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CHAPTER 1 
 

INTRODUCTION 

 

The goal of this work has been to delineate the impact of novel caveolin-1 frameshift 

mutants on the assembly and function specialized invaginated membrane 

microdomains called caveolae. Caveolae are found in many cell types [1, 2] and are 

important platforms for cell signaling, mechano-protection and maintaining lipid 

homeostasis [3-6]. Oligomers of the scaffolding protein Caveolin-1 provide the structural 

framework of caveolae needed to support their characteristic morphology [7-9] (Figure 

1). Expression, oligomerization and trafficking of Caveolin-1 is required for the formation 

of stable caveolae [8]. Caveolin-1 deficiency compromises the formation, abundance 

and functions of caveolae at the plasma membrane [10-12] giving rise to 

hyperproliferative cells with altered lipid composition and increased sensitivity to 

mechanical stress [3-6].  

 

Recently, two novel heterozygous Caveolin-1 frameshift mutations were identified in a 

family of patients with pulmonary arterial hypertension (PAH; CAV1-P158) and patient 

with both PAH and congenital generalized lipodystrophy (CGL; CAV1-F160X) [13-16]. 

Reduced CAV1 protein levels were reported in these preliminary studies; however, how 

this impacts caveolae formation and function is not known [14-16]. It is therefore 

important to characterize the behavior of these mutants and their impact on caveolae in 

order to begin determining how they give rise to disease. Here, the expression, 

oligomerization, trafficking, and assembly of caveolae were examined in patient cells 

and caveolin-1-/- murine embryonic fibroblasts (MEFs) transfected with the mutant 

proteins. These studies indicate that neither mutant completely ablates caveolae 

formation and both are capable of co-assembling into complexes with wild type 

Caveolin-1 that are required for caveolae formation; however, they are biochemically 

unstable. CAV1-P158 behaves as a dominant negative, reduces caveolae formation 

and disrupts the mechano-protective function of caveolae. CAV1-F160X is incorporated 

into caveolae with no affect on their abundance or mechano-protection, but the 
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incorporation of this mutant with wild type Caveolin-1 in caveolae results in the 

formation of less stable caveolae with an altered composition [13]. This is a novel 

example of a disease-associated Caveolin-1 mutant that has no effect on the density of 

caveolae in cells despite causing a more severe phenotype. Thus, abnormal stability 

and composition of caveolae are contributing factors to the development of PAH and 

CGL.  

 

In this chapter, caveolae/CAV1 the concept of membrane microdomains will be 

introduced with an emphasis on caveolae membranes and their essential protein 

components. The implications and proposed roles of caveolae/CAV1 in human diseases 

will be discussed with a primary focus on PAH, CGL and the CAV1 mutants investigated 

in these studies. 

 

1.1 Membrane Microdomains 
 

The plasma membrane functions as a barrier between the extracellular environment 

and the cytoplasmic contents of the cell and is found in living organisms. The plasma 

membrane (PM) is composed of a diverse milieu of lipid species that form a continuous 

lipid bilayer that also contains cholesterol and membrane proteins, which are laterally 

dispersed throughout the bilayer. Membrane fluidity is a property of the PM that allows 

lipids and membrane proteins to laterally diffuse across the plasma membrane.  

However, nano-scale clustering within the bilayer promoted by lipid-lipid, lipid-protein 

and protein-protein interactions gives rise to distinct transient fluid-phase 

microdomains and generates heterogeneity/asymmetry within the plasma membrane 

[17, 18].  

 

Microdomains are further divided into two categories that have distinct properties: i) 
non-lipid rafts are detergent-soluble portions of the membrane composed of lipids and 

proteins that display high lateral mobility and are considered liquid-disordered (Ld) 

membranes. ii) Lipid rafts are planar membrane domains ranging from ~5-20 nm in 

diameter that are enriched in cholesterol and sphingomyelin [19]. The enrichment of 
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these types of lipids in rafts promotes the tight packing between other raft-associated 

lipids/proteins and reduces their lateral mobility. Tight association between lipid raft 

components also decreases membrane fluidity, promoting the characteristic properties 

of increased detergent-insolubility and liquid-order (Lo). The compartmentalization of 

lipids and proteins within rafts is believed to be an important contributing factor for their 

proposed functions in trans-/endo-/exocytosis, membrane trafficking and modulating 

protein activity and cell signaling events [20].  

 

In addition to planar lipid rafts, invaginated structures highly enriched in cholesterol and 

sphingolipids called caveolae are another specialized membrane microdomain with raft-

like properties and functions. Unlike dynamic, transient planar lipid rafts, omega-shaped 

caveolae membranes are generally larger diameter than planar lipid rafts and are 

characteristically highly immobile structures [21]. The biogenesis and functions of 

caveolae are discussed in detail in section 1.2 below. 

 
1.2 Caveolae: Components Required for Assembly and Stability 
 
Caveolae are 50-100 nm invaginations found at the plasma membrane of many cell 

types including adipocytes, smooth muscle and endothelial cells [1, 2] (Figure 1). 

Caveolae are specialized membrane domains enriched in cholesterol and sphingolipids 

implicated in numerous cellular events: i) Endocytosis of caveolae is required for 

repairing wounded regions of the plasma membrane, internalization and recycling of 

excess lipids [22-24]. Transcytosis in endothelial cells occurs in a caveolae-dependent 

manner and plays a role in maintaining tight junctions [22]. Caveolae can also 

negatively regulate clathrin-independent endocytosis [25]. ii) Caveolae modulate activity 

and localization of extracellular and intracellular signaling molecules to maintain their 

appropriate spatial distribution, thereby integrating signal transduction events [26]. iii) 
Fatty acid and lipid uptake occurs in caveolae, and caveolae involvement in lipid 

storage/metabolism is critically important for adipose tissue function [27, 28]. iv) In 

environments when the plasma membrane is under high amounts of mechanical 

tension, caveolae flattening buffers the membrane to prevent cells from rupturing and 
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caveolae are involved in mechano-transduction [25, 29-31]. Exactly how these events 

are regulated by caveolae, however, is not fully understood but currently is extensively 

investigated in the field. In order to understand the requirements necessary for caveolae 

function, many groups have focused on identifying the protein composition of these 

structures and the critical components involved in caveolae formation. 

 

Figure 1. Caveolae and Caveolin-1 Organization. (A) Electron micrograph depicting caveolae in human 
dermal fibroblasts. The arrangement of Caveolin-1 oligomers within caveolae, composition of caveolae 
oligomers and the subdomains of Caveolin-1 monomers are also shown. (B) A Cartoon showing the 
topology of Caveolin-1 oligomers in a lipid bilayer. Adapted from Mercier et al., 2009 [32]. 
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1.2.1 The Caveolin Family of Proteins  
Caveolins are conserved in many species and comprise a family of hairpin-like integral 

membrane proteins with cytoplasmic N- and C-termini. Caveolins contain four domains: 

the N-terminal domain (NTD), scaffolding domain (CSD), intramembrane domain (IMD) 

and C-terminal domain (CTD) [33-35] (Figure 2). Three mammalian caveolin family 

members (1, 2, and 3) are expressed in a variety of tissues and the formation of 

caveolae critically depends on the expression of these proteins. Caveolin-1 and 

Caveolin-2 are expressed together in most cell types, while Caveolin-3 is specifically 

expressed in skeletal, smooth and cardiac muscle [25, 26]. Unlike Caveolin-1/3, the 

assembly of caveolin-2 into complexes that are recruited to caveolae is dependent on 

the expression of and oligomerization with Caveolin-1/3. In the absence of caveolin-1 

expression, caveolin-2 is unable to exit the Golgi complex and is rapidly degraded [11]. 

Caveolins also undergo post-translational modifications: all caveolins are palmitoylated 

on three homologous cysteine residues found in the C-terminal domain of the proteins 

and caveolin-1 and caveolin-2 can be phosphorylated on multiple residues (Figure 1 

and 2) [29-32].  

 

Table 1. Caveolins Proteins (Human; Full-Length) 

Name Tissue 
Distribution Size Molecular 

weight 

% 
Similarity 

(Identity) to 
CAV1 

% Similarity 
(Identity) to 

CAV2 

Caveolin-1/ 
CAV1 
NP_001744.2 

Most tissues 178 aa. 21-24 kDa 100% 
(100%) 

- 

Caveolin-2/ 
CAV2 
NP_001224.1 

Most 
Tissues 

162 aa.  18-21 kDa 74% (41%) 100% (100%) 

Caveolin-3/ 
CAV3 
NP_001225.1 

Muscle 151 aa. ~21 kDa 87% (64%) 72% (39%) 

http://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi 



 6 

 

Figure 2. Caveolin Proteins: Subdomains, Family Members and Isoforms. The subdomains 
conserved in all caveolins are shown. Red text indicates phosphorylation sites. Yellow text indicates 
conserved cysteine residues that are palmitoylated. Adapted from Sverdlov et al., 2007 [36]. 
 

1.2.2 Caveolin-1 (CAV1)  
CAV1 is the family member that is primarily discussed for the remainder of this 

dissertation. The CAV1 gene encodes a 178 amino acid protein that has an 

approximate molecular weight of 22 kDa (Table 1). There are two isoforms of CAV1: 1) 

the full-length alpha isoform (CAV1α) and 2) the beta isoform (CAV1β; 32-178), which 

lacks the first thirty-one amino acids due to an alternative start site at an internal 

methionine residue [37] (Figure 2). While there is some overlap in the subcellular 

distribution of the two isoforms, differences have been reported in the way the isoforms 

affect the structure and depth of caveolae, and how they influence the activity of growth 

factor receptors [37-40]. CAV1α associates with deeper caveolae unlike 



 7 

CAV1β, which is incorporated into shallower caveolae and reportedly has an inhibitory 

effect on the signaling activity of a growth factor receptor [38, 40]. Aside from these 

findings, a deeper understanding of differential behaviors of CAV1α/β requires further 

investigation. 

 
As mentioned above, caveolin proteins contain several structural domains. The CAV1 

NTD (residues 1-81) contains the oligomerization domain (OD, residues 61-81), which 

is essential for the assembly of complexes that serve as building blocks of caveolae 

[41]. CAV1 is thought to negatively regulate the activity of many signaling molecules 

through interactions with the CSD (residues 82-101) [42, 43]; however, whether specific 

binding sites in CAV1/binding partners exist remains controversial. The IMD of CAV1 

(residues 102-134) is composed of two α-helices that are separated by a 3-residue 

linker region containing a proline residue (P110) that induces a ~50° angle between the 

two α-helices [44, 45]. This allows CAV1 to adopt a hairpin topology in the lipid bilayer 

such that both N- and C- termini are exposed to the cytoplasmic interior of the cell [45-

47] (Figure 1). The CTD (residues 135-178) is important for oligomer-oligomer 

interactions (residues 168-178) [48] and contains three cysteine residues that are 

palmitoylated (C133, C143 and C156) that are thought to mediate membrane 

attachment. However, they are not required for the trafficking or plasma membrane 

targeting of CAV1 [49].  

 

1.2.3 Caveolin-2 (CAV2)  
Like CAV1, CAV2 is detected in several isoforms from the result of transcript variants 

and initiation of translation from internal methionines that serve as alternative start sites 

(Figure 2). The alpha isoform (CAV2α) encodes the full-length (162 amino acids) 

protein (Table 1) and the beta isoform (CAV2β), lacking the first twelve amino acids of 

the full-length N-terminus, is 149 amino acids in length. Differences in the subcellular 

distribution of the α and β isoforms have been reported [50]; however, an in depth 

understanding of the behaviors of all CAV2 isoforms is currently lacking. 
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Both CAV1 and CAV2 are located on same chromosome and have overlapping tissue 

distributions. CAV2 can assemble into homo-dimers as well as hetero-oligomers with 

CAV1 [51, 52]. CAV2 expression levels, trafficking and caveolae targeting is critically 

dependent on CAV1 expression. For example, in cells isolated from Cav1-/- mice, Cav2 

remains in the Golgi and is unable to form caveolae [53, 54]. Cav2 deficiency in mice 

has no effect on caveolae formation; however, in these animals, Cav1 expression levels 

are reportedly 50% lower than their wild type counterparts and have pulmonary 

abnormalities [52, 54]. Due to the overlap in tissue distribution and dependence on 

CAV1 expression, it is difficult to independently study CAV2 and rule out any influence 

from CAV1. However, despite the difficulties of independently assessing CAV2, some 

groups have begun to tease out CAV2-specific roles in promoting caveolae formation 

[55], modulating tumor angiogenesis [56], protecting lung tissue from pharmacologically 

induced fibrosis [57], negative regulation of proliferation [58, 59], insulin signaling [33], 

and preventing injury/permeability along the gastro-intestinal tract [60]. 

 
1.2.4 Caveolin-3 (CAV3)   
Caveolae in muscle cells are primarily composed of CAV3, the muscle-specific family 

member [61] (Table 1; Figure 2). While predominantly in cardiac and skeletal muscle, 

CAV3 can also be detected in smooth muscle cells [62]. CAV3 is located on an entirely 

different chromosome (locus 3p25) than CAV1/2 [63] and currently no isoforms have 

been reported. The molecular characterization of human CAV3 and investigation of 

Cav3-/- mice has shown that this family member plays a role in the fusion of myoblasts 

into myotubes during development, and in the biogenesis of transverse-tubules (T-

tubules) during muscle differentiation [64-66]. Following maturation of myotubes into 

mature muscle fibers, CAV3 is most prominently found in the sarcolemma and 

influences glucose uptake, energy metabolism [67], hypertrophy-promoting signaling 

pathways [68] and contractility. Alterations in CAV3 expression levels are associated 

with altered insulin signaling in the muscle [69] and several identified CAV3 mutations 

are implicated in many muscle-related diseases including limb-girdle muscular 

dystrophy (LGMD), Duchenne muscular dystrophy (DMD), rippling muscle disease 

(RMD) and abnormally high serum creatine kinase levels (hyperCKemia) [63, 70-72]. 
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Cav3-deficient mice have skeletal muscle abnormalities that mirror muscular dystrophy-

like pathology and these mice suffer from cardiac abnormalities [66, 68]. The expression 

of some dominant negative CAV3 mutants associated with disease that are rapidly 

degraded and abnormally trafficked can cause haploinsufficiency [63, 70, 72-74]. 

Despite an obvious importance for CAV3 in maintaining normal muscle cell 

homeostasis, the molecular basis of how CAV3 or mutant forms of the protein contribute 

to these processes and the pathogenesis of diseases is not fully understood. 
 

 
1.3 Caveolae Accessory Proteins 
 
In addition to caveolins being a primary structural component of caveolae, several 

accessory proteins that further promote caveolae formation, stability and function have 

been identified [75-77]. These proteins comprise what is often referred to as the 

“caveolar coat”. The caveolar coat is composed of proteins that have roles in stabilizing 

the caveolae by mediating interactions with the actin cytoskeleton and sculpting 

caveolar membranes. Some of these proteins include EHD-2, PACSIN2, and the cavin 

family of proteins. CAV1, the cavins and PACSIN2 are essential for the formation and 

function of caveolae and without their expression an absence of detectible caveolae or 

inability to form normal caveolae is observed [77, 78]. 

  

1.3.1 EHD2 and its Role in Reducing Lateral Mobility of Caveolae 
Eps-15 homology domain (EHD 1-4) containing proteins are a mammalian family of 

dynamin-like ATPases that regulate endocytic processes and intracellular trafficking 

[79]. There is a high amount of homology among the EHD family members, which 

contain an ATP-binding (G) domain that is flanked by two helical regions, and a C-

terminal EH domain that binds NPF motifs found in proteins like PACSIN2 [80]. EHD2 

(61 kDa) is a 534 amino acid protein that directly interacts with CAV1 and is therefore 

localized to caveolae but caveolae still form in the absence of EHD2 [79]. Dimerization 

of EHD2 and recruitment to the necks of caveolae occurs in an ATP-dependent manner 

[79]. Caveolae must be intact and decorated with the caveolae accessory protein Cavin-
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1 in order for EHD2 to be targeted to caveolae [79]. Thus, EHD2 is often used as a 

marker of caveolae in microscopy-based experiments. Based on computational analysis 

of membrane shaping physical models, EHD2 is predicted to play a role in the fission of 

tubulated membranes [81]. However, caveolae-associated EHD2 is tethered to the actin 

cytoskeleton and immobilizes caveolae to prevent fission. In concert with this, loss of 

EHD2 increases the mobility and turnover of caveolae at the plasma membrane [82] 

(Figure 3A). 

 

1.3.2 PACSIN2 and its Role in Stabilizing the Curvature of Caveolae 
Protein kinase C and casein kinase substrate in neurons 2 (PACSIN2, also known as 

syndapin 2, 56 kDa) is a 486 amino acid protein that is ubiquitously expressed and is a 

member of a family of highly conserved mammalian proteins (PACSINs 1-3) involved in 

bending and sculpting membranes [83]. The protein is comprised of an N-terminal F-

BAR domain, a C-terminal Src Homology 3 domain (SH3) that mediates adaptor protein 

and kinase binding, in addition to Asn-Pro-Phe (NPF) motifs found throughout the 

protein, which are important for protein-protein interactions. Originally identified in Bin-

Amphiphysin-RVS (BAR) proteins, BAR domains dimerize generating a highly curved 

surface with inherent lipid-binding properties and a high affinity for positively or 

negatively curved membranes [84].  The degree of curvature in BAR domain-containing 

proteins varies, but F-BAR domains have a shallower curve and bind positively curved 

membranes. The F-BAR domain of PACSIN2 is essential for its recruitment to caveolae 

and is established through interactions with CAV1 [84]. PACSIN2 colocalizes with a 

subset of caveolae and is thought to be important for stabilizing newly formed caveolae 

[85]. In addition to forming and sculpting caveolae, PACSIN2 recruits dynamin-2 to the 

necks of caveolae to initiate scission and internalization of caveolae from the plasma 

membrane; without PACSIN2, caveolae take on an abnormal morphology with reduced 

dynamin-2 recruitment [77] (Figure 3B). 
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Figure 3. Caveolae Accessory Proteins: EHD-2 and PACSIN2. A) The ATPase EHD2 tethers caveolae 
to the actin cytoskeleton.  Dimers of EHD-2 are recruited to the necks of caveolae and interact with actin 
through the adaptor protein, Filamin-A (not shown) [79, 82] B) PACSIN2 binds to curved membranes 
through the F-BAR domain, and additionally sculpts membranes to induce curvature due to intrinsic 
properties of their curved structure. PACSIN2 is found in the necks of caveolae and can interact with 
EHD-2 via NPF motifs in addition to binding Dynamin-2 via the SH3 domain to mediate scission [77]. 
 
 
1.3.3 The Caveolar Coat:  Cavin Family of Proteins 
A group of peripheral membrane proteins PTRF, SDPR, SRBC and MURC have been 

designated Cavins 1-4, respectively (Figure 4). These lipid-binding proteins share 
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sequence homology and conserved structural domains in their predicted secondary 

structure [86]. The structural features of Cavins include N- and C-terminal disordered 

regions (D1, 3) and two helical regions (H1, 2) that are separated by another disordered 

region (D2). All Cavin proteins contain numerous phosphorylation sites and contain Pro-

Glu-Ser-Thr (PEST) domains that undergo proteolytic cleavage/degradation and 

leucine-zipper (LZ) domains that mediate protein-binding interactions. Multiple cleavage 

products have been observed associated with caveolae and Cavins can form homo- 

and hetero-oligomers [87]. In addition, both Cavin-1 and -4 contain nuclear localization 

sequences (NLSs).   

 
Cavin-1/PTRF. Originally named polymerase-I and transcript release factor (PTRF) for 

its role in regulating gene transcription and RNA Polymerase 1 activity [88-90], Cavin-1 

is now widely recognized as a major component of caveolae [91, 92]. The Cavin-1 gene 

encodes a 390 amino acid protein with a predicted molecular weight of 43 kDa, though 

on SDS-PAGE the protein is typically observed to migrate between 50-60 kDa. Like 

EHD-2, Cavin-1 is used as a marker of caveolae and highly colocalizes with CAV1. The 

leucine-zipper domain of Cavin-1 (a subtype of coiled-coil domains) is important for 

oligomerization of Cavin molecules and is required for caveolae localization; however, 

there is no direct interaction between CAV1 and Cavin-1 [93, 94]. It is thought that 

Cavin-1 associates with membranes through a phosphatidylinositol 4,5-

bisphosphate/PtdIns (4,5) P2 (PIP2) and phosphotidylserine (PS) binding sites. Cavin-1 

does not associate with intracellular pools of CAV1 and only colocalizes with CAV1 in 

caveolae at the plasma membrane or with caveolae that were recently internalized and 

fused to early endosomes [75]. In cells lacking Cavin-1, caveolae are not detectible and 

CAV1 distribution is diffuse in the plasma membrane; therefore, cavin-1 is required for 

caveolae formation but not trafficking of CAV1 to the cell surface. When Cavin-1 

dissociates from caveolae, the domains flatten and the diffusional mobility and turnover 

rate of the remaining CAV1 in the membrane increases [75, 95]. Alterations in Cavin-1 

expression levels are also implicated in the development of some cancers [75], 

muscular dystrophies [96, 97], and dyslipidemias [98] (Figure 4). 
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Cavin-2/ SDPR. Serum deprivation protein response (SDPR) whose expression is 

modulated by serum concentration [99] was later alternatively named Cavin-2 after 

being identified as an additional caveolar coat protein and has high structural similarity 

with other Cavin proteins [100] (Figure 4). Like Cavin-1, Cavin-2 is also a PS-binding 

protein [101] and also contains a leucine-zipper domain [102]. Cavin-2 appears to 

promote the tubulation of caveolae membranes, but the functional significance of this is 

unclear [100]. 
 
Cavin-3/ SRBC. The gene expression of serum deprivation response (SDR)-related 

gene product that binds to c-kinase (SRBC) is much like Cavin-2 in addition to 

similarities in amino acid sequence and response to serum starvation [87]. After being 

identified as a caveolae-associated protein in co-localization and co-

immunoprecipitation studies conducted in human fibroblasts and Cav1-/- MEFs, and 

based on its high structural similarity with Cavin-1, SRBC is now recognized as Cavin-3 

[103]. It is not clear if Cavin-3 structurally stabilizes caveolae, but it is thought to 

destabilize caveolae and mediate interactions with microtubules in order for 

internalization to occur [103]. In support of this, caveolae trafficking becomes perturbed 

when Cavin-3 expression is reduced or lost [103] (Figure 4). 
 
Cavin-4/ MURC. Muscle-restricted putative coiled-coil protein (MURC) was identified 

last as a member of the Cavin family of proteins. This protein is muscle specific and 

only found in skeletal, cardiac muscle and vascular smooth muscle cells in a subset of 

tissues [104]. The structural moiety responsible for targeting Cavin-4 to caveolae is the 

coiled-coil domain [105].  In muscle cells, Cavin-4 localizes to the sarcolemma along 

with CAV3 within caveolae. As such, alterations in expression levels and mutations are 

associated with diseases that affect the heart [104, 106] and skeletal muscle [107] 

(Figure 4). 
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Figure 4. The Cavin Family of Proteins: Proposed Interactions with Caveolae and Conserved 
Structural Domains. Recruitment of Cavin-1 homodimers and Cavin-1/2 heterodimers to caveolae 
provides structural stability to caveolae and prevents caveolae from flattening. Cavin-2 has a tubulating 
effect on caveolae membranes and Cavin-3 is implicated in the internalization of budded off caveolae. All 
cavins have PEST domains but not all contain NLSs or leucine-rich domains [79, 78]. 
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1.4 Assembly and Disassembly of Caveolae 
 
1.4.1 Assembly and Trafficking of Higher-Order CAV1 Complexes 
Caveolae formation begins with the biosynthesis of CAV1. Nascent peptides generated 

by the translation of CAV1 transcripts are co-translationally inserted into the outer ER 

membrane where the newly synthesized protein quickly oligomerizes into 8S complexes 

comprised of 14-16 CAV1 monomers [9, 41] (Figure 5).  Glycosphingolipids have been 

shown to enhance the stability of CAV1 oligomers [108]. These 8S complexes can be 

found as homo-oligomers of CAV1 or hetero-oligomers of CAV1/2 and are 

characteristically resistant to detergent solubilization. Organization of CAV1 monomers 

into 8S complexes is reportedly required for ER-exit [8]. Following entry into the Golgi 

complex, the 8S complexes serve as building blocks of larger 70S caveolin complexes 

that are assembled in late Golgi compartments, where they become enriched in 

cholesterol, lose their diffusional mobility and become increasingly detergent resistant 

[8] (Figure 5).   

 

Multiple studies have evaluated the requirements for different domains of CAV1 in 

various aspects of caveolae biogenesis [8, 48, 109-111].  Earlier work from the Lisanti 

group using a CAV1 construct lacking the C-terminus (aa. 1-140) highlighted the 

importance of this domain for mediating homotypic interactions between the C-termini of 

CAV1 in adjacent 8S complexes in order to form 70s complexes [111]. This final round 

of oligomerization is very important for Golgi-to-PM sorting into detergent-resistant 

caveolae membranes [111, 112]. Once trafficked to the plasma membrane through a 

poorly understood process, filament-like 70S CAV1 complexes serve as the structural 

framework for caveolae and provide stability necessary for the formation of caveolae [8] 

(Figure 5).  

 

Upon transport from the Golgi complex and fusion of CAV1 carriers to the PM, the 

CAV1-enriched membranes are sculpted into caveolae following the recruitment of the 

previously described accessory proteins [8]. Here, fully assembled, mature caveolae 

become tethered to the actin cytoskeleton by interactions mediated by the milieu of 
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accessory/adaptor proteins recruited to caveolae thus causing them to be confined in 

highly immobile invaginated raft-like domains [76, 113]. As a result of caveolin 

biogenesis and trafficking, CAV1 has a characteristic subcellular distribution and is 

readily observed in the Golgi complex, trans-Golgi network (TGN), early endosomes, 

and in punctate or streak like pattern at the plasma membrane under steady-state 

conditions. CAV1 isoforms contain N-terminal di-acidic ER-exit signals (DXE) to 

promote ER-exit and it is thought that newly synthesized CAV1 is rapidly exported from 

the ER to the Golgi in a COP II-dependent manner, as very little CAV1 is detectible in 

the ER under normal conditions.  
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Figure 5. Model of the Assembly of CAV1 Complexes and Caveolae Biogenesis. Newly synthesized 
CAV1 oligomerizes and assembles into higher-order complexes as it transits through the ER and Golgi 
complex. In a final round of cholesterol-mediated organization, the “70S” domains are budded off of the 
Golgi membrane into vesicles and transported to the plasma membrane. Cavin-1 is either recruited to 
invaginated CAV1 domains where it stabilizes the caveolae or it is recruited to flattened CAV1 domains 
where it induces invagination. Adapted from Hayer et al., 2010 [8]. 
 
 
1.4.2 Removing Caveolae: Disassembly of CAV1 Complexes and Degradation 
Due to the stable and immobile nature of caveolae, endogenous CAV1 has a long half-

life on the order of 36 hours in CV1 cells [95]. However, caveolins can be targeted for 

degradation under physiological conditions that promote caveolae flattening or induce 

caveolae internalization (Figure 6). Caveolae flattening/internalization is dependent on 
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tyrosine phosphorylation of oligomerized 8S CAV1 at tyrosine-14 (pY14) and results in 

both flattening and endocytosis [114-117]. Src-dependent CAV1 phosphorylation on 

tyrosine-14 results from a variety of cellular stimuli including cellular response to 

mechanical stress [116, 118], insulin signaling [119] and activation of G-protein subunits 

[120].  The close proximity of negatively charged phosphate groups generates repulsive 

forces between adjacent caveolin molecules causing them to spread apart. This spatial 

rearrangement resulting in the apparent flattening and appearance of distended 

caveolae [121] leaves CAV1 proteins open for ubiquitination [95].  

 

Though not fully understood, these physical changes to caveolae are followed by the 

dissociation of caveolae accessory proteins allowing for the recruitment of dynamin-2 to 

the necks of caveolae to mediate vesicular fission. The internalized caveolar vesicles 

are recruited to early endosomes in an actin- and microtubule-dependent manner. 

Unlike other accessory proteins, Cavins can remain associated with some internalized 

caveolae and evidence suggests that if cavin is not removed from these early 

endosome-associated caveolae, they are recycled back to the plasma membrane [95] 

which may occur in a cell type-specific manner [122]. Once Cavin-1 dissociates from 

internalized caveolae, CAV1 oligomers can become ubiquitinated while in early 

endosomes. CAV1 ubiquitination can also occur at the plasma membrane in 

disassembled caveolae domains before trafficking to early endosomes. From this 

compartment, ubiquitinated CAV1 is packaged into intraluminal vesicles in an ESCRT-

dependent manner and targeted for lysosomal degradation [95]. Cholesterol depletion 

and mechanical stress cause caveolae to flatten while caveolae endocytosis can be 

stimulated by SV40 viral infection or treatment with albumin, known caveolae cargos.  

