty cannot be used for quantifying

the response in a plate made of the same material. This is a serious limitation, since

it is not possible to propagate uncertainty after parameter estimation, which is often

necessary in the case of model-based quantification of uncertainty in the system-level

18



response. Another disadvantage of this approach is that, when a quantity is not ran-

dom, but unknown, then the tools of probability cannot be used to represent this

type of uncertainty (epistemic). The second interpretation of probability, i.e. the

subjective interpretation, overcomes these limitations.

2.3.2 Subjective Probability

Subjective probabilities [7] can be assigned to any “statement”. It is not necessary

that the concerned statement is in regard to an event which is a possible outcome of

a random experiment. In fact, subjective probabilities can be assigned even in the

absence of random experiments. The Bayesian methodology is based on subjective

probabilities, which are simply considered to be degrees of belief and quantify the

extent to which the “statement” is supported by existing knowledge and available

evidence. Calvetti and Somersalo [8] explain that “randomness” in the context of

physical probabilities is equivalent to “lack of information” in the context of subjective

probabilities.

In this approach, even deterministic quantities can be represented using probabil-

ity distributions which reflect the subjective degree of the analyst’s belief regarding

such quantities. As a result, probability distributions can be assigned to parameters

that need to be estimated, and therefore, this interpretation facilitates uncertainty

propagation after parameter estimation; this is helpful for uncertainty integration

across multiple models.

For example, consider the case where a variable is assumed to be normally dis-

tributed and it is desired to estimate the mean and the standard deviation based on

available point data. If sufficient data were available, then it is possible to uniquely

estimate these distribution parameters. However, in some cases, data may be sparse

and therefore, it may be necessary to quantify the uncertainty in these distribution
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parameters. Note that this uncertainty is an example of epistemic uncertainty; the

quantities may be estimated deterministically with enough data. The former philos-

ophy based on physical probabilities inherently assumes that these distribution pa-

rameters are deterministic and expresses the uncertainty through confidence intervals

on mean and standard deviation. It is not possible to propagate this description of

uncertainty through a mathematical model. On the other hand, the Bayesian method-

ology can calculate probability distributions for the distribution parameters, which

can be easily used in uncertainty propagation. Therefore, the Bayesian methodology

provides a framework in which epistemic uncertainty can be also addressed using

probability theory, in contrast with the frequentist approach.

The fundamentals of Bayesian philosophy are well-established in several text-

books [9–12], and the Bayesian approach is being increasingly applied to engineering

problems in recent times, especially to solve statistical inverse problems. In this

dissertation, the Bayesian methodology is extensively used to integrate not only the

different types and sources of uncertainty, but also to integrate multiple models which

represent the overall system under study.

2.4 The Bayesian Methodology

This section introduces the Bayesian methodology, since this approach will be

extensively used in the remainder of the dissertation. The fundamental concepts

alone are explained here; advanced concepts will be explained as and when necessary

in later chapters.
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2.4.1 Bayes Theorem

Though named after the 18th century mathematician and theologian Thomas

Bayes [13], it was the French mathematician Pierre-Simon Laplace who pioneered

and popularized what is now called Bayesian probability [14, 15]. For a brief history

of Bayesian methods, refer to [16]. The law of conditional probability is fundamental

to the development of Bayesian philosophy:

P (AB) = P (A|B)P (B) = P (B|A)P (A) (2.5)

Consider a list of mutually exclusive and exhaustive events Ai (i = 1 to n) that

together form the sample space. Let B denote any other event from the sample space

such that P (B) > 0. Based on Eq. 2.5, it follows that:

P (Ai|B) =
P (B|Ai)P (Ai)
∑

j

P (B|Aj)P (Aj)
(2.6)

What does Eq. 2.6 mean? Suppose that the probabilities of events Ai (i = 1

to n) are known to be equal to P (Ai) (i = 1 to n) before conducting any random

experiments. These probabilities are referred to as prior probabilities in the Bayesian

context. Suppose that a random experiment has been conducted and event B has

been observed. In the light of this data, the so-called posterior probabilities P (Ai|B)

(i = 1 to n) can be calculated using Eq. 2.6.

The quantity P (B|Ai) is the probability of observing the data conditioned on Ai.

It can be argued that, event B has “actually been observed”, and there is no uncer-

tainty regarding its occurrence, which renders the probability P (B|Ai) meaningless.

Hence, researchers “invented” new terminology in order to denote this quantity. In

earlier days, this quantity was referred to as “inverse probability”, and since the
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advent of Fisher [17, 18] and Edwards [19], this terminology has become obsolete,

and has been replaced by the term “likelihood”. In fact, it is also common to write

P (B|Ai) as L(Ai).

2.4.2 Bayesian Inference

The concept of Bayes theorem can be extended from the discrete case to the con-

tinuous case. Consider the context of statistical inference where a set of parameters

θ needs to be inferred. All the current knowledge regarding this parameter is repre-

sented in the form of a prior distribution denoted by f ′(θ). The choice of the prior

distribution reflects the subjective knowledge of uncertainty regarding the variable

before any observation. It is assumed that the prior distribution is able to explain

the data with some degree of uncertainty; in other words, there exists a non-empty

set E such that ∀ θ ∈ E, the prior PDF and likelihood values evaluated ∀ θ ∈ E are

both non-zero.

Measurement data (D) is collected on a quantity which depends on the parameter

(θ). This information is then used to update the distribution of θ to arrive at the

posterior distribution (f ′′(θ)), as:

f ′′(θ) =
L(θ)f ′(θ)

∫

L(θ)f ′(θ)dθ
(2.7)

In Eq. 2.7, L(θ) is the likelihood function of θ and is proportional to P (D|θ), i.e.

probability of observing the data D conditioned on the parameter θ. The concept of

likelihood will be briefly explained in the following subsection.

The denominator on the RHS of Eq. 2.7 is simply a normalizing constant, which

ensures that f ′′(θ) is a valid PDF. So, Eq. 2.7 is sometimes written as:

f ′′(θ) ∝ L(θ)f ′(θ) (2.8)

22



The posterior in Bayesian inference is always known only up to a proportionality

constant and it is necessary generate samples from this posterior for uncertainty

analysis. When there is only one parameter, the proportionality constant can be

calculated through one-dimensional integration. Often, multiple parameters may be

present, and hence, multi-dimensional integration may not be affordable to calculate

the proportionality constant. Therefore, a class of methods popularly referred to

as Markov Chain Monte Carlo (MCMC) sampling is used to generate samples from

the Bayesian posterior. In general, these methods can be used when it is desired to

generate samples from a PDF which is known only up to a proportionality constant.

The topic of MCMC will be discussed in detail later in this chapter, in Section 2.7.

2.4.3 Notes on the Likelihood Function

The likelihood function is defined as the probability of observing data conditioned

on the parameters, i.e. L(θ) = P (D|θ); note that, since the data (D) has actually

been observed, the terminology “probability of observing the data” is physically mean-

ingless. Therefore, as explained earlier in Section 2.4.1, this quantity was renamed

as “the likelihood”. The likelihood function does not follow the laws of probability

discussed in Section 2.2, and must not be confounded with probability distributions

or distribution functions. In fact, Edwards [19] explains that the likelihood function is

meaningful only up to a proportionality constant; the relative values of the likelihood

function are alone significant and the absolute values are not of interest.

The concept of likelihood is used both in the context of physical probabilities

(frequentist) and subjective probabilities, especially in the context of parameter esti-

mation. In fact, Edwards [19] refers to the likelihood method as the third or middle

way.

From a frequentist point of view (the underlying parameters are deterministic),
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the likelihood function can be maximized in order to obtain the maximum likelihood

estimate of the parameters. According to Fisher [20], the popular least squares ap-

proach is parameter estimation is an indirect approach to parameter estimation and

one can “solve the real problem directly” by maximizing the “probability of observing

the given data” conditioned on the parameter θ [20, 21]. Further, it is also possible

to construct likelihood-based confidence intervals for the inferred parameters [22].

On the other hand, the likelihood function can also be interpreted using subjec-

tive probabilities. Singpurwalla [23, 24] explains that the likelihood function can be

viewed as a collection of weights or masses and therefore, is meaningful only up to

a proportionality constant [19]. In other words, if L(θ(1)) = 10, and L(θ(2)) = 100,

then it is 10 ten times more likely for θ(2) than θ(1) to correspond to the observed

data. The entire likelihood function can be used in Bayesian inference, as in Eq. 2.7,

in order to obtain the entire PDF of the parameters.

2.4.4 Bayesian Network

An attractive feature of the Bayesian approach is the ability to integrate the vari-

ous sources of uncertainty in a systematic manner, through a Bayesian network (also

referred to as Bayes network or simply Bayes net). Further, the Bayesian network

also allows the integration of the multiple models, associated sources of uncertainty,

and experimental data. A Bayesian network [25, 26] is a graphical representation of

conditional probability relationships between uncertain quantities. Each uncertain

quantity is represented as a node and successive nodes are connected to each other

using unidirectional arrows that express dependence in terms of conditional proba-

bilities. If the probability distribution of one uncertain variable Z depends on the

realization of another uncertain variable Y , then the nodes corresponding to the vari-

ables Y and Z are said to be parent and child nodes with respect to each other. While
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Bayesian networks are constructed hierarchically, the node corresponding to Z may

become a parent to one or more child nodes.

Fig. 2.1 shows a conceptual Bayesian network that aids in uncertainty quantifi-

cation across multiple levels of models, and observed data. Circles correspond to

uncertain variables and squares represent observed data. A solid line arrow repre-

sents a conditional probability link, and a dashed line arrow represents the link of a

variable to its observed data if available.

X1 X2 X3 X4

Y1 Y2

Z

Y D
1 Y D

2

Figure 2.1: Bayesian Network Illustration

In Fig. 2.1, a system level output Z is a function of two subsystem level quantities

Y1 and Y2; in turn, Y1 is a function of subsystem-level input X1 and model parameter

X2, and similarly, Y2 is a function of subsystem-level input X3 and model parameter

X4. For example, in a beam deflection study, the applied force is an input, the elastic

modulus is a model parameter, while the deflection is measured and a model is built

to predict the same. Experimental data Y D
1 and Y D

2 are available for comparison

with the respective model predictions Y1 and Y2.

The Bayesian network is useful in solving both forward problems (uncertainty

propagation along the flow of the Bayesian network) and inverse problems (updating

the uncertainty in the parent nodes based on the data on a dependent quantity (child

node), using Bayesian inference).
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2.4.4.1 Uncertainty Propagation: Forward Problem

In the forward problem, the probability distributions of the inputs (X1 and X3 in

Fig. 2.1) and model parameters (X2 and X4 in Fig. 2.1) are known or assumed, and

these distributions are used to calculate the probability density function (PDF) of Y1

and Y2, which in turn are used to calculate the PDF of the system-level output Z as:

fZ(z) =
∫

fZ(z|y1, y2)fY1
(y1)fY2

(y2)dy1dy2

fY1
(y1) =

∫

fY1
(y1|x1, x2)fX1

(x1)fX2
(x2)dx1dx2

fY2
(y2) =

∫

fY2
(y2|x3, x4)fX3

(x3)fX4
(x4)dx3dx4

(2.9)

Eq. 2.9 can be solved using forward uncertainty propagation methods, explained later

in Section 2.5.

2.4.4.2 Inference: Inverse Problem

In the inverse problem, the probability densities of the model parameters (X2 and

X4 in Fig. 2.1) can be updated based on the observed data (Y D
1 and Y D

2 ) using Bayes

theorem as:

fX2,X4
(x2, x4|Y D

1 , Y D
2 ) ∝ L(x2, x4)fX2

(x2)fX4
(x4) (2.10)

In Eq. 2.10, the prior distributions of the model parameters X2 and X4 are given by

fX2
(x2) and fX4

(x4) respectively. The joint posterior density is given by fX2,X4
(x2, x4|Y1, Y2).

The likelihood function L(x2, x4) is calculated as the probability of observing the given

data (Y D
1 , Y D

2 ), conditioned on the parameters being updated, i.e. x2 and x4. The

likelihood function L(θ) needs to explicitly account for the uncertainty in the inputs

X1 and X3; this aspect is explained in detail later in Chapters IV and IX.

Thus, the Bayesian network can be used for both forward problems (estimating the

PDF of Z) and inverse problems (calibrating parameters X2 and X4 based on data).

26



Section 2.5 and 2.7 describe methods for uncertainty propagation (forward problem)

and statistical inference (inverse problem) respectively. While sampling methods and

analytical methods are discussed in the former case, the latter case considers only

Markov Chain Monte Carlo-based sampling methods.

2.5 Methods for Uncertainty Propagation

Consider a generic computational model Y = G(X), which is used to represent

the performance of an engineering system. The input is a vector and hence denoted

in bold as X, whereas the output Y is a scalar. The model G is deterministic, i.e.

for a given realization of X, there is a corresponding output, which is a realization

of Y . The inputs X are uncertain, and this leads to uncertainty in the output Y . A

generic realization of X is denoted as x, and a generic realization of Y is denoted as

y.

The goal in uncertainty propagation is to propagate the input uncertainty through

G, in order to the calculate the entire CDF FY (y), and the corresponding PDF fY (y).

The entire CDF can be calculated as:

FY (y) =

∫

g(X)<y

fX(x)dx (2.11)

It is harder to write a similar expression for PDF calculation, although the following

equation attempts to.

fY (y) =

∫

fY (y|x)fX(x)dx (2.12)

In Eq. 2.12, the domain of integration is such that fX(x) 6= 0. In fact, this practice is

employed in the entire dissertation, i.e. whenever the integrand contains a PDF, then

the domain of integration is equal to the domain of the PDF. Note that Eq. 2.12 is not
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very meaningful because y is single-valued given x, and hence fY (y|x) is nothing but

a Dirac delta function. Alternatively, the PDF can be calculated by differentiating

the CDF, as:

fY (y) =
dFY (y)

dy
(2.13)

Two types of methods – sampling-based and analytical methods – are be used to

calculate the PDF and CDF of Y .

2.5.1 Monte Carlo Sampling

The most intuitive method for uncertainty propagation is to make use of Monte

Carlo simulation (MCS). In this method, several random realizations of X are gen-

erated based on CDF inversion, and the corresponding random realizations of Y are

computed. Then the CDF FY (y) is calculated as the proportion of the number of real-

izations where the output realization is less than y. The generation of each realization

requires one evaluation/simulation of the computational model. Several thousands

of realizations may often be needed to calculate the entire CDF, especially for very

high/low values of y. Error estimates for the CDF, in terms of the number of simu-

lations, are available in the literature [27, 28]. Once the samples of Y are obtained,

then a histogram can be drawn easily or the empirical PDF of Y can be calculated

using kernel density estimation [29].

Advanced MCS methods such as importance sampling, stratified sampling, latin

hypercube sampling, etc. are also available to aid in the reduction of computational

effort [28, 30]. The basic underlying concept of these methods is to generate pseudo-

random numbers which are uniformly distributed on the interval [0, 1]; then the CDF

of X is inverted to generate the corresponding realization of X. Therefore, these

methods are applicable only when the CDF of X is fully known and can be inverted.

This is the case in uncertainty propagation because the PDFs of X are assumed to
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be known and the goal is to propagate them through the model Y = G(X). The

topic of uncertainty propagation will be considered in all of the forthcoming chapters

in this dissertation, and the above sampling methods will be repeatedly used for this

purpose, and kernel density estimation will be used to construct the PDF based on

Monte Carlo samples.

There is another class of sampling methods, collectively referred to as MCMC

sampling methods, which are used to draw samples from a probability distribution

whose CDF cannot be inverted or whose PDF is known only up to a proportionality

constant. This is often used to solve statistical inverse problems (Bayesian inference),

and hence discussed later in Section 2.7.

2.5.2 Analytical Methods

A new class of methods was developed by reliability engineers in order to facilitate

efficient, quick but approximate calculation of the CDF FY (y); the focus is not on the

calculation of the entire CDF function but only to evaluate the CDF at a particular

value of the output, i.e. FY (Y = yc); the value of yc is chosen so that the CDF value,

i.e. the probability P (Y ≤ yc) is the failure probability of the system represented by

the model Y = G(X).

The basic concept is to “linearize” the model G so that the the output Y can

be expressed as a linear combination of the random variables. Further, the random

variables are transformed into uncorrelated standard normal space and hence, the

output Y is also a normal variable (since the linear combination of normal variables

is normal). Therefore, the CDF value FY (Y = yc) can be computed using the stan-

dard normal distribution function. The transformation of random variables X into

uncorrelated standard normal space (U) is denoted by U = T (X), and the details of

the transformation can be found in [28].
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Since the model G is non-linear, the failure probability depends on the location of

“linearization”. This linearization is done at the so-called most probable point (MPP)

which is the shortest distance from origin to the limit state, calculated in the U—

space. Then, the failure probability is calculated as Pf = Φ(−β), where Φ denotes the

standard normal CDF function, and β denotes the aforementioned shortest distance.

The MPP and the shortest distance are estimated using the well-known Rackwitz-

Fiessler algorithm [31], which is based on a repeated linear approximation of the non-

linear constraint G(x) − yc = 0. This method is popularly known as the first-order

reliability method (FORM). There are also several second order reliability methods

(SORM) based on the quadratic approximation of the limit state [28, 32–34].

The entire CDF can be calculated using repeated FORM analyses by considering

different values of yc; for example, if FORM is performed at 10 different values of

yc, the corresponding CDF values are calculated, and an interpolation scheme can be

used to calculate the entire CDF, which can be differentiated to obtain the PDF. This

approach is difficult because it is almost impossible to choose such multiple values of

yc, because the range (i.e. extent of uncertainty) of Y is unknown. This difficulty is

overcome by the use of an inverse FORM method [35] where multiple CDF values are

chosen and the corresponding values of yc are calculated. This approach is simpler

because it is easier to choose multiple CDF values since the range of CDF is known

to be [0, 1].

In this dissertation, FORM and inverse FORM are not implemented for the pur-

pose of uncertainty propagation. However, Chapter VII will require the use of FORM

for the numerical implementation of a new methodology for uncertainty quantifica-

tion in multi-disciplinary analysis. Hence, details regarding the Rackwitz-Fiessler

algorithm (identification of MPP and calculation of FY (yc)) will be provided in Chap-

ter VII.
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2.6 Global Sensitivity Analysis

The previous section discussed methods for propagating the uncertainty in the

inputs X through a computational model Y = G(X), in order to compute the un-

certainty in the model output Y . Note that G is a deterministic transfer function

from a given realization of X to a realization of Y . The topic of sensitivity analysis

is closely associated with uncertainty propagation, and Saltelli et al. [36] state that

uncertainty propagation is incomplete without the results of quantitative sensitivity

analysis. The goal in sensitivity analysis is to apportion the uncertainty in Y to the

uncertainty in inputs X.

An intuitive approach to sensitivity analysis would be to ignore the uncertainty

in each input quantity, one at a time, i.e. replace the probability distribution of

the input quantity by a deterministic value and calculate the reduction in variance

in the model output. This approach would only give the local sensitivity and the

result would depend on the chosen deterministic value. Saltelli et al. [36] explain that

local sensitivities are not sufficient to study the contributions of multiple sources of

uncertainty to the overall prediction uncertainty and it is necessary to pursue a global

sensitivity analysis approach for this purpose. The term “global” refers to computing

the sensitivity metric considering the entire probability distribution of the input.

The fundamental theorem that governs the development of the global sensitivity

analysis methodology is the variance decomposition theorem. Consider a particular

input quantity X i. Then,

V (Y ) = V (E(Y |X i)) + E(V (Y |X i)) (2.14)

The above variance decomposition is true if and only if there exists a value of Y for
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every value X; in other words, the G is a deterministic transfer function, as explained

at the beginning of this section.

In order to compute the sensitivity of a particular input quantity X i, this input

quantity is first fixed at a particular deterministic value and the expectation of the

model output is calculated by considering the variation in other output quantities

(denoted by X−i). Thereby, the effect of the uncertainty of all other input quantities

is averaged. Then, different deterministic values of the input quantity X i are consid-

ered based on their probability distributions and the variance of the expectation is

calculated. This metric is known as the first-order effect index of the input variable

X i on the variance of the output Y :

Si
1 =

VXi(EX−i(Y |X i))

V (Y )
(2.15)

The first-order effect measures the contribution of the variable X i by itself. The

sum of first order indices of all variables is always less than or equal to unity. The

difference between this sum and unity is representative of the interaction between the

input variables. Further, higher the first-order effect, more important the variable is.

The interaction or combined effect of two variables X i and Xj can also be calcu-

lated similarly. Now, both these input quantities are fixed at particular deterministic

values (denoted by X i,j) and the expectation of the model output is calculated by

considering the variation in other output quantities (denoted by X−i,j). Thereby,

the effect of the uncertainty of all other input quantities is averaged. Then, different

deterministic values of both X i and Xj are considered based on their probability

distributions and the variance of the expectation is calculated as:

Si
1 + Sj

1 + Si,j
2 =

VXi,j (EX−i,j (Y |X i,j))

V (Y )
(2.16)
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The expression in Eq. 2.16 accounts not only for the individual effects of X i and Xj

but also for the interaction between X i and Xj. The term Si,j
2 is called as the second-

order index, which explains only the interaction between X i and Xj. Similarly the

third-order effects, fourth-order effects, etc. can also be calculated. These quantities

are collectively known as variance-based sensitivity indices or Sobol’s indices [36, 37].

If there are n input quantities, then there are n first-order effects, nC2 second-

order effects, nC3 third-order effects, and so on until nCn nth order effects. Hence this

requires the calculation of 2n − 1 indices, which may be computationally intensive.

Hence, researchers often compute only the first-order index and the so-called total

effects index for each input quantity.

Consider the expression
V
X−i (EXi(Y |X−i))

V (Y )
. In analogy with the above discussion re-

garding Eq. 2.16, this expression includes all interaction terms of all orders concerning

all variables X−i; any term involving X i (both individual and any interaction with

others) would not be included. As the sum of all the sensitivity indices must be equal

to unity, the total effects (the sum of individual effects of X i and all interactions with

other quantities) can be calculated as:

Si
T = 1− VX−i(EXi(Y |X−i))

V (Y )
(2.17)

The sum of the total effects indices of all variables is always greater than or equal to

unity; equality holds when there is no interaction between the input quantities. (In

this case, the first-order effects indices are equal to the total effects indices). If the

total effects index is low, then it means that the input quantity is not important.

(In the rest of the dissertation, for the sake of simplicity, the domain for expec-

tation and variance are not explicitly written. In other words, VXi(EX−i(Y |X i)) and

VX−i(EXi(Y |X−i)) are replaced with V (E(Y |X i)) and V (E(Y |X−i)) respectively).

It is important to calculate both the first-order effects and the total effects indices.
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If the first-order index of a particular variable X i is low, then it is not necessary that

this variable is unimportant. The interaction of this variable with other variables

may contribute significantly to the variance of Y and hence, there is a possibility that

X i is, in fact, an important variable. The effects of interaction are reflected in the

total effects index. Further, the difference between the total effects index and the

first-order effects index provides an estimate of the contribution of variance due to

the interaction between X i and other variables. Thus, both the first-order and total

effects indices must be computed in order to assess the sensitivities of the variables.

The above discussion only considered uncertain model inputs; if there are additional

model parameters (whose uncertainty is known), then the inputs can be appended

with the parameters as Y = G(X; θ) and the above analysis can be performed.

The method of global sensitivity analysis will be used in several chapters in this

dissertation. In Chapter III, it is used to quantify the individual contributions of

physical variability and epistemic uncertainty. In Chapters V and VIII, it is used

for screening of calibration parameters. Finally, in Chapter IX, it is used in the

development of the new inverse sensitivity analysis methodology, where the focus is

to analyze the sensitivity of inverse analysis, i.e. sensitivity of calibration result to

the various sources of uncertainty.

2.7 Markov Chain Monte Carlo Sampling

The class of Markov Chain Monte Carlo methods can be used to generate samples

from an arbitrary probability distribution, especially when the CDF is not invertible

or when the PDF is known only up to a proportionality constant. In Section 2.4, it

was explained that the latter is the case in Bayesian inference, where the objective

is to compute the posterior distribution. Therefore, MCMC sampling can be used

to draw samples from the posterior distribution, and these samples can be used in
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conjunction with the kernel density estimation procedure to construct the posterior

distribution.

There are several algorithms which belong to the class of MCMC sampling meth-

ods. Two such algorithms, the Metropolis algorithm [38] and the slice sampling [39]

algorithm are discussed below.

2.7.1 The Metropolis Algorithm

Assume that a function that is proportional to the PDF is readily available, as

f(x); this means that f(x) is not a valid PDF because
∫

f(x)dx 6= 1. For the

purpose of illustration, consider the one dimensional case, i.e. x ∈ R. The following

steps constitute the algorithm in order to generate samples from the underling PDF.

Note that, the function f(x) is always evaluated at two points and the ratio is only

considered; the effect of the unknown proportionality constant is therefore nullified.

1. Set i = 0 and select a starting value x0 such that f(x0) 6= 0.

2. Initialize the list of samples X = {x0}.

3. Repeat the following steps; each repetition yields a sample from the underlying

PDF.

(a) Select a prospective candidate from the proposal density q(x∗|xi). The

probability of accepting this sample is equal to f(x∗)
f(xi)

.

(b) Calculate acceptance ratio α = min (1, f(x
∗)

f(xi)
)

(c) Select a random number u, uniformly distributed on [0, 1].

(d) If u < α, then set xi+1 = x∗, otherwise set xi+1 = xi.

(e) Augment the list of samples in X by xi+1.

(f) Increment i, i.e. i = i+ 1.
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4. After the Markov chain converges, the samples in X can be used to construct

the PDF of X using kernel density estimation.

The common practice is to generate a few hundreds of thousands of samples and

discard the first few thousand samples to ensure the convergence of the Markov Chain.

The Metropolis algorithm [38] assumes that the proposal density is symmetric, i.e.

q(x∗|xi) = q(xi|x∗). A generalization of this algorithm assumes asymmetric proposal

density functions q1(x
∗|xi) and q2(xi|x∗); this algorithm is referred to as Metropolis-

Hastings algorithm[40]. The only difference is that the probability of accepting the

prospective candidate is calculated as f(x∗)q2(xi|x∗)
f(xi)q1(x∗|xi)

.

2.7.2 Slice Sampling

Consider the same function f(x), i.e. the PDF ofX , known up to a proportionality

constant. The steps of the slice sampling algorithm are as follows:

1. Set i = 0 and select a starting value x0 such that f(x0) 6= 0.

2. Draw a random number y from the uniform distribution [0, f(x)].

3. Consider the set f−1[y,∞); note that this set may not be convex, especially

when the target distribution is multi-modal. Select a sample which is uniformly

distributed on this set. Assign i = i+ 1, and call this sample xi.

4. Repeat Steps 1 - 3 to generate multiple samples of X and construct the PDF

of X using kernel density estimation.

In contrast with the previously discussed Metropolis algorithm, the slice sampling

algorithm is not a acceptance-rejection algorithm.
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2.7.3 MCMC Sampling: Summary

In addition to the above algorithms, other MCMC sampling algorithms such as

Gibbs sampling [41], multiple-try Metropolis [42], Metropolis-within-Gibbs [43] etc.

are also discussed in the literature. One important contribution of this dissertation is

to replace MCMC sampling with quadrature-based integration to accurately estimate

the posterior PDF. A numerical integration method is developed in Section 4.3.7 for

this purpose. Further, a new updating methodology is developed in Chapter IX and

MCMC sampling is completely eliminated during Bayesian inference.

2.8 Gaussian Process Surrogate Modeling

All of the previously discussed uncertainty quantification methods require re-

peated evaluation of mathematical models, which are often physics-based, and may be

computationally expensive. One approach to overcome this computational difficulty

is to make use of surrogate models to replace the original physics-based model. A few

evaluations of the original model are used to train this inexpensive, efficient surrogate

model. Different types of surrogate modeling techniques such as polynomial response

surface [44], polynomial chaos expansion [45], support vector regression [46], relevance

vector regression [47], and Gaussian process interpolation [48–50] have been investi-

gated in the literature. This dissertation uses the Gaussian process (GP) surrogate

model whenever it is required to replace an expensive model for efficient uncertainty

analysis (in Chapters IV – IX). In Chapter III, the Gaussian process model is also

used simply as an interpolation tool to interpolate data.

The Gaussian process interpolation is a powerful technique based on spatial statis-

tics and is increasingly being used to build surrogates to expensive computer simu-

lations for the purposes of optimization and uncertainty quantification [48–50]. The
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GP model is preferred in this research because (1) it is not constrained by functional

forms; (2) it is capable of representing highly nonlinear relationships in multiple di-

mensions; and (3) can estimate the prediction uncertainty which depends on the

number and location of training data points.

The basic idea of the GP model is that the response values Y evaluated at different

values of the input variables X, are modeled as a Gaussian random field, with a mean

and covariance function. Suppose that there are m training points, x1, x2, x3 ... xm

of a d-dimensional input variable vector, yielding the output values Y (x1), Y (x2),

Y (x3) ... Y (xm). The training points can be compactly written as xT vs. yT where

the former is a m × d matrix and the latter is a m × 1 vector. Suppose that it is

desired to predict the response (output values yP ) corresponding to the input xP ,

where xP is p×d matrix; in other words, it is desired to predict the output at n input

combinations simultaneously. Then, the joint density of the output values yP can be

calculated as:

p(yP |xP , xT , yT ; Θ) ∼ N(m,S) (2.18)

where Θ refers to the hyperparameters of the Gaussian process, which need to be

estimated based on the training data. The prediction mean and covariance matrix

(m and S respectively) can be calculated as:

m = KPT (KTT + σ2
nI)

−1yT

S = KPP −KPT (KTT + σ2
nI)

−1KTP

(2.19)

In Eq. 2.19, KTT is the covariance function matrix (size m ×m) amongst the input

training points (xT ), and KPT is the covariance function matrix (size p×m) between

the input prediction point (xP ) and the input training points (xT ). These covariance

matrices are composed of squared exponential terms, where each element of the matrix

38



is computed as:

Kij = K(xi, xj; Θ) = −θ

2
[

d
∑

q=1

(xi,q − xj,q)
2

lq
] (2.20)

Note that all of the above computations require the estimate of the hyper parameters

Θ; the multiplicative term (θ), the length scale in all dimensions (lq, q = 1 to d), and

the noise standard deviation (σn) constitute these hyperparameters (Θ = {θ, l1, l2 ...

ld, σn}). As stated earlier, these hyperparameters are estimated based on the training

data by maximizing the following log-likelihood function:

log p(yT |xT ; Θ) = −yTT
2
(KTT + σ2

nI)
−1yT − 1

2
log|(KTT + σ2

nI)|+
d

2
log(2π) (2.21)

Once the hyperparameters are estimated, then the Gaussian process model can be

used for predictions using Eq. 2.19. Note that the “hyperparameters” of the Gaussian

process are different from the “parameters” of a generic parametric model (for e.g.

linear regression model). This is because, in a generic parametric model, it is possible

to make predictions using only the parameters. On the contrary, in the case of the

Gaussian process model, all the training points and the hyperparameters are both

necessary to make predictions, even though the hyperparameters may have estimated

previously. For details of this method, refer to [48–55].

An important issue in the construction of the Gaussian process model is the se-

lection of training points. In general, the training points may arise out of field exper-

iments or may be generated using a computer code. This dissertation only considers

the latter case and hence, there is no noise in the data, thereby eliminating σn from

the above equations. Adaptive techniques can be used to select training points for the

GP model, in order to construct the response surface to a desired level of accuracy or

precision. Since the GP model is capable of estimating the variance in model output,

a variance minimization algorithm proposed by McFarland [52] identifies the next
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training point at the input variable value which corresponds to the largest variance.

This selection algorithm is repeated and training points are adaptively identified until

the estimated variance is below a desired threshold. Alternatively, another training

point selection algorithm has been developed by Hombal and Mahadevan [56], where

the focus is to select successive training points so that the bias error in the surrogate

model is minimized.

Once the training points are selected and the surrogate model is constructed, it

can be used for (1) Monte Carlo simulation; (2) Markov Chain Monte Carlo simula-

tion; and (3) global sensitivity analysis. It must be noted that the replacement of a

complex computer simulation with an inexpensive surrogate leads to approximations;

therefore, it is important to include the effect of this approximation in the proce-

dure for overall uncertainty quantification. This feature will be discussed in detail in

Chapter IV.

2.9 Summary

This chapter discussed certain essential topics which are fundamental to the devel-

opment of the new methods in this dissertation. First, the fundamentals of probability

theory and the two interpretations of probability were introduced. The philosophy of

Bayesian subjective probabilities will be used in the majority of this dissertation, in

order to facilitate integration of various sources of uncertainty across multiple levels

of models and data. The Bayesian network will be used for such integration, and

employed for both uncertainty propagation (forward problem) and inference (inverse

problem). Further, this chapter also discussed methods for forward uncertainty prop-

agation (including global sensitivity analysis) and inference (Markov Chain Monte

Carlo sampling). While the former will be used repeatedly in the remainder of this
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dissertation, new alternative methods for inverse analysis are explored in the forth-

coming chapters of this dissertation.
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CHAPTER III

DATA UNCERTAINTY: SPARSE AND INTERVAL DATA

3.1 Introduction

In engineering design problems, it is often required to calculate the system re-

sponse function Y = G(X) as a function of the input variables X. Several of these

input variables X might be uncertain in nature, and this in turn, leads to uncertainty

in the output Y . It is important to quantify the uncertainty in the system response

function, based on the input uncertainty. This is commonly referred to as uncer-

tainty propagation; since the focus is on quantifying the uncertainty in the output of

a model, the term “forward uncertainty quantification” is used in this dissertation.

In the problem of forward uncertainty quantification, probability distributions are

assigned to all the uncertain input variables and the probability distribution of the

system response function is computed using uncertainty propagation methods such as

Monte Carlo sampling [28], first order and second order reliability methods (FORM

and SORM respectively) [27, 32]. A brief overview of these methods was provided in

Section 2.5.

Though these uncertainty propagation methods have received much attention in

the reliability literature, there are two major challenges in the application of such

methods to practical engineering applications. The first challenge lies in the charac-

terization of input uncertainty. The second challenge lies in the choice of the model

(G) which is used to compute the response; no model is an accurate representation

of reality, and hence it is also necessary to quantify the uncertainty in the the model.
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The current chapter focuses on the first challenge, i.e. characterizing input uncer-

tainty based on available data, especially when the data is in the form of sparse point

and interval data. Chapter IV addresses the issue of model uncertainty in detail.

3.2 Challenges and Existing Approaches

Consider a particular input quantity X . In order to characterize (represent) the

input uncertainty, data on that particular quantity needs to be available. Convention-

ally, probability distributions have been constructed using only point data (e.g., [27]).

Sometimes sufficient point data may not be available to construct such probability

distributions. This problem is further complicated if there are interval data. There

are several sources of interval data in engineering applications [57–59]. Sometimes,

the only information available might come from physical and theoretical constraints

that impose bounds on the quantities of interest. Data collected based on temporally

spaced inspections may lead to intervals. Uncertainty and errors associated with

calibrated instruments may result in experimental observations that are best described

using intervals. Sometimes, subject matter experts may describe uncertain quantities

using a range of values. Interval data needs to be treated carefully, especially when

there are multiple intervals from different sources (say, from multiple experts) and

the width of each interval is comparable to the magnitude of the quantity.

The presence of interval data complicates uncertainty representation and propaga-

tion because non-probabilistic interval analysis methods have commonly been used to

quantify the uncertainty due to interval data. Sometimes, intervals have been approx-

imated with uniform distributions, based on the principle of maximum entropy [60].

This approach may be suitable if a quantity is represented with only a single interval;

if multiple intervals are available for a particular quantity, then this method is not

suitable since there may be multiple possible uniform distributions.
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Sandia National Laboratories conducted an epistemic uncertainty workshop [57]

that invited various views on the quantification and propagation of epistemic uncer-

tainty [58], mostly in the form of interval data. Several researchers published different

approaches to tackle interval uncertainty in a special issue of the journal Reliability

Engineering and Systems Safety [57]. The following paragraphs briefly discuss the

different approaches for the treatment of epistemic uncertainty and develop the mo-

tivation for the likelihood-based approach proposed in this chapter.

Most probabilistic techniques rely on the existence of sufficient point values for

the stochastic quantity of interest. An empirical distribution function (EDF) can be

constructed and popular inference techniques such as least squares, moment matching

and maximum likelihood can be used to fit parametric probability distributions. The

concept of empirical distribution can be extended to interval data sets to arrive at

the so-called empirical p-box [59], which is the collection of all possible EDFs for the

given set of intervals. Zaman et al. [61] have used the Johnson family of distributions

to represent interval uncertainty using a family of distributions which are bounded

by the aforementioned p-box. Similar to frequentist p-boxes, Bayesian p-boxes have

also been used to represent uncertainty [62].

Researchers have also investigated the use of non-probabilistic approaches for the

treatment of epistemic uncertainty due to interval data. Evidence theory [63, 64]

has been proposed to handle interval data. This theory is based on the assumption

that the sources of interval data are independent. However, data obtained from

different sources needs to be properly aggregated. Dempster’s rule [65, 66] is a popular

scheme of aggregation used for this purpose; several improved rules have also been

proposed that acknowledge the conflicts that can potentially exist among evidences

from different sources. Convex models of uncertainty [67, 68] use a family of convex

functions to represent realizations of uncertain quantities and this approach has also
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been used to handle interval data. Zadeh’s Extension Principle [69] can be used to

construct the possibility distribution of an interval variable which can then be used

for uncertainty representation and propagation. Rao and Annamdas [70] presented

the idea of weighted fuzzy theory for intervals, where fuzzy set-based representations

of interval variables from evidences of different credibilities are combined to estimate

the system margin of failure.

The above mentioned methods for uncertainty quantification can be computation-

ally expensive in the context of uncertainty propagation. The application of proba-

bilistic techniques to interval data is computationally expensive and too cumbersome

to apply without severe restrictions because there is an infinite number of possible

empirical distributions bounded by the p-box. On the hand, non-probabilistic tech-

niques are interval analysis-based approaches [64] and are computationally expensive

wherein the cost increases exponentially with the number of uncertain variables, and

with the increase in non-linearity of the response function that depends on these

uncertain variables. Suppose that some variables are described using intervals and

some other physically variable (aleatory) quantities are described using probability

distributions. For every combination of interval values, the probabilistic analysis for

the aleatory variables has to be repeated, resulting in a computationally expensive

double-loop (second-order) sampling analysis.

The primary motivation of this chapter is to accurately perform uncertainty prop-

agation in the presence of sparse point and/or interval data and simultaneously reduce

the computational effort involved in uncertainty propagation. This is facilitated by

the inherent use of the Bayesian philosophy, which allows probabilistic representation

of epistemic variables which are described using intervals. (Recall that a frequen-

tist approach will not permit the assignment of probability distributions to epistemic

variables.) Therefore, the computational expense can be reduced by including both
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aleatory and epistemic variables in a single analysis loop, and well-known probabilistic

methods are alone sufficient for uncertainty propagation.

However, it is not straightforward to construct probability distributions in the

presence of sparse point and/or interval data. If there are sufficient point values,

then both parametric (where the parameters are estimated using the method of mo-

ments [27]) and non-parametric (using kernel density estimation [29]) probability

distributions can be constructed based on the point values. In the presence of sparse

point data, there is large uncertainty in the parameter estimates which need to be

accounted for; this issue is explained in detail in the next subsection. In the presence

of interval data, it is not easy to calculate moments or construct kernels; hence the

construction of a probability density function (PDF) is not straightforward. In order

to overcome these challenges, this chapter proposes a new likelihood-based methodol-

ogy to facilitate probabilistic representation of quantities described using sparse point

and/or interval data.

3.3 Proposed Approach

Consider an input quantity which needs to be represented using a probability

distribution. Conventionally, a distribution type (e.g., normal, lognormal, etc.) is as-

sumed for the quantity of interest, and the parameters of this probability distribution

(e.g., mean and standard deviation in the case of a normal distribution) are usually

estimated using techniques of statistical inference using observed data. When large

amount of point data is available, it may be reasonable to compute deterministic

estimates of the parameters using techniques such as the the method of maximum

likelihood [22], method of moments [27], etc. It can be proved that, under some condi-

tions, these deterministic estimates approach the true estimates as the number of data

approaches infinity [71]. When sparse and/or data is available, there is uncertainty
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associated with these estimates; the importance of this uncertainty in the distribu-

tion parameters increases especially when the data is sparse and/or imprecise. The

topic of distribution parameter uncertainty has been studied by several researchers in

the past [72–74] and this has also been referred to as statistical uncertainty [27, 75]

or second-order uncertainty [76, 77]. Further, the distribution type (which needs to

initially assumed) may be uncertain, and therefore, it is also necessary to quantify

the uncertainty due to the distribution type.

Hence, in general, the uncertainty in the quantity of interest is composed of three

parts:

1. Choice of distribution type

2. Choice of distribution parameters

3. Given the choice of distribution type and distribution parameters, the uncer-

tainty in the variable is due to the physical variability; for the sake of simplicity,

in the rest of chapter, this is simply referred to as variability.

The proposed likelihood-based methodology is developed for three different cases,

as follows:

1. Case 1: The distribution type of the variable X is assumed to be known

and the distribution parameters are estimated. This is a parametric approach

(Section 3.4).

2. Case 2: The distribution type of the variable X is unknown; however, it is

assumed that multiple competing PDF types are available. Each of the com-

peting PDF types are parametric PDFs and therefore, this is also a parametric

approach. The uncertainty in the distribution type and the distribution param-

eters are both estimated (Section 3.6).
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3. Case 3: The distribution type of the variable X is unknown and no assumption

is made regarding the PDF type. Interpolation techniques are used to estimate

the PDF and therefore, this is a non-parametric approach (Section 3.7).

In addition to the above cases, a new computational methodology is developed

to quantify the individual contributions of variability and epistemic uncertainty (dis-

tribution type uncertainty and distribution parameter uncertainty). This method-

ology is based on sensitivity analysis and is developed for Cases 1 and 2 above (in

Sections 3.5 and 3.6 respectively). The sensitivity analysis methodology cannot be

applied to Case 3, because the non-parametric PDF accounts for all the three types

of uncertainty - variability, distribution type uncertainty, and distribution parameter

uncertainty.

In each of the above sections, simple numerical examples are illustrated. Finally,

the proposed methods are illustrated using the challenge problem from Sandia Epis-

temic Uncertainty Workshop [57] in Section 3.8.

3.4 Case 1: Known PDF Type (Parametric)

3.4.1 Estimation of Distribution Parameters

This section considers the case where the distribution type of a particular quantity

X is known. Let the corresponding PDF be denoted by fX(x|P ), where P denotes

the distribution parameters which need to be estimated based on the available data.

First, the concept of likelihood is reviewed for point data and then extended to the

case of interval data.

Assume that xi (i = 1 to m) point valued data are available for the estimation

of P . The likelihood function of the parameters, denoted by L(P ) is defined as

being proportional to the probability of observing the given data (xi; i = 1 to m)
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conditioned on the parameters P [19, 22]. Note that, by definition, the definition of

likelihood is meaningful only up to a proportionality constant [19].

Given P , X follows a continuous PDF fX(x|P ). For a continuous density function,

the probability value for any single discrete point xi is theoretically zero. Hence,

Pawitan [22] states, “A slight technical issue arises when dealing with continuous

outcomes, since theoretically the probability of any point value xi is zero. We can

resolve this problem by admitting that in real life, there is only a finite precision:

observing xi is short for observing X ∈ (xi− ǫ
2
, xi+

ǫ
2
) where ǫ is the precision limit.”

If ǫ is small enough, on observing xi, the likelihood for P is:

L(P ) ∝ P (X ∈ (xi − ǫ
2
, xi +

ǫ
2
)|P )

=
∫ xi+

ǫ
2

xi− ǫ
2

fX(x|P )dx

= ǫfX(xi|P ) (by mean value theorem)

∝ fX(xi|P )

(3.1)

Hence, the likelihood of the parameters P can be calculated as being proportional

to the PDF fX(x|P ) evaluated at the observed data point. Note that this density

function is actually conditioned on the parameters P . If there are several data points

(xi; i = 1 to m) that are independent of each other, then the combined likelihood of

the parameters P can be calculated as:

L(P ) ∝
m
∏

i=1

fX(xi|P ) (3.2)

(The word “independent” above implies that the sources of data, i.e. different ex-

periments, or different experts from which the data originate, are considered to be

statistically independent. In other words, the outcome of one experiment (or the
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information from one expert) does not affect the outcome of another experiment (or

the information from another expert)).

The parameters P can be inferred by maximizing the expression in Eq. 3.2. This

estimate is popularly known as the maximum likelihood estimate.

Note that the above derivation of likelihood considers an infinitesimally small

interval around the data point xi. Hence, it is straightforward to extend this definition

to any general interval [a, b]. Hence, the expression for likelihood of the parameters

P , for a single interval [a, b] is:

L(P ) ∝ P ( data |P )

= P (X ∈ [a, b]|P )

= P (a ≤ X ≤ b|P )

(3.3)

The expression in Eq. 3.3 is evaluated from the cumulative distribution function

(CDF) FX(x|P ), i.e. the integral of the PDF. Therefore,

L(P ) ∝
∫ b

a

fX(x|P )dx = FX(b|P )− FX(a|P ) (3.4)

The expression on the right hand side of Eq. 3.4 represents the area under the PDF,

and hence its value is always less than or equal to unity.

In principle, the PDF fX(x|P ) can assume any arbitrary shape, the only restric-

tions being that it should be positive and the area under the curve must be equal to

unity. Consider the optimization problem of maximizing the expression on the right

hand side of Eq. 3.4. We know that the maximum value of this expression will be

equal to unity. This expression will be equal to unity for any arbitrary density func-

tion fX(x) whose support is bounded in [a, b] (i.e. fX(x) = 0 when x < a and x > b,

and fX(x) takes arbitrary positive values in a ≤ x ≤ b so that the area the under the
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curve is equal to unity) and hence, this optimization problem (i.e. inferring the dis-

tribution parameters P for a single interval) will have a non-unique solution. Hence,

the likelihood-based approach cannot be used to represent a single interval using a

probability distribution.

If there are several intervals (given by [ai, bi], i = 1 to n) for the description

of X and these intervals are assumed to be independent (similar to calculation of

likelihood for point data), then the combined likelihood of the parameters P of the

PDF fX(x|P ) can be calculated similar to Eq. 3.2 as:

L(P ) ∝
n
∏

i=1

∫ bi

ai

fX(x|P )dx (3.5)

If the available data is a combination of both point values and intervals, the

likelihood function of the parameters P can be calculated as follows. Suppose there

is a combination of point data (m data points, xi, i = 1 to m) and interval data

(n intervals, [ai, bi], i = 1 to n) for the description of X . The right hand sides of

Eqs. 3.2 and 3.5 are quantities that are proportional to probabilities that can in turn

be multiplied to calculate the combined likelihood. The multiplication is justified by

the assumption that the sources of these data are independent, as:

L(P ) ∝ [
m
∏

i=1

fX(x = xi|P )][
n
∏

j=1

∫ bj

aj

fX(x|P )dx] (3.6)

The maximum likelihood estimate of the parameters P can be calculated by maxi-

mizing the expression in Eq. 3.6 when both point data and interval data are available.

Instead of maximizing likelihood, this dissertation will use a full likelihood estimate in

which the entire likelihood function is used to construct the PDF of the distribution

parameters P as in Eq. 3.7. The idea that the entire likelihood function, rather than
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merely its maximizer, should be used for inference was emphasized by Barnard et

al. [78].

Let f(P ) denote the joint PDF of the distribution parameters P . Apply Bayes

theorem and choose uniform prior density (f ′(P ) = h), and calculate the joint PDF

as:

f(P ) =
hL(P )

∫

hL(P )dP
=

L(P )
∫

L(P )dP
(3.7)

Note: The uniform prior density function can be defined over the entire admissible

range of the parameters P . For example, the mean of a normal distribution can vary

in (−∞, ∞ ) while the standard deviation can vary in (0, ∞) because the standard

deviation is always greater than zero. Both these prior distributions are improper

prior distributions because they do not have finite bounds.

The construction of the likelihood function in the case of interval data has been

considered in the literature (for e.g. [79]). The contribution of this chapter is to use

this idea to construct PDFs for such interval data, and hence use such PDFs for

uncertainty propagation.

3.4.2 Family of PDFs

The purpose of representing the variable X using probability distributions is to

make use of these distributions in the context of uncertainty propagation and re-

liability evaluation. In this analysis, the variable X then serves as an input to a

computational model (that calculates the system output Y ), and the aim is to calcu-

late the PDF of the model output Y . The model is evaluated for a sample of X and

the corresponding sample model output is calculated. If there is only one PDF for

each input X , then this sampling technique can be repeated for different samples of

inputs in a Monte Carlo-based technique, and the PDF of Y can be calculated.

However, in the current problem, the variable X is represented by a family of

52



distributions. Each PDF of X can be used to estimate a corresponding PDF for Y ,

thereby resulting in a family of estimated distributions for the model output Y . In

principle, this requires a double loop Monte Carlo analysis, often called as second-

order Monte Carlo analysis [76, 77] . In the outer loop, a sample of P is drawn;

this sample determines one distribution of the above-mentioned family. Thus, there

is variability in X for every realization of P . In the inner loop, several samples of X

are drawn from this distribution which is used to calculate one PDF for the model

output Y . If each level of sampling generated 1000 members, then this approach would

require a total of 106 model evaluations to estimate the family of output distributions.

This approach is computationally expensive and may not be affordable in may cases.

3.4.3 Unconditional PDF : Predictive Posterior

Alternative to the family of PDFs approach, a single unconditional PDF of X ,

which includes both the variability in X and the uncertainty in the distribution

parameters P , as:

fX(x) =

∫

fX(x|P )f(P )dP (3.8)

Note that the RHS of Eq. 3.8 is not conditioned on P anymore. Some researchers

refer to this PDF fX(x) as the predictive PDF [72, 75] of X .

There are three possible ways to interpret Eq. 3.8, all of which are valid. The

first interpretation is based on conditional probability and total probability. Note

that the PDF fX(x|P ) is actually a conditional density function, conditioned on

the parameters P . The unconditional probability density function fX(x) can be

calculated by integrating over the space of the parameters P , as shown in Eq. 3.8.

The second interpretation is based on computing the expected value of an arbitrary

function h(β) which is defined as a function of a random variable β with PDF f(β).

The expression for the expected value of the function is well-known and can be written

53



as:

E(g(β)) =

∫

h(β)f(β)dβ (3.9)

Note that E(g(β)) is independent of β. In the context of distribution parameter

uncertainty, P corresponds to the parameters β, and the PDF value at any x, i.e.

fX(x) corresponds to the arbitrary function h. Note that while h(β) is a function

of β, the PDF fX(x|P ) value is a function of the parameters P . Therefore, Eq. 3.8

estimates the expected value of fX(x) similar to Eq. 3.9 which estimates the expected

value of h, thus replacing a family of PDFs by an “averaged” PDF.

The third interpretation is that Eq. 3.8, fundamentally, is a weighted sum of

fX(x|P ) over all possible P ’s where the weights are given by f(P ). In other words,

this is a mixture of distributions. For example, if fX(x|P ) were a normal PDF to

start with, then Eq. 3.8 corresponds to a Gaussian mixture.

Eq. 3.8 needs to be evaluated numerically and the resultant PDF is not analytical.

A single loop sampling procedure (as against the double loop approach discussed

earlier in Section 3.4.2) can be used to generate samples directly from the predictive

posterior distribution, as follows:

1. Select one random sample of parameters P based on the PDF f(P ).

2. Generate one random sample of X based on the PDF fX(x|P ), where P was

selected in Step 1.

3. Repeat steps 1 and 2 to generate multiple samples of X , and use kernel density

estimation to construct the predictive PDF fX(x).

This single loop sampling technique will be used again in Chapter IX.

Though the variable X was initially assumed to follow a particular type of a

parametric PDF fX(x|P ), say normal, lognormal, etc., the unconditional, predictive

PDF fX(x) (after the integration in Eq. 3.8) is non-parametric, i.e. the resultant

54



probability distribution is not of the same type and cannot be classified as normal,

lognormal, etc. For example, a mixture of Gaussian distributions is not Gaussian [80].

The integration in Eq. 3.8 does not involve the calculation of any performance

function or a computational model (which is usually the more expensive calculation

in practical problems of uncertainty propagation or reliability analysis). The inte-

gration in Eq. 3.8 handles input uncertainty (combining both distribution parameter

uncertainty and variability) before the “uncertainty propagation” stage, thereby lead-

ing to a single PDF forX and thereby allows the two loops of sampling to be collapsed

into a single loop for the sake of faster computation, especially in the context of un-

certainty propagation analysis. A comparison of the family of distributions and the

unconditional distribution is shown, through PDFs in Fig. 3.1 and through CDFs in

Fig. 3.2.
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Figure 3.1: Family of Distributions Vs. Single Distribution: PDF

3.4.4 Illustrative Example : Uncertainty Representation

Consider an example where data about X is available in two forms - point data

and interval data. Say, 3 point estimates are available as [4.1, 5.6, 3.8] and three sets
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of intervals are available as [3.5, 4], [3.9, 4.1], and [5, 6]. The goal is to represent

X using a probability distribution. Once the corresponding unconditional PDF is

estimated, it is easy to propagate this uncertainty through a system model.
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Figure 3.3: PDFs of Distribution Parameters

Assume that X is a normal random variable parameterized by mean and standard

deviation. Hence, X is normally distributed conditioned on the values of mean and

the standard deviation. The combined likelihood function considering both point

data and interval data is calculated using Eq. 3.6. Note that the likelihood is calcu-

lated for the mean and the standard deviation together, i.e. P in L(P ) denotes the

vector of distribution parameters, i.e. the mean and the standard deviation. Hence,
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after the joint distribution of the parameters is calculated, the individual (marginal)

distributions of the mean and the standard deviation are calculated and shown in

Fig. 3.3.

Once the PDFs of the distribution parameters P are calculated, the unconditional

PDF of X is calculated using Eq. 3.8, and is plotted in Fig. 3.4. Note that Eq. 3.8

needs to consider the joint PDF of the mean and the standard deviation, and not the

marginal distributions, so as to account for any statistical dependence between the

parameters. As mentioned earlier, the unconditional PDF reflects the natural vari-

ability of X as well as the uncertainty in the distribution parameters P due to sparse

and imprecise data, and is not normal in shape even though fX(x|P ) corresponds to

a normal density function.
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Figure 3.4: Unconditional PDF: Normal vs. Lognormal Assumptions

3.4.5 Remarks

Note that the quantity of interest X was first assumed to follow a particular

parametric PDF (fX(x|P )) (normal, lognormal, etc.). If the maximum likelihood

approach had been used to estimate the most likely value of the parameters P , then
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parametric form of the distribution (normal, lognormal, etc.) would have been re-

tained. However, after the numerical integration in Eq. 3.8, the resulting uncondi-

tional PDF does not have the initially assumed parametric form.

