
DESIGN AND RUN-TIME QUALITY OF SERVICE MANAGEMENT TECHNIQUES

FOR PUBLISH/SUBSCRIBE DISTRIBUTED REAL-TIME AND EMBEDDED

SYSTEMS

By

Joseph William Hoffert II

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

May, 2011

Nashville, Tennessee

Approved:

Dr. Aniruddha Gokhale

Dr. Douglas C. Schmidt

Dr. Larry Dowdy

Dr. Yi Cui

Dr. Janos Sztipanovits

To Sophie, William, and Annabelle, and to their terrific mother and my lifemate Kendra.
Above all, to God: Father, Son, and Holy Spirit; who was, and is, and is to come.

ii

ACKNOWLEDGMENTS

This work would not have been possible without the financial support of the National

Science Foundation’s Team for Research in Ubiquitous Secure Technology (TRUST) pro-

gram, the Air Force Research Labs, Raytheon, and the Science Applications International

Corporation.

I would also like to take up this opportunity to thank some of the people who helped

me in coming to this point in my life. First of all, I want to thank my parents, Marvin and

Marilyn Hoffert, who have always emboldened me concerning academic pursuits. Growing

up, it seemed there was no question too silly to ask. My parents always encouraged my

questions with thoughtful adult answers. I hope to impart this wisdom to my children.

Ken Goldman at Washington University gave me my first opportunity as a research

staff person at a highly regarded research university. Ken expressed confidence in me and

my ability to figure out solutions to problems. Chris Gill also at Washington University

encouraged me to consider Vanderbilt University for graduate school when I discussed

getting a doctorate with him. His advice helped lead me to where I am today.

I have been privileged to have studied under such a world-class researcher as Dr. Dou-

glas Schmidt. Doug has impressed me with his dedication to quality research and lucid

communication. He has shown me the importance of not only doing and knowing the re-

search but also communicating the research clearly to others. Supported by Doug, I have

also been able to travel around the world and make connections with a wide array of people.

I also appreciate the insight provided by Dr. Aniruddha Gokhale along with his willingness

to advise me will Doug is on sabbatical. Andy’s lighthearted levity interspersed between

thoughtful comments make for an enjoyable work environment.

I want to thank Dr. Larry Dowdy and Dr. Yi Cui for serving as members of my disserta-

tion committee and for their help and insight in the classroom as well as with my research.

Dr. Janos Sztipanovits has been very encouraging and supportive with my research work

iii

on TRUST and provided many opportunities for me to broaden my learning experiences. I

appreciate the time all my committee members have taken to help improve my work.

I appreciate the help I received from former and current DOC group members. Kitty,

Nishanth, Gan, and Jai helped show me “the DOC group ropes.” Will Otte was a great

help setting up the house and navigating my family and me to it during our U.K. internship.

The DOC group in particular and ISIS in general has been a positive part of my doctoral

education providing me exposure to new research areas through pizza lectures or advice

from students in related areas (e.g., Daniel Mack and his help with machine learning).

I could not have achieved this milestone without the love, respect, and support of my

terrific wife of 19+ years, Kendra. She and I left a pretty good situation in St. Louis. We

had friends, a nice house, and a fairly comfortable lifestyle provided by the salary I was

making at Boeing. She and I had talked about my going back to school years before and

when the opportunity came she was on board. Living in Nashville has been tough for both

of us at times and I am glad some of it is coming to an end. More than that, I am thankful

Kendra is still by my side. Aside from God, she is the greatest blessing I have in my

life. My children, Sophie, William, and Annabelle, have also been a tremendous support.

They help to make sure I have balance in my life and remind me that there are much more

important things in life than schooling.

Last, but certainly not least, I thank the Triune God: Father, Son, and Holy Spirit.

God has giving me the enjoyment of learning and the security of trusting Him to come to

Vanderbilt and support a wife and three children on a graduate student’s stipend. He has

always been faithful. I desire above all else to be faithful to Him. Soli Deo Gloria!

iv

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter

I. Introduction . 1

I.1. Emerging Technologies and Trends 1
I.2. Challenges for QoS-enabled Pub/Sub Systems 1
I.3. Enhancing Developer Productivity and Run-time Support for QoS-

enabled Publish-Subscribe Middleware 4
I.4. Thesis Organization . 5

II. Design Time Management of QoS Configuration Complexity 6

II.1. Context . 6
II.2. Motivating Example: NASA’s Magnetospheric Multiscale Mission 8
II.3. Related Research . 10
II.4. Unresolved Challenges . 12
II.5. Solution Approach: Distributed QoS Modeling Language (DQML) 13

II.5.1. Context for DQML . 14
II.5.2. Structure and Functionality of DQML 27
II.5.3. DQML Productivity Analysis for the MMS Case Study 34