 

Alternatively, mutant forms of caveolins and membrane-associated caveolins in cells 

exposed to excessive amounts of reactive oxygen/nitrogen species are targeted for 

proteasomal degradation. In response to oxidative/nitrosative stress, proteasomes 

degrade proteins that have become oxidated or S-nitrosylated on sulfurhydryl group-

containing amino acids (SNO, a reversible post-translational modification) [123, 124]. 

CAV1 is targeted for proteasomal degradation in response to oxidative stress in skeletal 
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muscle cells [125]. In addition, increased reactive oxygen species as a result of 

overproduction of nitric oxide leads to the S-nitrosylation of CAV1 on Cysteine-156. 

SNO-CAV1 is later phosphorylated (pY14), mono-ubiquitinated on lysine-86 and 

degraded by the proteasome in pulmonary arterial endothelial cells [126]. Caveolin 

mutants that are intracellularly retained in compartments such as the Golgi complex and 

rapidly turned-over are also degraded in a proteasome-dependent manner, following 

ubiquitination [70, 127].  

 

Figure 6. Model Summarizing the Turnover of Caveolae and the Breakdown of CAV1 Complexes 
for Degradation. Caveolae become destabilized following Cavin-1 dissociation. The exposed “70S” 
disassembles into 8S caveolar complexes either at the plasma membrane or in the early endosome after 
internalization of a budded caveolae vesicle. 8S complexes of CAV1 are ubiquitinated and targeted to the 
lysosome for degradation. Adapted from Hayer et al., 2010 [87]. 
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1.5 Phenotypes Associated with Caveolin-1 Gene Disruption in Mice 
 

The phenotypes resulting from loss of caveolae as a direct consequence of Cav1 gene 

deletion in animal models have established the physiological importance of caveolae in 

numerous cell types. Although the underlying molecular mechanisms are not fully 

understood [128], it is clear that caveolae and CAV1 are important for regulating 

signaling pathways involving vascular tone, tissue remodeling, lipid metabolism and 

proliferation. As such, Cav1-/- mice display several pathological phenotypes across 

multiple tissue systems and are often studied as models for human diseases. 

 
1.5.1 Pulmonary-Vascular Defects in Cav1-/- Mice  
Endogenous Cav1 is heavily expressed in lungs, primarily in cells of the vascular 

endothelium where it plays a role in maintaining pulmonary architecture and vascular 

tone by modulating pathways associated with proliferation, matrix deposition and vaso-

reactivity. The characterization of Cav1-null mice helped identify these proposed 

functions of Cav1/caveolae. Lungs from Cav1-deficient animals show signs of 

hypercellularity and alveolar constriction due to septal thickening. There is also 

evidence of pre-capillary vessel remodeling due endothelial dysfunction and 

hyperproliferation cell types within the pulmonary endothelium. These pathological 

abnormalities narrow vessel diameter and increase arterial pressure and cardiac output. 

As a consequence, the mice develop pulmonary hypertension (PH), as evidenced by 

elevated arterial pressure, right ventricular dilation, cardiac dysfunction, and exercise 

intolerance [11].  

 

In addition to creating a permissive environment for the development of PH, Cav1 

deficiency conversely results in enhanced vascular relaxation (which is predicted to 

counteract some of the symptoms of PH observed in the mice). Cav1 regulates vascular 

contractility by tonic inhibition of the vasoreactive enzyme, endothelial nitric oxide 

synthase (eNOS). When eNOS is activated in response to mechanical stress, Ca2+ 

influx, or growth factor stimulation (VEGF) it enzymatically catalyzes the reaction that 

produces nitric oxide (NO), a potent vasodilator that promotes vascular relaxation. Cav1 
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negatively regulates eNOS in caveolae, thereby preventing the production of NO to 

maintain contractile tone in the vasculature. However, the localization of eNOS to 

caveolae is required for its proper activation. Constitutive production of NO in the lungs 

of Cav1-/- mice results in aortic dilation with impaired contractility in response to 

pharmacological stimulation [11, 129-131]. Thus, the severity of the PH-like diseases 

appears to be partially dampened by the persistent production of NO and the resulting 

vascular relaxation.  

 

Interestingly, Cav2-null mice (which still express Cav1 and caveolae) show a pulmonary 

phenotype that mirrors Cav1 ablation suggesting that Cav2 may play a regulatory role in 

modulating pathways that are involved in pulmonary-vascular homeostasis in mice [54]. 

This also suggests that some of the pulmonary defects observed in Cav1-null mice, 

which also have significantly reduced Cav2 expression, may be perpetuated by Cav2 

deficiency. 

 
1.5.2 Cardiac Abnormalities in Cav1-/- Mice 
The heart is primarily composed of cardiomyocytes, cardiac fibroblasts and 

endothelial cells that line the chambers of the heart. Together, these cells establish 

mechanical, chemical and electrical properties of cardiac tissue through coordinated 

autocrine and paracrine modulation that are essential for normal heart function. Cav1 is 

found in all three cell types; however, its role in the myogenic cells of the heart is not 

fully understood [129, 132, 133]. Cav1 gene disruption in mice results in several defects 

in cardiac fibroblasts and cardiac endothelial cells that negatively affect the architecture 

and functional capacity of heart [11, 129, 134-137]. 

 

eNOS activity and eNOS-dependent NO production by endothelial cells is regulated by 

Cav1/caveolae and influences the contractile tone in vessels and tissues. Cav1 

deficiency in murine cardiac endothelial cells results in hyperactive eNOS and 

overproduction of NO. The relaxing effect of NO reduces ventricular contractility and 

can cause systolic dysfunction. Additionally, abnormally high levels of NO and resulting 

generation of reactive nitrogen species causes nitrosative stress, which can damage 
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exposed cells and promote apoptosis	
   [138]. While it is possible that other cells that 

produce NO in the heart contribute to these pathological processes in Cav1-deficient 

mice, evidence suggests that the main culprits are dysfunctional cardiac endothelial 

cells. 

 

Cardiac fibroblasts produce and remodel the extracellular matrix in cardiac tissue. 

These processes are important for maintaining the morphology of the heart and during 

wound healing of injured tissue. Furthermore, autocrine and paracrine regulation of 

cardiac cells is mediated by factors produced by cardiac fibroblasts.  In cardiac 

fibroblasts, Cav1 negatively regulates many signaling pathways including those involved 

in proliferation and fibrogenesis.  The hyperactivation of the pro-proliferative p42/MAPK 

pathway is associated with cardiac hypertrophy and myocardial interstitial fibrosis [129]. 

In interstitial fibrotic lesions and cardiac fibroblasts isolated from Cav1-deficient mice, 

this pathway is upregulated [129]. Evidence suggests that Cav1-deficient fibroblasts 

promote hypertrophic growth in surrounding cardiomyocytes. Not surprisingly, cardiac 

hypertrophy of the left and right ventricles with a high incidence of cardiac fibrosis 

compared to control mice is observed in these animals [129].  

 

In vivo studies carried out in these mice have shown that Cav1 is a critical component in 

the maintenance of cardiac function, tissue organization and structure. The hypertrophic 

phenotype observed in both ventricles perpetuated by aberrant tissue remodeling due to 

endothelial, myocyte and fibroblast dysfunction is the result of Cav1 deficiency. 

Additionally, the mice show evidence of ventricular dilation, which often develops during 

decompensation in the progression of cardiac hypertrophy. However, because these 

mice also have PH, the observed right ventricular dilation is possibly a secondary 

consequence of elevated pulmonary vascular resistance and increased cardiac output 

in Cav1-/- mice [11, 129-131]. Eventually, hypertrophy/fibrosis-induced cardiac stiffening, 

dilation and reduced contractility gradually abrogate cardiac function, ultimately 

progressing to heart failure and death	
  [139]. 

 



 23 

In summary, the observed heart-related phenotypes of Cav1-/- mice have established a 

link between Cav1/caveolae and their role in the maintenance cardiac tissue 

homeostasis. However, the underlying mechanisms promoting these abnormalities 

resulting from Cav1 deficiency are not entirely understood.  

 

1.5.3 Dyslipidemia in Cav1-/- Mice 
Cav1-null mice are resistant to diet-induced obesity, insulin resistant, and are under 

weight [140]. An underlying defect contributing to these abnormalities is impaired 

preadipocyte differentiation [140] giving rise to cells that are prone to apoptosis [141] 

with diminished ability to store and metabolize lipids. Under metabolic stress, adipose 

tissue from Cav1-null mice becomes inflamed and is susceptible to atrophy, autophagy 

and fibrosis [142, 143]. The influence of Caveolin-1 on glucose transport [144], insulin 

signaling, and lipid metabolism in adipose tissue likely plays a role in the development 

of metabolic abnormalities in these mice.  

 
 
1.6 Functions of CAV1 and Caveolae at the Cellular Level 
 

It is often difficult to distinguish whether the abnormalities observed in Cav1-deficient 

mice are purely due to a loss of caveolae or functions of CAV1 that lie outside of 

caveolae. Although some investigators have begun to implement the use of techniques 

that allow for distinction between caveolae-associated and non-caveolar CAV1 

functions, whether the reported functions of CAV1 are specific to caveolae, non-

caveolar CAV1 or secreted CAV1 remains unclear. It should also be noted that many of 

the proposed functions of CAV1/caveolae discussed below are controversial [128] 

(Figure 7). 
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Figure 7. Cartoon Depicting Known Functions of Caveolae. Dynamin-dependent budding of caveolae 
is important for the endocytosis of albumin, glycosphingolipids and integrins. Src-dependent 
phosphorylation of CAV1 stimulates caveolae internalization. Uptake of cholesterol and free fatty acids 
occurs through caveolae and caveolae are also involved in lipid droplet function. Caveolae flattening 
protects cells from mechanical stress and prevents membrane rupture. Several signaling molecules are 
localized to caveolae in order to be properly regulated and to coordinate signal transduction.  eNOS is 
inhibited in caveolae through direct interactions with CAV1, but this association is also required to 
coordinate the proper activation of the enzyme in a calcium-dependent manner. Adapted from Bastiani et 
al., 2010 [145].  
 

1.6.1 Cell Signaling 
In order for cells to maintain homeostasis, and respond to metabolic or environmental 

stimuli, biochemical and mechanical signals generated within a cell or received from 

other cells are transduced into a cellular response.  Receptor-mediated signal 
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transduction generally results in the initiation of a signaling cascade of a particular 

pathway depending on the stimulus. In the plasma membrane, lipid rafts can serve as 

epicenters of signaling activity. Receptors that reside at the plasma membrane as well 

as intracellular signaling molecules are often spatially confined to subdomains in the 

membrane, including caveolae, spatio-temporal modulation of their signaling activity. 

Caveolae-associated CAV1 is thought to negatively regulate cell signaling based on 

evidence suggesting that different receptors and signaling molecules are in an inhibitory 

state when confined to caveolae via the scaffolding domain of CAV1 (Figure 7) [146].  

 

The following intracellular signaling proteins are known to associate with and be 

inhibited by CAV1/caveolae:  protein kinase-C (PKC) [147], endothelial nitric oxide 

synthase (eNOS) [148], cSrc, Ras proteins [29] and G-protein subunits [42, 43]. Their 

activity and downstream signal transduction is modulated by the localization of these 

molecules to caveolae. eNOS, cSrc, Ras proteins, and G-protein subunits are post-

translationally acylated in order to be properly targeted to caveolae [36, 37, 130, 131]. 

The palmitoylation of CAV1 at cysteine-156 is thought to play an important role 

recruiting acylated proteins to caveolae [126,127]. In addition to lipid modification, the 

association of some proteins with caveolae is mediated through interactions with the 

scaffolding domain of CAV1 [37]. eNOS has also been shown to directly bind to and be 

inhibited by the scaffolding domain of CAV1, which abrogates the production of the NO 

[149]. Some examples of receptor tyrosine kinases (RTKs) found in caveolae are 

platelet-derived growth factor receptors (PDGFR) [150], epidermal growth factor 

receptors (EGFR) [151], type-1 tumor growth factor receptor beta (TGFβR1) [152], and 

type-2 bone morphogenetic protein receptors (BMPR2) [136]. As mentioned above, 

CAV1/caveolae-localized signaling molecules are inactive in most cases and access to 

activating phosphorylation cites is limited. However, upon Src-dependent 

phosphorylation of CAV1 on tyrosine-14, the inhibitory effect of CAV1 is lost, allowing 

previously inhibited molecules to be come activated [150, 153, 154]. Modulation of 

these signaling molecules/RTKs by caveolae can have diverse effects on 

proliferation/differentiation, cell mobility, endocytosis, lipid transport, buffering cellular 
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membranes, vascular tone, and adipose tissue homeostasis, which will be discussed 

further in depth in the sections to follow. 

 
1.6.2 CAV1 Functions as a Tumor Suppressor 
Cells that are terminally differentiated have a low proliferative capacity and often 

express high levels of caveolin-1 [155-157]. Conversely, hyperplastic cells that are 

mitotically active or have undergone oncogenic transformation express low levels of 

CAV1 [158]. The activation of cSrc and AKT promotes signal transduction through 

pathways that promote cell proliferation and survival [159, 160]. CAV1 negatively 

regulates these molecules to prevent aberrant proliferation that is associated with 

benign and malignant hyperplasias [161, 162] implicated in tumor growth and cancer 

progression [163, 164]. Many tissues in Cav1-/- mice display signs of hypercellularity 

and hyperplasia with a concomitant increase in the activity of cSrc and other signaling 

pathways that promote proliferation [10, 134, 137]. The CAV1 gene is located 

downstream of a commonly deleted region within a candidate tumor suppressor locus of 

human chromosome 7 (D7S522/7q31.1) [165]. Because of chromosomal localization 

and pattern of expression described above, CAV1 is often described as a tumor 

suppressor and negative regulator of proliferation in normal cells. Oncogenes that are 

upregulated during cellular transformation can transcriptionally repress CAV1 

expression. It has also been shown that loss of the well-known tumor suppressor p53 

results in reduced CAV1 expression levels [166].  Silencing of CAV1 by DNA 

hypermethylation has also been observed in some cancer cells as another means of 

gene regulation [165]. The CAV1-P132L mutant is the result of a somatic point mutation 

that was identified in a small subset of breast cancer patients [10, 167]. This dominant 

negative mutant reduces caveolae density as a result of forming abnormal aggregate-

prone oligomers that are retained in the Golgi complex and aggresomes [168-170]. 

Therefore CAV1-P132L is unable to assemble into caveolae [171, 172]. 

Phosphorylation of CAV1 is another mechanism to reduce the density of caveolae at the 

membrane and therefore CAV1 expression levels. Upregulation of Src-tyrosine kinase 

activity is observed in cancers and it phosphorylates CAV1 on the tyrosine-14 residue 

(pY14) [173]. This ultimately results in the internalization of caveolae and targeting of 
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CAV1 for degradation [121, 126]. Lastly, phosphorylation of CAV1 on serine-80 (pS80) 

targets the protein for secretion out of the ER [174, 175], thereby reducing intracellular 

CAV1 protein levels, and preventing the tumor-suppressing role of CAV1. Evidence 

suggests that cholesterol or PKC epsilon may modulate secretion of CAV1 [176, 177]. 

Interestingly, the secreted form of caveolin-1 appears to function as a paracrine factor to 

initiate tumorigenesis in nearby cells [178]. The detection of secreted CAV1 in serum of 

cancer patients has sparked investigation into its use as a biomarker to predict prostate 

cancer recurrence [179], to predict breast cancer risk [180], and to track the progression 

of colorectal cancer [181]. Although it is well known that reduced CAV1 results in loss of 

caveolae, it is not clear whether oncogenesis is perpetuated by CAV1 independently of 

caveolae, or in response to changes within caveolae.  
 
1.6.3 Cell Mobility 
Cells within tissues and organs are often rendered static by environmental constraints 

imposed by the local cell density and interactions with the extracellular matrix (ECM).  

However, some cell types become migratory in response to inflammation, during wound 

healing, angiogenesis, and tumor cell metastasis. In order for a cell to become 

migratory, it must become detached from its local environment and degrade the 

surrounding ECM such that the cell can invade or move freely into other tissues. Cells 

are attached to the ECM via integrins, which are enriched in attachment sites called 

focal adhesions (FAs). Cell migration is orchestrated by the dynamic interplay between 

actin reorganization; cell adhesion rearrangements and ECM remodeling, resulting in an 

elaborate array of intracellular signaling events. CAV1 is thought to play a role in cell 

migration by influencing FA organization, dynamics and signaling events that modulate 

cell mobility and attachment [118, 182]. Static cells have relatively low FA dynamics. 

However migrating cells have an increased rate of FA assembly and disassembly in 

order to mediate cell motility. Reduced CAV1 expression disrupts FAs and causes cell 

detachment [118]. High CAV1 expression is observed in migratory cells and CAV1 

tyrosine-14 phosphorylation was found to be important for FA turnover dynamics in 

these cells [183]. Cells expressing elevated levels of CAV1 have enhanced capacity for 

migration/invasion and anchorage-independent growth [184, 185]. In fact, in some 
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metastatic cancer cells, CAV1 expression is elevated compared to tumorigenic cells. 

CAV1 expression during cancer progression has also been linked to metastatic potential 

and invasiveness of tumor cells [186]. Thus, the fluctuations of CAV1 expression can 

create a permissive environment for tumorigenesis or promote tumor 

metastasis/invasiveness in a cell type/tissue-dependent manner that also depends on 

the stage in cancer [187]. 

 

1.6.4 Endocytosis and Transcytosis  
The packaging and internalization of vesicular carriers containing nutrients and 

macromolecules from the extracellular space is referred to as endocytosis. Regulation 

of receptor density of at the plasma membrane and cell signaling is also modulated by 

endocytic activity. Once internalized, endocytic cargo are trafficked to endocytic 

compartments to be sorted for recycling back to the membrane, or targeted for 

degradation. Caveolae endocytosis is one of many endocytic pathways and can be 

stimulated by cholesterol or glycosphingolipid loading as well as other endocytic cargo 

molecules including SV40 virus. Insulin, albumin and folic acid can also induce caveolae 

to internalize [188]. Coordinated dynamin-dependent scission and actin reorganization 

events initiate the budding of caveolae vesicles form the plasma membrane [189, 190]. 

PKC activity and Src-mediated tyrosine-14 phosphorylation of CAV1 are other important 

regulators of caveolar endocytosis [29, 162, 163]. Endocytosis of β1 integrins via 

caveolae modulates extracellular matrix remodeling and may contribute to the 

development of fibrosis [191]. Another function of caveolae endocytosis is to repair 

cellular membranes that have become damaged. When the integrity of the plasma 

membrane becomes compromised following a wounding event, the injured portions of 

the membrane are internalized in a caveolae-dependent mechanism. The membrane 

gradually becomes repaired through removal membrane lesions by caveolar 

endocytosis and resulting resealing of the plasma membrane [22].  

 
Transcytosis involves vesicular transport of cargo similar to endocytosis, but once 

internalized the endocytic carriers are transported across the cell bidirectionally where 

their contents are then released from the opposite side of the cell. Transcytosis is 
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particularly important in microvascular endothelial cells for mediating transport of 

macromolecules and nutrients from the plasma/lumen to the underlying tissues [192]. 

Caveolae-dependent transcytosis has also been shown to regulate endothelial 

permeability. In Cav1-/- animals, endothelial transcytosis of serum albumin is markedly 

reduced, and increased hyperpermeability was observed [165,166]. 

 

Expression of CAV1/3 and cavin-1/3 has also been shown to negatively regulate 

endocytosis through the clathrin-independent carriers/GPI-AP enriched early endosomal 

compartment (CLIC/GEEC) pathway. This conclusion is based on the observation that 

CLIC/GEEC endocytosis is increased in cells expressing reduced amounts of the 

caveolae-associated proteins CAV1/3 and cavin-1/3 [25]. Thus, while caveolae play 

important roles in caveolin-dependent endocytosis and transcytosis, CAV1/caveolae 

also serve as negative regulators of clathrin-independent endocytosis. 

 

1.6.5 Membrane Lipid Homeostasis and Lipid Metabolism 

Cholesterol is a molecule regulated by Caveolin-1 that is an essential precursor for 

steroid synthesis, involved in cell signaling, and important for maintaining the fluidity of 

biological membranes. Clustering of cholesterol in sub-compartments within the plasma 

membrane decreases membrane fluidity giving rise to “liquid ordered” microdomains 

(also referred to as lipid rafts). CAV1 is a cholesterol-binding protein [193] and caveolae 

are therefore enriched in cholesterol with raft-like properties. Cholesterol also influences 

the trafficking of CAV1 from the plasma membrane to intracellular compartments [194]. 

Caveolae are thought to compartmentalize cholesterol at the plasma membrane in order 

to modulate membrane fluidity. It has also been shown that CAV1 modulates the 

bidirectional intracellular trafficking of cholesterol from the ER to the plasma membrane 

[195]. Loss of CAV1 disrupts trafficking of newly synthesized cholesterol from the ER 

and results in reduced cellular free cholesterol levels [195]. Caveolin-deficient cells also 

have impaired sphingolipid trafficking [196], further demonstrating the requirement of 

CAV1 for maintaining cellular lipid composition and trafficking. 
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In white adipose tissue, lipophilic properties of CAV1/caveolae play another role. Lipid 

metabolism is an important process in organisms that is necessary for energy 

consumption/utilization in addition to maintaining biological membranes. In adipose 

tissue, adipocytes store energy in the form of fat in a large, unilocular lipid droplet. The 

high density of caveolae in adipocytes is associated with enhanced lipid storage and 

lipid droplet size in adipose tissue [197]. CAV1/caveolae also modulate fatty acid uptake 

[198], glucose transport and insulin signaling [144] by compartmentalizing molecules 

involved in these pathways. Lipid metabolism in adipocytes can generate high amounts 

of lipid intermediates that require appropriate compartmentalization/storage in lipid 

droplets to prevent lipotoxicity-induced cell damage and apoptosis.  In concert with this, 

CAV1 expression/caveolae in adipocytes has been shown to provide protection from 

lipotoxicity [199]. 
 
1.6.6 Membrane Buffering and Mechano-transduction 
All cells have a unique shape that is bounded by the PM and further stabilized by 

intracellular networks of cytoskeletal and filamentous elements. Furthermore, 

hydrostatic pressure, established by the dynamic regulation of cell volume via active 

and passive transport of solutes/ions/molecules across the PM, exerts forces on the PM 

and additionally influences cell shape. Fluctuations in tonicity that change the 

hydrostatic pressure can therefore cause the PM to either shrink or stretch. Mechanical 

stresses derived from extracellular/environmental that deform cells can also 

mechanically stretch the PM [200, 201]. Some pathophysiological mechanical stressors 

include but are not limited to: contraction and relaxation (muscle movement, lung 

respiration, blood vessels), changes in pressure (blood vessels, eyes, joints), and 

changes in volume (lipid metabolism in adipocytes, systole, diastole) [187]. In order for 

cells to maintain their normal shape and function while resisting mechanical injury, the 

PM is equipped with a “membrane buffering system” that allows it to accommodate 

mechanical stretch and serves as a platform to transmit mechanical stimuli into the cell 

to elicit the appropriate responses required to counteract imposing mechanical stresses 

[201]. Membrane buffering is particularly important in endothelial cells which line blood 
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vessels that are subject to pressure challenges due to fluctuations in cardiac output and 

vascular resistance caused by changes in vascular tone.   

 

While the fluid nature of the PM buffers cells from mechanical stresses, sustained 

exposure can result in membrane rupture/damage and apoptosis. Adipocytes, 

fibroblasts, muscle and endothelial cells are found in tissue systems under high 

amounts of mechanical stress during physiological conditions but are generally able to 

maintain proper function and avoid damage [187]. High expression of CAV1 in these 

cell types results in an increased density of caveolae that function as membrane 

reservoirs. When cells are mechanically stretched, the flattening of caveolae increases 

the surface area of the PM and reduces tension to buffer cells from membrane rupture 

[3, 31, 187, 202].  

 

In response to mechanical stress, cells sense (mechano-sensing) and translate 

mechanical stimuli into biochemical responses through a process referred to as 

mechano-transduction. The resulting activation of stretch-dependent calcium 

channels and integrin-dependent cell signaling events causes architectural 

rearrangements to the cytoskeleton that stiffen and contract the cell in order to adapt 

increases in mechanical stress [187]. Caveolae have been implicated in modulating 

integrin activity and calcium signaling and are also thought to play a role in mechano-

transduction [203] by compartmentalizing and modulating signaling molecules important 

for mechano-transduction [30, 116, 118, 204]. The presence of caveolae is important for 

the spatial organization and modulation of mechano-sensitive ion channels, Src-

dependent actin reorganization, Rho-dependent actomyosin contraction, and focal 

adhesion remodeling (ROCK/mDia), which promote cellular stiffening and contraction 

[21]. These changes help the cell maintain its shape and function during 

pathophysiological mechanical stresses that stretch the PM. In adipocytes, caveolae 

additionally play a role in mechano-sensing and serve as a platform for integrating 

signaling cascades in response to dynamic changes in intracellular volume as a 

consequence of lipid droplet expansion and depletion associated with routine adipose 

tissue function [205] 
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1.7 Role of CAV1 in Human Diseases  
 

CAV1 expression levels and mutations are implicated in many human diseases. CAV1 

is downregulated in cancers of the breast, prostate, bladder, ovaries, lung, colorectal, 

and liver [206]. Tumor progression/invasiveness and enhanced metastatic potential is 

associated with upregulated CAV1 expression [186]. Decreased CAV1 expression is 

also observed in patients with fibrotic disorders such as systemic sclerosis/scleroderma 

(SSc) [207] and idiopathic pulmonary fibrosis [208]. Additionally, loss-of-function 

mutations in CAV1 and CAV3 cause other human diseases including Limb-Girdle 

muscular dystrophy and other skeletal myopathies, lipodystrophy and pulmonary 
arterial hypertension [15, 16, 72]. We have characterized two mutant forms of CAV1 

that were identified in patients with pulmonary arterial hypertension (PAH) and 

congenital generalized lipodystrophy (CGL) that will be discussed in section 1.8. The 

remaining part of this section focuses on background information regarding CGL and 

PAH and how CAV1 contributes to these diseases. 
 
1.7.1 Congenital Generalized Lipodystrophy (CGL) 
Lipodystrophy is an acquired or congenital condition that results in a complete loss 

(generalized) of subcutaneous adipose tissue, ectopic lipid accumulation in non-adipose 

tissues and insulin resistance. Adipose tissue depletion can result from an inhibition of 

preadipocyte differentiation, lipolytic hyperactivity, defective lipogenesis/lipid storage, 

and increased adipocyte apoptosis. Congenital generalized lipodystrophy is caused by 

genetic mutations in AGPAT2, BSCL2, PTRF/Cavin-1, and CAV1 (Table 2; Chapter 3). 

CAV1 mutations are also associated with partial lipodystrophies (Table 2; Chapter 3) 

and can have a range of effects on adipose tissue ranging from impaired adipose tissue 

development to an inability to adequately store lipids in lipid droplets (LDs) [209].  

 
1.7.2 Pulmonary Arterial Hypertension (PAH) 
PAH is a progressive and fatal disease of the smallest pre-capillary arteries in the 

pulmonary-vascular system, caused by pathological narrowing of the vessels. PAH can 

be acquired many ways, but more than 75% of heritable PAH cases are associated with 
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mutations the BMPRII gene and other TGF beta family members (ALK1, ENG, and 

SMAD9) [210]. Heritable forms of PAH display incomplete penetrance; therefore it is 

believed that additional yet-to-be determined genetic or non-genetic/environmental 

modifiers increase the mutation carrier’s susceptibility to developing PAH. Patients with 

PAH are susceptible to vascular injury, which then leads to endothelial dysfunction, 

vascular remodeling, and smooth muscle hypertrophy. Endothelial dysfunction, resulting 

in an inability to adequately regulate vascular tone, promotes a state in which cells are 

unable to appropriately respond to environmental stimuli that trigger vasoreactive 

responses. This can lead to increased vessel resistance and mechanical stress, 

ultimately causing increased arterial pressure, right ventricular dysfunction and heart 

failure. The changes in pressure and inability to respond can lead to endothelial 

damage and injury of underlying tissues. In the current model of PAH, an inability to 

terminate the injury response and pathological vascular remodeling is due to 

dysregulated eNOS activity and other signaling pathways that promote proliferation. The 

cellular basis of PAH is still not well understood and currently there are no cures for this 

devastating disease.  
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Figure 8. Implications of Reduced CAV1 Expression to the Pathogenesis of PAH. Tonic inhibition of 
the indicated signaling pathways above occurs in caveolae via direct interaction with the scaffolding 
domain of CAV1 (Figure 7 shows how molecules are believed to localize to caveolae), in order to 
maintain vascular homeostasis, and prevent aberrant vascular remodeling. Many of these molecules are 
lipid-modified, which also influences their association with lipids in raft/caveolae and non-raft membrane 
domains [146-148]. Loss of caveolae due to CAV1 deficiency liberates these signaling molecules from an 
inhibited state and leads to dysregulated activity that initiates signaling events involved in promoting 
pathological vascular remodeling and proliferation associated with the development of PAH [27, 36, 37, 
43, 130, 131, 141, 143, 146, 149, 150]. This is discussed in detail in section 1.6.1. 
 