This observation raises the issue of the sensitivity of the final, unconditional PDF

to the initial, parametric distribution type assumption. Would different initial para-

metric distribution assumptions lead to the same final nonparametric distribution?

In order to answer this question, the example problem in Section 3.4.4 is repeated

assuming that the random variable X follows a lognormal distribution with distri-

bution parameters λ and ξ. The PDFs of λ and ξ are calculated and then these

distributions are used to recalculate the unconditional PDF of the random variable

X . This result is also shown in Fig. 3.4, along with the result from normal distri-

bution type assumption. It is seen that the distributions resulting from the normal

assumption and the lognormal assumption are indeed different. Hence, it is clear that

the initial assumption affects the final result of the analysis. This leads to the obvious

questions - “What to do if the distribution type is unknown?” and “How to account

for distribution type uncertainty?”

There is another important issue to address prior to the treatment of distribution

type uncertainty. The use of the predictive posterior distribution combines the effect

of variability and distribution parameter uncertainty, in order to aid in fast uncer-

tainty propagation. However, in some applications, it may be necessary to retain the

difference between (1) uncertainty in X due to the variability; and (2) uncertainty in

X due to uncertainty in the distribution parameters [81]. So, Section 3.5 proposes a

computational methodology to apportion the overall uncertainty in X to variability

and distribution parameter uncertainty. Distribution type uncertainty is discussed

later in Sections 3.6 and 3.7.
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3.5 Variability versus Parameter Uncertainty

3.5.1 Need for Assessing Individual Contributions

Though the family of distributions approach is computationally expensive for un-

certainty propagation, researchers have sometimes preferred this method because it

retains the difference between variability and parameter uncertainty. As a result, it

is possible to assess the relative contributions of these two types of uncertainty; while

the spread of one particular distribution corresponds to variability, the spread of the

family corresponds to parameter uncertainty. However, such an approach only gives a

graphical, qualitative measure of the relative contributions of the two types of uncer-

tainty. This section shows that the single (unconditional or predictive) distribution

approach does not lose the information, and that in fact it is possible to develop a

computational approach to quantify the individual contributions of variability and

distribution parameter uncertainty, thus providing more information than the family

of distributions approach. Two types of problems are considered:

1. P1: Analysis of contributions of variability and distribution parameter uncer-

tainty within a single variable X

2. P2: Analysis of contributions of variability and distribution parameter uncer-

tainty in multiple input variables X to the output Y of a response function

g(X), i.e. Y = g(X).

The challenge is that the method of global sensitivity analysis discussed earlier in

Section 2.6 is not directly applicable to the above problems. Recall that, in global

sensitivity analysis, a deterministic transfer function from inputs X to Y is assumed

to be readily available, and hence decomposition of variance is valid. This is not the

case in the aforementioned problems (P1 and P@).
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In problem P1, it is desired to quantify the individual contributions of variability

and distribution parameter uncertainty in X to the overall uncertainty in X . GSA

cannot be applied directly for this problem because (1) distribution parameter un-

certainty is represented by the uncertainty in P , whereas there is no variable that

separately represents the natural variability in X ; and (2) there is no explicit deter-

ministic transfer function from variability and P to X .

In Problem P2, it is desired to quantify the individual contributions of variability

and distribution parameter uncertainty in X (a collection of multiple Xs) to the

overall uncertainty in Y = G(X). However, (1) there is no variable that separately

represents the variability in X ; and (2) though the distribution parameter uncertainty

can be represented by the uncertainty in P , this cannot become a direct input to “G”

because this will lead to a probabilistic output Y for a fixed value of P ; GSA needs

a deterministic transfer function from P to Y

(Note that X denotes a vector of inputs whereas X denotes a particular input.

Similarly, P denotes a vector of distribution parameters whereas P denotes a partic-

ular distribution parameter.)

Therefore, the extension of global sensitivity analysis to solve problems P1 and P2

is not trivial. This challenge is overcome by the introduction of an auxiliary variable,

as explained below.

3.5.2 The Auxiliary Variable Concept

Two challenges need to be overcome before global sensitivity analysis can be

performed: (1) it is necessary to explicitly represent the variability in X ; and (2)

construct an appropriate deterministic transfer function in order to facilitate the ap-

plication of GSA. First, variability in X needs to be explicitly represented using a

variable. Let UX denote an auxiliary variable that is introduced for this purpose, i.e.
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to explicitly represent the natural variability in X , for a given realization of parame-

ters P . In other words, for every UX , there needs to be a unique X and by varying

UX according to some particular distribution, it must be possible to obtain the entire

variability in X given by fX(x|P ).

Such an auxiliary variable and its probability distribution can be chosen from the

fundamental theory of probability, according to which all probabilities lie between 0

and 1, and hence, there is a unique transformation between any arbitrary (but valid)

PDF and the uniform distribution on the interval [0, 1]. Hence, the distribution of

UX is uniform on the interval [0, 1] and the “UX → X” transformation is given by:

UX =

∫ X

−∞
fX(α|P )dα (3.10)

Note that α is simply a dummy variable for integration.

Eq. 3.10 is simply the definition of the CDF. Given UX , the corresponding value

of X can be calculated by inverting the CDF. Thus, the introduction of the auxiliary

variable delineates the overall uncertainty in X into two quantities variability repre-

sented by UX (uniformly distributed on [0, 1]) and distribution parameter uncertainty

represented by P (whose distribution was calculated in Eq. 3.7 in Section 3.4.1), as

seen in Fig. 3.5. The “spread” of X due to UX corresponds to the variability whereas

the “spread” of X due to P corresponds to distribution parameter uncertainty.

These two quantities UX and P can be used in the context of Monte Carlo simu-

lation, to generate both the family of distributions for X and the single unconditional

(predictive) distribution of X . To generate the family of distributions, first generate

one sample of P and then generate several samples of UX and correspondingly several

samples of X (using Eq. 3.10) to generate one member of the family. Then repeat

this procedure for multiple samples of P . On the other hand, the single predictive
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Figure 3.5: Variability (UX) and Distribution Parameter Uncertainty (P )

distribution can be computed by generating a sample of UX , and an independent sam-

ple of P and a corresponding sample of X (using Eq. 3.10), and then repeating the

entire procedure in a Monte Carlo sampling framework to generate multiple samples

of X and hence a single distribution for X . The fundamental difference is that in

the former case, multiple samples of UX are drawn for each sample of P (double-loop

sampling, i.e. sampling UX within P ) whereas, in the latter case, one sample of UX

is drawn for each sample of P (single loop sampling, i.e. UX and P are sampled

together, simultaneously and independently).

3.5.3 P1 : Contributions in a Single Variable

To summarize the above development, a variable X with known distribution type

but uncertain distribution parameters (P ) is considered. The variability in X is given

by the PDF fX(x|P ) . The uncertainty in the distribution parameters is represented

through the PDF f(P ), which was calculated in Section 3.4.1. As explained above,

now there are two variables that explicitly represent variability (UX) and parameter

uncertainty (P ); each has its own PDF and the aim is to calculate the contributions of
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variability (UX) and distribution parameter uncertainty (P ) to the overall uncertainty

in X .

Note that there is no computational model here; UX and P are simply components

of X . Therefore, the deterministic transfer function required for GSA is now defined;

let “H” denote this function. For the problem at hand, the function “H” is exactly

the same as Eq. 3.10, where the “inputs” are UX and P , and the output is X , as

shown in Fig. 3.6. In Fig. 6, F−1 is inverse of the CDF of X , conditioned on the

parameters P .

UX

P

H = F−1(UX |P ) X

Figure 3.6: Deterministic Transfer Function for GSA

GSA can be now used to calculate the contributions of variability (UX) and distri-

bution parameter uncertainty (P ) to the overall uncertainty in X . Hence, using the

GSA method in Section 2.6, it is possible to calculate the first-order and total effects

of both UX and P . In fact, it is not technically accurate to use the terms “first-order

effects” and “total effects” any more. It was explained earlier that these terms are

used to assess the effects of a single quantity (X i in Section 2.6). However, in this

case P may be a vector; for example, P consists of two terms, mean and standard

deviation, in the case of a normal distribution. Thus in order to calculate the contri-

bution of distribution parameter uncertainty, one must consider the contribution of

all variables in P and hence the term “first-order effects” is no more applicable. (In

the above example of a normal distribution, calculating the effect of P would in fact

require the calculation of second-order effect as in Eq. 2.16.) In order to avoid this
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confusion, this dissertation uses the terms “individual effects” and “overall effects”

in lieu of “first-order effects” and “total effects”. As explained earlier in Section 2.6,

it is always necessary to calculate both individual and overall effects.

The individual (I) and overall (O) contributions of variability to the overall un-

certainty in X can be calculated as:

SI
U =

VU(EP (X|U))

V (X)

SO
U =1− VP (EU (X|P ))

V (X)

(3.11)

The individual (I) and overall (O) contributions of distribution parameter uncer-

tainty to the overall uncertainty in X can be calculated as:

SI
P =

VP (EU(X|P ))

V (X)

SO
P =1− VU(EP (X|U))

V (X)

(3.12)

In the next subsection, this concept is extended where the contributions of vari-

ability and distribution parameter uncertainty to a response function are assessed.

3.5.4 P2 : Contributions to a Response Function

Now consider a computational model Y = G(X) where X refers to the vector of

inputs, and Y refers to the model output. Let X denote a particular input variable.

Each input X now has a PDF fX(x|P ) (type known), where P refers to the distri-

bution parameters (of X) with PDF f(P ). Even for a given P , note that Y is not

deterministic due to the uncertainty in X , and hence GSA cannot be applied directly.

However, in GSA, the aim is to calculate the contribution of each input variable

X i to Y . Here, the aim is different; it is to calculate the contribution of variability and

distribution parameter uncertainty in each X to the overall Y . Hence, the uncertainty

64



in X needs to be decomposed into two parts - variability (UX) and distribution

parameter uncertainty (P ) - as done in Section 3.5.3.

The deterministic transfer function needed for GSA is constructed with two inputs

UX and P - for each uncertain X . Hence, in Y = G(X), each X is replaced with

Eq. 3.10 using the corresponding UX and P as inputs. The output of H is now

deterministic; i.e. a single Y for a choice of UX and P for each X . It is now possible

to compute several sensitivity indices regarding the contribution of the following to

the variance of Y :

1. Individual and overall effects of the overall uncertainty of any X (by considering

the corresponding UX and P together)

2. Individual and overall effects of variability of any X (by considering the corre-

sponding UX alone)

3. Individual and overall effects of distribution parameter uncertainty of any X

(by considering the corresponding P alone)

4. Individual and overall effects of variability of combinations of multiple X ś, i.e.

X i, Xj , Xk, etc. (by considering the appropriate U i, U j , Uk, etc. together)

5. Individual and overall effects of distribution parameter uncertainty of combina-

tions of X ś, i.e. X i, Xj, Xk, etc. (by considering the appropriate P i, P j, P k,

etc. together)

Thus, an easy and efficient methodology is developed for computing the sensitivity

indices that show the individual contributions of variability and distribution param-

eter uncertainty to the overall uncertainty in the model output. Eqs. 3.11 and 3.12

involve the computation of “variance of expectation”, which may intuitively require

nested loop Monte Carlo sampling; i.e. an inner loop to calculate the expectation and
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Table 3.1: Three Cases for Problem P1

Quantity → Mean (µ) Standard Deviation (σ)
Cases Mean Standard Deviation Mean Standard Deviation
Case 1 10 1 1 0.1
Case 2 10 1 2 0.1
Case 3 10 2 1 0.1

an outer loop to calculate the variance of expectation. It may be argued that this

requires the same computational expense as a family of distributions approach. How-

ever, there exist single loop sampling approaches to compute these sensitivity indices,

as explained in Saltelli et al.[36]. Further, while the family of distributions approach

provides only a graphical representation of relative contributions of variability and

distribution parameter uncertainty, the proposed approach provides quantitative met-

rics based on the actual contribution to variance.

The following subsection illustrates the proposed methodology using two exam-

ples; first, a single variable with uncertain distribution parameters (problem P1) is

considered, and second, the proposed methods are illustrated using an uncertainty

propagation (problem P2) problem from the Epistemic Uncertainty Workshop orga-

nized by the Sandia National Laboratories [57].

3.5.5 Illustration : Contributions in One Variable

Consider a variable X that is normally distributed with parameters mean (µ)

and standard deviation (σ). Both these distribution parameters are assumed to be

normally distributed for the sake of illustration. Three different cases are considered,

as tabulated in Table 3.1.

For the sake of visualization, the family of PDFs and the single PDF of X are

shown for the three cases in Figs. 3.7 - 3.9.

66



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

x

 

 

P
D
F

Unconditional PDF
Family of PDFs

Figure 3.7: Case 1: Family of PDFs and Unconditional PDF
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Figure 3.8: Case 2: Family of PDFs and Unconditional PDF

In Eqs. 3.11 and 3.12, P = [µ, σ] is a vector of length two and to calculate the

individual effects of P , it would actually be necessary to calculate the second-order

effects indices, as in Eq. 2.16. The deterministic function is constructed with inputs

UX , µ, and σ. The decomposition of variance is shown in Eq. 3.13.

SU + Sµ + Sσ + SU,µ + SU,σ + Sµ,σ + SU,µ,σ = 100% (3.13)
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Figure 3.9: Case 3: Family of PDFs and Unconditional PDF

The individual and overall effects of variability and distribution parameter uncertainty

are calculated based on Eqs. 3.11 and 3.12. The individual effect of variability is given

by SU ; the individual effect of parameter uncertainty is given by Sµ + Sσ + +Sµ,σ;

the overall effect of variability is given by SU + SU,µ + SU,σ + SU,µ,σ; and the overall

effect of parameter uncertainty is given by Sµ+Sσ+SU,µ+SU,σ+Sµ,σ+SU,µ,σ. These

sensitivities are tabulated in Table 3.2, in terms of percentage of the total variance.

Table 3.2: Three Cases for Problem P1: Contributions

Cases Uncertainty Individual Effects Overall Effects

Case 1
Variability 50.0 % 50.0%

Parameter Uncertainty 50.0 % 50.0%

Case 2
Variability 80.0 % 80.0%

Parameter Uncertainty 20.0 % 20.0%

Case 3
Variability 20.0 % 20.0%

Parameter Uncertainty 80.0 % 80.0%

The following observations are made from Table 3.2.

1. As seen in Eq. 3.13, the sum of individual effects of variability and the total

effects of parameter uncertainty is equal to one. Similarly, the sum of individual
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effects of parameter uncertainty and the total effects of variability is equal to

one.

2. The contributions of variability and distribution parameter uncertainty are al-

most equal in Case 1. In Case 2, the mean of the standard deviation is twice as

in Case 1 and hence, this increases the contribution of variability and decreases

the contribution of distribution parameter uncertainty. In Case 3, the standard

deviation of the mean is twice as in Case 1, thereby increasing the distribution

parameter uncertainty, and decreasing the contribution of variability, (3) Due

to numerical errors that arise due to sampling, all percentage sensitivities are

reported only to one decimal place. Though the overall effects indices were

greater than the individual effects indices, this is not reflected in Table 3.2 due

to the difference being less than 0.1 %. Thus, the overall effects indices are only

marginally higher (in fact equal up to 1st decimal place) than the individual

effects indices; hence, there is little interaction between the terms corresponding

to variability and distribution parameter uncertainty. (4) This analysis suggests

that by reducing the contribution of distribution parameter uncertainty, it is

possible to reduce the uncertainty in the variable X , for e.g., in Case 1, by ap-

proximately 50%. The contribution due to variability is irreducible by collecting

more data.

3.5.6 Illustration : Contributions to a Response Function

This section illustrates the proposed sensitivity analysis methodology for quanti-

fying the contributions of variability and distribution parameter uncertainty in input

variables (a and b) to the output (y) of a response function y = (a+ b)a. Probability

distributions (with uncertain distribution parameters) are assumed for inputs a and

b. The quantity a is normally distributed with parameters mean (µ) and standard
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deviation (σ). The mean is normally distributed as N(0.5, 0.05), and the standard

deviation is normally distributed as N(0.1, 0.01). Similarly, the quantity b is nor-

mally distributed with parameters mean (α) and standard deviation (β). The mean

is normally distributed as N(0.5, 0.05), and the standard deviation is normally dis-

tributed as N(0.1, 0.01). The family of distributions for y and the single unconditional

distribution are shown in Fig. 3.10.
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Figure 3.10: Output y: Family of PDFs and Unconditional PDF

Using this information, the objective is to construct the probability distribution

of y and apportion the variance in y to variability and distribution parameters of

the inputs a and b. Two auxiliary variables, UA for a and UB for b are introduced,

to represent the variability in each, while the distribution parameter uncertainty is

represented by the distributions of µ, σ, α, and β. The deterministic transfer function

“H” for GSA is constructed with six inputs: UA, UB, µ, σ, α, and β, and the output

is y. The variables UA and UB are uniformly distributed on [0, 1]. There are 63 terms

in the decomposition of variance. Using the GSA method, the following sensitivity

indices are calculated. Similar to the previous numerical example, the sensitivity

indices are expressed in terms of percentages and both the individual and the overall

effects are reported.
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Table 3.3: Variability and Distribution Parameter Uncertainty: Contributions

Quantity Meaning
Individual Overall
Effects Effects

(µ, σ) Parameter Uncertainty in a 9.0 % 11.8 %
(α, β) Parameter Uncertainty in b 9.8 % 10.1 %
UA Variability in a 37.3 % 43.4 %
UB Variability in b 40.3 % 40.3 %

(UA, UB) Total Variability 77.6 % 82.6 %
(µ, σ, α, β) Total Parameter Uncertainty 17.4 % 22.4 %

Table 3.3 lists several sensitivity indices the individual and overall effects for (1)

distribution parameter uncertainty in a; (2) distribution parameter uncertainty in b;

(3) variability in a; (4) variability in b; (5) total variability; and (6) total distribution

parameter uncertainty. All sensitivities are reported to one decimal place. Also,

the term “quantity” in Table 3.3 refers to the variables which are fixed in the inner

loop and outer loop for computation of individual effect and overall effect respectively.

Similar to the previous example, it is seen that the interaction between the variability

and distribution parameter uncertainty is negligible and that distribution parameter

uncertainty contributes to about one-fifth of the overall uncertainty in the output y.

Such an analysis clearly helps to identify the important contributors of uncertainty

and identify what proportion of the uncertainty can be decreased by collecting more

data.

3.5.7 Summary

Section 3.4 developed a method to estimate the distribution parameters in the

presence of sparse and interval data; the distribution type was assumed to be known.

Then an unconditional PDF was computed to combine variability and parameter

uncertainty for the sake of uncertainty propagation. Though the PDF combined the

two effects, Section 3.5 proposed a computational approach to quantify the individual
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contributions of the two types of uncertainty (variability and distribution parameter

uncertainty).

In practical applications, the distribution type is seldom known. In Section 3.4.5,

it was demonstrated that different assumptions regarding the distribution type leads

to different unconditional distributions. This observation motivates the rest of this

chapter, which is to focus on the aspect of distribution type uncertainty. Sections 3.6

and 3.7 deal with the distribution type uncertainty. Section 3.6 addresses this issue

by considering multiple, competing distribution types while Section 3.7 eliminates the

choice of a distribution type by considering non-parametric distributions.

3.6 Case 2: Unknown PDF Type (Parametric)

If the distribution type of a variable X is known, the distribution parameters can

be estimated. In many situations, the distribution type itself may not be known and

needs to be identified based on the available data. Usually, when adequate data

is available, the assumed distribution type can be verified by comparing against

empirical distribution functions using statistical goodness-of-fit tests such as chi-

square test [82] or Kolmogorov-Smirnov [83] test. Also, Anderson-Darling [84] and

Cramer [85] tests are available for multi-variate distributions. In the presence of sparse

and interval data, this approach may not be applicable because empirical distribution

functions are not unique and are either bounded by a p-box [86] or represented using

a family of distributions [61].

In this section, two approaches are pursued for the quantification of model form un-

certainty Bayesian model averaging [87, 88], and Bayesian hypothesis testing [89, 90].

The first method is based on assigning weights to competing model forms, and is

applicable for comparing two or more models; the weights and the distribution pa-

rameters are estimated based on the available data. The Bayesian hypothesis testing
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approach computes the extent of support provided by data to the model form and

it can be used to assess competing models or to quantify the uncertainty regarding

a given model. This approach has been previously used to validate computational

models [91] and reliability models [92], and is extended in this dissertation to quantify

the uncertainty in the selection of probability distribution type. In addition to dis-

tribution type uncertainty, distribution parameter uncertainty is also simultaneously

quantified.

Consider a variable X which is an input to a system model. Previously, Sec-

tions 3.4 and 3.5 addressed variability and parameter uncertainty in X . When the

distribution type is also uncertain, there are three different types of uncertainty: (1)

physical variability; (2) distribution type; and (3) distribution parameters. Hence,

the total uncertainty about X is equal to the combined effect of all three types of

uncertainty. Note that both distribution type uncertainty and distribution parameter

uncertainty are examples of epistemic uncertainty, since they can be precisely known

if sufficient data were available.

When this input X is propagated through a system model, all three types of

uncertainty must be accounted for in a rigorous manner. If a Monte Carlo-based

sampling technique is pursued, three loops of sampling are necessary, as shown in

Fig. 3.11.

If there is more than one possible distribution type, then the distribution type is

treated as a discrete random variable and the distribution type is selected in the first

(outermost) loop. In the second (inner) loop, a sample of the distribution parameter

value is drawn. These two choices uniquely identify a probability density function for

X . In the third (innermost) loop, samples of X are drawn.

Consider for the sake of illustration, a simple case where X could either be Log-

normal or Weibull; thus, model form is a discrete variable with two possibilities. If it
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Figure 3.11: Multiple Loops of Sampling

is lognormal, the distribution parameters are mean and standard deviation of ln(X).

If it is Weibull, then the parameters are the scale parameter and shape parameter.

If these distribution parameters are uncertain, then X can be represented using two

families of distributions; the first family consists of Lognormal distributions and the

second consists of Weibull distributions. These two families are shown in Fig. 3.12.

The aim is to quantify the extent to which the available sparse/imprecise data

support the Lognormal vs. Weibull distribution type assumption. Further, the un-

certainty in the distribution parameters of these two distributions also needs to be

calculated. First, the method of Bayesian model averaging is investigated in Sec-

tion 3.6.1, and then the method of Bayesian model averaging is investigated in Sec-

tion 3.6.2.
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3.6.1 Bayesian Model Averaging Approach

Consider a particular random variable X for which data is available. Let D

denote the collection of all data, which comprises of m point data xi (i = 1 to m)

and n intervals [ai, bi] (i = 1 to n). Now, the aim is to quantify the model form

uncertainty in the probability distribution of X . The method of Bayesian model

averaging is applicable when multiple competing model forms are compared. The

overall approach is to express the PDF fX(x) as a weighted sum of the competing

model forms.

Without loss of generality, the method is discussed here for two competing model

forms; it can be easily extended to any number of competing model forms. Let

f 1
X(x|φ) and f 2

X(x|θ) denote the PDFs of the competing model forms; in each PDF,

φ and θ are the unknown distribution parameters.

Using Bayesian model averaging, the PDF of X can be expressed as the sum of

the above two PDFs as:

fX(x|w,φ, θ) = wf 1
X(x|φ) + (1− w)f 2

X(x|θ) (3.14)
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Since there are only two competing distributions here, their weights are chosen

as w and 1 − w in Eq. 3.14. If there are n competing distributions, then there are

n − 1 weights to be estimated, and the nth weight is estimated by imposing the

condition that the sum of all the weights is equal to unity, since the area under the

PDF fX(x|w,φ, θ) must be equal to unity.

A likelihood-based estimation procedure similar to that in Section 3.4.1 is used

here. The difference is that the combined likelihood of the weights and the distribution

parameters, i.e. L(φ, θ, w), is constructed as:

L(φ, θ, w) ∝ [

m
∏

i=1

fX(x = xi|w,φ, θ)][
n
∏

j=1

∫ bj

aj

fX(x|w,φ, θ)dx] (3.15)

This likelihood function can be maximized to obtain the maximum likelihood

estimates of φ, θ, and w. Further the uncertainty in the estimates can also be

quantified using Bayesian inference, as in Eq. 3.7. A uniform prior bounded on [0, 1]

is chosen for w, and non-informative priors are chosen for the distribution parameters

φ and θ. The prior distributions are multiplied by the likelihood function and then

normalized to calculate the posterior distributions of φ, θ, and w.

Two illustrations are presented below. The first example considers a large amount

of data and two significantly different candidate model forms. The second example

considers a large amount of data and two candidate model forms that are not signif-

icantly different from one another.

3.6.1.1 Illustration 1

Consider a case of 100 samples generated from an underlying normal distribution

with mean and standard deviation equal to 100 units and 10 units respectively. Since

the amount of data is large, it is easy to identify that the underlying distribution
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is, in fact, normal. However, this example is used only to demonstrate the Bayesian

averaging method.

For the sake of illustration, assume that the two competing model forms are

normal (N(µ, σ)) and uniform (U(a, b)). With reference to Eq. 3.15, φ = {µ, σ} and

θ = {a, b}. Let w denote the weight for the normal distribution, and 1−w is the weight

for the uniform distribution. The joint likelihood is evaluated for five quantities (w, µ,

σ, a, and b), and the posterior distribution is estimated for each quantity using 10,000

samples from slice sampling [39]. The correctness of these posterior distributions can

be easily verified since the samples were actually generated from a normal distribution

N(100,10).

First, the PDF of the weight w is shown in Fig. 3.13. The estimated statis-

tics/PDFs of distribution parameters are shown in Table 3.4 and Fig. 3.14.
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Figure 3.13: PDF of Weight w

From Table 3.4, it can be clearly seen that the method isolates the data to come

from a normal distribution. There is high confidence in this conclusion because the

mean of w is high (0.98) and the standard deviation of w is small (0.015). Also,
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Figure 3.14: PDFs of Distribution Parameters

the distribution parameters of the normal distribution are in good agreement with

the actual values using which the data was simulated, and the uncertainty in the

estimates of these distribution parameters is small. Since the weighting factor for the

uniform distribution is small, the distribution parameter estimates for the uniform

distribution have high uncertainty.

The uncertainty in the estimate of the weight w is low because of two reasons: (1)

there is sufficient data to conclusively suggest a normal distribution, and (2) the two

competing model forms, i.e. normal and uniform are significantly different from each

other.

It is obvious that, if there is only sparse data, then the uncertainty in the estimate

of w will be high. However, even if there is sufficient data, it is hard to uniquely isolate

78



Table 3.4: Normal vs. Uniform: Results of Bayesian Model Averaging

Quantity Mean Standard Deviation 95% Bounds
w 0.986 0.015 [0.949, 0.999]
µ 100.887 0.969 [99.078, 102.811]
σ 9.998 0.704 [8.752, 11.534]
a 18.193 9.584 [2.997, 43.800]
b 203.767 27.6065 [157.278, 239.324]

a particular model form if the competing model forms are not significantly different

from one another, as shown next.

3.6.1.2 Illustration 2

Consider 100 samples generated from an exponential distribution with parameter

µ = 1. The PDF for this distribution is given by

fX(x|µ) =
1

µ
exp(−x

µ
) (3.16)

For the sake of illustration, assume that the two competing model forms are

exponential and Rayleigh. While the former has one parameter (µ) as indicated in

Eq. 3.16, the latter also has only one parameter (b), and the PDF is given by:

fX(x|b) =
x

b2
exp(− x2

2b2
) (3.17)

Note that the exponential and Rayleigh distributions are not as significantly dif-

ferent from each other as the uniform and normal distributions. This is because

both exponential and Rayleigh distributions can be viewed as special cases of the

two-parameter Weibull distribution with shape parameters equal to one and two re-

spectively. Since the Weibull distribution is commonly used to study time-dependent

reliability, this example is of practical significance.
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Figure 3.15: PDF of Weight w

Similar to the previous example, the joint likelihood L(w, µ, b) is used to evaluate

the posterior distributions of w, µ and b respectively. First, the PDF of the weight

w is shown in Fig. 3.15 where w is the weight for the exponential distribution, and

1− w is the weight for the Rayleigh distribution.

The PDFs of the distribution parameter for each model-form (µ for exponential

distribution and b for Rayleigh distribution) are shown in Fig. 3.16, and the numerical

estimates are shown in Table 3.5.

Table 3.5: Exponential vs Rayleigh: Results of Bayesian Model Averaging

Quantity Mean Standard Deviation 95% Bounds
w 0.746 0.158 [0.424, 0.988]
µ 0.840 0.239 [0.382, 1.255]
b 2.060 1.181 [0.561,7.793]

The mean of w is about 0.75, which suggests a higher likelihood for the exponential

distribution. However, there is significant uncertainty in w, leading to inconclusive

distinction between the exponential and Rayleigh distributions. Also, the estimates
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Figure 3.16: PDFs of Distribution Parameters

of the distribution parameters suggest a higher likelihood for the exponential dis-

tribution, because µ in the exponential distribution has a much smaller uncertainty

compared to b in Rayleigh distribution. That is, a “narrow” estimate of µ is suffi-

cient to “explain” the available data whereas a “wide” estimate of b is needed for

the same. This is intuitive because the data actually originates from an exponential

distribution. Also, the maximum likelihood estimate of µ is one, which is exactly the

same as the originally assumed value for µ used to generate the data.

3.6.1.3 Quantifying Individual Contributions

Earlier, Section 3.5 developed a computational method to assess the individual

contributions of variability and distribution parameter uncertainty by assuming a

particular distribution type. In the present section, the distribution type is also un-

certain, and this uncertainty is quantified through the PDF of w. Hence, the method

developed in Section 3.5 is now extended to quantify the individual contributions

of (1) variability; (2) distribution type uncertainty; and (3) distribution parameter

uncertainty.

The concept of the auxiliary variable was introduced earlier in Section 3.5.2 to

facilitate the use of global sensitivity analysis for the quantification of individual
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Table 3.6: Contributions of Physical Variability and Epistemic Uncertainty

Illustration Effect Physical Distribution Distribution
Variability Type Parameter

Example 1 Individual 94.1% 1.0% 4.0%
Section 3.6.1.1 Overall 98.1% 1.0% 5.2%
Example 2 Individual 40.7% 12.4% 40.5%

Section 3.6.1.2 Overall 43.5% 15.4% 43.3%

contributions. This auxiliary variable is now redefined to include the distribution

type uncertainty, as:

UX =

∫ X

−∞
fX(x|w,φ, θ)dx (3.18)

Similar to Section 3.5, there is unique one-to-one mapping between X and UX .

Since Eq. 3.18 is simply the definition of CDF, by varying UX on the uniform dis-

tribution U(0,1), it is possible to obtain the entire distribution of X . Now, global

sensitivity analysis can be applied to calculate the individual and overall effects of

physical variability (UX), distribution type uncertainty (w), and distribution param-

eter uncertainty (φ and θ). For example, the results of sensitivity analysis for the

illustrative examples discussed in Sections 3.6.1.1 and 3.6.1.2 are tabulated in Ta-

ble 3.6.

Similar to Section 3.5, it is straightforward to quantify the contributions in a single

variable as well as the contributions to the output of a response function, since the

response function is a deterministic transfer function from the inputs X to the output

Y . The propagation of the results of Bayesian model averaging through a response

function will be discussed later in Section 3.6.3.
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3.6.1.4 Summary

Conventionally, model averaging methods assign weights for competing models,

and these weights are estimated in a deterministic manner. In this section, the un-

certainty in the weights is also computed, thereby giving both the confidence in a

particular distribution type (through the mean value of w) , and a measure of uncer-

tainty in this confidence (through the standard deviation of w). One disadvantage

of this approach is that it assumes spurious interactions between competing model

forms while constructing the joint likelihood of weights and distribution parameters of

all model forms. As a result, this approach involves multi-dimensional integration; a

significant amount of computational power may be required, if there are several com-

peting model forms. For example, if there were 5 competing model forms, each with

two distribution parameters, then the joint likelihood needs to be constructed for 14

quantities (4 weights and 10 parameters), and a 14-dimensional integration is needed

to quantify the model form uncertainty and estimate the distribution parameters.

The next section discusses the use of Bayesian hypothesis testing to quantify model

form uncertainty; this approach provides a computationally efficient alternative and

also directly computes the probability that the data supports a given model form.

3.6.2 Bayesian Hypothesis Testing Approach

Similar to the previous section, consider the two PDFs f 1
X(x|φ) and f 2

X(x|θ) to

be the two competing model forms M1 and M2 respectively. In Bayesian hypothesis

testing, prior probabilities (P (M1) and P (M2)) are assumed for each of these events,

and Bayes theorem is used to update their probabilities based on the available data

(D), as [91]:

P (M1|D)

P (M2|D)
=

P (D|M1)

P (D|M2)

P (M1)

P (M2)
(3.19)
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The first term on the right hand side of Eq. 3.19 is referred to as the Bayes factor,

denoted by B [17].

B =
P (D|M1)

P (D|M2)
(3.20)

The Bayes factor is the ratio of likelihoods of M1 and M2 and is a quantitative

measure of extent of data support for model M1 relative to the support for M2. If

B > 1, then the data D favors model M1. Higher the Bayes factor, higher is the

likelihood of the model M1. In the absence of any prior preference between M1 and

M2, assume equal prior probabilities, i.e. P (M1) = P (M2) = 0.5. Then, the posterior

probabilities (P (M1|D) and P (M2|D)) can be expressed in terms of the Bayes factor

as:

P (M1|D) =
B

B + 1

P (M2|D) =
1

B + 1

(3.21)

In order to implement this, the likelihood functions (P (D|M1) and P (D|M2))

must be calculated. This is accomplished in two steps. In the first step, P (D|M1,φ)

is calculated using the data D available. Similar to the Section 3.6.1, assume that m

point data xi (i = 1 to m) and n intervals [ai, bi] (i = 1 to n) are available.

P (D|M1,φ) ∝ L(M1,φ) =

m
∏

i=1

f 1
X(x = xi|φ)

n
∏

j=1

∫ bj

aj

f 1
X(x|φ)dx (3.22)

Similarly, P (D|M2, θ) is also calculated. In the second step, these two quantities

are used to calculate P (D|M1) and P (D|M2). Let fφ(φ) denote the prior PDF of the

distribution parameter φ. Using conditional probability, it follows that

L(M1) ∝ P (D|M1) =

∫

P (D|M1,φ)fφ(φ)dφ (3.23)
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If a uniform prior density is assigned for φ, then the above equation reduces to

L(M1) ∝ P (D|M1) ∝
∫

P (D|M1,φ)dφ (3.24)

Using Eq. 3.21, the posterior probability of model M1, i.e. P (M1|D) can be

calculated. Similar equations can be written for model M2.

The evaluation of the above probabilities involves multi-dimensional integration;

however the number of dimensions is only equal to the number of distribution pa-

rameters for each individual distribution. In contrast, the Bayesian model averaging

approach discussed earlier in Section 3.6.1 would require multi-dimensional integra-

tion with all weights and parameters together. Hence, Bayesian hypothesis testing is

computationally more affordable in comparison with the Bayesian model averaging

approach.

3.6.2.1 Single and Multiple Model Forms

The case of two competing models was discussed above. This method can be ex-

tended to (1) addressing model form uncertainty in a single model; and (2) quantifying

the model form uncertainty for multiple models.

Consider the case is when there is only one model M1 and it is desired to calculate

the model form uncertainty. This can be viewed as a hypothesis testing problem where

the null hypothesis is that model M1 is correct, and alternate hypothesis is that model

M2 is correct, where model M2 is the opposite of model M1. One possible approach is

to choose the model M2 as a uniform distribution (non-informative). Hence, f 2
X(x|θ)

is a uniform PDF; the PDFs of the lower and upper bounds are estimated based on

the data and then “integrated out” to compute P (M1|D) and P (M2|D).

If there are more than two competing models, say n models, then the Bayes

factor which was earlier defined as a ratio between two models can now be defined in
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terms of proportions as P (D|M1) : P (D|M2) : P (D|M3)...P (D|Mn). Using equations

analogous to those in the previous subsection, the probabilities P (M1|D), P (M2|D),

P (M3|D) and so on until P (Mn|D) can also be calculated.

The following subsections present two illustrations to show how the proposed

methodology works. These examples are the same as those in Section 3.6.1, and used

to illustrate the usage of Bayesian hypothesis testing for quantifying the distribution

type uncertainty.

3.6.2.2 Illustration 1

Consider the same data set as in Section 3.6.1.1, i.e. 100 samples drawn from

N(100,10). The two competing model forms are normal (M1 : N(µ, σ)) and uniform

(M2 : U(a, b)).

Using the Bayes factor, the probabilities P (M1) and P (M2) are found to be one

and zero (upto 5th decimal place), thereby isolating the normal distribution with

almost 100% confidence. This behavior is similar to that in the Bayesian model

averaging method. The reasons for this behavior are the same as those previously

mentioned: (1) sufficient data to uniquely identify the normal distribution; (2) sig-

nificant difference between the two competing model forms, normal and uniform.

Similar to the Bayesian model averaging (BMA) procedure, the PDFs of the dis-

tribution parameters using the Bayesian hypothesis testing (BHT) approach are also

quantified, and shown in Fig. 3.17. Note that the results from both the approaches

are shown for the sake of comparison. Since the normal distribution has been isolated

with almost 100% confidence, the distribution parameters are shown only for normal

distribution.

Note that there is no significant difference between the PDFs of the distribution

parameters estimated through the Bayesian hypothesis testing route or the model
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Figure 3.17: PDFs of Distribution Parameters

averaging route. This is expected because both the methods completely isolate the

model form to normal distribution (which means BMA did not impose interactions

between distribution parameters of the two competing model forms), and hence, the

PDFs of the distribution parameters are expected to be the same. The difference

between the two methods is only in the quantification of the model form uncertainty,

and the computational effort.

3.6.2.3 Illustration 2

Consider 100 samples of data generated from an exponential distribution. The two

competing model formsM1 andM2 are exponential and Rayleigh distributions respec-

tively. The probabilities P (M1|D) and P (M2|D) are also estimated using Eq. 3.21.

These posterior probabilities are found to be 1 and 0 respectively.

Further, the PDFs of the distribution parameters, i.e. µ for the exponential distri-

bution and b for the Rayleigh distribution are also quantified, and shown in Fig. 3.18.

Similar to the previous numerical example, the results from the Bayesian model av-

eraging approach are also provided for the sake of comparison.

There are two important observations. First, these results are considerably differ-

ent from the Bayesian model averaging results. Second, the uncertainty (measured in
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Figure 3.18: PDFs of Distribution Parameters

terms of standard deviation) in the results from Bayesian hypothesis testing is much

smaller than that from the model averaging approach.

This behavior is due to the conceptual differences between the two approaches.

The Bayesian model averaging approach considers the joint likelihood of weights and

parameters of all distribution types, thereby assuming interactions between all the

parameters (where there is none). In contrast, the hypothesis testing approach only

considers the joint likelihood of all parameters of a single distribution type and does

not include interactions across multiple distribution types. As a result, the estimation

of µ in the hypothesis testing approach is completely independent of b; on the contrary,

these two parameters are estimated simultaneously in the model averaging approach.

The results of Bayesian hypothesis testing have smaller uncertainty because fewer

parameters are estimated with the same amount of data.

These differences were not seen in the first numerical example because the normal

distribution and the uniform distribution are significantly different from each other

and the data wholly supported the normal distribution; whereas the exponential and

Rayleigh distributions are not.
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3.6.2.4 Quantifying Individual Contributions

Now, the goal is to quantify the individual contributions of (1) variability; (2)

distribution type uncertainty; and (3) distribution parameter uncertainty. Earlier,

in the Bayesian model averaging approach (Section 3.6.1.3), the distribution type

uncertainty was represented by a continuous random variable (w). On the other

hand, now the difference is that the distribution type uncertainty is represented using

a discrete random variable.

Without loss of generality, consider two distribution types (M1 and M2) and the

corresponding probabilities (P (M1) and P (M2)) estimated using the Bayesian hy-

pothesis testing method. First, a discrete random number (denoted by T and uni-

formly distributed on [0, 1]) needs to be sampled based on the value of P (M1|D) to

select between the competing models, i.e. M1 and M2. Based on the sampled a value

of T , the distribution type is selected. Given a value of distribution parameter, then

X is represented using a PDF. Now, an auxiliary variable UX is defined as:

UX =

∫ X

−∞
f 1
X(x|φ)dx if T < P (M1)

UX =

∫ X

−∞
f 2
X(x|θ)dx if T > P (M1)

(3.25)

Similar to the Sections 3.5 and 3.6.1.3, UX is uniformly distributed on [0, 1] and

the above equations provide a deterministic model to carry out global sensitivity

analysis. The contribution of physical variability is calculated as:

SI
P =

VUX
(ET,φ,θ(X|UX))

V (X
)

SO
P = 1− VT,φ,θ(EUX

(X|T,φ, θ))
V (X)

(3.26)
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Table 3.7: Contributions of Physical Variability and Epistemic Uncertainty

Illustration Effect Physical Epistemic Distribution
Variability Uncertainty Type

Example 1 Individual 94.0% 4.0% 0.0%
Section 3.6.2.2 Overall 98.0% 5.0% 0.0%
Example 2 Individual 72.7% 25.4% 0.0%

Section 3.6.2.3 Overall 75.5% 30.3% 0.0%

In Eq. 3.26, SI
P and SO

P represent the individual effect and overall effect of physical

variability respectively.

Since the distribution parameter is calculated only after selecting the distribu-

tion type, it is not meaningful to calculate the contribution of distribution parameter

uncertainty alone. The individual and total effects of epistemic uncertainty (i.e. dis-

tribution parameter uncertainty and distribution type uncertainty) can be calculated

as:

SI
E =

VT,φ,θ(EUX
(X|T,φ, θ))

V (X
)

SO
E = 1− VUX

(ET,φ,θ(X|UX))

V (X)

(3.27)

Also, the individual and total effects of distribution type uncertainty can be calculated

as:

SI
Type =

VT (EUX ,φ,θ(X|T ))
V (X

)

SO
Type = 1− VUX ,φ,θ(ET (X|UX ,φ, θ))

V (X)

(3.28)

The above equations calculate the contributions in a single variable. For example,

the results of sensitivity analysis for the illustrative examples (discussed earlier in

Sections 3.6.2.2 and 3.6.2.3) are tabulated in Table 3.7. Note that the individual and
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total contributions of distribution type uncertainty are zero in both the examples,

because it was possible to isolate one distribution type uniquely in both the examples.

Similar to Section 3.5, it is straightforward to extend the above equations to

quantify the individual contributions to the output of a response function, since the

response function is a one-to-one mapping between the inputs and the output. The

propagation of the results of Bayesian hypothesis testing through a response function

will be discussed later in Section 3.6.3.

3.6.2.5 Summary

The Bayesian hypothesis testing approach quantifies the distribution type uncer-

tainty through the posterior probability (P (M1|D)) which is deterministic in contrast

with the model averaging approach which calculates a stochastic weight (w). It is

clear that the Bayesian model averaging and Bayesian hypothesis testing methods

are based on different assumptions; they are conceptually different and caution must

be exercised while comparing the results of these methods. From the perspective of

computational efficiency, it may be advantageous to use Bayesian hypothesis test-

ing, thereby not allowing spurious interactions between distribution parameters of

multiple model forms.

The Bayesian hypothesis testing method can also be used when the PDFs of the

distribution parameters of two competing model forms are readily available. For each

realization of distribution parameter values, the Bayes factor is calculated, thereby

leading to the PDF of the Bayes factor [92]. This approach is significantly different

from the concern in this chapter, where the probability that the model is correct and

the PDF of the corresponding distribution parameters are estimated simultaneously

using the available data, thereby leading to a single Bayes factor value which is easier

for the purpose of decision making.
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3.6.3 Uncertainty Propagation through a Model

Consider the case where the quantity X is an input to a mathematical model

(Y = g(X),), and all three types of uncertainty - physical variability, distribution

type and distribution parameters - in X need to propagated through the system

model to compute the uncertainty in the response Y . This section discusses the

various issues in such uncertainty propagation and numerical implementation of the

uncertainty propagation.

3.6.3.1 Propagation using Bayesian Model Averaging

In the Bayesian model averaging approach, the PDFs of w, φ, and θ are all

calculated simultaneously. In other words, the joint likelihood of these quantities is

used to calculate the individual marginal PDFs. Based on Eq. 3.14, a given realization

of w, φ, and θ values lead to a particular PDF fX(x|w,φ, θ). Let FX(x|w,φ, θ)

denote the corresponding CDF. For multiple values of w, φ, and θ. there exists a

family of PDFs for X . Each PDF can be propagated through the above response

function, and a family of PDFs for Y can be calculated.

However, in practice, it may not be possible to directly invert the CDF FX(x|w,φ, θ);

thus a composite method is used [88]. For a set of sampled values of w, φ, and θ, this

CDF can be inverted numerically. A uniform random number on [0, 1] is drawn. If

this number is less than the sampled value of w, then a random sample ofX is selected

from the PDF f 1
X(x|φ); else a random sample of X is drawn from the PDF f 2

X(x|θ).

Multiple such samples of X correspond to the PDF fX(x|w,φ, θ). This procedure

is repeated for multiple samples of w, φ, and θ to generate a family of distributions

for X . Note that this procedure is different from the algorithm in Fig. 3.11; here,

both the distribution type and distribution parameters are sampled at the same level,

whereas in Fig. 3.11, they were sampled one within the other.
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For the purpose of uncertainty propagation, the family of distributions approach

may be computationally expensive because it needs two Monte Carlo loops, one within

the other. In that case, the family of distributions may be replaced with a single,

unconditional PDF fX(x) by integrating over w, φ, and θ, as:

fX(x) =

∫

fX(x|w,φ, θ)f(w|D)f(φ|D)f(θ|D)dwdφdθ (3.29)

The above integral can be numerically evaluated using sampling. In the aforemen-

tioned double-loop sampling procedure, several values of X were chosen for a given

sample of w, φ, and θ, thereby establishing conditional dependence on w, φ, and θ

and leading to the PDF fX(x|w,φ, θ). In order to compute the single, unconditional

PDF as in Eq. 3.29, only one sample of X is chosen for a given sample of w, φ,

and θ. This sampling procedure may be referred to as single-loop sampling. The

resultant unconditional, predictive PDF includes all three types of uncertainty - vari-

ability, distribution type and distribution parameter - and can be used for uncertainty

propagation through the system model Y = g(X).

It may appear that the use of the unconditional, predictive PDF may lead to loss of

information regarding the individual contributions of the three aforementioned types

of uncertainty. It may be desirable to assess their individual contributions. Currently,

this issue has been addressed only qualitatively through graphical visualization, as

seen earlier in Fig. 3.12. Future research needs to address the rigorous quantification

of the individual contributions of the three types of uncertainty.

3.6.3.2 Propagation using Bayesian Hypothesis Testing

While the Bayesian model averaging approach leads to a stochastic weight w, the

Bayesian hypothesis testing approach leads to a deterministic posterior probability

P (M1|D). Hence, obtaining the family of distributions is simpler than in the Bayesian
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model averaging approach because the uncertainty in the weight is not considered.

However, the order of sampling is different. First, a uniform random number on [0,

1] is drawn. If this uniform random number is less than P (M1|D), then a random

sample of φ is selected and multiple samples of X are drawn from the PDF f 1
X(x|φ);

this procedure is repeated for several samples of φ. If the uniform random number is

greater than P (M1|D), then a random sample of θ is selected and multiple samples

of X are drawn from the PDF f 2
X(x|θ); this procedure is repeated for several samples

of θ. This algorithm is, in fact, exactly the same as that in Fig. 3.11 and leads to a

family of PDFs similar to that in Fig. 3.12.

As stated earlier, the family of PDFs approach is computationally expensive for

the purpose of uncertainty propagation. Hence, a simultaneous sampling approach is

used to construct a single, unconditional PDF of X . In this simultaneous sampling

approach, given a uniform random number sample, the distribution type is selected,

and only one sample of distribution parameters (of the selected distribution type),

and only one sample ofX are selected. The procedure is repeated for multiple uniform

random number samples, and multiple samples of X are obtained, thereby leading

to the unconditional PDF of X . Similar to that in Bayesian model averaging, this

unconditional, predictive PDF can be used for the purpose of uncertainty propagation

through the system model Y = g(X).

3.7 Case 3: Unknown PDF Type (Non-parametric)

The need to quantify the uncertainty due to the choice of a particular distribu-

tion type was emphasized in Section 3.4.5, where it was demonstrated that different

assumptions regarding the distribution type lead to different unconditional PDFs.

One method to address distribution type uncertainty was using multiple competing

distribution types, as demonstrated in Section 3.6. This section proposes another
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method where no distribution type is assumed and a non-parametric distribution is

constructed which faithfully represents the available data. As a result, there is no

distinction between variability and distribution parameter uncertainty in the resul-

tant non-parametric distribution; from a subjective probability-based point of view,

it simply represents the degree of belief regarding the quantity of interest.

The non-parametric approach is based on the fact that if the PDF values are

known at a few points, then the entire density function can be constructed based on

an interpolation method. No explicit PDF form such as fX(x|P ) is assumed, and the

interpolation method is not parametric. Since there are no distribution parameters

or interpolation parameters, the method is referred to as being non-parametric.

Discretize the domain of the input quantity X into a finite number of points, say

λi, i = 1 to Q. This domain is chosen based on available data; the lowest value and

the highest value are chosen as the lower bound and the upper bound of the domain

respectively. Assume that the PDF values, i.e. fX(x = λi) at each of these Q points

are given by fX(x = λi) = ηi for i = 1 to Q. Using an interpolation technique, the

entire probability density function fX(x) can be calculated for all λ ∈ X , i.e. over the

entire domain of X . Then the probability of observing the given data (point data and

interval data), i.e. the likelihood, can be calculated using Eq. 3.6. This likelihood is

a function of the following:

1. The discretization points selected, i.e. λi, i = 1 to Q;

2. The corresponding PDF values fX(x = λi) = ηi, i = 1 to Q; and

3. The type of interpolation technique used.

In this research, the discretization is fixed, i.e. uniformly spaced λi values (i = 1 to

Q) over the domain of X are chosen in advance and the values of ηi that maximize the

likelihood function are calculated. The value of Q (number of discretization points) is
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chosen based on computational power; higher the value of Q, better the results, and

more expensive the optimization. The optimization problem is formulated as shown

in Eq. 3.30.

Given λi ∈ X ∀ i, i = 1 to Q

Maximize
η

L(η)

η = {η1, η2, ...ηQ−1, ηQ} and fX(x = λi) = ηi ∀ i = 1 to Q

subject to

ηi ≥ 0 ∀ i = 1 to Q

fX(x) ≥ 0 and
∫

fX(x) = 1

PDF values ηi at x = λi used to interpolate entire PDF fX(x) ∀ x

(3.30)

The objective of this optimization is to maximize the likelihood function L(η) (calcu-

lated using the point and interval data, similar to that in Eq. 3.6), now the difference

being that there are no distribution parameters here. The optimization is performed

subject to the following constraints: the vector η contains PDF values that need to

be positive; the resultant function fX(x) must satisfy the properties of a probability

density function, i.e. it must be positive and integrate to unity.

Different interpolation techniques – linear interpolation, cubic spline-based inter-

polation and the Gaussian process (GP) interpolation - are investigated. While the

method of linear interpolation is based on piecewise linear approximation, the method

of spline interpolation minimizes the integral of the squared curvature for approxi-

mation [93]. The method of Gaussian process interpolation was explained earlier in

Section 2.8. The resulting non-parametric PDFs from the three interpolation meth-

ods are plotted in Fig. 3.19. From Fig. 3.19, it can be seen that the method constructs

the PDF that closely follows the available data. Because there was no data available

in the range 4.5 to 5.0, the method assigns a low relative likelihood to this range of
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Figure 3.19: Non-parametric Probability Distributions

values. Further, the method also allows the appearance of multiple peaks leading to

a multi-modal density function; the density function assumes this shape depending

on the available data.

While the linear and spline interpolation techniques use linear and cubic func-

tions for interpolation, the Gaussian process interpolation method does not assume

any explicit functional form for the interpolation. Further, it was mentioned earlier

that non-parametric methods do not make assumptions about the distribution form.

Hence, the Gaussian process-based approach can be described as the most general

approach; it neither assumes a functional form for the PDF nor uses explicit poly-

nomial functions for the interpolation technique. Since the non-parametric approach

directly calculates a single distribution for the quantity of interest, it is not possible

to assess the individual contributions of variability and epistemic uncertainty.

The above non-parametric technique is not useful when only one interval is avail-

able; it can be useful when sparse point and/or multiple interval data are available
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on a particular quantity. This quantity may be the random variable itself or a dis-

tribution parameter of the random variable. While the above numerical example

considered the former case, the latter case is considered in Section 3.8.

3.8 Sandia Challenge Problem

This section uses the proposed methods to solve the challenge problems considered

in the Sandia Epistemic Uncertainty Workshop [57]. In these problems, at least one

input quantity is described using intervals and the uncertainty in model output needs

to be quantified. Using the proposed methodology, the inputs can be modeled as PDFs

which are then used for uncertainty propagation. Since the focus of this chapter is on

uncertainty representation and quantification rather than uncertainty propagation,

a simple Monte Carlo sampling-based method is used for uncertainty propagation

instead of advanced sampling techniques or analytical approximations such as the

First Order Reliability Method (FORM) and the Second Order Reliability Method

(SORM). Any of these methods can be used instead of the simple sampling approach

here.

The aforementioned uncertainty workshop originally consists of two sets of Chal-

lenge problems - A and B. These two sets consist of several uncertainty propagation

problems based on the type of data available on the inputs. This section considers

only two problems (3rd and 5th) from Set A where multiple interval data are avail-

able for the same quantity. The rest of the problems have single interval description;

it may be convenient to assume a uniform distribution based on the principle of

maximum entropy in such cases or simply perform interval analysis using the single

interval. The real challenge lies when multiple interval data are available for the same

quantity. These multiple intervals are assumed to be statistically independent so that

the likelihood-based approach can be implemented. A hypothetical model with two
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independent inputs a and b is considered as:

y = (a+ b)a (3.31)

The two uncertainty propagation problems are discussed in detail, in the following

subsections.