II.6. Lessons Learned . 51

III. Empirical Evaluation of QoS Mechanisms for QoS-enabled Pub/Sub Mid-
dleware . 55

III.1. Context . 55
III.2. Motivating Example: Search and Rescue (SAR) Operations for

Disaster Recovery . 59
III.3. Related Research . 63
III.4. Unresolved Challenges . 65
III.5. Solution Approach: FLEXible Middleware And Transports (FLEX-

MAT) . 66
III.5.1. The Structure and Functionality of FLEXMAT and the

ReLate2 Composite QoS Metric 67

v

III.5.2. Experimental Setup, Results, and Analysis 74
III.6. Lessons Learned . 91

IV. Autonomic Adaptation of QoS-enabled Pub/Sub Middleware 95

IV.1. Autonomic Configuration in Flexible Environments 95
IV.1.1. Context . 95
IV.1.2. Motivating Example - Search and Rescue Operations

in Cloud Computing Environments 99
IV.1.3. Overview of ADAptive Middleware And Network Trans-

ports (ADAMANT) for Timely Configuration 104
IV.1.4. Evaluating Adaptation Approaches for SAR Operations 107
IV.1.5. Experimental Results and Analysis 114
IV.1.6. Lessons Learned . 135

IV.2. Autonomic Adaptation in Dynamic Environments 137
IV.2.1. Context . 137
IV.2.2. Motivating Example - Ambient Assisted Living in a

Smart City Environment 140
IV.2.3. Evaluating Supervised Machine Learning Techniques

for DRE Systems . 144
IV.2.4. Structure and Functionality of ADAMANT 162
IV.2.5. Experimental Results and Analysis 175
IV.2.6. Lessons Learned . 182