Caveolae influence many signaling pathways that are implicated in PAH, and are 

important for maintaining normal vascular function (Figure 8). CAV1 and caveolae are 

markedly reduced in clinical and experimental models of PAH but until recently, no 

CAV1 mutations had been described in association with the disease. 
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1.8 Novel CAV1 Mutations Discovered in Patients with PAH and CGL 
 

Our collaborators Dr. Wendy K. Chung and Dr. Eric Austin discovered three 

heterozygous frameshift mutations in the CAV1 gene in patients with idiopathic 

CGL/PAH and familial PAH. Mutations in other genes commonly associated with CGL 

and PAH were not detected in the patients and the underlying cause of disease was 

unclear. To determine if novel mutations in coding genes were contributing factors to 

the development of disease in these patients, whole exome sequencing (WES) was 

performed. Numerous genetic variants were detected in the patients but none 

previously known to be pathogenic. Novel non-synonymous variants were identified 

after further screening across multiple databases [13, 16]. Of the novel non-

synonymous variants identified, the CAV1 mutations were predicted to more severely 

impact the protein function due to the resulting changes in the amino acid sequence [14, 

16, 211]. Interestingly, all three frameshift mutations in the CAV1 gene result in the 

expression of three unique but similar mutant CAV1 proteins, which are further 

discussed in the next sections.  It is thus important to characterize the mutant proteins 

and how expression of the mutants affects caveolae formation/function in order to 

elucidate the underlying caveolae defects contributing to disease.  

 

N-151 YVHTVCDPLFEAVGKIFSNVRINLQKEI  178-C Wild type CAV1 
N-151 YVHTVCDPLF------------------  160-C CAV1-F160X 
N-151 YVHTVCDPSLKLLGKYSAMSASTCRKKYK 179-C CAV1-P158 
 
  
Negatively charged Positively charged Polar/Hydrophilic Non-polar/Hydrophobic 
 
Figure 9. C-terminal Amino Acid Sequence Alignment of Wild type CAV1 and Mutants. This 
schematic shows the differences and similarities between C-terminus of wild type CAV1 and the mutants 
characterized in this dissertation. Red, bold text indicates the mutants. Bold, black text indicates 
conserved residues. Adapted from Austin et al., 2012 [16]. 
 

1.8.1 The CAV1-F160X Frameshift Mutant Associated with PAH and CGL 
The de novo CAV1-F160X mutation was identified in a patient with PAH and CGL [14, 

211] (Table 2; Chapter 3). A di-nucleotide deletion in the CAV1 gene (c.479_480delTT) 

introduces a premature stop codon that results in a truncated mutant protein lacking the 
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last 19 amino acids of wild type CAV1 C-terminus (p.F160X; referred to as F160X) [14, 

211] (Figure 9).  This mutation has only been identified in one patient, who presented 

with a variety of abnormalities including a generalized decrease in adiposity, progeroid 

appearance, low weight, brain abnormalities that suggest cerebral atrophy, elevated 

fasting triglyceride levels, narrowing of pulmonary arterioles, and elevated mean 

pulmonary arteriole pressure [13-15]. The parents and siblings of the patient are healthy 

and there is no prior family history of the diseases. Previous biochemical analysis of 

lysates derived from the patient and control cells have shown that CAV1 protein levels 

are reduced in the patient compared to control cells. However, exactly how this mutant 

affects caveolae, or contributes to the pathogenesis of PAH and CGL has not been fully 

investigated [14, 211]. 

 
1.8.2 The CAV1-P158 Frameshift Mutant Associated with PAH 
The CAV1-P158fsX22 frameshift mutant was identified in a family of patients with PAH. 

During this time, a very similar mutation was identified in a juvenile patient with 

idiopathic PAH.   The frameshift mutations in the CAV1 gene (c.474delA and 

c.473delC) produce 179 amino acid mutant proteins with identical novel 21 amino acid 

C-terminus beyond amino acid residue proline-158 (p.P158P fsX22, referred to as 

P158; p.P158H fsX22) [16] (Table 2; Chapter 3). The novel C-terminus of the mutants 

contains only four conserved residues in common with the C-terminus of wild type 

CAV1. The mutant C-terminus also has more charged residues, and fewer hydrophobic 

residues compared to the C-terminus of the wild type protein [16] (Figure 9).  Total 

CAV1 protein levels were decreased in skin fibroblasts isolated from heterozygous 

patients expressing P158 compared to control fibroblasts expressing only wild type 

CAV1 [16]. Whether the mutation induces a novel gain-of-function, leads to 

haploinsufficiency or behaves in a dominant-negative manner has yet to be explored. 

Experiments described in this proposal are aimed to determine if expression of this 

mutant leads to defects in oligomerization and caveolae formation to understand how it 

contributes to the development of PAH.  
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1.9 Goals and Summary of Dissertation Research Projects 
 

Studies carried out in the Cav1-/- mice and other in vitro functional experiments have 

broadened our understanding of CAV1/caveolae and their roles in modulating 

proliferation, adipose and vascular homeostasis, and metabolism [11, 212-215]. 

However, little is known about how the caveolae structure, CAV1 oligomer stability, and 

composition of caveolae contributes to their proper function during these physiological 

processes. This is because a major challenge in defining the necessary requirements 

for caveolae function is that most routine experimental approaches either prevent 

caveolae formation from occurring or completely disrupt existing caveolae, promoting 

the disassembly of protein components. Despite the breadth of knowledge gained from 

experiments that disrupt caveolae, experimental ablation of caveolae as a means for 

investigation limits the ability to determine whether the morphology, structural stability 

and composition of caveolae influences their function. The investigation of CAV1 

mutants is an alternative approach used to overcome these caveats. Studying mutant 

forms of CAV1 is useful for delineating the trafficking and assembly of CAV1 complexes 

in order for caveolae to form without entirely disrupting CAV1 expression.  

 
The identification of new disease-associated mutations in CAV1 (CAV1-F160X and 

CAV1-P158) has generated a heightened need for us to expand our understanding of 

how mutations affect CAV1 and caveolae [13-16]. Reduced CAV1 protein levels were 

reported in preliminary studies; however, exactly how these newly identified mutant 

forms of CAV1 impact caveolae formation and function remains to be elucidated [14-

16]. Therefore, the goal of this dissertation project was to characterize the behavior of 

these mutants and their impact on caveolae in order to begin determining how they 

contribute to disease. As discussed above, CAV1 expression is essential for the 

formation of caveolae, which have numerous functions, including modulating cell 

signaling and buffering cells from mechanical stress. Additional work has also 

highlighted the importance of the C-terminus of CAV1 in the assembly of CAV1 

complexes, and trafficking to the plasma membrane. Based on this we hypothesized 
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that expression of the CAV1 mutants negatively impacts the trafficking and assembly of 

CAV1 complexes, which will give rise to caveolar defects. 

 

To test this hypothesis, we assessed the expression, oligomerization, trafficking, and 

assembly of caveolae in patient-derived cells and in Caveolin-1-/- murine embryonic 

fibroblasts (MEFs) transfected with the mutant proteins using biochemical, cell and 

molecular-based approaches. Our results indicated that CAV1-F160X is incorporated 

into caveolae with no affect on density of caveolae or their mechano-protective 

properties [13] (Chapter 3). We also show that CAV1-P158 behaves as a dominant 

negative that reduces caveolae formation and disrupts the mechano-protective function 

of caveolae (Chapter 4).  

 

Thus, neither mutant completely ablates caveolae formation and both are capable of co-

assembling with wild type CAV1 into hybrid complexes that are required for caveolae 

formation. However, the caveolae formed in cells expressing the mutant proteins are 

biochemically unstable and appear to have an altered composition, indicating that an 

intact C-terminus may also be important for normal caveolae function. Furthermore, we 

show that CAV1-F160X is a novel example of a disease-associated CAV1 mutant that 

has no effect on the density of caveolae in cells despite being linked to two different 

diseases. We conclude that the stability of CAV1 complexes and composition of 

caveolae are contributing factors to the development of PAH and CGL. Thus, the 

incorporation of CAV1 proteins with C-terminal mutations into caveolae is a critical 

factor associated with human diseases.  

 

In the next chapters, the experimental methods and results of our experimental 

characterization of the mutant proteins are discussed.  
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CHAPTER 2 
 

MATERIALS AND METHODS 

 

2.1 Materials and Reagents 
 

Complete, EDTA-free protease inhibitor cocktail tablets were purchased from Roche 

(Indianapolis, IN).  RIPA cell lysis buffer, and phosphatase inhibitor cocktail 2 and 3 

were purchased from Sigma-Aldrich (St. Louis, MO). ProLong® Gold Antifade Mountant 

and Lipofectamine 2000 transfection reagent were purchased from Life Technologies 

(Grand Island, NY).  DRAQ5 (#4084) far-red nuclear stain was purchased from Cell 

Signaling Technology (Danvers, MA). Restriction enzymes were purchased from New 

England BioLabs.  
 

2.2 Antibodies  
 

Anti-Caveolin-1α/βaa.1-97 rabbit polyconal (610060), anti-Caveolin-1αaa.1-24 monoclonal, 

clone 2234 (610494), anti-Caveolin-1α/βaa.61-71 monoclonal, clone 2297 (610406) anti-

Caveolin-2 monoclonal (610684), anti-GM130 monoclonal (610822) and anti-EEA1 

monoclonal (610457) antibodies were purchased from BD Transduction Laboratories. 

Anti-Caveolin-1 α/βC-term [E249] rabbit monoclonal (ab32577), anti-Caveolin-2 

[EPR2220] rabbit monoclonal (ab79397), anti-Cavin-1/PTRF rabbit polyclonal 

(ab48824), and anti-EHD2 goat polyclonal (ab23935) antibodies were purchased from 

Abcam. Anti-Golgin97 monoclonal  [CDF4] (A-21270) and all Alexa-Fluor dye 

conjugated secondary antibodies were purchased from Thermo Scientific. Anti-β-tubulin 

monoclonal [E7] (AB_2315513) antibody was purchased from the University of Iowa 

Developmental Studies Hybridoma Bank. Anti-Myc monoclonal [9B11] (#2276) and anti-

HA-tag monoclonal [6E2] (#2367) antibodies purchased from Cell Signaling 

Technology. Anti-ADRP guinea pig polyclonal [hNT] (GP46) antibody was purchased 

from PROGEN Biotechnik. QuickChange Site-Directed mutagenesis kit was purchased 

from Agilent Technologies, Santa Clara, CA.  
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2.3 Cell Culture 
 

Skin biopsy specimens were obtained via a sterile 3 mm punch skin biopsy technique 

from the patients and primary skin fibroblasts isolated as described previously [16].  

Healthy control primary skin fibroblasts derived from skin biopsies were previously 

described [16]. Cells were cultured using standard methods in Dulbecco’s Modified 

Eagle Medium (DMEM) (4.5g/L glucose, L-glutamine, and sodium pyruvate) 

supplemented with 20% heat-inactivated fetal bovine serum (FBS), 1% penicillin-

streptomycin, and 1% L-Glutamine from Invitrogen (Grand Island, NY).  Wild type and 

Cav1-/- MEFs were obtained from ATCC and cultured in DMEM (with 4.5 g/L glucose, L-

glutamine, and sodium pyruvate) supplemented with 10% FBS.  All the cultures were 

maintained at 37°C in an atmosphere of 5% CO2 in air with 95% relative humidity. 

 

2.4 Plasmids and Site-Directed Mutagenesis 
 
2.4.1 Plasmids 
mCherry-LAMP1 (Addgene No.55073), Caveolin-1-mEmerald N10 (Addgene No.54026) 

and mEmerald-Caveolin-1 C-10 (Addgene No.54025) were gifts from Dr. Mike 

Davidson. pCMV-HA-N (No. 82017) empty vector plasmid DNA was used to generate 

HA-tagged constructs (ThermoFisher Scientific, Rockford, IL).  

 

2.4.2 Site-directed Mutagenesis 

Standard PCR, site-directed mutagenesis and subcloning were used to generate novel 

constructs to further study the PAH mutant. The naturally occurring PAH-associated 

frameshift mutation in the CAV1 gene (c.Δ474A/ p.P158fsX22 single nucleotide 

deletion) was mutagenized into both mEmerald-Caveolin-1 C-10 and Caveolin-1-

mEmerald N-10 constructs (5’ ACACCGTCTGTGACCCCTCTTTGAAGCTGTTG 3’) 

with site-directed mutagenesis. Further mutagenesis was required to put the C-terminal 

mEmerald tag in frame and terminate the reading frame of the N-terminally tagged 

mutant construct. 
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2.4.3 CAV1-P158-mEmerald  
The reading frame of C-terminal tag in construct was corrected by inserting the 

nucleotides “TATAAA” at the end of the CAV1 coding sequence with NheI and AgeI 

restriction sites, just before the start of the linker region that separates CAV1-P158 and 

mEmerald. This was performed by GenScript USA Inc. 

 

2.4.4 mEmerald-CAV1-P158  
Similar methods used for correcting the reading frame of CAV1-P158-mEmerald 

described in section 2.4.3 were used to insert the stop codon  “TGA” at the end of the 

coding sequence of mutant CAV1 with BglII and PstI restriction sites in order to 

terminate translation at the appropriate site and prevent translation beyond the mutant  

CAV1 insert.  

 

2.4.5 HA-CAV1-Wt  
Wild type full-length CAV1 was excised from an untagged Caveolin-1-mEmerald N10 

construct generated with the primer 5’ GCAGAAAGAAATATAGCTCCGGAGGGG 3’ to 

insert a stop codon to prevent the reading of the mEmerald fusion protein tag.  The 

excised CAV1 fragment was subcloned into the linearized pCMV-HA-N vector using 

BamHI and NheI restriction enzyme sites. A single nucleotide was inserted in the linker 

region between the HA and CAV1 coding sequences with the primer 5’ 
GCTAGCCACCGCCACC 3’ to put CAV1 in frame.  

 

2.4.6 HA-CAV1-P158  
Identical methods used to generate HA-CAV1-Wt were used to make HA-CAV1-P158 

but an untagged version CAV1-P158-mEmerald mutagenized with the 5’ 

CAGAAAGAAATATAAATAGCTCCGGAGGGGATC 3’ primer to terminate translation of 

mEmerald was used instead as template to be inserted into pCMV-HA-N vector using 

BamHI and NheI restriction enzyme sites. 
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2.4.7 HA-CAV1-P158-AAYK (K176-177A)  
For the first lysine to alanine substitution at amino acid position 176, HA-CAV1-P158 

was mutagenized with the primer 5’ CATCAACTTGCAGAGCGAAATATAAATAGC 3’. 

The resulting product was mutated a second time with the primer 5’ 

CATCAACTTGCAGAGCGGCATATAAATAGC 3’ to mutate the lysine at amino acid 

position 177 to an alanine to disrupt the ER-retention/retrieval signal. 

 

2.4.8 HA-CAV1-P158-ΔKKYK (R175X or Δ176-179)  
The HA-CAV1-P158 construct was further mutagenized by GenScript USA Inc. to 

mutate the codon encoding K176 to a “TAG” stop codon using NheI and BamHI 

restriction enzyme sites to truncate the KKYK ER-retention/retrieval in the protein 

product. 

 

2.4.9 HA-CAV1-KKYK  
Wild type mEmerald-Caveolin-1 C-10 plasmid DNA was sent to GenScript USA Inc. for 

the KKYK peptide to be added using BglII and SacII restriction enzyme sites in order to 

induce an ER-retention/ retrieval signal into the C-terminus of the wild type CAV1 

protein. The mEmerald-CAV1-KKYK was digested with BglII and EcoRI and the 

fragment containing CAV1-KKYK was ligated to the linearized pCMV-HA-N empty 

vector cut with BamHI and EcoRI. A single nucleotide was inserted in the linker region 

between the HA and CAV1 coding sequences with the primer 5’ 
CTCGAGGGATTCTGGCAGC 3’ to put CAV1 in frame.  

 

2.4.10 HA-CAV1-F160X  

The identical frameshift mutation of the patient (c.479-480ΔTT/ p.F160X) was first 

mutagenized into wild type mEmerald-Caveolin-1 C-10 site-directed mutagenesis 

(primer: 5’ GACCCACTCTGAAGCTGTTG 3’). The CAV1-F160X-coding fragment of 

mEmerald-CAV1-F160X was then excised out of the mEmerald C-10 vector backbone 

with BglII and EcoRI and subcloned into the pCMV-HA-N destination vector that had 

been linearized with BamHI and EcoRI restriction enzyme digest. Site-directed 
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mutagenesis was used to insert a nucleotide in the linker region between the HA-tag 

and CAV1 coding sequence in HA-CAV1-F160X in order to put CAV1 in frame for 

proper translation (5’ CTCGAGGGATTCTGGCAGC 3’). 
 
2.4.11 Untagged CAV1-F160X   
Caveolin-1-mEmerald N-10 was used as template, and the same primer that was used 

to generate mEmerald-CAV1-F160X was used on this construct to generate the same 

mutation, which also effectively terminated reading into the mEmerald fusion protein tag 

(5’ GACCCACTCTGAAGCTGTTG 3’).  
 

2.4.12 Myc-CAV1-Wt  
This construct was generated by GenScript USA Inc. Briefly, in order to generate an N-

terminally Myc-tagged CAV1, an oligo encoding the Myc-tag sequence 

(5’GAACAGAAACTGATTAGCGAAGAAGATCTG3’) was inserted upstream of wild type 

human CAV1 coding region in a CAV1-mEmerald N-10 construct that had been mutated 

to terminate reading for the mEmerald fusion protein 

(5’GCAGAAAGAAATATAGCTCCGGAGGGG3’). Site-directed mutagenesis 

(5’CACCGCCACCATGGAACAGAAAC3’) was later performed to insert an initiator 

methionine before the Myc-tag sequence to initiate translation. 

 

2.5 Transfections 
 

Cav1-/- MEFs were trypsinized, seeded onto glass coverslips in a 6-well dish at a density 

of 1.5×105 cells per well, and allowed to incubate overnight in complete growth medium. 

The cells were then transfected according to the manufacture’s protocol with 

Lipofectamine 2000 reagent. Before the transfection reaction mixture was added to the 

cells, they were placed in Opti-MEM low serum medium. After 4-6 hours, the 

transfection medium was removed and replaced with fresh growth medium and 

incubated for a total of 24 hours. 
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2.6 Immunofluorescence Microscopy 
 

Cells were plated on No.1.5 glass coverslips, and allowed to adhere for 24-48 hours. 

Coverslips were fixed in 4% PFA for 15 minutes at room temperature, washed, and 

blocked for an hour in 1% BSA, 5% glycerol, 0.1% glycine, 0.04% sodium azide, 0.01% 

saponin, and 5% normal sera (IF buffer). Cav1 N-term polyclonal (1:300), anti-Cav1 

clone 2234 (1:50), Cav2 monoclonal (1:50), C-term rabbit monoclonal (1:50), Cav2 

rabbit monoclonal (1:50), Cavin1/PTRF polyclonal (1:100), EHD2 goat polyclonal 

(1:250), GM130 (1:100), and β-tubulin monoclonal (1:100) primary antibodies were 

diluted in IF blocking buffer, and incubated from 1-24 hours and washed. For 

incubations longer than 1 hour, coverslips were placed in a humid chamber and 

incubated at 4°C.  Alexa Fluor-conjugated secondary antibodies (1:500, Thermo-Fisher 

Scientific) were diluted in IF blocking buffer containing 1:1000 DRAQ5 far-red nuclear 

stain (Cell Signaling Technology) if the far-red channel was not used to image an 

immunostained protein, and incubated for 1 hour at room temperature while protected 

from light.  Following secondary incubation, coverslips were washed, and mounted with 

Prolong® Gold Anti-fade mounting agent. Slides were imaged on a Zeiss LSM510 

inverted laser-scanning confocal microscope.  Images were acquired using a 100× 1.4 

N/A Plan Apochromat DIC oil objective. Argon, HeNe1, and HeNe2 lasers were used to 

excite Alexa-fluor 488, 546 and 633/647, respectively. 

 

2.7 Colocalization Analysis 
 

Colocalization analysis was performed using Macbiophotonics ImageJ and "Intensity 

Correlation Analysis" plugin using a semi-automated procedure.  Analysis was 

performed on 4× zooms collected at 22.5 µm × 22.50 µm.  A region of interest (ROI) 

containing the cell was manually defined on each image and only the ROI was used for 

colocalization analysis.  For each set of comparisons, at least 30 images were used for 

measurement from at least 3 independent experiments, unless stated otherwise in the 
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figure legends.  Pearson’s correlation coefficients are reported as the mean ± standard 

deviation for all the ROIs.  A Student’s T-test was used to calculate p-values. 

 

2.8 Transmission Electron Microscopy 
 

Cells were grown to confluency in 10 cm culture plates, washed in 0.1 M Cacodylate 

buffer, fixed in 2.5% gluteraldehyde diluted in 0.1 M Cacodylate buffer and stored at 4º 

C.  Thereafter, fixed cells were scraped, pelleted, post-fixed in osmium tetroxide, 

stained with Uranyl acetate en bloc to enhance membrane contrast, and epon 

embedded.  Blocks were thin sectioned and counter-stained with lead citrate.  Images 

were acquired on a Philips/Tecnai FEI T-12 transmission electron microscope operated 

at 80kV at 30,000× magnification. Control and patient fibroblasts were imaged in at least 

3 independent experiments.  

 

2.9 Quantification of Caveolae  
 

25 images of cell sections from each sample were captured, and caveolae were 

counted. Caveolae were defined as 50-80nm diameter, PM attached, or internalized 

vesicles, no more than 200nm from the PM. The number of caveolae counted was 

normalized to the total length of plasma membrane from a minimum of 25 cells in each 

sample, from three independent experiments. 

 

2.10 Western Blotting  
 

Whole cell lysates were generated from control and patient primary human skin 

fibroblasts cultured to confluence in 15 cm tissue culture dishes (Corning, New York) or 

transfected Cav1-/- MEFs.  Once confluent or 24 hours-post transfection, cultures were 

chilled on ice for 5 minutes and washed three times in phosphate-buffered saline (PBS) 

from Corning.  Cells were lysed with 0.5 mL of 50 mM Tris-HCL, pH 8.0, 150 mM, 1.0% 

Igepal Ca-630 (NP-40), 0.5% sodium deoxycholate, 0.1% SDS plus phosphatase 

inhibitors from (Sigma-Aldrich) and protease inhibitors (Roche).  Following 5 min 
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incubation on ice, the lysed cells were scraped and transferred to new tubes.  To clear 

the lysates, the samples were flash frozen in liquid nitrogen and allowed to thaw at room 

temperature.  Thawed lysates were spun at 13,000 rpm at 4°C for 10 minutes to pellet 

the debris.  The protein concentration of supernatant was quantified with BCA protein 

assay (Thermo Scientific Pierce).  Equal amounts of protein from each sample were 

mixed with reducing reagent and loading buffer (Life Technologies) and boiled for 10 

min. 

 

SDS-PAGE was conducted using the Novex® NuPAGE® SDS-PAGE Gel System (Life 

Technologies).  NuPAGE® 4–12% and 4-20% Bis-Tris gels (Life Technologies) were 

used for the protein separation.  SeeBlue® Pre-stained Protein was used to evaluate 

the molecular weight.  The Bio-Rad Mini-PROTEAN System and 12% tris-glycine hand- 

and 12%TGX pre-cast gels were used for transfected Cav1-/- MEFs. A Mini Trans-Blot® 

Electrophoretic Transfer Cell (Bio-Rad) was used for the electrophoretic transfer.  The 

PVDF membranes (Millipore) were de-stained with methanol.  Secondary antibodies 

and blocking buffer were obtained from LI-COR and imaging was performed using the 

LI-COR Odyssey system.  Densitometry analysis was conducted using ImageJ software 

(http://fiji.sc/Fiji). 

 

2.11 Blue Native-PAGE 
 

BN-PAGE was performed as recently described [13].  Briefly, BN-PAGE was conducted 

by using the NativePAGE™ Bis-Tris Gel System (Life Technologies). Cell lysis buffer 

(NativePAGE 1× sample buffer, complete protease inhibitor cocktail from Roche and 1% 

digitonin) was made according to the NativePAGE Sample Prep Kit’s manual book.  

Fibroblast cells were lysed at 4°C for 30 min.  Then, a 30-minute centrifugation at 

16,100×g (centrifuge 5415D, Eppendorf) was performed at 4°C.  The pellet was 

discarded and the supernatant was used for further analysis.  Protein concentrations 

were determined using a BCA Assay Kit from Thermo Scientific.  4–16% NativePAGE 

gels (Life Technologies) were used for electrophoretic separation of the proteins.  Equal 

amounts of protein were loaded on the same gel as determined by BCA (10 µg for each 
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lane).  NativeMark ™ unstained protein standards (Life Technologies) were used to 

evaluate the molecular weight. 

 
2.12 Velocity Gradient Centrifugation for Isolation of 8S and 70S Complexes 
 

Velocity gradient centrifugation was performed as recently described [13].  Briefly, about 

1×106 fibroblasts or 4×106 Cav1-/- MEFs were lysed at room temperature for 20 min in 

330 µL of 0.5% Triton-X-100 in TNE [100 mM NaCl, 20 mM Tris–HCl pH 7.5 and 5 mM 

ethylenediaminetetraacetic acid (EDTA)] buffer, supplemented with ‘Complete’ protease 

inhibitors cocktail (Roche).  Post-nuclear supernatants (PNSs) were prepared by a 5-

min centrifugation at 1,100×g.  Three hundred microliters of the PNSs was loaded onto 

linear 10–40% sucrose gradients containing 0.5% Triton-X-100, 20 mM Tris–HCl pH 

7.5, 100 mM NaCl, 5 mM EDTA and protease inhibitors cocktail.  After centrifugation in 

an SW55 rotor (OptimaTM LE-80K Ultracentrifuge, Beckman) for 5 hours at 48,000 rpm 

at 4°C, fourteen 360µL fractions were collected from the top to the bottom and analyzed 

by SDS–PAGE/western blot with an equal loading volume.  Western blots were imaged 

and quantified as indicated above. 

 

2.13 Detergent-Resistant Membrane Fractionation 
 

Preparation of detergent resistant membrane fractions was performed as recently 

described [13].  Briefly, about 1×106 fibroblast cells or 1.6×107 Cav1-/- MEFs were 

suspended in 300 µL of cold 0.5% (or 1%) Triton-X-100 in TNE [100 mM NaCl, 20 mM 

Tris–HCl pH7.5 and 5 mM EDTA], supplemented with ‘Complete’ protease inhibitors 

cocktail (Roche).  Homogenization was performed in a cold room using pre-cooled 

equipment by passing the cell solution 10 times through a 1-mL syringe with a 27-gauge 

stainless steel needle (BD Biosciences).  The homogenate was adjusted to about 40% 

sucrose by the addition of 700 µL of 60% sucrose prepared in TNE and placed at the 

bottom of an ultracentrifuge tube.  A 5–35% linear sucrose gradient was formed above 

the homogenate and centrifuged at 40,100 rpm and 4°C for 16 hours in a SW55 rotor 

(Optima LE-80K Ultracentrifuge, Beckman).  Fourteen 360-µL fractions were collected 
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from the top and analyzed by SDS–PAGE/western blotting with an equal loading 

volume.  Western blots were imaged and quantified as indicated above. 

 
2.14 Osmotic Swelling and Cell Viability 
 
2.14.1 Osmotic swelling  
Cells were plated in Matte® dishes at 60% confluence two days prior to the experiment. 

The growth medium was removed and replaced with 2 ml of 0.1X hypotonic serum free 

DMEM medium (10-fold dilution in water) and incubated at 37°C for 10 min.   