3.8.1 Problem 1

The uncertainty in the input variable a is described using three intervals [0.5,

0.7], [0.3, 0.8] and [0.1, 1.0]. Input variable b follows a lognormal distribution, but

with imprecise distribution parameters (λ and ξ). These distribution parameters are

described by multiple intervals ([0.6, 0.8], [0.2, 0.9], [0.0, 1.0]) and ([0.3, 0.4], [0.2,

0.45], [0.1, 0.5]), respectively. In this problem:

1. The distribution parameters (λ and ξ) of b are described with intervals. It

may not be meaningful to represent λ and ξ using parametric distributions

because this approach would lead to distribution parameters of distribution

parameters. Hence, the Gaussian process-based non-parametric distribution is

used to represent λ and ξ. For the sake of uniformity, a is also represented using

a similar non-parametric distribution. So, there is not issue of variability versus

distribution parameter uncertainty for the input a.

2. The variable b is explicitly given to follow a lognormal distribution, and hence

using this problem, it is possible to apportion the uncertainty in y to (1) un-

certainty in a, given by the non-parametric PDF; (2) lognormal variability in b;

and (3) uncertainty in distribution parameters (λ and ξ) of b.

The PDFs of a, λ, and ξ are first computed using the non-parametric method

described in Section 3.7. These PDFs are plotted in Figs 3.20 and 3.21.
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Figure 3.21: PDFs of Distribution Parameters of Input b

Every realization of λ and ξ leads to a PDF of b, and hence to a PDF of output

y. Since λ and ξ are themselves uncertain, y is represented using a family of PDFs.

Alternative it is also possible to compute the unconditional PDF of b, as:

f(b) =

∫

f(b|λ, ξ)f(λ)f(ξ)dλdξ (3.32)

This unconditional PDF of b is used to compute the unconditional PDF of y, which

is plotted in Fig. 3.22. The proposed methodology produces a complete PDF for

y, some of the previously existing solution methodologies result in interval values.

Kozine and Utkin [94], De Cooman and Troffaes [95], and Ferson and Hajagos [96]

100



produced [1.5, 2.8], [1.5, 2.2], and [1.1, 3.8] respectively. Zaman et al. [61] produced

a family of distributions; while it is challenging to compare a family of PDFs against

the proposed single PDF, a qualitative comparison shows considerable agreement

between the two approaches.
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Figure 3.22: Output y: Family of PDFs and Unconditional PDF

The above exercise sets the problem ready for sensitivity analysis. The uncertainty

in y can be attributed to: (1) uncertainty in a, shown in Fig. 3.20; (2) variability in b,

which is a lognormally distributed quantity; as per the proposed sensitivity analysis

method, an auxiliary variable U is introduced to represent this variability; and (3)

uncertainty in distribution parameters (λ and ξ), shown in Fig. 3.21. There are 15

terms in the decomposition of variance.

Table 3.8: Contributions of Variability and Distribution Parameter Uncertainty

Quantity Meaning
Individual Overall
Effects Effects

(λ, ξ) Parameter Uncertainty in b 8.0 % 10.4 %
U Variability in b 56.8 % 62.5 %

(λ, ξ, U) Total uncertainty in b 66.7 % 70.9 %
a Uncertainty in a 29.1 % 33.3 %
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Table 3.8 reports the individual and overall sensitivity indices (to one decimal

place) of the following quantities: (1) parameter uncertainty in b; (2) variability in

b; (3) total uncertainty in b; and (4) uncertainty in a. It is seen that there is little

interaction between variability and parameter uncertainty of b. The contribution of

distribution parameter uncertainty is about 10%, and the variability in b contributes

to about 60% of the overall variance; while the former can be reduced, the latter is

irreducible uncertainty.

3.8.2 Problem 2

In this problem, both the input variables a is described using three intervals ([0.5,

0.7], [0.3, 0.8], [0.1, 1.0]) and the input variable b is described using three intervals

([0.4, 0.85], [0.2, 0.9], [0.0, 1.0]) and one point datum (0.6). In this problem, in-

tervals are available for the quantities directly, as against intervals for distribution

parameters. Hence, it is meaningful to pursue a parametric approach and compute

the distribution parameters of both a and b. For the sake of illustration, the two

competing parametric distribution types - normal and uniform - are chosen for both

a and b. The goal is to quantify the distribution type uncertainty in a and b, the

corresponding distribution parameters, and then propagate the three types of uncer-

tainty - variability, distribution type uncertainty, and distribution parameter uncer-

tainty - to compute the uncertainty in y. The methods of Bayesian model averaging

and Bayesian hypothesis testing are used for this purpose.

3.8.2.1 Bayesian Model Averaging

For the quantity a, model M1 is chosen as N(µa,σa), and model M2 is chosen as

U(La,Ua). Similarly, for the quantity b, model M1 is chosen as N(µb,σb), and model

M2 is chosen as U(Lb,Ub). Let wa and wb denote the weights assigned to the normal
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distribution for the variables a and b respectively. Then, 1 − wa and 1 − wb denote

the weights assigned to the uniform distribution for the variables a and b respectively.

For the sake of illustration, the prior distribution for all the distribution parameters

is chosen to be uniform on the interval [0, 1].

The PDFs of all the above quantities are estimated using the available data, and

the mean values, the standard deviations, maximum likelihood estimates, and 95%

bounds are shown in Table 3.9.

Table 3.9: Bayesian Model Averaging: Results

Variable Distribution Quantity Mean Standard 95% Bounds
Type Deviation

a
Normal

wa 0.36 0.23 [0.04,0.76]
µa 0.50 0.30 [0.03, 0.93]
σa 0.20 0.25 [0.03, 0.75]

Uniform
1− wa 0.64 0.23 [0.01,0.96]
La 0.73 0.17 [0.42, 0.91]
Ua 0.86 0.13 [0.61, 0.99]

b
Normal

wb 0.58 0.29 [0.05, 0.97]
µb 0.57 0.15 [0.23, 0.84]
σb 0.35 0.53 [0.01, 1.34]

Uniform
1− wb 0.42 0.29 [0.03, 0.95]
Lb 0.37 0.19 [0.04, 0.62]
Ub 0.67 0.25 [0.29, 0.95]

The results in Table 3.9 are difficult to interpret for a number of reasons, the

primary reason being that all the estimates have very high degree of uncertainty

(indicated by standard deviation). This happens because the method tries to estimate

5 parameters simultaneously using a small data set (3 for a and 4 for b). As a result,

the 95% bounds are too large to be useful. The PDFs of the weights wa and wb are

almost uniform, suggesting that even the maximum likelihood estimates may not be

useful. Also, consider the uniform distribution estimated for a; the estimates of the

lower and higher bounds are so close (but with high standard deviations) that it is

difficult to derive any usefulness from such results.
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Table 3.10: Bayesian Hypothesis Testing Results

Variable P (M |D) Quantity Mean Standard Deviation 95% Bounds

a

Normal µa 0.57 0.16 [0.16,0.89]
0.32 σa 0.23 0.20 [0.01, 0.80]

Uniform La 0.41 0.16 [0.05, 0.65]
0.68 Ua 0.74 0.12 [0.54,0.97]

b

Normal µb 0.60 0.12 [0.30, 0.89]
0.28 σb 0.17 0.15 [0.01, 0.64]

Uniform Lb 0.43 0.15 [0.08, 0.60]
0.72 Ub 0.74 0.11 [0.60, 0.97]

Due to the large uncertainty in the input, further uncertainty propagation analysis

is not useful. Instead, the Bayesian hypothesis testing approach is investigated next.

Note that the hypothesis testing approach does not estimate more than 2 parameters

simultaneously, and hence is expected to produce results that have less uncertainty.

3.8.2.2 Bayesian Hypothesis Testing

Using the Bayesian hypothesis testing approach proposed in Section 3.6.2, the

probabilities P (M1|D) and P (M2|D) can be directly calculated for both a and b.

Then, the PDFs of the distribution parameters (µa and σa for normal, and La and

Ua for uniform) can also be calculated. The results of the distribution parameter

estimation are shown in Table 3.10. Note that the estimation of the parameters of

the normal distribution is totally independent of the estimation of the parameters of

the uniform distribution, for both the variables a and b. However, this was not the

case in the Bayesian model averaging approach.

Once the uncertainty in the model form and the distribution parameters are es-

timated, then a and b are represented using a single, unconditional PDF each. The

calculation of this unconditional PDF is using the simultaneous sampling approach
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explained earlier in Section 3.6.3.2. This single PDF accounts for physical variabil-

ity, distribution type uncertainty and distribution parameter uncertainty, and hence

renders the uncertainty propagation analysis efficient.

The unconditional PDF of a and the unconditional PDF of b is then propagated

through Eq. 3.31 to calculate the PDF of Y . The PDFs of a and b are shown in

Fig. 3.23.

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

a

P
D
F

(a) PDF of a

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

b

P
D
F

(b) PDF of b

Figure 3.23: PDFs of Model Inputs

Using simple Monte Carlo simulation, the PDF of y is then calculated and shown

in Fig 3.24. Since this PDF is calculated from multiple competing parametric PDFs,

it is indicated as the parametric PDF. It accounts for all sources of uncertainty in the

inputs - physical variability, distribution type uncertainty and distribution parameter

uncertainty.

The computational method developed in Section 3.6.2.4 is then used to quantify

the individual contributions of aleatory (physical variability) and epistemic uncer-

tainty (distribution type and parameter uncertainty). Recall that it is not meaningful

to calculate the effect of distribution parameter uncertainty alone, because the choice

of distribution parameters is made only after selecting the distribution type. The

individual and overall effects for all the three quantities a, b, and y are tabulated in

Table 3.11.
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Table 3.11: Contributions of Physical Variability and Epistemic Uncertainty

Quantity Effect Physical Epistemic Distribution
Variability Uncertainty Type

a
Individual 31.5% 20.8% 0.0%
Overall 79.2% 68.5% 43.3%

b
Individual 23.7% 36.5% 0.0%
Overall 63.5% 77.3% 9.9%

y
Individual 4.2% 4.1% 1.0%
Overall 95.9% 95.8% 56.0%

It is seen from the results that the individual effect of distribution type uncertainty

is almost zero; however it has a significant contribution together with distribution

parameter uncertainty and physical variability. Also, there is significant interaction

between the three sources of uncertainty - physical variability, distribution type and

parameter uncertainties.

3.8.2.3 Non-parametric Approach

In addition to the parametric methods, the GP-based non-parametric PDFs are

computed for both a and b. These PDFs are then used to compute PDF of y; this
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is shown in Fig. 3.24. The non-parametric method does not assume any explicit dis-

tribution type or distribution parameters. Thus, the use of a parametric distribution

explicitly delineates variability, and epistemic uncertainty (distribution type and pa-

rameters) whereas the non-parametric approach represents all the uncertainty in a

single distribution.

Similar to the previous example problem, the proposed methodology produces a

complete PDF for y, while some of the previously existing solution methodologies

result in an interval value for the output y. Kozine and Utkin [94], De Cooman and

Troffaes [95], and Ferson and Hajagos [96] produced [0.9, 1.5], [1.0, 1.2], and [0.8, 1.6]

respectively. Further, there is considerable agreement between the proposed PDF and

the family of PDFs given by Zaman et al. [61].

3.8.3 Discussion of Results

To begin with, it is acknowledged that there is no unique right or wrong answer

to problems involving interval uncertainty. Different researchers have pursued differ-

ent approaches to tackle such problems and this dissertation presents one effective

methodology for the analysis of interval uncertainty. It is seen that these different

methods have led to comparable solutions, almost similar to one another. Ferson

et al. [97] mention four possible reasons for the observed discrepancies among the

answers: (1) nesting (due to difference in approaches, one result may be nested in

others), (2) differences in truncation, i.e. whether or where the distributions were

truncated to finite ranges, (3) numerical approximation error; and (4) different rep-

resentations of independence.

While the solutions from different methodologies are similar, the proposed method-

ology has several advantages. It is probabilistic, making it possible to use well-

established uncertainty propagation methods such as Monte Carlo simulation, FORM,
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SORM, etc. This can provide savings in computational effort, since FORM and

SORM typically involve 10 to 20 evaluations of the system response function, and

efficient sampling techniques (importance sampling, adaptive sampling, etc.) are

available within Monte Carlo Simulation. Second, the proposed methodology is non-

parametric, thus making the resulting PDF more loyal to the data than an assumed

parametric PDF. Third, different kinds of data can be combined and integrated into

a single PDF thereby making the uncertainty representation and propagation simple

and straightforward. Fourth, the proposed method provides the entire PDF of the

output, which is useful in the context of reliability and risk assessment. Thus, the

proposed likelihood-based methodology appears to have strong potential for efficient

and effective analysis of interval uncertainty.

3.9 Summary

This chapter proposed statistical methods for the treatment of data uncertainty

due to the presence of sparse point and/or interval data to characterize the uncertainty

in input quantities. If sufficient point-valued data were available with regard to a

particular quantity, then it is possible to precisely identify the distribution type and

distribution parameters for the quantity of interest. The presence of sparse point data

and interval data leads to uncertainty in both the distribution type and distribution

parameters.

The most important concept behind the development of the proposed methods is

the construction of the likelihood function for both point and interval data simulta-

neously. This idea was used for the representation, quantification, and propagation

of data uncertainty. This, in turn, led to four research contributions as follows:

1. In Section 3.4, the distribution type of the quantity was assumed to be known
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and the uncertainty in the distribution parameters was estimated. This led to

a family of distributions, which is computationally expensive for the sake of

uncertainty propagation. Hence, the family of distributions was replaced by a

single, unconditional distribution which accounts for two types of uncertainty -

variability in the quantity (due to assumption of distribution type) and uncer-

tainty in the distribution parameters.

2. Section 3.5 developed a global sensitivity analysis approach to quantify the

individual contributions of variability and distribution parameter uncertainty.

First, the individual contributions of two types of uncertainty in a single vari-

able was considered. Then, the method was extended to assessing individual

contributions of the two types of uncertainty in multiple input variables to the

uncertainty in the output of an underlying computational model.

3. Section 3.6 extended the likelihood-based methodology to include uncertainty in

distribution type, where multiple competing distribution types were considered.

The methods of Bayesian model averaging and Bayesian hypothesis testing were

used for this purpose. Further, the sensitivity analysis methodology developed

in Section 3.5 was extended to include the uncertainty in the distribution type,

and the individual contributions of physical variability and epistemic uncer-

tainty (distribution type uncertainty and distribution parameter uncertainty)

were quantified.

4. Section 3.4 and 3.6 both considered parametric distribution types, whereas Sec-

tion 3.7 extended the likelihood-based methodology to non-parametric distri-

butions. A GP-based non-parametric distribution was developed to directly fit

PDFs to point and interval data. Since this approach represents all the types of
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uncertainty - variability, distribution type uncertainty and distribution param-

eter uncertainty - through a single PDF, their individual contributions cannot

be calculated.

Future work needs to address other types of epistemic uncertainty such as quali-

tative information, categorical variables, etc. A probabilistic representation for such

quantities may not be straightforward and it is also important to account for such

uncertain quantities during uncertainty propagation and integration.
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CHAPTER IV

MODEL UNCERTAINTY

4.1 Introduction

Since the late 1960’s and early 1970’s, significant advancements in the field of

computer science and computing technology have encouraged the use of computer

models and simulations to solve practical problems in engineering. Solution of a

complex partial differential equation to study fluid-structure interaction would have

been difficult in the mid 1900’s. Today, there are several commercial software packages

that can efficiently solve such complicated mathematical equations.

As a result, computational models are increasingly being used to study physical

systems in various engineering applications. Additionally, the importance of uncer-

tainty quantification and the impact of the various sources of uncertainty on system

response has also been understood. Since the early 2000’s, the topic of uncertainty

quantification in the system-level performance prediction has gained considerable at-

tention amongst researchers.

Initially, natural variability in the system inputs and parameters was only consid-

ered for uncertainty propagation, in order to quantify the uncertainty in the system-

level prediction. Due to the growing necessity and desire to analyze and design

engineering systems of increasingly complex architectures, it was observed that (1)

sufficient data may not be available for uncertainty representation, quantification,

and propagation; and more importantly, (2) the ability of the computational model

to accurately predict the system performance decreases. While the former issue was
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Figure 4.1: Stages of Model Development

addressed in Chapter III, the latter is the result of uncertainty in the model itself.

This chapter focuses on the aspect of model uncertainty.

It is essential to quantify the uncertainty in the model, in order to compute the

uncertainty in the system-level performance. Helton [1] discusses and illustrates the

conceptual and computational basis of Quantifications of Margins and Uncertainties

(QMU) in analyses that use computational models to predict the behavior of complex

systems. The quantification of model uncertainty is an important component of a

QMU analysis that is intimately connected with the assessment, representation, and

propagation of uncertainty [1]. First, it is important to quantify the various sources

of uncertainty involved in the model development process, and then it is necessary to

quantify their combined effect on the system-level prediction.

There are several activities in the development of a model [98], and these activities

can be grouped into five steps, as shown in Fig. 4.1. Some of the activities separately

delineated by Alvin et al. [98] are collected together in order to facilitate the objectives

of this dissertation.

The first step is to develop a conceptual model and construct a mathematical

equation (for e.g. a partial differential equation) that represents the model output y

as a function of inputs (x) and model parameters (θ) as y = G(x; θ). Sometimes, two

different physics-based models may be available to represent the same phenomenon.
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One model may be more suitable for certain input values, while another may be

suitable for other input values. Model selection [99–102] addresses the issue of choos-

ing between two models, in order to compute the output. For example, Section 3.6

discussed a “model selection” problem by considering two competing probability dis-

tributions to fit the available data; in the present chapter, the focus is on model

uncertainty, and difference is that, now, the models are physics-based models. This

dissertation does not address the issue of model selection to study physical systems

and processes. It is assumed that a single physics-based model is readily available in

mathematical form.

In the second step, a numerical solution procedure is developed to solve the math-

ematical equation, and this solution procedure is implemented using a computer code.

The output of this computer code is the model prediction (yc = Gc(x; θ)); this yc

may be different from y, the true solution of the mathematical equation. When the

computer code is used for predictive analysis, it is important to not simply use yc but

to use the actual solution of the mathematical equation.

The third step is the process of model verification, which includes both code

verification and solution verification. Code verification focuses on identification of

programming errors and debugging computer codes. Solution verification is based

on convergence studies and focuses on identification and quantification of solution

approximation error, i.e. the difference between y and yc.

The fourth step is model parameter estimation. The mathematical equation devel-

oped in the first step contains some parameters θ (for example, damping coefficient

in a differential equation governing plate deflection under dynamic loading). The

model parameters are assumed invariant for different realizations of the input quan-

tities within a range of operating conditions of the system. During model parameter

estimation, the values of these parameters need to be estimated based on actual
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input-output data. Even if some knowledge regarding the parameters is available,

the values of the model parameters need to be adjusted so that the model predictions

are in better agreement with experimental data. This adjustment is referred to as

model calibration. In the remainder of this dissertation, the terms “model parameter

estimation” and “model calibration” are used synonymously.

Having calibrated the model, the fifth step is model validation which answers the

question - Is the mathematical equation an accurate representation of reality?. The

process of model validation aims to quantify the deviation of the model from reality

(referred to as model form error or model discrepancy term or model inadequacy

function) and hence, assess the predictive capability of the model.

Hence, there are three major activities related to the quantification of model un-

certainty - model verification, calibration, and validation. Note that the steps of

verification, validation, and calibration are not necessarily in a fixed sequence; differ-

ent sequences might be suitable for different problems and there might be iterations

between some of the steps. For example, it may be desirable to perform calibration

before and after validation. The three topics of verification, validation, and calibra-

tion are discussed in detail in the following sections.

4.2 Model Verification

The process of verification checks how close the code output is to the true solution

of the mathematical equation. As stated earlier in Section 4.1, it is not only sufficient

to verify that the two solutions are sufficiently close, but also essential to quantify

the solution approximation error, i.e. the difference between the code output and

true solution, in order to quantify the uncertainty in the prediction. It is desirable to

perform verification before calibration and validation so that the solution approxima-

tion errors are accounted for during calibration and validation. Methods for model
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verification [103–105] and estimation of solution approximation error [91, 106–109]

have been investigated by several researchers.

In general, the solution approximation error is composed of both deterministic

and stochastic terms [108]. For example, the discretization error arising in finite

element analysis is deterministic, while the surrogate model error that arises as a

result of replacing the finite element analysis with a surrogate model is stochastic.

In the context of uncertainty propagation, deterministic errors can be addressed by

correcting the bias, and the corrected solutions are used to train the surrogate model;

the stochastic errors of the surrogate model can be addressed through sampling based

on their estimated distributions. As a result, the overall solution approximation error

is also stochastic.

The true solution of the mathematical equation can be computed as a function of

the model inputs and parameters as y(x; θ) = yc(x; θ) + Gse(x; θ). Since Gse(x; θ)

is stochastic, y is stochastic even for given values of x and θ. The remainder of

this subsection discusses the estimation of discretization error and surrogate model

uncertainty.

4.2.1 Discretization Error

The most common type of solution approximation error is due to discretization in

finite element analysis, and methods of convergence analysis [110], a-posteriori error

estimation [111], Richardson extrapolation [109, 112, 113], etc. have been studied for

the estimation of discretization error. Rebba et al. [91] state that the method of a-

posterior error estimation [111, 114, 115] quantifies only a surrogate measure of error

to facilitate adaptive mesh refinement, but does not compute the actual discretization

error. On the other hand, the method of Richardson extrapolation has been found to

come closest to quantifying the actual discretization error [91, 109, 112].
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Let h denote the mesh size used in finite element analysis and Ψ the corresponding

prediction. Let y denote the “true” solution of the mathematical equation which is

obtained as h tends to zero. According to the basic Richardson extrapolation [112],

the relation between h and yc can be expressed as:

y = yc + Ahp (4.1)

In Eq. 4.1, p is the order of convergence, A is the polynomial coefficient. In order to

estimate the true solution y, three different mesh sizes (h1 < h2 < h3) are considered

and the corresponding finite element solutions (yc(h1) = Ψ1, yc(h2) = Ψ2, yc(h3) =

Ψ3) are calculated. Eq. 4.1 has three unknowns p, A, and y, which can be estimated

based on the three mesh solutions. Mesh doubling/halving is commonly done to

simplify the equations. If r = h3

h2
= h2

h1
, then the discretization error (ǫh) and the true

solution can be calculated as:

y = Ψ1 − ǫh

Ψ2 −Ψ1 = ǫh(r
p − 1)

p log(r) = log(Ψ3−Ψ1

Ψ2−Ψ1
)

(4.2)

The solutions Ψ1 , Ψ2 , Ψ3 are dependent on both x and θ and hence the error

estimate ǫh and the true solution y are also functions of both x and θ. Since the

discretization error is a deterministic quantity, it needs to be corrected for, in the

context of uncertainty propagation.

The use of Richardson extrapolation requires uniform meshing and uniform con-

vergence, thereby limiting the applicability of this method in practical finite element

analysis. Recently, Rangavajhala et al. [109] has developed a method to overcome

these limitations by extending the Richardson extrapolation methodology from a

polynomial relation (Eq. 4.1) to a more flexible Gaussian process extrapolation; this
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GP is used to extrapolate to h = 0 in order to estimate the discretization error. In

that case, due to the uncertainty associated with GP interpolation, the discretiza-

tion error is also stochastic; therefore, the training points (in particular, the output

values) for the surrogate model are stochastic, and it is necessary to account for this

uncertainty while constructing the surrogate model. Rasmussen [48, 51, 80] discusses

constructing GP models when the training point values are stochastic.

4.2.2 Surrogate Model Uncertainty

Another type of solution approximation error arises when the underlying model

is replaced with a surrogate model for fast uncertainty propagation and/or model

calibration. Surrogate model error is stochastic, even for a given realization of inputs

and parameters. As discusses earlier in Section 2.8, different types of surrogate mod-

eling techniques (regression models [27], polynomial chaos expansions [116], radial

basis functions [117], support vector machines [46], relevance vector machines [47],

Gaussian processes [118]) are available in the literature, and the quantification of the

surrogate model error is different for different types of surrogate models. Methods of

the quantification of this error (for different surrogate models) are well-established in

the literature.

As stated earlier in Section 2.8, this dissertation uses the Gaussian process model

as a surrogate to replace expensive computer simulations. There are three important

reasons why a Gaussian process model has been used in this research work:

1. The GP model is capable of capturing highly nonlinear relationships that exist

between input and output variables without the need for an explicit functional

form. Hence, a closed form expression (as in polynomial type regression meth-

ods) need not be assumed.

2. For a non-parametric interpolation technique, this method requires fewer sample
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points (usually 30 or less) as against methods such as kernel estimation and non-

parametric multiplicative regression.

3. A GP model provides a direct estimate of the variance in the output prediction.

Gaussian process interpolation method was explained earlier in Section 2.8 and

the Gaussian process prediction (mean and variance) was given by Eq. 2.19. It was

emphasized that the choice of training points is important for the construction of the

GP model. In Section 2.8, the training points were created based on input-output

data of the expensive computer model. Now, the difference is that the training values

need to be generated by considering the model parameters (θ) in addition to the

inputs (x), because the value of the model parameter is also necessary to execute the

model and compute the model output.

Once the surrogate model is constructed, the expected value and variance of the

Gaussian process prediction can then be used to draw multiple samples for uncertainty

analysis, thereby including the effect of surrogate model uncertainty in uncertainty

propagation.

4.3 Model Calibration

Model calibration refers to the adjustment of model parameters so that the model

output matches well with the field data. The model calibration problem belongs to a

wider class of mathematical problems, popularly known as inverse problems. Though

this section is titled “model calibration”, the focus is on parameter estimation meth-

ods, and solutions to inverse problems, as a whole. When a computational model

is used to predict the outcome (effect) of a particular phenomenon (cause), this is

referred to as the forward problem. The inverse problem makes use of measured
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experimental data (effects) to infer the characteristics of the underlying computa-

tional model (cause). Alifanov [119] gave a general definition of inverse problems as

those that seek to “determine unknown causes based on observation of their effects”.

Inverse problems are almost synonymously associated with model parameter estima-

tion; in the context of systems with time-dependent output, this problem has also

been referred to as system identification [120].

In deterministic analysis, forward problems are usually well-posed, whereas inverse

problems are not. According to Hadamard [121], a well-posed problem should have

the following properties: (1) a solution exists; (2) the solution is unique; and (2)

the solution is stable, i.e. the solution continuously depends on the data, in some

reasonable topology.

Since, inverse problems are not well-posed and may have multiple solutions, it

becomes essential to assess the confidence associated with the multiple solutions.

Further, although most of the formulations of inverse problems directly lead to an

optimization problem, it is better to start with a probabilistic formulation, the opti-

mization formulation then appearing as a by-product. Tarantola [122] states that the

most simple and generalized theory is obtained when using a probabilistic approach

for the solution of inverse problems. Therefore, methods of probability and statis-

tics have been widely used for parameter estimation. Hence, the term “statistical

inference” is also used in lieu of parameter estimation.

Several aspects of model calibration and computational methods for parameter

estimation are discussed in the following subsections. Some of these methods are

well-established in the literature. This dissertation makes two contributions with

respect to model calibration. The first contribution addresses numerical issues in

the implementation of existing approaches. The second contribution advances the

capability of the methods to include different sources of uncertainty and different types
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of data situations such as unpaired data and imprecise data. These contributions are

interspersed throughout the remainder of this section. Section 4.3.8 is of specific

interest, and it discusses several scenarios for model calibration under uncertainty.

4.3.1 The Basic Parameter Estimation Problem

The topic of parameter estimation, i.e. inferring an unobservable (or difficult

to measure) quantity through the measurement of a dependent variable, has been a

significant topic of interest over several years [12]. A classical example in structural

dynamics is the estimation of the damping coefficient based on response measurement.

Consider the computational model y = G(x; θ), where x is the independent input

variable and y is the dependent output variable. Point-valued input-output data (xi

vs. yi; i = 1 to n) are assumed to be available. The experimental data is assumed

to be unbiased; in other words, ǫi = yi − G(xi) follows a normal distribution with

zero mean. The quantity ǫ ∼ N(0, σ2) is referred to as the fitting error. The goal in

parameter estimation is to estimate θ using the above information.

4.3.2 Least Squares Estimation

The method of least squares is based on minimizing a measure of difference be-

tween the model prediction and the observed data. Typically, an error measure S(θ)

is computed as:

S(θ) =

n
∑

i=1

(yi −G(xi; θ))
2 (4.3)

The so-called least squares estimate of θ is computed by minimizing the error measure

in Eq. 4.3. In order to compute this error measure, note that paired input-output

values need to be available. The error measure can be minimized using optimization

algorithms, as described by Seber and Wild [71].
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This procedure for parameter estimation is also known as non-linear regression.

If the model G(xi; θ) is linear with respect to inputs x and parameters θ, then the

procedure for estimation of θ reduces to linear regression and θ can be calculated

analytically, using linear algebra and matrix analysis [27]. Further, Eq. 4.3 assumes

that there is no input measurement error and the output measurement error is con-

tained in ǫ. It is also possible to perform regression with measurement errors in both

the independent (input) and dependent (output) quantities; this type of regression is

commonly referred to as “error-in-variables regression” [123]. Tarantola [122] derives

an analytical expression for linear regression with error in variables. In the case of

non-linear models, the method of total least squares [124], an extension of Deming

regression [125], has been commonly used.

The least squares estimation is a classical statistics-based approach, from a fre-

quentist point of view. The true values of the parameters (θ) are assumed to be

deterministic, and the least squares estimate may not coincide with the true value.

It can be proved that the least squares estimate tends to the true value, as the data

size approaches infinity.

The uncertainty in the least squares estimate is expressed using confidence inter-

vals on the least squares estimate. This confidence interval is calculated at a particular

significance level α. Consider the error surface, as shown in Fig. 4.2. (For the sake of

graphical illustration, Fig. 4.2 is shown for the case with only one model parameter

θ, and not a vector θ).

In Fig. 4.2, the α-level confidence bound is given by the confidence interval

[θα,min,θα,max]. For a given α, an error value Sα is first defined as:

Sα = S(θ∗)(1 +
p

m− p
F α
p,m−p) (4.4)

In Eq. 4.4, F refers to the F-statistic evaluated at significance level α; p refers to the
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Figure 4.2: Confidence Bounds in Least Squares Analysis

number of parameters being inferred (the length of vector θ, in this case), and n is

number of data available of calibration, as defined earlier. The confidence interval of

θ is the region where the condition S(θ) ≤ Sα is satisfied.

In the case of single parameter estimation, an optimization-based procedure is de-

veloped in this dissertation to quantify the lower and upper bounds of the confidence

interval. Let θ∗, θα,min and θα,max denote the least squares estimate, lower and upper

bounds respectively. This can be accomplished through constraint-based optimiza-

tion, by maximizing and minimizing θ in order to get the upper and lower bounds

respectively, where the constraint is S(θ) = Sα. This is a functionally constrained

optimization which may be computationally difficult. Alternatively, the lower and

upper bounds of the confidence interval can be computed as follows:

Minimize
θα,min

(S(θ)− Sα)
2 s.t. θ < θ∗

Minimize
θα,max

(S(θ)− Sα)
2 s.t. θ > θ∗

(4.5)

These optimization problems are functionally unconstrained, one-dimensional and
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bounded in one direction. Hence, techniques such as golden section search [126] and

parabolic interpolation [127] can be used for quicker solutions. These methods do not

use derivatives and hence are computationally efficient as well.

If there are two parameters, then the uncertainty is represented through a two-

dimensional confidence region. As the number of parameters increase, it is compu-

tationally challenging to quantify the uncertainty associated with the least squares

estimate. Further, the above confidence interval/region is not related to the PDF of

θ [9, 71]; since the underlying parameters are assumed to be deterministic, it is mean-

ingless to discuss the PDF of the quantity θ. Hence, it is not possible to propagate

the uncertainty in the parameters through another computational model.

4.3.3 The Likelihood Method

The least squares estimation procedure is, fundamentally, an optimization prob-

lem. How is it a probabilistic approach, and why is it preferred? It so happens that

the least squares estimate maximizes the probability that the given data can actually

be observed, under the conditions ǫ ∼ N(0, σ2). This probability, i.e. P (D|θ), where

D denotes all the input-output data available, is referred to as the likelihood function

of θ, and is denoted as L(θ). The notion of likelihood was formally introduced earlier

in Section 2.4.

How to construct the likelihood function for the parameter estimation problem

in Section 4.3.1? Assuming that the n pairs of data are independent, the likelihood

function can be constructed as:

L(θ) ∝
n
∏

i=1

1

σ
√

(2π)
exp−

(

(yi −G(xi, θ))
2

2σ2

)

(4.6)

Note that Eq. 4.6 constructs the likelihood function based on the PDF; the reason
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for this was explained earlier in Section 3.4.1. Recall that the likelihood function is

meaningful only up to a proportionality constant, and that the likelihood function can

be used for inference in the context of both frequentist and subjective probabilities.

4.3.4 Bayesian Inference

The method of Bayesian inference has increasingly gained attention due to the

advancements in computing and a substantial increase in computing power. The

concept of Bayesian inference was introduced earlier in Section 2.4. The basic idea is

to accumulate all prior information in the form of a prior PDF for the parameters θ.

This PDF is denoted as f ′(θ). The likelihood function L(θ) discussed in Section 4.3.3

is then multiplied with the prior PDF and normalized to calculate the posterior PDF

f ′′(θ).

The standard deviation (σ) of the fitting error (ǫ) can also be estimated simulta-

neously with the model parameters, by constructing the joint likelihood as:

L(θ, σ) ∝
n
∏

i=1

1

σ
√

(2π)
exp−

[

(yi −G(xi, θ))
2

2σ2

]

(4.7)

The above equation assumes that measurement errors are not present in the input,

since the model is evaluated at the measured input value. Similar to least squares

methods, there are also Bayesian approaches for error in variables regression [128].

This is a special case of “inference on mixtures of distributions”, a topic widely

discussed in the literature [129]; in such a problem, each input-datum and the corre-

sponding output-datum available for calibration are themselves uncertain and hence,

need to represented using a probability distribution each. For the sake of simplicity,

in the rest of the discussion, measurement errors are assumed to be absent in the

independent variables.
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The prior for the standard deviation σ can be chosen based on Fisher information

criterion [17, 130], as:

f ′(σ) ∝ 1

σ
(4.8)

Note that this PDF f ′(σ) is an improper PDF. The joint likelihood is multiplied

with the prior and normalized to obtain the joint posterior, denoted by f ′′(θ, σ). As

explained earlier in Section 2.7, MCMC algorithms such as Metropolis sampling [38],

Metropolis-Hastings sampling [40], Gibbs sampling [41], and slice sampling [39] are

commonly used to generate samples from the joint posterior, without explicitly eval-

uating the normalizing constant.

The use of MCMC sampling methods requires several hundreds of thousands of

evaluations of the model θ. One way to address this challenge is to replace the

model G(x; θ) with an inexpensive surrogate. Another way is to explore mathemat-

ical methods which provide a significant increase in computational efficiency; in the

process, it may be necessary to make a few assumptions which do not alter the result

significantly. One such method is described in this chapter in Section 4.3.7; another

method is described later in Chapter IX.

4.3.5 Kennedy O’Hagan Framework

The fitting error ǫ is the difference between the model prediction (evaluated at

the input measurement) and the corresponding observed output data. The standard

deviation of ǫ can be estimated from both frequentist [71] and Bayesian (see Eq. 4.7

in Section 4.3.4) points of view.

The difference between the model prediction and data occurs due two reasons:

(1) deviation of model from “reality”; and (2) presence of measurement errors (noise)

in the output data. The Kennedy O’Hagan (KOH) framework explicitly delineates

these two quantities, by quantifying the so-called model inadequacy function. The
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model inadequacy function is also referred to as model discrepancy or model form

error. In the KOH approach, the output y is modeled as:

y = G(x; θ) + δ(x) + ǫm (4.9)

where ǫm ∼ N(0, σ2
m) is the output measurement error, and δ(x) is modeled as a

Gaussian process interpolation. When Bayesian inference is performed, the joint

likelihood is constructed for the (1) the model parameters θ; (2) hyper-parameters of

model inadequacy function δ(x); and (3) standard deviation (σm) of the measurement

error (ǫm).

If the model G(x; θ) itself needs to be replaced by a Gaussian process surrogate

model, then the hyper-parameters of this GP are also jointly estimated along with the

above quantities. However, McFarland [52] reports that the uncertainty due to the

hyper-parameters of this Gaussian process (the GP that replaces G(x; θ)) is negligible

compared to the uncertainty in the model parameters, and hence, it may be easier to

estimate the hyper-parameters of this GP before Bayesian inference.

Based on the discussion in Section 4.1, the quantification model form error is re-

lated to model validation. Therefore, the KOH framework combines model calibration

and validation activities. The validation method developed in this dissertation, later

in Section 4.4 directly calculates the subjective probability that the data supports the

model, which is helpful in the context of uncertainty propagation and integration. In

this dissertation, the KOH framework is not rigorously implemented; however, such

implementation is possible and encouraged.
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4.3.6 Regularization

In the beginning of this chapter, it was stated that parameter estimation belongs

to a class of inverse problems which are often ill-posed. Sometimes, a regularization

technique [8, 12, 131] is used to introduce additional information which then leads

to a unique solution; this information may be in terms of penalty for complexity

(Occam’s razor) or restrictions on the function smoothness (in terms of curvature or

second derivative) or bounds on the parameters. The regularization method can be

(1) used in a least squares formulation by minimizing the sum of squares of residuals

augmented with the above information, i.e. regularization constraint, or (2) applied

in a Bayesian framework where the additional information (regularization constraint)

is embedded in the prior distribution of the model parameters, which is then multi-

plied with the likelihood function, and the resultant normalized posterior distribution

represents the estimate of the parameters. Regularization procedures are not explic-

itly implemented in this dissertation; however, such inclusion is encouraged and can

be easily facilitated by suitably altering the prior used in Bayesian inference.

4.3.7 Adaptive Integration for Bayesian Inference

This section develops an advanced integration technique to replace the expensive

Markov Chain Monte Carlo (MCMC) sampling commonly used to generate samples

from the Bayesian posterior, without explicitly evaluating the normalization constant.

While one dimensional integrals can be evaluated directly with the proposed tech-

nique, multi-dimensional integrals are first transformed to nested one-dimensional

integrals and then evaluated through the adaptive quadrature technique.

Consider the case of inferring two variables. Bayesian updating encounters the
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evaluation of integrals of the form:

k =

∫

f(x)f(y)L(x, y)dxdy (4.10)

Eq. 4.10 consists of a two dimensional integral. However, by the inherent definition of

likelihood, this can be converted into two nested one-dimensional integrals. Recalling

the definition of likelihood, the likelihood of x and y, L(x, y) is proportional to the

probability of observing data conditioned on x and y. Hence, the likelihood of x, i.e.

L(x) can be calculated based on the principle of total probability as:

L(x) ∝ Prob(D|x) ∝
∫

Prob(D|x, y)f(y)dy ∝
∫

L(x, y)f(y)dy (4.11)

Substituting the expression in Eq. 4.11 into Eq. 4.10,

k =

∫

L(x)f(x)dx =

∫
(
∫

L(x, y)f(y)dy

)

f(x)dx (4.12)

Thus, the two-dimensional integral in Eq. 4.10 has been converted into two nested

one-dimensional integrals in Eq. 4.12. These one-dimensional integrals can be eval-

uated using advanced numerical algorithms such as Adaptive Recursive Simpsons

Quadrature [132].

Consider any general one-dimensional integral and its approximation using Simp-

sons rule as:

∫ b

a

f(x)dx ≈ b− a

6

(

f(a) + 4f
(a+ b

2

)

+ f(b)
)

= S(a, b) (4.13)

The adaptive recursive quadrature algorithm calls for subdividing the interval of in-

tegration (a, b) into two sub-intervals ((a, c) and (c, b), a ≤ c ≤ b) and then, Simpsons
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rule is applied to each sub-interval. The error in the estimate of the integral is cal-

culated by comparing the integral values before and after splitting. The criterion for

determining when to stop dividing a particular interval depends on the tolerance level

ǫ. The tolerance level for stopping may be chosen, for example as [132]:

|S(a, c) + S(c, b)− S(a, b)| ≤ 15ǫ (4.14)

While the MCMC sampling method may require several hundreds of thousands

of evaluations of the model G(x; θ), the implementation of the adaptive recursive

quadrature algorithm requires about 50 evaluations of each nested integral. Hence, if

there are only two parameters of interest, this requires about 2500 evaluations, which

is extremely efficient in comparison with the MCMC technique.

It is acknowledged that this method of integration (splitting the integrals and

using adaptive recursive Simpsons quadrature) is efficient only when the number of

variables is small (≤ 5). If the number of variables is greater than 5, then the MCMC

sampling technique is more efficient than the proposed technique.

4.3.8 Model Calibration under Uncertainty

The calibration problem discussion in Sections 4.3.1 - 4.3.5 considered cases when

point-valued, paired input-output data are available for calibration. Consider the

basic problem with the model y = G(x; θ); this basic problem can be expanded

to include different features, as explained below. These different features include

situations where different sources of uncertainty may be present in the model and/or

data. It is expected that the uncertainty in the model parameters increase with the

presence of additional sources of uncertainty. The goal is to quantify this uncertainty

in the model parameters. From hereon, the concept of likelihood and the Bayesian
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approach are pursued rigorously, since the least squares method can neither rigorously

account for the various sources of uncertainty nor calculate the PDF of the model

parameters.

4.3.8.1 Additional Sources of Uncertainty

The model prediction may also depend on some other quantities α which are

known to be uncertain and cannot be measured while collecting calibration data.

Further, such quantities α are not calibrated because it may not be physically mean-

ingful to calibrate them.

Hence, the model is represented as y = G(x; θ,α), and the uncertainty in α is

denoted in terms of its PDF f(α). Similar to Section 4.3.1, point-valued input-output

data (xi vs. yi; i = 1 to n) are assumed to be available to calibrate θ; however, now

the difference is that the model prediction at input xi is uncertain. Further, the PDF

of the model prediction at xi is not statistically independent of that at xj (i 6= j)

because the same PDF f(α) is used for both cases, even though the measurements

(xi vs. yi) are independent of each other.

The likelihood function of θ can be constructed to include the uncertainty in α,

as:

L(θ) =

∫

L(θ,α)f(α)dα (4.15)

The likelihood L(θ) is used in Bayesian inference to compute the posterior PDF of

θ. In Eq. 4.15, the likelihood function L(θ,α) is calculated as:

L(θ,α) ∝
n
∏

i=1

[

1

σ
√

(2π)
exp−

(

(yi −G(xi, θ,α))2

2σ2

)

]

(4.16)

In Eq. 4.16, the likelihood is calculated only for a particular value of α and hence
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the independence between the measurements can be used to multiply individual like-

lihoods.

Note that in Eq. 4.15, the calculation of likelihood is a multi-dimensional integra-

tion, where the number of dimensions is equal to the number of uncertain quantities

in α. When this likelihood is substituted in Bayesian, the calculation of posterior

involves multi-dimensional integration, where the number of dimensions is equal to

the number of calibration parameters in θ. Hence, this requires a nested multi-

dimensional integration. This issue of the presence of additional sources of uncertainty

is also discussed in detail, later in Chapter IX.

4.3.8.2 Interval Data for Calibration

Consider the calibration problem with the model y = G(x; θ). Sometimes, the

data for calibration is available in the form of intervals. For the sake of illustration,

consider m intervals, [ai, bi] at the input level and corresponding [ci, di] at the output

level. How to construct the likelihood for this case? Censored data, often available in

reliability analysis [79], is a special case of interval data. Suppose that the number of

cycles to failure is measured in reliability testing; if the specimen does not fail until

N cycles, then the number of cycles to failure is a censored interval, i.e. (N , ∞).

The likelihood-based approach for representation of interval data (developed ear-

lier in Section 3.4) cannot be applied here because, if all the intervals were represented

using a combined PDF, then the “orderedness” or “correspondence” between the in-

put and output pairs would be lost. Hence, each interval has to be treated separately.

Each interval is represented using a uniform distribution on the interval [ai, bi] and

the corresponding PDF is denoted as f(χi) (i = 1 to m; ai ≤ χi ≤ bi). Note that

ai, bi, and χi are vectors; each member of this vector corresponds to a member in

the input vector xi.
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These PDFs can be used to construct the likelihood function for θ, in terms of

the individual likelihoods, as:

L(θ) ∝
m
∏

i=1

Li(θ) (4.17)

where the individual likelihood Li(θ) can be calculated by including the PDF f(χi)

as:

Li(θ) =

∫

Li(χi, θ)f(χi)dχi (4.18)

The likelihood Li(χi, θ) in Eq. 4.18 is calculated for one realization of the input χi,

as:

Li(χi, θ) ∝
∫ y=dj

y=cj

(

1

σ
√

(2π)
exp−

((y −G(χi, θ)
2

2σ2

)

)

dy (4.19)

Note that Eq. 4.19 uses a CDF to account for the interval data as against the PDF

in Eq. 4.6. This aspect is similar to the treatment of interval data in Section 3.4.1.

4.3.8.3 Partially Characterized Data for Calibration

Consider the calibration problem with the model y = G(x; θ). Typically, in an

experiment, the value of the independent variable (input) is selected, the experiment

is performed, and the corresponding measurement of the dependent variable (output)

is used for calibration; such measurements are well-characterized. Sometimes, it may

not be possible to conduct experiments in such a way that the input and the output

measurements have one-to-one correspondence. In other words, the input measure-

ments are conducted independent of the output measurements; such measurements

are referred to be “partially characterized” or “uncharacterized” in this dissertation.

Further, each of the measurements (input and/or output) may be point-valued or an

interval. How to construct the likelihood for this case?

Consider m point data xi (i = 1 to m) and n intervals [ai, bi] (i = 1 to n), avail-

able for a particular input x; note the vector of inputs is not considered here. Since
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there is no one-to-one correspondence between the input and output measurements,

all of the input measurements can be aggregated.

From a frequentist point of view, one possible approach is to construct a composite

PDF, as:

fX(x) =
1

m+ n
(

m
∑

i=1

δ(x− xi) +
n
∑

i=1

UX(ai, bi)) (4.20)

In Eq. 4.20, δ(.) refers to the Dirac delta function, and UX(ai, bi) refers to the PDF

of a uniform distribution defined on the interval [ai,bi], as shown in Eq. 4.21.

UX(ai, bi) =











1
bi − ai

if ai ≤ x ≤ bi

0 else
(4.21)

Thus, each point data is represented as a Dirac delta function, and each interval

is represented using a uniform distribution. The input PDF fX(x) is expressed as a

weighted sum of all these distributions, where each weight is equal to 1
m+ n , assuming

that each data (point or interval) is weighed equally.

Alternatively, from a subjectivist point of view, the methods for data uncertainty

quantification developed in Chapter III can be used to construct the PDF fX(x) for

the input x; the parametric methods in Sections 3.4 and 3.6 or the non-parametric

method in Section 3.7 can be used for this purpose.

The above procedure for the calculation of fX(x) is repeated for all the input

variables which are uncharacterized, and the joint PDF of the inputs is denoted as

fX(x).

This PDF can be used in uncertainty propagation to compute the model prediction

as a function of the parameter θ, using uncertainty propagation methods discussed in

Section 2.5. Let fY (y|θ) denote the corresponding model prediction; note that this is
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computed as a function of θ, in order to facilitate the construction of the likelihood

function L(θ). This likelihood is constructed using the output data available.

At the output level, consider p point data yi (i = 1 to p) and q intervals [ci, di]

(i = 1 to q). Similar to the previous sections, the likelihood is calculated using the

PDF value for point data and CDF values for interval data as:

L(θ) ∝
[

p
∏

i=1

(

∫

f(z = yi|y)fY (y|θ)dy
)

]

×
[

q
∏

j=1

(
∫

(

∫ z=di

z=ci

f(z|y)dz
)

fY (y|θ)dy
)

] (4.22)

In Eq. 4.22, z is simply used as a dummy variable, and f(z|y) is calculated similar to

Eq. 4.6, as:

f(z|y) = 1

σ
√

(2π)
exp−

(

(z − y)2

2σ2

)

(4.23)

As in the previous sections, the likelihood function can be used in Bayesian infer-

ence in order to compute the posterior PDF of θ.

4.3.8.4 Calibration under Uncertainty: Synopsis

Conventionally, model calibration has considered paired input-output measure-

ments for calibration. In this dissertation, several scenarios for model calibration are

considered:

1. Additional sources of uncertainty

2. Interval data for calibration

3. Uncharacterized input-output data

The methods proposed to address the above situations can be easily extended to

address situations where unpaired data, interval data, and other sources of uncertainty
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are all simultaneously present. A numerical example is presented in Section 4.3.10

to illustrate the proposed methods. Further, the topic of model calibration under

uncertainty will again be revisited in Chapter IX.

4.3.9 Estimating θ versus Distribution Parameters of θ

Sections 4.3.1 - 4.3.8 considered the estimation of the model parameter θ based

on input-output data. Sometimes, it may be known that the model parameters are

naturally varying quantities, which follow a particular distribution type. In such cases,

it may be necessary to estimate the distribution parameters of the model parameters

θ. Let the PDF of θ be denoted by fθ(θ|Pθ). How to construct the likelihood function

if the aim is to estimate the distribution parameters (Pθ) of θ rather than θ itself?

The likelihood must be a function of those parameters which need to be estimated.

Hence, in this case, it is desired to calculate the likelihood function as L(Pθ). The

methods developed in Sections 4.3.1 - 4.3.8 can be used to calculate the likelihood of

the model parameter, i.e. L(θ) This function can be calculated using the principle of

conditional probability, as:

L(Pθ) ∝
∫

L(θ)fθ(θ|Pθ)dθ (4.24)

Then the likelihood function L(Pθ) can be used in Bayes theorem (Eq. 2.7) to

estimate the entire PDFs of the distribution parameters (Pθ). This leads to a family

of distributions for the model parameter θ. If desired, the principle of total probability

can be used to compute a single PDF for the model parameter θ, similar to that in

Eq. 3.8.
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4.3.10 Application: Energy Dissipation in a Lap Joint

Sections 4.3.1 - 4.3.9 discussed several aspects of model calibration and parame-

ter estimation. Now, an engineering application problem in the area of mechanical

engineering is chosen for illustrating the proposed methods. For the sake completion,

calibration is performed using both classical statistics-based methods and likelihood-

based Bayesian methods.

4.3.10.1 Description of the Problem

This example deals with the calibration of the Smallwood model [91, 133, 134],

which is used to predict the energy dissipation due to friction at a lap joint in a

mechanical component. This model predicts the dissipation energy (DE) per cycle at

the joint when the component is subjected to an impact harmonic force of amplitude

F .

The hysteresis curve (force vs. displacement graph) for the lap joint comprises of

two symmetrical portions. The energy loss in the joint under one cycle of sinusoidal

loading is found by integrating the area under the hysteresis curve and analytically

derived as:

DE = kn(
m− 1

m+ 1
)zm+1 (4.25)

In Eq. 4.25, kn is a non-linear stiffness term, m is the exponent term, and z is the

displacement amplitude which is obtained by solving:

2F = kz − knz
m (4.26)

In Eq. 4.26, k refers to a linear stiffness term. The objective is to calibrate the non-

linear stiffness parameter (kn) using the available input-output data. Data is available

on the inputs - force (F ), linear stiffness (k), and non-linear exponent (m) - and the
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output - dissipated energy (DE). For a given force, the dissipated energy can be

measured, and hence there is correspondence and ordered pairing between the input

force (F ) and output energy (DE). There are five such measurements as shown in

Table 4.1.

Table 4.1: Calibration Data: Force vs. Dissipated Energy

Force (F ) Dissipated Energy (Z)
(in lbf) (in lbf × in)

60 5.30× 10−5

120 2.85× 10−4

180 7.78× 10−4

240 1.55× 10−3

320 2.50× 10−3

Let Fj (j = 1 to 5) and Zj (j = 1 to 5) denote the five force values and five energy

values in Table 4.1. A different symbol Z has been used for the output measurement

in order to avoid confusion with the symbol DE used for model prediction. The

variables Z and DE are related through the fitting error (ǫ ∼ N(0, σ2)), as:

f(Z|DE) =
1

σ
√

(2π)
exp−

(

(Z −DE)
2

2σ2

)

(4.27)

Two other inputs, linear stiffness (k) and non-linear exponent (m) are not mea-

sured in correspondence with the force measurement and hence are not paired with the

output measurement as well. For the sake of illustrating the methods, it is assumed

that this unpaired data has come from other independent sources (other experiments,

subject matter experts, etc.)

The data on linear stiffness (k) is available as: three intervals ([1160000, 1180000],

[1155000, 1170000], [1160000, 1170000]) and one point value (1173000). All measure-

ments are in lbf/in.

The non-linear exponent (m) is known to have a normal distribution with mean

= 1.23 (no units) and coefficient of variation = 0.06. Thus, this numerical example
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features several types of uncertainty - (1) additional source of uncertainty (m); (2)

interval data (k); and (3) uncharacterized data (k).

For the purpose of model calibration, Eq. 4.25 and Eq. 4.26 can be expressed

together as

DE = G(F, k,m; kn) (4.28)

Eq. 4.28 is obtained by eliminating z from Eq. 4.25 and Eq. 4.26. The various steps

in the calibration procedure are:

1. Represent each unpaired input using a PDF. There are two unpaired inputs.

The linear stiffness (k) is given by three intervals and one point value, and the

nonlinear exponent (m) is known to be normal. Thus, there is a well-defined

PDF fm(m) in the latter case whereas the PDF fk(k) needs to be constructed

for the former case.

2. Once fm(m) and fk(k) are known, then the model in Eq. 4.28 needs to be

evaluated for each value of the paired input, i.e. for each of the force values in

Table 4.1.

3. In the least squares approach, an error measure is computed as a function of

the calibration parameter (kn) and minimized whereas in the likelihood ap-

proach, the likelihood function of the calibration parameter (kn) is computed

and maximized.

4. The uncertainty in least squares estimation is expressed through confidence

intervals, and the likelihood function is used in Bayesian inference to calculate

the entire PDF of the calibration parameter (kn).

These four steps are explained in detail below.
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4.3.10.2 Least Squares Approach

In the first step, fm(m) is known to be a normal density function with mean =

1.36 and coefficient of variation = 0.05.