IV.3. Related Research . 185

V. Concluding Remarks . 190

REFERENCES . 196

vi

LIST OF TABLES

Table Page

1. MMS pub-sub QoS Policy Requirements 9

2. DDS QoS Policies . 17

3. Potential Incompatible DDS QoS Policies 24

4. DDS QoS Consistency Constraints . 25

5. DDS QoS Policies for Data Writers 39

6. DDS QoS Policies for Data Readers 39

7. DDS QoS Policies for Topics . 48

8. Productivity Gains using DQML’s DBE Interpreter 49

9. Transport Protocols Evaluated . 71

10. Emulab Variables . 76

11. ISISlab Variables . 76

12. Environment Variables . 120

13. Application Variables . 120

14. Machine Learning Inputs . 148

15. Summary of Research Contributions . 191

vii

LIST OF FIGURES

Figure Page

1. Example MMS Mission Scenario with QoS Requirements 8

2. Architecture of the DDS Data-Centric Publish/Subscribe (DCPS)
Layer . 15

3. Incompatible MMS Ground Station and Spacecraft Deadline QoS . . 25

4. Inconsistent QoS Policies for an MMS Ground Station 25

5. Deadline QoS Policy Relationships (UML notation) 28

6. Deadline QoS Policy Compatibility Constraints 28

7. DDS Entities Supported in DQML 30

8. Example of DQML QoS Policy Variability Management 31

9. Example of DQML QoS Policy Compatibility Constraint Checking . 33

10. Example of DQML QoS Policy Consistency Constraint Checking . . 33

11. QoS Policy Configuration File for Figure 8 34

12. Visitor Class for DBE Interpreter . 41

13. visitModelImpl Method . 42

14. processDataWriterQos Method . 43

15. outputDDSEntityQos Method . 46

16. Metrics for Manual Configuration vs. DQML’s Interpreter 47

17. Search and Rescue Motivating Example 60

18. Uses of Infrared Scans during Disaster Recovery 62

19. Uses of Video Stream during Disaster Recovery 62

20. OpenDDS and its Transport Protocol Framework 68

21. A NAK Based Protocol Discovering Loss 69

viii

22. FEC Reliable Multicast Protocol - Sender-based 70

23. FEC Reliable Multicast Protocol - Receiver-based (LEC) 70

24. MPEG Frame Dependencies . 73

25. Emulab: Average update latency, 3 readers, 0% loss, 25Hz 78

26. Emulab: Average update latency, 3 readers, 0% loss, 50Hz 78

27. Emulab: Updates received, 3 readers, 1% loss, 25Hz, no RMcast . . . 80

28. Emulab: Updates received, 3 readers, 1% loss, 25Hz 80

29. Emulab: Average update latency, 3 readers, 1% loss, 25Hz 81

30. Emulab: Relate2 values, 3 readers, 1% loss, 25Hz 81

31. Emulab: Updates Received, 3 readers, 3% loss, 50 Hz 82

32. ReLate Metrics for Emulab Experiment: 3 readers, 3% loss, 50 Hz
update rate . 83

33. ReLate2 Metrics for Emulab Experiment: 3 readers, 3% loss, 50 Hz
update rate . 83

34. ISISlab: Average update latency, 3 readers, 1% loss 86

35. ISISlab: ReLate2 values, 3 readers, 1% loss 86

36. ISISlab: Average update latency, 3 readers, 5% loss 87

37. ISISlab: ReLate2 values, 3 readers, 5% loss 88

38. ISISlab: Average update latency, 20 readers, 1% loss 89

39. ISISlab: ReLate2 values, 20 readers, 1% loss 89

40. ISISlab: Average update latency, 20 readers, 5% loss 90

41. ISISlab: ReLate2 values, 20 readers, 5% loss 90

42. Uses of Infrared Scans & Video Streams during Disaster Recovery . 102

43. ADAMANT Architecture and Control Flow for Cloud Computing
Environments . 105

44. Policy-based Example . 108

ix

45. A Decision Tree For Determining Appropriate Protocol 111

46. Artificial Neural Network For Determining Appropriate Transport
Protocol . 112

47. ReLate2Jit for 3 Receivers, 1% Network Loss, and 100Hz Sending
Rate . 117

48. ReLate2Net for 3 receivers, 1% network loss, and 100Hz sending rate 118

49. ReLate2Burst for 3 receivers, 1% network loss, and 100Hz sending
rate . 119

50. ReLate2: pc3000, 1Gb LAN, 3 receivers, 5% loss, 10 & 25Hz 123

51. ReLate2: pc850, 100Mb LAN, 3 receivers, 5% loss, 10 & 25Hz 123

52. Reliability: pc3000, 1Gb LAN, 3 receivers, 5% loss, 10 & 25Hz 124

53. Reliability: pc850, 100Mb LAN, 3 receivers, 5% loss, 10 & 25Hz . . . 125

54. Latency: pc3000, 1Gb LAN, 3 receivers, 5% loss, 10 & 25Hz 125

55. Latency: pc850, 100Mb LAN, 3 receivers, 5% loss, 10 & 25Hz 126

56. ReLate2Jit: pc3000, 1Gb LAN, 15 receivers, 5% loss, 10Hz 126

57. ReLate2Jit: pc850, 100Mb LAN, 15 receivers, 5% loss, 10Hz 127

58. Latency: pc3000, 1Gb LAN, 15 receivers, 5% loss, 10Hz 128

59. Latency: pc850, 100Mb LAN, 15 receivers, 5% loss, 10Hz 128

60. Jitter: pc3000, 1Gb LAN, 15 receivers, 5% loss, 10Hz 129

61. Jitter: pc850, 100Mb LAN, 15 receivers, 5% loss, 10Hz 130

62. Reliability: pc3000, 1Gb LAN, 15 receivers, 5% loss, 10Hz 130

63. Reliability: pc850, 100Mb LAN, 15 receivers, 5% loss, 10Hz 131

64. ANN Accuracy for environments known a priori 132

65. ANN Accuracy for environments unknown until runtime 133

66. ANN average response times . 134

67. Standard deviation for ANN response times 135

x

68. Smart City Ambient Assisted Living (SCAAL) Example 141

69. Accuracy of ANN with 6, 12, 24, & 36 Hidden Nodes & 0.0001 Stop-
ping Error . 149

70. Cumulative Errors for ANNs with 100% Accuracy 150

71. Accuracy of SVMs with RBF, Polynomial, and Linear Kernels 152

72. ANN Accuracies for 10-fold Cross-validation (0.0001 Stopping Error) 153

73. ANN Accuracies for 10-fold Cross-validation (0.01 Stopping Error) . 154

74. SVM Accuracies for 10-fold Cross-validation (0.01 Stopping Error) . 155

75. ANN Accuracies for 2-fold Cross-validation (0.0001 Stopping Error) 156

76. ANN Accuracies for 2-fold Cross-validation (0.01 Stopping Error) . . 157

77. SVM Accuracies for 2-fold Cross-validation 158

78. ANN Average Response Times (µs) 159

79. Standard Deviation for ANN Response Times (µs) 159

80. SVM Average Response Times (µs) 160

81. Standard Deviation for SVM Response Times (µs) 161

82. ADAMANT Architecture and Control Flow for SCAAL Applications 163

83. Maximizing Grouping Differences in a Support Vector Machine . . . 166

84. Environment Monitor Topic . 169

85. Effect of Changing Data Sending Rate 177

86. Integrated Supervised Machine Learning Response Times 179

87. Transport Protocol Reconfiguration Times within ANT 181

xi

CHAPTER I

INTRODUCTION

I.1 Emerging Technologies and Trends

With increasing advantages of cost, performance, and scale over single computers, the

proliferation of distributed systems in general and distributed event-based systems in par-

ticular have increased dramatically in recent years [49]. In contrast to distributed object

computing middleware (such as CORBA and Java RMI)—where clients invoke point-to-

point methods on distributed objects—publish/subscribe (pub/sub) middleware platforms

distribute data from suppliers to (potentially multiple) consumers. Examples of standard-

ized pub/sub middleware include the Java Message Service (JMS) [72], Web Services Bro-

kered Notification [66], CORBA Event Service [82], and OMG Data Distribution Service

(DDS) [84]. These event-based services allow the propagation of data throughout a system

using an anonymous pub/sub model that decouples event suppliers from event consumers.