 

2.14.2 Viability assay 
The hypotonic medium was carefully removed and then cell viability was assessed 

using LIVE/DEAD® Viability/Cytotoxicity kit (Molecular Protest, Invitrogen Detection 

Technologies) as directed by the manufacturer protocol. Twelve fields of cells were 

analyzed at 10× magnification for each cell line. Confocal images were acquired using 

the previously mentioned inverted Zeiss LSM 510 confocal microscope (Plan-

NEOFLUAR 10× 0.3 N/A objective).  Calcium AM-positive live cells (green) and 

ethidium homodimer-1-positive dead cells (red) were counted using ImageJ software.  A 

Student’s T-test was used to analyze the data with GraphPad Prism 7.0 software; 

values reported are the mean ± the standard deviation of three replicate experiments.   
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CHAPTER 3 

 

CHARACTERIZATION OF A PAH AND CGL-ASSOCIATED CAVEOLIN-1 MUTANT 1 

 

3.1 Introduction 
 

Flask-shaped membrane invaginations known as caveolae are thought to function as 

key regulators of cholesterol and lipid metabolism as well as to maintain proper function 

of the vascular system [187, 197]. Congenital generalized lipodystrophy (CGL) and 

pulmonary arterial hypertension (PAH), diseases of the adipose tissue and vascular 

endothelium, respectively, have been associated with mutations in caveolin-1 (CAV1), a 

protein required for the formation of caveolae [15, 16].  CAV1 and caveolae are 

abundant in cell types linked to CGL and PAH, including adipocytes, endothelial cells, 

and smooth muscle cells [197, 214, 216].  Mutations in another caveolae-stabilizing 

protein, cavin-1/PTRF, have also been linked to lipodystrophy, further highlighting the 

importance of these structures in the maintenance of lipid homeostasis [97, 98, 217-

221].   

 

So far, there has been one reported case of a patient with congenital generalized 

lipodystrophy (CGL) with a homozygous CAV1 mutation (E38X) [222], and three 

individuals with heterozygous mutations in CAV1 (I134 fsdelA-X137 and -88delC) with 

atypical partial lipodystrophy [12] (Table 2; Figure 10).  Through whole exome 

sequencing, our group identified two novel frameshift heterozygous mutations in CAV1, 

c.474delA (p.P158PfsX22) and c.473delC (p.P158HfsX22), in patients lacking other 

known PAH-associated mutations, such as BMPR2 [16].  These two different CAV1 

mutations have nearly the same effect on the protein by introducing a frameshift after 

amino acid 158 and inserting the same 21 novel amino acids after amino acid 158.  

However, exactly how these CAV1 mutations contribute to the development of PAH or 
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lipodystrophy, and why different CAV1 mutations are linked to different diseases is 

currently unclear.   

 

Recently, a new heterozygous CAV1 nonsense mutation, c.479_480delTT (p.F160X), 

was reported in a patient with both pulmonary hypertension and CGL by two groups [14, 

15] (Table 2; Figure 10).  The two-base-pair deletion induces a premature stop codon, 

and is predicted to generate a C-terminally truncated mutant protein designated F160X.  

In the first study reporting the mutation, morphologically defined caveolae were 

observed by electron microscopy in skin fibroblasts isolated from the patient, but little 

CAV1 was detectible by immunofluorescence microscopy [15].  The second study 

reported reduced CAV1 protein levels by Western blotting as well as decreased co-

localization of CAV1 with the caveolae accessory protein cavin1 in patient fibroblasts 

[179].  Besides these initial findings, how heterozygous expression of the F160X mutant 

protein impacts caveolae formation and function remains otherwise unknown. 

 

Table 2. Summary of CAV1 Mutations, Mode of Inheritance and Phenotype 
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Figure 10.  CAV1 Gene Organization and Reported CAV1 Mutations Associated with PAH and CGL 
in Humans.  Exons are shown in blue.  *, Protein palmitoylation sites.  CSD, caveolin scaffolding domain.  
(Bing Han, Ph.D.) 
 

The assembly and targeting of CAV1 to caveolae is known to be a stepwise process 

involving oligomerization of newly synthesized CAV1 monomers, assembly of oligomers 

into high-molecular-weight complexes and trafficking to the plasma membrane [8].  In 

this pathway, CAV1 forms an 8S core complex consisting of homo-oligomers and 

hetero-oligomers with CAV2 in the endoplasmic reticulum before being transported to 

the Golgi complex [8].  There, the 8S core complexes assemble to 70S complexes that 

become enriched in cholesterol [8].  Finally, 70S complexes are transported to plasma 

membrane and induce caveolae formation [8] with the help of the cavin family of 

proteins as well as other accessory proteins such as EHD-2 and PACSIN2 [75-77, 79, 

85, 86, 223-226].  The C-terminal domain of CAV1 (amino acids 135-178) has been 

reported to be important for interactions between adjacent homo-oligomers of CAV1 

that are necessary for forming the higher-order CAV1 oligomers that ultimately become 

incorporated into caveolae [48, 111].  Thus, the F160X mutation could potentially 

influence on the assembly of CAV1 oligomers as well as possibly disrupt caveolae 

formation per se.  

 

Here, we report the independent identification and characterization of caveolae in the 

patient with both PAH and CGL linked to a heterozygous F160X mutation in CAV1.  We 

show that caveolae are present in skin fibroblasts isolated from the patient and that 
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putative caveolae can be reconstituted by co-expression of wild type CAV1 and CAV1-

F160X in Cav1-/- murine embryonic fibroblasts (MEFs).  The ability of caveolae to confer 

mechano-protection against hypo-osmotic shock was unaffected in patient cells.  

However, expression of the CAV1-F160X mutant was found to reduce the levels of 

cavin-1 associated with CAV1, significantly impair the stability of both core CAV1 

oligomers and higher-order CAV1 complexes, and decrease the association of CAV1 

with detergent resistant membranes.  Thus, though caveolae are present in patient 

cells, they are not completely normal.  These findings suggest that the formation of 

aberrant caveolae may contribute to the development of both PAH and CGL and 

broaden our knowledge of disease-associated CAV1 mutations.      

 

3.2 Results 
 
3.2.1 Clinical Description 
The patient is a three-year-old girl with CGL and PAH.  She was born full-term with a 

birth weight of 2466 grams (<5th percentile), length of 46 cm (<5th percentile), and head 

circumference of 35.5 cm (65th percentile).  At birth, she was found to have a triangular 

face, a large anterior fontanelle, and cutis marmorata telangiectatica congenita over her 

entire body.  

 

She was noted to have generalized absence of subcutaneous fat from birth and was 

therefore diagnosed with CGL.  Her fasting triglyceride level was elevated at 168 mg/dL 

(normal 30-150 mg/dL) at 27 months, but a repeat test at 30 months was normal.  Her 

cholesterol and LDL have been normal, though her HDL has been consistently low. Her 

leptin at 30 months was 1.0 ng/mL (normal 0.6-16.8 ng/mL) and insulin at 35 months 

was low at 1.3 mcU/mL (normal 2.6-24.9 mcU/mL).  Abdominal ultrasound at 27 months 

showed no signs of fatty infiltration of the liver.  

 

Her weight has remained below the 5th percentile since 3 months of age, while her 

height and head circumference have remained at the 50th percentile.  Her clinical 

course is notable for episodes of abdominal pain and diarrhea occurring once a month, 
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and she has been hospitalized on two occasions, at 15 months and 27 months, for 

dehydration due to these episodes.  A duodenal biopsy performed at 27 months showed 

mild villous atrophy, crypt hyperplasia, and epithelial lymphocytosis, interpreted as a 

Marsh IIIA lesion [227] suspicious for celiac disease though a tissue transglutaminase 

IgA antibody done at the time was negative.  

 

She was diagnosed with pulmonary hypertension by echocardiogram at 15 months of 

age.  Due to her unusual systemic disease, a lung biopsy was performed at 18 months 

showed changes consistent with mild pulmonary hypertension, including focal 

thickening of the smooth muscle in preacinar pulmonary arterioles.  While she had no 

symptoms of syncope, dyspnea, or exercise intolerance, persistent abnormalities on 

echocardiogram led to further work up for pulmonary hypertension including cardiac 

catheterization. At 35 months, cardiac catheterization confirmed a diagnosis of PAH 

with a mean pulmonary artery pressure (mPAP) of 33 mmHg, pulmonary capillary 

wedge pressure of 11 mmHg, and pulmonary vascular resistance (PVR) of 3.97 Wood 

units.  Acute vasodilator testing was notable for an acute response to 80 ppm of NO and 

100% FiO2 with mPAP reduced to 21 mmHg and PVR to 2.07 Wood units.   

 

Developmentally, she has met her milestones on time and has a non-focal normal 

neurological examination.  However, MRI of her brain at 7 months showed global 

cerebral atrophy. 

 

The family history is unrevealing for cardiopulmonary disease, lipodystrophy, or other 

related concerns.  Her parents, two older brothers and younger sister are all in good 

health, and there is no family history of lipodystrophy or pulmonary hypertension.  

Whole exome sequencing revealed a de novo heterozygous c.479_480delTT (p.F160X) 

mutation in CAV1 (Table 2; Figure 10) and no other suspected pathogenic, rare or novel 

variants to explain either her lipodystrophy or PAH.  The family of the patient confirmed 

that she is the same patient described in two previous studies [14, 15].   

 



 54 

3.2.2 CAV1 and Caveolae Accessory Proteins are Expressed in Patient Skin 
Fibroblasts 
Previous studies have shown that caveolae are present in skin fibroblasts isolated from 

this patient [176] and that CAV1 can be detected in skin fibroblasts albeit at reduced 

levels by Western blotting [179].  In order to determine if CAV1 protein was being 

expressed in the patient identified here, we performed Western blot analysis using two 

different antibodies, an N-terminally directed antibody that detects both wild type CAV1 

and the F160X mutant, and a C-terminally directed antibody that only recognizes wild 

type CAV1 (Figure 11).   Similar levels of total CAV1 were observed in patient cells and 

control fibroblasts using the N-terminal antibody, whereas slightly decreased levels of 

wild type CAV1 were detected by the C-terminal antibody in the patient cells versus 

controls (Figure 11, Supplementary Figure 1A-D).  Because the mutant protein is 

predicted to lack its C-terminus, this difference implies that the mutant protein is 

expressed in patient cells.  We also analyzed levels of CAV2 and the caveolae 

accessory proteins cavin-1, EHD-2, and PACSIN2, and found that they were present at 

either similar or slightly lower levels in patient cells as well (Figure 11).  Finally, levels of 

flotillin-1 and flotillin-2, proteins are that are non-caveolae lipid raft markers, were similar 

in patient and control cells (Figure 11).   
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Figure 11.  CAV1 and Caveolar Accessory Proteins are Present in Patient Skin Fibroblasts at 
Levels Similar to Wild Type.  (Left) Protein levels were measured in three control cell lines and the 
F160X patient cell line by SDS-PAGE and Western blotting.  Representative Western blots for the 
indicated proteins are shown.  (Right) The relative densitometries of the protein bands were quantified to 
estimate protein levels in control (closed squares) and patient skin fibroblasts (open circles).  The data 
were normalized to the averaged value for the three control cell lines for each protein.  Error bars are the 
mean ± SD of intensity for the three control lines.  Data is representative of 3 independent experiments. 
(Bing Han, Ph.D.)   
 

3.2.3 CAV1 Forms 8S and 70S Complexes with Reduced Detergent-Resistance in 
Patient Fibroblasts  
CAV1 undergoes a series of oligomerization events that are required for the proper 

assembly of caveolae.  To test whether this process occurs correctly in patient cells, we 

first examined the biochemical properties of 8S oligomeric complexes formed by CAV1 

and CAV2 using Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) [109, 228-

230].    We previously reported that CAV1 and CAV2 form complexes with an apparent 

size of 600-800 kDa in several cell types using this method [229].  CAV1 and CAV2 

were detected in complexes of similar molecular weights in both control and patient skin 

fibroblasts (Figure 12A).  To assess the assembly of higher order CAV1 oligomers in 

patient cells, we fractionated 8S and 70S complexes on sucrose gradients by velocity 
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gradient centrifugation [8].  Both 8S and 70S complexes were detected in control cells, 

with the majority of CAV1 being detected in 70S complexes (Figure 12B).  CAV1 and 

CAV2 were also associated with both 8S and 70S complexes in patient fibroblasts. 

However, a larger fraction of CAV1 was found in 8S complexes compared to controls, 

suggesting that 70S complexes either form less efficiently or are less stable in patient 

cells (Figure 12B).  To further assess the stability of the 8S complexes, we extracted 

cells using an SDS-containing lysis buffer (0.2% Triton X-100 + 0.4% SDS), which was 

previously shown to completely disassemble the 70S complexes to 8S oligomer units 

[8].  Under these conditions, almost all of the CAV1 complexes were disassembled to 

monomers or small oligomers in patient cells, whereas the CAV1 from control cell lines 

remained associated with intact 8S oligomers (Figure 12C).  Thus, the stability of the 8S 

complexes is decreased in patient cells. 
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Figure 12.  CAV1 Associates with High-Molecular-Weight Complexes and Detergent-Resistant 
Membranes in Patient Fibroblasts.  (A) BN-PAGE and Western blotting was used to measure CAV1 in 
high-molecular-weight oligomers in control and patient skin fibroblasts. CAV proteins were detected with 
CAV1 N-terminal (red in merge) and CAV2 antibodies (green in merge).  The position of the putative 8S 
complexes is marked with an arrow.  (B) CAV1 and CAV2 fractionate as 8S and 70S complexes in both 
control and patient skin fibroblasts.  Positions of the 8S and 70S complexes on the gradient are indicated 
with red lines. Note the increased amounts of 8S complexes present in the patient fibroblasts.  (C) CAV1 
oligomers dissolve into SDS-resistant 8S oligomers in control cells but form even smaller oligomers in 
patient cells.  CAV2 was also assessed. Fractions containing 8S and 70S complexes are indicated with 
red lines on the gradient.  (D) CAV1 associates with DRMs isolated using 0.5% TX-100 in both control 
and patient fibroblasts.  Fractions enriched in DRMs are indicated with the red lines.  (E) CAV1 is 
excluded from DRMs isolated using 1% TX-100 in patient fibroblasts but retains its detergent resistance 
in control fibroblasts under these conditions.  All data sets shown are representative of 2 independent 
experiments. (Bing Han, Ph.D.) 
 

It is well known that caveolae have detergent resistant properties and CAV1 is 

predominantly found in detergent resistant membranes [231].  Biochemical fractionation 

of detergent resistant membranes (DRMs) on sucrose gradients by buoyant density is 

thus commonly used to analyze CAV1 and caveolae.  CAV1 was detectible in DRM 

fractions (fractions 5-8) in both wild type and patient cells extracted using 0.5% Triton X-
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100 (TX100) (Figure 12D).  However, when the detergent concentration was increased 

to solubilize weakly associated DRM components, CAV1 was predominantly associated 

with detergent soluble fractions in patient cells.  Thus, expression of CAV1-F160X 

reduces the DRM affinity of CAV1 (Figure 12E).   

 

3.2.4 Caveolae are Present in Patient Cells 
The presence of 8S and 70S CAV1 complexes and acquisition of detergent resistance 

does not necessarily mean that CAV1 is normally associated with caveolae [229].  We 

thus next tested whether CAV1 is trafficked correctly and assembles into caveolae in 

patient cells at the cellular level.  Similar densities of caveolae were readily observed in 

patient and control cells by transmission electron microscopy (p=0.28) (Figure 13A,B).  

Consistent with this, using immunofluorescence microscopy, CAV1 staining was 

observed in punctate structures characteristic of caveolae in both control and patient 

cells labeled with an N-terminal CAV1 antibody that detects both wild type and mutant 

CAV1 (Figure 13C).  CAV1 staining also strongly co-localized with caveolin-2 (Figure 

13D, E) and the caveolae accessory proteins cavin-1 and EHD-2 (Figure 14A-D) in both 

control and patient cells. 
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Figure 13. CAV1, CAV2 and Caveolae are Detectible in Patient Skin Fibroblasts.  (A) Caveolae are 
detected in control and patient fibroblasts by transmission electron microscopy.  Scale bar, 500 nm.  Note 
that these images represent regions of high caveolae density for illustration purposes and are not 
representative of average densities of caveolae.  (B) The patient’s cells contain comparable amounts of 
caveolae as control cells (p= 0.28, Student T-test).  A minimum of 25 images collected at 30,000X 
magnification per experiment were analyzed across three independent experiments for both the control 
and patient cell lines. (C) Representative immunofluorescence images of control and patient fibroblasts 
labeled with an N-terminally directed CAV1 antibody that detects both wild type and mutant F160X CAV1.  
The subcellular distribution of CAV1 in patient cells is similar to control cells.  Scale bars, 10 mm.  (D) 
Representative images of control and patient cells dually labeled with a CAV1a antibody (epitope = 
residues 1-24) in green and CAV2 antibody (red in merged image).  Scale bars, 10 mm.  (E) CAV1 and 
CAV1 exhibit similar levels of colocalization in control and patient fibroblasts as quantified using 
Pearson’s correlation coefficient (n = 15 ROIs from 2 independent experiments.)  n.s., not significant 
(Student’s T-test).   
 

However, the colocalization of CAV1 and cavin-1 was slightly albeit significantly 

reduced in patient cells compared to controls (Figure 14B).  PACSIN2 colocalization 

with CAV1 was low but not significantly different between wild type and patient cells 

(Figure 14E, F).  
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Figure 14. Caveolae Accessory Proteins are Localized Correctly in Patient Skin Fibroblasts.  (A, B) 
Cavin-1 labeling (green) colocalizes with CAV1a staining ((red), albeit at reduced levels in patient cells 
compared to controls (n = 31 ROIs from 3 independent experiments) . *, p=0.012, Student’s T-test.  (C, D) 
CAV1 (green) and EHD-2 (red) colocalize to similar extents in control and patient fibroblasts (n = 21 ROIs 
from 2 independent experiments.) n.s., not significant (Student’s T-test) (E, F) CAV1α (red) and PACSIN2 
(green) exhibit low levels of colocalization in both in control (n=40) and patient (n=31) fibroblasts (n = 40 
or 31 ROIs from 3 independent experiments.)  n.s., not significant (Student’s T-test).  Scale bars, 10 mm. 
 

To further test whether CAV1 is localized normally in patient cells, we performed 

immuno-staining with a C-terminally directed antibody.  Typically, the C-terminus of 

CAV1 is only accessible in the Golgi complex where the protein is not fully oligomerized, 
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and is masked within caveolae [7, 194].  In agreement with this, we found that this 

antibody labeling was predominantly restricted to the GM130-labeled Golgi complex in 

control fibroblasts (Figure 15A, top panel).  Strikingly, in patient cells, in addition to Golgi 

labeling a significant amount of labeling of extra-Golgi puncta was also observed, 

leading to a drop in the overall level of colocalization of C-terminal CAV1 labeling with 

GM130 (Figure 15A, bottom panel and 15B).  The staining pattern observed with the C-

terminal antibody in patient cells highly colocalized with an N-terminally directed 

antibody that normally detects CAV1 at the plasma membrane, suggesting that the non-

Golgi puncta labeled by this antibody in patient cells are caveolae (Figure 15C, D).  

Since the C-terminal antibody only detects wild type CAV1 and not the F160X mutant 

(Supplementary Figure 2A-D), these findings imply that in patient cells the C-terminus of 

wild type CAV1 is accessible at the cell surface, possibly within hybrid caveolae 

composed of both F160X (which lacks the C-terminal domain) and wild type CAV1.   
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Figure 15. The C-terminus of CAV1 is Exposed Outside of the Golgi Complex in Patient 
Fibroblasts.  (A, B) In control fibroblasts, a CAV1Cterm antibody (green) predominantly stains wild type 
CAV1 in the Golgi complex (red), whereas in patient cells CAV1Cterm antibody labeling is also observed in 
punctate structures outside of the Golgi complex. Quantification of colocalization is shown for n = 19 or 20 
ROIs from 2 independent experiments.  ***, p < 0.0001, Student’s T-test.  (C, D) In patient cells, punctate 
staining by the CAV1Cterm antibody (red) colocalizes with staining by an N-terminally directed CAV1α/βCterm 
antibody (green).  In contrast, no colocalization of the staining patterns by these two CAV1 antibodies is 
observed in control cells.  Quantification of colocalization is shown for n=14 or 15 ROIs from 2 
independent experiments.  Scale bars, 10 mm. 
 

To further assess possible differences in the organization of CAV1 oligomers in patient 

cells, we probed Western blots from the BN-PAGE experiments with antibodies against 

two different regions of CAV1, the oligomerization domain (mAb 2297) and the C-

terminus (C-term).  Both the F160X mutant and Wt CAV1 contain the complete N-

terminus and oligomerization domain, and thus theoretically mAb 2297 will be able to 

detect total CAV1.  In contrast, the C-term antibody only detects Wt CAV1. Despite this, 

in patient cells mAb 2297 did not detect the complexes as efficiently as did the C-

terminal antibody (compare ratio of red and green signals in the merged images of 

panels left versus middle and right) (Supplementary Figure 1).  These findings imply 

that the organization of CAV1 may differ somewhat in these oligomeric complexes in the 
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patient cells in a manner that alters accessibility of the oligomerization domain to 

antibody labeling. 

 

3.2.5 F160X Forms Putative Caveolae Independently or in Combination with Wild 
Type CAV1 
To directly test whether wild type and CAV1-F160X are capable of co-assembling to 

form caveolae, we carried out reconstitution studies in Cav1-/- MEFs.  Re-expression of 

wild type CAV1 into this cell line supports caveolae formation [75, 232].  The presence 

of caveolae at the cellular level can be assayed by monitoring colocalization of 

endogenous cavin-1 with exogenous CAV1 in punctae.  This is because cavin-1 is only 

recruited newly formed caveolae and otherwise does not associate with the plasma 

membrane in the absence of CAV1 [75].  It has further been shown that cavin-1 only 

associates with membranes of invaginated caveolae and not with flattened CAV1 

membrane domains using FRET and electron microscopy [75]. We therefore used 

cavin-1/CAV1 colocalization as a reporter of caveolae formation [3, 7, 31, 233, 234].  

 

We first tested whether CAV1-F160X is capable of recruiting cavin-1 in the absence of 

wild type CAV1.  Consistent with this possibility, when we expressed epitope tagged 

CAV1-F160X in these cells, we observed the formation of punctate structures that co-

stained for endogenous cavin-1, similar to the behavior of wild type CAV1 (Figure 16A-

C).  Thus, CAV1-F160X itself has the propensity to form putative caveolae.  We did note 

however that CAV1-F160X did not co-localize as strongly with cavin-1 as did Wt CAV1 

despite similar expression levels of endogenous cavin-1 protein (Figure 16D, E).   

 

Previous studies have shown that FRET can be observed between CAV1 and cavin-1 in 

caveolae [31, 75].  Thus, to further test for possible defects in the recruitment of cavin1 

to CAV1-F160X, we attempted to set up a confocal FRET experiment between 

mEmerald-tagged CAV1 constructs and mCherry-tagged cavin1.  Because the F160X 

mutation impacts the C-terminus of CAV1, we utilized N-terminally tagged CAV1 

constructs for these studies.   In control studies, we first verified that the mEmerald-

CAV1 construct was not trapped in the perinuclear region of Cav1-/- MEFs, unlike some 
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other tagged CAV1 constructs are when overexpressed in this cell type [235].  Next, we 

co-expressed either mEmerald-CAV1 or mEmerald-CAV1-F160X with mCherry-cavin-1.  

As expected, mEmerald-CAV1 and mCherry-cavin-1 strongly colocalized in cell surface 

puncta (Figure 16F).  mEmerald-CAV1-F160X was poorly expressed, but in cells where 

it was present it was found in punctate structures.  However, these structures had a 

different appearance than those observed in cells expressing Wt mEmerald-CAV1 

(Figure 16G). Moreover, they were essentially devoid of either mCherry-cavin-1 or 

endogenous cavin-1 staining (Figure 16G, H; Supplementary Figure 3).  Thus, an even 

more profound defect in cavin-1 recruitment was observed for mEmerald-CAV1-F160X 

than for epitope tagged CAV1-F160X.  Given these dramatic findings, we did not pursue 

FRET experiments further.   

 

Since CAV1-F160X is co-expressed with wild type CAV1 in heterozygous patient cells, 

we also performed co-expression studies in Cav1-/- MEFs.  As expected, co-expressed 

versions of HA- and myc-tagged wild type CAV1 strongly colocalized with each other 

(Figure 16I, K) and with cavin-1 (Figure 16I, L).  When co-expressed, myc-CAV1 Wt and 

HA-CAV1-F160X also co-localized both with each other (Figure 16J, K), with 

endogenous cavin-1 (Figure 16J, L), and with the C-terminal CAV1 antibody 

(Supplementary Figure 2E-G).  This finding supports a model in which wild type CAV1 

and CAV1-F160X co-assemble to form hybrid caveolae.  However, CAV1-F160X 

colocalized with endogenous cavin-1 to a lesser extent than did wild type CAV1 (Figure 

16L).  This again suggests that cavin-1 may not be recruited as strongly to the plasma 

membrane when CAV1-F160X is present, similar to the results obtained in patient cells 

(Figure 14B). 
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Figure 16.  Reconstitution of Caveolae Formation by CAV1-F160X in Cav1-/- MEFs.  (A-C) 
Representative images showing colocalization of endogenous cavin-1 (red) with (A) wild type Myc-CAV1 
(green), (B) wild type HA-CAV1 (green), or (C) HA-CAV1-F160X (green) in transfected Cav1-/- MEFs.  
Anti-Myc or anti-HA antibodies were used to label CAV1 constructs. (D) Quantification of colocalization 
shows that HA-CAV1-F160X (n=163 ROIs) colocalizes less well with endogenous cavin-1 than does wild 
type HA-CAV1 (n = 25 ROIs) or Myc-CAV1 (n = 157 ROIs).  These results represent data acquired from 3 
independent experiments.  ***, p<0.001, Student T test. (E) Western blot of transfected Cav1-/- MEFs 
probed with antibodies to detect endogenous cavin-1 and β-tubulin as a control for equal loading. (F-G) 
Representative live cell images showing colocalization of mCherry-cavin-1 (red) with (F) wild type 
mEmerald-CAV1 (green) or (G) mEmerald-F160X (green) in transfected Cav1-/- MEFs.  Note that 
mCherry-cavin-1 staining is weak in some regions where mEmerald-F160X spots are visible in this image 
due to the thinness of the cell at this location.  (H) Wild type mEmerald-CAV1 strongly colocalizes with 
mCherry-cavin-1 in Cav1-/- MEFs. In contrast, mEmerald-F160X displayed much less colocalization with 
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Figure 16 Continued. mCherry-cavin-1 (n = 51-81 ROIs from 3 independent experiments) (***, p<0.0001, 
Student’s T-test). Scale bars, 10 mm. (I) Co-transfected Myc-CAV1 (green) and HA-CAV1 (red) colocalize 
with each other and with endogenous cavin-1 (cyan) in triple labeled Cav1-/- MEFs.  (J) Co-transfected 
Myc-CAV1 (green) and HA-CAV1-F160X (red) colocalize with each other and with endogenous cavin-1 
(cyan) in Cav1-/- MEFs. (K) Wild type HA-CAV1 and HA-CAV1-F160X both strongly colocalize with wild 
type Myc-CAV1 in Cav1-/- MEFs (n = 114-118 ROIs from 3 independent experiments) (n.s., not significant, 
Student’s T-test).  (L) In Cav1-/- MEFs co-expressing wild type and mutant CAV1, endogenous cavin-1 
colocalizes less well with HA-CAV1-F160X than with Myc-CAV1 (**, p=0.0013, Student’s T-test).  In 
contrast, endogenous cavin-1 colocalizes equally well with wild type Myc-CAV1 and HA-CAV1 in co-
expressing cells (n.s., Student’s T-test).  Scale bars, 10 mm. (Bing Han, Ph.D.) 
 

Next, we asked whether CAV1-F160X associates with DRMs in reconstituted cells.  