The PDF fk(k) is constructed as a composite PDF - a weighted sum of three

uniform PDFs ([1160000, 1180000], [1155000, 1170000], [1160000, 1170000]) and one

Dirac delta PDF centered at the available point data (1173000). Uniform weights are

used for each of these 4 data; hence each of these data is assigned a probability of 0.25,

and cumulative probabilities of 0.25, 0.50, 0.75, and 1 respectively. The algorithm for

generating samples from this composite PDF is:

1. Generate random number. Call it “temp”.

2. If temp < 0.25, Generate a sample for k from the uniform distribution bounded

on [1160000, 1180000]. End. To generate next sample, Go to Step 1.

3. Else if temp < 0.50, Generate a sample for k from the uniform distribution

bounded on [1155000, 1170000]. End. To generate next sample, Go to Step 1.

4. Else if temp < 0.75, Generate a sample for k from the uniform distribution

bounded on [1160000, 1170000]. End. To generate next sample, Go to Step 1.

5. Else, the sample for k is 1173000. End. To generate next sample, Go to Step 1.

Using the above generated samples, the PDF of k is generated and shown in

Fig. 4.3.

This completes the first step.

In the second step, the PDF of the model prediction is estimated as a function of

Fj (j = 1 to 5) and kn. It needs to be a function of F because the input measurement

(F ) and the output measurement (Z) have a one-one correspondence, as in Table 4.1.

It needs to be a function of kn because this quantity is the calibration parameter
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Figure 4.3: Composite PDF of Linear Stiffness

and the squared error measure should be a function of kn. Uncertainty propagation

methods (Section 2.5) are then used to compute the PDF of model prediction for

each ordered input measurement; this PDF is denoted as fDEj
(DEj

|Fj, kn). In the

third step, this PDF fDEj
(DEj

|Fj , kn) is compared (so as to compute an error measure

Sj(kn)) with the corresponding output measurement data denoted by Zj , which is a

point value.

The comparison of a PDF with a point value is not straightforward; this PDF

fDEj
(DEj

|Fj, kn) cannot be effectively used in the least squares approach, and this

is one reason why the least squares approach is not used in the remainder of this

dissertation. Nevertheless, for the sake of completeness, this example problem is

completed as follows.

The error metric S(kn) is computed by measuring the difference between the

measurement Zj and the expectation of the model prediction, i.e.E(DEj
|Fj, kn), as:

S(kn) =
5
∑

j=1

Sj(kn) =
5
∑

j=1

(

E(DEj
|Fj, kn)− Zj

)2

(4.29)
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(If the output measurement were an interval instead of a point value, then a

uniform PDF can be considered on this interval and this uniform PDF is compared

with fDEj
(DEj

|Fj, kn) to compute Sj(kn). A distance metric such as the area met-

ric [135], Kullback-Leibler Divergence [136], Hellinger distance [137], Bhattacharyya

distance [138] etc. can be used to compute the “distance” or “difference” between

two PDFs. It must be noted that the choice of a uniform distribution is an addi-

tional assumption. In the likelihood/Bayesian approach, these difficulties are easily

overcome using the inherent definition of likelihood.)

This error metric S(kn) is minimized and the calibration parameter (kn) is esti-

mated. Further, the uncertainty in this estimate is calculated using the F-statistic,

as explained earlier in Section 4.3.2. The least squares estimate is found to be 6.62 x

105lbf/in and the 95% confidence interval is calculated to be [6.59 x 105lbf/in, 6.66

x 105lbf/in].

4.3.10.3 Likelihood Approach

In the likelihood approach, the first step and the third step are different from the

least squares approach; the second step of computing the PDF fDEj
(DEj

|Fj, kn) using

uncertainty propagation is the same.

In the first step, the PDF fk(k) is computed using the non-parametric likelihood-

based technique described earlier in Section 3.7, and the resulting PDF is shown in

Fig. 4.4.

This PDF is estimated by solving the optimization in Eq. 3.30; the domain of

[1155000, 1180000] is discretized into 10 equal parts, and the density values at these

discretization points are estimated so that the likelihood for the given data (3 intervals

and one point) is maximum. Note that this is a non-parametric PDF constructed

using the Gaussian process interpolation method based on the PDF values at the
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Figure 4.4: Likelihood-based PDF of Linear Stiffness (k)

10 discretization points. Also, this PDF does not make an additional assumption

(uniform distribution within each interval which was assumed in Fig. 4.3). This

completes the first step in model calibration.

As mentioned earlier, the second step is the same as in the least squares ap-

proach, and the PDFs fDEj
(DEj

|Fj , kn) (j = 1 to 5) are calculated using uncertainty

propagation.

In the third step the likelihood function is calculated using the methods developed

in Section 4.3.8. Then, this likelihood function can be maximized; further the uncer-

tainty in this estimate can be calculated using Bayes theorem as explained earlier in

Eq. 2.7. A non-informative uniform distribution for the prior of kn, and the resulting

posterior PDF is shown in Fig 4.5.

The maximum likelihood estimate is 660690 lbf/in; the 95% probability bounds

are given by [617160 lbf/in, 689060 lbf/in].
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4.3.10.4 Discussion

To begin with, it is acknowledged that there is no single correct answer to the

model calibration problem with imprecise and unpaired input-output descriptions.

First, there are several procedures in the literature to treat interval data and each

procedure may lead to a different answer. Ferson et al. [97] discuss in detail several

aspects of interval data treatment. The least squares procedure is able to address

interval data only by assuming a uniform distribution within each interval. As stated

earlier, this assumption is questionable. The likelihood approach does not make any

such assumption and hence, is faithful to the data, as far as possible. Second, the

issue of correspondence between input and output measurements directly affects the

uncertainty in the calibrated quantity. Note that the multi-modal behavior of the

input k is reflected in the PDF of the calibrated kn in Fig. 4.5.

Also, the estimates of uncertainty obtained from the least-squares based approach

and the likelihood approach need to be interpreted differently. The likelihood ap-

proach alone can provide the entire PDF of the calibrated kn and the least squares
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approach cannot; it only provides confidence intervals which need to be interpreted

differently from probability bounds [9]. A 95% confidence interval for a model param-

eter is interpreted as follows: “Suppose that the data collection process was repeated

100 times. Hence, 100 different least squares estimates, and 100 corresponding confi-

dence intervals can be calculated. Then, 95 out of 100 intervals will contain the true

estimate of the model parameter”.

4.3.11 Model Calibration: Summary

Model calibration and parameter estimation are important issues in the context

of model uncertainty quantification. Model parameter uncertainty significantly af-

fects the predictive capability of the model and in many situations, the model output

may be highly sensitive to the uncertainty in the model parameters. Conventional

model calibration requires well-characterized, point-valued, paired input-output data

for model parameter estimation. In this dissertation, the focus was on model cali-

bration under uncertainty, especially in the presence of unpaired and imprecise data.

Though least squares-based methods and Bayesian methods were discussed, the em-

phasis was on the use of the latter methods. The proposed methods were illustrated

using non-linear structural dynamics experimental data on energy dissipation due to

friction in a lap joint, under impact loading.

The topic of model calibration will be revisited in Chapter V and Chapter IX.

In Chapter V, these methods are used in crack growth analysis in order to estimate

the crack growth parameters, and thereby predict the crack growth as a function of

number of cycles. In Chapter IX, model calibration in the presence of multiple sources

of uncertainty will be considered in detail; a rigorous computational methodology will

be developed to apportion the model parameter uncertainty to the multiple sources
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of uncertainty. The sensitivity of model parameters to the calibration data also will

be studied.

4.4 Model Validation

Model validation refers to the process of quantifying the extent to which the

computational model under study is supported by available experimental data. The

model validation procedure measures the extent of agreement between the model

prediction and the experimental data. A visual comparison, usually referred to as

“graphical validation”, though valuable, is inadequate in many cases [104, 139]. Such

an approach is only qualitative and cannot explicitly account for the different sources

of uncertainty.

Oberkampf and Barone [140] explain the need for rigorous quantitative validation

metrics which can be perceived as computable measures that can compare model

predictions and experimental results over a range of input (or control) variables to

sharpen the assessment of computational accuracy. An important aspect of model

validation is the rigorous, explicit treatment of multiple sources and different types

of uncertainty. The various types of uncertainty can be broadly classified into two

types - aleatory and epistemic. In the context of validation, both the model inputs

and the experimental evidence are uncertain. A rigorous approach to model valida-

tion should explicitly account for the various sources of uncertainty such as physical

variability, information uncertainty, measurement error, solution approximation er-

rors (for example, discretization error) etc. and develop a robust metric that can

quantitatively judge the performance of the model and assess the confidence in the

model prediction.

Model validation under aleatory uncertainty has been studied by several researchers

and there are methods available in the literature [91, 92, 105, 140–145] to solve this
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problem. These methods are based on the use of statistical techniques such as

confidence intervals [140], normalizing difference between experimental observation

and model prediction (normalized difference [105, 141], area metric [135]), classical

statistics-based hypothesis testing [142], Bayesian hypothesis testing [91, 92, 144, 145],

and model reliability analysis [143]. These methods dealt with validation under

aleatory uncertainty in the model inputs and parameters, and included measurement

errors and model solution approximation errors, i.e. the result of verification.

While the method of classical hypothesis testing is simply based on comparison

of the mean (and variance) of model prediction vs. the mean (and variance) of

the experimental data, the method of Bayesian hypothesis testing not only allows

the comparison of entire distributions of model prediction and experimental data,

but also provides a systematic approach to account for various types of uncertainty.

The method of Bayesian hypothesis testing has been pursued by Mahadevan and co-

workers [91, 92, 143, 145–147] at Vanderbilt University, and it can directly quantify

the extent to which the computational model is supported by the experimental data.

This method has been applied to the validation of both reliability prediction mod-

els [92, 145] and performance prediction models [91, 146, 147]. In this approach, the

validation metric is the Bayes factor, which is the ratio of the likelihood that the model

is correct to the likelihood that the model is incorrect. Jiang and Mahadevan [147]

showed how the threshold Bayes factor for model acceptance can be derived based

on a risk vs. cost trade-off, thus facilitating physically meaningful decision making.

Further, using Bayes theorem, the Bayes factor can be directly used to compute the

probability the model is correct, relative to the alternate hypothesis.

Though it is clear that the Bayesian hypothesis testing approach is suitable for the

purpose of model validation, this method cannot be used directly when the model
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inputs and validation data are quantities with epistemic uncertainty. The inclu-

sion of epistemic uncertainty (sparse and interval data) was difficult because while

probabilistic methods have been commonly used for model validation, interval data

has been primarily addressed using non-probabilistic methods such as evidence the-

ory [64], convex models of uncertainty [67], Zadeh’s extension principle [69], fuzzy

set theory [70], etc. Hence, some researchers have resorted to non-probabilistic meth-

ods for model validation in the presence of epistemic uncertainty [148, 149]. These

methods are based on interval analysis, and hence computationally expensive, espe-

cially when both aleatory and epistemic uncertainty are present; in this case, Roy

and Oberkampf [149] recommend nesting probabilistic analysis (to address aleatory

uncertainty) within interval analysis (to address epistemic uncertainty) for uncer-

tainty propagation and model validation. This approach significantly increases the

computational effort.

In this dissertation, two probabilistic methodologies are pursued for the purpose

of model validation under uncertainty. The first approach is based on the concept

of Bayesian hypothesis testing, and the second approach is based on the concept

of model reliability. In the past, these two methods have only considered aleatory

uncertainty. The contribution of this dissertation is to extend these two approaches to

include the different sources of epistemic uncertainty (sparse point data and interval

data), and address several scenarios such as unpaired input-output data, time series

data, etc. for model validation.

Consider the computational model y = G(x; θ), where x refers to the inputs and

θ refers to the model parameters, and y is the model output. Output measurement

data, available for validation, is denoted by z. Note that z and y refer to the same

physical quantity (for example, displacement, temperature, etc.). Different symbols

have been used to differentiate the actual available data (z) from the corresponding
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model output (y). The aim of model validation is to quantify the extent of agreement

between z and y.

During the process of model validation, it is also necessary to account for the

output measurement error (ǫo). Conventionally, this term is assumed to be normally

distributed as N(0, σ2
o). Given the model prediction, the probability of observing the

data z can be calculated as being proportional to:

f(z|y) = 1√
2πσo

exp

(

− (y − z)2

2σ2
o

)

(4.30)

During validation, it is assumed that the model parameters (θ) are known, either

deterministically or in terms of the PDF (fθ(θ)). The Bayesian hypothesis testing and

model reliability approaches are both investigated for model validation, by different

scenarios (interval data, uncharacterized data, etc.).

4.4.1 Bayesian Hypothesis Testing

This section introduces the Bayesian hypothesis testing procedure for model val-

idation, and extends this methodology to include epistemic uncertainty and account

for both well-characterized and uncharacterized data. Additionally, time-series data

for validation is also considered.

The fundamental premise of Bayesian hypothesis testing is based on two contra-

dicting hypotheses: a null hypothesis (H0) and an alternate hypothesis (H1). The

goal is to quantify the extent of support from experimental data (D) to each of these

hypotheses.

In Section 3.6.2, the Bayesian hypothesis method was used to quantify the support

from data to multiple competing distribution types (denoted by M1 and M2 in Sec-

tion 3.6.2). In the context of model validation, the null hypothesis (H0) refers to the

event that the model is correct (i.e. the data supports the model), and the alternate
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hypothesis (H1) refers to the event that the model is not correct (i.e. the data does

not support the model). These two hypotheses can be mathematically written as:

H0 → y = z

H0 → y 6= z
(4.31)

If prior probabilities (P (H0) and P (H1)) are known for each of these hypotheses,

then Bayes theorem can be used to update their probabilities based on the available

data (D), as [91]:

P (H0|D)

P (H1|D)
=

P (D|H0)

P (D|H0)

P (H0)

P (H1)
(4.32)

In Eq. 4.32, P (H0|D) and P (H1|D) refer to the posterior probabilities of the events

H0 and H1. In the context of model validation, P (H0|D) is the posterior probability

that the model is correct.

The first term on the right hand side of Eq. 4.32 is referred to as the Bayes factor,

denoted by B [17].

B =
P (D|H0)

P (D|H0)
(4.33)

The Bayes factor is the ratio of the likelihood of the null hypothesis to that of the

alternative hypothesis. If the prior probabilities of the null and alternate hypotheses

are equal, then the posterior probability that the model is correct, i.e. P (H0|D) can

be expressed in terms of the Bayes factor as:

P (H0|D) =
B

B + 1
(4.34)

If the Bayes factor is greater than one, then the data D favors the event “model is

correct”. Higher the Bayes factor, higher is the likelihood of the null hypothesis, and

better is the agreement between the model prediction and the experimental data.
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4.4.1.1 Calculation of Bayes Factor

In order to implement the Bayesian hypothesis testing procedure, the key is the

calculation of the Bayes factor. This calculation depends on how the data is avail-

able for validation. Consider the conventional case, where n point-valued input-data

(xi vs. yi; i = 1 to n) is available for validation. Assume that the n data were col-

lected through independent experiments. If the model parameters (θ) are determin-

istic, then P (D|H0) is based on the model prediction, as:

P (D|H0) ∝
n
∏

i=1

f(z = yi|G(xi; θ)) (4.35)

If the model parameters (θ) are uncertain, and described using the PDF fθ(θ),

then this uncertainty must be included in the calculation of P (D|H0), as:

P (D|H0) ∝
∫

(

n
∏

i=1

f(z = yi|G(xi; θ))
)

fθ(θ)dθ (4.36)

In Eq. 4.36, note that the product over n data points is computed for a single re-

alization of θ, and then, the product is integrated over the space of θ. Hence, the

integration accounts for the parameter uncertainty, propagates this uncertainty to the

output, and the product is nested within the integral. The computation of Eq. 4.36 re-

quires a multi-dimensional integration. The method of Monte Carlo integration [150]

can be used to evaluate this integral. It may be tempting to compute P (D|H0) as:

P (D|H0) ∝
n
∏

i=1

(

∫

f(z = yi|G(xi; θ))fθ(θ)dθ

)

(4.37)

Eq. 4.37 computes P (D|H0) by nesting the integral within the product. This im-

plies that uncertainty propagation is performed before multiplication. Therefore, the
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inherent assumption is that the model prediction PDFs fY (xi) and fY (xj) are inde-

pendent of each other. This is equivalent to the statement that the model prediction

at a particular input value is independent of the model prediction at another input

value. This is obviously wrong since the same model parameters (θ) and the PDF

fθ(θ) are used to compute fY (xi) and fY (xj). This is not related to the fact that the

experiments and hence, output measurements are statistically independent of each

other. Hence, it is mathematically incorrect to use Eq. 4.37 to compute P (D|H0).

On the other hand, in Eq. 4.36, the product is computed only for one realization of θ,

and therefore, the multiplication is justified through the assumption of independent

experiments.

The next important question is regarding the computation of P (D|H1). In order

to compute this probability, it is necessary to assume an alternate hypothesis for the

prediction quantity. Since the hypothesis H1 means that the model is not correct, all

subjective knowledge (regarding the prediction quantity) that can be gained without

using the model is used to construct the alternate hypothesis. Hence, a PDF for y is

assigned under the alternate hypothesis. This PDF is denoted as fA
Y (y|x, H1); note

that this PDF is conditioned on the input value since the output y is conditioned

on the input value, as y(x). In practice, this “alternate” PDF can be chosen to

be uniform, and the bounds can be obtained from subject matter experts. Then,

P (D|H1) can be calculated as:

P (D|H1) ∝
n
∏

i=1

(

∫

f(z = yi|y)fA
Y (y|xi, H1)dy

)

(4.38)

One disadvantage in the use of the Bayesian hypothesis method is the requirement of

this alternate PDF. Another important issue is whether the PDFs fA
Y (y|xi, H1) and

fA
Y (y|xj, H1) are statistically independent of each other. Since the alternate PDF

needs to be assumed, it is practically difficult to assume an alternate PDF for each
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xi and it is further difficult to assume PDFs with statistical dependence. In fact,

Eq. 4.38 is valid only if the alternate PDF at one input value is independent of the

alternate PDF at another input value. Alternatively, if statistically dependent PDFs

can be assumed, then this dependence must be accounted for, as:

P (D|H1) ∝
∫

(

n
∏

i=1

f(z = yi|y)
)

fA
Y

(

y(x1) ... y(xn)|H1

)

dy(x1) ... dy(xn) (4.39)

The numerical examples discussed in this dissertation do not assume such dependent

PDFs and hence, Eq. 4.39 is neither implemented nor considered in the remainder of

this dissertation.

Then, the Bayes factor can be computed using Eq. 4.33 and the posterior prob-

ability that the model is corrected can be calculated using Eq. 4.34. The following

discussions present model validation situations when point-valued paired input-output

data is not available. The difference lies in the calculation of P (D|H0) and P (D|H1).

4.4.1.2 Interval Data for Validation

Sometimes, interval data are available for validation. For example, consider m

intervals, [ai, bi] at the input level and corresponding [ci, di] at the output level. The

likelihood-based methodology for the representation of interval data (developed earlier

in Section 3.4) cannot be applied here because, if all the intervals were represented

using a combined PDF, then the “correspondence” between the input and output

pairs would be lost. Hence, each interval has to be treated separately. Each interval is

represented using a uniform distribution on the interval [ai, bi] and the corresponding

PDF is denoted as f(χi) (i = 1 to m; ai ≤ χi ≤ bi). Note that ai, bi, and χi are

vectors; each member of this vector corresponds to a member in the input vector xi.

Consider the case where the model parameters (θ) are uncertain and the PDF is
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given by fθ(θ). Then, the probability P (D|H0) can be computed as:

P (D|H0) ∝
∫

(

n
∏

i=1

(
∫

(

∫ z=di

z=ci

f(z|G(χi; θ))dz
)

f(χi)d(χi)

)

)

fθ(θ)dθ (4.40)

Since the input measurements are intervals, an alternate PDF of prediction quan-

tity needs to be available for each available input interval, as fA
Y (y|[ai, bi], H1). Then,

the probability P (D|H1) can be computed as:

P (D|H1) ∝
n
∏

i=1

(

∫
(
∫ z=di

z=ci

f(z|y)dz
)

fA
Y (y|[ai, bi], H1)dy

)

(4.41)

Then, the Bayes factor can be computed using Eq. 4.33 and the posterior proba-

bility that the model is corrected can be calculated using Eq. 4.34.

4.4.1.3 Partially Characterized Data

Sometimes, it may not be possible to conduct experiments in such a way that the

input and the output measurements have one-to-one correspondence. In other words,

the input measurements are conducted independent of the output measurements;

such measurements are referred to be “partially characterized” or “uncharacterized”

in this dissertation, similar to Section 4.3.8.3. Further, each of the measurements

(input and/or output) could be point-valued or an interval. How to compute the

Bayes factor in this case?

Consider m point data xi (i = 1 to m) and n intervals [ai, bi] (i = 1 to n), avail-

able for an input x. Since there is no one-to-one correspondence between the input

and output measurements, all of the input measurements can be aggregated. The

classical statistics-based method developed in Section 4.3.8.3 may be used for this

purpose; the basic concept is to compute the composite PDF by treating each point

data as Dirac delta PDF and each interval as a uniform PDF. Alternately, the the
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methods for data uncertainty quantification developed in Chapter III can be used to

construct the PDF fX(x) for the input x; the parametric methods in Sections 3.4

and 3.6 or the non-parametric method in Section 3.7 can be used for this purpose.

The above procedure for the calculation of fX(x) is repeated for all the input

variables which are uncharacterized, and the joint PDF of the inputs is denoted as

fX(x). The model prediction is then computed using uncertainty propagation; the

PDFs fX(x) and fθ(θ) are propagated through the model to compute the PDF of

the model output fY (y|H0); note that this PDF is conditioned only on the model and

not on inputs or parameters because their uncertainty is included in this PDF.

At the output level, consider p point data yi (i = 1 to p) and q intervals [ci, di]

(i = 1 to q). Then P (D|H0) is calculated as:

P (D|H0) ∝
[

p
∏

i=1

(

∫

f(z = yi|y)fY (y|H0)dy
)

]

×
[

q
∏

j=1

(
∫

(

∫ z=di

z=ci

f(z|y)dz
)

fY (y|H0)dy

)

] (4.42)

In the case of unpaired data, only one PDF fA
Y (y|H1) needs to be assumed for the

alternate hypothesis. Then, P (D|H0) is calculated as:

P (D|H1) ∝
[

p
∏

i=1

(

∫

f(z = yi|y)fA
Y (y|H1)dy

)

]

×
[

q
∏

j=1

(
∫

(

∫ z=di

z=ci

f(z|y)dz
)

fA
Y (y|H1)dy

)

] (4.43)

Then, the Bayes factor can be computed using Eq. 4.33 and the posterior proba-

bility that the model is corrected can be calculated using Eq. 4.34.
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4.4.1.4 Time Series Data

Consider a time-dependent model y(t) = G(θ), and n data are available for val-

idation of this model, as [ti, yi] (i = 1 to n). Without loss of generality, it can be

assumed that the data is increasingly arranged with time, i.e. ti < ti+1.

If the data came from n different physical components, then they do not belong

to the same time series. In that case, validation can be performed similar to Sec-

tion 4.4.1.1, by simply treating t as another input to the model G; in other words,

y(t) = G(θ) is written as y = G(t, θ).

If all the n data points came from the same time series, then the equations in Sec-

tion 4.4.1.1 are not applicable for validation. Consider the computation of P (D|H0),

where D = D1 ∩ D2 . . . Dn, and Di represents [ti, yi]. The equations in Sec-

tion 4.4.1.1 would imply that y(ti) is independent of y(tj), for a given realization of

θ. This is not true in the case of time series data. Therefore, two types of dependences

need to be accounted for:

1. y(ti) is dependent on y(tj) (even for one realization of θ) due to the presence

of a time series.

2. The PDFs fY (y(ti)) and fY (y(tj)) are statistically dependent because the model

parameters θ (and the corresponding fθ(θ)) are used for prediction in both the

cases.

In order to rigorously account for these dependencies, a multi-step procedure for

validation is proposed. The first step is to calculate the Bayes factor for D1, as a

function of θ, as:

B1(θ) ∝
f(y1|y(t1))fY (y(t1)|θ)

∫

f(y1|y(t1))fA
Y (y(t1)dy(t1)

(4.44)

From hereon, the Bayes factor is computed successively for the next data D2, by
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conditioning on the previous data D1. In general, for i > 1,

Bi(θ) ∝
f(yi|y(ti))fY (y(ti)|θ, y(ti−1) = yi−1)

∫

f(yi|y(ti))fA
Y (y(ti)|y(ti−1) = yi−1)dy(ti)

(4.45)

Hence, a Bayes factor is calculated for every Di by conditioning on Di−1. As a

result, the overall Bayes factor is a product of all the Bayes factors, as:

B(θ) =
n
∏

i=n

Bi(θ) (4.46)

Note that this Bayes factor is still conditioned on the model parameters θ. The

principle of conditional probability is then used to calculate the unconditional Bayes

factor, as:

B =

∫

B(θ)fθ(θ)dθ (4.47)

Then the Bayes factor can be used to compute the posterior probability that the

model is correct as in Eq. 4.34.

4.4.1.5 Bayesian Hypothesis Testing: Summary

In this dissertation, the method of Bayesian hypothesis testing has been extended

to include different situations for model validation under uncertainty, including (1)

parameter uncertainty; (2) interval data; (3) partially characterized data; and (4)

time series data. One disadvantage of this method is that the alternate hypothesis

requires the choice of a PDF for the prediction quantity; this choice may be subjective.

It must be noted that the Bayes factor metric significantly depends on the choice of

the alternate PDF, and hence this metric is a relative measure of the support from

data to the model vs. alternate hypothesis. If the alternate hypothesis adequately

represents the event “the model G is not correct”, then the posterior probability

156



calculated using the Bayes factor is an accurate measure of the probability that the

model is correct.

4.4.2 Reliability-based Metric

This section discusses the model reliability approach for model validation, where

the model is considered to reliable if difference between the model prediction and the

experimental data is less than a tolerance level. Though Rebba and Mahadevan [143]

originally presented this approach, the model validation metric was computed based

only on the mean of the model prediction and the output (experimental) data. In

this dissertation, a computational methodology is developed to compute the model

reliability metric based on the entire probability distributions of the model prediction

and the output experimental data. Different scenarios such as well-characterized data,

uncharacterized data, interval data, and time series data are considered.

The basic concept is to accept the model if the difference between the model

prediction (y) and the observed data (z) is less than a tolerance limit (δ). Let M

denote the event of accepting the model; then

M → |z − y| ≤ δ ≡ z − δ ≤ y ≤ z + δ (4.48)

Then P (M) quantifies the probability that the model is correct. This metric is an

absolute metric, in comparison with the Bayes factor metric. Since Eq. 4.48 is similar

to reliability analysis, this metric P (M) is referred to as the model reliability metric.

The method is developed for both well-characterized and uncharacterized data.
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4.4.2.1 Well-characterized Data

Consider the computational model y = G(x, θ). Consider the conventional case

for model validation, where n point-valued input-data (xi vs. yi; i = 1 to n) is avail-

able for validation. Assume that the n data were collected through independent

experiments.

First consider a particular input-output pair (xi vs. yi). Based on Eq. 4.48, the

probability that the model is correct for this data (P (Mi)), is calculated as:

P (Mi) =

∫
(
∫ z=yi+δ

z=yi−δ

f(z|G(xi, θ))dz

)

fθ(θ)dθ (4.49)

In Eq. 4.49, the concept is to propagate the PDF fθ(θ) through the model and

then use the entire PDF of the model prediction in Eq. 4.48 to calculate the model

reliability.

Once these probabilities are computed for each data point, it may be tempting

to multiply them because the data are independently collected. This is not correct,

because the same PDF fθ(θ) is propagated through the model at multiple input

values (xi; i = 1 to n), and the corresponding model predictions are not independent.

Therefore, it is wrong to multiply all P (Mi)’s. In order to account for this dependence,

the model reliability metric, P (M) is calculated as:

P (M) =

∫

(

n
∏

i=1

(
∫ z=yi+δ

z=yi−δ

f(z|G(xi, θ))dz

)

)

fθ(θ)dθ (4.50)

In Eq. 4.50, the product is computed for a given realization of θ, and justified because

of the assumption that the data are collected through independent experiments.

Alternatively, in Eq. 4.49, the model reliability can be computed conditioned on

θ, as P (Mi|θ). Then, these conditional probabilities for each data point can be

multiplied to compute the overall conditional probability (P (M |θ)). Finally, the
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overall conditional probability can be calculated as:

P (M) =

∫

P (M |θ)fθ(θ) =
∫

(

n
∏

i=1

P (Mi|θ)
)

fθ(θ)θ (4.51)

Therefore, the key is the computation of the conditional probability P (Mi|θ) for each

input-output pair.

For a particular data (jth data), if the input measurement is an interval (aj , bj),

then the interval is approximated with a uniform distribution f(χj) (aj ≤ χj ≤ bj).

Note that aj , bj , and χj are vectors; each member of this vector corresponds to a

member in the input vector xj . Then the conditional model reliability for this data

is calculated as:

P (Mj|θ) =
∫ χj=bj

χj=aj

(
∫ z=yj+δ

z=yj−δ

f(z|G(χj , θ))dz

)

f(χj)d(χj) (4.52)

Suppose that for a particular data (kth data), the output measurement is an

interval (ck, dk). The next important question is - “what does this mean in the

context of model reliability in Eq. 4.48 ?” If the model prediction is y and the output

measurement is an interval (z1, z2), the the model is acceptable if z1−δ ≤ y ≤ z2+ δ.

Therefore, the conditional model reliability for this data is calculated as:

P (Mi|θ) =
∫ z=dk+δ

z=ck−δ

f(z|G(xi, θ))dz (4.53)

While Eq. 4.52 considers interval input measurement and point-valued output

measurement, Eq. 4.53 considers point-valued input measurement and interval output

measurement. It is straightforward to extend these two equations to the case when

both the input and output measurements are intervals.
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4.4.2.2 Partially Characterized Data

The previous discussion considered paired input output measurement. Similar to

Sections 4.3.8.3 and 4.4.1.3, partially characterized input-output data is now consid-

ered.

Consider m point data xi (i = 1 to m) and n intervals [ai, bi] (i = 1 to n), avail-

able for an input x. Then a single PDF fX(x) is used to represent all of this infor-

mation; this PDF can be constructed using the classical statistics-based approach in

Section 4.3.8.3 or likelihood-based approach in Chapter III.

The above procedure for the calculation of fX(x) is repeated for all the input

variables which are uncharacterized, and the joint PDF of the inputs is denoted as

fX(x). The model prediction is then computed using uncertainty propagation; the

PDFs fX(x) and fθ(θ) are propagated through the model to compute the PDF of

the model output fY (y); note that this PDF is conditioned only on the model and

not on inputs or parameters because their uncertainty is included in this PDF.

Similarly, the output measurements are available in the form of p point data

yi (i = 1 to p) and q intervals [ci, di] (i = 1 to q). A similar procedure is used to

represent this information using a PDF; let fZ(z) denote this PDF. Then, P (M) can

be easily calculated based on Eq. 4.48. A simple Monte Carlo analysis can be used

for this purpose, since this calculation does not require any further evaluations of the

model G.

4.4.2.3 Reliability-based Metric: Summary

The model reliability approach addresses model validation from the perspective

of reliability analysis, where the model is considered to be acceptable if the difference

between the model prediction and the experimental observation is less than a tolerance
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limit. This approach is not relative, in comparison with the Bayesian hypothesis

testing method.

There is one disadvantage with the model reliability approach for model validation.

The product in Eq. 4.50 may tend to zero as the number of validation points increases.

This is because, as the number of points increases, it is increasingly difficult to satisfy

the condition in Eq. 4.48 for all points. Therefore, a large tolerance level δ may need

to be chosen in order to achieve a significantly high model reliability metric.

4.4.3 Application: Energy Dissipation in a Lap Joint

This section illustrates the proposed methods for validating the Smallwood model [133,

134, 143, 146], which is used to predict the energy dissipation due to friction at a lap

joint in a mechanical component. The dissipated energy is dependent on the (1)

applied force; (2) linear stiffness k; (3) exponent m; and (4) non-linear stiffness kn.

The Smallwood model was earlier calibrated (kn being the parameter estimated)

in Section 4.3.10, by assuming interval data on k, and a probability distribution for

m. Now, the focus is on validation given the uncertainty in the model parameters.

So, the proposed validation methods are illustrated for given PDFs of the parameters,

as given in Table 4.2. Model validation under imprecise, unpaired data is considered

in another numerical example, in Section 4.4.4.

Table 4.2: Mean and Standard Deviation of Model Parameters

Parameter m log10(kn) k
Mean 1.23 5.61 1172655
SD 0.06 0.28 13700

In Table 4.2, m has no unit, k and kn have unit of lbf/in. The correlation matrix

of these three parameters is given in Table 4.3.
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Table 4.3: Correlations Between Model Parameters

m log10(kn) k
1 0.96 0.62

0.96 1 0.41
0.62 0.41 1

Note that three parameters are correlated, and hence fθ(θ) in Section 4.4.2 must

account for this correlation.

There are five ordered input-output (force-energy) pairs as shown in Table. 4.4.

The Bayesian hypothesis testing procedure is used to calculate the Bayes factor and

the posterior probability that the model is correct for each ordered pair. It must

be noted that the value of the Bayes factor and the Bayesian posterior probability

depend on the choice of the alternate hypothesis fy(y|H1). A uniform distribution,

corresponding to 95% probability bounds of model prediction was chosen, for the

purpose of illustration. Similarly, the model reliability metric is computed for each

ordered input-output pair, by considering a tolerance level equal to 5% of the observed

experimental value.

Table 4.4: Smallwood Model: Validation Data and Results

Force Energy Mean of Bayesian Posterior Model Reliability
F (in lbf) D (in lbf × in) Prediction P (H0|D) P (M)

60 5.30× 10−5 5.70× 10−5 0.57 0.42
120 2.85× 10−4 2.70× 10−4 0.60 0.60
180 7.78× 10−4 6.75× 10−4 0.33 0.35
240 1.55× 10−3 1.30× 10−3 0.30 0.21
320 2.50× 10−3 2.50× 10−3 0.62 0.74

From Table 4.4, it can be seen that whenever the data is closer to the prediction,

the value of the validation metric is higher. Overall, the model is only marginally

acceptable in three cases based on the Bayesian metric (where P (H0|D) > 0.5), and

in 2 cases based on model reliability metric (where P (M) > 0.5). However, none of

the evidence is able to rule completely in favor of the Smallwood model.
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4.4.4 Application: Heat Conduction

This section presents another numerical example that illustrates the proposed

methodologies for model validation in the presence of uncharacterized data. For the

purpose of illustration, different types of uncertainty - sparse point data, interval data

and distribution parameter uncertainty - are assumed to exist simultaneously in the

model inputs. Further, the experimental observations may be point data or interval

data.

Consider the steady state heat transfer in a thin wire of length L, with thermal

conductivity k, and convective heat coefficient β. The temperature at midpoint of

the wire needs to be predicted. For the sake of illustration, it is assumed that this

problem is essentially one dimensional and that the solution can be obtained from

the following boundary value problem [91].

−k
∂2T

∂T 2
+ βT = Q(x)

T (0) = T0

T (L) = TL

(4.54)

Assume that the heat source Q(x) = 25(2x−L)2. Rebba et al. [91] assumed that

the temperatures at the ends of the wire are both zero (T0 = TL = 0). This is an

ideal scenario and this example considers uncertainty in the boundary condition, i.e.

the temperatures at the ends of the wire (T0 = TL = 0) are assumed to be normally

distributed with statistics N(0, 0.1). This is an example of aleatory uncertainty or

physical variability (in the boundary condition).

Suppose that the probability distribution of the conductivity of the wire k is

described by an expert as normal but with uncertain distribution parameters. For

the sake of illustration, it is assumed that the mean follows a normal distribution
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with statistics N (5, 0.2) and the standard deviation follows a normal distribution

with mean equal to 1 and standard deviation = 0.1. These values are in SI units, i.e.

Wm−1/◦C.

Suppose that a distribution is not available for the convective heat coefficient

β. Instead it is described using two intervals, [0.5, 0.60] and [0.45, 0.48] and two

additional point data are available: 0.58 and 0.52. These values are in SI units, i.e.

Wm−2/◦C.

The length of the wire is assumed to be deterministic, L = 4 m. Let the purpose

of the model be to predict the temperature at the middle of the wire, i.e. at x = 2.0,

in Celcius.

For the purpose of illustration, assume that output measurement data consists

of two points and two intervals, i.e. 15, 16, [16 18], and [15.5 17]. It is required to

assess whether this experimental evidence supports the numerical model in Eq. 4.54.

The output experimental error is assumed to have zero mean, and standard deviation

equal to 5% of the observed data.

The first step is to construct the PDFs of conductivity of the wire k, and convective

heat coefficient β. The former has distribution parameter uncertainty and hence the

PDF is conditioned on the parameters. The unconditional PDF can be estimated

using Eq. 3.8. The latter is described using sparse point and interval data, and the

PDF is calculated using the non-parametric approach developed in Section 3.7. These

two PDFs are shown in Fig. 4.6a and Fig. 4.6b respectively.

Then, the PDF of the model prediction is computed using uncertainty propaga-

tion, by propagating all the parameter uncertainties, and physical variability in the

boundary conditions, and the resulting PDF is shown in Fig. 4.7.

Then the non-parametric PDF of the observed data (based on two point data and

two interval data) is also computed using the non-parametric approach developed in
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Figure 4.6: PDFs of Model Parameters

Section 3.7. The resultant PDF is shown in Fig. 4.8. Note that this PDF is used

only in the model reliability approach and not in the Bayesian hypothesis testing

approach. In the latter, the point data and interval data are directly included while

constructing the likelihood function.

First, the model is validated using the Bayesian hypothesis testing method. A

uniform distribution bounded on the interval [12, 22] is chosen for the PDF of y under

the alternative hypothesis, i.e. fy(y|H1). The Bayes factor, and the Bayesian posterior

probability (P (H0|D)) are computed to be 4 and 0.80 respectively. Then, the method

is validated using the model reliability approach; for the sake of illustration, three

different tolerance levels are considered, as shown in Table 4.5.

Table 4.5: Heat Conduction Problem: Model Validation Results

Tolerance Model Reliability
δ (in Celcius) P (H0|D)

1 0.3
2 0.58
3 0.71

Though both the methods - Bayesian hypothesis testing and model reliability

approach - are used to calculate “the probability that the model is correct”, it is

165



5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Temperature at Mid-point (in Celcius)

P
D
F

Figure 4.7: PDF of the Model Prediction

important not to compare them, because they are different from each other. In

Bayesian hypothesis testing, the choice of fy(y|H1) is subjective, and affects the

model validation result; in fact, the Bayesian posterior probability is simply a relative

measure of support from data to the model vs. alternate hypothesis. Therefore, it

is necessary to be sufficiently informed about this PDF fy(y|H1), in order to obtain

accurate results. On the other hand, there are no assumptions in the model reliability

metric, and hence it is likely to yield a more objective metric for model validation.

4.4.5 Model Validation: Summary

Model validation is important in the context of uncertainty quantification, to

measure the extent of agreement between the model prediction and experimental data.

In this dissertation, two approaches - Bayesian hypothesis testing and reliability-based

method - were investigated for model validation under uncertainty. Both of these

methods were extended to include several types of uncertainty and different types

of data scenarios such as interval data, uncharacterized data, and time series data.
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The Bayesian hypothesis testing computes a Bayes factor metric for model validation

which is relative to the choice of the alternate hypothesis. On the other hand, the

model reliability metric is absolute and directly calculates the probability that the

difference between the model prediction and the experimental observation is within

an acceptable tolerance limit.

4.5 Summary

Modeling and simulation is an integral part of many engineering applications.

These models are used in different stages of the life-cycle of engineering systems. The

system is not only analyzed but also designed using computational models; further,

during the operations stage, models are used to monitor the system health, and

therefore aid in diagnosis and prognosis.

The development of a computational model is accompanied by several sources of

errors and uncertainty, and these sources of uncertainty, in turn, affect the quality of
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the model prediction. Therefore, in order to quantify the uncertainty in the system-

level prediction, it is not only necessary to quantify the input data uncertainty, but

also essential to quantify the model uncertainty. While Chapter III focused on meth-

ods to address input data uncertainty, the current chapter addressed the issue of

model uncertainty.

The quantification of model uncertainty is performed through three different ac-

tivities, namely model verification, calibration and validation. These activities are not

necessarily performed in a particular order, though it is preferable to perform model

verification before calibration and/or validation. Calibration and validation activities

may be performed in any order or even iteratively. The various aspects of verifica-

tion, calibration, and validation, along with the contributions of this dissertation, are

summarized below:

1. Model Verification: When a computational code is built to solve a mathe-

matical equation, the true solution of the equation may not be estimated due

to the presence of numerical solution approximations, rounding off errors, etc.

The process of model verification quantifies the error between the true mathe-

matical solution and the computer code output. Section 4.2 addressed the issue

of model verification. Two different types of errors were considered: (1) dis-

cretization error due to the use of finite elements in computer codes; (2) solution

approximation through surrogate models. While the former is a deterministic

error, the latter is stochastic. These errors need to be included in uncertainty

propagation; this will be demonstrated in the forthcoming chapters.

2. Model Calibration: Physics-based models have parameters which need to

be calibrated/estimated so that the model predictions are in better agreement

with the experimental observations. Section 4.3 discussed least squares-based,
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likelihood-based and Bayesian methods for model parameter calibration. Sec-

tion 4.3.8 developed Bayesian methods to perform model calibration under un-

certainty, including interval data, partially characterized data, etc. It was ob-

served that the Bayesian approach provides a systematic procedure to account

for these types of uncertainty during the calibration procedure. The proposed

methodology was illustrated by calibrating the non-linear stiffness term in a

model used to predict the energy dissipation due to friction at a lap joint in a

mechanical component.

3. Model Validation: Model validation quantifies the extent of agreement be-

tween the model prediction and the reality that the model is intended to repre-

sent. Section 4.4 investigated two approaches - Bayesian hypothesis testing and

model reliability method - for model validation under uncertainty, including

interval data, uncharacterized data, and time series data. The two methods are

based on two different philosophies and hence, their results cannot be compared

with each other. Further, there are several challenges in both these methods; in

the former case, the choice of the alternate PDF is subjective, and in the latter

case, the model reliability metric may yield low reliability values as the data

size increases. Future work needs to address these issues and propose solutions

in order to overcome the challenges with respect to the implementation of both

these methods.

One challenge, especially when the system response prediction is based on multiple

component-level and subsystem-level models, is that these uncertainty quantification

activities need to be performed for each of the lower-level models. Therefore, in order

to quantify the uncertainty in the system-level response, it is necessary to integrate

the results from the uncertainty quantification activities performed at multiple levels.

The development of a computational methodology for such integration is the focus of
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Chapter VI. Prior to Chapter VI, Chapter V discusses the application of the proposed

methods for data uncertainty quantification and model uncertainty quantification to

fatigue crack growth analysis, as a case study.
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CHAPTER V

CASE STUDY: FATIGUE CRACK GROWTH ANALYSIS

5.1 Introduction

The process of fatigue crack growth is affected by many sources of variability,

such as loading, material properties, geometry and boundary conditions. Therefore,

it is appropriate to describe the crack size after a certain number of load cycles

through a probability distribution. Probabilistic fracture mechanics is an extensive

area of research and numerous studies have addressed both model-based [151–172]

and data driven [173–176] techniques for probabilistic crack growth and life predic-

tion. This chapter focuses on model-based methods which include both probabilistic

techniques [151, 152] and advanced computational mechanics techniques [153–155].

Probabilistic crack growth analysis has been applied to both metals (e.g. Johnson

and Cook [156], Maymon [157]) and composites [158–162]. Practical applications of

these methods include nuclear structural components [163], helicopter gears [164],

gas turbine engines [165], and aircraft components [166, 167]. These developments

have led to software for probabilistic fracture mechanics [168], and several commercial

software tools such as DARWIN [169], GENOA [170], and other software tools that

build probabilistic analysis around well-established codes such as AFGROW [171]

and FASTRAN [172].

The aforementioned studies on probabilistic crack growth prediction have primar-

ily included only the effects of natural variability in loading conditions, material and

geometric properties, and crack growth model parameters. However, many of them

have not explicitly accounted for other sources of uncertainty such as data uncer-

tainty and other types of model uncertainty and error. The different types of error
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and uncertainty appear at different stages of analysis, and may combine in nonlin-

ear, nested, or iterative manner. Further, some of the errors are deterministic (e.g.,

finite element discretization error) while some others are stochastic (e.g., material

properties). It is essential to systematically account for all these sources of error and

uncertainty in order to ensure robustness in model calibration, model validation, and

uncertainty quantification. This chapter includes the different sources of variability,

data uncertainty, model uncertainty and errors that affect fatigue crack growth anal-

ysis, and develops a methodology to quantify the uncertainty and assess the validity

in the overall crack growth model prediction (or prognosis).

Saxena et al. [177] reviewed several metrics to assess the performance of prognosis

algorithms. These metrics are based on (1) observed error, (2) standard deviation

of the observed quantity, (3) sensitivity, (4) reliability, and (5) cost-benefit analysis.

These metrics do not directly quantify the confidence in the model prediction and do

not delineate the contributions of the various sources of uncertainty. As explained

earlier in Section 4.4 in Chapter IV, a rigorous approach to model validation needs to

explicitly account for the different sources of uncertainty and quantitatively judge the

performance of the model [103]. This chapter uses the Bayesian hypothesis testing

methodology developed in Section 4.4.1 in order to quantify the confidence in the

fatigue crack growth prediction; recall that this method quantifies the extent to which

the data supports the model and directly computes the probability of the model being

correct.

In this chapter, the various quantities of interest and different types of uncertainty

(physical variability, data uncertainty, and model uncertainty/errors) are connected

through a Bayesian network. Further, for use in time-dependent problems, a dynamic

Bayesian network is constructed and this can be useful in two ways: (1) in an inverse

problem [178] where the uncertainty in the model parameters is quantified using
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experimental evidence; and (2) in a forward problem [179] that aids in probabilistic

prediction.

In the inverse problem of calibration for fatigue crack growth prediction, previ-

ous techniques have been used to calibrate either a single parameter [180, 181] or

the parameters of a single model [182]. Further, these studies [180–182] have not

explicitly included the effect of different types of uncertainty - physical variability,

data uncertainty, and model uncertainty and errors - on calibration. As a result,

all the difference between the model prediction and experimental observation gets

attributed to the calibration parameters without acknowledging or accounting for the

other sources of error and uncertainty. In this chapter, the effect of the three differ-

ent types of uncertainty (physical variability, data uncertainty, and model uncertainty

and errors) are explicitly included and multiple parameters and model errors are cali-

brated simultaneously, using the calibration technique discussed earlier in Section 4.3

in Chapter IV.

The forward problem involves the use of the calibrated model for probabilistic

crack growth prediction. Probabilistic damage prediction aids in effective progno-

sis under uncertainty, and helps to forecast the remaining useful life of the struc-

tural/mechanical system under study. In this chapter, a sampling-based methodol-

ogy is proposed to include all three types of uncertainty in this prediction; then this

prediction is validated against validation data collected through inspection.

Different types of data situations are considered for both calibration and val-

idation - (1) data available for constructing the probability distributions of input

variables may be sparse, leading to uncertainty regarding their distribution types and

parameters; (2) inspection data used for calibration and/or validation may be of three

different types: crack not detected, crack detected but size not measured, or crack

detected with size measurement; and (3) measurement errors in inspection data.
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Further, different models - long crack growth law, wheeler’s retardation model,

characteristic plane approach, finite element analysis to calculate stress intensity fac-

tor, and surrogate model to replace the finite element analysis - are integrated for

the purpose of fatigue crack growth prediction. The presence of several models must

not be confused with hierarchical system models discussed earlier in Section 1.3.1.

Hierarchical system models refer to multiple component-level, subsystem-level and

system-level models, and data could be available at multiple levels. In this chapter,

the goal is to perform uncertainty quantification and validation in a single level, with

respect to a single engineering component subjected to fatigue crack growth.

The steps of the proposed methodology can be summarized as follows: (1) connect

different models (finite element model, surrogate model, crack growth law, retardation

model, and characteristic plane model) through a Bayesian network; (2) quantify

the errors in each model, treating deterministic and stochastic errors differently; (3)

include the different sources of uncertainty physical variability, data uncertainty,

and model uncertainty in the Bayesian network; (4) use global sensitivity analysis to

select calibration parameters; (5) collect inspection data and update the parameters

in multiple models; (6) include different cases of inspection such as crack not detected,

crack detected but size not measured, and crack detected with size measurement; and

(7) use a Bayesian metric to assess the validity of the model prediction. (Note that the

data for model calibration and model validation should be different and independent.)

The above steps are implemented in this chapter for planar crack growth analysis,

in the context of linear elastic fracture mechanics (LEFM) with small scale plastic-

ity. Different types of model uncertainty and errors crack growth model uncertainty,

surrogate model uncertainty and finite element discretization error - are considered

explicitly. Deterministic errors are addressed by correcting where they arise and

stochastic errors are included through sampling. The effects of model assumptions
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such as planar crack, LEFM, equivalent stress intensity factor for multi-modal frac-

ture, and crack retardation model are not individually quantified. However, in the

model validation step, the difference between the model prediction and the experi-

mental observation obviously includes the contribution of these sources.

The rest of the chapter is organized as follows. Section 5.2 discusses the crack

growth modeling procedure. Section 5.3 discusses several sources of uncertainty and

proposes methods to handle them.Section 5.4 discusses global sensitivity analysis

to screen the model parameters for calibration, and outlines the proposed Bayesian

inference technique for calibrating these parameters.Section 5.5 extends Bayesian hy-

pothesis testing to time-dependent problems, in order to assess the validity and the

confidence in the crack growth model prediction.Section 5.6 illustrates the proposed

methods using a numerical example, surface cracking in a cylindrical component.

5.2 Crack Growth Modeling

Different models such as the modified Paris’ law (for long crack growth analysis),

Wheeler’s retardation model (for variable amplitude loading), characteristic plane

approach (to calculate an equivalent stress intensity factor in the presence of multi-

axial loading) are connected together to predict the crack growth as a function of

number of load cycles. Note that these models are used only for the purpose of

illustration and any other combination of appropriate models may be used. The

focus of this chapter is on uncertainty quantification and model validation and these

techniques are applicable to different crack growth analysis procedures.

Consider any long crack growth law used to describe the relationship between

da/dN and ∆K, where N represents the number of cycles, a represents the crack

size and ∆K represents the stress intensity factor range. This dissertation uses a

modified Paris’ law [183] for illustration purposes and includes Wheelers retardation
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model [184] as:

da

dN
= φrC(∆K)n

(

1− ∆Kth

∆K

)m

(5.1)

In Eq. 5.1, ∆Kth refers to the threshold stress intensity factor range and φr refers to

the retardation parameter which can be defined as:

φr =















(

rp,i
aOL+rp,OL−ai

)λ

if ai + rp,i < aOL + rp,OL

1 if ai + rp,i ≥ aOL + rp,OL

(5.2)

In Eq. 5.2, aOL is the crack length at which the overload is applied, ai is the current

crack length, rp,OL is the size of the plastic zone produced by the overload at aOL, rp,i is

the size of the plastic zone produced at the current crack length ai, and λ is the curve

fitting parameter for the original Wheeler model termed the shape exponent [185].

Sheu et al. [186] and Song. et al. [187] observed that crack growth retardation actually

takes place within an effective plastic zone. Hence the size of the plastic zone can be

calculated in terms of the applied stress intensity factor (K) and yield strength (σ)

as:

rp = α
(K

σ

)2

(5.3)

where α is known as the effective plastic zone size constant which is obtained exper-

imentally [186]. Eq. 5.2 and Eq. 5.3 can be used in combination with Eq. 5.1 under

the assumption of small-scale plasticity, where the plastic zone size is estimated using

linear-elastic fracture mechanics (LEFM).

The expressions in Eq. 5.2 and Eq. 5.3 can be combined with Eq. 5.1 and used to

calculate the crack growth as a function of number of cycles. In each cycle, the stress

intensity factor can be expressed as a function of the crack size (a), loading (L) and
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angle of orientation (χ). Hence, the crack growth law in Eq. 5.1 can be rewritten as

da

dN
= g(a, L, χ) (5.4)

Note that the long crack growth model is not applicable to the short crack growth

regime and the concept of an equivalent initial flaw size (EIFS) was proposed to

bypass short crack growth analysis and make direct use of a long crack growth law

for fatigue life prediction. The equivalent initial flaw size θ, i.e., the initial condition of

the differential equation in Eq. 5.1, can be calculated from material properties (∆Kth,

the threshold stress intensity factor and ∆σf , the fatigue limit) and geometric shape

factor (Y ) as derived by Liu and Mahadevan [188]:

θ =
1

π

(∆Kth

Y∆σf

)2

(5.5)

By integrating the expression in Eq. 5.1 starting from θ, the number of cycles (N) to

reach a particular crack size aN can be calculated as:

N =

∫

dN =

∫ aN

θ

1

φrC(∆K)n
(

1− ∆Kth

∆K

)mda (5.6)

The stress intensity factor range ∆K in Eq. 5.6 can be expressed as a closed form

function of the crack size for specimens with simple geometry subjected to constant

amplitude loading. However, this is not the case in many mechanical components,

where ∆K depends on the loading conditions, geometry and the crack size. Further,

if the loading is multi-axial (for example, simultaneous tension, torsion and bending),

then the stress intensity factors corresponding to three modes need to be taken into

account. This can be accomplished using an equivalent stress intensity factor. If

KI , KII , KIII represent the mode-I, mode-II and mode-III stress intensity factors

respectively, then the equivalent stress intensity factor Keqv can be calculated using
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a characteristic plane approach proposed by Liu and Mahadevan [189] as:

Keqv =
1

B

√

(KI)2 + (
KII

s
)2 + (

KIII

s
)2 + A(

KH

s
)2 (5.7)

In Eq. 5.7, KH is related to hydrostatic stress, and s is the ratio of KII and KI

evaluated at a specific crack growth rate (da/dN). A and B are material parameters.

The characteristic plane approach is applicable only when the crack surface can be

approximated to be planar. The use of the characteristic plane approach for crack

growth prediction under multi-axial variable amplitude loading has been applied to

cracks in railroad wheels [189] and validated earlier with several data sets [190, 191].