To support the requirements of a broad spectrum of application domains, pub/sub mid-

dleware for event-based distributed systems typically provides many policies that affect

end-to-end system quality of service (QoS) properties. Examples of these policies include

persistence (i.e., determining how much data to save for current subscribers); durability

(i.e., determining whether to save data for late joining subscribers); and grouped data

transfer (i.e., determining if a group of data needs to be transmitted and received as a

unit). Moreover, some pub/sub middleware platforms provide a rich set of QoS policies

with very fine-grained control.

I.2 Challenges for QoS-enabled Pub/Sub Systems

While tunable policies provide fine-grained control of system QoS, several challenges

emerge when developing QoS-enabled pub/sub systems. Configuring and managing QoS

1

has become more complex as QoS support for pub/sub middleware platforms has increased.

This increase in complexity manifests itself in the following ways:

1. Development of Valid QoS Configurations. Developing a QoS configuration can

be complicated by the following challenges: (1) the number and type of parameters

for a single policy, (2) the number of policies available and the legal set of policy

interactions, and (3) the accidental complexity inherent in accurately transforming

a QoS configuration design into an implementation artifact. Moreover, this same

complexity is present whether an initial QoS configuration is being developed or an

existing QoS configuration is being updated or modified.

Each QoS policy supported by a pub/sub middleware platform may have multiple

attributes associated with it, such as the data topic of interest, data filter criteria, and

the maximum number of data messages to store when transmitting data. Moreover,

each attribute can be assigned one of a range of values, such as the legal set of topics,

a range of integers for the maximum number of data messages stored for transmis-

sion, or the set of criteria used for filtering. Not all combinations of QoS attribute

values are legitimate for a single QoS policy nor are all combinations of QoS policies

semantically compatible (i.e., produce configurations that elicit the desired flow of

data).

Traditionally, validating a QoS configuration has been done at run-time which im-

pacts development by (1) lengthening the development process since validation can

only occur when a system is implemented and running and (2) creating a disconnect

between when a QoS configuration problem is found at run-time and when it’s re-

solved at design-time. The lengthening of the QoS configuration development time

and the loss of context for finding and fixing QoS configuration problems decreases

developer productivity and increases accidental complexity. Furthermore, once a

QoS configuration is validated it must be faithfully transformed and incorporated

into an implementation.

2

2. Evaluation of Run-time QoS Mechanisms for Static Environments. Mechanisms

used by the middleware to ensure certain QoS properties for a given environment

configuration may not be applicable for a different environment configuration. For

example, a simple unicast protocol, such as UDP, may provide adequate QoS regard-

ing latency when a publisher sends to a small number of subscribers. UDP could

incur too much latency, however, when used for a large number of subscribers due to

publishers sending UDP messages to each individual subscriber.

Challenges also arise when enforcing multiple QoS policies that interact with each

other. For example, a system might specify low latency QoS and reliability QoS,

which can affect latency due to data loss discovery and recovery. Certain transport

protocols, again such as UDP, provide low overhead but no end-to-end reliability.

Other protocols, such as TCP, provide reliability, but incur unbounded latencies due

to acknowledgment-based retransmissions. Still other protocols balance reliability

and low latency, but provide benefit over other protocols only for specific environ-

ment configurations. Determining which particular transport protocol as well as the

appropriate protocols parameters can be a complex decision.

3. Run-time Management of QoS for Dynamic Environments. Even when appro-

priate QoS mechanisms are determined for a particular environment, unknown op-

erating environments, such as those provided by cloud computing environments, or

perturbations in the environment during run-time (e.g., increase in network latency

or packet loss) can cause specified QoS not to be met. The environment in which the

system is initially deployed may be unknown a priori or the initial environment con-

figuration for which the specified QoS was initially maintained can change causing

discontinuity in QoS. Moreover, human intervention is often not responsive enough

to meet system timeliness requirements when determining appropriate QoS mecha-

nisms for a given operating environment.

3

I.3 Enhancing Developer Productivity and Run-time Support for QoS-enabled

Publish-Subscribe Middleware

To address the challenges identified in Section I.2, this dissertation enhances the pro-

ductivity, evaluation, flexibility, and adaptability of QoS-enabled pub/sub middleware. The

novel contributions of this dissertation focus on the following four synergistic areas: (1)

a model-driven technique for developing semantically compatible QoS configurations and

applicable implementation artifacts; (2) composite QoS metrics to quantitatively evaluate

multiple QoS concerns simultaneously, (3) a technique for evaluating QoS mechanisms in

specific operating environments and providing guidance for run-time QoS management of

multiple QoS concerns within pub/sub systems in static environments; and (4) a technique

to support autonomic configuration and adaptation of QoS-enabled pub/sub middleware in

flexible and dynamic environments.