DRM analysis of Cav1-/- MEFs extracted with 0.5% Triton X-100 confirmed the 

association of CAV1-F160X with DRMs both when expressed individually and when co-

expressed with wild type CAV1 (Figure 17).   This is consistent with the results obtained 

in human skin fibroblasts extracted in 0.5% Triton X-100, where CAV1 associated with 

DRMs in both the mutant and control cell lines (Figure 12D).  However, the DRM 

fractionations for the Cav1-/- MEFs were much more sensitive to the number of cells 

used.  This made it difficult to identify detergent extraction conditions that could detect 

differences in the detergent resistance of wild type and F160X CAV1 in the 

reconstituted MEFs.  We also found that most of the endogenous CAV2 in the Cav1-/- 

MEFs could not be recruited to DRMs when CAV1 was expressed, even for the case of 

wild type CAV1 (Figure 17).  This is probably because CAV2 is trapped in Golgi 

complex when CAV1 is not expressed [53], and thus is unavailable to form complexes 

with newly synthesized exogenous CAV1.  
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Figure 17.  CAV1-F160X Co-Fractionates with Detergent-Resistant Membranes. DRMs isolated using 
0.5% Triton X-100 in reconstituted Cav1-/- MEFs.  DRMs were isolated from Cav1-/- MEFs transiently 
transfected with (A) Myc-CAV1, (B) HA-CAV1-F160X or (C) Myc-CAV1 and HA-CAV1-F160X.  Fractions 
were analyzed by SDS-PAGE/Western blotting.  Fractions enriched in DRMs are indicated with the red 
lines.  Data are representative of 2 independent experiments. (Bing Han, Ph.D.) 
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3.2.6 Reconstituted F160X/CAV1 Complexes Display Decreased Stability 

Since the CAV1 complexes in patient cell displayed defects in the stability of 8S and 

70S complexes (Figure 12B, C), we conducted corresponding tests on reconstituted 

cells.  We found that CAV1-F160X itself can form both 8S and 70S complexes in Cav1-/- 

MEFs (Figure 18B).  However, compared to Wt CAV1, more CAV1-F160X was found in 

lower molecular weight complexes (Figure 18A, B).  This defect was rescued by co-

expressing CAV1-F160X with Wt CAV1 (Figure 18C).  We also tested the stability of the 

complexes by dissolving the 70S complexes with SDS-containing lysis buffer (0.2% 

Triton X-100 + 0.4% SDS) following the approach of Hayer et al [8] (Figure 18D, E, F).  

Whereas wild type CAV1 accumulated in the form of 8S complexes under these 

conditions (Figure 18D), CAV1-F160X was dissolved to structures smaller than 8S 

(Figure 18E).  Interestingly, the F160X/CAV1 co-expressing cells displayed an 

intermediate phenotype (Figure 18F).  These findings are in good agreement with the 

findings in patient cells and suggest that the far end of the CAV1 C-terminus is very 

important for the stability of CAV1 complexes. 
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Figure 18.  Reduced Stability of CAV1 Complexes Containing CAV1-F160X in Reconstituted Cav1-/- 

MEFs.  Cav1-/- MEFs expressing (A, D) Myc-CAV1, (B, E) HA-CAV1-F160X, or (C, F) HA-CAV1-F160X 
and Myc-CAV1 were lysed in either 0.5% Triton X-100 (A-C) or 0.2% Triton X-100 and 0.4% SDS (D-F) at 
room temperature.  Extracts were run though 10-40% sucrose velocity gradients and fractions were 
analyzed by SDS-PAGE followed by Western blotting.  In (D-F), the proportion of CAV1 in each fraction 
was quantified by densitometry, and the values for the first 6 fractions are show in line charts below each 
corresponding Western blot dataset.  Data are representative of 2 independent experiments. (Bing Han, 
Ph.D.) 
 

3.2.7 Caveolae Confer Mechano-Protection Against Hypo-Osmotic Shock in 
Patient Cells. 
Caveolae are now widely recognized for their role as membrane buffers during times 

when cells are under mechanical stress and cells lacking caveolae are more vulnerable 

to injury under high mechanical tension [3, 233, 234].  Although the abundance of 

caveolae was normal in patient cells (Figure 13), we wanted to determine if the 

presence of CAV1-F160X impacted the ability of caveolae to function as mechanical 

buffers in patient cells.  To address this question, cells were incubated in hypotonic 

medium to induce osmotic swelling and recapitulate mechanical stress (Figure 19).   
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Cell viability was determined to assess the ability of cells to survive osmotic swelling.  

Before treatment, the vast majority of cells was viable and had a normal cellular 

morphology (Figure 19A).  Following ten minutes of osmotic swelling, the number of live 

cells decreased; however, loss of viability was similar in patient and control cells (Figure 

19B). These results indicate that presence of the mutant CAV1 does not compromise 

the ability of caveolae to function in mechano-protection, at least under the conditions of 

these experiments. 

 

 
 
Figure 19.  Caveolae Confer Mechano-Protection in Patient Fibroblasts. (A) Representative images 
of control and patient human skin fibroblasts before and after ten minutes of hypo-osmotic shock. The 
images were deliberately saturated to enable quantification of the numbers of live (green) and dead (red) 
cells.  Bar, 10 µm.  (B) Quantification of cell viability.  Bars show the mean ± standard deviation from 3 
independent experiments. There is no significant difference between the control and patient cell line in 
either iso-osmotic (p=0.16) or hypo-osmotic (p=0.55) conditions. (Bing Han, Ph.D.) 
 

3.3 Discussion 
 

In the current study, we identified and characterized a F160X mutation in CAV1 in a 

patient with both PAH and CGL.  The F160X CAV1 mutation is predicted to give rise to 

a truncated protein missing nearly 20 amino acids of the C-terminus.  Although recent 

studies have independently identified this mutation in this patient [15, 16], the effects of 

the expression of this mutant protein on caveolae formation and function are not yet 
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fully understood.  Using a combination of biochemical approaches, immunofluorescence 

microscopy, and electron microscopy, we show here that the fundamental building 

blocks of caveolae are in place and are capable of forming hybrid caveolae in patient 

skin fibroblasts.   

 

To complement our studies in patient cells, we also assayed the ability of CAV1-F160X 

to form caveolae in reconstituted Cav1-/- MEFs by testing whether it can recruit cavin1 to 

cell surface puncta.  The results of these studies suggest that the mutant protein can 

drive caveolae formation both on its own and when co-expressed with wild type CAV1, 

further supporting our findings in the patient cells (summarized in Figure 20A).   
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Figure 20.  Working Model Depicting Proposed Impact of CAV1-F160X on Caveolae Assembly and 
Stability. (A) Like wild type CAV1, CAV1-F160X is capable of supporting caveolae formation when 
expressed on its own.  In heterozygous patient cells, CAV1-F160X forms hybrid caveolae with wild type 
CAV1.  (B) The C-terminus of wild type CAV1 is normally masked in caveolae due to interactions of 
adjacent C-termini of CAV1 with one another.  However, the absence of the C-terminus of CAV1-F160X 
exposes the C-terminus of wild type CAV1, making it accessible to detection by antibodies.  (C) CAV1-
F160X can form both 8S and 70S complexes, but these complexes are destabilized compared to those 
formed by wild type CAV1. (Bing Han, Ph.D.)  
 

The observation that CAV1-F160X itself can form putative caveolae is in line with a 

recent report showing that a C-terminal truncation mutant of CAV1 (Cav1, aa. 1-147) is 

capable of generating heterologous caveolae in a model prokaryotic expression system 

[233].  A potential caveat of using co-localization of CAV1 and cavin-1 as a readout of 

caveolae formation is that this method does not provide information regarding the 

morphology of caveolae.  Thus, further work will be required to determine whether the 

putative caveolae formed by heterologous expression of F160X exhibit any 

morphological defects. 
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Despite the presence of caveolae in patient fibroblasts, several of their features were 

altered relative to those found in control cells.  First, the degree of co-localization of 

cavin1 and CAV1 was reduced in both patient cells and reconstituted Cav1-/- MEFs 

(Figure 20A).  This phenotype was especially dramatic in Cav1-/- MEFs co-expressing 

mEmerald CAV1-F160X and mCherry-cavin-1; under these conditions, essentially no 

colocalization of cavin-1 with CAV1-positive puncta was observed.  Although cavin-1 is 

known to be an important CAV1 accessory protein that is essential for caveolae 

formation, the exact mechanisms by which CAV1 and cavin-1 interact are still unknown 

[86].  Our current findings suggest that the far end of the CAV1 C-terminus participates 

in this interaction.  We also found that the C-terminus epitope of CAV1, which is 

normally masked after exiting the Golgi complex [194], was readily accessible in 

punctate structures at the cell surface.  We speculate that the absence of C-terminus of 

the mutant protein may allow for recognition of the C-terminus of wild type CAV1 within 

caveolae, which would normally be masked due to interactions with other C-termini 

(Figure 20B).  The formation and/or stability of 70S complexes also appeared to be 

reduced in patient cells, as evidenced by the increased fraction of 8S complexes.  This 

may reflect a requirement for the C-terminus in homotypic interactions of CAV1 within 

70S complexes [111].  We further found that the 8S complexes formed by CAV1-F160X 

in both re-constituted Cav1-/- MEFs and patient cells were readily disassembled into 

smaller oligomers in the presence of SDS (Figure 20C).  This suggests that the C-

terminus of CAV1 is not only important for interactions between adjacent homo-

oligomers of CAV1, but also important for the stability of the 8S CAV1 homo-oligomer 

itself.  Finally, CAV1 was also less detergent resistant in patient cells than in control 

cells.  Although the cause of this shift in detergent resistance is currently unknown, 

similar results were reported in studies of C-terminal deletion mutants of CAV1 [111]. It 

is possible that this is a consequence of changes in the lipid or protein composition of 

caveolae, or even the plasma membrane itself.  Further work will be required to test 

these possibilities.  

 

Caveolae are thought to function as a cellular buffering system to provide protection 

from stresses that perturb membrane tension in vitro [3, 233, 234].  This idea was 
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recently tested in vivo in endothelial cells of the lung and cardiac muscle in mice under 

treatments to increase cardiac output and shear stress, conditions often associated with 

PAH and cardiovascular diseases [233].  Here, we tested this hypothesis directly in skin 

fibroblasts from a patient with PAH and CGL.  We found that patient cells showed 

similar responses to controls under conditions that induced acute mechanical stress on 

the plasma membrane via a hypo-osmotic shock (Figure 19).  Thus, incorporation of 

CAV1-F160X into the patient’s caveolae does not significantly disrupt the functional 

capacity of caveolae as membrane buffers.  However, it remains formally possible that 

defects in mechano-protection may be more apparent under other conditions or in other 

cell types.  Whether the expression of F160X impacts other caveolae functions will 

require further examination in future work.  

 

While these studies were in progress, two other groups identified a F160X mutation in 

CAV1 in a patient presenting with both PAH and CGL [14, 15].  Through informed 

consent, the family of this patient confirmed that the same patient was studied in all 

three investigations.  It is thus interesting to directly compare the results of each study.  

In the first study [15], close to wild type numbers of caveolae were observed in patient 

skin fibroblasts by electron microscopy.  However, immunofluorescence staining using 

an N-terminally directed antibody revealed substantially decreased CAV1 labeling in 

patient fibroblasts, leading the authors to conclude that the caveolae may being formed 

in a CAV1-independent manner [15].  In the second study [14], CAV1 protein levels 

were analyzed by Western blotting and shown to be less than 50% of control values.  

Immunofluorescence analysis of patient skin fibroblasts using an antibody directed 

against an internal epitope of CAV1 (residues 34-45) detected CAV1 in puncta.  Thus, 

all three studies reported differential staining of CAV1 in control and patient cells by 

immunofluorescence, using different combinations of antibodies and labeling conditions.  

Because the epitope accessibility on CAV1 is known to be heavily dependent on the 

protein conformation and oligomerization state [194, 234, 235], this strongly suggests 

that one or more of these factors are altered in patient cells.  Furthermore, the 

decreased colocalization of cavin-1 and CAV1 in patient cells observed both in our 

study and in a previous report [14] suggests the affinity of cavin-1 for caveolae is 
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decreased in cells expressing the F160X CAV1 mutant, a result we went on to confirm 

in reconstituted Cav1-/- MEFs.  Thus, several key findings have been reproduced across 

laboratories.  Importantly however, in our current study, we have now greatly extended 

our knowledge about this mutation through our detailed biochemical analysis, 

reconstitution studies, and functional studies. 

 

It is striking that the F160X mutation is linked to both lipodystrophy and PAH while other 

CAV1 mutations appear to only correlate with the development of either PAH [16] or 

lipodystrophy [12, 222].  Why this is the case is not yet entirely clear. It has been shown 

that reduced caveolae formation disrupts endothelial cell and adipose tissue function. 

On the basis of our biochemical findings, we speculate that CAV1-F160X may 

contribute to both diseases by several potential mechanisms.  First, changes in the 

stability of CAV1 oligomers and/or changes in CAV1 organization within caveolae could 

potentially lead to cellular defects in endothelial cells and adipocytes that promote PAH 

and CGL.  Such changes might impact the ability of caveolae to function as membrane 

reservoirs, a mechanism that appears to be important in endothelial cells as well as 

other cell types [3, 31, 187, 202]. Although we did not observed significant defects in 

mechano-protection in patient skin fibroblasts, they may occur in other cell types or in 

under more physiological challenges.  Changes in the stability of CAV1 oligomers or the 

organization of CAV1 within caveolae could also potentially alter caveolae dynamics 

linked to fluctuations in lipid storage in adipocytes [205].  Animal models displaying 

lipodystrophic- and PAH-like disorders have also been shown to be the result of 

significantly decreased levels of CAV1 expression [11, 131, 140, 236].  It is thus also 

possible that changes in CAV1 expression in adipocytes, endothelial cells, smooth 

muscle cells, or other tissues not examined here may contribute to the development of 

lipodystrophy and PAH in this patient.   

 

Another interesting possibility that arises from our findings is that the diminished 

association of cavin-1 with CAV1 in patient cells is related to the development of CGL 

and/or PAH.  CAVIN1 has been repeatedly identified as a CGL associated gene [97, 

217-219] [98, 220, 221] and has recently been shown to function in the control of 
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ribosomal RNA transcription in adipocytes [237].  Cavin-1 is also involved in the 

mechanical stress response of caveolae [3].  This suggests that a common CAV1-

Cavin1-dependent pathway, perhaps one regulated by the regulated assembly and 

disassembly of caveolae, may be disrupted in patients with CGL.  Additional 

predisposing mutations may also contribute to the pathophysiology of one or both 

diseases.  For example, mutations in AGPAT2 and LPIN1 were hypothesized to 

contribute to the development of CGL in a patient with an F160X mutation [14]. Whether 

these variants are truly pathogenic or contributory remains to be determined.    

 

In conclusion, our work adds to the breadth of knowledge of known human phenotypes 

associated with CAV1 mutations and suggests that the development of lipodystrophy 

and PAH in the context of a F160X mutation is not the result of the loss of production of 

CAV1 and caveolae per se but instead may be linked to decreased stability of CAV1 

oligomers and/or weakened interactions between cavin-1 and CAV1 in caveolae.  

Future investigation is needed to understand the varied presentation of disease and 

differential impact on multiple organ systems of in patients with CAV1 mutations. 
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CHAPTER 4 
 

INVESTIGATION OF A NOVEL PAH-ASSOCIATED DOMINANT NEGATIVE CAV1 

MUTANT 

 

4.1 Introduction 
 

Caveolae are specialized plasma membrane domains rich in cholesterol [25, 187, 238].  

Found at the plasma membrane of many cell types, these 50-100 nm invaginations are 

especially highly abundant in adipocytes, smooth muscle and endothelial cells [216].  

Caveolae have numerous cellular functions including buffering cells from mechanical 

stress, maintaining membrane integrity and regulating clathrin-independent endocytosis 

[25, 187].  They also are thought to control a variety of signal transduction pathways, by 

mechanisms that are still somewhat unclear [187, 239]. 

 

The primary structural components of caveolae are a family of proteins known as 

caveolins.  Caveolin 1, 2, and 3 are integral membrane proteins whose cytoplasmically 

oriented N- and C-termini are connected by a predicted hairpin [7].  Caveolin-1 (CAV1) 

is a 178 amino acid protein that was the first protein identified as a component of 

caveolae [238] and that also is required for caveolae formation [11, 66, 232].  Caveolae 

biogenesis begins in the endoplasmic reticulum through a step-wise series of 

oligomerization events of caveolin monomers [8, 240, 241].  Newly synthesized caveolin 

becomes incorporated into complexes composed of 14-16 CAV1 monomers [240] that 

correspond to an 8S complex [8] (Figures 1 and 5).  This first oligomerization event 

occurs in the ER and the oligomers are quickly transported to the Golgi complex for 

further maturation.  In the Golgi compartment, 8S complexes undergo another round of 

oligomerization to form 70S scaffolds of CAV1 oligomers that become enriched in 

cholesterol and lipids before being trafficked to the plasma membrane [8].  Proper 

caveolae assembly also requires the presence of several accessory proteins, including 

the Cavins, PACSIN2, and EHD-2 [75-77, 79, 85, 86, 92, 224, 242].   
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The 178 amino acid CAV1 protein consists of an N-terminal domain, scaffolding 

domain, intramembrane domain, and C-terminal domain [7, 45].  The functions of the 

various domains of CAV1 have been extensively studied via truncation and 

mutagenesis experiments [48, 243].  For example, the C-terminus of CAV1 (residues 

135-178) is important for membrane attachment, exit from the Golgi complex and 

homotypic interactions between caveolin complexes to form 70S scaffolds [8, 109, 243].  

The C-terminus is also palmitoylated, which allows the protein to interact more strongly 

with membranes (Figure 1), and is important for interactions with other lipid-modified 

proteins such as the tyrosine kinase Src [244].  This portion of CAV1 is also speculated 

to be important for proper trafficking of the protein, because C-terminal truncations and 

other mutant forms of CAV1 often accumulate in the Golgi compartment or aggresomes 

when ectopically expressed [170, 245].   

 

The functions of both CAV1 and caveolae have been extensively studied using 

knockout mice, and work in this animal model has highlighted an importance for CAV1 

in modulating proliferation, adipose and vascular homeostasis, and metabolism [11, 

212-215].  CAV1 and caveolae have been linked to a number of diseases such as lung 

injury/disease, myopathies, lipodystrophy, cardiovascular disease, and cancer [246, 

247].  Known disease-associated mutations of CAV1 include P132L [246] and others 

[248].  In addition to these disease-associated mutants, mutations that generate poorly 

folded CAV1 proteins have been shown to cause the protein to be retained 

intracellularly, and to have dominant-negative effects on wild-type CAV1 [170, 172, 

249].  However, the mechanisms by which defects in CAV1 or caveolae give rise to 

disease are still poorly understood.  

 

One of the many diseases in which CAV1 is implicated is pulmonary arterial 

hypertension (PAH) [14-16, 126, 250-255].  Pulmonary arterial hypertension (PAH) is a 

fatal disease arising from progressive right ventricular failure that is induced by 

progressive increase in pulmonary vascular resistance [256].  Most cases of familial 

PAH with a known etiology involve mutations in BMPR2 [251], although the details of 

the molecular and cellular pathogenesis of the disease remain unclear.  However, many 
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of the signaling pathways disrupted in PAH are regulated by caveolin [250, 252], and 

decreases in the expression of CAV1 and number of caveolae have been reported in 

endothelial cells in clinical and experimental cases of PAH [126, 236, 251, 253, 257].  

 

Interestingly, recent genetic analysis of PAH patients with both familial and idiopathic 

forms of PAH has identified novel heterozygous frameshift mutations in CAV1 

(CAV1_P158fsX22, and CAV1_H158fsX22, respectively) [16].  Patients are 

heterozygous for the mutant CAV1 genes.  Both frameshift mutations are predicted to 

generate a mutant form of CAV1 that is one amino acid longer than the wild-type protein 

and contains a novel C-terminus (residues 159-179) (Figure 9).  Remarkably, the 

predicted protein sequences of the familial and idiopathic mutations are nearly identical 

with the exception of the first affected residue of the mutant portion of the protein [16].  

Immunostaining of tissue sections obtained from a lung biopsy of one of the patients 

revealed substantially decreased CAV1 levels in endothelial cells compared to healthy 

controls [16].  Total CAV1 protein levels were also decreased to less than 50% of 

control levels in skin fibroblasts isolated from patients carrying one wild-type copy of 

CAV1 and one copy of CAV1_P158fsX22 (here referred to as CAV1-P158) compared to 

control fibroblasts isolated from healthy subjects expressing only wild-type CAV1 [16].  

Very recently, additional mutations of the C-terminus of CAV1 have been linked to PAH, 

further implicating a critical role for both CAV1 and caveolae in this disease [13-15].   

However, how the expression of mutant forms of CAV1 impacts the assembly and 

function of caveolae and ultimately contributes to PAH have yet to be determined.   

 

Here, we examined the effects of the naturally occurring familial CAV1-P158 frameshift 

mutation in CAV1 on caveolae formation using a combination of cell biological and 

biochemical approaches in patient fibroblasts.  We show that in heterozygous patient 

fibroblasts expressing both mutant and wild copies of the protein, CAV1 is correctly 

incorporated into caveolae.  However, overall levels of CAV1, caveolar accessory 

proteins, and caveolae are reduced. As a result, patient cells exhibit corresponding 

defects in the function of caveolae as membrane reservoirs.  These findings thus define 

a new mechanism by which CAV1 mutants disrupt cellular function.  They also suggest 
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that decreased levels of CAV1, caveolae accessory proteins, and/or caveolae may 

contribute to the development of PAH in patients expressing the CAV1 mutants. 

 
4.2 Results 
 
4.2.1 The Density of Caveolae and CAV1 Protein Levels are Reduced in Patient 
Fibroblasts Expressing CAV1-P158 
In the previous study reporting the identification of CAV1-P158, Western blotting 

analysis showed that CAV1 expression is reduced in patient skin fibroblasts compared 

to skin fibroblasts derived from healthy humans that express only wild-type CAV1 [16]. 

To test whether reduced CAV1 expression decreased the abundance of caveolae, we 

carried out electron microscopy for higher resolution analysis of morphologically 

identifiable caveolae in patient fibroblasts and the wild-type controls.  Interestingly, 

characteristic flask-shaped caveolae at the plasma membrane were readily detected in 

patient cells, and their overall appearance was similar to those observed in control 

fibroblasts (Figure 21A).  We quantified the numbers of caveolae by morphologically 

defining them as uncoated circular or flask-shaped structures with diameters between 

50-80 nm found no more than 200 nm from the plasma membrane.  Using these criteria, 

we found that there were fewer caveolae in patient cells compared to controls (Figure 

21B) in agreement with the reduced levels of CAV1 in patient cells previously reported 

by our collaborators [16]. 
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Figure 21. Caveolae and CAV1 Levels are Reduced in Patient Fibroblasts Expressing CAV1-P158. 
(A) Representative, cropped electron micrographs of control and patient skin fibroblasts. Images were 
acquired at 30,000x magnification. For purposes of illustration, the density of caveolae in these images is 
higher than the average values quantified in panel B.  Scale bar, 500 nm. (B) Quantification of number of 
caveolae per micrometer membrane in patient and control fibroblasts.  Caveolae were counted in 25 
images each from 3 patient and 3 control cell lines in two independent experimental replicates and one 
experiment for 1 control and 1 patient cell line.  *, p < 0.01, Students T-test. (C) Western blots of CAV1 in 
control and patient fibroblasts using N-term (anti-CAV1 pAb) and C-term (anti-CAV1 RmAb) specific 
antibodies, β-tubulin is the loading control. Data are representative of 3 independent experiments. (D) 
Schematic of full-length type and mutant CAV1 with the novel mutant C-terminus in red and epitopes 
recognized by N-terminal and C-terminal CAV1 antibodies.  Both N-terminus antibodies (pAb aa. 1-97-
blue dashed box; mAb aa.61-71-green dashed box) can recognize mutant and wild-type CAV1α/β.  The 
C-terminal CAV1 (aa.156-172) antibody recognizes the region of wild-type CAV1α/β  (grey dashed box) 
that is unique from the CAV1 frameshift mutant. (E) Tandem mass spectrometry was used to determine if 
CAV1-P158 was expressed in patient fibroblasts. CAV1 protein from lysates of a patient fibroblast cell line 
was immunoprecipitated using anti-CAV1 (aa. 1-97), separated by SDS-PAGE and coomassie stained. 
Immunoprecipitated CAV1 was also detected in immunoblots with anti-CAV1 α/β (aa. 61-71).  The region 
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Figure 21 continued. of the SDS-PAGE gel that corresponded to the position of the CAV1 band in the 
immunoblot was excised and analyzed by mass spectrometry to determine if unique peptides of the novel 
C-terminus of CAV1-P158 were detectible in patient cells. (F) Peptides from CAV1 mutant’s unique C-
terminus are detected by MS/MS and are indicated in red in this spectrum. (C, E: Bing Han, Ph.D.) 
 

To estimate the relative expression levels of mutant and wild-type CAV1 in the patient 

fibroblasts, we took advantage of a commercially available C-terminal antibody that is 

predicted to specifically only detect the wild-type form of endogenous human caveolin-1 

and not the frameshift mutant due to the change in amino acid sequence of the C-

terminus. In concert with initial studies showing that patient fibroblasts have decreased 

total protein levels of CAV1, similar findings were observed when we tested patient 

samples using the same N-terminal antibody predicted to detect both wild type and 

mutant CAV1α/β [16].  In addition, even less CAV1 was detected by the C-terminal 

antibody than by the N-terminal antibody in patient cells relative to controls (Figure 

21C).  This also suggests that the mutant CAV1 protein is expressed.  Assuming that 

the frameshift mutant is not detected by the C-terminal antibody, we estimate that 

approximately 25% of the CAV1 protein present in patient cells consists of the mutant 

form of the protein.   

 
Our western blot data implies that a small amount of the mutant protein is contributing to 

the total CAV1 protein levels. However we needed to confirm whether the CAV1-P158 

protein is actually expressed.  The frameshift mutation of CAV1 is predicted to generate 

a novel protein sequence that is not normally present in the human genome by BLAST 

analysis.  Initial attempts to generate antibodies against this domain of the protein were 

unsuccessful.  We thus tested for the presence of the peptide that corresponds to the 

region encompassing the mutant C-terminus in patient cells using mass spectrometry 

as an alternative approach.   

 

For the mass spectrometry experiments, CAV1 was immunoprecipitated using an 

antibody directed against the N-terminal region of the protein (aa. 1-97), a region that is 

present in both the wild-type and mutant form of the protein (Figure 21D, E). 

Immunoprecipitated CAV1 was detected by Western blot with an antibody against a 

region within the oligomerization domain (aa. 61-71) (Figure 21D, E).  The region of the 
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gel containing immunoprecipitated CAV1 was excised, in-gel trypsin digested and 

subjected to mass spectrometry analysis (Figure 21E).  Three MS/MS spectra were 

identified that correspond to regions of the novel C-terminus of CAV1-P158 (Figure 21E 

and data not shown).  These findings demonstrate that CAV1-P158 is expressed in the 

patient fibroblasts. 

 

4.2.2 CAV1-P158 is Expressed at Reduced Levels and is Unable to Traffic to 
Caveolae in Cav1-/- MEFs 
The mass spectrometry data showed that the mutant protein is detectible in 

heterozygous patient cells (Figure 21E). Several previously characterized caveolin 

mutants are expressed at low levels and have a shortened half-life [70]. Based on the 

previous finding of reduced total CAV1 protein levels heterozygous in patient cells [16] 

(Figure 21C), we wanted to determine if the mutant protein was expressed at decreased 

levels compared to the wild type protein. Unable to immunologically distinguish the wild 

type form the mutant protein in heterozygous patient cells, we carried out 

complimentary studies in Cav1-/- MEFs that had been transfected with plasmids 

encoding various CAV1 proteins. Consistent with a low amount of the mutant protein 

contributing to the total CAV1 protein levels observed in patient cells (approx. 25%, 

Figure 21), CAV1-P158 levels were also decreased when transfected into Cav1-/- MEFs 

compared to wild type CAV1 constructs, despite similar transfection efficiencies for each 

construct (Figure S.4).  