Each cycle in the integration of Eq. 5.6 involves the computation of ∆Keqv us-

ing a finite element analysis owing to (1) complicated geometry, and (2) variable

amplitude, multi-axial loading. Repeated evaluation of this finite element analysis

renders this integration extremely expensive. Hence, it is computationally more af-

fordable to substitute the finite element model with an inexpensive surrogate model

(also known as response surface model). Different kinds of surrogate models (polyno-

mial chaos [45], support vector regression [46], relevance vector regression [47], and

Gaussian Process interpolation [51, 52] have been explored and the Gaussian process

(GP) modeling technique has been found to have the least error for the purpose of

predicting ∆Keqv [181] . A few runs of the finite element analysis are used to train the

GP surrogate model and then, this GP model is used to predict the stress intensity

factor for other crack sizes and loading cases (for which finite element analysis has

not been carried out).

The details of the construction of the Gaussian process were discussed earlier

in Section 2.8. Further, the construction of the Gaussian process surrogate model in

order to predict the equivalent stress intensity factor has been documented [179, 181].

This equivalent stress intensity factor is then used in cycle-by-cycle integration of the
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crack growth law, thereby calculating the crack size (A) as a function of number

of load cycles (N). The entire procedure for the adopted crack growth analysis is

summarized in Fig. 5.1.

Finite element analysis

(Generate training points)

Characteristic

plane model

Surrogate model

Loading

∆Keqv

EIFS

Crack growth law

(Modified Paris Law

+ Wheeler model)

Predict final crack size

(A) as a function of

number of load cycles (N)

Material

properties

∆Kth, ∆σf

Figure 5.1: Deterministic Crack Propagation Analysis

In Fig. 5.1, note that the finite element analysis and the construction of surrogate

model are performed offline, i.e. before the start of crack growth analysis. Crack

propagation analysis is done only with the surrogate model.

The algorithm shown in Fig. 5.1 for crack propagation analysis is deterministic

and does not account for errors and sources of uncertainty. The next section discusses

different sources of uncertainty associated with each of the blocks in Fig. 5.1.
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5.3 Sources of Uncertainty

This section proposes methods to include the different sources of uncertainty in

the crack growth analysis algorithm shown in Fig. 5.1. These sources of uncertainty

can be classified into three different types – physical variability, data uncertainty and

model uncertainty – as shown in Fig. 5.2.

SOURCES OF UNCERTAINTY

Natural variability

Loading

Materials
properties

Threshold

SIF (∆Kth)

fatigue limit (σf )

EIFS

Data uncertainty

Sparse data

Uncertain

distribution
parameters for

∆Kth and ∆σf

Output
measurement

error

Crack detection
uncertainty

Model uncertainty

Crack growth

law

SIF (∆Keqv)

calculation

FEA

discretization
error

Surrogate

model

uncertainty

Figure 5.2: Sources of Uncertainty in Crack Growth Prediction

Fig. 5.2 shows the different sources of error and uncertainty considered in this

chapter for the sake of illustration of the proposed methodology. There are several

other sources of uncertainty that are not considered here. The physical variability in

geometry, boundary conditions and some material properties (modulus of elasticity,
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friction coefficient, Poisson ratio, yield stress, ultimate stress, etc.) is assumed to less

significant and hence these quantities are treated to be deterministic. However, these

can be included in the proposed framework by constructing different FEA models (for

different geometry, boundary conditions, and material properties) and use multiple

runs of these FEA models to train the Gaussian process surrogate model. Then,

these parameters can also be treated as inputs to the surrogate model and sampled

randomly in the uncertainty quantification procedure explained later in Sections 5.4

and 5.5. Further, there are several other types of model errors that arise due to (1)

the assumption of a planar crack; (2) the assumption of linear elastic behavior and use

of LEFM; (3) the use of a characteristic plane approach (to calculate an equivalent

stress intensity factor) and parameters of the characteristic plane model in Eq. 5.7;

(4) errors in the estimation of retardation coefficient fr in Wheeler’s model, etc. These

errors are not considered in this study and the quantification of these errors is not

trivial; these errors will be considered in future work. The focus of this chapter is not

the quantification of all the error sources but to develop a methodology to assess the

validity of the crack growth prediction by systematically accounting for the various

sources of uncertainty and errors. The error and uncertainty terms considered in this

study adequately illustrate the various techniques for model calibration, validation

and uncertainty quantification.

The following subsections discuss each source of uncertainty and propose methods

to handle them.

5.3.1 Physical or Natural Variability

This case study considers the physical variability in (i) loading conditions, and

(ii) material properties (threshold stress intensity factor ∆Kth and fatigue limit ∆σf ).
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As mentioned earlier, the variability in other material properties such as modulus of

elasticity, Poisson ratio, etc. is not considered.

5.3.2 Data Uncertainty

Two types of data uncertainty are addressed in this case study. First, sparse data

is assumed to be available for variability characterization, leading to distribution pa-

rameter uncertainty in the distributions of material properties (∆Kth and ∆σf ). The

total probability-based integration approach proposed in Section 3.4 in Chapter III

is used for data uncertainty quantification in this case study.

Second, field inspections are used to collect crack growth data for calibration

and validation; the presence of crack detection uncertainty and measurement errors

are also included in this case study. For an in-service component, non-destructive

inspection (NDI) is commonly used for damage detection. Several metrics could be

used to evaluate the performance of NDI, such as probability of detection (POD),

flaw size measurement accuracy, and false call probability (FCP). These criteria are

developed from different methods, and they are used to evaluate different aspects of

NDI performance. However, Zhang and Mahadevan [192] showed that these quantities

can be mathematically related. POD and FCP can be derived from size measurement

accuracy, which measures the difference between actual values and observed values of

the crack size.

In the context of calibration and/or validation, inspection results may be of three

different types: (a) crack is not detected; (b) crack is detected but size not measured;

and (c) crack is detected and size is measured. The concept of POD can be employed

for the first two cases and for the case of detecting a crack and also measuring its size,

size measurement accuracy can be employed. Based on the above consideration, size

measurement accuracy can be used to quantify the uncertainty in experimental crack
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growth data, with the following expression determined by regression analysis [192]:

am = β0 + A× β1 + ǫm (5.8)

In Eq. 5.8, is the measured flaw size; A is the actual flaw size; β0 and β1 are the

regression coefficients; ǫm represents the unbiased measurement error, assumed as a

normal random variable with zero mean and standard deviation σǫ. The value of σǫ

is different for each inspection technique used.

5.3.3 Model Uncertainty and Errors

The proposed methodology uses several models (finite element model, characteris-

tic plane model, surrogate model, crack growth model, retardation model, etc.), and

each of these models has its own error/uncertainty. In the discussion below, all the

errors except the error due to the use of the characteristic plane approach and the

uncertainty in the calculation of the retardation coefficient are considered. Some of

them are deterministic while others are stochastic; the two types of errors need to be

treated in different ways. In the discussion below, the quantification of finite element

discretization and surrogate model error are solution approximation errors associated

to the calculation of stress intensity factor, and hence grouped together.

5.3.3.1 Uncertainty in Crack Growth Model

More than 20 different crack growth laws (e.g., Paris law, Foreman’s equation,

Weertman’s equation) have been proposed in the literature. The mere presence of

many such different models explains that none of these models can be applied uni-

versally to all fatigue crack growth problems. Each of these models has its own

limitations and uncertainty. In this dissertation, a modified Paris law has been used
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only for illustration; however, the proposed methodology for uncertainty quantifica-

tion and model validation can be implemented using any crack growth model.

The uncertainty in crack growth model can be subdivided into two different types:

crack growth model error and uncertainty in model coefficients. If ǫcg is used to

denote the crack growth model fitting error, then the modified Paris law (including

the Wheeler retardation term) can be rewritten as in Eq. 5.9. Note that this error

term is assumed to represent the difference between the model prediction and the

experimental observation. Conventionally, in statistical model fitting, a normal error

term is added to the model. This study uses a lognormal and hence multiplicative

error term as shown in Eq. 5.9.

da

dN
= φrC(∆K)n

(

1− ∆Kth

∆K

)m

ǫcg (5.9)

An estimate of the variance of ǫcg can be obtained while calibrating the model pa-

rameters based on the available inspection data. The model coefficients in Paris law

are C, m and n, and the uncertainty in these parameters can be represented through

probability distributions.

5.3.3.2 Solution Approximation Errors

Several finite element runs for some combination of input-output variable val-

ues are used to train the Gaussian process surrogate model in order to predict the

equivalent stress intensity factor. The input variables are loading and crack geome-

try. Once the surrogate model is constructed, it can be used to evaluate the stress

intensity factor for other (untrained) combinations of input variable values.

There are two errors – discretization error and surrogate model error – that need

to be quantified in this procedure. The quantification of these errors were discussed

earlier in Sections 4.2.1 and 4.2.2 respectively. First, the discretization error is used to

184



correct the finite element solution, and the corrected values are in turn used to train

the surrogate model. The prediction of the surrogate model at a particular input

realization is a Gaussian random variable, and the surrogate model uncertainty can

be included by drawing random samples based on the predicted mean and variance.

5.4 Calibration of Model Parameters

This section explains the Bayesian calibration technique used to infer the proba-

bility distributions of the model parameters and modeling errors using experimental

data. The calibration parameters are assigned prior distributions, and these distribu-

tions are updated after collecting experimental evidence corresponding to the model

output (crack inspection after a particular number of loading cycles).

5.4.1 Bayesian Network

There are several possible quantities that can be updated using the given pro-

cedure. These include: (1) equivalent initial flaw size; (2) parameters of modified

Paris’s law (C, n, m); (3) error (ǫcg) of the modified Paris law; (4) material prop-

erties such as threshold stress intensity factor (∆Kth), and fatigue limit (∆σf ); (5)

variance of the output (crack size after N cycles) measurement error (ǫm), etc. All of

these parameters can be connected in a Bayesian network as shown in Fig. 5.3.

Note that this is a dynamic Bayesian network, which connects the variables in one

load cycle (i) to the next load cycle (i+ 1).

Though it is theoretically possible to calibrate all the parameters simultaneously, a

multi-dimensional calibration procedure is computationally intensive. Also, in several

situations, only a few parameters contribute effectively to the overall uncertainty in

the final model prediction. It is advantageous to identify only such “important”

parameters and calibrate them. Global sensitivity analysis is used to quantify the
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Figure 5.3: Dynamic Bayesian Network: Crack Growth Analysis

contribution of the various sources of uncertainty to the overall uncertainty in the

crack growth prediction, and uses the results of global sensitivity analysis to identify

the parameters that need to be calibrated.

5.4.2 Global Sensitivity Analysis

The method of global sensitivity analysis has previously been applied only to natu-

rally varying random inputs; this method is extended to include data uncertainty and

model uncertainty as well. Since all the quantities have been represented using prob-

ability distributions, the method of global sensitivity analysis discussed in Section 2.6
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can be used to analyze the contributions of physical variability, data uncertainty and

model uncertainty to the overall uncertainty in crack size prediction. Note that the

equivalent initial flaw size has physical variability with distribution parameter un-

certainty; hence, the method developed in Section 3.5 can be used to quantify the

contributions of both the physical variability and distribution parameters to the crack

size uncertainty.

Since the crack size is predicted as a function of number of load cycles, the uncer-

tainty in crack size is also computed as function of number of load cycles. Therefore,

the sensitivities of the various sources of uncertainty are also computed as a function

of number of load cycles.

The quantities that have a high influence on the variance of the final crack growth

prediction are alone selected for calibration. While this screening procedure is based

on second-moment calculation, the model calibration and validation techniques ex-

plained in the following sections consider the entire probability distribution for all

quantities.

5.4.3 Model Calibration

Let Ω denote the vector of quantities that are selected for calibration. Assume

that there is a set of m experimental data points, i.e. crack inspection after N loading

cycles. Each inspection may produce three possible results: (1) no crack detected;

(2) crack detected but size not measured; and (3) crack detected and size measured

to be A. This is the first set of data, referred to as the calibration data.

Bayesian updating is a three step procedure:

1. Prior probability distributions are assumed for each of the parameters. The

prior distribution of EIFS is calculated using Eq. 5.5. The crack growth model
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error (ǫcg) has zero mean and the standard deviation is assumed to have a non-

informative prior. The prior distributions of crack growth law parameters are

obtained from Liu and Mahadevan [188].

2. Construction the likelihood function, i.e. L(Ω) by including the different types

of uncertainty, using the methods developed in Section 4.3.8.

3. Calculate the posterior PDF fΩ(Ω|D) using Bayesian inference as explained in

Section 2.4. The joint PDF of Ω is used to calculate the marginal distributions

of the individual parameters.

In step 2, the likelihood of Ω is calculated as the probability of observing the data

conditioned on Ω and hence is a function of Ω. For every given Ω, a Monte Carlo

analysis is required for the calculation of likelihood along the following steps:

1. Construct the Gaussian process surrogate model as explained in Section 5.2.

Include the sources of uncertainty as explained in Section 5.3.

For a given Ω :

2. Generate a loading history (Ni cycles) as explained in Section 5.3.

3. Use the deterministic prognosis methodology in Section 5.2 to calculate the final

crack size at the end of Ni cycles.

4. Repeat steps II and III and calculate the probability distribution of crack size

at the end of Ni (for i = 1 to m) cycles. Let this distribution be denoted by

f(a). Use Eq. 5.8 to calculate f(am|a). This probability density function can

be used to calculate the likelihood of Ω.

In order to calculate the likelihood function L(Ω), calibration data needs to be

collected using inspection. For a particular inspection after Ni cycles, there are three
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possible cases:

Case 1: No crack detected.

L(Ω) ∝ 1−
∫ ∫

f(am|a)f(a|Ni,Ω)dadam (5.10)

Case 2: Crack is detected but size not measured.

L(Ω) ∝
∫ ∫

f(am|a)f(a|Ni,Ω)dadam (5.11)

Case 3: Crack is detected and the size is measured to be Ai.

L(Ω) ∝
∫

f(am = Ai|a)f(a|Ni,Ω)da (5.12)

Note that am and a vary in the interval (0, ∞).

If different inspections give any of the three types of crack information, the cor-

responding likelihood function for each data point is calculated using Eq. 5.10 - 5.12

and then all the likelihood functions are multiplied to get the overall likelihood func-

tion for the entire inspection data set. Finally, the likelihood is multiplied with the

prior and normalized to calculate the joint posterior distribution of Ω [52], and this

joint distribution can be marginalized to calculate the individual distributions [27].

5.5 Model Validation

This section uses the Bayesian hypothesis procedure in order to assess the validity

and the confidence in the prediction of the fatigue crack growth models. Consider

the crack-growth algorithm discussed in Section 5.2. The probability distribution of

the crack size (a) can be calculated as a function of number of load cycles (N) after

accounting for the various sources of uncertainty in a systematic manner using the
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methods in Sections 5.2 and 5.3. Let f(a|N) denote the corresponding probability

density function. The aim of this section is to assess the validity of the underlying

crack growth model and propose a metric to quantify the confidence in the model

prediction. It is assumed that a second set of data (D), referred to as validation data,

is available for this purpose, and is independent of the calibration data. Recall that

the Bayes factor validation metric can be computed as:

B =
P (D|H0)

P (D|H1)
(5.13)

In Eq. 5.13. The calculation of the numerator is based on the available data (D), and

the prediction of the crack size f(a|N) and f(am|a) is calculated based on Eq. 5.8.

For a particular inspection after Ni cycles, there are three possible cases:

Case 1: No crack detected.

L(Ω) ∝ 1−
∫ ∫

f(am|a)f(a|Ni)dadam (5.14)

Case 2: Crack is detected but size not measured.

L(Ω) ∝
∫ ∫

f(am|a)f(a|Ni)dadam (5.15)

Case 3: Crack is detected and the size is measured to be Ai.

L(Ω) ∝
∫

f(am = Ai|a)f(a|Ni)da (5.16)

Note that Eq. 5.14 - 5.16 are different from Eq. 5.10 - 5.12. Previously, f(a|N,Ω)

was calculated for a given realization of calibration parameters Ω. This is not the

case in Eq. 5.14 - 5.16 where the uncertainty in the parameters Ω (sampled using

posterior probability distributions of Ω) is included in f(a|N).
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The calculation of the denominator is related to the hypothesis that the model

is not correct. Hence, it is necessary to assume a distribution for f(a|N) under this

hypothesis. As there is no information available for this hypothesis, a non-informative

uniform prior distribution for f(a|N) is used and the denominator term P (D|H1) is

calculated based on Eq. 5.14 - 5.16. Then the Bayes factor can be calculated using

the likelihood ratio in Eq. 5.13.

There may be multiple inspections at multiple time instants for the sake of crack

growth validation. If these multiple inspections are performed are multiple compo-

nents, the inspections can be assumed to be independent of each other, the overall

Bayes factor (that accounts for data from multiple time instants) will be equal to the

product of the individual Bayes factors. Assume that the data D is composed of data

from several independent inspections D1, D2, D3....Dn and the Bayes factor corre-

sponding to data Di is Bi. Then the overall Bayes factor is the product of all Bi’s. On

the other hand, if the multiple inspections are performed on the same specimen, then

the method developed in Section 4.4.1.4 can be used to compute the overall Bayes

factor (B). The confidence associated with the prediction is thus calculated as B
B+1

.

In summary, Sections 5.4 and 5.5 proposed a Bayesian methodology for (1) cal-

ibration and uncertainty quantification of model parameters using inspection data

(crack size measurements after a number of cycles, including cases where no cracks

were detected, and crack detections without measurements), and (2) assessing the

validity of the crack growth prediction by comparing against a second independent

set of validation data. The following section illustrates the proposed methodology

using a numerical example.
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5.6 Numerical Example

A two-radius hollow cylinder with an elliptical surface crack in fillet radius region

is chosen for illustrating the proposed methodology, as shown in Fig. 5.4.

Figure 5.4: Surface Crack in Cylindrical Component

The commercial finite element software ANSYS [193] is used to build and analyze

the finite element model. A sub-modeling technique is used near the region of the

crack for accurate calculation of the stress intensity factor. As mentioned earlier in

Section 5.3, the material and geometric properties of the specimen are assumed to be

deterministic and are listed in Table 5.1 and Table 5.2 respectively.

Table 5.1: Material Properties

Aluminium 7075-T6

Property Value

Modulus of elasticity 72 GPa

Poisson ratio 0.32

Yield stress 450 MPa

Ultimate stress 510 MPa

Table 5.2: Geometric Properties

Cylinder Properties

Property Value

Length 152.4 mm

Inside radius 8.76 mm

Outside radius (Narrow) 14.43 mm

Outside radius (Wide) 17.78 mm

A variable amplitude multi-axial (bending and torsion) loading is considered in

this study. A block loading history is considered (sample shown in Fig. 5.5), for the

purpose of illustration.
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Figure 5.5: Sample Block Loading History

The block length is assumed to be a random variable and the maximum and mini-

mum amplitudes in each block are also treated as random variables. To generate each

block of loading, first the block length is randomly sampled and then the maximum

and minimum amplitudes for that block are randomly sampled. The entire loading

history is generated by repeating this process and creating several successive blocks

to occupy the duration of interest.1

All the different types of uncertainty in Fig. 5.2 are included in this numerical

example, as shown in Table 5.3.

This finite element model is run for 10 different crack sizes and 6 different loading

cases and these results are used to train the Gaussian process surrogate model for the

calculation of the stress intensity factor. In each run of the finite element analysis,

the discretization error is calculated and the corrected solution in turn is used to train

1Ling et al. [194, 195] have extended this study to include other types of time-dependent models
for loading, such as rainflow counting, Markov processes, ARIMA models, etc.
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Table 5.3: Types of Uncertainty

Type Quantities Details

Natural Loading Random Block Loading
Variability Block Length ˜ N(0, 500)

Maximum Amplitude ˜ N(µmax, σmax)
Minimum Amplitude ˜ N(µmax, σmax)
µmax ∼ Uniform(1.355, 0.263) kNm
σmax ∼ Uniform(0.455, 0.130) kNm
µmin ∼ Uniform(2.710, 0.260) kNm
σmin ∼ Uniform(0.455, 0.130) kNm

Natural Material Properties ∆Kth and ∆σf

Variability (for prior Distribution type, mean and
distribution of EIFS) standard deviation based on [188]

Data Sparse data Distribution parameters of ∆Kth and ∆σf

Uncertainty are uncertain → Assumed CoV for mean = 0.1
& standard deviation = 1 → Use Eq. 3.8
to calculate PDFs of ∆Kth and ∆σf → Use Eq. 5.5
to calculate prior PDF of EIFS (θ)

Data Inspection data (crack not detected, crack detected but size not measured,
Uncertainty and crack size measured) considered in both calibration and validation
Model Crack Statistics of uncertain parameters
Uncertainty Growth Model based on [188]. Also see Table 5.4 for prior statistics
Model Discretization Calculated using Richardson Extrapolation
Uncertainty Error Refer to Section 4.2.1
Model Surrogate Compute GP variance based on Eq. 2.19
Uncertainty Model Error and include in uncertainty propagation

the Gaussian process surrogate model. The maximum discretization error was found

to be about 2% of the finest mesh solution. If the discretization errors were found to

be large, then it indicates a coarsely resolved calculation, which may not be suitable

in the context of model calibration.

Global sensitivity analysis was used to calculate the first order (individual) and

total (combined) effects of the various crack growth parameters such as EIFS (θ),

model parameters (C, m), crack growth model error (ǫcg), threshold stress intensity

factor (∆Kth), loading, etc. It was observed that the sensitivity of the parameters

changed with time and hence, it was necessary to calculate the sensitivity indices

as a function of number of cycles. After a significant number of loading cycles, the

parameters EIFS θ, model parameter C, and crack growth model error (ǫcg) were

194



found to be the most significant terms. The first-order and total effects sensitivities

of these quantities are shown in Figs. 5.6 - 5.8. Recall that the first-order effects

describe the contribution of a particular variable to the uncertainty in the crack size,

by itself, whereas the total effects describe the overall contribution of a particular

variable to the uncertainty in the crack size, in combination with all other variables.
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Figure 5.6: Variability of EIFS: Sensitivity Index
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Figure 5.7: Crack Growth Parameter C: Sensitivity Index

The sensitivity indices of the other parameters were insignificant (less than 0.001)

and hence only three parameters (EIFS θ, model parameter C, and crack growth
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Figure 5.8: Crack Growth Error ǫcg: Sensitivity Index

model error ǫcg) are considered to have a dominant influence on the uncertainty in

the crack growth prediction in comparison with the other parameters. Hence, these

three are chosen to be the calibration parameters.

Experimental evidence of 100 data points (inspection) was simulated (based on

assumed true distributions for the inference quantities) and used for calibration as

explained in Section 5.4. 100 components were inspected at different time instants; no

crack was detected in one component, the crack size was measured in 49 components,

and the crack size was not measured in 50 components. This experimental data

is used to calculate the statistics of the parameters using the likelihood function

(Eq. 5.10 - 5.12) and Bayes theorem.

Note that Eq. 5.10 - 5.12 calculate the joint likelihood of the inference quan-

tities (EIFS θ, model parameter C, and crack growth model error ǫcg) and hence,

Bayes theorem gives the joint probability density function of these quantities. Hence,

in addition to the marginal posterior distributions, the correlations between these

quantities can also be estimated using the joint density function. For example, the

marginal prior and posterior PDF of EIFS is shown in Fig. 5.9.
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Figure 5.9: Prior and Posterior PDF of EIFS

The mean and the standard deviation of the prior distribution and the posterior

distribution of all the three inferred quantities are given in Table 5.4.

Table 5.4: Results of Calibration

Quantity EIFS θ (mm) C (m/cycle) ǫcg(mm/cycle)
True Statistics

Mean 0.3810 4× 10−13 1.0
Standard Deviation 0.0254 0.4× 10−13 0.05
Prior Statistics

Mean 0.5126 6.5× 10−13 1.0
Standard Deviation 0.1146 4.0× 10−13 0.1
Posterior Statistics

Mean 0.3788 5.7× 10−13 1.0
Standard Deviation 0.0222 3.1× 10−13 0.05

The Bayesian approach will be applicable even if the mean of the prior distribution

is one or two orders of magnitude away from the truth as long as the uncertainty in

the prior is large enough to contain the truth. In other words, the Bayesian approach

will work if there is any overlap between the prior distribution and the truth.

(If there is no overlap, then the posterior PDF will be zero everywhere. Note
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that the posterior distribution is proportional to the prior times the likelihood. In

the “region of the truth”, the prior will be zero as there is no overlap. Outside the

“region of the truth”, the likelihood will be zero.)

Having calibrated the parameters, the posterior distributions can be used to pre-

dict the distribution of crack size as a function of number of loading cycles. This

PDF was denoted by f(a|N) in Section 5.5. The mean, median and 95% probability

bounds of the crack size prediction is shown in Fig. 5.10 as a function of number of

cycles.
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Figure 5.10: Uncertainty in Crack Growth Prediction

Additional independent validation data is assumed to be available and the Bayes

factor is calculated for each data point individually. Recall that the Bayes factor is

the ratio of the likelihoods of the null and the alternate hypothesis. Eq. 5.14 – 5.16 are

used to calculate the P (D|H0) where H0 represents the hypothesis that the model is

correct. Similarly, the probability of observing the data under the alternate hypothesis

is calculated by assuming a uniform distribution for the crack size. Then, the ratio
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of these two likelihoods is calculated as the Bayes factor for each experimental data

available for validation. The results of validation are tabulated in Table 5.5.

Table 5.5: Results of Model Validation

No. of Cycles Crack size (mm) Bayes Factor
10008 0.42 3.16
13852 0.31 2.06
14141 0.63 0.80
14368 0.41 2.35
14659 0.43 2.80
15155 1.54 0.70
15277 0.55 2.10
17746 0.43 2.56
17844 0.62 0.79
19912 0.35 3.00

From Table 5.5, it can be seen that the Bayes factor is greater than unity in most

of the cases and lowest value is 0.70. The combined Bayes factor corresponding to all

the data can be calculated using the method developed in Section 4.4.1 to be equal

to 306. This corresponds to a 99.6% confidence in the model prediction.

5.7 Summary

This chapter applied the methods of Chapters III and IV for uncertainty quan-

tification and model validation in fatigue crack growth analysis. Structures with

complicated geometry and multi-axial variable amplitude loading conditions were con-

sidered. The finite element analysis used for calculation of stress intensity factor was

replaced using a Gaussian process surrogate model. Different sources of uncertainty

(physical variability, data uncertainty, and model error/uncertainty) were included in

the crack growth analysis. Different types of model errors (discretization error, crack

growth model error, surrogate model error) were considered explicitly. Deterministic
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errors were corrected where they arose and stochastic errors were included by using

random samples during uncertainty propagation.

Bayesian inference was used to calibrate the parameters of different models using

inspection results (crack size after number of cycles, including cases where no crack

was detected and crack was detected but size not measured). A Bayesian confidence

metric was developed to assess the validity and quantify the confidence in fatigue

crack growth prediction.

Note that this chapter used a particular set of models (modified Paris law, Wheel-

ers retardation model, characteristic plane approach for the calculation of an equiv-

alent stress intensity factor) only for the purpose of illustration. The crack growth

analysis was limited to linear elastic fracture mechanics and planar cracks. Also,

the effects of model assumptions such as planar crack, LEFM, equivalent stress in-

tensity factor for multi-modal fracture, and crack retardation model were not indi-

vidually quantified. However, the Bayesian framework for uncertainty quantification

and model validation is general and can easily accommodate other advanced analysis

models and corresponding model errors/uncertainty.

Though multiple models were used for crack growth prediction this chapter, they

were not a part of a hierarchical system. In a hierarchical system, the goal is to

to predict the system-level performance using subsystem-level, component-level, and

system-level models. In this chapter, several models were used used to predict the

crack growth in one component only. However, the method of Bayesian network is

general enough to connect multiple models, irrespective of whether the models are

present at the same level of hierarchy or at different levels of hierarchy. Hence, the

Bayesian network provides a tool for integrating the various sources of uncertainty in

hierarchical systems, which is the primary focus of the next chapter.

200



CHAPTER VI

INTEGRATION OF RESULTS FROM VERIFICATION,
VALIDATION, AND CALIBRATION ACTIVITIES

6.1 Introduction

Chapter IV addressed the quantification of model uncertainty during various

stages of the model development procedure. These various stages are grouped into

five activities, as summarized below.

1. Development of conceptual model and the governing mathematical equations

2. Development of computer code to solve the above equations

3. Model verification - quantify solution approximation errors

4. Model calibration - quantify uncertainty in model parameters

5. Model validation - quantify extent of agreement between model prediction and

experimental data

Chapter V demonstrated the various activities related to uncertainty quantifica-

tion by computing solution approximation errors, model parameter uncertainty, and

a validation metric equal to the probability that the model is supported by the ex-

perimental data. The results of calibration were used for model prediction, and this

prediction was validated using the validation data. Suppose that the probability that

the model is correct (P (H0|D) in Bayesian hypothesis testing and P (M) in model

reliability method) is equal to 0.6. How to make use of this probability for future

prediction? Further, the model calibration was based on the model, and hence is in-

herently conditioned on the assumed model form. (If the KOH framework is pursued,
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then the chosen model form corresponds to Eq. 4.9, and the result of calibration is

conditioned on this model form.) The model validation procedure assigns a probabil-

ity ( B
B + 1

) for this model form to be correct.

Therefore, it can be seen that the methods proposed in Chapter IV address the

three uncertainty quantification activities - model verification, validation, and cali-

bration - only individually. It is necessary to integrate the results from these activities

for the purpose of overall quantification in the model prediction. This is not trivial

because of several reasons.

1. The solution approximation errors calculated as a result of the verification pro-

cess need to be accounted for during calibration, validation, and prediction.

2. The result of validation may lead to a binary result, i.e. the model is accepted or

rejected; however, even when the model is accepted, it is not completely correct,

because the degree of correctness is indicated by the probability that the model

is correct. Hence, it is necessary to account for this degree of correctness of the

model in the prediction.

3. Model calibration is based on a particular model, and hence the posterior distri-

butions of the calibrated parameters are inherently conditioned on the chosen

model form. The challenge is to account for the probability that the model is

correct in the uncertainty of the model parameters.

4. Third, calibration and validation are performed using independent data sets

and it is not straightforward to compute their combined effect on the overall

uncertainty in the response.

The issue of integrating information from various uncertainty quantification ac-

tivities gets further complicated when system-level behavior is predicted based on a

hierarchy of models. As the complexity of the system under study increases, there
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may be several components and subsystems at multiple levels of hierarchy, which

integrate to form the overall multi-level system. Each of these components and sub-

systems are represented using component-level and subsystem-level models which are

mathematically connected to represent the overall system model which is used to

study the underlying system. In each level, there is a computational model with in-

puts, parameters, and outputs, experimental data (hopefully available for calibration

and validation separately), and several sources of uncertainty physical variability,

data uncertainty (sparse or imprecise data, measurement errors), and model uncer-

tainty (parameter uncertainty, solution approximation errors and model form error).

In such a multi-level system, the first task would be to connect all the available models

and associated sources of uncertainty.

Recent studies [145, 196, 197] by Mahadevan and co-workers at Vanderbilt Univer-

sity have demonstrated that the Bayesian network methodology provides an efficient

and powerful tool to integrate multiple levels of models, associated sources of uncer-

tainty and error, and available data at multiple levels. While the Bayesian approach

can be used to perform calibration and validation individually for each model in the

multi-level system, it is not straightforward to integrate the information from these

activities in order to compute the overall uncertainty in the system-level prediction.

This chapter extends the Bayesian approach to integrate and propagate information

from verification, calibration, and validation activities in order to quantify the overall

uncertainty in the system-level prediction and thereby directly aid in quantification

of margins and uncertainties (QMU).

In Bayesian calibration, the goal is to estimate the probability distribution of the

model parameter using the data available for calibration. Once the model is cali-

brated, it is validated using an independent set of input-output data; the Bayesian
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hypothesis testing method (Section 4.4.1) and the reliability-based method (Sec-

tion 4.4.2) can be used for this purpose. Chapter IV discussed systematic method-

ologies for the inclusion of the different types of uncertainty in both calibration and

validation activities; further, different types of data situations were also considered

for both calibration and validation. While Bayesian inference and Bayesian hypoth-

esis testing can be used for calibration (Section 4.3) and validation (Section 4.4)

respectively, these two procedures are different and should not be confounded. The

distinction will be clearly maintained in this dissertation; in fact, this chapter con-

siders separate data sets for calibration and validation.

In Chapter IV, the methods for calibration and validation were demonstrated

only for individual models with calibration and validation data. What happens when

there is flow of information across multiple levels of models? Since the Bayesian

approach represents all information through probability distributions, the problem

reduces to propagating these probability distributions through the system hierarchy.

The solution approximation errors, estimated as a result of model verification, can

also be included as additional nodes in the Bayesian network. The resultant Bayesian

network can be used for both the forward problem of uncertainty propagation [198]

and inverse problem of calibration [199].1 The results of calibration and validation

activities are expressed in terms of PDFs of model parameters, and probability that

each model is correct, respectively. The Bayesian method is thus able to integrate

all the information from verification, calibration, and validation at multiple levels to

calculate the overall system-level performance prediction uncertainty.

Recall that three different types of hierarchical configurations were discussed ear-

lier in Section 1.3.1. The first two types of configurations – sequential (or feed-

forward) and non-sequential – are considered in this chapter. In both cases, the

1Refer to [197–199] for details on the inclusion of all sources of uncertainty for both forward
uncertainty propagation and parameter estimation.
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quantity of interest is an overall system-level response, but there is a significant dif-

ference in how this quantity is calculated using information from uncertainty quantifi-

cation activities (verification, validation, and calibration) performed at lower-levels

using the corresponding models. The two types of configurations (sequential and

non-sequential) are shown in Fig. 6.1.

X

Y1

Y2

G

G1

G2

H

H

Calibration data,

Calibration data,

Calibration data,

Validation data

Validation data

Validation data

System response

θ

Y

Z

Z

(a) Sequential

(a) Non-Sequential

Figure 6.1: Two Types of Hierarchical Configurations

The third type of configuration discussed in Section 1.3.1, i.e. hierarchical system

with feedback coupling, is not considered in this chapter. In such a system, two models

(usually, governing two different physics) are interconnected in such a way that the

input of one becomes an output to the other and vice versa. Chapter VII will consider
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feedback coupling in multi-disciplinary systems, and propose an approach to replace

feedback coupling with equivalent unidirectional coupling, thereby facilitating the use

of Bayesian networks for systems with feedback coupling. The present chapter focuses

on sequential and non-sequential system configurations, where the Bayesian network

is used to integrate (1) the various sources of uncertainty across multiple levels of

models; and (2) the results from uncertainty quantification activities (verification,

validation, and calibration) in order to quantify the overall uncertainty in the system-

level response.

When the hierarchy is “sequential”, the output (Y ) of a lower level model (G)

becomes an input to a higher level model (H), as shown in Fig. 6.1 (a). Each model

has its own set of model parameters (not indicated in Fig. 6.1 (a)); there may or may

not be any model parameter common between two models. In this type of multi-level

system, the uncertainty in the output of each model is propagated through higher

levels of the hierarchy.

When the hierarchy is “non-sequential” as shown in Fig. 6.1 (b), the outputs (Y1,

Y2, Z) and inputs across multiple models are not connected; rather, some model pa-

rameters (θ) are common to models at multiple levels of complexity. The model of

the highest complexity (H) represents the system of interest and the system-level

response (Z) needs to be calculated. The model parameters (θ) are calibrated using

models and experiments of reduced complexity (e.g. isolated components or physics),

and then propagated through the system model to compute the desired response.

Urbina et al. [196] and Red-Horse and Paez [200] discuss such non-sequential mod-

els increasing complexity. Chapter VIII will also discuss non-sequential systems of

increasing complexity and physics.
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(Note: One could think of models of increasing complexity as sequential, but in

this dissertation, the term “sequential” is used only to the case when the output of

one model is input to the next model.)

The proposed methods for integration of calibration, verification, and validation

results are different for each type of configuration. In the sequential case, the linking

variables are the outputs of the lower levels that become inputs to the higher level

models, whereas in the non-sequential case, the linking variables are the common

model parameters. With the focus on the linking variables, this chapter develops a

Bayesian network-based methodology to integrate the results of verification, valida-

tion, and calibration activities, and compute the uncertainty in the overall system-

level prediction.

The rest of this chapter is organized as follows. Section 6.2 discusses the proposed

methodology for integration of calibration, verification, and validation for a single-

level model. Sections 6.3 and 6.4 extend the proposed methodology for models with

sequential and non-sequential configurations respectively. The proposed methods

are illustrated using three numerical examples - a heat conduction example (single

level model), an electric wire under heat conduction (two sequential models), and a

structural dynamics problem (three non-sequential models) in Sections 6.5, 6.6 and 6.7

respectively.

6.2 Integration for a Single-level Model

Consider a single-level model as shown in Fig. 6.2. The inputs are x, the model

parameters are θ, the true solution of the mathematical equation is y, and the code

output is yc. Both yc and y are deterministic functions of inputs (x) and model

parameters (θ).

This section proposes methods to integrate the results of calibration, verification,
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(a) Mathematical Equation (b) Computer Code

Figure 6.2: A Single-level Model

and validation of the model. Since the process of verification is not related to data, it

needs to be performed first; both calibration and validation must include the results

of verification analysis (i.e. error quantification). Then, the results of verification,

calibration, and validation are integrated to compute the overall uncertainty in the

response quantity. Though the methods for verification, validation, and calibration

were explained in detail in Chapter IV, they are briefly reviewed here. The reason is

that verification, validation, and calibration were performed independently in Chap-

ter IV, while now, they are performed in an integrated manner so as to quantify the

uncertainty in the overall output.

6.2.1 Verification

The process of verification checks how close the code output is to the true solution

of the mathematical equation. As stated earlier in Section 4.2, it is not only sufficient

to verify that the two solutions are sufficiently close, but also essential to quantify

the solution approximation error, i.e. the difference between the code output and

true solution, in order to quantify the uncertainty in the prediction. As explained

Sections 4.2.1 and 4.2.2, the solution approximation error is composed of both de-

terministic and stochastic terms. The discretization error arising in finite element

analysis is deterministic, while the surrogate model error that arises as a result of re-

placing the finite element analysis with a surrogate model is stochastic. In the context
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of uncertainty propagation, deterministic errors can be addressed by correcting the

bias, and the corrected solutions are used to train the surrogate model; the stochas-

tic errors of the surrogate model can be addressed through sampling based on their

estimated distributions. As a result, the overall solution approximation error is also

stochastic. The quantification of discretization error and surrogate model uncertainty

was explained earlier in Section 4.2.

The true solution of mathematical equation can be computed as a function of the

model inputs and parameters as y(x; θ) = yc(x; θ) + Gse(x; θ). Since Gse(x; θ) is

stochastic, y is stochastic even for given values of x and θ.

6.2.2 Calibration

The next step is to estimate the model parameters (θ) using input - output (x

vs. y) data collected for calibration (DC), using Bayes theorem as:

fθ(θ|G,DC) =
L(θ)fθ(θ)

∫

L(θ)fθ(θ)dθ
(6.1)

In Eq. 6.1, fθ(θ) is the prior PDF and fθ(θ|G,DC) is the posterior PDF; the

calibration procedure uses the model form G and hence the posterior is conditioned

on G. The function L(θ) is the likelihood of θ defined as being proportional to

the probability of observing the data DC conditioned on the parameters θ. The

calculation of this likelihood function was explained earlier in Section 4.3. Different

cases of data were considered and the likelihood was for derived for each case in

Section 4.3.8.

Note that the model “G” is used for calibration in Eq. 6.1; recall that “G” refers

to the model corrected for discretization errors. Hence, the results of verification

are included in the calibration procedure. Deterministic discretization errors are

corrected for before training the surrogate model, and the surrogate model uncertainty
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is included in the likelihood function as demonstrated by Kennedy and O’Hagan [201]

and McFarland [52]. In addition, the construction of the likelihood function can

also include additional uncertainty in other inputs and parameters, as explained in

Section 4.3.8. Section 4.3.5 and Kennedy and O’Hagan [201] demonstrate how the

model inadequacy function can be included in calibration and estimated along with

the model parameters.

The posterior PDFs of the model parameters can be calculated using direct in-

tegration of the denominator in Eq. 6.1, if the number of calibration parameters is

small. Alternatively, Markov Chain Monte Carlo sampling [202] methods such as

Metropolis algorithm [38], Gibbs algorithm [203] or slice sampling [39] can be used

to generate samples of the posterior distributions of the parameters. The method of

slice sampling, explained earlier in Section 2.7, is used in this study.

6.2.3 Validation

Assume that an independent set of validation data (DV ) is available. The model

is assumed to be verified and calibrated and the model prediction is compared against

the validation data. The model prediction can be computed as a function of input

as:

fY (y|x, G,DC) =

∫

fY (y|x, θ)fθ(θ|G,DC)dθ (6.2)

In the case of partially characterized validation data (e.g. field data), the input xmay

not be measured, in which case the model prediction must include the uncertainty in

the input as:

fY (y|G,DC) =

∫

fY (y|x, θ)fX(x)fθ(θ|G,DC)dθ (6.3)
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The above equations simply refer to uncertainty propagation through the model and

hence the model prediction is conditioned on the event that the mathematical model

is correct, and written as fY (y|G,DC). The results of verification are included while

computing y; deterministic errors are addressed by correcting them and stochastic

errors are addressed by sampling them. The results of calibration are included by

using the posterior PDF of the model parameter in the prediction.

The model prediction is then compared with the validation data using Bayesian

hypothesis testing; let P (G) and P (G′) denote the probabilities that the model is

correct (null hypothesis) and that the model is incorrect (alternate hypothesis) re-

spectively. Prior to validation, if no information is available, P (G) = P (G′) = 0.5.

Using Bayesian hypothesis testing, these probabilities can be updated using the vali-

dation data (DV ), and the Bayes factor metric is defined as:

B =
P (DV |G)

P (DV |G′)
(6.4)

The likelihoods P (DV |G) and P (DV |G′) are denoted as L(G) and L(G′) respectively.

The numerator P (DV |G) can be calculated using fY (y|G) as:

L(G) ∝ P (DV |G) ∝
∫

f(DV |y)fY (y|G,DC)dy (6.5)

In Eq. 6.5, the term f(DV |y) is calculated based on the error ǫm ∼ N(0, σ2). In order

to compute P (DV |G′), it is necessary to assume the alternate PDF fY (y|G′), i.e. the

PDF of Y when the model is wrong. Expert opinion may be used to construct this

PDF, or a uniform PDF may be used if no additional information is available. Then

L(G′) is calculated similar to Eq. 6.5 by replacing fY (y|G,DC) with fY (y|G′). As

explained earlier in Section 4.4.1, the probability that the model is correct, i.e. P (G)

can be calculated as B
B+1

.
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The Bayes factor is a probabilistic measure of model validity. Alternatively,

P (G|DV ) can also be calculated using the model reliability approach (Section 4.4.2)

by choosing a suitable tolerance limit. This probabilistic measure for model vali-

dation facilitates propagation of the result of validation for system-level uncertainty

quantification.

While the Bayesian hypothesis testing is one approach to calculate the proba-

bility that the model is correct, the reliability-based approach discussed earlier in

Section 4.4.2 in Chapter IV provides an alternative methodology. Consider Eq. 4.48

where the observed data was denoted by z whereas now it is denoted by DV . Simi-

lar to the Bayesian hypothesis testing method, the reliability-based method can also

account for the different types of uncertainty, as explained earlier in Section 4.4.2,

and the probability that the model is correct, i.e. P (M) can be computed. The

assumption of the alternate PDF fY (y|G′), though not necessary for the computation

of P (M), is still necessary for the purpose of integration of verification, validation,

and calibration as explained in the following subsection.

6.2.4 Integration for Overall Uncertainty Quantification

The calibration procedure in Section 6.2.2 assumed that the model form G is

correct and estimated the model parameters θ. In contrast, the validation procedure

in Section 6.2.3 calculated the probability that the model G is correct by assuming

the uncertainty in the model parameters θ. The two results can be combined to

calculate the overall uncertainty in the model prediction, using the theorem of total

probability as:

fY (y|DC, DV ) = P (G|DV )fY (y|G,DC) + P (G′)fY (y|G′) (6.6)
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In Eq. 6.6, P (G|DV ) may be replaced with P (M) if the model reliability-based method

is used instead of Bayesian hypothesis testing. Note that the result of verification, i.e.

solution approximation error, was already included in both calibration and validation.

Thus, the PDF fY (y|DC, DV ) includes the results of verification, calibration, and

validation activities.

6.3 Sequential Configuration of Models

Consider a system which is studied using multiple levels of models and there is se-

quential information flow between these models, i.e., the output of a lower level model

becomes an input to the higher level model, and hence is the linking variable between

the two models. While the methods of verification, validation, and calibration can be

applied to each of the individual models, the challenge is to integrate the results from

these activities performed at multiple levels. This section proposes a methodology

for the integration of verification, validation and calibration across multiple levels of

modeling with sequential configuration. The proposed methodology is illustrated for

two levels of models, as shown in Fig. 4, and Eq. 6.7, but can be extended to any

number of levels of modeling without loss of generality.

Y = G(X; θ)

Z = H(Y,W ;α)

(6.7)

Assume that no data is available at the system level, i.e. it is not possible to

validate/calibrate model H . Let DC and DV denote the data available on Y for

calibration (of θ) and validation (of G) respectively. Let ǫm ∼ N(0, σ2
m) denote the

measurement errors in the data.

The first step is to connect the various sources of uncertainty using a Bayesian

network, as shown in Fig. 6.4.
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Figure 6.3: Sequential Information Flow: Two levels of Models
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Figure 6.4: Bayesian Network: Sequential Configuration (Two Models)

This Bayesian network indicates that two sets of data are available for calibration

and validation; the Bayesian methods for calibration and validation can be applied

to these sets. If the KOH framework is pursued for calibration, then both the pa-

rameters and the model inadequacy function can be estimated. In addition to the

parameters, the model inadequacy function would have also been included in this

Bayesian network. However, it is still necessary to validate the overall model using

additional validation data. In the validation stage, the Bayesian hypothesis approach

or the model reliability method is pursued to quantify the probability that the model

being correct.

In order to construct the Bayesian network, computer models are constructed to
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solve Eq. 6.7. The task is to compute the overall uncertainty in Z by using lower

level data; this uncertainty must include the effect of verification, calibration, and

validation activities.

6.3.1 Verification, Calibration, and Validation

Both the models G and H can be verified since experimental data is not required

for verification. During the process of verification, the solution approximation error

(ǫsoln) is quantified for both the models G and H . Note that the solution approxima-

tion error is a function of the inputs and the model parameters. As seen earlier in

Section 6.2.1, the solution approximation error, in general, is a combination of deter-

ministic and stochastic terms. The deterministic errors are addressed by correcting

the FEA output, the corrected values are used to train the surrogate model; the sur-

rogate model uncertainty is included as an additional node in the Bayesian network,

as shown in Fig. 6.4. Note that these solution approximation errors (ǫsoln for both G

and H) account for the combined effect of both deterministic and stochastic errors.

Now the Bayesian network includes quantification of solution approximation error

and it can now be used for calibration, validation and system-level prediction.

The next step is to calibrate the model parameters. Suppose that the PDFs of

the parameters θ and α are assumed to be fθ(θ) and fα(α) before any testing; these

are the prior PDFs. Since no data is available on Z, it is not possible to update

the PDF of α. The data on Y , i.e. DC is used to calibrate the parameters θ, using

Bayesian inference, as in Section 6.2.2. The calibration procedure uses the data and

assumes that the model is correct, and hence the posterior PDF of θ is denoted

by fθ(θ|G,DC). During the calibration procedure, for every realization of θ, the

corresponding solution approximation error is estimated and therefore, calibration is
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based comparing y against experimental data, rather than yc, thereby accounting for

the results of verification during calibration.

Additional independent data (DV ) is assumed to be available for the purpose of

validating the model G. The alternate hypothesis PDF fY (y|G′) is assumed and the

posterior probability of model being correct, i.e. P (G|DV ) is calculated as explained

in Section 6.2.3; alternatively, the reliability-based metric P (M) can also be used

instead of P (G|DV ).

6.3.2 Integration for Overall Uncertainty Quantification

The Bayesian network can be used for forward propagation of uncertainty using

the principles of conditional probability and total probability. Prior to the collection

of any data, the uncertainty in x, θ, and α can be propagated through the models

as:

fZ(z|H) =

∫

fZ(z|w,α, y, H)fW (w)fα(α)fY (y|G)dwdαdy

fY (y|G) =

∫

fY (y|x, θ, G)fX(x)fθ(θ)dxdθ

(6.8)

However, this procedure assumes that (1) the PDFs of the parameters θ, and α are

fθ(θ) and fα(α); and (2) the models G and H are correct. These two issues were

addressed in calibration and validation respectively. While the PDF of α did not

change, the PDF of fθ(θ) was updated to fθ(θ|G,DC). Further, the probability that

G is correct, i.e. P (G|DV ) was evaluated. These two quantities can now be used to

calculate the overall uncertainty in Z. First, if the calibration data alone was used,

then the PDFs of Y and Z are given by:

fZ(z|G,H,DC) =

∫

fZ(z|w,α, y, H)fW (w)fα(α)fY (y|G,DC)dwdαdy

fY (y|G,DC) =

∫

fY (y|x, θ, G)fX(x)fθ(θ|G,DC)dxdθ

(6.9)
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The theorem of total probability can then be used to include the result of valida-

tion. The PDF of Y is modified as:

fY (y|DC, DV ) = P (G|DV )fY (y|G,DC) + P (G′|DV )fY (y|G′) (6.10)

The overall uncertainty in Z, which includes the results of verification, calibration,

and validation, can be calculated as:

fZ(z|H,DC , DV ) =P (G|DV )fZ(z|G,H,DC) + P (G′|DV )fZ(z|G′, H)

fZ(z|G′, H) =

∫

fZ(z|w,α, y, H)fW (w)fα(α)fY (y|G′)dwdαdy
(6.11)

The PDF of Z is still conditioned on H because it is assumed that the model H

is correct and it is not possible to calibrate/validate this model. In fact, Eq. 6.11 is

equivalent to simply propagating the PDF fY (y|DC, DV ) (in Eq. 6.10) through the

model H . Note that the model H has been verified; therefore, during uncertainty

propagation, it is necessary to estimate and account for the solution approximation

error, thereby including the result of verification of H . Thus, the PDF of the linking

variable can be directly used to compute the uncertainty in the system-level response,

thereby integrating the results of verification, validation, and calibration activities at

a lower level.

6.3.3 Extension to Multiple Models

Until now, only the first model G was considered for verification, validation, and

calibration. However, the proposed methodology is general and can be extended to

multiple models. For example, consider the case where there are two models whose

individual outputs become inputs for the system model. For example, consider the
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equations:

Y1 = G1(X1, θ1)

Y1 = G1(X1, θ1)

Z = H(Y1, Y2)

(6.12)

The inputs to the models G1 andG2 areX1 andX2 respectively; the corresponding

parameters are θ1 and θ2 respectively. The Bayesian network for this multi-level

system is shown in Fig. 6.5.

X1 θ1 X2 θ2

Y1 Y2DC
1 , D

V
1

DC
2
, DV

2

Z

Figure 6.5: Bayesian Network: Sequential Configuration (Multiple Models)

Assume that there is no data at the system level Z, but data is available for cal-

ibration and validation of lower-level models G1 and G2, as shown in the Bayesian

network in Fig. 6.5. Using the calibration data, the PDFs f(θ1|G1, D
C
1 ), f(θ2|G2, D

C
2 ),

f(y1|G1, D
C
1 ), and f(y2|G2, D

C
2 ) are calculated. Using the validation data, the prob-

ability P (G1|DV
1 ) and P (G2|DV

2 ) are calculated; further P (G′
1|DV

1 ) = 1− P (G1|DV
1 )

and P (G′
2|DV

2 ) = 1− P (G2|DV
2 ). As explained earlier, the probabilities that G1 and

G2 are correct can also be calculated using the reliability-based metric.

The unconditional PDF of Z needs to be calculated by considering four quantities:
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1. P (G1 ∩G2|DV
1 , D

V
2 ) = P (G1|DV

1 )P (G2|DV
2 )

2. P (G1 ∩G′
2|DV

1 , D
V
2 ) = P (G1|DV

1 )P (G′
2|DV

2 )

3. P (G′
1 ∩G2|DV

1 , D
V
2 ) = P (G′

1|DV
1 )P (G2|DV

2 )

4. P (G′
1 ∩G′

2|DV
1 , D

V
2 ) = P (G′

1|DV
1 )P (G′

2|DV
2 )

Note the assumption that the two models G1 and G2 are independent. If the depen-

dence is known, then it can be included in the calculation of the joint probabilities.

Then, the unconditional PDF of Z is written as:

fZ(z|DC
1 , D

V
1 , D

C
2 , D

V
2 , H) = P (G1|DV

1 )P (G2|DV
2 )fZ(z|G1, G2, H)

+ P (G′
1|DV

1 ))P (G2|DV
2 )fZ(z|G′

1, G2, H)

+ P (G1|DV
1 )P (G′

2|DV
2 )fZ(z|G1, G

′
2, H)

+ P (G′
1|DV

1 )P (G′
2|DV

2 )fZ(z|G′
1, G

′
2, H)

(6.13)

In Eq. 6.13, fZ(z|G1, G2, H) is calculated by propagating the posteriors of Y1 and

Y2 through H , since both the models are correct; fZ(zG
′
1, G2, H) is calculated by

propagating the alternate PDF of Y1 and the posterior of Y2 through H , since only

G2 is correct; similarly, fZ(z|G1, G
′
2, H) is calculated by propagating the posterior of

Y1 and alternate PDF of Y2, and fZ(z|G′
1, G

′
2, H) is calculated by propagating the

alternate PDFs of Y1 and Y2. An alternative approach would be to simply compute

the unconditional PDFs f(y1|DC
1 , D

V
1 ) and f(y2|DC

2 , D
V
2 ) similar to Eq. 6.10, and

propagate these PDFs through the model H . Both the approaches will yield to the

same resultant PDF of Z, which accounts for the results of verification, validation,

and calibration activities in both the models G1 and G2.

Similar to the previous subsection (Section 6.3.2), the model H has been verified

since verification does not need experimental data. While propagating the uncer-

tainty through the model H , it is necessary to estimate and account for the solution
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approximation error for every evaluation of H , thereby accounting for the result of

verification of H in the procedure for system-level uncertainty quantification.

6.4 Non-Sequential Configuration of Models

Sometimes, a system model is developed using progressively complex models and

corresponding experiments (isolated features, isolated physics, simplified geometry,

scale models, etc.). The experiments of lowest complexity (simplest geometry or

single physics) have been referred to as unit-level experiments [141]. A higher-level

experiment could include an assembly of units or combined physics.