We briefly summarize the four separate but synergistic contributions proposed by this

dissertation as follows:

1. QoS configuration modeling language for pub/sub DRE systems which includes

capabilities for (1) modeling desired entities and associated QoS policies for a pub/-

sub DRE system, (2) checking the semantic compatibility of the modeled QoS poli-

cies, and (3) and automatically generating implementation artifacts for a configura-

tion model. Section II.5 describes the QoS modeling process in detail.

2. Composite QoS metrics which include metrics to quantitatively evaluate the QoS

concerns of (1) reliability, (2) average latency, (3) jitter (i.e., standard deviation of

received data), (4) network bandwidth usage, and (5) network burstiness (i.e., the

amount of data received within a specified period of time). Sections III.5.1.3 and

IV.1.5.1 provide detailed descriptions of the family of ReLate2 metrics.

3. Evaluation of QoS mechanisms for pub/sub DRE systems which includes (1)

a technique that integrates and enhances QoS-enabled pub/sub middleware with a

4

flexible network transport protocol framework, (2) composite QoS metrics to eval-

uate multiple QoS concerns, and (3) guidance gleaned from performance analysis

of the enhanced middleware in different environment configurations. Section III.5

describes the enhanced middleware, composite metrics, and quantitative analysis in

detail.

4. Autonomic adaptation of pub/sub middleware mechanisms for managing QoS

which includes the integration and enhancement of (1) QoS-enabled pub/sub mid-

dleware, (2) a flexible network transport protocol framework, (3) a monitoring sub-

system to determine run-time environment configuration information, (4) machine

learning techniques to determine an optimal transport protocol and protocol settings

for a given environment configuration, and (5) a controller subsystem to autonomi-

cally adapt the middleware to the optimal transport protocol. Section IV.1.3 describes

the autonomically adaptive middleware configured for flexible environments in de-

tail while Section IV.2.4 provides a detailed description of the adaptive middleware

operating in dynamically changing environments.

I.4 Thesis Organization

The remainder of this proposal is organized as follows: each chapter describes a single

focus area, the related research, the unresolved challenges, our research approach to solve

these challenges, and evaluation criteria for this aspect of the research. Chapter II discusses

QoS configuration development for pub/sub DRE systems. Chapter III discusses a flexible

QoS-enabled pub/sub middleware evaluation framework in varied environment configura-

tions. Chapter IV discusses autonomic adaptation of pub/sub middleware to configure QoS

mechanisms in flexible environments and support QoS in dynamic environments. Finally,

chapter V provides a summary of the research contributions and publications.

5

CHAPTER II

DESIGN TIME MANAGEMENT OF QOS CONFIGURATION COMPLEXITY

Chapter I showed an overview of the need for (1) shortening the QoS configuration

development cycle, (2) maintaining the context between when a QoS configuration design

problem is found and when it is resolved, and (3) faithfully transforming QoS configura-

tion from design to implementation. This chapter presents more in-depth information of

our design-time QoS configuration management approach by (1) detailing the context of

QoS configuration management, (2) presenting a motivating example, (2) outlining exist-

ing research in the field of QoS configuration management, (3) enumerating unresolved

challenges with current research, and (4) resolving the challenges via a solution approach.

This chapter also presents an empirical evaluation of the solution approach to generate

implementation artifacts for a representative pub/sub DRE system.

II.1 Context

Emerging trends for publish/subscribe systems. The use of distributed systems based

on publish/subscribe (pub/sub) technologies has increased due to the advantages of scale,

cost, and performance over single computers [49, 98]. In contrast to distributed object

computing middleware (e.g., Java RMI and CORBA) where clients invoke point-to-point

methods on distributed objects, pub/sub middleware disseminates data from suppliers to

one or more consumers. Examples of pub/sub middleware include Web Services Brokered

Notification [66], the Java Message Service (JMS) [72], the CORBA Event Service [82],

and the Data Distribution Service (DDS) [84]. These technologies support data propagation

throughout a system using an anonymous subscription model that decouples event suppliers

and consumers.

Pub/sub middleware is applicable to a broad range of application domains, such as

6

satellite coordination and shipboard computing environments. This middleware provides

policies that affect end-to-end system QoS. Common policies include persistence (i.e., sav-

ing data for current subscribers), durability (i.e., saving data for subsequent subscribers),

and grouped data transfer (i.e., transmitting and receiving a group of data as an atomic

unit).

Challenges in configuring pub/sub middleware. While tunable policies enable fine-

grained control of system QoS, a number of challenges arise when developing QoS policy

configurations, which are combinations of QoS properties that affect overall system QoS.