 

We next wanted to determine if the mutant protein was properly localized. In wild type 

MEFs endogenous Cav1 and cavin-1 (a caveolae accessory protein) normally co-

localize in puncta that are presumably caveolae [75] (Figure 22A). Cav1-/- MEFs lack 

endogenous caveolin-1 but still express other caveolae accessory proteins. In Cav1-/- 

MEFs, endogenous cavin-1 is still expressed at low levels but is abnormally diffusely 

distributed in the cell in the absence of Cav1 (Figure 22B) [75]. We took advantage of 

this in vitro system and generated CAV1-P158 constructs (Figure S.5A; Chapter 2.4) in 

order to independently assess the localization of the mutant in the absence of the wild 

type copy of CAV1, which we were unable to do in heterozygous patient cells. When 
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wild type HA-CAV1 is transfected into Cav1-/- MEFs, endogenous cavin-1 redistributes 

into a punctate pattern and colocalizes with exogenous CAV1 (Figure 22C, D; Figure 

S.5B, C) similarly to the labeling observed in Figure 22A. HA-CAV1-P158 did not 

colocalize with cavin-1 and was observed in vesicles and in a reticular distribution 

(Figure 22E, E’, F). When we quantified the colocalization between either of the CAV1 

constructs and cavin-1, significantly less CAV1-P158 colocalized with cavin-1, 

compared to wild type CAV1, suggesting that few or no caveolae formed upon 

expression of CAV1-P158 (Figure 22F). The inability of CAV1-P158 to form caveolae 

was further substantiated when caveolae were assessed biochemically by detergent-

resistant membrane (DRM) fractionation. While wild type CAV1 was readily detectible in 

DRMS, little or no CAV1-P158 was observed in DRM fractions (Figure 22G). Based on 

these findings, we concluded that CAV1-P158 was expressed at low levels and is not 

able to traffic to the plasma membrane and form caveolae. We carried out the next set 

of experiments to determine the cause of the trafficking defect in CAV1-P158. 
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Figure 22. Reconstitution of Wild Type CAV1 Supports Caveolae Formation in Cav1-/- MEFs but 
CAV1-P158 is Unable to form Caveolae. (A) In positive control Cav1+/+ MEFs, Cav1 (green) colocalizes 
with cavin-1 (red) in puncta that correspond to caveolae. (B) In the absence of Cav1 (green), cavin-1 
(red) is diffuse and not recruited to caveolae in Cav1-/- MEFs. (C, D) Normal distribution of cavin-1/CAV1 
and colocalization with (C) wild type Myc-CAV1, or (D) wild type HA-CAV1. (E, E’) Two representative 
images depicting the abnormal distribution observed for CAV1-P158 and the diffuse distribution of cavin-1 
immunofluorescence in Cav1-/- MEFs. (F) Quantification of CAV1/cavin-1 colocalization. p-values were 
calculated with a two-tailed student’s T-test (***, p<0.0001). Data sets were represented in the graphed 
box-and-whisker plots.  Scale bars represent 10µm. (G) DRMs isolated from transfected Cav1-/- MEFs 
contain higher amounts of wild type Myc-CAV1 (top panel) compared to DRMs isolated from HA-CAV1-
P158 expressing Cav1-/- MEFs (panel 2). Fractions rich in the non-caveolae raft protein Flotillin-1 (panel 
3) are enriched in DRMs, and non-DRMs correspond to fractions containing the non-raft protein, Calnexin 
(bottom panel). (G, Bing Han, Ph.D.) 
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4.2.3 Identification of a de novo ER-Retrieval Signal in the C-terminus of CAV1-
P158 
C-terminal dilysine motifs (KKXX; KXKXX) ranging form the distal -3 to -5 positions 

function as sorting signals for the ER-retrieval to maintain the localization of membrane 

proteins that reside in the ER [258, 259]. Previously published mutational analyses 

showed that the addition of a C-terminal di-lysine motif to Cav1 promotes ER-retention 

[211]. The resulting CAV1-KKSL construct is not only retained in the ER but also is 

targeted to lipid droplets as secondary result of ER accumulation [211]. The subcellular 

distribution of CAV1-KKSL is similar to the localization of CAV1-P158 mutants that we 

observe in Cav1-/- MEFs (Figure 22E, E’; Figure S.5E). Indeed, CAV1-P158 colocalizes 

with the ER and lipid droplets (Figure 23C-E) and a similar dilysine KKXX motif 

resembling that of CAV1-KKSL was identified in the distal C-terminus of CAV1-P158 

encompassing the -3 and -4 positions of the C-terminus (KKYK) (Figures 9 and 23F) 

[16]. Additionally, the mutant is excluded from lysosomes, early endosomes and 

recycling endosomes (Figure S.6A-D), while low amounts of CAV1-P158 have an 

overlapping distribution with the Golgi-marker giantin (~25% transfected cells; Figure 

S.6D). We determined that the mutant protein predominantly colocalizes with the ER 

marker calreticulin (~50% transfected cells) and the lipid droplet marker ADRP (~25% 

transfected cells) (Figure 23E). In contrast, little or no wild type CAV1 is detected in 

these compartments (Figure 23A, B) and the elevated amount of colocalization of the 

mutant with the ER or lipid droplet (roughly 30% of transfected cells) markers is 

statistically significant (Figure 23D, E, F).  
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Figure 23. The CAV1-P158 Frameshift Mutant is Localized to the ER and Lipid Droplets and 
Contains a Putative ER-Retrieval Signal in the form of a C-terminal Dilysine Motif. 
Immunofluorescence staining of CAV1 constructs (green) in Cav1-/- MEFs labeled with the ER marker 
calreticulin (CalR, red) and the lipid droplet marker ADRP (cyan).  (A, B) Wild type Myc-CAV1 or HA-
CAV1 transfected Cav1-/- MEFs (green) does not co-localize with the ER protein calreticulin (CalR, red) or 
the lipid droplet protein, ADRP (cyan) in transfected Cav1-/- MEFs. (C) Immunofluorescence staining of 
HA-CAV1-P158 (green), CalR (red) and ADRP expressed in Cav1-/- MEFs. (D) Colocalization analysis of 
wild type and mutant CAV1 constructs with CalR with Pearson’s correlation coefficient (PCC). (E) 
Colocalization analysis of wild type and mutant CAV1 constructs with ADRP. Data sets were represented 
in the graphed box-and-whisker plots. P-values were calculated with a student’s T-test (***, p<0.0001). (F) 
Amino acid sequence alignment comparing the distal C-terminus of wild type CAV1 and CAV1-P158 (aa. 
158-178/9). The dilysine motif (KKYK) in CAV1-P158 is in bold, underlined text. Scale bars represent 
10µm. 

 

4.2.4 Mutational Analysis of the Dilysine Motif to Test its Function as an ER-
Retrieval Signal 
Next, I wanted to test whether or not the putative dilysine motif was functioning as an 

ER-retrieval signal. ER-retrieval signals must be positioned at the distal C-terminus to 
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function and are sensitive to substitution and deletion mutations. Tagging membrane 

proteins that contain dilysine motifs on the C-terminus can also disrupt ER-retrieval. 

Thus, membrane proteins bearing dilysine motifs that have been mutated/deleted or 

fused to a C-terminal tag escape ER retention and traffic to the plasma membrane [258-

260]. In line with this, a version of the CAV1-P158 mutant tagged on the C-terminus with 

mEmerald has a normal subcellular distribution, colocalizes with cavin-1 and was 

detected in DRMs (Figure S.5D, F) similarly to wild type CAV1 (Figure 22C, D, F, G; 

Figure S.5B, C, F). This is in contrast to the behavior of the N-terminally mEmerald-

tagged CAV1-P158 mutant (Figure S.5E).  

 

To further test the function of the putative dilysine motif in CAV1-P158 (KKYK; aa. 176-

179), I wanted to determine if disrupting the dilysine motif would rescue the trafficking 

defect of CAV1-P158. To do so, I deleted the amino acids encompassing the dilysine 

motif (aa. 176-179; CAV1-P158-ΔKKYK) or substituted the lysine residues (K176, K177) 

of the ER-retrieval signal with alanines (CAV1-P158-AAYK) and assessed their 

subcellular distribution (Figure 24; Chapter 2.4). I found that the CAV1-P158 lysine 

mutants exhibited little or no colocalization with the ER and LD markers (Figure 24B, C). 

Quantifying the colocalization between CAV1-P158-AAYK and CAV1-P158-ΔKKYK with 

either the ER or LD marker revealed that both mutants behave identically to each other 

and also mirror the localization of wild type CAV1 (Figure 24E, F), suggesting that 

disrupting the dilysine motif allowed the protein to exit from the ER. 

 

To test if the CAV1-P158 dilysine motif (KKYK) is sufficient to target proteins to the ER 

and lipid droplets, I introduced KKYK into the C-terminus of wild type CAV1 (CAV1-

KKYK) to determine if this experimental mutant phenocopied the trafficking defect of 

CAV1-P158 (Figure 24A). CAV1-KKYK colocalizes with ADRP in lipid droplets; 

however, very little colocalizes with calreticulin in the ER (Figure 24D). This suggested 

that the rate of ER-to-lipid droplet transport is increased in this construct. Colocalization 

analysis also indicates that CAV1-KKYK colocalizes with lipid droplets to the same 

degree as CAV1-P158, and this is significantly higher when compared to wild type 

CAV1.  
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Figure 24. Mutational Analysis Probing the Role of the Dilysine Motif in the Abnormal Localization 
of CAV1-P158. (A) C-terminal amino acid sequence experimental mutants generated from CAV1-P158 
template to disrupt the dilysine motif by alanine substitution (top, HA-CAV1-P158-AAYK; aa. 176-177), 
truncation (middle, HA-CAV1-P158-ΔKKYK; aa. 176-179) or by introducing the KKYK peptide into the C-
terminus of wild type CAV1 (bottom, HA-CAV1-KKYK; aa. 179-182). (B-F) Cav1-/- MEFs transfected with 
experimental CAV1 constructs were triple-immuno-labeled with antibodies against tagged CAV1 (green), 
CalR (red) and ADRP (cyan). (B) HA-CAV1-P158-AAYK (green) fluorescence is absent from the ER (red) 
and lipid droplets (cyan). (C) HA-CAV1-P158-ΔKKYK (green) labeling is also absent from the ER (red) 
and lipid droplets (cyan). (D) HA-CAV1-KKYK (green) and (E) have an apparent wild type localization 
(refer to 4B). (F) CAV1-KKYK has a distribution that resembles both wild type CAV1 and CAV1-P158. 
Graphs represent colocalization analysis between CAV1 and CalR (E) and ADRP (F). p-values were 
calculated with a student’s T-test, data sets are graphed as box-and-whisker plots. Scale bars represent 
10µm. 

 

In order to determine if these mutants were able to form caveolae, I additionally 

analyzed endogenous cavin-1 immunofluorescence in expressing the experimental 
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mutants. Cavin-1 is a caveolae accessory protein that is routinely used in 

immunofluorescence experiments as a marker of caveolae [75, 92, 242]. Similar to wild 

type CAV1 (Figure 22C, D), both CAV1-P158-AAYK and CAV1-P158-ΔKKYK colocalize 

with cavin-1 (Figure 25A, B, D) suggesting they are targeted to the PM and recruit the 

necessary components for caveolae formation. A portion of the CAV1-KKYK mutant 

also colocalizes with cavin-1 (Figure 25C, D), which is not observed in CAV1-P158 

(Figure 22; Figure S.5). This raises the possibility that the unique CAV1-P158 C-

terminal residues 158-175 actually may contribute to ER accumulation independently of 

the ER-retrieval signal (176-179). In support of this, significant amounts of CAV1-P158-

AAYK and CAV1-P158-ΔKKYK colocalized with the ER marker compared to wild type 

CAV1 (Figure 24E). 

 

Figure 25. Colocalization of Cavin-1 and Experimental Dilysine Mutants. Colocalization between 
CAV1 constructs (green) and the caveolae accessory protein cavin-1 (red) in transfected Cav1-/- MEFs. 
(A) HA-CAV1-P158-AAYK (green). (B) HA-CAV1-P158-Δ-KKYK (green). (C) HA-CAV1-KKYK (green). 
(D) Colocalization was quantified with Pearson’s correlation coefficient (PCC). P-values were calculated 
with a two-tailed student’s T-test. ***=p<0.0001. Scale bars represent 10µm. 



 91 

 
4.2.5 CAV1-P158 Functions as a Dominant Negative and Disrupts Wild Type CAV1 
Trafficking in Cav1-/- MEFs 
The naturally occurring P158 CAV1 mutant is co-expressed with a wild type copy of 

CAV1 in heterozygous PAH patients. Caveolins are known to oligomerize, which could 

sterically mask ER-retention signal, but it is unclear how co-expression will affect either 

forms of the CAV1 proteins.  Thus, I next co-expressed wild type CAV1 and CAV1-P158 

in Cav1-/- MEFs in order to determine if CAV1-P158 has a dominant negative effect on 

wild type CAV1 or if the mutant trafficking defect is rescued by wild type CAV1. Wild 

type CAV1 and CAV1-P158 were differentially tagged in order to distinguish them in co-

transfected Cav1-/- MEFs. Cav1-/- MEFs co-transfected with two differentially tagged wild 

type CAV1 constructs were included as controls.  

 

First, I used co-immunoprecipitation to determine if the wild type and mutant form 

hetero-oligomers. Control co-immunoprecipitation (co-IP) experiments confirmed that as 

expected, two differentially tagged versions of wild type CAV1 protein could be co-

immunoprecipitated in co-transfected Cav1-/- MEFs. Wild type CAV1 and CAV1-P158 

also co-immunoprecipitated with each other in reciprocal pull-down experiments, similar 

to controls. This indicates that co-transfected CAV1 proteins co-assemble into hetero-

oligomeric complexes in Cav1-/- MEFs (Figure 26A).  

 

In a second set of experiments, I examined subcellular distribution of the exogenous 

CAV1 proteins in co-transfected Cav1-/- MEFs stained to mark the ER, lipid droplets, or 

caveolae. In control co-transfected Cav1-/- MEFs, colocalization of wild type CAV1 

proteins with the ER and lipid droplet markers is not detected (Figure 26B, F; 26D, G). 

However, an increased amount of wild type CAV1 colocalizes with both the ER and lipid 

droplets when it is co-expressed with CAV1-P158 (Figure 26C, F) (Figure 26E, G). 

Taken together, these results support the hypothesis that CAV1-P158 behaves as a 

dominant negative. 
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Figure 26. Wild Type CAV1 is Partially Mislocalized to the ER and Lipid Droplets in Cav1-/- MEFs 
Co-Expressing CAV1-P158. (A) Co-IP of wild type HA-CAV1 or HA-CAV1 P158 with wild type Myc-
CAV1 using an anti-Myc antibody from lysates of co-transfected Cav1-/- MEFs (Wt/Wt and Wt/P158). An 
anti-HA antibody was used to blot for co-immunoprecipitated proteins. A reciprocal experiment was done 
using an anti-HA to pull down oligomerized HA-CAV1 or HA-CAV1-P158 and co-immunoprecipitated 
Myc-CAV1 was detected with an anti-Myc antibody. (B-D) Co-staining and colocalization analysis (graph) 
of the ER marker Calreticulin/CalR (cyan) in Cav1-/- MEFs co-expressing wild type Myc-CAV1 (red) and 
(E) wild type HA- CAV1 (green) or (F) mutant HA-CAV1-P158 (green). (G) Colocalization data is plotted 
on box and whisker plots for CalR in Wt/Wt and Wt/P158 co-transfected Cav1-/- MEFs. (E-F) Co-staining 
and colocalization analysis (graph) of the lipid droplet marker ADRP (cyan) in Cav1-/- MEFs co-expressing 
wild type Myc-CAV1 (red) and (E) wild type HA- CAV1 (green) or (F) mutant HA-CAV1-P158 (green). (G) 
Colocalization data is plotted on box and whisker plots for ADRP in Wt/Wt and Wt/P158 co-transfected 
Cav1-/- MEFs.  (***, p<0.0001). p-values were calculated with a student’s T-test. Scale bars represent 
10µm. 
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I went on to assess caveolae formation by measuring the colocalization of the CAV1 

constructs with the caveolae marker cavin-1 in co-transfected Cav1-/- MEFs. Wild type 

forms of CAV1 colocalize with each other and cavin-1 in co-transfected Cav1-/- MEF 

controls. Wild type CAV1 also partially colocalizes with cavin-1 when co-expressed with 

CAV1-P158; however, this is significantly reduced compared to controls (Figure 27B-D). 

I also found that the degree of colocalization between wild type CAV1 and CAV1-P158 

is lower in co-transfected Cav1-/- MEFs than that observed between wild type CAV1 

constructs in control co-transfections (Figure 27D). Taken together, these findings 

suggest that co-expression of wild type CAV1 partially corrects the trafficking defects of 

CAV1-P158, but that CAV1-P158 also causes mislocalization of wild type CAV1. These 

results further support the conclusion that CAV1-P158 functions as a dominant 

negative. 
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Figure 27. CAV1-P158 is more Detergent-Resistant when Co-Expressed with Wild Type CAV1 but 
Recruitment of Cavin-1 is Less Efficient in Co-Transfected Cav1-/- MEFs. (A) Detection of CAV1-
P158 in DRMs is increased when it is co-expressed with wild type CAV1 in Cav1-/- MEFs. (B) Co-
expressed wild type CAV1 constructs (Myc/HA-tagged; Wt/Wt) colocalize with cavin-1. (C) Reduced 
colocalization between wild type CAV1 and cavin-1 is observed in Cav1-/- MEFs co-expressing Myc-CAV1 
and HA-CAV1P158 (Wt/P158). (D) Colocalization analysis of CAV1 constructs and cavin-1 in Cav1-/- 
MEFs co-expressing two wild type CAV1 proteins or a wild type and a mutant CAV1 protein was 
determined by Pearson’s correlation coefficient (PCC). p-values were calculated with a two-tailed 
student’s T-test, and the data plotted as box-and-whisker plots in the graphs (***, p<0.0001). Scale bars 
represent 10µm. (A, Bing Han, Ph.D.) 
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4.2.6 CAV1 is not Detectible in the ER or Lipid Droplets in Patient Fibroblasts  
I wanted to confirm the findings from the co-transfection studies and determine if CAV1 

is mistargeted to the ER and lipid droplets in heterozygous patient fibroblasts. To test 

this, the subcellular distribution of CAV1 in wild type control and patient fibroblasts was 

analyzed by immunofluorescence microscopy. A caveat to labeling patient cells is that 

currently available antibodies either detect both wild type and mutant CAV1 or only 

detect wild type CAV1. Therefore, CAV1-P158 is indistinguishable from wild type CAV1 

by antibody labeling in heterozygous patient cells (Figure 21D). With this in mind, I 

stained control and patient fibroblasts with a CAV1 antibody that is predicted to detect 

wild type and mutant CAV1. I found that the immuno-staining pattern of CAV1 was 

indistinguishable in control and patient fibroblasts (Figure 28A); the overall subcellular 

distribution of CAV1 in patient fibroblasts appeared to be normal and was not detectible 

in the ER or lipid droplets (Figure 28A-C).  This suggests that in patient cells, despite 

the presence of a mutant copy of CAV1, CAV1 is delivered to the plasma membrane 

where it appears to form caveolae (Figure 22A).   

 

Control and patient fibroblasts were additionally labeled with a C-terminal anti-CAV1 

(156-172) antibody that specifically only detects wild type CAV1 (Figures 22D, 28D-G; 

Figure S7). This antibody normally only detects CAV1 in the Golgi complex and is 

unable to label CAV1 in caveolae unless cells have been treated with reagents to 

deplete cholesterol and lipids [182]. This is because this antibody detects an exposed 

C-terminal epitope of CAV1 in 8S oligomers that have not fully assembled into 70S 

complexes in the Golgi compartment. This epitope is masked during the assembly of 

70S complexes, after CAV1 undergoes conformational changes and associates with 

cholesterol as it traffics from the Golgi complex to caveolae [8, 245, 261, 262]. 

Therefore, this antibody only detects CAV1 in the Golgi complex and not in caveolae 

unless the conformation of CAV1 is abnormal or the composition of lipids is altered or 

extracted from cells [194]. In our previous studies in Chapter 3 [13], abnormal epitope 

accessibility indicated by labeling of extra-Golgi puncta (presumably caveolae) was 

observed in CAV1-F160X heterozygous patient cells. Extra-Golgi labeling in caveolae 

with this antibody is therefore indicative of changes in the conformation and/or lipid 
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composition of caveolae [182]. This led me to use this antibody to test for changes in 

the organization of wild-type CAV1 complexes that form in CAV1-P158 heterozygous 

patient fibroblasts. The C-terminal antibody preferentially labeled only Golgi-associated 

CAV1 in both patient and control cells (Figure 28B-E). However, a significant decrease 

in colocalization with both Golgi markers was observed. I speculate that this is because 

the specificity of this antibody is to wild type CAV1, and there is therefore at least half as 

much wild type CAV1 being labeled in heterozygous patient fibroblasts compared to 

controls. Thus, the accessibility of the C-terminus of wild-type CAV1 is not noticeably 

changed in patient cells expressing the frameshift mutant.   
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Figure 28. CAV1 is Distributed Normally in Patient Fibroblasts as Detected by 
Immunofluorescence Microscopy. (A) Cells were labeled with a CAV1 antibody that detects CAV1 in 
caveolae as well as in the Golgi complex.  (B) Control (top panel) and patient (bottom panel) cells co-
stained with the same CAV1 antibody in A and ADRP to label lipid droplets. (C) Quantification of 
CAV1/ADRP colocalization in control (n=41) and patient fibroblasts (n=64). p=0.5488 (D) Control (top 
panel) and patient (bottom panel) cells co-stained with the same C-term-specific CAV1 antibody and the 
cis-Golgi marker GM130. (E) Quantification of CAV1/GM130 colocalization control (n=16) and patient 
fibroblasts (n=18). p=0.0007. (F) Control (top panel) and patient (bottom panel) cells co-stained with the 
same C-term-specific CAV1 antibody and the trans-Golgi marker Golgin97. (G) Quantification of 
CAV1/Golgin97 colocalization control (n=31) and patient fibroblasts (n=41). p=0.0111.  Images are 
representative of multiple cell lines observed over 2-3 independent experiments.  *, p < 0.05, **, p < 
0.01,***, p < 0.001; ns, not significant; T-test. Scale bars, 10 µm.   
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4.2.7 CAV2 and Caveolar Accessory Protein Expression are Reduced in Patient 
Fibroblasts but Colocalization with CAV1 is Normal  
CAV1 and CAV2 form hetero-oligomers [44, 51, 241], and CAV1 deficiency leads to a 

concomitant decrease in CAV2 expression levels [11, 263].  Reduced CAV1 levels are 

also associated with the accumulation of CAV2 in the Golgi complex and its inability to 

reach the plasma membrane in the absence of CAV1 [11, 263, 264].  Because CAV1 

levels are significantly reduced in patient cells, we asked whether this is associated with 

changes in the expression or subcellular distribution of CAV2.  Consistent with this 

possibility, Western blot analysis showed a 60% reduction of CAV2 levels in control 

fibroblasts (Figure 29A).  However, CAV2 colocalized normally with CAV1 in puncta at 

the plasma membrane (Figure 29B, C).  Some CAV2 was also present in the Golgi 

complex, but this was also the case in control cells.  Thus, although CAV2 levels are 

decreased in patient cells, the expression of mutant CAV1 does not appear to prevent 

delivery of CAV2 to caveolae in heterozygous patient fibroblasts. 
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Figure 29. CAV2 and Caveolae Accessory Protein Expression Levels and Localization in Patient 
and Control Fibroblasts. (A, D, G, J) Western blots of accessory proteins, (B, E, H, K) representative 
immunofluorescence images and quantification of colocalization of control and patient cells co-stained for 
caveolin-1 (C, F, I, L). (A) CAV2 Western blot and quantification. (B) CAV1 (green) and CAV2 (red) 
immunofluorescence; control (top panel), patient (bottom panel. (C) Quantification of CAV1/2 
colocalization (p=0.4514; control n=46; patient n=46). (D) Cavin-1 Western blot and quantification. (E) 
CAV1 (green) and Cavin-1 (red) immunofluorescence; control (top panel), patient (bottom panel. (F) 
Quantification of CAV1/Cavin-1 colocalization (p< 0.0001; control n=54; patient n=61). (G) EHD-2 
Western blot and quantification. (H) CAV1 (green) and EHD-2 (red) immunofluorescence; control (top 
panel), patient (bottom panel. (I) Quantification of CAV1/EHD-2 colocalization (control n=96; patient n=93; 
p=0.4780). (J) PACSIN2 Western blot and quantification. (K) CAV1 (green) and PACSIN2 (red) 
immunofluorescence; control (top panel), patient (bottom panel. (L) Quantification of CAV1/PACSIN2 
colocalization (control n=47; patient n=24, p=0.6703). Western blot quantification: bar represents mean ± 
SD for the 3 control (black squares) or 3 patient (red squares) cell lines.  Data represent 3 independent 
experiments. p-values calculated with Student’s T-test. Scale bars, 10 µm.   Data represent 2-3 
independent experiments for 3 control and 3 patient cells. *, p < 0.05, **, p < 0.01, ***, p < 0.001; ns, not 
significant; T-test. (Western blots: Bing Han, Ph.D.) 
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Caveolae are regulated by a series of CAV1 accessory proteins.  These include Cavin-

1, a protein required for caveolae formation, function and stability [75, 92, 242], EHD-2, 

which regulates the dynamics of caveolae but that is not required for caveolae formation 

[76, 79], and PACSIN2, which plays an essential role in sculpting of caveolar 

membranes [77, 85].  Like CAV2, levels of Cavin-1 are linked to CAV1 expression levels 

[75].  In agreement with this idea, Western blotting analysis showed that levels of Cavin-

1 are reduced in patient cells (Figure 29D). Although this does not affect the distribution 

of Cavin-1, colocalization of CAV1 with Cavin-1 is reduced in patient fibroblasts (Figure 

29E, F).  Like Cavin-1, EHD-2 levels are also decreased in patient fibroblasts (Figure 

29G), but EHD-2 almost exclusively colocalized with CAV1 in punctate structures in 

both patient cells and control fibroblasts (Figure 29H, I). PACSIN2 levels were similar in 

control and patient cells (Figure 29J). In contrast to Cavin-1 and EHD-2, only a partial 

overlap of PACSIN2 and CAV1 staining was observed in both control and patient 

fibroblasts (Figure 29K, L).  This partial CAV1/PACSIN2 colocalization is consistent with 

previous studies [85]. Taken together, these results suggest that expression levels of 

both CAV2 and several caveolar accessory proteins are partially reduced in patient 

cells.  Nevertheless, the fact that CAV1, CAV2, and accessory proteins co-localized in 

discrete puncta suggests that caveolae are present in the patient cells, and that these 

caveolae contain the normal complement of known caveolar accessory proteins.  

 
4.2.8 High-Molecular-Weight Oligomers of CAV1 are Detectible in Patient 
Fibroblasts 
Our results up until this point suggest that caveolae form correctly in patient fibroblasts, 

but the caveolae density is reduced compared to controls.  To further test for possible 

defects in caveolae, we next examined the ability of CAV to form oligomeric complexes 

using blue native polyacrylamide gel electrophoresis (BN-PAGE).  Endogenous CAV1 

typically migrates as ~600 kDa complexes using this approach [109, 229].  Defects in 

oligomerization of CAV1 can also be readily detected using BN-PAGE, which are 

observed as low molecular weight bands or smearing of bands in the BN-PAGE blot 

[109, 229].   
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As a control for these experiments, we assessed HeLa cells transfected with a CAV1 

mutant known to disrupt the CAV1 oligomerization, CAV1-P132L [109, 246]. In addition 

to CAV1-P132L-GFP transfected HeLa cells, we included a series of control cell lysates 

from untransfected HeLa cells and HeLa cells expressing EGFP or a wild-type Cav1 

EGFP fusion protein (Cav1-GFP).  Consistent with our recent report [229], we found 

that when cells are transiently transfected with Cav1-GFP, the exogenous tagged CAV1 

and endogenous CAV1 form two separate high-molecular-weight complexes.  The 

former is ~800 kDa (Figure 30A, green arrow) and the latter is ~600 kDa (Figure 30A 

red arrow).  These two bands likely correspond to the core unit of the 8S Cav1 oligomer 

[229].  In contrast, CAV1-P132L-GFP fails to form a normal ~800 kDa band, instead 

forming an irregular smear (Figure 30A). 
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Figure 30. CAV1 Incorporates into CAV1/CAV2 Hetero-Oligomers in Patient Fibroblasts.  Control 
and patient skin fibroblasts were subjected to BN-PAGE and the indicated proteins immunoblotted.  
Untransfected HeLas and HeLas transiently expressing eGFP, Cav1-GFP, or CAV1-P132L-GFP were 
used as controls. (A) Western blots from BN-PAGE were probed with anti-CAV1 (1-97) (red text and 
arrow) or anti-GFP (green text and arrow) antibodies.  The red arrow indicates the position of complexes 
containing endogenous CAV1 and the green arrow shows complexes containing Cav1-GFP or CAV1-
P132L-GFP. Data are representative of at least 3 independent experiments.  (B) Blots probed with 
antibodies against CAV1 oligomerization domain (61-71; first blot), the C-terminal domain (156-172; 
middle blot) and CAV2 (last blot) are shown. Data are representative of 2-3 independent experiments. 
(Bing Han, Ph.D.) 
 