A typical example of such a system is discussed in [196], where material level

tests (lowermost level), performance of a single joint, and performance of three joints

are used to calibrate underlying material and model parameters that are used in

the overall system-level model. Usually, in such a system, the complexity increases

going up the hierarchy (more physics, features, components, etc.). Assume that the

system-level model is given by:

Z = H(θ,X,Ψ) (6.14)

In Eq. 6.14, Z is the system-level prediction, θ is the set of model parameters

which are calibrated based on lower level models and tests, Ψ is the set of additional

model parameters at the system-level, and X are the inputs.

Consider two lower level models - first level G1 and second level G2. Both these

models have common model parameters θ , but they have their own inputs (X1 and

X2) and outputs (Y1 and Y2); in addition, they may have additional lower-level model
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parameters (Ψ1 and Ψ2).

Y1 = G1(θ,X1,Ψ1)

Y2 = G2(θ,X2,Ψ2)

(6.15)

Assume that separate sets of data are available for calibration (DC
1 and DC

2 for

levels 1 and 2 respectively) and validation (DV
1 andDV

2 for levels 1 and 2 respectively).

Full system testing is not possible, i.e. there is no test data is available at the system

level (Z) and it is required to quantify the uncertainty in the system-level prediction

using the data at the lower levels (Y1 and Y2). The inputs, model parameters, outputs,

and data at all levels are connected through a Bayesian network, as shown in Fig. 6.6.

6.4.1 Verification, Calibration, and Validation

The steps of verification, calibration, and validation in each model are similar

to the previous sections. It is possible to verify all the three models (G1, G2, and

H) and compute the solution approximation error; deterministic errors are simply

corrected where they occur and stochastic errors are included in the Bayesian network

in Fig. 6.6.

If θ is estimated using each individual model (G1 or G2) and the corresponding

calibration data (DC
1 or DC

2 ), then the corresponding PDFs of the model parameter

θ is f(θ|DC
1 , G1) or f(θ|DC

2 , G2) respectively. The Bayesian network facilitates the

simultaneous use of both models and the corresponding data to calibrate θ and obtain

the PDF f(θ|DC
1 , D

C
2 , G1, G2). This step of simultaneous calibration using multiple

data sets from experiments of differing complexity is different from the calibration

considered in Sections 6.2 and 6.3, where only one model and the corresponding cali-

bration data were used to estimate θ. In order to integrate the results of verification,

validation, and calibration in Section 6.4.2 below, all the PDFs, i.e. those calibrated
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Figure 6.6: Bayesian Network: Non-sequential Configuration

using individual data sets (f(θ|DC
1 , G1) and f(θ|DC

2 , G2)) as well as those calibrated

using multiple data sets (f(θ|DC
1 , D

C
2 , G1, G2)) are necessary.

The use of validation data is identical to the procedure in Sections 6.2 and 6.3.

The quantities P (G1|DV
1 ) and P (G2|DV

2 ) are calculated using the Bayes factor metric;

further P (G′
1|DV

1 ) = 1 − P (G1|DV
1 ) and P (G′

2|DV
2 ) = 1 − P (G2|DV

2 ). Alternatively,

the reliability-based method can also be used to calculate this probability. Since the

two models are assumed independent, P (G1 ∩G2|DV
1 , D

V
2 ) = P (G1|DV

1 )P (G2|DV
2 ).
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6.4.2 Integration for Overall Uncertainty Quantification

The proposed method for overall uncertainty quantification and integration of

the above activities is different from Section 6.3 because the linking variables in this

case are the model parameters whereas the linking variables in Section 6.3 were the

outputs of lower level models. While the unconditional PDF of the lower level output

was calculated in Section 6.3, it is now necessary to calculate the unconditional PDF

of the model parameter, that accounts for validation results. This is done using the

total probability theorem as:

fθ(θ|DC
1 , D

C
2 , D

V
1 , D

V
2 ) =fθ(θ|G1 ∩G2)P (G1 ∩G2|DV

1 , D
V
2 )

+fθ(θ|G′
1 ∩G2)P (G′

1 ∩G2|DV
1 , D

V
2 )

+fθ(θ|G1 ∩G′
2)P (G1 ∩G′

2|DV
1 , D

V
2 )

+fθ(θ|G′
1 ∩G′

2)P (G′
1 ∩G′

2|DV
1 , D

V
2 )

(6.16)

Eq. 6.16 is expressed as the sum of four terms; the first term fθ(θ|G1 ∩ G2) is

calculated for the case when both models are correct. Hence, both models can be

used for calibration, and hence, fθ(θ|DC
1 , D

C
2 , G1, G2) must be used. The second term

fθ(θ|G′
1 ∩G2) means that the PDF of θ is calculated for the case when model G1 is

wrong but model G2 is correct. Hence, model G1 should not be used for calibration,

and hence, the resulting PDF is equal to fθ(θ|DC
2 , G2). Similarly, the third term

fθ(θ|G1∩G′
2) is equal to fθ(θ|DC

1 , G1), and the fourth term fθ(θ|G′
1∩G′

2) is calculated

under the condition that both G1 and G2 are wrong, and is simply equal to the prior

fθ(θ). The unconditional PDF fθ(θ|DC
1 , D

C
2 , D

V
1 , D

V
2 ) calculated in Eq. 6.16 accounts

for the verification, calibration, and validation activities with respect to each of the

lower level models. This unconditional PDF is propagated through the system model

H(θ,X,Ψ), in order to quantify the uncertainty in the system-level response Z.
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6.5 Example 1: Single-level Model

This section discusses a numerical example, where a single-level model is subject to

verification, validation and calibration. The results of these activities are integrated

to calculate the overall uncertainty in the response quantity.

6.5.1 Description of the Problem

Consider the steady state heat transfer in a thin wire of length L, with thermal

conductivity k, and convective heat coefficient β. Assume that the heat source is

Q(x) = 25(2x− L)2, where x is measured along the length of the wire. For the sake

of illustration, it is assumed that this problem is essentially one dimensional and that

the solution can be obtained from the following boundary value problem [91].

−k
∂2T

∂T 2
+ βT = Q(x)

T (0) = T0

T (L) = TL

(6.17)

This problem was earlier considered for model validation under uncertainty in Sec-

tion 4.4.4 in Chapter IV; in this chapter, the goal is perform integration of all un-

certainty quantification activities to compute the overall uncertainty in the system

response.

The length of the wire is assumed to be deterministic (L = 4 m). The boundary

conditions, i.e. the temperatures at the ends of the wire (T (0) and T (L)) are assumed

to be normally distributed with statistics N(0, 1). The thermal conductivity of the

wire (k) is assumed to be normally distributed N(5, 0.2) with units Wm−1/◦C.. The

convective heat coefficient (β) is an unknown parameter which needs to be estimated

using calibration data (DC); this quantity is assumed to have a normally distributed
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prior as N(0.5, 0.05). The goal of the model is to predict the temperature (Y ) at the

mid-point of the wire.

6.5.2 Verification, Validation, and Calibration

First, the differential equation in Eq. 6.17 is solved using a finite difference code.

Three different discretization sizes are considered, and Richardson extrapolation [112]

is used to calculate the solution approximation error which is used to correct the

model prediction every time this differential equation is solved. Then, calibration

data (DC = {22; 23; 25; 26.1; 25.4}, in ◦C) is assumed to be available and used to

calibrate the unknown model parameter, i.e, the convective heat coefficient (β). Dur-

ing the calibration, the model inadequacy term was estimated to be insignificant and

approximately equal to zero. The prior (fθ(θ)) and posterior (fθ(θ|G,DC)) PDFs of β

are shown in Fig. 6.7. Additional validation data (DV = {24; 24.5; 24.6; 23.8}, in ◦C)

is used to compute the probability that the temperature prediction model is correct,

i.e. P (G) = 0.84.
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Figure 6.7: PDF of Convective Heat Coefficient (β)
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6.5.3 Integration and Overall Uncertainty Quantification

The method developed in Section 6.2.4 is used to calculate the unconditional PDF

of temperature using the principle of total probability, as shown in Fig. 6.8. This PDF

integrates the results of verification, validation, and calibration to compute the overall

uncertainty in the temperature at the mid-point of the wire.
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Figure 6.8: PDF of Mid-point Temperature

Fig. 6.8 indicates three PDFs (i) fY (y|G,DC) denotes the model prediction, (ii)

fY (y|G′) denotes the prediction under the alternate hypothesis (assumed uniform;

due to sampling errors and use of kernel density estimation for plotting, the PDF

is not perfectly horizontal in Fig. 6.8), and (iii) fY (y|G,DC, DV ) which represents

the PDF that integrates the validation result with the previous calibration and ver-

ification activities. The third PDF is referred to as the unconditional PDF of the

temperature response, since it is not conditioned on the model form. Conventionally

the model prediction alone is used for performance prediction and reliability analy-

sis. The difference between the model prediction PDF and the unconditional PDF is

prominent, especially in the tail region. For example, if the component is assumed

to fail when the temperature is greater than 25 ◦C, then the model prediction PDF
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gives the failure probability as 0.0135, whereas the unconditional PDF gives the fail-

ure probability as 0.0390. Thus, it is clear that the model prediction must not be

used directly; it is necessary to include the results of verification, validation, and

calibration in overall uncertainty quantification and performance prediction.

6.6 Example 2: Sequential Configuration

This section discusses a sequence of two models featuring thermal and electrical

analyses. This example is an extension of the heat conduction problem in Section 6.5;

the temperature rise in the wire causes change in the electrical resistance. The goal

is to predict the system response, which is the electric current in the wire. Hence, the

output of the lower level model (temperature predictor in Eq. 6.17), i.e. temperature,

becomes an input to a higher level model (current predictor), thereby exhibiting

sequential information flow, as shown in Fig. 6.9.

Heat

Thermal model

Temperature

Electrical model

Electric current

Figure 6.9: Thermal Electric Analysis

Consider the same wire as in Section 6.5. Before application of the heat, the

resistance of the wire is given in terms of the resistivity (ρ), the cross section area
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Figure 6.10: Bayesian Network: Thermal Electric Analysis

(A), and length (L) as:

Rold = ρ
L

A
(6.18)

After steady state is reached, the mid-point temperature (Y ) computed in Eq. 6.17

causes an increase in the resistance of the wire; this increase is evaluated using the

coefficient of resistivity (α). The current through the wire when a 10V voltage is

applied is calculated as:

I =
10

Rold(1 + αY )
(6.19)

Assume that there is no electrical performance test data for the wire, and it is re-

quired to predict the uncertainty in the electrical current, by including the results of

verification, validation, and calibration in the lower level model. The two models and

the associated sources of uncertainty are connected through a Bayesian network as

shown in Fig. 6.10.

Since the thermal model used for temperature prediction has already been veri-

fied, calibrated, and validated, the unconditional PDF of the temperature is simply
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propagated through the current-predictor model to calculate the current in the wire.

For the purpose of illustration, and to see the effect of uncertainty in Y on the uncer-

tainty in electrical current (I), the other parameters of the current-predictor model

(α, A, ρ) are chosen to be deterministic. The PDF of the current of the wire is shown

in Fig. 6.11, for three cases.
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Figure 6.11: PDF of Current: System Response

The PDF fZ(z|G,DC) is obtained by propagating the model prediction of thermal

model through the electrical model, and the PDF fZ(z|G′) is obtained by propagat-

ing the alternate PDF of temperature (fY (y|G′)) through the electrical model. The

unconditional PDF (fZ(z|DC , DV )) represents the current response by integration

of verification, validation, and calibration activities with respect to the lower level

heat conduction model. Similar to the previous example, the difference between

fZ(z|G,DC) and the unconditional fZ(z|DC , DV ) is prominent, especially in the tail

region. For example, 1−FZ(z = 1.08|G) = 0.0086 whereas 1−FZ(z = 1.08) = 0.0400.
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6.7 Example 3: Non-Sequential Configuration

This section illustrates the methodology for non-sequential hierarchical systems

through a numerical example which consists of a three-level structural dynamics prob-

lem, as shown in Fig. 6.12. This numerical example was developed at Sandia National

Laboratories [200], as a model validation challenge problem.
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(a) Level 1
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(b) Level 2

Figure 6.12: Multi-level Structural Dynamics Problem

6.7.1 Description of the Problem

In the first-level, three spring-mass-dampers are integrated to form a subsystem.

In the second-level, the integrated spring-mass-damper subsystem is mounted on a

beam to form the overall system. The overall objective is to compute the system-

level output (R) which is defined to be the maximum acceleration of mass m3, under

a given realization of random process loading [200] on the beam. The model to
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compute this system-level output is provided by Red-Horse and Paez [200]. This is

the overall system-level model (denoted by Z); no test data is available at this level.

The uncertainty in R needs to be computed based on information from lower level

data. Two types of tests can be performed, at each of the levels.

1. Level 1: The three mass assembly in Fig. 6.12a is tested under sinusoidal load-

ing (amplitude=10000 and angular velocity = 10 rad s−1), and the acceleration

of the top mass m3 is measured. A model (denoted by G) is built to predict

this response x1. The construction of this model is straightforward and can

be found in several textbooks [204]. Let D1 denote test data; similar to the

previous sections, two sets of test data are available: DC
1 for calibration, and

DV
1 for validation.

2. Level 2: The beam with the 3-mass subsystem in Fig. 6.12b is tested under

sinusoidal loading (amplitude=10000 and angular velocity = 10 rad s−1), and

the acceleration of the top mass m3 is measured. A model (denoted by H) is

provided in [200] to predict this response x2. Similar to the previous sections,

two sets of test data are available: DC
2 for calibration, and DV

2 for validation.

In this numerical example, for the sake of illustration, the stiffness values of the

three masses, i.e. k1, k2, and k3 are identified as the parameters to be calibrated

using available test data. An additional set of data is used to validate the lower level

models and all of this information is used to predict the system-level response R,

defined earlier.

Prior distributions are assumed for k1, k2, and k3 and later updated with test data

to calculate posterior distributions. The system-level output R, in turn, is calculated

by propagating the posterior distributions through the model Z. The numerical values

(in SI units) of all the parameters are summarized in Table 6.1.
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Table 6.1: Model Parameters: Structural Dynamics Problem

Number Mass (m) Damping (c) Prior Mean of Stiffness Prior Std. Dev. of Mean
(in kg) (in Ns/m) (µk) (in N/m) (σk) (in N/m)

1 0.0125 0.023 5600 560
2 0.0193 0.021 11000 1100
3 0.0351 0.031 93000 9300

The mass of the beam is taken to be 0.1295 kg. Further numerical details of the

beam are given in [200]. The model predictions, experimental data, errors, and the

calibration quantities are connected using the Bayesian network, shown in Fig. 6.13.1

x1 x2

DC
1 , D

V
1 DC

2 , D
V
2

ǫsolnǫsoln

ǫ1 ǫ2

k1 k2 k3

R
System
Output (R)

Level 1 Level 2

Figure 6.13: Bayesian Network: Structural Dynamics Problem

6.7.2 Verification, Calibration, and Validation

Two Gaussian process surrogate models are constructed to reduce the computa-

tional effort; the first is to replace the model H while the second is to compute the

response quantity R. These surrogate models are constructed based on the com-

puter codes provided in [200]. Whenever surrogate models are used for prediction,

1The same structural dynamics problem will be studied again in Chapter VIII, where three levels
will be considered, and tests on individual models will also be included in the Bayesian network.
See Fig. 8.5 in Section 8.4 in Chapter VIII.
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there is a stochastic solution approximation error caused due to replacing the original

model with a surrogate. This stochastic error is included in the Bayesian network in

Fig. 6.13, through the nodes ǫsoln. This error must be explicitly included in both the

calibration and validation procedures.

The model parameters k1, k2 and k3 are estimated using the calibration data, and

shown in Figs. 6.14 – 6.16 respectively. The model inadequacy term was found to

be insignificant and close to zero for this problem. All the four PDFs (fθ(θ|G ∩H),

fθ(θ|G ∩H ′), fθ(θ|G′ ∩H), and fθ(θ|G′ ∩H ′) needed for the evaluation of Eq. 6.16

are also shown.
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Figure 6.14: PDF of Parameter k1

The next step is to validate the calibrated models. The models G and H are

validated using two test measurements each, using the Bayesian hypothesis testing

approach. The probabilities that the two models are correct are given by P (G) = 0.25

and P (H) = 0.6. It is assumed that the events that the models G and H are correct

are independent; hence, P (G ∩H) = 0.15, P (G ∩H ′) = 0.1, P (G′ ∩H) = 0.45, and

P (G′ ∩H ′) = 0.3. If the conditional probability that P(G is correct | H is correct) is

available and not equal to P(G is correct), then this information can be included to

calculate P (G ∩H).
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Figure 6.15: PDF of Parameter k2

6.7.3 Integration for Overall Uncertainty Quantification

The next step is to calculate the unconditional PDFs of the calibration parameters

k1, k2, and k3, by including the validation result. This is accomplished by using

Eq. 6.16, and the unconditional PDFs are used to compute the system-level response

by propagating the uncertainty through the model Z; the resultant PDF is shown in

Fig. 6.17.

Fig. 6.17 shows three PDFs; the first PDF (fR(r|G,H)) is obtained by simply

propagating the prior PDFs of the stiffnesses through models and hence is representa-

tive of all knowledge before test data collection. The second PDF (fR(r|DC
1 , D

C
2 , G,H)

includes the effect of verification (by considering surrogate model uncertainty) and

calibration (by updating parameters using calibration data) but does not include the

effect of validation (i.e. assumes the correctness of the lower-level models). The third

PDF (fR(r|DC
1 , D

C
2 , D

V
1 , D

V
2 ) is the unconditional PDF and accounts for the results

of verification, validation, and calibration activities in the lower level models. Similar

234



2 4 6 8 10 12 14

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5

 

 

Parameter k3

P
D
F

Prior

fθ(θ|DC
1 , G)

fθ(θ|DC
2
, H)

fθ(θ|DC
1
, DC

2
, G,H)

Figure 6.16: PDF of Parameter k3

to the previous section, the differences between the PDFs are prominent in the tail

region, and hence have a larger impact on reliability calculations.

6.8 Summary

Verification, validation, and calibration are significant activities in the process of

model development. While methods for individual activities ere addressed in Chap-

ter IV, the quantification of the combined effect of these activities on the overall

system-level prediction uncertainty is addressed in this chapter.

Two independent sets of test data are considered: the first set is used to calibrate

the model parameters and the second set is used to validate the calibrated model.

The method of Bayesian inference developed in Section 4.3 is used to for calibration

of model parameters. In order to validate the model, either the Bayesian hypoth-

esis testing developed in Section 4.4.1 or the reliability-based method developed in

Section 4.4.2 can be used. Both of these methods quantify the probability that the

model is correct; recall that the reliability metric is more absolute than the Bayes

factor metric.
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This chapter proposed a methodology to integrate the results from verification,

calibration, and validation in order to quantify the overall uncertainty in the system-

level prediction. The integration methodology is then extended to two types of con-

figurations – (1) multiple models with sequential configuration where the output of

a lower-level model becomes an input to the higher-level model; and (2) multiple

models with non-sequential configuration, where models of increasing complexity are

considered and the system-level model parameters are inferred using test data at lower

levels. The procedure for roll-up of calibration and validation results at lower levels is

different for the two types of configurations; in the sequential system, the key idea is

to compute the unconditional PDF of the output of the lower-level system, whereas

in the non-sequential case, the key idea is to compute the unconditional PDF of the

underlying model parameters. If a system-level prediction is based on models with

both types of configurations (sequential and non-sequential), then the unconditional

PDFs of the intermediate output and the parameters can both be used to compute

the uncertainty in the overall system-level prediction uncertainty.

The proposed methodology offers considerable promise towards the quantification

236



of margins and uncertainties in multi-level system prediction. While calibration and

validation have previously been performed independently at individual levels, this

methodology systematically integrates all such activities in order to compute the

system-level prediction uncertainty, thereby aiding in risk-informed decision making

using all available information.

Several practical systems are multi-disciplinary, and there may be feedback cou-

pling between the subsystem models, whereas the Bayesian network only allows

acyclic dependencies between variables. The following chapter develops a new likelihood-

based methodology for uncertainty quantification in such multi-disciplinary systems

with feedback coupling. As a result of this new methodology, the feedback coupling

can be replaced with a uni-directional coupling, thereby rendering the system con-

figuration “sequential”. Therefore, it will be straightforward to extend the methods

developed in this chapter to systems with feedback coupling.
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CHAPTER VII

UNCERTAINTY QUANTIFICATION IN
MULTI-DISCIPLINARY SYSTEMS

7.1 Introduction

Practical engineering systems are often composed of multiple models and different

types of physics interaction. In order to quantify the uncertainty in the system-level

response, it is necessary to propagate the different sources of uncertainty through

these multi-disciplinary models. As explained in Chapter I, these models can inter-

act/combine in three different ways, leading to three types of system configurations,

namely non-sequential, sequential and feedback configurations. Chapter VI addressed

uncertainty quantification in non-sequential and sequential configurations through the

use of a Bayesian network. However, the Bayesian network is acyclic and does not

explicitly permit feedback coupling. This chapter proposes a new methodology for un-

certainty quantification in multi-disciplinary systems with feedback coupling, which

eventually facilitates the application of Bayesian networks to such configurations.

Multi-disciplinary systems analysis and optimization is an extensive area of re-

search, and numerous studies in the literature have dealt with the various aspects

of coupled multi-disciplinary analysis in several engineering disciplines. Researchers

have focused both on the development of computational methods [205, 206] and the

application of these methods to several types of multi-physics interaction, for exam-

ple, fluid-structure [207], thermal-structural [208], fluid-thermal-structural [209], etc.

Studies have considered these methods and applications either for multi-disciplinary

analysis (MDA) or for multi-disciplinary optimization (MDO).

Computational methods for MDA can be classified into three different groups of
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approaches [210]. The first approach, known as the field elimination method [210],

eliminates one or more coupling variables (referred to as “field” in the literature

pertaining to fluid-structure interaction) using reduction/elimination techniques such

as integral transforms, model reduction, etc. This approach is restricted to linear

problems that permit efficient and evident coupling. The second approach, known

as the monolithic method [210, 211], solves the coupled analysis simultaneously us-

ing a single solver (for e.g. Newton-Raphson). The third approach, known as the

partitioned method, solves the individual analyses separately with different solvers.

The well-known fixed point iteration approach (repeated analysis until convergence

of coupling variables), and the staggered solution approach [210, 212] are examples

of partitioned methods. While the field elimination and monolithic methods tightly

couple the multi-disciplinary analyses together, the partitioned method does not.

Two major types of methods have been pursued for MDO single level approaches

and multi-level approaches. Single level approaches [205] include the multi-disciplinary

feasible (MDF) approach (also called fully integrated optimization or the all-in-one

approach), the all-at-once (AAO) approach (also called simultaneous analysis and

design (SAND)), and the individual disciplinary feasible (IDF) approach. Multi-level

approaches for MDO include collaborative optimization [213, 214], concurrent sub-

space optimization [215, 216], bi-level integrated system synthesis [217], analytical

target cascading [218, 219], etc.

An important factor in the analysis and design of multi-disciplinary systems is

the presence of uncertainty in the system inputs. It is necessary to account for the

various sources of uncertainty in both MDA and MDO problems. The MDA problem

focuses on uncertainty propagation to calculate the uncertainty in the outputs. In

the MDO problem, the objective function and/or constraints may become stochastic
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if the inputs are random. The focus of the present chapter is only on uncertainty

propagation in multi-disciplinary analysis and not on optimization.

While most of the aforementioned methods for deterministic MDA can easily be

extended to non-deterministic MDA using Monte Carlo sampling, this may be com-

putationally expensive due to repeated evaluations of disciplinary analyses. Hence,

researchers have focused on developing more efficient alternatives. Gu et al. [220] pro-

posed worst case uncertainty propagation using derivative-based sensitivities. Kokko-

laras et al. [218] used the advanced mean value method for uncertainty propagation

and reliability analysis, and this was extended by Liu et al. [219] by using moment-

matching and considering the first two moments. Several studies have focused on

uncertainty propagation in the context of reliability analysis. Du and Chen [221]

included the disciplinary constraints in the most probable point (MPP) estimation

for reliability analysis. Mahadevan and Smith [222] developed a multi-constraint

first-order reliability method (FORM) for MPP estimation. While all the aforemen-

tioned techniques are probabilistic, non-probabilistic techniques based on fuzzy meth-

ods [223], evidence theory [65], interval analysis [224], etc. have also been studied for

MDA under uncertainty.

Similar to MDA, methods for MDO under uncertainty have also been investi-

gated by several researchers. Kokkolaras et al. [218] extended the analytical target

cascading approach to include uncertainty. A sequential optimization and reliability

analysis (SORA) framework was developed by Du et al. [225] by decoupling the op-

timization and reliability analyses. Chiralaksanakul and Mahadevan [226] integrated

solution methods for reliability-based design optimization with solution methods for

deterministic MDO problems to address MDO under uncertainty. Smith [227] com-

bined the techniques in [222] and [226] for the design of aerospace structures. The
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literature on MDO under uncertainty is large; however, since the focus of this chap-

ter is on MDA under uncertainty, aspects of MDO will not be considered; the rest of

the chapter will focus on methods for uncertainty propagation in multi-disciplinary

analysis.

Review of the above studies reveals that the existing methods for MDA under

uncertainty are either computationally expensive or based on several approximations.

Computationally expense is incurred in the following ways:

1. Using deterministic MDA methods with Monte Carlo sampling [27] require sev-

eral thousands of evaluations of the individual disciplinary analyses.

2. Non-probabilistic techniques [65, 223, 224] use interval-analysis based approaches,

which also require substantial computational effort. Further they are also dif-

ficult to interpret in the context of reliability analysis; this is an important

consideration for MDO which may involve reliability constraints.

Approximations are introduced in the following manner:

1. Probability distributions are approximated with the first two moments [218,

219, 221, 222].

2. Approximations of individual disciplinary analyses may be considered using

derivative-based sensitivities [220] or linearization at MPP for reliability calcu-

lation [221, 222].

Some of these problems can be overcome by the use of a decoupled approach that

has been advocated by Du and Chen [221] and Mahadevan and Smith [222]. In this

decoupled approach, Taylors series approximation and the first-order second moment

(FOSM) method have been proposed to calculate the probability density function

(PDF) of the coupling variables.
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Figure 7.1: A Multi-disciplinary System

For example, consider the multi-disciplinary system shown in Fig. 7.1. Here x =

{x1, x2, xs} are the inputs, and u(x) = {u12, u21} are the coupling variables. Note that

this is a not only a multi-disciplinary system, but also a multi-level system where the

outputs of the coupled analysis (g1 and g2) are used to compute a higher level system

output (f).

Once the PDFs of the coupling variables u12 and u21 are estimated using the

decoupled approach, the coupling between “Analysis 1” and “Analysis 2” is removed.

In other words, the variable u21 becomes an input to “Analysis 1” and the variable

u12 becomes an input to “Analysis 2”, and the dependence between the quantities

u12, u21 and x is not considered any further. This “fully decoupled” approach reduces

the computational effort considerably by avoiding repeated evaluations of the fully

coupled system; however, this is still based on approximations and more importantly,

suitable only when the aim is to estimate the statistics of g1 or g2.

In the case of a multi-level system, where the multi-disciplinary outputs (g1 and

g2 in this case) could be inputs to another model (Analysis 3 in Fig. 7.1), the fully
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decoupled approach will not be applicable for the following reason. In Fig. 7.1, for

a given x, there is a unique g1, and a unique g2; in addition, for a given u12, there

is a unique u21, and hence for a given g1, there is a unique g2. This functional

dependence between u12 and u21, and hence between g1 and g2, cannot be ignored

when estimating the probability distribution of f . In the fully decoupled approach,

the functional dependence between u12 and u21 is not preserved in subsequent analysis;

once the PDFs of u12 and u21 are estimated, independent samples of u12 and u21 are

used to generate samples of g1 (using only Analysis 1) and g2 (using only Analysis 2)

which in turn are used to compute the statistics of f . This will lead to an erroneous

estimate of f , since g1 and g2 values are not related to each other as they should be in

the original system. This “subsequent analysis” need not necessarily refer to a higher

level output; this could even refer to an optimization objective which is computed

based on the values of g1 and g2 (or even u12 and u21). Thus, if the objective is only

to get the statistics of g1 and g2 as considered in [221, 222], then the fully decoupled

approach is adequate. But if g1 and g2 are to be used in further analysis, then the one-

to-one correspondence between u12 and u21 (and hence between g1 and g2) cannot be

maintained in the fully decoupled approach. Hence, one would have to revert to the

expensive Monte Carlo simulation outside a deterministic MDA procedure to compute

the statistics of the output f . Thus, it becomes essential to look for alternatives to

the fully decoupled approach, especially when the complexity of the system increases.

This chapter proposes a new likelihood-based approach for uncertainty propaga-

tion analysis in multi-level, multi-disciplinary systems. In this method, the probabil-

ity of satisfying the inter-disciplinary compatibility is calculated using the principle

of likelihood, which is then used to quantify the probability density function (PDF)

of the coupling variables. The proposed approach offers several advantages:

1. The proposed method for the calculation of the PDF of the coupling variable
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is theoretically exact; the uncertainty in the inputs is accurately propagated

through the disciplinary analyses in order to calculate the PDF of the cou-

pling variable. No approximations of the individual disciplinary analyses or the

moments of the coupling variable are necessary.

2. This approach requires no coupled system analysis, i.e. repeated iteration be-

tween individual disciplinary analyses until convergence (as in fixed point iter-

ation), thereby improving the computational cost.

3. For multi-level systems, the difficulty in propagating the uncertainty in the

feedback variables to the system output is overcome by replacing the feedback

coupling with unidirectional coupling, thereby preserving the functional depen-

dence between the individual disciplinary models. The direction of coupling can

be chosen either way, without loss of generality. This semi-coupled approach is

also useful in an optimization problem where the objective function is a function

of the disciplinary outputs.

The fact that the bi-directional coupling can be replaced with uni-directional cou-

pling reduces the feedback coupling to feed-forward coupling, thereby rendering the

system with a sequential configuration. Therefore, the methods for calibration, ver-

ification, validation and integration developed in Chapter VI can easily be extended

to multi-disciplinary systems too. Since the method for integration of results from

uncertainty quantification activities was developed earlier in Section VI, this chapter

focuses only on the new likelihood-based methodology for uncertainty propagation,

and explains how the bi-directional coupling can be replaced with uni-directional

coupling.

The following sections describe the proposed likelihood-based methodology in de-

tail. Section 7.2 discusses a “sampling with optimization-based deterministic MDA”
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approach, which is an example of using the partitioned method along with Monte

Carlo simulation. The proposed likelihood approach for MDA (LAMDA) is devel-

oped in Section 7.3 and its numerical implementation is discussed in Section 7.4.

Section 7.5 illustrates the proposed methodology using a mathematical example and

Section 7.6 uses the proposed methodology for a three-discipline analysis of a fire

detection satellite [228].

7.2 Sampling outside Deterministic MDA

Consider the multi-disciplinary system shown earlier in Fig. 7.1. The overall

goal is to estimate the probability distribution of the outputs g1, g2, and f , given the

probability distributions of the inputs x. As explained in Section 7.1, an intermediate

step is to calculate the PDFs of the coupling variables u12 and u21 and then use these

PDFs for uncertainty propagation.

First consider the deterministic problem of estimating the converged u12 and u21

values corresponding to given values of x. The conventional fixed point iteration ap-

proach starts with an arbitrary value of u12 as input to “Analysis 2” and the resultant

value of u21 serves as input to “Analysis 1”. If the next output from “Analysis 1” is

the same as the original u12, then the analysis is said to have reached convergence and

the inter-disciplinary compatibility is satisfied. However, if it is not, the conventional

fixed point iteration approach treats the output of “Analysis 1” as input to “Analysis

2” and the procedure is repeated until convergence.

This search for the convergent values of u12 and u21 can be performed in an

intelligent manner by formulating it as an optimization problem. For this purpose,

define a new function G whose input is the coupling variable u12, in addition to x.

The output of “G” is denoted by U12, which is obtained by propagating the input

through “Analysis 2” followed by “Analysis 1”, as shown in Fig. 7.2.
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Figure 7.2: Definition of G

The multi-disciplinary constraint is said to be satisfied if and only if u12 = U12.

For a given x, the convergent value of the coupling variable u12 can be obtained by

minimizing the squared error E = (u12−G(u12,x))
2 for a given set of inputs x, where

G is given by:

U12 = G(u12,x) = A1(u21,x) where u21 = A2(u12,x) (7.1)

Note that this is an unconstrained optimization problem. If the multi-disciplinary

compatibility is satisfied, then u12 = U12, and the optimum value of E will be equal

to zero. In the rest of this chapter, it is assumed that it is possible to satisfy inter-

disciplinary compatibility for each realization of the input x; in other words, the

multi-disciplinary analysis has a feasible solution for each input realization. Once the

converged value of u12 is estimated, then the bi-directional coupling can be removed

and replaced with a uni-directional coupling from “Analysis 2” to “Analysis 1” as

shown in Fig. 7.3.

If there are multiple coupling variables in one direction, i.e. if u12 is a vector

instead of a scalar, then E is also a vector, i.e. E = [E1, E2, E3, ... En]. If the

multi-disciplinary analysis has a solution, then the optimal value of the vector u12

will lead to Ei = 0 for all i’s. Since each Ei = 0 by definition, the optimal value of

246



u12 can be estimated by minimizing the sum of all Ei’s (instead of minimizing each

Ei separately), and the minimum value of this sum will also be equal to zero.

This is a minor modification to the fixed point iteration approach; here the con-

vergent value of the coupling variable is calculated based on an optimization which

may choose iterations judiciously in comparison with the fixed point iteration ap-

proach. Hence, in terms of uncertainty propagation, the computational cost is still

very high. The input values need to be sampled and for each realization, this op-

timization needs to be repeated and the entire distribution of the coupling variable

needs to be calculated using many such samples.

x1 x2

xs

g1 g2

Estimated u12

u21

f

Analysis 1 Analysis 2

Analysis 3

A1(u(x), x) A2(u(x), x)

A3(g1, g2)

Figure 7.3: Partially Decoupled Multi-disciplinary System

Hereon, this approach is referred to as “sampling with optimization-based deter-

ministic MDA” (SOMDA). Since this approach is still computationally expensive,

a likelihood-based approach for MDA is proposed in the next section This approach

does not require sampling and provides an efficient and theoretically accurate method

for uncertainty propagation in multi-disciplinary analysis.
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7.3 Likelihood-based Approach for MDA

The optimization discussed in the previous section is much similar to a least-

squares based optimization; the difference being that a typical least squares opti-

mization is posed as a summation problem with multiple observed data whereas this

is not the case in the current optimization problem. The quantity to be estimated is

the convergent value of u12 for a given set of inputs x. When the inputs are random,

then the coupling variable u12 is also random and its probability distribution needs

to be calculated. This can be viewed similar to a statistical parameter estimation

problem, and can be approached from the perspective of likelihood-based estimation,

where the goal is to estimate the coupling variable u12.

Recall that the likelihood function is defined as being proportional to the “proba-

bility of observing the given data” conditioned on the parameter to be estimated (u12

in this case). However, the problem of estimating the PDF of the coupling variable

u12 in multi-disciplinary analysis is purely an uncertainty propagation problem and

there is no “data” to calculate the likelihood function of u12. Hence, the definition of

the likelihood function cannot be used directly.

However, the focus of the MDA problem is to satisfy the inter-disciplinary compat-

ibility condition. Consider “the probability of satisfying the inter-disciplinary compat-

ibility conditioned on u12”, which can be written as P (U12 = u12|u12). This definition

is similar to the original definition of the likelihood function (Section 2.4.3). It is a

weight that is associated with a particular value of u12 to satisfy the multi-disciplinary

constraint. In other words, if the ratio of P (U12 = u
(1)
12 |u

(1)
12 ) to P (U12 = u

(2)
12 |u

(2)
12 ) is

equal to 0.1, then it is 10 ten times more likely for u
(2)
12 than u

(1)
12 to satisfy the

inter-disciplinary compatibility condition. Thus, the properties of this expression are

similar to the properties of the original likelihood function (Section 2.4.3). Hence, this

expression is defined to be the likelihood of u12 in this chapter, as shown in Eq. 7.2.
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Since the likelihood function is meaningful only up to a proportionality constant,

Eq. 7.2 also uses only a proportionality sign.

L(u12) ∝ P (U12 = u12|u12) (7.2)

Note that this definition is in terms of probability and hence the tool of likelihood

gives a systematic procedure for including the uncertainty in the inputs during the

construction of likelihood and estimating the probability distribution of the coupling

variables, as explained below.

Note that there is a convergent value of u12 for every realization of x. If x is repre-

sented using a probability distribution, then one sample of x has a relative likelihood

of occurrence with respect to another sample of x. Correspondingly, a given sample

of u12 has a relative likelihood of being a convergent solution with respect another

sample of u12, and hence u12 can be represented using a probability distribution. It

is this likelihood function and the corresponding probability distribution that will be

calculated using the proposed method.

For a given value of u12, consider the operation U12 = G(u12,x) defined earlier

in Eq. 7.1. When x is random, an uncertainty propagation method can be used

to calculate the distribution of U12. Let the probability density function of U12 be

denoted by fU12
(U12|u12).

The aim is to calculate the likelihood of u12, i.e. L(u12) as the probability of

satisfying the multi-disciplinary constraint, i.e. U12 = u12. Since fU12
(U12|u12) is a

continuous PDF, the probability that U12 is equal to any particular value, u12 in

this case, is equal to zero. Pawitan [22] explained that this problem can be over-

come by considering an infinitesimally small window [u12 − ǫ
2
, u12 +

ǫ
2
] around u12 by
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acknowledging that there is only limited precision in the real world.

L(u12) ∝ P (U12 = u12|u12) =

∫ u12+
ǫ
2

u12− ǫ
2

fU12
(U12|u12)dU12 ∝ fU12

(U12 = u12|u12) (7.3)

Note that this equation is similar to the common practice of estimating the parameters

of a probability distribution given observed data for the random variable (Eq. 3.1 in

Section 3.4).

Note that the likelihood function L(u12) is conditioned on u12 and hence the PDF

of U12 is always conditioned on u12. Once the likelihood function of u12, i.e the

probability of satisfying the multi-disciplinary compatibility for a given value of u12.

is calculated, the PDF of the converged value of the coupling variable u12 can be

calculated as:

f(u12) =
L(u12)

∫

L(u12)du12

(7.4)

In the above equation, the domain of integration for the variable u12 is such that

L(u12) 6= 0. Note that Eq. 7.4 is a form of Bayes theorem with a non-informative

uniform prior density for u12. Once the PDF of u12 is calculated, the multi-disciplinary

analysis with uni-directional coupling in Fig. 7.3 can be used in lieu of the multi-

disciplinary analysis with bi-directional coupling in Fig. 7.1. The system output f

can then be calculated using well-known methods of uncertainty propagation such as

Monte Carlo sampling (MCS), first-order reliability method (FORM), second-order

reliability method (SORM), etc.

During the aforementioned uncertainty propagation, the converged u12 and x are

considered as independent inputs in order to compute the uncertainty in u21, g1, g2,

and f . However, for every given value of x, there is only one converged value of

u12; this is not a statistical dependence but a functional dependence. The functional

dependence between the converged u12 and x is not known and not considered in
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the decoupled approach. If this functional dependence needs to be explicitly con-

sidered, one would have to revert to the computationally expensive fixed point it-

eration approach for every sample of x. (An alternative would be to choose a few

samples of x, run fixed point iteration analysis on each of them and construct a sur-

rogate/approximation of the functional dependence between x and u12, and explicitly

use this surrogate in uncertainty propagation. Obviously, the surrogate could also be

directly constructed for any of the responses - g1, g2, or f - instead of considering

the coupling variable u12. However, replacing the entire multi-disciplinary analysis

by a surrogate model is a different approach and does not fall within the scope of the

decoupled approach).

The above discussion calculated the PDF of u12 and cut the coupling from “Anal-

ysis 1” to “Analysis 2”. Without loss of generality, the same approach can be used

to calculate the PDF of u21 and cut the coupling from “Analysis 2” to “Analysis 1”.

This method has several advantages:

1. This method is free from first-order or second-order approximations of the cou-

pling variables.

2. The equations of the individual disciplinary analyses are not approximated dur-

ing the derivation of Eq. 7.3 and the calculation of the PDF of the coupling

variables in Eq. 7.4 is exact from a theoretical perspective.

3. The method does not require any coupled system analysis, i.e. repeated iteration

between “Analysis 1” and “Analysis 2” until convergence.

Though the computation of the PDF of u12 is theoretically exact, two issues need

to be addressed in computational implementation. (1) The calculation of L(u12)

requires the estimation of fU12
(U12|u12) which needs to be calculated by propagating

the inputs x through G for a given value of u12. (2) This likelihood function needs
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to be calculated for several values of u12 to perform the integration in Eq. 7.4. These

two steps, i.e. uncertainty propagation and integration, could make the methodology

computationally expensive if a Monte Carlo-type approach is pursued for uncertainty

propagation.

Therefore, the following section proposes a methodology that makes the numer-

ical implementation inexpensive for the above two steps. From here on, there are

approximations made; note that these approximations are only for the purpose of nu-

merical implementation and not a part of the mathematical theory. Here, “theory”

refers to the development and use of Eq. 7.3 and Eq. 7.4 for uncertainty quantifi-

cation in multi-disciplinary analysis, and “implementation” refers to the numerical

computation of fU12
(U12 = u12|u12) in Eq. 7.3.

7.4 Numerical Implementation

This section addresses the two issues mentioned above in the numerical imple-

mentation of the proposed likelihood-based approach.

7.4.1 Evaluation of the Likelihood Function L(u12)

The first task is to calculate the likelihood function L(u12) for a given value of u12.

This requires the calculation of the PDF fU12
(U12|u12). However it is not necessary to

calculate the entire PDF. Based on Eq. 7.3, the calculation of likelihood L(u12) only

requires the evaluation of the PDF at u12, i.e. fU12
(U12 = u12|u12) . Hence, instead

of entirely evaluating the PDF fU12
(U12|u12), only local analysis at U12 = u12 needs

to be performed. One method is to make use of FORM to evaluate this PDF value.

This is the first approximation.

The first-order reliability method estimates the probability that a performance

function H = h(x) is less than or equal to zero, given uncertain input variables x.

252



This probability is equal to the cumulative probability density (CDF) of the variable

H evaluated at zero [27]. In this approach, the so-called most probable point (MPP)

is calculated by transforming the variables x into uncorrelated standard normal space

u and by determining the point in the transformed space that is closest to the origin.

An optimization problem can be formulated as shown in Fig. 7.4.

Given PDFs of x

Minimize β = uTu

such that H ≡ h(x) = 0

where standard normal u = T (x)

P (H ≤ 0) = Φ(−β)

Figure 7.4: Use of FORM to Estimate the CDF Value

The details of the transformation u = T (x) in Fig. 7.4 can be found in Haldar and

Mahadevan [27]. This optimization can be solved by using the well-known Rackwitz-

Fiessler algorithm [31], which is based on a repeated linear approximation of the

constraint H = 0. Once the shortest distance to the origin is estimated to be equal

to β, then the CDF value is calculated in FORM as:

P (H ≤ 0) = φ(−β) (7.5)

FORM can also be used to calculate the CDF value at any generic value hc, i.e.

P (h(x) ≤ hc) and the probability that h(x) is less than or equal to hc can be evaluated

by executing the FORM analysis for the performance function H = h(x) − hc. For

the problem at hand, it is necessary to calculate the PDF value at u12 and not the

CDF value. This can be accomplished by finite differencing, i.e. by performing two

FORM analyses at hc = u12 and hc = u12 + δ, where δ is a small difference that can

be chosen, for example, 0.001× u12. The resultant CDF values from the two FORM
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analyses are differenced and divided by δ to provide an approximate value of the PDF

value at u12. This is the second approximation.

Hence, the evaluation of the likelihood function L(u12) is based on two approxima-

tions: (1) the PDF value is calculated based on finite differencing two CDF values;

and (2) each CDF value is in turn calculated using FORM which is a first-order

approximation (Eq. 7.5).

7.4.2 Construction of PDF of u12

Recall that Eq. 7.4 is used to calculate the PDF of u12 based on the likelihood

function L(u12). In theory, for any chosen value of u12, the corresponding likelihood

L(u12) can be evaluated, and hence the integral in Eq. 7.4 can be computed. For the

purpose of numerical implementation, the limits of integration need to be chosen. The

first-order estimates of the mean and variance of u12 can be estimated by calculating

the converged value of u12 at the mean of the uncertain input values using fixed point

iteration. The derivatives of the coupling variables with respect to the inputs can be

calculated using Sobieski’s system sensitivity equations [229], as demonstrated later

in Section 7.4.1. These first order estimates can be then used to select the limits (for

example, six sigma limits) for integration.

In order to evaluate the PDF of u12, The likelihood function is evaluated only

at a few points; a recursive adaptive version of Simpson’s quadrature [132] is used

to evaluate this integral and the points at which the likelihood function needs to be

evaluated are adaptively chosen until the quadrature algorithm converges.

This quadrature algorithm is usually applicable only in the case of one-dimensional

integrals whereas in a typical multi-disciplinary problem, u12 may be a vector, where

there are several coupling variables in each direction. Hence, the multi-dimensional

integral is decomposed into multiple one-dimensional integrals so that the quadrature
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algorithm may be applied.

∫

L(α, β)dαdβ =

∫

(

∫

L(α, β)dα
)

dβ (7.6)

Each one-dimensional integral is evaluated using recursive adaptive Simpson’s quadra-

ture algorithm [132], which was explained earlier in Section 4.3.7.

This technique ensures that the number of evaluations of the individual disci-

plinary analyses is minimal. Would it be possible to approximately estimate the

number of disciplinary analyses needed for uncertainty propagation? Suppose that

the likelihood function is evaluated at ten points to solve the integration in Eq. 7.4.

Each likelihood evaluation requires a PDF calculation, and hence two FORM analy-

ses. Assume that the optimization for FORM converges in five iterations on average;

each iteration would require n + 1 (where n is the number of input variables) evalua-

tions of the individual disciplinary analysis (one evaluation for the function value and

n evaluations for derivatives). Thus, the number of individual disciplinary analyses

required will approximately be equal to 100(n+ 1). This is computationally efficient

when compared to existing approaches. For example, Mahadevan and Smith [222] re-

port that for a multi-disciplinary analysis with 5 input variables, the multi-constraint

FORM approach required 69 evaluations for the evaluation of a single CDF value,

which on average may lead to 690 evaluations for 10 CDF values. While the proposed

method directly calculates the entire PDF, it also retains the functional dependence

between the disciplinary analyses, thereby enabling uncertainty propagation to the

next analysis level.

As the number of coupling variables increases, the integration procedure causes the

computational cost to increase exponentially. For example, if there are ten coupling

variables, each with 5 discretization points (for the sake of integration), then the

number of individual disciplinary analyses required will approximately be equal to
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510 × 10× (n+ 1). Alternatively, a sampling technique such as Markov Chain Monte

Carlo (MCMC) sampling can be used to draw samples of the coupling variables; this

method can draw samples of the coupling variable without evaluating the integration

constant in Eq. 7.4. Further, since this is sampling approach, the computational

cost does not increase exponentially with the number of coupling variables. In each

iteration of the MCMC chain, two FORM analyses need to be conducted to evaluate

the likelihood for a given value of u12 (which is now vector), and several thousands

(say, Q) of evaluations of this likelihood function may be necessary for generating the

entire PDFs of the coupling variables. Thus, the number of individual disciplinary

analyses will be approximately equal to 10 × (n + 1) × Q. Currently, the proposed

method is demonstrated only for a small number of coupling variables. Future work

will extend the methodology to field-type quantities (temperatures, pressures, etc. in

finite element analysis) where the number of coupling variables is large.

7.5 Example: Mathematical MDA Problem

7.5.1 Description of the Problem

This problem consists of three analyses, two of which are coupled with one an-

other. This is an extension of the problem discussed by Du and Chen [221], and

later by Mahadevan and Smith [222] where only two analyses where considered. The

functional relationships are shown in Fig. 7.5.

In addition to the two analyses given in [222], the current study considers a third

analysis where a system output is calculated based on g1 and g2 as f = g2 − g1. All

the five input quantities x = (x1, x2, x3, x4, x5) are assumed to be normally distributed

(only for the sake of illustration) with unit mean and standard deviation equal to 0.1;

there is no correlation between them. The goal in [221] and [222] was to calculate the
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√
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Figure 7.5: Functional Relationships

probability P (g1 ≤ 0). In this section, the goal is to calculate the entire probability

distributions of the coupling variables u12 and u21, the outputs of the individual

analyses g1 and g2, and the overall system output f .

A coarse approximation of the uncertainty in the output variables and coupling

variables can be obtained in terms of first-order mean and variance using Taylors

series expansion [27]. For example, consider the coupling variable u12; the procedure

described for can be extended to u21, g1, g2, and f . The first-order mean of u12

can be estimated by calculating the converged value of u12 at the mean of the input

values, i.e. x = (1, 1, 1, 1, 1). The first-order mean values of of u12, u21, g1, g2, and f

are calculated to be equal to 8.9, 11.9, 0.5, 2.4, and 1.9 respectively. The first-order

variance of u12 can be estimated as:

V ar(u12) =

n
∑

i=1

(du12

dxi

)2

V ar(xi) (7.7)

where the first-order derivatives are calculated using Sobieski’s system (or global)
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sensitivity equations [229], by satisfying the multi-disciplinary compatibility as:

du12

dxi

=
∂u12

∂xi

+
∂u12

∂u21

∂u21

∂xi

(7.8)

All the derivatives are calculated at the mean of the input values, i.e. x = (1, 1, 1, 1, 1).

The values of ∂u12

∂xi
are 2, 2, −1, 0 and 0 (i = 1 to 5) respectively. The values of ∂u21

∂xi

are 1, 0, 0, 3, and 1 (i = 1 to 5) respectively. The value of ∂u12

∂u21
is 1√

u21
, evaluated

at the mean, which is equal to 0.29. Hence, using Eq. 7.7 and Eq. 7.8, the standard

deviation of u12 is calculated to be 0.333.

The system sensitivity equation-based approach only provides approximations of

the mean and variance, and it cannot calculate the entire PDF of u12. The remainder

of this section illustrates the proposed LAMDA approach, which can accurately calcu-

late the entire PDF of u12. Though the system of equations in Fig. 7.5 may be solved

algebraically by eliminating one variable, the numerical implementation does not take

advantage of this closed form solution and assumes each analysis to be a black-box.

This is done to simulate the behavior of realistic multi-disciplinary analyses that may

not have closed form solutions. For the same reason, finite differencing is used to

approximate the gradients even though analytical derivatives can be calculated easily

for this problem.

7.5.2 Calculation of the PDF of the Coupling Variable

In this numerical example, the coupling variable u12 is estimated for the sake of il-

lustration, and the arrow from “Analysis 1” to “Analysis 2” is severed. The PDF of u12

is estimated using the proposed methods (1) sampling with optimization-based deter-

ministic MDA (SOMDA); and (2) likelihood approach for multi-disciplinary analysis

(LAMDA). In Fig. 7.6, the PDF using the LAMDA method uses 10 integration points

for the evaluation of Eq. 7.4. The resulting PDFs from the SOMDA method and the
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LAMDA method are compared with the benchmark solution which is estimated using

10, 000 Monte Carlo samples of x and fixed point iteration (until convergence of Anal-

ysis 1 and Analysis 2) for each sample of x. The probability bounds on MCS results

for the benchmark solution are also calculated using the formula CoV (F ) =
√

(1−F )
F.N

where F is the CDF value [27], and found to be narrow and almost indistinguishable

from the solution reported in Fig. 7.6. Since the benchmark solution uses fixed point

iteration (FPI) for each input sample, it is indicated as SOFPI (sampling outside

fixed point iteration) in Fig. 7.6.
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Figure 7.6: PDF of u12

In addition to the PDF, the CDF of u12 is shown in Fig. 7.6. The CDF is plotted

in linear and log-scale. Further, the tail probabilities are important in the context of

reliability analysis; hence, the two tails of the CDF curves are also shown separately.

It is seen that the solutions (PDF values and CDF values) from the proposed

method (LAMDA) match well with the benchmark (SOFPI) solution and the SOMDA

approach. Note that the mean and standard deviation of the PDF in Fig. 7.6 agree

well with the first-order approximations previously calculated (8.9 and 0.333). Ob-

viously, the above PDF provides more information than the first-order mean and
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Figure 7.7: Cumulative Distribution Function of u12

standard deviation, and is more suitable for calculation of tail probabilities in relia-

bility analysis.

The differences (maximum error is less than 1%) seen in the PDFs and the CDFs

from the three methods, though small, are accountable. The PDF obtained using

SOMDA differs from the benchmark solution because it uses only 1000 Latin hyper-

cube samples (realizations of inputs) whereas the benchmark solution used 10, 000

samples. The PDF obtained using LAMDA differs from the benchmark solution be-

cause of two approximations (1) finite differencing two CDF values to calculate the

PDF value, and (2) calculating each CDF value using FORM.

The benchmark solution is based on fixed point iteration and required about 105
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evaluations each of Analysis 1 and Analysis 2. The SOMDA method required 8000

- 9000 executions of each individual disciplinary analysis. (This number depends on

the random samples of the input, since for each sample, the number of optimization

iterations required for convergence is different). Note that theoretically, the SOMDA

method would produce a PDF that is identical to the benchmark solution if the

same set of input samples were used in both the cases. This is because the SOMDA

approach simply solves the deterministic MDA problem and then considers sampling

in an outside loop. The solution approach in SOMDA is different from that in the

benchmark solution approach; however, the treatment of uncertainty is the same.

As discussed in Section 7.2, the SOMDA method is still expensive; replacing the

brute force fixed point iteration in the benchmark solution by an optimization did

not significantly improve the computational efficiency in this problem.

The LAMDA method treats the uncertainty directly in the definition of likelihood,

and was found to be the least expensive, as it required only about 450 - 500 evaluations

of each disciplinary analysis for the estimation of the entire PDF of u12 in Fig. 7.6.

The number of evaluations is given as a range because of three sources of variation: (1)

different initial guesses for FORM analyses may require different numbers of function

evaluations for convergence to MPP; (2) the number of integration points used for

evaluation of Eq. 7.4; and (3) the actual values of the integration points used for

evaluation of Eq. 7.4. In contrast, the multi-constraint FORM approach developed

by Mahadevan and Smith [222] required about 69 evaluations for the calculation of

the CDF at one particular value. If the entire PDF as in Fig. 7.6 is desired, the multi-

constraint FORM would take approximately 69 × 2n function evaluations, where n

is the number of points on the PDF and each PDF evaluation would require 2 CDF

evaluations.