For example, each QoS policy may have multiple parameters associated with it, such as

the data topic of interest, data filter criteria, and the maximum number of messages to store

when transmitting data. Each parameter can also be assigned a range of values (such as the

legal set of topics), a range of integers for the maximum number of data messages stored

for transmission, or the set of regular expressions used as filtering criteria.

The QoS policies associated with individual suppliers or consumers collectively deter-

mine the overall observed QoS of suppliers and consumers. Not all combinations of QoS

policies/parameters deliver the required system QoS, however, and many combinations

may not be semantically compatible. It is tedious and error-prone to transform a valid QoS

policy configuration design manually to its implementation for a middleware platform.

Solution approach→Model-driven QoS policy configuration. We have developed

a domain-specific modeling language (DSML) called the Distributed QoS Modeling Lan-

guage (DQML) to address the challenges described above. In particular, DQML helps de-

velopers (1) choose valid sets of values for QoS policies in pub/sub middleware, (2) ensure

that these QoS policy configurations are semantically compatible (i.e., they do not conflict

with each other), and (3) automate the transformation of a QoS policy configuration design

into the correct pub/sub middleware-specific implementation.

7

Provisioning of data
resources

Key:

= MMS ground station = other satellites

= MMS spacecraft = data flow

Data reliability

Data for late
arriving
readers

Data with time
deadlines

Ordered data

Data priority

Inter-arrival data
spacing

Determining
liveness

Data redundancy

Figure 1: Example MMS Mission Scenario with QoS Requirements

II.2 Motivating Example: NASA’s Magnetospheric Multiscale Mission

We chose NASA’s Magnetospheric Multiscale (MMS) Mission [94] as a case study to

showcase the complexities of configuring QoS policies in pub/sub middleware. MMS com-

prises five co-orbiting and coordinated satellites instrumented identically to study various

aspects of the earth’s magnetosphere (e.g., turbulence in key boundary regions, magnetic

reconnection, charged particle acceleration). The satellites can be (re)positioned into dif-

ferent temporal/spatial relationships (e.g., to construct a three dimensional view of the field,

current, and plasma structures).

An example MMS spacecraft deployment is shown in Figure 1. This deployment in-

cludes a non-MMS satellite that communicates with the MMS satellites, as well as a ground

station that communicates with the satellites during a high-capacity orbit window. The fig-

ure also shows the flow of data between systems involved in the deployment, along with

the QoS requirements applicable to the MMS mission.

8

MMS Requirement Description
Redundancy data redundancy (store data on another satellite)
Durability making data available at a later time for analysis
Presentation maintain message ordering and granularity
Transport priority prioritizing data transmissions
Time-based filtering flow control to handle slow consumers
Deadline deadlines on receipt of data
Reliability no loss of critical data
Resource limits effective provisioning of resources
Liveliness assurances of properties when spacecraft is

unavailable

Table 1: MMS pub-sub QoS Policy Requirements

To transport telemetry data, the MMS satellites are equipped with both downlink and

uplink capability. To enable precise coordination for particular types of telemetry and po-

sitioning data each satellite gathers, stores, and transmits information regarding neighbor-

ing spacecraft. Instrumentation on each satellite is expected to generate ∼250 megabytes

of data per day. To enable the satellites to wait for high-rate transmission windows and

thereby minimize ground station cost, each satellite also stores up to 2 weeks worth (i.e.,

3.5 GB) of data. To meet these data requirements, the pub/sub middleware used for MMS

needs to support the QoS policies summarized in Table 1.

A challenge for MMS developers is to determine how the interaction of the QoS policies

listed in Table 1 impacts the deployed system. Key issues to address involve detecting con-

flicting QoS settings and ensuring proper behavior of the system in light of such conflicts.

Not all combinations of QoS policies and parameter values are semantically compatible

(i.e., only a subset actually make sense and provide the needed capabilities). Ideally, in-

compatibilities in QoS policy configurations should be detected before the MMS system

runs so modifications will be less costly and easier to implement, validate, and optimize.

9

II.3 Related Research

QoS management of DRE systems enables developers to create QoS configurations

and incorporate them into implementations. Existing techniques that enable developers to

manage QoS configurations can be classified as follows:

DSMLs for configuring QoS. There are currently several DSMLs developed to model

QoS requirements for distributed real-time embedded (DRE) systems. The Distributed QoS

Modeling Environment (DQME) [107] is a modeling tool that targets essential elements

of dynamic QoS adaptation. DQME is a hybrid of domain-specific modeling and run-

time QoS adaption methods, with emphasis on adapting QoS to changing conditions with

limited system resources. DQME focuses on QoS solution exploration of a running system

by providing run-time QoS adaptation strategies as modeling elements to be incorporated

into an existing DSML.