In patient fibroblasts, CAV1 formed high-molecular-weight complexes similar to those 

observed in control fibroblasts and HeLa cells (Figure 30A).  This strongly suggests that 

expression of the mutant CAV1 does not disrupt the oligomerization into the core 8S 

CAV1 unit.  Furthermore, CAV1 and CAV2 co-migrated in both control and patient cells 
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(Figure 6B).  Thus, the presence of the mutant protein also does not appear to interfere 

with the formation of CAV1/CAV2 hetero-oligomers.   

 

We also probed the blots with two different CAV1 antibodies against the oligomerization 

domain (61-71; mAb 2297) and the C-terminal domain (156-172; RmAb) (Figure 30B). 

The oligomerization domain epitope recognized by mAb 2297 is found in both the wild 

type and mutant form of the protein.  As mentioned above, anti-CAV1-C-term can only 

recognize wild-type CAV1.  Both antibodies recognize the same band, which suggests 

that mutant and wild type CAV1 forms hybrid complexes (Figure 30B).  In all cases, we 

noted that CAV1 isolated from patient fibroblasts is present at lower levels than in 

control fibroblasts, and also exhibits a slight mobility shift.  The exact cause of this shift 

is unknown but may possibly reflect the presence of the mutant protein (which is one 

amino acid longer than wild type CAV1) in the complexes.  From these experiments, we 

conclude that CAV1 forms hetero- and homo-oligomeric complexes normally in patient 

fibroblasts, and that mutant CAV1 and wild-type CAV1 are likely to interact with one 

another normally as well. 

 

4.2.9 CAV1 and CAV2 Incorporate Normally into 8S and 70S Complexes in Patient 
Cells 
CAV1 oligomerizes into at least two distinct complexes as it traverses the secretory 

pathway, an 8S complex and a 70S complex [8].  The 8S complexes have been 

hypothesized to correspond to a hetero-oligomer of CAV1 and CAV2 formed early in the 

secretory pathway in the ER, whereas the 70S complex has been proposed to 

represent the formation of a higher order CAV1 scaffold that assembles in the Golgi 

complex [8].  These two complexes partition in distinct fractions when analyzed by in 

velocity sucrose gradient centrifugation [8].  This partitioning distribution of these 

fractionated complexes is disrupted when there is an oligomerization defect in caveolin-

1, such as that induced by the P132L mutation [8]. 
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Figure 31. CAV1 Associates with 8S and 70S Complexes in Patient Fibroblasts. (A) Extracts 
prepared from control and patient fibroblasts were run through 10-40% sucrose velocity gradients and the 
resulting fractions analyzed by Western blot for CAV1 and CAV2.  Both CAV1 and CAV2 associated with 
8S and 70S oligomeric species in both control and patient cells.  For each fraction, 10 ml of sample was 
loaded.  (B) Note that all three patient cells lines contained slightly larger amounts of 8S complexes than 
were seen in control cells.  Data are representative of 1-2 independent experiments per cell line. (Bing 
Han, Ph.D.) 
 

To determine if the formation of these complexes occurs normally in patient cells, rate-

zonal sucrose gradient centrifugation was used to analyze the organization of CAV1 

complexes (Figure 31).  CAV2, which forms complexes with CAV1, was examined as an 

internal control.  Both CAV1 and CAV2 localize normally to 8S and 70S complexes in 

patient fibroblasts relative to controls.  The finding that 8S and 70S complexes appear 

to form correctly in patient cells expressing the frameshift mutant of CAV1 further 

suggests that the mutant protein does not significantly interfere with the ability of CAV1 

to form homo- and hetero-oligomers that ultimately are incorporated into caveolae.  We 

did however observe slightly more CAV1 in fractions corresponding to 8S complexes 

than 70S complexes in patient fibroblast compared to controls (Figure 31A).  It is thus 

possible that in the patient cells there is a subtle defect in the incorporation of 8S 

complexes into caveolae. To further assess the stability of the 8S complexes, we 

extracted cells using an SDS-containing lysis buffer (0.2% Triton X-100 + 0.4% SDS), 

which was previously shown to completely disassemble the 70S complexes into 8S 

oligomer subunits, which remains intact in wild type CAV1-expressing cells [8].  Under 

these conditions, almost all of the CAV1 complexes were disassembled to monomers or 

small oligomers in patient cells, whereas the CAV1 from control fibroblasts remained 
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associated with intact 8S oligomers (Figure 31B).  Thus, the stability of the 8S 

complexes is decreased in patient cells. 

 
4.2.10 Caveolae from Patient Cells Exhibit Decreased Detergent-Resistance 
Detergent resistant membranes (DRMs) have long been considered the in vitro 

biochemical counterpart of caveolae and lipid rafts [8, 246, 265].  Although the 

interpretation of this assay has a number of limitations, it is a useful way to assess the 

characteristic biochemical properties of CAV1, a highly detergent-resistant protein.  

Several additional proteins associated with caveolae are also known to at least partially 

co-fractionate with DRMs, such as CAV2 [266] and Cavin-1 [93, 266].  We therefore 

tested whether caveolae-associated proteins from patient cells maintain full detergent 

resistance.  Flotillin-1, a protein whose detergent resistance does not depend on CAV1 

expression [267], was used as a positive control for DRMs for these studies, and 

calnexin served as a marker for detergent soluble fractions (Figure 32). 

 

In cells extracted with cold 0.5% Triton X-100, both CAV1 and CAV2 accumulate in 

detergent resistant fractions to a similar extent in patient and control cells.  CAV2 co-

fractionates with CAV1 perfectly in both patient and control cells, and Cavin-1 and EHD-

2 partially co-fractionates with CAV1.  However, in patient cells, Cavin-1 is completely 

lost from caveolar fractions, and levels of EHD-2 in DRMs are decreased (Figure 32A, 

B).  These results suggest that expression of the PAH-related mutant CAV1-P158 may 

weaken the affinity of accessory proteins for caveolae. 

   

We also assessed the effect of increasing detergent concentration to determine whether 

caveolae/CAV1-rich DRMs in patient cells were equally detergent resistant as controls.  

When extraction protocol was increased from 0.5% to 1% TX-100, differences between 

the patient and control cells become more evident.  Caveolae from control fibroblasts 

largely retain their detergent-resistant properties in increased detergent, whereas a 

substantial shift of CAV1 from detergent resistant to more detergent soluble fractions is 

observed for the patient cells (Figure 32C).  Co-fractionation of EHD-2 with CAV1 in 

DRMs was also totally lost in patient cells under these conditions.  These results 
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indicate that the PAH-related mutation on C-terminus may not only slightly decrease the 

affinity of accessory proteins for caveolae, but also impact the biochemical properties of 

caveolae.  

 

Because CAV1 levels are reduced in patient cells (Figure 21) [16], we also asked 

whether the absolute amount of CAV1 associated with detergent resistant fractions is 

different for control and patient cell lines.  To carry out this analysis, we loaded equal 

amounts of DRM-derived protein (Figure 32B, D).  These results show approximately 

50% less CAV1 is present in DRMs from patient cells than controls isolated in 0.5% TX-

100, and even less in patient cells isolated in 1% TX-100.  This suggests that the 

decreased expression of CAV1 levels observed in patient cells also decreases the 

number of caveolae as estimated by DRM isolation, a result consistent with our EM 

dataset. 

Figure 32. Caveolae are Less Detergent Resistant in Patient Fibroblasts. DRMs were fractionated on 
sucrose gradients from control and patient fibroblasts extracted using either (A, B) 0.5% or (C, D) 1.0% of 
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Figure 32. Continued. cold Triton X-100.  (A, C) Western blots of fractions from sucrose gradients were 
probed with antibodies against the indicated proteins.  Fraction 1 is the top of the gradient, and fraction 14 
is the bottom.  Fractions corresponding to DRMs are indicated with red lines.  Note the marked decrease 
in levels of CAV1 in DRMs in patient cells extracted in 1.0% TX-100 relative to control cells.  Two different 
exposures are shown for EHD-2 to show the fraction associated with DRMs. (B, D)  (Top) DRM fractions 
were pooled for each cell line and equal amounts of protein were analyzed by SDS-PAGE followed by 
Western blotting.  Samples were blotted for with an anti-CAV1 (1-97) antibody and anti-flotillin-1. Data in 
A and D are representative of one patient and one control cell line out of the 3 patient and 3 control cell 
lines examined at each detergent concentration.  (Bing Han, Ph.D.) 

 

4.2.11 Patient Fibroblasts Demonstrate Decreased Resistance to Osmotic Stress 
Recent studies indicate that one function of caveolae is to serve as a membrane 

reservoir [268].  Caveolae flatten in response to mechanical or osmotic stress, and cells 

that contain fewer caveolae show decreased viability following stress [268].  Because 

patient fibroblasts contain fewer caveolae than wild-type cells, we hypothesized that 

they may exhibit lower buffering capacity when subjected to oncotic swelling to stretch 

the plasma membrane.  To test this, we subjected cells to osmotic stress by 10 min 

incubation in hypotonic media (10-fold dilution) (Figure 33).  Cell viability was assessed 

using a live/dead assay. Before treatment, the vast majority of cells were viable and had 

a fibroblastic spindle shape (green).  After 10 minutes treatment, over 50% of wild-type 

cells were still alive, compared to around 25% of patient cells (Figure 33).  These results 

indicate that the expression of mutant CAV1 sensitizes the fibroblasts to osmotic stress, 

and by extension likely also shear stress as well.   
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Figure 33. Patient Fibroblasts Demonstrate Increased Susceptibility to Hypo-Osmotic Stress.  (A) 
Representative images of cells before and after 10 minutes of hypo-osmotic challenge.  Bar, 10 mm.  (B) 
Quantification of cell viability under control and hypo-osmotic conditions. Data represent the mean of at 
least 4 independent experiments in which at least 9 fields of cells were analyzed for each cell line. (Bing 
Han, Ph.D.) 
 
4.3 Discussion 
 

Although CAV1 has been linked to a number of diseases, relatively few examples of 

disease-associated mutations of the protein have been identified.  The recent discovery 

of mutations in CAV1 associated with PAH [16] thus offers a unique opportunity to study 

the role of CAV1 and caveolae in both normal cellular function and disease.  In the 

current study, we investigated the impact of the expression of a familial PAH-associated 

frameshift CAV1 mutant, CAV1-P158, on caveolae assembly in patient skin fibroblasts 

co-expressing a wild-type form of CAV1 and in reconstituted Cav1-/- MEFs.  Here, we 

report that a PAH-associated mutant of CAV1 (CAV1-P158) contains an ER-

retention/retrieval motif, targets to lipid droplets and does not form caveolae.  These 

defects in turn negatively impact the ability of wild type CAV1 to form caveolae when co-

expressed in Cav1-/- MEFs. These findings thus reveal a novel dominant-negative role 

of CAV1-P158 in the pathogenesis of PAH and offer a mechanism by which CAV1 

mutations may contribute to human disease.  
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We determined that the mutant protein is expressed in patient fibroblasts with mass 

spectrometry (Figure 21D) and CAV1 correctly forms both homo-oligomers and hetero-

oligomers with CAV2 (Figure 30). CAV1 also forms 8S and 70S complexes correctly 

and is targeted to the plasma membrane, where it recruits multiple accessory proteins 

known to normally associate with caveolae (Figures 29-32).  Moreover, by electron 

microscopy, intact caveolae are readily observed in patient fibroblasts, despite reduced 

CAV1 expression in patient fibroblasts (Figure 21A) [16]. We could not distinguish the 

wild type protein from the mutant with the antibodies used in these studies. Therefore 

we expressed a plasmid encoding CAV1-P158 in Cav1-/- MEFs to independently 

investigate the mutant further.  

 

I identified a C-terminal dilysine motif in the PAH-associated CAV1-P158 mutant (Figure 

23). C-terminal dilysine motifs (KKXX; KXKXX) function as sorting signals that promote 

retrieval of ER-resident proteins, which have escaped from the ER [258, 259]. In order 

for dilysine motifs to be recognized by COPI machinery for ER-retrieval, the signal 

peptide must be on the distal C-terminus [269]. This signal becomes masked in the 

CAV-P158-mEmerald construct as a consequence of a C-terminal fusion protein tag, 

nicely explaining why this mutant is normally distributed and associates with DRMs 

(Figure S5) [260]. As a result of the presence of the dilysine motif, the N-terminally 

tagged CAV1-P158 mutant is predominantly localized to the ER and lipid droplets 

(Figure 23). Lipid droplet trafficking of CAV1 is a secondary consequence of ER-

accumulation [270]. Additionally, the ER-retained CAV1-P158 mutant is not observed in 

DRMs and less efficiently forms 8S and 70S complexes that are unstable (Figure 22, 

S5, S7) in support of the hypothesis that CAV1 acquires DRM properties during 

transport from late-Golgi compartments to the PM in caveolae [8]. However, further 

experiments will be required to determine how the mutant C-terminus and/or 

mislocalization contribute to the loss of DRM affinity.  

 

To determine if the CAV1-P158 dilysine motif was sufficient to abrogate caveolae 

targeting and promote ER and lipid droplet accumulation of wild type CAV1, we 

generated a CAV1-KKYK construct. Another group used a similar mutant (CAV1-KKSL) 
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previously to study the consequences of CAV1 accumulation in the ER [270]. As 

expected, CAV1-KKYK was observed in lipid droplets. These results imply that the 

mutant residues 158-176 of CAV1-P158 (which differ from residues158-176 in wild type 

CAV1) contribute to ER-accumulation in addition to the KKYK ER-retention signal. In 

support of this hypothesis, an increased amount of colocalization between CAV1-P158-

AAYK and CAV1-P158-ΔKKYK with the ER are detected despite their ability to traffic to 

caveolae, further suggesting that the remaining mutated residues of CAV1-P158 (aa. 

158-175) influence the rate of ER exit. Surprisingly, this mutant also colocalized with 

cavin-1 in presumable caveolae. 

 

Why is CAV1-KKYK able to traffic to caveolae? The conformation of the CAV1 C-

terminus undergoes changes during the assembly of 8S complexes, which are later 

organized into 70S complexes via the C-terminus [8, 109, 111, 194].   One possibility is 

that the ER-retrieval signal in CAV1-KKYK is susceptible to oligomerization-induced 

masking because it more efficiently assembles into 8S and 70S complexes. This would 

allow some of CAV1-KKYK to exit the ER and traffic to the plasma membrane (Figure 1, 

25) [8, 48, 109, 111, 271]. Examination of the biochemical properties of the 

experimental mutants will further address this question, and will require additional 

investigation. 

 

The colocalization of CAV1-P158-AAYK, CAV1-P158-ΔKKYK, and CAV1-KKYK with 

endogenous cavin-1 in Cav1-/- MEFs is indicative of caveolae formation. We did not 

specifically assess whether these caveolae are morphologically and functionally normal. 

However, preliminary studies using a conformation specific antibody suggest there may 

be some defects in the organization of CAV1 within caveolae (Figure S.8). This antibody 

normally only detects CAV1 in the Golgi complex and is unable to label CAV1 in 

caveolae unless cells have been treated with reagents to deplete cholesterol and lipids 

[182]. Extra-Golgi labeling in caveolae with this antibody is therefore indicative of 

changes in the conformation and lipid composition of caveolae [182]. This strongly 

suggests that there are compositional/conformational defects in the caveolae formed in 

Cav1-/- MEFs co-expressing wild type CAV1 with the experimental mutant constructs. 
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Additional tests to measure the biochemical properties of CAV1 and the lipid 

composition of caveolae under these conditions will be needed in order to support this 

interpretation of our experimental results.  

 

After characterizing the mutant protein independently in Cav1-/- MEFs, we wanted to 

determine if co-expressing wild type CAV1 with CAV1-P158 rescued the trafficking 

defect of the mutant protein or caused the wild type protein to be mistrafficked. 

Caveolins are generally found in 70S complexes within caveolae, of which the 8S CAV1 

oligomer serves as a fundamental building block [8]. Based on the fact that caveolins 

readily assemble into oligomers, I tested the hypothesis that hetero-oligomers of wild 

type CAV1 and CAV1-P158 are formed in cells co-expressing the proteins. I show that 

that wild type CAV1 and CAV1-P158 co-immunoprecipitate and that wild type CAV1 

was partially mistargeted to the ER and lipid droplets in Cav1-/- MEFs co-expressing 

CAV1-P158 (Figure 26). Cavin-1 colocalization with CAV1-P158 was not improved in 

co-transfected cells and in fact (Figure 27), less colocalization between wild type CAV1 

and cavin-1 was observed compared Cav1-/- MEFs co-transfected with two wild type 

CAV1 plasmids. This further supports the conclusion that CAV1-P158 is unable to form 

caveolae and negatively influences the recruitment of wild type CAV1 to cavin-1-positive 

spots. Taken together, these findings support the hypothesis that wild type and mutant 

CAV1 can co-assemble into hetero-oligomers and also suggests that the mutant CAV1 

protein behaves as a dominant negative in co-transfected Cav1-/- MEFs.  

 

We then examined the subcellular distribution of CAV1 in heterozygous PAH patient in 

order to determine whether CAV1 was mislocalized. Unlike the Cav1-/- MEFs, in patient 

fibroblasts CAV1 is neither detectible in lipid droplets nor observed reticular pattern 

indicative of the ER by immunofluorescence microscopy (Figure 28). One possible 

explanation for this finding is that in patient cells, under physiological conditions, the 

mutant protein and/or hetero-oligomers containing wild type CAV1 and CAV1-P158 may 

be targeted for degradation, thereby limiting detection of CAV1 in the ER and lipid 

droplets. In support of this idea, we found that CAV1-P158 was expressed at lower 

levels than wild type CAV1 in Cav1-/- MEFs and that total CAV1 protein levels were also 
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reduced in patient fibroblasts. In fact, we estimate that the mutant protein only 

represents about 25% of the total CAV1 protein levels in heterozygous patient cells 

(Figure 21). In further support of this hypothesis, preliminary data in Cav1-/- MEFs 

indicate that CAV1-P158 colocalizes with VCP/p97, a protein that chaperones candidate 

proteins to the proteasome for degradation (Figure S.9).  

 

An alternative model explaining the apparent “normal” subcellular distribution of CAV1 

in the heterozygous patient cells compared to co-transfected Cav1-/- MEFs is that a 

portion of hetero-oligomers are able to assemble into 70S complexes thereby masking 

the ER retrieval signal of the CAV1 mutant. This model is supported by biochemical 

experiments showing that compared to CAV1-P158 single transfection in Cav1-/- MEFs, 

co-expression with wild type CAV1 resulted in an increased amount of CAV1-P158 in 

DRMs which are thought to be enriched in 70S CAV1 and caveolae [8]. However, at the 

cellular level, CAV1-P158 was not detected in caveolae in Cav1-/- MEFs co-expressing 

wild type CAV1 with CAV1-P158. In fact, compared to control co-transfected cells, 

caveolae localization of wild type CAV1 was significantly reduced in cells co-expressing 

CAV1-P158. Further analysis will be required to resolve these discrepancies. 

 

Although caveolae could be detected in patient fibroblasts, several features of caveolae 

and their associated proteins did however differ in the patient and control fibroblasts.  

First, decreased levels of CAV1 and fewer caveolae were present in patient cells.  This 

is consistent with the observation that CAV1 protein levels are approximately 50% of 

control values.  Second, decreased expression of CAV2 and several caveolae 

accessory proteins was also observed in patient cells.  This is in agreement with reports 

of stabilization of CAV2 by CAV1 [11, 263], correlations between CAV1 and Cavin-1 

expression levels [75], and relationships between Flotillins and caveolin expression 

[272-274].  Finally, CAV1 was less detergent resistant in patient fibroblasts compared to 

controls, and several accessory proteins also appeared to dissociate more readily from 

DRMs.  The mechanism underlying this shift in detergent resistance is not yet known, 

but could potentially be indicative of changes in the lipid composition of caveolae in the 

patient cells.   
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Based on our experimental findings, we propose the following working model (Figure 

34). First, in patient cells newly synthesized CAV1 monomers quickly oligomerize in the 

ER.  Correctly assembled wild type CAV1 homo-oligomers exit the ER and are normally 

trafficked, while homo-oligomers of CAV1-P158 are retained in the ER where they are 

rapidly targeted for degradation thus reducing the available pool of functional CAV1 by 

50%. Hetero-oligomers composed of both wild type CAV1 and CAV1-P158 are likely 

retrieved to the ER (supported by our data) and efficiently degraded. It is unclear if this 

occurs by ubiquitin-dependent/-independent proteasomal degradation, however 

preliminary cycloheximide chase experiments (not shown) suggest the mutant protein 

does indeed have a shortened half-life. This would result in haploinsufficiency, 

supporting the previous reports of reduced protein levels in these patients [16], and 

offers a possible explanation of why CAV1 is not detectible in the ER and lipid droplets 

in PAH patient fibroblasts. Experiments to assess the half-life and studies to identify the 

mechanism CAV1-P158 turnover are currently underway. 
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Figure 34. Proposed Model of CAV1-P158 Behavior, Trafficking and Subcellular 
Distribution in the Absence or Presence of Wild Type CAV1. (A) In control cells, wild type 
CAV1 efficiently exits the ER and is transported from the Golgi complex to the plasma membrane where it 
recruits Cavin-1 and forms caveolae. (B) Unlike wild type CAV1, CAV1-P158 is incapable of supporting 
caveolae formation or Cavin-1 recruitment when expressed on its own due to ER retention and lipid 
droplet targeting in Cav1-/- MEFs. (C) In heterozygous patient cells and co-transfected Cav1-/- MEFs, 
CAV1-P158 can form both 8S and 70S complexes, but these complexes are less stable compared to 
those formed by wild type CAV1. CAV1-P158 appears to be mostly excluded from caveolae, which are 
composed primarily of wild type CAV1 but also display defects in detergent resistance and Cavin-1 
recruitment.  
 
 
Our findings allow us to propose several potential mechanisms by which the PAH 

mutant form of CAV1 may contribute to disease.  First, expression of the CAV1 mutant 

in patient cells impacts the ability of caveolae to function as membrane reservoirs in 

response to membrane stretching following hypo-osmotic challenge.  The simplest 

explanation for this finding is that the decreased number of caveolae in patient cells 

decreases the amount of plasma membrane reserve that can be released in response 

to increased membrane tension induced by oncotic swelling, leading to more rapid 

rupture of the plasma membrane.  Because the lung is composed of cells that are 
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especially rich in CAV1, decreased numbers of caveolae in the pulmonary arteries may 

help explain why the CAV1 mutation causes defects in pulmonary-vascular function 

[16].  Indeed, there is evidence that in both experimental and clinical forms of PAH, 

there is a loss of endothelial CAV1 [253].  In response to mechanical stress-induced 

membrane stretch, caveolae flatten and the caveolar accessory protein Cavin-1 is 

quickly released [268, 275].  Although the downstream consequences of the release of 

Cavin-1 and flattening are still not fully understood, it is likely that they are important for 

cell’s adaptive responses to mechanical stimuli.  In patient tissues primarily affected by 

disease, elevated vessel pressure/resistance associated with PAH may thus provide a 

persistent mechanical stimulus that triggers the pathological compensatory tissue 

remodeling observed in PAH.  Further evaluation of the effects of mechanical stress on 

caveolae in endothelial and smooth muscle cells and mouse models should be able to 

verify this hypothesis in the future.   

 

Secondly, CAV1 coordinates the activity of key modulators of vasoreactive pathways in 

endothelial cells in order to maintain vascular tone [276]. CAV1 deficiency causes 

pathological vascular remodeling and induces pulmonary hypertension in mice and 

humans [276]. In addition to down regulation of CAV1, we also observed decreased 

levels of CAV2 and the caveolar accessory proteins Cavin-1 and EHD-2 in patient cells.  

Flotillin-1 and Flotillin-2 levels were also decreased.  These changes may also 

contribute to disease pathology given that several of these proteins are themselves key 

regulators of human health and disease [277-279].  Thus, down regulation of CAV1 

and/or caveolae accessory proteins may have multiple consequences in signaling 

pathways relevant to PAH.  Changes in CAV1 expression in patient cells may also differ 

between cell types. For example, although decreased levels of CAV1 were observed in 

endothelial cells in sections obtained from a lung biopsy from a PAH patient expressing 

the P158 frameshift mutant, CAV1 staining was still present in surrounding cell types 

[16].  Further work will be required to determine how expression of the CAV1 mutant 

impacts caveolae formation on a cell and tissue-specific level and contributes to the 

development of PAH. 
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CHAPTER 5 
 

DISCUSSION AND FUTURE DIRECTIONS 

 
5.1 General Discussion 
 
5.1.1 Overview  
The projects described in this dissertation were initiated on the basis of the discovery of 

novel CAV1 mutations associated with PAH and CGL. The goal of these studies was to 

characterize the mutant proteins and their effects on caveolae formation. Reduced 

CAV1 and caveolae have been previously implicated in clinical and experimental cases 

of CGL and PAH in the absence of preexisting CAV1 mutations. C-terminal mutations in 

CAV1 have also been shown to disrupt trafficking and the biochemical stability of CAV1 

and CAV1 complexes. We therefore set out to test the hypothesis that the expression of 

CAV1-F160X and CAV1-P158 disrupts caveolae assembly and function as a 

consequence of defects in trafficking and CAV1 complex formation by these mutants. 

Our results indicate that CAV1-F160X is a novel example of a disease-associated 

mutant that causes caveolae defects without decreasing the overall cellular density of 

caveolae or disrupting their function as membrane buffers.  We go on to report that 

CAV1-P158 functions as a dominant negative that ultimately reduces caveolae density. 

This disrupts the mechano-protective influence of caveolae on patient fibroblasts. 

 

5.1.2 CAV1-F160X Truncation Mutant Associated with PAH and CGL 
In chapter 3, the characterization of a CAV1-F160X mutant associated with PAH and 

CGL was described. Soon after we began studying this mutant, two groups 

independently reported the identification of CAV1-F160X associated with PAH and CGL 

in the same patient reported in our studies [14, 15]. Both groups reported reduced 

CAV1 protein levels in patient cells. However, the effects of the expression of this 

mutant protein on caveolae formation and function were not yet known. We tested the 

hypothesis that the decreased expression of CAV1 reduces caveolae formation and 

function as mechanical buffers in patient fibroblasts and reconstituted Cav1-/- MEFs 
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expressing CAV1-F160X. Contrary to our initial hypothesis, our studies show that 

expression of CAV1-F160X is not associated with reduced CAV1 protein levels or 

caveolae, and the function of caveolae in mechano-protection remained intact in CAV1-

F160X patient cells. Despite an apparent normal caveolae density and morphology, 

CAV1-F160X co-assembles with wild type CAV1 into hybrid caveolae that show 

evidence of alterations in composition and decreased recruitment of the stabilizing 

caveolae accessory protein, Cavin-1, in patient cells. This shows that CAV1-F160X 

does not impact the abundance of caveolae but negatively affects the conformation of 

CAV1 and composition of caveolae.  

 

I conclude that this mutant is behaving as a dominant negative and destabilizes CAV1 

oligomers and caveolae. This finding expands on the current breadth of knowledge of 

known human phenotypes associated with CAV1 mutations and indicates that the 

CAV1-F160X is a novel example of a disease-associated CAV1 mutant that causes 

caveolae defects without decreasing the overall cellular density of caveolae. These 

findings further suggest that the formation of aberrant caveolae with decreased stability 

of CAV1 oligomers and/or weakened interactions between Cavin-1 and CAV1 in 

caveolae may contribute to the development of both PAH and CGL in this patient.  

 

5.1.3 The Dominant Negative CAV1-P158 Mutant Associated with PAH 
I began my research on CAV1-P158 after it was identified in a family of patients with 

PAH and no other known PAH-associated mutations [16]. Patients with this 

heterozygous mutation have reduced CAV1 protein levels in endothelial cells and skin 

fibroblasts, but it was unknown how this impacts caveolae formation and function. PAH 

primarily affects pulmonary microvascular endothelial cells [280], where endothelial 

caveolae play a role in protecting the these cells from mechanical stress and modulating 

the activity of signaling pathways that are important for maintaining vascular tone [3, 

281-283], and are elevated in PAH. In order to address whether CAV1-P158 contributes 

to PAH by disrupting the mechano-protective properties, we wanted to test if this mutant 

disrupted caveolae formation and function as membrane buffers during mechanical 

stress. In Chapter 4, we show that a PAH-associated mutant of CAV1 (CAV1-P158) 
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contains an ER-retention/retrieval motif, targets to lipid droplets and does not form 

caveolae.  These defects in turn negatively impact the ability of wild type CAV1 to form 

caveolae due to the formation of hetero-oligomers when co-expressed in Cav1-/- MEFs 

and presumably in heterozygous patient cells.  