261



0 1 2 3 4
0

0.5

1

1.5

 

 

System Output f

P
ro
b
a
b
il
it
y
D
en
si
ty

F
u
n
ct
io
n SOMDA-based Propagation

LAMDA-based Propagation

SOFPI-based Propagation

Figure 7.8: PDF of f

7.5.3 Calculation of PDF of the System Output

Once the PDF of u12 is calculated, the scheme in Fig. 7.3 can be used for uncer-

tainty propagation and the PDF of the system output f is calculated. Note that this

does not require any multi-disciplinary analysis (iterative analysis between the two

subsystems) and it is now a simple uncertainty propagation problem. Well-known

methods for uncertainty propagation such as Monte Carlo Simulation (MCS), First

Order and Second Order Reliability Methods (FORM, SORM) [27] can be used for

this purpose. For the sake of illustration, Monte Carlo simulation is used. The PDF

of the system output f is shown in Fig. 7.8.

As the coupling variable u12 has been estimated here, the “arrow” from Analysis

1 to Analysis 2 alone is severed, whereas the arrow from Analysis 2 to Analysis 1

is retained. Hence, to solve for the system output f , the probability distributions

of the inputs x and the probability distribution of the coupling variable u12 are

used first in Analysis 2 (to calculate u21), and then in Analysis 1 to calculate the

individual disciplinary system outputs g1 and g2, followed by the overall system output

f . As seen from Fig. 7.8 , the solutions from the three different methods sampling
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with optimization-based deterministic MDA (SOMDA), likelihood approach for multi-

disciplinary analysis (LAMDA), and the benchmark solution (SOFPI) compare well

against each other. The following section uses the proposed methodology in the

analysis of an aerospace application, a satellite used to detect forest fires.

7.6 Three-discipline Fire Detection Satellite Model

This section first describes the components of the satellite system model used

for detection of forest fires, and then illustrates how this problem is representative

of a multi-disciplinary problem. Then, the proposed methods are used for multi-

disciplinary uncertainty propagation analysis.

7.6.1 Description of the Problem

This problem was originally described by Wertz and Larson [230]. This is a

hypothetical but realistic spacecraft consisting of a large number of subsystems with

both feedback and feed-forward couplings. The primary objective of this satellite is

to detect, identify, and monitor forest fires in near real time. This satellite is intended

to carry a large and accurate optical sensor of length 3.2 m, weight 720 kg and has

an angular resolution of 8.8× 10−7 radians. This section uses the modified version of

this problem considered earlier by Ferson et al. [231] and Zaman [228].

Zaman [228] considered a subset of three subsystems of the fire detection satellite,

consisting of i) Orbit Analysis, ii) Attitude Control and iii) Power, based on Ferson et

al [231]. This three-subsystem problem is shown in Fig. 7.9. There are nine random

variables in this problem, as indicated in Fig. 7.9.

As seen in Fig. 7.9, the Orbit subsystem has feed-forward coupling with both

Attitude Control and Power subsystems, whereas the Attitude Control and Power

subsystems have feedback or bi-directional coupling through three variables PACS,
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Figure 7.9: A Three Subsystem Fire Detection Satellite

Imin, and Imax. A satellite configuration is assumed in which two solar panels extend

out from the spacecraft body. Each solar panel has dimensions L by W and the inner

edge of the solar panel is at a distance D from the centerline of the satellites body as

shown in Fig. 7.10.

The functional relationships between the three subsystems are developed in detail

by Wertz and Larson [230] and summarized by Ferson et al. [231]. These functional

relationships are briefly described in this section.
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Figure 7.10: Schematic Diagram for the Spacecraft Solar Array

7.6.1.1 The Orbit Subsystem

The inputs to this subsystem are: radius of the earth (RE); orbit altitude (H);

earths standard gravitational parameter (µ); and target diameter (φtarget).

The outputs of this subsystem are: satellite velocity (v); orbit period (∆torbit);

eclipse period (∆teclipse); and maximum slewing angle (θslew). The relationships be-

tween these variables are summarized in the following equations:

v =

√

µ

RE +H
(7.9)

∆torbit = 2π

√

(RE +H)3

µ
=

2π(RE +H)

v
(7.10)

∆teclipse =
∆torbit

π
arcsin

( RE

RE +H

)

(7.11)

θslew = arctan

(

sin
(

φtarget

RE

)

1− cos(φtarget

RE
) + H

RE

)

(7.12)
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7.6.1.2 The Attitude Control Subsystem

The 23 inputs to this subsystem are: earths standard gravitational parameter (µ);

radius of the earth (RE); Altitude (H); maximum and minimum moment of inertia

of the spacecraft (Imax and Imin); deviation of major moment axis from local vertical

(θ); moment arm for the solar radiation torque (Lsp); average solar flux (Fs); speed of

light (c); reflectance factor (q); surface area off which solar radiation is reflected (As);

Slewing time period (∆tslew); magnetic moment of the Earth (M); residual dipole of

the spacecraft (RD); moment arm for aerodynamic torque (La); atmospheric density

(ρ); maximum slewing angle (θslew); sun incidence angle (i); drag coefficient (Cd);

cross sectional surface area in the direction of flight (A); satellite velocity (v); rotation

velocity of reaction wheel (ωmax); number of reaction wheels (n); and holding power

(Phold), i.e. the power required to maintain the constant velocity (ωmax). The overall

output of this subsystem is the total torque (τtot). The value of the total torque is

computed based on slewing torque (τslew), disturbance torque (τdist), gravity gradient

torque (τg), solar radiation torque (τsp), magnetic field interaction torque (τm), and

aerodynamic torque (τa), as shown in the following equations.

τtot = max(τslew, τdist) (7.13)

τslew =
4θslew

(∆tslew)2
Imax (7.14)

τdist =
√

τ 2g + τ 2sp + τ 2m + τ 2a (7.15)

τg =
3µ

2(RE +H)3
|Imax − Imin| sin(2θ) (7.16)

τsp = Lsp

Fs

C
As(1 + q) cos(i) (7.17)

τm =
2MRD

(RE +H)3
(7.18)
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τa =
1

2
LaρCdAv

2 (7.19)

Note that this subsystem takes two coupling variables (Imax and Imin) as input and

produces another coupling variable (Attitude control power: PACS) as output, as

given in the following equation.

PACS = τtotωmax + nPhold (7.20)

This coupling variable is an input to the power subsystem, as described in the follow-

ing subsection.

7.6.1.3 The Power Subsystem

The 16 inputs to the power subsystem are: attitude control power (PACS); other

sources of power (Pother); orbit period (∆torbit); eclipse period (∆teclipse); sun inci-

dence angle (i); inherent degradation of the array (Id); average solar flux (Fs); power

efficiency (η); lifetime of the spacecraft (LT ); degradation in power production ca-

pacity in % per year (ǫdeg); length to width ratio of solar array (rlw); number of solar

arrays (nsa); average mass density of solar arrays (ρsa); thickness of solar panels (t);

distance between the panels (D); and moments of inertia of the main body of the

spacecraft (IbodyX , IbodyY , IbodyZ).

The overall outputs of this subsystem are the total power (Ptot), and the total size

of the solar array (Asa), as calculated below.

Ptot = PACS + Pother (7.21)

Let Pe and Pd denote the spacecrafts power requirements during eclipse and daylight,

respectively. For the sake of illustration, it is assumed that Pe = Pd = Ptot. Let Te

and Td denote the time per orbit spent in eclipse and in sunlight, respectively. It is
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assumed that Te = ∆teclipse and Td = ∆torbit − Te. Then the required power output

(Psa) is calculated as:

Psa =
(PeTe

0.6
+ PdTd

0.8
)

Td

(7.22)

The power production capabilities at the beginning of life (PBOL) and at the end of

the life (PEOL) are calculated as:

PBOL = ηFsId cos(i)

PEOL = PBOL(1− ǫdeg)
LT

(7.23)

The total solar array size, i.e. the second output of this subsystem, is calculated as:

Asa =
Psa

PEOL

(7.24)

Note that this subsystem takes a coupling variable (PACS) as input and produces the

other two coupling variables (Imax and Imin) as output, to be fed into the attitude

control subsystem described earlier.

The length (L), width (W ), mass (msa), moments of inertia (IsaX , IsaY , IsaZ) of

the solar array are calculated as follows:

L =

√

Asarlw
msa

W =

√

Asa

rlwmsa

msa = 2ρsaLWt

(7.25)

IsaX = msa

[

1

12
(L2 + t2) +

(

D +
L

2

)2
]

(7.26)

IsaY =
msa

12
(t2 +W 2) (7.27)

IsaZ = msa

[

1

12
(L2 +W 2) +

(

D +
L

2

)2
]

(7.28)
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The total moment of inertia (Itot) can be computed in all three directions (X , Y , and

Z), from which the maximum and the minimum moments of inertia (Imax and Imin)

can be computed.

Itot = Isa + Ibody (7.29)

Imax = max(ItotX , ItotY , ItotZ) (7.30)

Imin = min(ItotX , ItotY , ItotZ) (7.31)

7.6.2 Numerical Details

Some of the input quantities are chosen to be stochastic while others are chosen

to be deterministic. Table 7.1 provides the numerical details for the deterministic

quantities and Table 7.2 provides the numerical details for the stochastic quantities.

All the stochastic quantities are treated to be normally distributed, for the sake of

illustration.

7.6.3 Uncertainty Propagation Problem

As seen in Fig. 7.9, this is a 3-disciplinary analysis problem, with feedback coupling

between two disciplines “power” and “attitude control”. It is required to compute

the uncertainty in 3 system output variables total power Ptot, required solar array

area Asa, and total torque τtot.

Prior to the quantification of the outputs, the first step is the calculation of the

probability distribution of the coupling variables. The functional dependency can be

severed in either direction, either from “power”to “attitude control” or from “attitude

control” to “power”, and this choice can be made without loss of generality. In

this example, the probability distribution of PACS, i.e. the power of the attitude

control system is calculated; this distribution now becomes an independent input
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Table 7.1: List of Deterministic Quantities

Variable Symbol Unit Numerical Value
Earth’s Radius RE m 6378140

Gravitational Parameter µ m3s−2 3.986× 1014

Target Diameter φtarget m 235000
Light Speed c ms−1 2.9979× 108

Area Reflecting Radiation As m2 13.85
Sun Incidence Angle i degree 0
Slewing Time Period ∆tslew sec 760

Magnetic Moment of Earth M A.m2 7.96× 1015

Atmospheric Density ρ kgm−3 5.1480× 10−11

Cross-sectional in Flight Direction A m2 13.85
No. of Reaction Wheels n − 3

Maximum Velocity of a Wheel ωmax rpm 6000
Holding Power Phold W 20

Inherent Degradation of Array Id - 0.77
Power Efficiency η - 0.22

Lifetime of Spacecraft LT years 15
Degradation in Power Production Capacity ǫdeg % per year 0.0375

Length to Width Ratio of Solar Array rlw - 3
Number of Solar Arrays nsa - 3

Average Mass Density to Arrays ρsa kgm3 700
Thickness of Solar Panels t m 0.005
Distance between Panels D m 2

Moments of Inertia of spacecraft body Ibody kgm2 Ibody,X = 6200
Ibody,Y = 6200
Ibody,Z = 4700

to the “power subsystem”; the functional dependency between “power” to “attitude

control” is retained through the two coupling variables in the opposite direction. The

following subsections present these results; Section 7.6.4 calculates the PDF of the

feedback variable PACS and Section 7.6.5 calculates the PDFs of the system outputs.

7.6.4 Calculation of PDF of the Coupling Variable

Similar to the mathematical example presented in Section 7.5, this section calcu-

lates the PDF of the coupling variable PACS using sampling with optimization-based

deterministic MDA (SOMDA) and the likelihood approach for multi-disciplinary anal-

ysis (LAMDA). These results are compared with the benchmark solution in Fig. 7.11.
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Table 7.2: List of Stochastic Quantities

Variable Symbol Unit Mean Standard Deviation
Altitude H m 18000000 1000000

Power other than ACS Pother W 1000 50
Average Solar Flux Fs W/m2 1400 20

Deviation of Moment Axis θ degree 15 1
Moment Arm for Radiation Torque Lsp m 2 0.4

Reflectance Factor q - 0.5 1
Residual Dipole of Spacecraft RD Am2 5 1

Moment Arm for Aerodynamic Torque La m 2 0.4
Drag Coefficient Cd - 1 0.3
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Figure 7.11: PDF of Coupling Variable PACS

In Fig. 7.11, the PDF using the LAMDA method uses 10 integration points for the

evaluation of Eq. 7.4.

Similar to the mathematical example in Section 7.5, it is seen from Fig. 7.11 that

the results from SOMDA and LAMDA compare well with the benchmark solution

(SOFPI). In addition to the PDFs, the CDFs and the tail probabilities are also in

reasonable agreement. The benchmark solution is based on fixed point iteration and

required about 200, 000 evaluations each of the power subsystem and the attitude con-

trol subsystem. The SOMDA method required about 20000 evaluations whereas the

LAMDA method required about 900- 1000 evaluations. It is clear that the LAMDA

approach provides an efficient and accurate alternative to sampling-based approaches.
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7.6.5 Calculation of PDFs of the System Outputs

Once the probability distribution of the coupling variable PACS is calculated, the

system does not contain any feedback coupling and hence, methods for simple forward

uncertainty propagation can be used to estimate the PDFs of the three system outputs

total power (Ptot), required solar array area (Asa), and total torque (τtot). Monte Carlo

simulation is used for uncertainty propagation. The resulting PDFs are plotted in

Figs. 7.12 - 7.14.
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Figure 7.12: PDF of Total Output Power Ptot

As seen from Figs. 7.12 - 7.14, the PDFs of the system outputs obtained using

both SOMDA and LAMDA compare well with the benchmark solution (SOFPI).

7.7 Conclusion

Existing methods for uncertainty propagation in multi-disciplinary system mod-

els are based on (1) Monte Carlo sampling around fixed point iteration, which is

computationally expensive; and/or (2), approximating the system equations; and/or

(3) approximating the probability distributions of the coupling variables and then
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Figure 7.13: PDF of Area of Solar Array Asa

decoupling the disciplinary analyses. The fully decoupled approach does not preserve

one-to-one correspondence between the individual disciplinary analyses and is not

suitable for further downstream analysis using the converged MDA output.

The perspective of likelihood and the ability to include input uncertainty in the

construction of the likelihood function provided a computationally efficient methodol-

ogy for the calculation of the PDFs of the coupling variables. The multi-disciplinary

feedback analysis was reduced to a simple forward uncertainty propagation problem

by replacing the feedback coupling with one-way coupling, the direction being chosen

without loss of generality.

The proposed method has several advantages: (1) It provides a framework for the

exact calculation of distribution of the coupling variables. (2) It retains the func-

tional dependence between the individual disciplinary analyses, thereby utilizing the

estimated PDFs of the coupling variables for uncertainty propagation, especially for

downstream analyses. (3) It does not require any coupled system analysis (iterative

analyses between the individual disciplines until convergence) for uncertainty propa-

gation.

273



0 0.01 0.02 0.03
0

20

40

60

80

100

120

 

 

System output : Total Torque

P
ro
b
a
b
il
it
y
D
en
si
ty

F
u
n
ct
io
n

SOMDA-based Propagation

LAMDA-based Propagation

SOFPI-based Propagation

Figure 7.14: PDF of Total Torque τtot

There are several directions for future work. First, the proposed methodology was

demonstrated for problems with a small number of coupling variables. The method-

ology is straightforward to implement when there is a vector of coupling variables

as explained earlier in Section 4.2. (Recall that the fire satellite example had two

coupling variables in one of the directions). However, if the coupling variable is a

field-type quantity (e.g. pressures and displacements exchanged in a fluid-structure

interaction problem at the interface of two disciplinary meshes), further research is

needed to extend the proposed likelihood-based approach for uncertainty propaga-

tion in such multi-disciplinary problems. Second, the concept of Bayesian network

can easily be extended to multi-disciplinary systems, since the feedback coupling has

been replaced with equivalent unidirectional coupling. Future work needs to extend

the methods developed in Chapter VI to multi-disciplinary systems with feedback

coupling. Third, the likelihood-based approach can be extended to address multi-

disciplinary optimization under uncertainty. Further, this chapter considered only

aleatory uncertainty (natural variability) in the inputs. Fourth, future research needs
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to include different types of epistemic uncertainty such as data and model uncertainty

in multi-disciplinary analysis and optimization.
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CHAPTER VIII

TEST RESOURCE ALLOCATION IN HIERARCHICAL SYSTEMS
USING BAYESIAN NETWORKS

8.1 Introduction

In complex engineering systems, full-scale testing may not be feasible for predict-

ing the system performance under actual operating conditions. Therefore, computa-

tional models are often used to predict the full-scale system response under actual

use conditions, and thereby quantify the uncertainty associated with the system-level

prediction. Research into quantification of margins and uncertainties (QMU) has the

goal of enabling this overall capability [232].

Testing is essential in order to calibrate and validate the computational models

used for system-level uncertainty quantification. Sometimes, it may be necessary to

perform different types of tests at multiple levels of system hierarchy (component,

subsystem and overall system), and for multiple types of physics (structures, heat

transfer, aerodynamics, etc.) with the goal of quantifying the system performance

prediction. Prior knowledge and experience can be used to subjectively describe

the uncertainty in the system prediction, and this prior knowledge can be updated

using testing data (i.e. experiments performed at various levels of system hierarchy

and different types of physics coupling). Information in the form of testing data

adds to the prior subjective knowledge, and this, in turn, reflects in the reduction of

uncertainty in the system-level prediction.

Tests at different levels of the system hierarchy have different costs and different

variance reduction effects. It would be ideal to select the combination of tests that

lead to the maximum reduction in uncertainty, thereby minimizing the uncertainty
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in the system-level prediction, while satisfying the budget constraint on testing. The

objective of this chapter is to develop an analytical procedure that helps in such

optimum test resource allocation. (Note that the terms “tests” and “experiments”

have been used interchangeably in this chapter.)

The computational methodology for resource allocation needs to be developed

immediately after model development (conceptual and mathematical) at the com-

ponent, sub-system, and system levels, and it must account for the various sources

of uncertainty (physical variability, data uncertainty, and model uncertainty) associ-

ated with the engineering system under study. Model uncertainty comprises of model

parameter uncertainty, solution approximation errors, and model form error. While

model parameter uncertainty, and solution approximation errors can be quantified

and included in the test resource allocation procedure, model form error cannot be

estimated before any actual tests are done. The resource allocation methodology

needs to be implemented before any actual testing is performed, and hence has to use

only prior knowledge and available models; model form error can be computed after

the tests are conducted.

This chapter develops a Bayesian network-based methodology to efficiently solve

the test resource allocation problem for multi-level, multi-disciplinary systems. The

Bayesian network is an ideal choice for this purpose because it can connect mul-

tiple models, the various sources of uncertainty, and can be used for both uncer-

tainty propagation (forward problem) and parameter calibration (inverse problem).

Such an approach was earlier used by Urbina et al [233] for test resource allocation;

however, Urbina et al. [233] did not calibrate multiple parameters across multiple

levels of models and tests. The present chapter considers test hierarchies where

each component/subsystem level of testing may be used to infer local model parame-

ters in addition to system model parameters. Further, multi-disciplinary systems that
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need to be calibrated based on tests performed at individual physics (i.e. decoupled

tests) are also considered.

The key idea of the proposed methodology is to use all available component-

level models and test data to quantify the uncertainty in the overall system level

performance prediction. This methodology combines two types of inverse problems

(model calibration and test resource optimization) and forward uncertainty propaga-

tion. The probability distributions of the model parameters are updated using the

Bayesian network after collecting data through testing, and the updated distributions

are propagated through the component and system models to recalculate the vari-

ance in the system performance prediction. An optimization-based procedure is then

used to aid in test resource allocation by taking into consideration the reduction in

variance due to testing, as well as the costs involved in testing, thereby facilitating

efficient cost-benefit analysis.

The rest of this chapter is organized as follows. Section 8.2 describes the pro-

posed methodology for test resource allocation. Sections 8.3, 8.4, and 8.5 implement

the proposed methodology to a multi-disciplinary thermal vibration problem (Sec-

tion 8.3), a multi-level structural dynamics problem (Section 8.4), and a multi-level,

multi-disciplinary simplified space telescope mirror (Section 8.5).

8.2 Test Resource Allocation Methodology

Typically, a multi-level, multi-physics system has several parameters that influ-

ence the overall system-level output, and the uncertainty in these parameters can

be updated by tests at multiple levels of the system and multiple types of physics

coupling. When the posterior distributions of the parameters are propagated through

the system model to calculate the overall system-level output, the posterior variance
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of the overall system-level prediction can be computed. With more acquisition of

data, a decreasing trend can be observed in the variance of the system-level output.

Two types of questions need to be answered: (1) What type of tests to do (which

component, isolated physics, etc.)? and (2) How many repetitions of each type? Each

type of test has a different testing cost and an associated reduction in the variance of

system-level prediction. Further, the same type of test may need to be repeated on

nominally identical specimens of the same component or subsystem. Such repetition

is performed in order to account for the effect of natural variability across nominally

identical specimens; while each repetition may have the same monetary cost, the

associated reduction in the variance of system-level prediction may be different.

The test conducted on one subsystem is assumed to be statistically independent

of another test on another subsystem; in other words, one type of test is independent

of any other type. Further, for a given type of test, the repetitions across multiple

replicas are also considered to be independent. It is assumed that a model is available

to predict the quantity being measured in each type of test; the model may have

several outputs but only that output which is measured is of concern. The overall

objective is to identify how many tests of each type must be performed so as to achieve

the required reduction in the variance of the system-level output. (If there are several

system-level outputs, either an aggregate measure or the most critical output can be

considered. Multi-objective optimization to reduce the variance of more than one

system-level output needs to be considered in future work.)

8.2.1 Sensitivity Analysis

The method of sensitivity analysis has been used to quantify the sensitivity of

model output to parameters. While derivative-based methods only compute local

sensitivities, the method of global sensitivity analysis [36, 234, 235] can be used to
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apportion the variance in the system-level output to the various sources of uncertainty,

and thereby guide in the reduction of system-level prediction uncertainty.

The first step of the proposed resource allocation methodology is to use sensitiv-

ity analysis and identify those parameters that have a significant influence on the

variance of the overall system-level prediction. Once the “important” parameters are

identified, only those tests that aid in reducing the uncertainty in these important

parameters can be performed. For example, consider a system-level output that is

highly sensitive to the uncertainty in the parameters of sub-system-I but not sensitive

to the parameters of sub-system-II, then it is logical to perform more sub-system-I

tests than sub-system-II tests. Note that this procedure for test identification is only

a preliminary approach. This approach can answer the question - “which tests to do?”

In order to answer the question, “how many tests to do?”, it is necessary to quantify

the decrease in variance that may be caused due to a particular test. The effect of a

particular test on variance reduction can be quantified by using Bayesian updating.

Therefore, the proposed resource allocation methodology first uses sensitivity analysis

for selection of calibration parameters and then uses Bayesian updating to quantify

the effect of a test on the variance of system-level prediction.

8.2.2 Optimization Formulation

In order to solve the resource allocation problem and identify the number of tests

to be performed for each type, the optimization problem can formulated in two ways,

as explained below.

In the first formulation shown in Eq. 8.1, the goal is to minimize the variance of
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the system-level output subject to satisfying a budget constraint.

Minimize
Ntest

E(V ar(R))

s.t.

q
∑

i=1

(CiNi) ≤ Total Budget

Ntest = [N1, N2 ... Nq]

(8.1)

In Eq. 8.1, q refers to the number of different types of possible tests. The cost of

the ith (i = 1 to q) type of test is equal to Ci, and Ni (decision variable) denotes the

number of repetitions of the ith type of test. Let Di denote all the data collected

through the ith type of test. Let Ntest denote the vector of all Ni’s and let D denote

the entire set of data collected from all q types of tests.

Alternatively, the resource allocation problem can be formulated by minimizing

the cost required to decrease the variance of the system-level output below a threshold

level, as:

Minimize
Ntest

q
∑

i=1

(CiNi)

s.t. E(V ar(R)) ≤ Threshold Variance

Ntest = [N1, N2 ... Nq]

(8.2)

In this chapter, the first formulation (Eq. 8.1) is pursued for resource allocation

because the threshold level for the variance is assumed to be unknown. Using D,

the model parameters are calibrated and the system-level response (R(D)) is com-

puted. The optimization in Eq. 8.1 calculates the optimal values of Ni, given the

cost values Ci, such that the expected value of variance of the system-level prediction

(E(V ar(R))) is minimized, while the budget constraint is satisfied.

This optimization formulation uses E(V ar(R)) as the objective function because

R is a function of D, which is not available before testing. Hence, random realizations
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of the test data set (D) are generated; each random realization is used to compute

V ar(R|D), and the expectation over such random realizations is calculated to be the

objective function, as:

E(V ar(R)) =

∫

V ar(R|D)f(D)dD (8.3)

where f(D) is the density considered for the test data. Assuming that one type of test

is performed independent of the another (i.e. a subsystem-level test is independent

of a material-level test), Eq. 8.3 can be written as:

E(V ar(R)) =

∫

V ar(R|D1, D2 ... Dq)f(D1)f(D2) ... f(Dq)dD1dD2 ... dDq (8.4)

where f(Di) is the density considered for the data obtained through the ith test.

Before any testing is done, all prior knowledge regarding the model parameters, and

the mathematical models constitute the only information available for the calculation

of f(Di). Therefore, f(Di) is calculated as:

f(Di) =

∫

f(yi|θi)f
′(θi)dθi (8.5)

where yi represents the output of the mathematical model corresponding to the ith

type of test, θi represents the underlying parameters, and f ′(θi) represents the prior

knowledge regarding those parameters. Note that Eq. 8.5 is simply an uncertainty

propagation problem, where the other sources of uncertainty (such as physical vari-

ability in inputs, solution approximation errors, data uncertainty) can also be included

in the computation of f(yi|θi).

Eq. 8.3 – 8.5 are implemented using a numerical algorithm, where a finite number

of realizations ofD are generated and E(V ar(R)) is computed over these realizations.
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Then, E(V ar(R)) can be minimized using the optimization in Eq. 8.1, and the ideal

combination of tests can be identified.

Note that an inequality constraint (for the budget), and not an equality constraint,

is considered in Eq. 8.1. This means that the optimal solution which minimizes

E(V ar(R)) need not necessarily exhaust the budget. Consider the simple case where

there are two possible test types (C1 = 2 and C2 = 3), and the budget is equal to 6

cost units. There are two test combinations which exhaust the budget: (1) [N1 = 3,

N2 = 0], and (2) [N1 = 0, N2 = 2]. Suppose that these two combinations lead to a

value of E(V ar(R)) which is greater than that achieved through the test combination

[N1 = 1, N2 = 1]. Then, obviously the combination [N1 = 1, N2 = 1] must be selected

because it achieves the goal of reducing E(V ar(R)) even though it may not exhaust

the budget.

8.2.3 Solution of the Optimization Problem

Eq. 8.1 is a complicated integer optimization problem, where Bayesian updating

and forward propagation need to be repeated for each random realization of the test

data in order to evaluate the objective function, thus increasing the computational

cost several fold. In spite of the use of Gaussian process surrogate models to re-

place the expensive system model, high computing power is still needed to solve the

optimization problem.

Integer optimization is sometimes solved using an approximation method, where

the integer constraint is first relaxed, and the integers nearest to the resulting optimal

solution are used in further solution of the original (un-relaxed) problem. Unfortu-

nately, this approach is not applicable to the solution of Eq. 8.1, since the objective
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function (system-level prediction variance) is defined and computed only for integer-

valued decision variables (number of tests). It is meaningless to have a non-integer

number of tests.

A multi-step procedure for solving the optimization problem is proposed in this

chapter. Within each step, the global optimal solution is computed using an exhaus-

tive search process, whereas across steps, a greedy algorithm is pursued. The step

size is chosen in cost units, and additional steps are added until the budget constraint

is satisfied.

Let the size of the first step be equal to φ1 cost units; the globally optimal testing

combination for this cost (= φ1) is denoted by N1
test, and is calculated using exhaustive

search, as:

Minimize
N1

test

E(V ar(R))

s.t.
∑q

i=1(CiN
1
i ) ≤ φ1

N1
test = [N1

1 , N
1
2 ... N1

q ]

(8.6)

The optimization procedure in the second stage is dependent on the optimal so-

lution from the first stage, i.e. N1
test. In general, the optimization for the jth stage,

given the solution in the previous stage (i.e. N j−1
test ), is performed for cost = φj. Note

that
∑

j

φj = Total budget. The jth optimization is formulated as:

Minimize
N

j,new
test

E(V ar(R))

s.t.
∑

(CiN
j,new
i ) ≤ φj(i = 1 to q)

N j
test = N j−1

test +N j,new
test

N j,new
test = [N j,new

1 , N j,new
2 ... N j,new

q ]

(8.7)

As seen in Eq. 8.7, the decision variables for the jth stage are N j,new
test , i.e. those tests

which need to be performed in the jth stage; therefore the total number of tests is
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equal to the sum of N j,new
test and N j−1

test , i.e. the optimal number of tests in the previous

stage. The same procedure is repeated until no additional test can be performed with

the budget constraint satisfied.

The selection of step size for a given budget is an important issue. The true global

optimal solution can be calculated by considering one step whose size is equal to the

entire budget. However, due to the large number of possible testing combinations,

this approach may be computationally infeasible. In a practical problem, several steps

are considered, and the step sizes must be chosen judiciously based on (1) the costs of

each type of test; (2) time required for each Bayesian update; (3) number of random

realizations of data needed to compute E(V ar(R)); and (4) the test combinations

that are suitable for the chosen step size; a very small step size may not even include

an expensive type of test.

8.2.4 Illustrative Example

This subsection presents a simple illustrative example, only to demonstrate the

decrease of variance with testing. In order to focus on this objective, simple math-

ematical relationships are chosen (even the system-level response has no coupling),

and measurement errors are assumed to be negligible. Other features such as coupled

system response, measurements errors, solution approximation errors (while replacing

the underlying physics-based model with a Gaussian process approximation), etc. are

considered later in Sections 8.3 – 8.5.

The Bayesian network for this problem is exactly the same as that in Fig. 2.1.

There are four independent quantities and three dependent quantities; the numerical

details of this problem are specified in Table 8.1. The notation N(µ, σ) is used to

represent a normally distributed quantity with mean µ and standard deviation σ.
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Two types of tests (on two different lower levels) can be done and this information is

used to update the uncertainty in the system-level response based on the tests.

Table 8.1: Numerical Details

Quantity Type Description

x1 Independent Prescribed Uncertainty : N(100,5)
x2 Independent To calibrate from prior : N(50, 10)
x3 Independent Prescribed Uncertainty : N(10,1)
x4 Independent To calibrate from prior : N(15, 4)
y1 Dependent Model prediction : y1 = x1 + x2

y2 Dependent Model prediction : y2 = x3 + x4

z System-level response Model prediction : z = y1 − y2
Quantity to Measure Cost No. of Tests

y1 10 N1

y2 5 N2

Probability distributions are assumed to be available for the inputs x1 and x3; if

this information was not available, and only sparse and/or interval data was available

for the inputs, then the likelihood-based method developed in Chapter III can be

used to construct a probability distributions [236] for them. The variance of z before

conducting any test (i.e. by propagating the above distributions of x1, x2, x3, and

x4 through the models) is 142 units. The objective is calculate the number of tests

on y1 and y2 (N1 and N2), that will lead to a minimum variance in z, subject to a

total budget of $50. Since there are only two parameters, global sensitivity analysis

is not necessary, and hence, both x2 and x4 are chosen for calibration. The proposed

optimization methodology is used for this purpose; five different stages are considered

and the available budget in each stage is considered to be $10. The results of test

prioritization are given in Table 8.2 and Fig. 8.1.

At the end of the optimization procedure, the optimal combination is found to be 4

tests on y1 and 2 tests on y2. Further, this solution was verified by considering all other

combinations (exhaustive search) of N1 and N2 and computing the corresponding

E(V ar(R)); for this illustrative example, this verification is numerically affordable.
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Table 8.2: Resource Allocation: Results

Cumulative Cost N1 N2 E(V ar(z))

$10
1 0 62.0
0 2 127.0

$20
2 0 53.0
1 2 46.6

$30
2 2 37.6
1 4 46.1

$40
3 2 34.0
2 4 37.6

$50
4 2 32.5
3 4 33.8
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Figure 8.1: Variance vs. Cost

However, for practical examples, a few random values of Ntest = [N1, N2] (if not all)

can be considered and it can be verified if the estimated solution is really optimal.

8.2.5 Summary of the Proposed Methodology

The various steps of the proposed methodology are summarized below:

1. Construction of the Bayesian network: The first step is to construct the

Bayesian network that connects (1) the various component-level, subsystem-

level, and system-level models; (2) the corresponding model inputs, parameters,

287



outputs, and solution approximation errors; and (3) the (future) experimental

data and corresponding measurement errors.

2. Sensitivity Analysis: Global sensitivity analysis is used to identify the “im-

portant” parameters that significantly contribute to the uncertainty in the

system-level response. Then, those tests which can aid in the reduction of

uncertainty in these “important” parameters are selected for consideration in

the optimization for test resource allocation.

3. Bayesian updating: The third step is to perform Bayesian updating and

calibrate parameters for a particular realization of measurement data. Then,

this needs to be repeated by generating multiple realizations of measurement

data in order to compute the expected value of variance, as in Eq. 8.3. Since

the realizations of measurement data are generated based on the model itself,

model form errors are not included.

4. Resource allocation optimization: The third step is to perform the re-

source allocation optimization using the multi-step procedure developed in Sec-

tions 8.2.2 and 8.2.3. It may be useful to verify that the resultant solution is

actually optimal by computing E(V ar(R)) for few other Ntest values.

The following sections implement the proposed test resource allocation method-

ology to multi-disciplinary and multi-level problems. Two different types of configu-

rations are considered in order to emphasize on the philosophical differences involved

in model development and testing of such systems.

In a multi-disciplinary system, the overall system-level is output is calculated us-

ing a multi-physics simulation, and directly indicated in the Bayesian network, since it

cannot account for feedback coupling. (Even if the system-level response requires no

feedback coupling, the overall system-level response can be directly indicated; in fact,
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this computation is much easier than when feedback coupling is present.) The tests

are always performed for individual physics without coupling. Section 8.3 discusses

resource allocation for such a coupled multi-physics thermal-structural problem, rep-

resentative of vibrations in solar arrays of telescopes and spacecraft booms. The tests

performed for individual thermal and structural physics are used to calibrate under-

lying parameters, which are then used to compute the coupled system-level response.

On the other hand, in a multi-level system, the complexity of the model and

underlying phenomenon increase along the hierarchy. The model used for system-

level prediction is at the highest level of hierarchy and each subsequent model is

at a lower hierarchy. There is a set of parameters common to the models at all

levels. These parameters are calibrated using data at the lower levels (where the

models and the physical phenomena are simpler relative to the system-level), and

the calibrated quantities are used to predict the system-level response. For example,

consider two types of tests: (1) axial test on a coupon; and (2) bending test on a

beam; either/both of these tests may be used to estimate the modulus, and then

predict the deflection in a thick plate, when all the three (coupon, beam, and plate)

are made of the same material. Section 8.4 discusses resource allocation for such

a multi-level structural dynamics problem, where tests performed on lower levels

(components and subsystem) are used to calibrate the parameters, and thereby used

to predict system-level response.

Section 8.5 discusses resource allocation for a multi-physics multi-level problem,

where both features (tests conducted for individual physics and tests of simpler com-

ponents or conditions) are used for the calibration of parameters and prediction of

the system-level response.
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8.3 Multi-disciplinary System

8.3.1 Description of the Problem

This coupled-physics thermal vibration example illustrates a laboratory experi-

ment which can be used to study and simulate the behavior in solar arrays of tele-

scopes and spacecraft booms [208]. In this experiment, a thin walled circular tube

is rigidly attached at its top and supports a concentrated mass at its bottom. The

tube and the mass are initially at rest and a constant heat flux is applied on one side

along the length of the tube. The application of the heat flux causes an increase in

the temperature on the incident surface while the unheated side remains at the ini-

tial temperature. The temperature gradient causes the beam to bend away from the

lamp, due to the thermal moment. The displacement of the beam, in turn, changes

the distribution of temperature along the length of the beam, leading to a change

the temperature gradient and the thermal moment, which in turn affects the flexu-

ral behavior. Thus the combination of heat transfer and flexural mechanics leads to

oscillations of the beam. The set up of this experiment is shown in Fig. 8.2.

The temperature at the tip mass (Tm) is given by the following differential equa-

tion:

∂Tm

∂t
+

Tm

τ
=

T ∗

τ
(1− v(x, t)

β∗ ) (8.8)

In Eq. 8.8, v(x, t) represents the displacement of the beam as a function of length

and time. Thornton [208] explains how to calculate the parameters T ∗, τ , β∗ as a

function of the incident solar flux (S).

The displacement v(x, t) can be related to the displacement of the tip mass V (t)

as:

v(x, t) = (
3x2

2l2
− x3

2l3
)V (t) (8.9)
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Figure 8.2: Thermally Induced Vibration

The tip mass displacement V (t), in turn, depends on the forcing function as follows:

V̈ + 2ξω0V̇ + (ω2
0 +

6g

5l
)V =

F (t)

m
(8.10)

In Eq. 5, ξ is the damping ratio, and ω0 is the angular frequency. The forcing function

F (t) depends on the thermal moment which in turn depends on the temperature,

thereby casing coupling between the thermal equation and the structural equation.

These relations are shown in the following equations:

F (t) = − 3

l3

∫ l

0

∫ x

0

M(u, t)dudx (8.11)

M(x, t) =

∫

EαTm(x, t)cos(Φ)ydA (8.12)

In Eq. 8.12, E is the elastic modulus, α is the coefficient of thermal expansion, Φ

is the angle of incident flux on the cross section, y is the distance from the center
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Table 8.3: Calibration Quantities: Thermal Vibration Problem

Symbol Quantity Property Prior CoV
E Elastic modulus Structural 0.1
c Independent Thermal 0.1
ξ Independent Structural 0.1
r Independent Geometric 0.03
e Dependent Thermal 0.1

of the cross section and the integral is over the area of the cross section A. Refer

Thornton [208] for a detailed description of this problem.

The overall objective of test resource allocation is to minimize the variance of the

system-level output (R), which is defined to be the ratio of displacement amplitudes

at two different time instants for the coupled system when the incident solar flux

(S) is 2000 W/m2. If R < 1, the system is stable with oscillations diminishing as a

function of time. If R > 1, the system is unstable, commonly referred to as flutter,

an undesirable scenario. While Gaussian process surrogate model is constructed to

calculated R, individual physics predictions are performed using the above physics-

based models.

There are several parameters (both thermal and structural) in the above equa-

tions, that can be calibrated using test data. The method of sensitivity analysis is

used to identify five parameters, which significantly contribute to the uncertainty in

the system-level prediction. The prior means are based on [208], and the assumed

coefficients of variation (CoV) are tabulated in Table 8.3; note that the radius being

a geometric property has a lower CoV. The calibrated parameters are then used to

quantify the uncertainty in R.

The calibration parameters need to be estimated during test data; four different

types of tests are considered, as shown in Table 8.4. The total budget available for

292



Table 8.4: Types of Tests: Thermal Vibration Problem

Test type Physics Calibrate Input - Output Cost No. of tests

Material-level Thermal c Heat-Temperature rise $100 Nm1

Material-level Structural ξ Amplitude decay $100 Nm2

Subsystem-level Thermal c, e, r Heat-Temperature rise $500 NT

Subsystem-level Structural c, e, r Acceleration $500 NF

testing is assumed to be $2000. It is assumed that the entire multi-disciplinary system

cannot be tested.

The calibration quantities, the model predictions, and the test data are connected

through a Bayesian network, as shown in Fig. 8.3.

Temp
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Temp

Temp

Heat

Amp

Amp

Disp

ξe

Accn

Accn

S rc

R

E

Material Level 1
Material Level 2

Thermal Subsystem Flexural Subsystem

System-level
Output

ǫǫ

ǫǫ

Figure 8.3: Thermal Vibration: Bayesian Network

In the Bayesian network in Fig. 8.3, “Temp” refers to temperature, “Accn” refers

to the acceleration, “Disp” refers to the displacement, and “Amp” refers to the ampli-

tude of vibration. Measurement errors (ǫ) are assumed to have a standard deviation
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that is equal to ten percent of the model prediction. This Bayesian network is used

for uncertainty quantification, Bayesian updating and resource allocation.

8.3.2 Resource Allocation

The objective is to calculate the number of tests that lead to maximum re-

duction in variance in R. Let Ntest denote the number of tests, where Ntest =

[Nm1
, Nm2

, NF , NT ]; where Nm1
is the number of material level temperature tests, Nm2

is the number of material level pluck tests, NF is the number of flexural subsystem

tests, and NT is the number of thermal subsystem tests. Let D = [Dm1
, Dm2

, DF , DT ]

denote the test measurements. The optimization problem for resource allocation can

be formulated as shown in Eq. 8.13

Minimize
Ntest

E(V ar(R))

s.t. 100(Nm1
+Nm2

) + 500(NF +NT ) ≤ 2000

Ntest = [Nm1
, Nm2

, NF , NT ]

(8.13)

The above optimization is solved using the multi-stage optimization procedure

discussed in Sections 8.2.2 and 8.2.3. Four stages and a budget of $500 for each stage

are considered, thereby accounting for the total budget of $2000. Each stage has 8

options (as against two in the mathematical example in Section 8.2); only the optimal

solution in each stage is shown.

Note that Table 8.5 expresses the expectation of variance of R in terms of per-

centage of the variance before any testing; this variance is equal to 5.69 x 10−7; since

R is a ratio, this variance is dimensionless.

For a $2000 budget, it is seen that one temperature test, nine pluck tests, one

thermal subsystem test and one flexural subsystem test are required to achieve the

maximum reduction in the variance of R. The results show that while it is useful to
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Table 8.5: Resource Allocation Results: Thermal Vibration Problem

Stage Nm1
Nm2

NF NT E(V ar(R))
No. (in %)

No tests 0 0 0 0 100.0
Stage 1 : $500 1 4 0 0 74.6
Stage 2 : $1000 1 4 1 0 51.4
Stage 3 : $1500 1 4 1 1 44.8
Stage 4 : $2000 1 9 1 1 44.2

do all the tests, repeating the pluck test which calibrates structural damping, is not

only cheap but also leads to effective decrease in the variance of R. The decrease of

variance with cost is shown in Fig. 8.4.
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Figure 8.4: Decrease of Variance with Cost

It is seen that the reduction in variance using the last $1000 (i.e. from $1000

to $2000) was much smaller when compared to the reduction in variance using the

initial $1000. Such information is useful for budgeting purposes, since all the above

computation (and practical resource allocation) is done before any test is actually

conducted.
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8.4 Multi-level System

8.4.1 Description of the Problem

A three-level structural dynamics developed at Sandia National Laboratories [200]

is considered as shown in Fig. 8.5.
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Figure 8.5: Multi-level Structural Dynamics Problem

The first level (component) consists of a single spring-mass-damper. Three such

spring-mass dampers are integrated to form a spring-mass-damper subsystem in the

second-level. In the third level, the integrated spring-mass-damper subsystem is

mounted on a beam to form the overall system.

The models to represent the first two levels are straightforward [204]. Red-Horse

and Paez [200] describe in detail the modeling and simulation of the overall system

(third-level). The overall objective is test resource allocation to minimize the variance

of the system level output (R) which is defined to be the maximum acceleration
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of mass m3, when a random force is applied as specified in [200]. The first-level

and second-level responses are computed using physics-based models while the third-

level and system-level responses are computed by constructing two Gaussian process

surrogate models.

In this numerical example, the stiffness values of the three masses, i.e. k1, k2, and

k3 are all the parameters that need to be calibrated with test data; since all parameters

are calibrated, sensitivity analysis is not used in this example. The numerical values

(in SI units) of three calibration parameters are summarized in Table 8.6.

Table 8.6: Model Parameters: Structural Dynamics Problem

Number Mass (m) Damping (c) Prior Mean of Stiffness Prior Std. Dev. of Mean
(in kg) (in Ns/m) (µk) (in N/m) (σk) (in N/m)

1 0.0125 0.023 5600 560
2 0.0193 0.021 11000 1100
3 0.0351 0.031 93000 9300

The mass of the beam is taken to be 0.1295. Further numerical details of the

beam are given in [200].

Data for calibration is assumed to be available through five different types of tests.

The details of these different types of tests are provided in Table 8.7. For each test,

a sinusoidal load (amplitude=10000 and angular velocity = 10 rad s−1) is used. For

the first and second level tests, the sinusoidal load is applied at the base; for the third

level test, the sinusoidal load is applied as specified in [200].

Table 8.7: Types of Tests: Structural Dynamics Problem

Test Type Description Model prediction Data Cost No. Tests
Level-1 Only mass m1 acceleration (x11) D11 $100 Nm1

Level-1 Only mass m1 acceleration (x12) D12 $100 Nm2

Level-1 Only mass m1 acceleration (x13) D13 $100 Nm3

Level-2 3-mass assembly acceleration of m3 (x2) D2 $500 N2

Level-3 3-mass assembly on beam acceleration of m3 (x3) D3 $1000 N3
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The model predictions, experimental data, and the calibration quantities are con-

nected using the Bayesian network, shown in Fig. 8.6. The corresponding experimen-

tal errors are denoted by ǫ11, ǫ12, ǫ13, ǫ2, and ǫ3 respectively, and assumed to be equal

to ten percent of the prediction.

x11 x13
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x2 x3

D11 D13D12

D2 D3

ǫ11 ǫ13ǫ12

ǫ2 ǫ3

k1 k2 k3

R
System

Output

Level 2 Level 3

Level 1

Figure 8.6: Bayesian Network: Structural Dynamics Problem

This Bayesian network can be used for uncertainty quantification, Bayesian up-

dating, and resource allocation, as explained below.

8.4.2 Resource Allocation

In the resource allocation problem, testing is yet to be done and hence realizations

of future experimental data are generated randomly. Then, E(V ar(R)) is computed so

as the identify which set of tests will lead to the maximum reduction in variance. Let

Ntest = [Nm1
, Nm2

, Nm3
, N2, N3]. The optimization problem for resource allocation

can be formulated as shown in Eq. 8.14.
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Table 8.8: Resource Allocation Results: Structural Dynamics Problem

Nm1
Nm2

Nm3
N2 N3

0 1 4 1 0
0 4 1 1 0
0 3 2 1 0
0 2 3 1 0
1 1 3 1 0
3 1 1 1 0
1 3 1 1 0
1 2 2 1 0
2 1 2 1 0
2 2 1 1 0

Minimize
Ntest

E(V ar(R))

s.t. 100(Nm1
+Nm2

+Nm3
) + 500N2 + 1000N3 ≤ 1000

Ntest = [Nm1
, Nm2

, Nm3
, N2, N3]

(8.14)

First, the resource allocation is solved for a budget of $1000. There are 54 possible

testing combinations and out of these 54, ten testing combinations lead to the same

minimum variance of system-level output R, approximately 0.8% of the variance

before testing. These combinations are given in Table 8.8. The value of E(V ar(R))

for these ten cases are close enough that it is not possible to determine whether the

difference is due to reality or due to sampling/numerical errors.

It is a subjective decision as to which one of these ten test combinations is selected.

However, all ten combinations unanimously suggest that no tests are needed for the

overall system and one test is needed for the second level three spring-mass-damper

subsystem. The first four rows in Table 8.8 suggest that testing is not needed for the

first spring-mass-damper. However, it may be desirable to have at least one test for

each component, and hence one amongst the latter six options may be preferred.

It was also found that an extra budget of $1000 caused no further reduction in the
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variance of R. If the available budget is $ 2000, a subjective decision may be made

to conduct the full system test (which costs $1000) in order to further improve the

confidence in uncertainty quantification.

8.5 Multi-level, Multi-disciplinary System

8.5.1 Description of the Problem

A simplified space telescope mirror problem is considered as an example of a

multi-level, multi-disciplinary system. As shown in Figure 8.7, it consists of three

components - leg, mirror and plate - which are integrated to form the overall system,

which can also be decomposed into various pieces as shown in Figure 8.7.

Legs

Inserts

Mirror

Plate

Figure 8.7: Simplified Space Telescope Mirror Problem

The system is tested under two types of physics – mechanical (due to gravity

loading) and thermal (due to solar flux), that interact with each other, and affect

the optical performance of the mirror. Eight different types of tests are considered,

as tabulated in Table 8.9. It is assumed that the full system test under combined

mechanical and thermal loading cannot be performed.

The system was simulated using the Sierra multi-physics mechanics simulation

suite developed at Sandia National Laboratories [237]. The thermal and the struc-

tural properties of the system affect the overall optical performance of the telescope

mirror. The thermal and structural meshes were independent, with different, and

programmable mesh densities. In each case, as appropriate, the Sierra code Aria was
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Table 8.9: Types of Tests: Telescope Mirror

Test No. Component Physics Cost Units
1 Only leg Gravity sag $1
2 Only mirror Gravity sag $3
3 Only plate Gravity sag $1
4 Entire assembly Gravity sag $15
5 Only leg Solar flux $10
6 Only mirror Solar flux $30
7 Only plate Solar flux $10
8 Entire assembly Solar flux $150

used for thermodynamics, heat transfer, and radiation modeling, and the Sierra code

Adagio was used for solid mechanics and quasi-static transient dynamics. For the

purpose of this study, the optical system output was simply taken to be the deforma-

tion of the mirror at the center of the mirror. For this study, each Sierra simulation

was wrapped within a DAKOTA [238] script to generate input-output data, that were

later used to build Gaussian process surrogate models. Nine different surrogate mod-

els are constructed; eight of them to make predictions corresponding to the tests in

Table 8.9, and the ninth is for system-level prediction. The overall system output (de-

noted by R) is chosen to be the deflection of mirror relative to the center of the plate

under both gravity and solar flux; this is equal to the sum of individual deflections

under gravity sag and solar flux. Deflection is here a proxy for performance metrics

such as wavefront error, focus drift, or other system-level characteristics that can-

not be well-represented without coupling the structural, thermal, and optical models.

The test data and the Gaussian process models can be connected through a Bayesian

network, as shown in Fig 8.8.

Consider the Bayesian network in Fig. 8.8. The quantities θL, θM , θP and xL, xM ,

xP refer to the model parameters and inputs of the leg, mirror, and plate components

respectively; note that each of these quantities is a vector since a component may

have more than one parameter/input. Each model parameter vector consists of the
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Figure 8.8: Telescope Mirror Problem: Bayesian Network

corresponding component’s density, Young’s modulus, Poisson’s ratio, coefficient of

thermal expansion, thermal conductivity, specific heat, and emissivity. Thus, this ex-

ample demonstrates the scalability of the proposed methodology by considering eight

possible types of tests and twenty-one different parameters. The model predictions

(for leg, mirror, plate, and assembly) are denoted by Lg, Mg, Pg, Ag (mechanical

loading due to gravity sag) and Ls, Ms, Ps, As (thermal loading due to solar flux) re-

spectively. Though the same symbol ǫ has been used to denote the difference between

model prediction and observation throughout the Bayesian network, the statistics of

ǫ is different for different tests, and equal to ten percent of the model prediction.
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8.5.2 Sensitivity Analysis

Sensitivity analysis is particularly important in this example because there are

possible possible calibration parameters. The sensitivities of the system-level output

R to all the parameters – previously mentioned twenty-one model parameters (θL,

θM , θP ) – are quantified using sensitivity analysis based on DAKOTA [238]. The

“important” parameters based on the results of sensitivity analysis are tabulated in

Table 8.10.

Table 8.10: Sensitivity Analysis for Coupled System: Gravity Sag and Solar Flux

Model Importance Cumulative
Parameter Measure Importance

Mirror Young’s Modulus 0.8021 0.8021
Leg Emissivity 0.0277 0.8298

Mirror Poisson’s Ratio 0.0235 0.8533
Mirror Density 0.0112 0.8645

Further, the input solar flux has an importance measure of 0.12; however this is

not a model parameter. From Table 8.10, it can be seen that four model parameters,

along with the solar flux, account for more than 98% of the variance of the system

output. These four parameters, i.e. mirror elastic modulus, leg emissivity, mirror

Poisson’s ratio, and mirror density, are chosen to be calibrated through testing.

8.5.3 Test Resource Allocation

The goal of the resource allocation problem is to select tests that minimize the

variance of the overall system output (R) under both gravity sag and solar flux. There

are four types of tests that can be useful to calibrate the aforementioned “important”

parameters; these tests are the gravity sag assembly level test (number of tests =

NGSA and each test costs 15 units), the solar flux assembly level test (number of tests

= NSFA and each costs 150 units), the solar flux leg component test (number of tests
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= NSFL and each costs 10 units) and the gravity sag mirror component test (number

of tests = NGSM and each costs 3 units). In each test, the displacement of the mirror

under the given loading is measured; correspondingly four different Gaussian process

surrogate models are constructed to obtain model predictions. Also, a total budget of

150 cost units is assumed to be available. The optimization for test resource allocation

is written as:

Minimize
Ntest

E(V ar(R))

s.t. 15NGSA + 150NSFA + 10NSFL + 3NGSM ≤ 150

Ntest = [NGSA, NSFA, NSFL, NGSM ]

(8.15)

The results of test resource allocation are given in Table 8.11. Similar to the

previous sections, this is a multi-stage optimization. In each stage, 30 cost units

are considered, and there are seven options to exhaust a budget of 30 cost units in

each stage, and the optimal solution in each stage is shown. Table 8.11 presents the

variance in terms of percentage of the variance of R before testing (which was equal

to 1.33 x 10−12 m2). Ntest is the vector of (NGSA, NSFA, NSFL, NGSM).

Table 8.11: Multi-stage Optimization

Ntest Cost E(V ar(R))
Units (in %)

(0, 0, 1, 6) 28 12.3
(1, 0, 1, 11) 58 8.7
(3, 0, 1, 11) 88 7.4
(4, 0, 1, 16) 118 6.6
(5, 0, 1, 21) 148 6.1

The results of the test resource allocation optimization recommend 5 assembly–

level tests under gravity sag, 1 leg component test under solar flux, and 21 mirror

component tests under gravity sag in order to minimize the system output variance.
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The decrease in variance with cost, based on the optimal solution in each stage, is

shown in Fig. 8.9.
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Figure 8.9: Variance vs. Cost

If the assembly–level tests (one under gravity sag and one under solar flux) were

alone performed, then the variance decreases to 33.6% of the original value, at a cost

of 165 units. Hence, it is evident that the proposed methodology achieves better

performance (higher reduction in variance) at a lower cost.