The Options Configuration Modeling Language (OCML) [62] is a DSML that aids

developers in setting compatible component configuration options for the system being de-

veloped as opposed to supporting QoS policy configuration for data-centric middleware

that can be applicable across various endpoints such as processes, objects, or compo-

nents. OCML is a modeling language intended to be domain-independent that captures

complex DRE middleware and application configuration information along with QoS re-

quirements. It currently supports configuration management only for distributed object

computing (DOC) architectures rather than data-centric pub/sub architectures such as DDS.

This difference is important because the endpoints receiving data in a system utilizing DDS

do not specify details of the type and implementation characteristics of the end points. For

instance, these endpoints could be processes, objects, or components.

The MicroQoSCORBA [71] middleware for embedded systems includes a GUI-based

tool that helps guide the developer with configuration options and provides semantic com-

patibility for resource constrained environments. More specifically, for each of the various

QoS policies allowed (i.e., fault tolerance, security, and timeliness), MicroQoSCORBA

10

supports multiple implementations that enforce any single QoS policy. These implementa-

tions are needed to offer different tradeoffs between QoS and resource consumption which

is often crucial for embedded systems. Additionally, an implementation for enforcing one

QoS policy may not be compatible with an implementation for supporting a different QoS

policy due to resource constraints for the particular hardware platform. The configuration

tool guides the developer through reconciling these incompatibilities to ensure the desired

balance between QoS and resource consumption. While the configuration tool helps to

address the QoS needs of resource-constrained environments, it is targeted to distributed

object computing middleware rather than the more generalized pub/sub middleware.

Prism Technologies (www.prismtechnologies.com) has developed a DSML for

creating QoS configurations. The DSML checks for validity of the configuration and lets

the user know if there are problems. Moreover, the DSML supports generation of imple-

mentation artifacts and integration with the OpenSplice DDS implementation. However,

PrismTech’s DSML supports only the OpenSplice DDS implementation.

Runtime monitoring. Real-time Innovations Inc. (www.rti.com) and Prism Tech-

nologies (www.prismtechnologies.com) have developed DDS products along with

MDE tools that monitor and analyze the flow of data within a system using DDS. These

tools help verify that a system is functioning as designed for a particular QoS policy con-

figuration and for a particular point of execution. However, discovering configuration prob-

lems at run-time is very late in the development cycle when problems are more expensive

and obtrusive to fix. Moreover, these tools are designed only for the vendor-specific DDS

implementation.

Content-based pub/sub development. Tools such as Siena [23] and the Publish/-

subscribe Applied to Distributed REsource Scheduling (PADRES) [65] system provide

support for flexible and efficient content-based subscription. PADRES is used for compos-

ite event detection and in this vein includes support for expressing time along with bindings

11

for variables, coordination patterns, and composite subscriptions. Siena provides scalabil-

ity to large content-based networks while minimizing missed deliveries and unnecessary

traffic. However, PADRES and Siena do not support correct QoS policy configurations

at design-time but rather focus on managing dynamic content-based subscriptions during

run-time.

QoS Profiles. The Unified Modeling Language (UML) [58] provides a profile for mod-

eling QoS properties and mechanisms [24]. The profile specifies a notation for various QoS

categories within UML such as throughput, latency, security, and scalability. The profile

does not, however, provide explicit support for all the QoS policies in DDS which is the

pub/sub standard providing the richest QoS support. However, extensions to the profile can

be made to support arbitrary QoS policies. The profile also does not provide automated

enforcement of semantic compatibility between QoS properties at design-time.

II.4 Unresolved Challenges

Existing approaches for managing QoS configuration complexity focus on various in-

dividual pieces of the problems. For example, some approaches focus only on a particular

implementation. Other approaches focus only on components or objects which are subsets

of the more generalized pub/sub paradigm. Still other approaches do not focus on QoS

aspects and managing the richness of QoS-enabled pub/sub middleware for DRE systems.

The following challenges represent a gap in the current research regarding design-time

validation of QoS configurations:

1. Traditionally, a QoS configuration is developed at design-time and validated at run-

time. This development approach creates a lengthy iteration time for QoS configu-

ration design and validation. Moreover, it creates a disconnect between when a QoS

configuration problem is discovered (i.e., at run-time) and when it is resolved (i.e., at

design-time. This disconnect creates a loss of context which exacerbates the problem

of developing valid QoS configurations.

12

2. The implementation artifacts of a QoS configuration are traditionally coupled and

intertwined with the business logic artifacts. For example, code for addressing QoS

configuration concerns is located in the same source code files as the business logic.

This coupling of QoS code and business logic code increases the accidental com-

plexity of developing a valid system.

3. Once a QoS configuration design is validated manual creation of implementation

artifacts increases the accidental complexity of a valid implementation.

Our solution approach leverages model-driven engineering (MDE) techniques coupled

with a domain-specific modeling languages (DSML) to (1) shorten the iteration cycle for

developing a QoS configuration, (2) validate a QoS configuration at design-time so that the

context of when a QoS configuration problem is discovered is the same context of when the

problem is resolved, and (3) automatically generate implementation artifacts from a valid

QoS configuration design thus greatly reducing the accidental complexity of using a QoS

configuration once it has been designed.