 

These findings thus reveal a novel dominant negative role of CAV1-P158 in disrupting 

caveolae formation and offer an explanation for the reduced CAV1 and caveolae levels 

observed in patient cells. Our findings also suggest that expression of the CAV1-P158 

results in haploinsufficiency that reduces caveolae density in the heterozygous patient 

fibroblasts. Furthermore, the caveolae and CAV1 complexes that are present in patient 

cells show evidence of increased detergent solubility, as well as reduced Cavin-1 

recruitment.  As a consequence of caveolae deficiency, caveolae-dependent mechano-

protection during osmotic swelling is diminished in patient fibroblasts.  Consistent with 

the finding that endothelial mechano-protection is lost in mice with PAH [3], the negative 

effects of CAV1-P158 on caveolae density may be an underlying factor promoting the 

pathogenesis of PAH. However, ruling out other potential defects will require additional 

investigation. Taken together, I conclude that the dominant negative behavior of CAV1-

P158 reduces caveolae formation and stability in heterozygous patient cells and this is a 

contributing factor to PAH. 

 

5.1.4 Significance and Implications of Our Findings 
A major challenge in defining the necessary requirements for caveolae function is that 

most routine experimental approaches either prevent caveolae formation from occurring 

or completely disrupt existing caveolae, promoting the disassembly of caveolae-related 

protein components. Cav1 gene ablation in mice is associated with several 

comorbidities and phenotypic changes observed at the tissue/cell level that have 

established the importance of CAV1/caveolae expression in modulating many cellular 

pathways. Despite this breadth of knowledge gained from experiments that disrupt 

caveolae, the molecular basis of the observed abnormalities is poorly understood and 

remains an obstacle in the field. Our work to determine the impact of novel caveolin-1 

frameshift mutants on caveolae assembly and function has not only expanded on our 
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knowledge of caveolin mutations associated with human disease, but has also provided 

insights into novel elements of caveolae biology that are important for the function of 

caveolae. 

 

PAH is associated with elevated arterial pressure, a force that mechanically stretches 

endothelial cells lining vessel walls as they expand and contract to accommodate 

fluctuations in pressure. Caveolae buffer membranes from mechanical stress and we 

found that reduced caveolae formation in patient fibroblasts expressing CAV1-P158 is 

associated with reduced membrane buffering capacity. I propose that in the 

endothelium of these patients, diminished buffering capacity in this environment would 

negatively impact endothelial membrane integrity, and may be a contributing factor to 

the vascular damage/remodeling observed in PAH. Results from reconstitution 

experiments also suggest that the ER-retained mutant is rapidly turned over and 

behaves as a dominant negative. I hypothesize that in heterozygous patient cells, 

reduced CAV1 protein levels is a consequence of the formation of hybrid CAV1 

oligomers composed of wild type CAV1 and CAV1-P158 that are retained in the ER and 

efficiently turned over. This is a plausible explanation for reduced CAV1-dependent 

caveolae formation.  

 

Until now, an example of a naturally occurring CAV1 mutation that has no effect on the 

density of caveolae in cells yet results in severe comorbidities had not been described.  

Here, I show that this is the case for CAV1-F160X. Unlike CAV1-P158, caveolae 

formation is not reduced in CAV1-F160X fibroblasts and the function of caveolae as 

membrane buffers does not appear to be compromised. This shows that caveolar 

defects can exist with no obvious consequence on caveolae morphology and quantity. 

Additional results also suggest that the conformation of caveolae-associated CAV1 

and/or the lipid composition of caveolae are abnormal in the patient’s cells. This 

indicates that the appearance of morphological caveolae is not a sufficient determinant 

of caveolae function and it also implies that additional features of caveolae influence 

their functional capacity. However, how these changes affect other functions of 
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caveolae (compartmentalization and modulation of signaling molecules) is unclear and 

well need to be assessed in future studies. 

 

Finally, both the CAV1-P158 and CAV1-F160X mutants exhibit reduced raft affinity in 

addition to notable defects in the biochemical properties of oligomers and higher order 

CAV1 complexes, without entirely disrupting the presence of morphological caveolae. 

This challenges the previous consensus that unstable oligomers formed by CAV1 

mutants do not support caveolae formation and are generally intracellularly retained, 

never reaching the PM. Furthermore, reduced recruitment of the stabilizing accessory 

protein Cavin-1 (a PS and PIP2-binding protein) was observed in patient and 

reconstituted cells, indicating further caveolar abnormalities. While additional 

experiments are needed to elucidate the underlying cause giving rise to these defects, a 

possible explanation is that the abnormalities negatively impact the structural stability of 

caveolae. Thus the molecular organization of caveolae structural components, and 

composition of lipids may represent new aspects of caveolae biology that are important 

for caveolae function.  

 

These studies have led to the discovery of new components of caveolae organization 

that are important for function and identified additional elements that contribute to PAH 

and CGL that were previously unknown. With a better understanding of how the 

mutants impact caveolae, future investigation to determine now the defects impact 

cellular pathways that give rise to disease will be beneficial in identifying new 

therapeutic targets for the development of new drugs to treat PAH and CGL. 

 
5.1.5 Concluding Remarks 
The discovery of previously unidentified CAV1 mutants used in our studies gave us the 

exciting opportunity to expand on what is known about how CAV1 and caveolae can 

contribute to cellular defects underlying PAH and CGL. We examined the impact of the 

mutations on CAV1 oligomerization, DRM affinity, trafficking and localization. Our work 

revealed that altered stability of CAV1 oligomers and the assembly of caveolae with 

abnormal recruitment of accessory proteins gives rise to CAV1/caveolar defects without 
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entirely abrogating the formation of morphological caveolae. However, the reduced 

caveolae density in patient cells with the CAV1-P158 mutation appears to disrupt the 

buffering capacity of the plasma membrane during oncotic stretch experiments. 

Additionally, our experiments suggest that the lipid composition of caveolae and the 

conformation of CAV1 in caveolae are altered in patient cells expressing CAV1-F160X. 

We conclude that these defects are important contributing factors in the pathogenesis of 

disease. While it is unclear exactly why CAV1-F160X is associated with a more severe 

disease phenotype, further work will be necessary to begin assessing the underlying 

mechanisms that give rise to disease.  

 
5.2 Future Directions 
 

In this dissertation, the goal of my studies was to characterize newly identified disease-

associated mutations affecting the C-terminus of CAV1 and their impact on caveolae 

assembly and function in order to delineate the contributions of these mutants to the 

pathogenesis of disease, which was previously unknown. Our work has expanded on 

what is currently known about disease-associated CAV1 mutations and shows that in 

addition to caveolae density, the mutants negatively impact the stability of CAV1 

oligomers that are required to form caveolae and the recruitment of a stabilizing 

caveolae accessory protein (Cavin-1). While our work sheds light on underlying 

caveolar defects in patient cells, the experiments described in this dissertation do not 

address how these CAV1/caveolae defects give rise to disease. Therefore, in order 

understand how the caveolae defects described in this dissertation translate to the 

pathogenesis of PAH/CGL, it will be important to expand on our findings by studying 

additional functions or pathways modulated by CAV1/caveolae that are dysregulated 

during the development of disease.  

 

Caveolae are important for maintaining the balance and organization of cholesterol in 

cellular membranes, which regulates the fluidity and lateral mobility of signaling 

molecules. Compartmentalization of signaling molecules and receptors in caveolae is 

important for modulating their activity and downstream signal transduction. An 
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appropriate next step to expand on this project is to define the underlying mechanisms 

of disease resulting from caveolae defects. It will be important to carry out future 

experiments that address the lipid composition of patient cells and activity of signaling 

pathways relevant to CGL/PAH in the next set of experiments. 

 

5.2.1 Assessing the Lipid Composition of Patient Fibroblasts 
We show that CAV1, CAV1 complexes and caveolae are abnormal in their composition 

and biochemical stability in patient fibroblasts. CAV1 is a cholesterol-binding protein 

[193], caveolae are enriched in cholesterol and membrane cholesterol modulates 

receptor activity. Cholesterol composition and receptor activity can become impaired 

when there is an imbalance in intracellular free cholesterol levels. Several lines of 

evidence from our studies suggest that the lipid and cholesterol composition of caveolae 

formed in patient cells are abnormal, which offers an explanation for the molecular and 

biochemical abnormalities we observed. First, the oligomers of CAV1 and DRMs in 

patient cells were less resistant to detergent extraction. Cholesterol is a contributing 

factor to the characteristic insolubility of CAV1 complexes and DRMs, which are 

efficiently disassembled when cholesterol/glycosphingolipid levels, or binding is 

perturbed [284-287]. Next, CAV1 was detectible at the plasma membrane of CAV1-

F160X patient cells with an antibody that generally only detects CAV1 in the Golgi 

complex, before cholesterol binding and further oligomerization masks the epitope 

during transport from the Golgi to the PM. Only after cholesterol/lipid removal from cell 

membranes is this antibody able to label CAV1 at the plasma membrane in control cells 

[194]. This supports the hypothesis that the caveolae in the patient cells have an altered 

cholesterol composition. Lastly, reduced recruitment of Cavin-1 to caveolae, observed 

both biochemically and at the cellular level in CAV1-P158 and CAV-F160X patient cells, 

strongly suggests that PS and PIP2 enrichment may be reduced because Cavin-1 binds 

to these lipid moieties and they are enriched in caveolae [85, 86].  

 

To determine if instability of CAV1 complexes is the result of changes in the lipid 

composition in patient cells compared to controls, measurements of the levels and 

distribution of cholesterol, glycosphingolipids, sphingomyelin, PS and PIP2 in isolated 
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CAV1-enriched DRMs by mass spectrometry could be performed. To complement this 

experiment, labeling cholesterol with filipin in control and patient labeled with CAV1 and 

Cavin-1 antibodies should be included in order to assess the distribution of cholesterol 

in caveolae. Comparing the colocalization by Pearson’s Correlation between 

CAV1/Cavin-1 and filipin in control and patient cells will be useful to determine if 

cholesterol is inefficiently clustered in caveolae. It will also be beneficial to determine if 

the stability of CAV1 complexes in patient cells can be increased by modulating the 

levels of free cholesterol in patient cells. The levels of cholesterol can be increased by 

exogenous addition, or activation/inhibition of biosynthetic enzymes. Inhibition of these 

enzymes or pharmacological treatment of cells with statins or Methyl-β-cyclodextrin can 

effectively remove of free cholesterol from cells. If cholesterol influences the stability of 

CAV1 complexes and DRMs in patient fibroblasts, I would expect to observe an 

increased resistance to detergent solubilization.  

 

Additional evidence that the stability of caveolae is abnormal in patient fibroblasts is 

indicated by reduced colocalization of the stabilizing caveolae accessory protein, Cavin-

1 with CAV1 observed in patient fibroblasts. This suggests that Cavin-1 is inefficiently 

recruited to caveolae. Cavin-1 is a PS/PIP2-binding protein and these lipids are 

abundant in caveolae [85, 86]. Thus, if the results of the experiments described above 

indicate reduced PS and PIP2, this would support our previous finding of reduced 

recruitment of Cavin-1 to caveolae in patient fibroblast.  If this is the case, including 

experiments to determine if Cavin-1 recruitment can be restored by enhancing the 

levels of PS and/or PIP2 will further help establish the underlying cause of reduced 

Cavin-1 recruitment to caveolae. It will also be beneficial to include reciprocal 

experiments in control fibroblasts and test if depleting cellular PS/PIP2 levels can disrupt 

Cavin-1 recruitment to caveolae. Addressing the lipid composition and Cavin-1 in the 

patient cells will be useful future directions to provide a better understanding of how 

CAV1 defects described in Chapters 3 and 4 affect caveolae, and possibly identify new 

therapeutic targets that can be used to augment caveolae function, and prevent 

disease. 
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5.2.2 Determining the Distribution and Activity of Signaling Molecules Found in 
Caveolae 
In our characterization of the mutant proteins, we investigated the function of caveolae 

as membrane buffers due to their importance in protecting cells from mechanical stress, 

which is a pathophysiologically relevant process in the primary tissues affected by PAH. 

We found that the diminished amount of caveolae in PAH-patient cells expressing 

CAV1-P158 led to reduced mechano-protection. This was not the case for CAV1-

F160X-expressing cells, which contain normal levels of caveolae. However, the fact that 

the CAV1-F160X is associated with a more severe phenotype including both PAH and 

CGL suggests that the caveolae defects we observed may negatively influence other 

functions of caveolae that remain unidentified. CAV1/caveolae have been shown to 

modulate numerous signaling pathways by compartmentalizing signaling molecules and 

receptors, many of which are known to be dysregulated in association with PAH and 

CGL. Caveolae-dependent spatial organization of signaling molecules is important for 

coordinating signal transduction. Based on the finding that the caveolae composition 

and recruitment of accessory proteins is altered in patient cells, it is reasonable to 

hypothesize that other proteins that localize to caveolae to modulate their 

functional/signaling activity are also inefficiently targeted to caveolae. 
 

The development of PAH and CGL are accompanied by the dysregulation of several 

key regulators of vascular tone/remodeling (Ca2+ permeability, eNOS, BMPR2), 

metabolism (insulin receptor, fatty acid and glucose transporter) and 

proliferation/survival (cSrc, AKT) in the endothelium and adipose tissue [130, 136, 144, 

213, 276, 288-290]. The highest amounts of caveolae are found in these tissues and 

CAV1/caveolae influence the signaling activity of the aforementioned “key regulators”. 

Caveolae deficiency is associated with mislocalization of signaling molecules and 

aberrant cell signaling that causes cellular dysfunction [130, 136, 144, 213, 276, 288-

290]. Hence, in the context of cell types in the pulmonary microvasculature and adipose 

tissue, caveolae-dependent cellular dysfunction promotes the development of PAH and 

CGL, respectively. It will be imperative to assess whether the caveolae defects 

associated with CAV1-P158 and CAV1-F160X impair the localization and function of 
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known potentiators of PAH and CGL in future experiments as a step towards 

understanding the underlying mechanisms that promote the pathogenesis of both 

diseases in patient cells. It will also be important to determine if any potential signaling 

defects identified can be rescued by excessive ligand stimulation, by altering the 

membrane composition, or by augmenting caveolae formation.  

 

Adipocyte caveolae compartmentalize the insulin receptor, which is critically important 

for coordinating the activation of signaling cascades that promote lipid storage, lipid 

mobilization, and glucose transport in response to insulin stimulation. Adipocyte 

dysfunction that causes lipodystrophy is associated with deficient lipid storage that is 

the result of diminished insulin signaling. Genetic mutations giving rise to caveolin-1 

deficiency can cause CGL. The identification of CAV1-F160X in a patient with CGL has 

strong implications in defective lipid transport, storage, and utilization. However, these 

were not tested in our studies.  I propose that the next step towards establishing a 

connection between the current findings, and the development of CGL is to investigate 

insulin receptor localization and activity in patient fibroblasts expressing CAV1-F160X, 

at the cellular level and biochemically. The insulin receptor phosphorylation occurs 

independently of caveolae localization; however, initiation of lipogenic signaling 

cascades and glucose transport only occurs when the receptor is in caveolae [144]. To 

determine if the insulin receptor is functioning properly in the abnormal caveolae 

present in patient cells, the localization of the receptor to caveolae will need to be 

assessed. In addition, testing the ability of insulin stimulation to recruit glucose 

transporters to caveolae will further indicate whether insulin signaling is intact in CAV1-

F160X patient fibroblasts. Caveolae also protect adipocytes from lipotoxicity [199] and 

modulate fatty acid uptake [198], which may also be useful processes to explore as 

alternative approaches. 

 

In the endothelium, in addition to providing mechano-protection, caveolae are important 

for mediating the activity of molecules that are implicated in vasoreactivity and vascular 

remodeling. These include BMPR2, eNOS, and cSrc, which all localize to caveolae 

[136, 276]. eNOS is not highly expressed in non-endothelial cells; however, BMPR2 and 
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cSrc expression is present in numerous cell types including human dermal fibroblasts.  

Therefore BMPR2 and cSrc are the best initial candidates to explore in order to gain the 

most meaningful insights from experiments carried out in the patient fibroblasts. 

Determining if these molecules are properly localized and activated in patient cells will 

be useful for understanding whether CAV1-related defects associated CAV1-P158 and 

CAV1-F160X expression disrupts these signaling pathways, which are also relevant in 

endothelial cells. Translating the results generated from these types of experiments in 

the context of endothelial cells could be used to predict the downstream effects on 

cellular function that are important for the pathogenesis PAH.  

 

5.2.3 Investigating Lipid Droplet Function in Patient-Derived Cells 
The accumulation of CAV1-P158 the ER and lipid droplets in reconstituted Cav1-/- cells 

was also an interesting finding but I did not address how the accumulation of the mutant 

protein affects the functions of this organelle. This phenotype was not detected in 

CAV1-P158 patient cells under basal conditions, likely because the mutant protein is 

efficiently turned over and has a shortened half-life when the protein is expressed under 

endogenous conditions. However, under conditions that promote ER-stress, ER-export 

is delayed and newly synthesized proteins such as caveolins accumulate in this 

compartment [270]. This eventually leads to secondary off-target trafficking of CAV1 to 

lipid droplets [270]. Furthermore, ER-stress is implicated in cell dysfunction that is 

associated with PAH [291]. While the expression of CAV1-P158 is low in patient cells, 

ER-stress associated with PAH, or enhancing CAV1 expression (as an attempt to treat 

PAH) in these patient cells may result in the accumulation of the mutant protein in the 

ER and have off target consequences on lipid droplet function. Caveolins can influence 

the size and morphology of lipid droplets [197]. This could also potentially influence the 

protein composition of the lipid droplet monolayer, which is important for modulating 

lipid droplet storage and mobilization. I propose that a logical test to perform next is to 

measure the lipid droplet protein composition in the presence and absence of CAV1-

P158 as an indicator for potential defects in lipogenesis and lipolysis.  
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Taken together, the proposed experiments described in this section well be beneficial 

for delineating the underlying mechanisms of PAH and CGL as a result of heterozygous 

CAV1 mutations and will also help identify potential therapeutic targets for treating both 

diseases. 
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Supplemental Figure 1. BN-PAGE of CAV1 Oligomers in Control and Patient Fibroblasts. 
Associated with Figure 12. The epitope accessibility of CAV1 in high-molecular-weight oligomers is 
altered in patient cells. Control and patient skin fibroblasts were subjected to BN-PAGE followed by 
western blotting using CAV1 mAb 2297 (red in merge) and a C-terminally directed CAV1 antibody (green 
in merge). Note the relative decreased in labeling by mAb 2297 compared with labeling by the C-terminal 
antibody in patient cells relative to controls. Data are representative of 2 independent experiments. (Bing 
Han, Ph.D.) 
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Supplemental Figure 2. Molecular Characterization of CAV1-F160X in Cav1-/- MEFs. Associated with 
Figures 15 and 16. A-C, The CAV1 C-terminal truncation mutant F160X is not recognized by a CAV1 C-
term antibody. (A) Western blot of transfected Cav1−/− MEFs expressing the indicated CAV1 constructs. 
Antibodies to detect CAV1 or the epitope tags are indicated adjacent to each panel. β-tubulin was used 
as a control for equal loading. The C-terminally directed CAV1 antibody detects Myc-CAV1 (B) and HA-
CAV1 (C) in transfected Cav1−/− MEFs, but does not label HA-F160X CAV1 (D) as detected by 
immunofluorescence microscopy. Scale bar, 10 µm. E and F, The C-terminus of wild-type CAV1 is 
exposed in extra-Golgi puncta in cells co-expressing wild-type CAV1 and CAV1-F160X. In these 
experiments, Cav1−/− MEFs co-expressing wild-type Myc-CAV1 and HA-CAV1 (E) or Myc-CAV1 and HA-
CAV1-F160X (F) were labeled for Myc (green), HA (red), and the C-terminus of CAV1 (cyan). G, Myc-
CAV1 colocalizes more strongly with anti-CAV1Cterm labeling when it is co-expressed with HA-CAV1-
F160X than when it is co-expressed with wild-type HA-CAV1 (n  =  77-90 ROIs from 3 independent 
experiments) (***P  <  .0001, Student's t test). Scale bars, 10 µm. 
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Supplemental Figure 3. Reconstitution of Exogenous CAV1 and Cavin-1 in Cav1-/- MEFs. 
Associated with Figure 16. A and B, Representative images of Cav1−/− MEFs cells co-transfected with 
mCherry-cavin1 (red) and either (A) wild-type mEmerald-CAV1 (green) or (B) mEmerald-F160X (green). 
Anti-cavin-1 antibody was used to label both endogenous and overexpressed cavin-1 (blue). C, unlike 
mEmerald-CAV1, mEmerald-CAV1-F160X fails to colocalize with either mCherry-cavin-1 or endogenous 
cavin-1 (n  =  38-63 ROIs from 3 independent experiments) (***P  <  .0001, n.s., not significant, Student's t 
test). Scale bars, 10 µm. (Bing Han, Ph. D) 
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Supplemental Figure 4. CAV1-P158 Constructs are Detected at low Levels in Cav1-/- MEFs. 
Associated with Figures 21, 22, 24 and 25. (A) Western blot of transfected Cav1-/- MEFs. All reactions 
were transfected at the same time with the same transfection protocol. All samples were collected at the 
same time. As a control, wild type MEFs expressing endogenous Cav1 were included. CAV1 constructs 
were transfected into Cav1-/- MEFs and detected with the anti-CAV1 pAB (aa. 1-97) in the first two panels. 
Panel 1 and 2 depict high and low molecular weight CAV1 species, respectively. Panel 3: Endogenous 
Cavin-1. Panel 4: Cav1-/- MEFs transfected with an empty eGFP vector was used a transfection control, 
and eGFP was detected with a specific antibody. Panel 5: loading control. (B) The amount of transfected 
cells per total nuclei in an ROI (5 fields per coverslip) was calculated to quantify the transfection efficiency 
of wild type and CAV1-P158 constructs.  The p-value between 3 replicate experiments was calculated 
using an ordinary one-way ANOVA. p=0.3528, not statistically significant. 
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Supplemental Figure 5. Tag Orientation Influences the Trafficking and DRM Affinity of CAV1-P158 
in Cav1-/- MEFs. Associated with Figure 22. (A) Schematic depicting wild type and mutant CAV1 
constructs and respective tag orientations. (B) (Panel 1) C-terminally tagged CAV1-P158-mEmerald is 
detectible in DRMs (fractions 4-9) isolated transfected Cav1-/- MEFs. (Panel 2) N-terminally tagged 
mEmerald-CAV1-P158 is not associated with DRMs. (Panel 3) Detection of a positive control raft protein, 
Flotillin-1 in DRMs. (Panel 4) The non-raft protein, Calnexin is not detected in fractions corresponding to 
DRMs and served as a negative control. (C-F) Immunofluorescence staining of endogenous Cavin-1 in 
Cav1-/- MEFs (red) transfected with mEmerald constructs (green). (C) C-terminally tagged wild type 
CAV1-mEmerald.  (D) N-terminally tagged wild type mEmerald-CAV1. (E) C-terminally tagged mutant 
CAV1-P158-mEmerald.  (F) N-terminally tagged mutant mEmerald-CAV1-P158. Note the lack of 
colocalization between Cavin-1 and mEmerald-CAV1-P158 (F) compared to the other constructs (C-E). 
Scale bars represent 10µm. (B, Bing Han, Ph.D.) 
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Supplemental Figure 6. CAV1-P158 Localizes to a Compartment that is Distinct from Several 
Organelles Examined. Associated with Figures 22 and 23. (A-D) Cav1-/- MEFs transfected with HA-
CAV1-P158 (green) shows minimal colocalization with non-ER/lipid droplet compartments. (A) EEA1 
immunofluorescence labeling early endosomes (red). (B) Lysosomes were labeled with a co-transfected 
plasmid encoding mCherry-LAMP1 (red). (C) Transferrin-receptor (TfR) immunofluorescence was used 
as an indicator for the recycling endosome (red). (D) Giantin immunofluorescence was used to label the 
Golgi complex. Scale bars represent 10µm. 



 134 

 

Supplemental Figure 7. Reduced Stability of CAV1 Complexes Containing CAV1-P158 in Cav1-/- 

MEFs.  Associated with Figures 22 and 27. Samples were lysed in either 0.5% Triton X-100 (A, C) or 
0.2% Triton X-100 and 0.4% SDS (B, D) at room temperature.  Extracts were run though 10-40% sucrose 
velocity gradients and fractions were analyzed by SDS-PAGE followed by Western blotting. Cav1-/- MEFs 
expressing (A, B) Myc-CAV1 (top panel) or HA-CAV1-P158 (bottom panel).  (A) CAV1 is readily detected 
in fractions corresponding to 8S and 70S complexes in Cav1-/- MEFs co-transfected with wild type CAV1 
(top panel), and to a lesser extent when transfected with CAV1-P158 (bottom panel). (B) SDS has no 
effect on wild type CAV1, and CAV1 remains detectible in fractions corresponding to 8S complexes (top 
panel). A diminished amount of CAV1-P158 is detectible in 8S fractions upon addition of SDS (bottom 
panel). (C, D) Cav1-/- MEFs co-expressing HA-CAV1-P158 and Myc-CAV1. (C) In the absence, both wild 
type (top panel) and mutant CAV1 (bottom panel) are detectible in fractions corresponding to 8S and 70S 
complexes. (D) Wild type CAV1 (top panel) and CAV1-P158 (bottom panel) are detectible in 8S 
complexes that are resistant to SDS. Note the increase of CAV1-P158 detected in 8S fractions compared 
to that in B. Despite this apparent enhancement, a large amount of CAV1-P158 is still disassembled by 
SDS, and a smaller portion of wild type CAV1 also appears to become sensitive to SDS. (Bing Han, 
Ph.D.) 
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Supplemental Figure 8. The C-Terminus of Wild Type CAV1 is Unmasked in Caveolae Formed in 
Cav1-/- MEFs Co-Expressing Experimental CAV1 Mutants. Associated with Figures 21, and 25-28. (A) 
Control (top) and patient fibroblasts (bottom). Caveolae associated CAV1 labeled with an N-terminally 
directed CAV1 antibody (green) and Golgi-associated CAV1 labeled with a C-terminally directed antibody 
(red) do not colocalize. (B-F) Anti-CAV1-C-term staining (cyan) in Cav1-/- MEFs co-transfected with a wild 
type CAV1 construct (Myc-CAV1, red) and other HA-tagged CAV1 constructs (green).  (B) CAV1-Cterm 
predominantly labels the Golgi complex (cyan) in Cav1-/- MEFs co-expressing two wild type forms of 
CAV1 (Myc-CAV1 and HA-CAV1). (C-F) Co-transfections with HA-CAV1-P158, HA-CAV1-P158-AAYK, 
HA-CAV1-P158-ΔKKYK, and HA-CAV1-KKYK show enhanced epitope accessibility of the C-terminal 
specific CAV1 antibody labeling of wild type CAV1 (Myc-CAV1, red) in spots indicative of caveolae 
labeling, outside of the Golgi Complex in co-transfected Cav1-/- MEFs co-expressing: (C) HA-CAV1-P158 
(green), (D) HA-CAV1-P158-AAYK (green), (F) HA-CAV1-P158-ΔKKYK (green) and (E) HA-CAV1-KKYK 
(green). (F) Cav1-/- MEFs singly transfected with HA-CAV1-P158, HA-CAV1-P158-AAYK, HA-CAV1-
P158-ΔKKYK, and HA-CAV1-KKYK are not recognized by the CAV1C-term antibody via Western blot. 
β-tubulin served as a control for equal loading. Scale bars represent 10µm.  
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Supplemental Figure 9. Dilysine-Containing CAV1 Constructs Partially Colocalize with a 
Component of the Ubiquitin-Proteasome System. Associated with Figure 21 and Figure S.4. 
Immunofluorescence staining of VCP/p97 and ubiquitin labeled in red in transfected Cav1-/- MEFs. (A) 
HA-CAV1 (green), VCP/p97 (red) do not colocalize.  (B, B’) HA-CAV1P158 (green) and VCP/p97 partially 
colocalize with each other. (C-D’) No ubiquitin colocalization is detected in wild type CAV1 or CAV1-P158. 
Scale bars represent 10µm.  
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