It is seen from Fig. 8.9 that there is little improvement in the system variance

after testing worth 58 cost units. At that point, the results recommend performing

1 assembly–level test under gravity sag, 1 leg component test under solar flux and

11 mirror component tests under gravity sag. Hence, subsequent tests do not signifi-

cantly aid in the reduction of variance in R. If the alternate optimization formulation

(Eq. 8.2) with a threshold variance lower than 5% of the prior variance had been cho-

sen for resource allocation, then it may have been impossible to satisfy the variance

constraint. Therefore, the optimization formulation in Eq. 8.1 may be preferred, since

it provides an estimate of the variance with cost.
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8.6 Conclusion

Testing at the component, subsystem and system levels is important in the context

of uncertainty quantification in multi-level systems. When the systems are multi-

disciplinary, it is important to conduct tests for both individual and combined physics.

But rarely is it feasible to conduct every imaginable test, either due to schedule or

cost considerations. This chapter developed an analytical procedure to aid in deciding

which tests to conduct, especially for complex and expensive systems. A Bayesian

network is used to connect multiple models and test data at different levels, and

also include the various sources of error and uncertainty. The steps of the proposed

methodology can be summarized as follows: (1) connect models and experiments at

multiple levels efficiently through a Bayesian network; (2) systematically account for

and include natural variability, data uncertainty, and solution approximation errors;

(3) predict the overall uncertainty in the system model prediction; and (4) optimize

resource allocation for test selection and identify the most effective tests to reduce

overall system model uncertainty.

A lower level test can easily isolate individual components and hence, the model

parameters can be effectively updated, leading to a significant reduction in the vari-

ance of the system-level prediction. However, such a test would not account for

interactions between higher level models and the corresponding parameters. In con-

trast, a higher level test would include the effects of interaction between multiple

subsystem-level and component-level models. However, the calibration of parameters

across multiple models may be difficult and may not lead to a significant reduction

in the variance of the system-level prediction. The proposed test resource allocation

procedure trades off between lower level tests and higher level tests by accounting not

only for the resultant reduction in variance of the system-level prediction but also the

testing costs.
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Future work needs to address three major issues. The first deals with compu-

tational effort. As the number of calibration variables increases and the number of

types of tests increases, the numerical difficulties involved in the numerical solution of

the optimization problem increase; efficient numerical methods need to be developed

for this purpose. The second deals with test design; having identified the number of

tests, the next step would be to design them in order to maximize the uncertainty

reduction in the system level prediction. The entropy-based approach developed by

Jiang and Mahadevan [239] for the design of validation experiments may be inves-

tigated for this purpose. Finally, though the three numerical examples presented in

this chapter considered different features (multiple levels of complexity and coupled

physics interactions) representative of practical applications, it is necessary to fur-

ther investigate the extension of the proposed methodology for realistic engineering

problems.

An important observation in this chapter was that different parameters have dif-

ferent sensitivities to different types of tests. Further, it was shown in Chapter IV,

that the presence of other sources of uncertainty also affect the parameter uncertainty.

If the goal is to reduce the uncertainty in the system-level response by reducing the

uncertainty in the system parameters, it is not only sufficient to study the sensitivity

of the system-output to the parameters, but also necessary to study the sensitivity

of calibration parameters to the other sources of uncertainty and the calibration data

itself. While the former is addressed using the global sensitivity analysis method dis-

cussed in Section 2.6, the latter has not been studied at all. This dissertation refers

to this topic as “inverse sensitivity analysis” and studies it in detail in the following

chapter.
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CHAPTER IX

INVERSE SENSITIVITY ANALYSIS

9.1 Introduction

The topic of parameter estimation, i.e. inferring an unobservable (or difficult to

measure) quantity through the measurement of a dependent variable, has been been

a significant topic of interest over several years [12]. Researchers have pursued two

class of methods for parameter estimation. The first class of methods is purely based

on explicit functional inversion of the mathematical model (i.e. forward model) used

to represent the dependent variable as a function of the parameters to be estimated.

This approach becomes infeasible with increasing non-linearity of the aforementioned

mathematical model, and with the presence of additional sources of uncertainty [122].

In fact, this is the case with practical engineering systems whose response not only

requires the solution of complicated differential equations and but is also stochas-

tic due to the presence of several other sources of uncertainty. Hence, it becomes

impossible to directly invert the system response function in order to estimate the

system parameters. Hence, it becomes necessary to the second class of methods which

are based on principles of statistics; these methods do not use direct inversion and

estimate the parameters simply using repeated evaluations of the forward model.

Statistical methods for parameter estimation were discussed in detail in Section 4.3

in Chapter IV. Since Chapter IV, a Bayesian approach for model calibration and

parameter estimation has been pursued in this dissertation because it can rigorously

account for the various sources of uncertainty – physical variability, data uncertainty,

and model uncertainty – in a systematic manner, and subjectively estimate the entire

PDF of the model parameters, thereby quantifying the uncertainty in them.

308



Quantifying the uncertainty in the parameter is not equivalent to simply comput-

ing the probability distribution of the parameter. Uncertainty quantification must

also analyze the various sources of uncertainty that lead to the uncertainty in the

parameter and thereby, compute the individual contributions of the various sources

of uncertainty to the uncertainty in the parameter. This topic of apportioning un-

certainty has received considerable treatment in the case of forward problems, i.e.

apportioning the uncertainty in the model output to the uncertainty in the inputs.

In the case of forward problems, while a preliminary approach would be to analyze

the sensitivity of the variance of the model output by suppressing the uncertainty in

each of the inputs, researchers have pursued a rigorous variance-based global sensi-

tivity analysis [36] approach for this purpose. This approach was briefly reviewed in

Section 2.6.

In the case of inverse problems, researchers have realized the importance of model

calibration under uncertainty; while there are several published journal articles that

deal with quantifying the uncertainty in the model parameters, the aspect of sen-

sitivity analysis of model parameters has not received much attention. The focus

of this chapter is to develop a statistical methodology to analyze and apportion the

uncertainty in model parameters to the other sources of uncertainty. This objective

is significantly different from “forward sensitivity analysis”, and hence the issue of

sensitivity analysis of model parameters is referred to as “inverse sensitivity analysis”

in this chapter. Note that both of these are approaches are “global” because they

account for the entire distribution of the uncertain quantities.

Consider the computational model Y = G(X; θ); though this model is determin-

istic (the output y is single-valued for a given realization of inputs X and parameters

θ), the inputs X are uncertain with probability density function (PDF) given by

fX(x), and the parameters θ are unknown. Prior PDFs (f ′(θ)) are assumed for the
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model parameters, data D is collected on the output, and Bayesian inference is used

to calculate the posterior PDF (f ′′(θ)). The uncertainty in the inputs (fX(x)) can

be included in a systematic manner during this calibration procedure. The details of

this calibration were discussed in Section 4.3.

The posterior PDFs of the model parameters depend on (1) the uncertainty in the

inputs; (2) the data available for parameter estimation; and (3) the choice of prior

of model parameters. For a given model parameter (denoted by θi), the effect of the

choice of its prior is easy to quantify by computing the posterior corresponding to

every choice of a prior. Further, the prior simply has a multiplicative effect during

the computation of the posterior, and hence, its effect can be studied easily. On the

other hand, the effect of uncertainties and data on the posterior cannot be easily

quantified. This chapter focuses on these two tasks. It is important to note that that

the posterior of a particular model parameter (θi) depends only on the prior of the

other model parameters (denoted by θ−i) and not on their posterior. As a result the

posterior variance of θi depends only on the prior of θ−i; hence with respect to θi,

θ−i can be just treated similar to the inputs X, i.e. just as an additional uncertainty

described by the prior PDF.

The sensitivity analysis of a particular model parameter θi, has multiple facets:

1. Sources of uncertainty (prescribed uncertainty for inputs x and prior uncertainty

for other model parameters θ−i)

2. Data for calibration ((i) number of data; and (ii) numerical values of data)

The former, i.e. analyzing the sensitivity of model parameter with respect to the

other sources of uncertainties, is similar to the global sensitivity analysis methodol-

ogy, the conceptual difference being that forward GSA apportions the uncertainty

in the model output to the various sources of uncertainty, whereas the goal of the
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present chapter is to apportion the uncertainty in the estimated model parameter to

the various sources of uncertainty. Such an analysis is useful in several ways. First,

It helps to identify important contributors of uncertainty. For example, there may

be some sources of epistemic (reducible) uncertainty which contribute to the uncer-

tainty in the parameter and the amount of contribution can be quantified. Second,

if a particular source of uncertainty has insignificant sensitivity, then that source of

uncertainty can be treated to be deterministic; this in turn reduces the computational

effort by reducing the dimensionality. Third, if a design of experiments need to be

performed over the space of the uncertain quantities, then the results of inverse sen-

sitivity analysis can be used; if a particular quantity is not significant, then it may

not be necessary to select multiple realizations of that quantity and vice-versa.

The benefits of inverse GSA are evident, and this topic is yet to be addressed in

the literature. The methods of forward sensitivity analysis are alone well-established

in the literature, and these cannot be directly applied to inverse sensitivity analysis.

This issue is discussed later in Section 9.2, where it is demonstrated that the equations

for variance decomposition are not directly applicable for inverse sensitivity analysis.

The first contribution of this chapter is to develop a statistical methodology for such

sensitivity analysis.

The latter, i.e. analyzing the sensitivity of model parameter with respect to the

available data, is important from the perspective of variance reduction, which was

the focus of Chapter VIII. Ideally (if the model is identifiable), it is intuitive that

an increase in the number of calibration data points will lead to a decrease in the

variance of the model parameter. For the purpose of test planning, it will be useful

if it were possible to estimate the reduction in variance for every test future test

data. The challenge in such estimation is that the future data is not yet available

and hence, unknown. Another related issue is the sensitivity to the numerical values
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of the data points, i.e. by how much will the variance change if the same number

of data points but a different set of values were used for calibration? For example,

consider the simple case where Z is normally distributed with known variance σ2. The

mean needs to be estimated to be estimated based on realizations of Z. Conjugate

distributions are available for this case; a normal prior is assumed for the mean and

the posterior is also normal. For this special case, it is well-known [9] that the variance

of the estimate of mean is independent of the numerical values of the realizations of

Z, and is dependent only on the number of realizations of Z. It is easy to verify

that this behavior cannot be generalized to all Bayesian updating scenarios. This

chapter addresses the sensitivity of the model parameter to both the number and the

numerical values of the data available for calibration.

The rest of this chapter is organized as follows. Section 9.2 discusses a preliminary

approach for sensitivity analysis and identifies the difficulties in applying the methods

for forward GSA to inverse sensitivity analysis. Section 9.3 revisits Bayesian calibra-

tion under uncertainty and proposes an efficient methodology to estimate the marginal

PDFs using Bayesian updating. Section 9.4 develops the methodology for sensitivity

analysis of parameter estimation. Section 9.5 extends the proposed methodology to

multi-level systems, where multiple models and corresponding data are used to cali-

brate common model parameters; the sensitivity of parameters to (i) the uncertainties

in all the models, and (ii) multiple levels of data are both quantified. The proposed

methodology is illustrated using two numerical examples, first using a single-level

model (Section 9.6), and then using multiple levels of models (Section 9.7).

9.2 Preliminary Approach

The effect of data on the variance of the parameter estimate can be studied in a

relatively easy manner. This issue is directly discussed later in Section 9.4. On the
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other hand, apportioning the variance of θi to other existing sources of uncertainty

needs is more challenging. First, a preliminary approach is discussed in this section,

and the forthcoming sections gradually develop a rigorous methodology. The other

sources of uncertainty, as explained in Section 9.1, include both the uncertainty in

the inputs, and the prior uncertainty in the other parameters (θ−i). The Bayesian

inference method, as shown in Eq. 9.1 calculates only the joint density of θ. This

joint density is then used to calculate the marginal density and the variance of θi.

A preliminary approach for inverse sensitivity analysis is to treat each of the other

uncertain quantities to be deterministic (say, at the mean value), and estimate the

new posterior variance of θi. Such a preliminary approach has been implemented for

forward sensitivity analysis [179]; there is a general consensus that this preliminary

approach is not accurate because (i) it is local since the uncertain quantity is fixed to

be deterministic at a particular value; and (ii) the choice of the deterministic value

significantly affects the posterior variance of θi. Hence, the GSA methodology was

preferred for forward sensitivity analysis.

The next challenge is to apply the global sensitivity analysis methodology (dis-

cussed earlier in Section 2.6 in Chapter II) to inverse sensitivity analysis as well. In

fact, it is quite easy to calculate the right-hand side expression in Eq. 2.15, i.e. the

calculation of first-order index. Hence, it would seem as if the first-order index of an

input Xj is simply equal to V (E(θi|Xj))
V (θi)

. However, this is not true.

As explained earlier in Section 2.6, the fundamental theorem that governs the cal-

culation of forward GSA indices is the variance decomposition theorem, i.e. V (Y ) =

V (E(Y |Xj)) + E(V (Y |Xj)), for all j. This was true in forward GSA because there

was a deterministic transfer function (Y = G(X)) from the inputs X to the output

Y . However, in the case of inverse sensitivity analysis, while estimating the variance

of a particular model parameter, θi, V (θi) 6= V (E(θi|Xj)) + E(V (θi|Xj)). This is

313



because (1) the parameter θi cannot be expressed as a deterministic function of all the

inputs X; (2) the variance of θi also depends on the prior PDFs of θ−i; and (3) more

interestingly, even when the inputs are deterministic, and there is only one parameter

θ to be estimated, the Bayesian calibration procedure leads to a non-deterministic

(uncertain) θ. Hence, there is no deterministic transfer function from X to θ in order

to facilitate variance decomposition; therefore, Eq. 2.15-2.17 are not applicable for

inverse sensitivity analysis.

Sections 9.3 and 9.4 develop a new perspective on Bayesian calibration where a

deterministic transfer function from X to θ is developed. This deterministic transfer

function is then used to guide in inverse sensitivity analysis.

9.3 Bayesian Calibration: New Perspective

Consider the computational model Y = G(X; θ); though this model is determinis-

tic (the output Y is single-valued for a given realization of inputs X and parameters

θ), the inputs X are uncertain with probability density function (PDF) given by

fX(x), and the parameters θ are unknown. Data D is collected on the output, and

by assuming that data is unbiased (D = Y + ǫ where ǫ is N(0, σ2)), the PDF of the

parameters can be calculated using Bayes theorem as:

f ′′(θ) =
f ′(θ)L(θ)

∫

f ′(θ)L(θ)dθ
(9.1)

In Eq. 9.1, f ′(θ) and f ′′(θ) refer to the prior and the posterior PDF of the parameters,

and L(θ) is the likelihood function, which is proportional to the probability of the

observing the given data D conditioned on θ. The denominator in Eq. 9.1 is simply

a normalizing constant to ensure that the area under the posterior PDF is equal to

unity.
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The likelihood function needs to account for the uncertainty in the inputs, as:

L(θ) =

∫

f(D|y)fY (y|x; θ)fX(x)dx (9.2)

Further, the likelihood function is always meaningful only upto a proportionality

constant; sometimes, for the sake of simplicity, the proportionality is replaced with

equality because when the likelihood function is substituted into Eq. 9.1, the normal-

izing constant will account for this proportionality.

The above likelihood function accurately accounts for all the uncertainty in the

inputs. The calculation of this likelihood function requires forward uncertainty propa-

gation (propagating the input uncertainty for a given realization of θ). If Monte Carlo

sampling is used for this purpose, the number of function evaluations is equal toNMCS

(usually of the order of 103 or 104). Once the likelihood function is calculated, it is sub-

stituted into Eq. 9.1 for posterior evaluation. Markov Chain Monte Carlo (MCMC)

sampling is then used to generate posterior samples of θ. If the corresponding number

of function evaluations is equal to NMCMC (usually of the order of 104 or 105), then

the entire Bayesian updating procedure requires NMCS × NMCMC . This approach

is not only computationally expensive, but also combines all the uncertainty in the

inputs in the likelihood function, and hence cannot provide a deterministic transfer

function from X to θ.

9.3.1 The Conditional Posterior

This section proposes a new approach in which the marginal distribution for each

parameter θi can not only be obtained in a computationally efficient manner but

also facilitates a transfer function from X to θ to aid in inverse sensitivity analysis.

Earlier, it was stated that Eq. 9.2 calculates the likelihood function, by including the

uncertainty in the inputs. Alternatively, the likelihood function can also be calculated
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for a particular realization of the inputs; this likelihood is referred to as the conditional

likelihood and is calculated as:

L(θ;x) =

∫

f(D|y)fY (y|x; θ)dy (9.3)

Since Y = G(X; θ) is deterministic for given realization of X and θ, this conditional

likelihood is simply equal to:

L(θ;x) =
1√
2πσ

exp(−(D − y)2

2σ2
) (9.4)

Once the conditional likelihood is calculated, it can be used in Bayes theorem to

calculate the conditional posterior as:

f ′′(θ;x) =
f ′(θ)L(θ;x)

∫

f ′(θ)L(θ;x)dθ
(9.5)

Thus, the conditional posterior is the posterior PDF calculated for a particular real-

ization of the uncertain quantity X. The true (unconditional) posterior, in turn, can

be calculated from the conditional posterior as:

f ′′(θ) =

∫

f ′′(θ;x)fX(x)dx (9.6)

It can be seen that the difference between the conventional approach (Eq. 9.2 and

Eq. 9.1) and conditional likelihood approach (Eqs. 9.5 – 9.6) is that the integration

over the domain ofX has simply been postponed to a later stage; both the approaches

are mathematically equivalent.
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9.3.2 Marginal Distribution and Variance

In order the perform inverse sensitivity analysis, it is essential to calculate the

marginal distribution of every parameter (θi) from the joint posterior PDF f ′′(θ) by

integrating over the domain of θ−i. The marginal posterior of θi does not depend on

the posterior of any other parameter (θ−i). However, the prior of θ−i, i.e. f ′(θ−i)

directly affects the marginal posterior of θi. The marginal PDF of θi can be calculated

as:

f ′′(θi) =
f ′(θi)L(θi)

∫

f ′(θi)L(θi)dθi
(9.7)

In Eq. 9.7, the true likelihood function (that includes the uncertainty in x and θ−i)

needs to be used; this is calculated as:

L(θi) =

∫

f(D|y)fY (y|x; θ−i)fX(x)f ′(θ−i)dxdθ−i (9.8)

Thus, it is clear that, with respect to θi, θ−i can be treated as simply an additional

source of uncertainty, similar to X. Now, implementing the conditional likelihood

method, the marginal, conditional posterior of θi can be calculated as:

f ′′(θi;x, θ−i) =
f ′(θi)L(θi;x, θ−i)

∫

f ′(θi)L(θi;x, θ−i)dθi
(9.9)

The conditional, marginal likelihood (i.e. L(θi;x, θ−i)) is calculated exactly as in the

right hand side of Eq. 9.4.

9.3.3 Interpreting the Marginal Conditional Posterior

Consider the marginal conditional posterior (MCP) given by f ′′(θi;x, θ−i). Ev-

idently, every choice of x and θ−i leads to a different MCP. In order obtain the
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marginal unconditional posterior, an integration similar to Eq. 9.6 is performed, as:

f ′′(θi) =

∫

f ′′(θi;x, θ−i)fX(x)f ′(θ−i)dxdθ−i (9.10)

Note that this integration is similar to the calculation of the predictive poste-

rior distribution (in the context of distribution parameter uncertainty), which was

discussed in detail in Section 3.4. Therefore, Eq. 9.10 is analogous to Eq. 3.8 in

Section 3.4. Therefore, x and θ−i can be viewed as distribution parameters of the

conditional posterior f ′′(θi;x, θ−i). Hence, to generate samples from the marginal

unconditional posterior (f ′′(θi)), a single loop sampling algorithm, similar to that in

Section 3.4, is proposed:

1. Select one random sample of X and θ−i from fX(x) and f ′(θ−i) respectively.

2. Use Bayesian updating to calculate the MCP f ′′(θi;x, θ−i) for above X and

θ−i

3. Generate one random sample from the above MCP using CDF inversion (by

generating a sample from the uniform distribution [0, 1]). This one sample rep-

resents a random realization from the marginal unconditional posterior f ′′(θi)

4. Repeat above steps multiple times to obtain multiple samples of θi. These

samples can be used to construct the marginal unconditional posterior f ′′(θi).

9.3.4 Computing the Marginal Conditional Posterior

Note that the computation of the marginal conditional posterior (MCP) for a

given choice of x and θ−i requires only a single dimension integration as against

the multi-dimensional integration needed for joint posterior in Eq. 9.1. Hence, the

MCP can be evaluated by simple quadrature-based numerical integration techniques.
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Such a technique was developed in Section 4.3.7 to replace MCMC sampling when

the number of dimensions is small.1 Since, the computation of MCP requires only

one-dimensional integration, this techniques can be used readily.

The use of Laplace integration provides a computationally efficient alternative to

numerical integration. Researchers [240, 241] have used this method to approximate

the entire posterior distribution. However, this procedure unreasonably assumes that

the joint posterior of all the calibration parameters is a multi-variate normal PDF

without any dependence between the individual parameters. On the other hand,

it may be reasonable to assume that the marginal conditional posterior is normally

distributed, when the prior is uniform and the marginal conditional likelihood function

is calculated using a Gaussian kernel.

In fact, this approach, i.e. MCP-based Laplace integration, may be applicable to

all Bayesian updating problems when the focus is to estimate the marginal posterior

distributions of the parameters. The correlations and dependencies are not ignored

in this procedure; they are not calculated because this method directly calculates

the marginal posterior rather than the joint posterior. Further research is necessary

to explore and demonstrate the applicability of this method to Bayesian updating

problems, in general. This will be considered in future work as this chapter focuses

only on inverse sensitivity analysis.

9.4 Sensitivity Analysis Methodology

This section develops the computational methodology for inverse sensitivity anal-

ysis. The sensitivity of the estimate model parameter to both the available data, and

the additional sources of uncertainty are considered.

1Such an integration technique has been used for the inference of equivalent initial flaw size in
fatigue crack growth analysis [181, 199]
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9.4.1 Sensitivity to Data

As stated earlier, the variance of a particular parameter θi depends on (1) number

of data points; and (2) location of data points. Suppose that the available data points

have been used to estimate θi. To quantify the effect of the number of data points, a

three step procedure can be followed.

1. Based on the available data points, use bootstrapping to select random candi-

date for one additional data point.

2. Estimate updated variance of θi by considering both old points and the new

candidate data point, and hence, estimate the change in variance.

3. Repeat the above steps by considering multiple random candidates and calculate

the expectation of change in variance.

To quantify the effect of location of data points, a similar three step procedure can

be followed:

1. Based on the available data points, use bootstrapping to select random candi-

dates for data points equal in number to the available data points.

2. Replace original data points with the new set and estimate θ. Calculate the

difference in variance.

3. Repeat the above steps by considering multiple random sets and calculate the

expectation of change in variance.

9.4.2 Sensitivity to Sources of Uncertainty

To apply variance-based global sensitivity indices, it was explained earlier in Sec-

tion 9.2 that a deterministic transfer function from X to θ. Further, it was also
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discussed that a particular model parameter θi is sensitive to both X and θ−i.

Hence, the deterministic transfer function should be of the form θi = H(X, θ−i).

The marginal conditional posterior PDF discussed in Section 9.3 is used to construct

this deterministic transfer function H .

For a given choice of x and θ−i, the estimate of θ is not deterministic and the

uncertainty is given by the MCP f ′′(θi;x, θ−i). This uncertainty, according to the

Bayesian philosophy, is a subjective estimate of uncertainty in θi for the chosen x

and θ−i. The lack of a deterministic function prohibits the application of the existing

global sensitivity analysis methodology. A new auxiliary variable Uθi is introduced

to represent the aforementioned Bayesian subjective uncertainty; this uncertainty is

a result of the “subjectivity” inherent in the Bayesian philosophy for inference. This

auxiliary variable is defined such that:

θi =

∫ U
θi

−∞
f ′′(θi;x, θ−i)dθi (9.11)

Note that Uθi is simply equal to the CDF value of the marginal conditional posterior

f ′′(θi;x, θ−i), and hence uniformly distributed on the interval [0, 1]. Refer to the

algorithm to generate samples from the marginal unconditional posterior, discussed

earlier in Section 9.3.3. In step 3, a random number (uniformly distributed on [0, 1])

was chosen to draw one sample from the MCP. The auxiliary variable is exactly same

as this random number.

Using this auxiliary variable, Eq. 9.11 can be rewritten to define a deterministic

function, as follows:

θi = H(x, θ−i, Uθi) (9.12)

The sampling algorithm (to generate samples of θi from its marginal unconditional

PDF) described in Section 9.3.3 is equivalent to performing Monte Carlo sampling on
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Eq. 9.12 by generating samples of x , θ−i , and Uθi simultaneously. Further, Eq. 9.12

provides a deterministic function to facilitate inverse global sensitivity analysis. The

uncertainty in each model parameter θi can be apportioned to the other inputs, other

model parameters, and the subjectivity term.

The first-order effects index with respect to the contribution of a particular input

(xj) to the model parameter (θi) can be calculated similar to Eq. 2.15 (by fixing xj

alone) as:

Sxj

1,i =
V (E(θi|xj))

V (θi)
(9.13)

Similarly, the total effects index with respect to the contribution of a particular input

(xj) to the model parameter (θi) can be calculated similar to Eq. 2.17 (by fixing all

quantities other than xj) as:

Sxj

T,i = 1− V (E(θi|x−j , θ−i, Uθi))

V (θi)
(9.14)

Similarly, the first-order effects and total effects indices with respect to the contribu-

tion of a particular model parameter (θj) to the model parameter (θi where i 6= j)

can be calculated as:

Sθj

1,i =
V (E(θi|θj))

V (θi)
(i 6= j) (9.15)

Sθj

T,i = 1− V (E(θi|x, θ−(i,j), Uθi))

V (θi)
(i 6= j) (9.16)

Further, the contribution of the subjectivity term (Uθi) can be calculated as:

S
U
θi

1,i =
V (E(θi|Uθi))

V (θi)
(9.17)

S
U
θi

T,i = 1− V (E(θi|x, θ−i))

V (θi)
(9.18)
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Thus, the concept of marginal conditional posterior has been used to derive a method-

ology for inverse sensitivity analysis analogous to the existing approach for forward

sensitivity analysis. In the next section, the concept of inverse sensitivity analy-

sis is extended to multi-level systems, where the same set of model parameters are

calibrated using multiple models and corresponding data sets.

9.5 Extension to Multi-level Calibration

Consider a model parameter which needs to be calibrated using multiple models

and data sets; without loss of generality, the method is discussed for two different

models (G1 and G2) and corresponding data (D1 and D2). These two models have

their own sources of uncertainty (x1 and x2) described in terms of the PDFs (fX1
(x1)

and fX2
(x2) respectively).

Y1 = G1(θ,x1) (9.19)

Y2 = G2(θ,x2) (9.20)

As discussed in earlier chapter, the concept of Bayesian network [25, 26] is used

to connect multiple models, corresponding data sets, and the various sources of un-

certainty. As explained earlier in Section 2.4.4, this Bayesian network is useful for

uncertainty propagation as well as calibration of model parameters using multiple

sets of data. If a prior PDF (f ′(θ)) is assumed for the model parameters (θ), then

the likelihood function (L(θ)) is calculated as being proportional to the probability of

observing all data (both D1 and D2 in this case) conditioned on the model parameters

(θ). Then, the posterior PDF of the model parameters is calculated using Eq. 9.1.

The likelihood function is calculated as:

L(θ) ∝ P (D1, D2|θ) (9.21)

323



The traditional method for likelihood calculation includes the uncertainty in x1 and

x2, as:

L(θ) =

∫

L(θ|x1, x2)fX2
(x2)fX1

(x1)dx1dx2 (9.22)

In Eq. 9.22, L(θ|x1, x2) refers to the conditional likelihood (which is proportional

to P (D1, D2|θ, x1, x2)). Assuming that data is unbiased (D1 = y1 + ǫ1 where ǫ1 is

N(0, σ2
1) and D2 = y2 + ǫ2 where ǫ2 is N(0, σ2

2)), and the data are collected indepen-

dently, the conditional likelihood is calculated as:

L(θ|x1, x2) ∝
1√
2πσ1

exp(−(D1 − y1)
2

2σ2
1

)
1√
2πσ2

exp(−(D2 − y2)
2

2σ2
2

) (9.23)

Then the likelihood function L(θ) is substituted into Eq. 9.1 to calculate the joint

posterior of the model parameters (θ).

For the purpose of inverse sensitivity analysis, the concept of marginal conditional

posterior introduced in Section 9.3 can be extended to the case of multi-level calibra-

tion as well, and the MCP f ′′(θi|x1,x2, θ
−i) are estimated. The sampling algorithm

developed in Section 9.3.3 is then used to calculate the marginal unconditional pos-

terior f ′′(θi) and hence, the posterior variance.

The posterior variance is used to calculate the sensitivity to the calibration data

(both number and location). This analysis is useful in resource allocation; one of D1

or D2 may be more influential in reducing the variance of a particular parameter θi,

and the results of sensitivity analysis aids in such decision-making.

The MCP f ′′(θi|x1,x2, θ
−i), along with the auxiliary variable Uθi can be used to

analyze the sensitivity of other uncertain inputs (x1 and x2), other model parame-

ters (θ−i) to θi. The following sections present numerical examples to illustrate the

proposed inverse sensitivity analysis methodology; Section 9.6 discusses single-level

calibration and Section 9.7 discusses multi-level calibration.
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9.6 Numerical Example: Single-level Calibration

This numerical example deals with the estimation of equivalent initial flaw size

(EIFS) in fatigue crack growth analysis in mechanical components. A rigorous ap-

proach to fatigue life would account for crack growth starting from the actual initial

flaw, accounting for imperfections, voids and non-metallic inclusions. This procedure

is cumbersome because small crack growth propagation is anomalous in nature and

hence not completely understood. On the other hand, there are several crack growth

models (Paris law [242], FASTRAN [243], AFGROW [244], etc.) in the long crack

regime which are used to study long crack growth behavior. Equivalent initial flaw

size is a fictitious quantity which was introduced to bypass small crack growth calcu-

lations and make direct use of a long crack growth law in order to make fatigue life

prediction; the EIFS must be chosen in such a way that when the long crack growth

law is used with EIFS as the initial value, it yields crack growth results that match

with observed crack growth data [188].

Since EIFS is fictitious and hence, not measurable, it needs to be estimated based

on observed data on crack size. Initially, back extrapolation techniques [245] were used

for EIFS calculation, and then likelihood-based [180] and Bayesian [182] methods

have been implemented for the statistical inference of EIFS. Chapter V presented

a Bayesian methodology for estimating EIFS by considering complicated geometry,

multi-axial variable amplitude loading, and multiple sources of uncertainty including

physical variability, data uncertainty, and model errors.1 Since the focus of the present

chapter is on inverse sensitivity analysis, the present chapter considers a simpler

problem, i.e. plate subjected to cyclic, uniform uniaxial stress (S), and Paris’ law

is used for crack growth analysis. Paris law calculates the increment in crack size

1Chapter V estimated all crack growth parameters, in addition to EIFS. The sole estimation of
EIFS under complicated geometry and multi-axial variable amplitude loading has also been stud-
ied [181, 197, 199]
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per cycle of loading, in terms of crack growth parameters (C and n), threshold stress

intensity factor (∆Kth), and load stress intensity factor (∆K):

da

dN
= C(∆K)n(1− ∆K

∆Kth

)p (9.24)

The stress intensity factor (∆K), for the sake of illustration, is assumed to be available

in closed form, as:

∆K = S
√
πa (9.25)

Data is collected in the form of “crack size (A) measured after a number of cycles

(N)”, and this data is used to estimate EIFS; 10 such data points are assumed to be

available for calibration of EIFS. The prior of EIFS is chosen to be uniform over the

region where L(θ) 6= 0. Any other prior uniformly distributed over a wider range will

lead to the same posterior PDF.

For the sake of illustration, the quantities S ∼ N(400, 40), C ∼ N(6.54 ×

10−13, 6.54 × 10−14), and ∆Kth ∼ N(5.66, 0.6) are chosen to be random variables.

The uncertainty in the equivalent initial flaw size significantly affects the uncertainty

in the fatigue life prediction. Hence, it is important to analyze the sensitivity of

equivalent initial flaw size, and thereby help in identifying ways to reduce this uncer-

tainty. The prior PDF, the posterior PDF, and the marginal conditional PDF (i.e.

MCP conditioned at the mean values of S, C, and ∆Kth) are shown in Fig. 9.1. The

posterior variance is equal to 1.3× 10−9.

The sensitivities of both (1) location and number of data; and (2) additional

sources of uncertainty to the equivalent initial flaw size are quantified. The sensitivity

of location of data is estimated by recalculating the variance by considering multiple

alternate sets of 10 data points. Hence, this variance is a random variable whose
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Figure 9.1: Calibration of EIFS

statistics are estimated to be mean (of variance) = 1.3×10−9 and standard deviation

(of variance) = 0.04× 10−9.

The sensitivity of number of data is estimate by generating several additional data

points and calculating the expected value of variance, and percentage of the original

posterior variance. The results are shown in Table 9.1. It can be seen from Table 9.1

Table 9.1: Sensitivity of EIFS to Number of Data Points

Number of Data Points E(Variance of EIFS) Percentage of Posterior Variance
10 1.30× 10−9 100.0%
11 1.25× 10−9 96.2%
12 1.20× 10−9 92.3%
13 1.10× 10−9 84.6%
14 1.07× 10−9 82.3%

that the expected value of variance of EIFS gradually decays with the number of data.

The decrease is gradual and it is observed that the decrease is gradual after 14 tests.

The sensitivity of the different sources of uncertainty is calculated using the
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marginal conditional posterior-based methodology and the first-order and total ef-

fects indices are shown in Table 9.2.

Table 9.2: Global Sensitivity of EIFS: Additional Uncertainty Sources

Source of Uncertainty First-order Index Total Effects Index
C 0.0 0.42

∆Kth 0.10 0.12
S 0.59 0.65

Subjectivity (Uθ) 0.16 0.19

From Table 9.2, it is seen that the contribution of load uncertainty (S) to the

uncertainty in EIFS is maximum. Though the first-order contribution of C is approx-

imately equal to zero, it has a significant total effects contribution, indicating higher

order interactions; higher order interactions are significant because Eq. 9.24 consists

of the product of powers of the terms C, S, and ∆Kth.

The above sensitivity analysis provides a methodology using which it is possible to

answer the question - “what causes uncertainty in the EIFS estimate?” If the goal is

to reduce the uncertainty in EIFS, this can be established by either collecting data or

by reducing the uncertainty in S, ∆Kth, or C, by the amounts indicated in Table 9.1

(through data collection) and Table 9.2 (reducing uncertainty).

9.7 Numerical Example: Multi-level Calibration

This section considers the multi-physics thermal vibration problem which was dis-

cussed earlier in Section 8.3. This problem is representative of the thermal vibration

in solar arrays of space telescopes and spacecraft booms [208]. In Chapter VIII, the

focus was to select tests in order to reduce the variance of the multi-disciplinary sys-

tem reponse, i.e. the deflection of the vertical beam. In this chapter, the focus is

on parameter estimation and inverse sensitivity analysis, when the data is collected
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through two types of tests – flexural subsystem test and thermal subsystem test.

Therefore, the equations that predict the flexural response (without thermal effects)

and the thermal response (without flexural effects) are of interest in this chapter, in

contrast with the multi-disciplinary response in Chapter VIII. The equations for the

individual disciplines are explained in the forthcoming subsections. The numerical

details regarding the inputs, parameters, material and geometric properties, including

the calibration quantities, are explained later in Section 9.7.3.

9.7.1 Flexural Subsystem Test

In the flexural subsystem test, the vertical cantilever beam is subjected to free

vibration, the amplitude of the tip mass is measured at a particular instant, and this

information is used to calibrate the model parameters (damping and radius). Refer

to Section 9.7.3 for numerical details, including calibration parameters.

The equation governing the displacement of tip mass (V ) is calculated in terms

damping coefficient (ξ), angular frequency (ω0), gravitational constant (g), and length

of beam (l), as:

V̈ + 2ξω0V̇ + (ω2
0 +

3g

2l
)V = 0 (9.26)

The angular frequency (ω0) depends on the elastic modulus (E), area moment of

inertia (I), length of tube (l), tip mass (m), as:

ω0 =
3EI

ml3
(9.27)

where the moment of inertia (I) is calculated in terms of tube radius (r) and tube

wall thickness (w) as:

I =
π

64
(2r4 − (2r − 2w)4) (9.28)
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9.7.2 Thermal Subsystem Test

In the thermal subsystem test, a thin walled tube is subjected to heat flux (S),

and the temperature is measured; this information is used to calibrate the model

parameters (absorptivity and radius). Refer to Section 9.7.3 for numerical details,

including calibration parameters.

The mathematical model to calculate this temperature (Tm) as a function of time

(t) is constructed in terms of absorptivity (αs), incident heat flux (S), mass den-

sity (ρ), specific heat capacity (c), tube wall thickness (w), and an exponential rate

parameter (τ), as:

Tm =
1

2

αsSτ

ρcw
(1− exp(− t

τ
)) (9.29)

where the exponential rate parameter (τ) is calculated in terms of thermal conduc-

tivity (k), tube radius (r), specific heat capacity (c), Stefan-Boltzmann constant (σ),

emissivity (ǫ), mass density (ρ), tube wall thickness (w), absorptivity (αs), and inci-

dent heat flux(S) as:

1

τ
=

k

ρcr2
+

4σǫ

ρcw
(
1

π

αsS

σǫ
)0.75 (9.30)

9.7.3 Numerical Details

The independent quantities described in the above subsections are tabulated in

Table 9.3. The dependent quantities (ω0, V , I, Tm, τ) can be calculated based on the

above equations.

As seen in Table 9.3, there are three calibration parameters; the damping coeffi-

cient (ξ) is calibrated only using flexural subsystem test data, the absorptivity (αs) is

calibrated only using thermal subsystem test data, whereas the radius (r) is calibrated

using test data on both the subsystems. Note that radius (r) is a geometric property

and often may not be desired to be calibrated since it can be directly measured; in
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Table 9.3: Numerical Details

Name Symbol Description Numerical Value Unit
Damping Coefficient ξ Parameter Prior ∼ U(0, 0.02) No unit

Tube radius r Parameter Prior ∼ N(1.7, 0.05) ×10−3m
Absorptivity αs Parameter Prior ∼ U(0.6, 1) No unit

Specific heat capacity c Uncertainty N(500, 50) Jkg−1K−1

Elastic modulus E Uncertainty N(193, 19.3) ×109N/m2

Thermal conductivity k Uncertainty N(16, 1.6) Wm−1K−1

Emissivity ǫ Uncertainty U(0.75, 1) No unit
Heat flux S Uncertainty N(1000, 50) W/m2

Tip mass m Constant 150 ×10−3kg
Tube wall thickness w Constant 80 ×10−6m

Mass density ρ Constant 7930 kg/m3

Stefan-Boltzmann constant σ Constant 5.67× 10−8 Js−1m−2K−4

Gravitational Constant g Constant 9.81 m/s2

Length of beam l Constant 0.69 m

this numerical example, it is chosen as the calibration parameter because it affects

the output of both the subsystems.

Five calibration data for each subsystem are assumed to be available, and this

data is used to calibrate all the three parameters. The prior PDF, posterior PDF,

and marginal conditional PDF (i.e. MCP, conditioned on the mean of all other

uncertain quantities) are shown in the following figures. The corresponding posterior

variances are 6.5× 10−7, 0.006, and 3.6× 10−9 respectively.
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Figure 9.2: Calibration of Damping Constant
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Figure 9.3: Calibration of Absorptivity
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Figure 9.4: Calibration of Radius

The following sections present the results of inverse sensitivity analysis with re-

spect to each of the three calibration parameters.

9.7.4 Sensitivity to Calibration Data

The sensitivity of the calibration parameter to both the location and number of

test data points (flexural and thermal subsystem tests) are quantified, and tabulated

in Table 9.4. Note that thermal subsystem test data cannot be used to infer the
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damping (ξ) while the flexural subsystem test data cannot be used to infer absorp-

tivity (αs). In the case of inferring r, while computing the sensitivity of the data on

the particular subsystem, the data on the other subsystem remains unchanged from

the original calibration data (i.e. 5 experiments on each of the two subsystems).

Table 9.4: Sensitivity to Data

Calibration
Damping (ξ) Absorptivity (αs) Radius (r)

Parameter

Flexural Subsystem Data
Sensitivity to Location

Mean of Variance 6.5× 10−7 0.006 3.6× 10−9

Std of Variance 0.05× 10−7 0 0.8× 10−9

Sensitivity to Number : Percentage of Posterior Variance
6th 98 % 100 % 99.9 %
7th 95 % 100 % 99.9 %

Thermal Subsystem Data
Sensitivity to Location

Mean of Variance 6.5× 10−7 0.006 3.6× 10−9

Std of Variance 0 0.0005 1.0× 10−9

Sensitivity to Number : Percentage of Posterior Variance
6th Data Point 100 % 95 % 100 %
7th Data Point 100 % 93 % 99.9 %

9.7.5 Global Sensitivity to Sources of Uncertainty

The proposed inverse global sensitivity analysis methodology is used to apportion

the uncertainty in the estimated model parameter to the other sources of uncertainty.

Note that, for a particular calibration parameter, another calibration parameter is

treated as an additional source of uncertainty described using its prior. The results

of inverse sensitivity analysis are given in Tables 9.5 – 9.7.

Tables 9.5 – 9.7 indicate which quantities are the highest contributors of uncer-

tainty to each of the calibration parameters. This analysis is useful when the aim is

to reduce the uncertainty in the parameter estimate. The complete significance of
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Table 9.5: Global Sensitivity of Damping: Additional Uncertainty Sources

Source of Uncertainty First-order Index Total Effects Index
c 0.0 0.0
E 0.40 0.63
k 0.0 0.0
αs 0.0 0.0
S 0.0 0.0
r 0.32 0.55
ǫ 0.0 0.0

Subjectivity (Uξ) 0.10 0.62

Table 9.6: Global Sensitivity of Absorptivity: Additional Uncertainty Sources

Source of Uncertainty First-order Index Total Effects Index
c 0.20 0.25
E 0.0 0.0
k 0.30 0.35
ǫ 0.0 0.01
S 0.28 0.28
r 0.10 0.11
ξ 0.0 0.0

Subjectivity (Uαs
) 0.01 0.05

such estimation can be realized when computing the system-level deflection using the

equations given by Thornton [208]. Higher uncertainty in the parameters would lead

to higher uncertainty in the prediction. Thus, if the overall system-level prediction

uncertainty needs to be decreased, the uncertainty in the parameters which are cali-

brated using lower-level tests also need to be decreased. The proposed methodology

provides a quantitative approach for such problems, by studying the sensitivity of the

calibration parameter to all the sources of uncertainty.

9.8 Conclusion

This chapter proposed a statistical methodology to study the sensitivity of model

parameter estimation with respect to the various sources of uncertainty under which
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Table 9.7: Global Sensitivity of Radius: Additional Uncertainty Sources

Source of Uncertainty First-order Index Total Effects Index
c 0.12 0.20
E 0.26 0.35
k 0.13 0.18
αs 0.02 0.04
S 0.23 0.40
ξ 0.10 0.12
ǫ 0.05 0.08

Subjectivity (Ur) 0.05 0.10

the parameters need to be calibrated, and the calibration data using which the model

parameters are estimated. The sensitivity to the data was computed with respect to

both number of data points and the location of data points. In order to accomplish

this, several realizations of data sets were simulated, and the posterior variance was

calculated. The sensitivity to the various sources of uncertainty was estimated using

the method of global sensitivity analysis. Until now, the method of global sensitivity

analysis has been applied only to forward problems involving uncertainty propagation.

This chapter extended this methodology to the inverse problem of model parameter

estimation. The concept of marginal conditional posterior was introduced, and the

effect of subjectivity inherent in the Bayesian philosophy was also quantified.

Future work needs to directly use the results of inverse sensitivity analysis in

test design; for example, if the calibration is more sensitive to a particular uncertain

quantity, then it may be necessary to consider several realizations of that particular

quantity while designing tests and vice-versa. Other possible directions for further

research are as follows: (1) The marginal conditional posterior approach seems to

provide a computationally efficient alternative to compute the marginal posteriors of

model parameters; this procedure needs to be further explored to check its applicabil-

ity to generic Bayesian updating problems. (2) Further, this chapter considered only

physical variability in inverse sensitivity analysis; future work needs to consider data
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uncertainty, and model uncertainty. (3) If calibration needs to be performed under

both aleatory and epistemic uncertainty, then the contribution of each of those to the

overall estimation uncertainty can be calculated using the proposed approach. This

analysis helps to quantify what extent of estimation uncertainty is reducible vs. what

is irreducible.
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CHAPTER X

CONCLUSION

10.1 Summary of Accomplishments

A critical requirement for the analysis and design of engineering systems is the

ability to predict the performance of the system with a certain level of confidence.

This is not trivial because the system performance is affected by several sources of un-

certainty (physical variability, data uncertainty, and model uncertainty). The overall

objective of this dissertation is to develop a unified framework for representation of

uncertainty quantification, and seamlessly integrate the various sources of uncertainty

across multiple models and compute the uncertainty in the system-level response, in

order to provide information for decision-making in engineering systems.

The various accomplishments of this dissertation can be classified into two broad

categories: (1) uncertainty quantification; and (2) uncertainty integration. In un-

certainty quantification, the objective is to develop a framework for quantifying

data uncertainty and model uncertainty. In uncertainty integration, multiple models

(component-level, subsystem-level, and system-level models) are considered, and the

goal is to compute the uncertainty in system-level prediction by integrating the various

sources of uncertainty across multiple models and the different types of experimental

data available across multiple levels.

First, this dissertation developed a likelihood-based approach for the probabilis-

tic representation of data uncertainty due to sparse and interval data. This method

was first developed for a random variable with known distribution type, and the un-

certainty in the distribution parameters was quantified. Then, the likelihood-based
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approach was extended to random variables with unknown distribution type; a para-

metric approach (by considering multiple competing distribution types) as well as

a non-parametric approach were developed. For the parametric approach, a global

sensitivity analysis-based methodology was developed to quantify the individual con-

tributions of distribution type uncertainty, distribution parameter uncertainty and

variability.

The second major accomplishment of this dissertation was the development of

methods for the quantification of model uncertainty. Two types of solution approxi-

mation errors (discretization error and surrogate model error) were computed during

model verification. The Bayesian approach for model calibration and two computa-

tional methods (Bayesian hypothesis testing and model reliability approach) for model

validation were extended to account for the different sources of uncertainty, and in-

clude different types of data scenarios such as interval data, partially characterized

data, and time series data.

The methods for quantifying data uncertainty and model uncertainty were applied

to the problem of fatigue crack growth analysis, as a case study. While several

sources of data uncertainty and model uncertainty had been ignored in the literature

pertaining to fatigue crack growth, this dissertation accounted for all the sources of

uncertainty for fatigue crack growth prediction and confidence assessment.

The third major accomplishment of this dissertation was with respect to uncer-

tainty integration. A Bayesian network-based methodology was developed to in-

tegrate the results from various uncertainty quantification activities such as model

verification, validation, and calibration in order to quantify the uncertainty in the

overall system-level prediction. This methodology was developed for two different

types of hierarchical systems (sequential and non-sequential).

The third type configuration includes feedback coupling amongst models. A new
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methodology was developed for uncertainty propagation in multi-disciplinary systems

with feedback coupling, and feedback coupling was replaced with equivalent unidi-

rectional coupling, thereby transforming this hierarchy into a sequential system, and

thus facilitating the use of the Bayesian network.

While the previous accomplishments with respect to uncertainty integration fo-

cused on quantifying the uncertainty in the system-level prediction, the fifth accom-

plishment was the development of a new methodology for test resource allocation, in

order to achieve a reasonable reduction in the variance of the system performance

prediction. This was achieved through calibration and uncertainty reduction in the

parameters, thereby leading to uncertainty reduction in the system-level prediction.

The presence of the different sources and types of uncertainty have a profound

influence on parameter uncertainty and system-level uncertainty reduction. Hence,

in order to reduce the uncertainty in the parameters, it would be beneficial to know

the sensitivity of these parameters to the various sources of uncertainty and the

calibration data itself. Sometimes, a parameter may be more sensitive to one type

of test vs. another type of test. The final accomplishment was the development of

a new “inverse sensitivity methodology” in order to quantify the sensitivity of the

model parameters. This was achieved through the use of the concepts of “marginal

conditional posterior” and global sensitivity analysis.

10.2 Future Work : Short Term

The topics of uncertainty quantification and integration are fertile and there are

several possible directions for further research.

This dissertation only addressed data uncertainty due to sparse point and interval
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data. Sometimes, information may be available in the form of qualitative or categor-

ical information. Future work needs to address these situations and develop methods

for propagating such information in a probabilistic framework.

The Bayesian hypothesis testing and model reliability metric approaches for model

validation are challenging from the perspective of numerical implementation. The

former requires the choice of an alternate hypothesis which significantly affects the

validation metric, and hence is not an absolute measure. While the model reliability

metric is absolute, it may tend to zero as the number of validation data increases.

Future work needs to overcome this challenge and propose validation metrics that

are not only meaningful, but also facilitate the calculation of the probability that the

model is correct, since this probability is instrumental in the integration of results

from model verification, validation, and calibration. Further, this methodology of

integration needs to be extended to multi-disciplinary and multi-scale systems.

With respect to uncertainty quantification in multi-disciplinary analysis, there

are two directions for future work. (1) The proposed likelihood-based method was

demonstrated only for a small number of coupling variables. Future work needs to

address situations when the coupling is a field quantity, for e.g., pressures and dis-

placements in fluid-structure interaction. (2) One advantage of the proposed method

was that the feedback coupling between models can be replaced with uni-directional

coupling. Therefore, the Bayesian network, which is acyclic in nature, can now be

used to facilitate calibration, validation and integration in multi-disciplinary systems.

Though this capability was mentioned in Chapter VII, the methodology needs to be

developed and applied to practical problems in future work.

The optimization methodology for test resource allocation answered two questions:

(1) What type of test to perform? (2) How many tests of each type? Future work

needs to address design of tests by answering the question: At what settings should the
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tests be performed? The proposed inverse sensitivity analysis methodology should be

used to guide the test design. Also, this methodology needs to be extended to include

other sources of uncertainty, and quantify the contributions of aleatory and epistemic

uncertainty to model parameter estimation.

10.3 Future Work: Long Term

While most of the aforementioned objectives are short term goals, it may be

beneficial to identify a set of long-term research goals and needs in order to advance

the state of the art in the area of uncertainty quantification.

10.3.1 Uncertainty Quantification

Though the basic methods of uncertainty quantification such as Monte Carlo

simulation, Bayesian updating, reliability methods, etc. are well established in the

literature, their application to practical problems is quite daunting. Contemporary

systems are often multi-disciplinary with multiple levels of modeling, and multiple

scales of analysis. Future work needs to develop computational methods that can

address uncertainty quantification across multiple scales and multiple physics of mod-

eling; this is challenging because it is necessary to rigorously account for the different

sources of uncertainty while propagating information from one scale and/or discipline

to another.

10.3.2 Information Fusion

Information is available in various forms, such as models, test data, expert opin-

ion, etc. A challenging task is to integrate all the available sources of information
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for the purpose of uncertainty quantification. One hurdle is that different types of

information are currently treated using different mathematical methods. Future work

needs to develop a a unified, integrated methodology by assimilating information from

multiple sources and help in meaningful, risk-informed decision-making.

10.3.3 Decision-making under Uncertainty

There are various aspects of decision-making during different stages of the life-cycle

of an engineering system. Future work needs to develop methods for decision-making

in all of these stages by rigorously accounting for the various types of uncertainty.

In the analysis stage, model selection and development, verification, validation, and

calibration are of interest. Currently, several of these activities are performed indi-

vidually, and there is an evident need for integration of these activities during the

analysis stage. Such integration can alone provide a rigorous measure of uncertainty,

and aid in the overall risk-assessment. The design stage comprises of both system

design and test design. Fundamentally, both these problems are optimization prob-

lems. While the former has been discussed more extensively in the literature, the

latter has not yet received significant attention. In the operations stage, the focus is

on structural health monitoring, which by itself is a large topic.

10.3.4 Structural Health Monitoring

Once the engineering system is in use, it is necessary to not only constantly mon-

itor its health, but also provide prognosis, thereby to calculate the remaining useful

life of the system. The field of structural health monitoring has gained considerable

attention over the past several years; however, in recent times, the importance of
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quantifying the uncertainty in diagnosis1 and prognosis2. Future work needs to de-

velop methods to quantify the confidence in diagnosis and prognosis, by including

multiple levels of data and models, and by rigorously accounting for the different

types of uncertainty.

10.3.5 Computational Efficiency

All of the above efforts require large computational resources since several hun-

dreds of thousands of computational model evaluations may be necessary. One sim-

ple solution is to replace computational models with surrogate models (polynomial

chaos expansions, Gaussian processes, support vector and relevance vector machines,

etc.). Another solution is to focus on the mathematical foundations of uncertainty

quantification and find intelligent ways to achieve a substantial decrease in compu-

tational effort. The importance of computational difficulty will increase when larger

systems need to be analyzed, and it will be become essential to pursue important

breakthroughs in this regard.

10.4 Concluding Remarks

The various accomplishments of this dissertation and the above future work rec-

ommendations are directed towards the development of computational methods that

aid the quantification of margins and uncertainties in engineering systems, which

1Damage diagnosis is basically an inverse problem. There are three steps - damage identifica-
tion, localization, quantification, out of which the last step of damage quantification is identical to
parameter estimation or system identification in time dependent analysis. Refer to [246, 247] for
methods describing the quantification of uncertainty in each of these three stages of diagnosis.

2Model-based prediction when performed as a function of time, is identical to prognosis. The
prediction of crack growth as a function of number of load cycles in Chapter V is an example of
prognosis. The methods developed in Chapter V quantified the uncertainty in prognosis by including
the various sources of uncertainty – physical variability, data uncertainty, and model uncertainty.
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are essential for the purpose of decision making under uncertainty. As scientific re-

search constantly breaks through new frontiers in engineering technology and explores

undiscovered territory, the importance of quantification of margins and uncertainties

in decision-making will significantly increase. Therefore, uncertainty quantification

methods will also need to evolve to address increasingly challenging problems and

provide a substantial foundation and framework for meaningful, risk-informed, ro-

bust decision-making.
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