II.5 Solution Approach: Distributed QoS Modeling Language (DQML)

This section describes the design and implementation of the Distributed QoS Model-

ing Language, which is a DSML for QoS configurations. The key design goals of DQML

are (1) providing design-time validation of QoS configurations and (2) automatically trans-

forming the design to implementation artifacts.

This section also explores the challenges of generating QoS policy configurations for

pub/sub middleware and presents DSML-based solutions. We analyze these challenges in

the context of a prototype MMS mission (see Section II.2) implemented using the OMG

Data Distribution Service (DDS) [81] pub/sub middleware (see Section II.5.1.1). We se-

lected DDS as our middleware platform due to its powerful and flexible standard API and

its extensive support for QoS policies all of which are relevant to the MMS mission case

study.

13

II.5.1 Context for DQML

DQML initially utilizes the DDS as a QoS-enabled pub/sub middleware platform. We

therefore present a brief overview of DDS. While DDS’s rich set of QoS policies makes

it a particularly relevant platform, the DQML’s analysis and approach are also applicable

to other pub/sub middleware and application domains. Additionally this section evaluates

different solution approaches including the DSML approach which DQML embodies.

II.5.1.1 Overview of the OMG Data Distribution Service (DDS)

The OMG DDS specification defines a standard pub/sub architecture and runtime ca-

pabilities that enables applications to exchange data in event-based distributed systems.

DDS provides efficient, scalable, predictable, and resource-aware data distribution via its

Data-Centric Publish/Subscribe (DCPS) layer, which supports a global data store where

publishers write and subscribers read data, respectively. Its modular structure, power, and

flexibility stem from its support for (1) location-independence, via anonymous pub/sub, (2)

redundancy, by allowing any numbers of readers and writers, (3) real-time QoS, via its 22

QoS policies, (4) platform-independence, by supporting a platform-independent model for

data definition that can be mapped to different platform-specific models (e.g., C++ running

on VxWorks or Java running on Real-time Linux), and (5) interoperability, by specifying a

standardized protocol for exchanging data between distributed publishers and subscribers

that allows implementations from different DDS vendors to interact.

The DDS architecture consists of two layers. The Data-Centric Publish Subscribe

(DCPS) layer provides efficient, scalable, predictable, and resource-aware data distribu-

tion. The Data Local Reconstruction Layer (DLRL) provides an object-oriented facade

atop the DCPS so that applications can access object fields rather than data and defines

navigable associations between objects. This research focuses on DCPS since it is better

specified and supported than the DLRL.

As shown in Figure 2, several types of DCPS entities are specified for DDS. A domain

14

Topic Topic Topic

Data
Reader

Data
Writer

Data
Writer

Data
Reader

Data
Reader

Data
Writer

Subscriber PublisherPublisher Subscriber

Domain

Domain Participant

Domain Participant Factory

Figure 2: Architecture of the DDS Data-Centric Publish/Subscribe (DCPS) Layer

represents the set of applications that communicate with each other. A domain acts likes a

virtual private network so that DDS entities in different domains are completely unaware

of each other even if on the same machine or in the same process. A domain participant

factory’s sole purpose is to create and destroy domain participants. The factory is a pre-

existing singleton object that can be accessed by means of the get_instance() class

operation on the factory. A domain participant provides (1) a container for all DDS entities

for an application within a single domain, (2) a factory for creating publisher, subscriber,

and topic entities, and (3) administration services in the domain, such as allowing the ap-

plication to ignore locally any information about particular DDS entities.

DDS is topic-based, which allows strongly typed data dissemination since the type

of the data is known throughout the entire system. In contrast, content-based pub/sub

middleware, such as Siena [23] and the Publish/subscribe Applied to Distributed REsource

Scheduling (PADRES) [65], examine events throughout the system to determine data types.

A DDS topic describes the type and structure of the data to read or write, a data reader

subscribes to the data of particular topics, and a data writer publishes data for particular

topics. Various properties of these entities can be configured using combinations of the

22 QoS policies that are described in Table 2. In addition, publishers manage one or more

15

data writers while subscribers manage one or more data readers. Publishers and subscribers

can aggregate data from multiple data writers and readers for efficient transmission of data

across a network.

Topic types are defined via the OMG Interface Definition Language (IDL) that en-

ables platform-independent type definition. An IDL topic type can be mapped to platform-

specific native data types, such as C++ running on VxWorks or Java running on real-time

Linux. Below we show an example topic definition in IDL that defines an analog sensor

with a sensor id of type string and a value of type float.

struct AnalogSensor {

string sensor_id; // key

float value; // other sensor data

};

DDS provides a rich set of QoS policies, as illustrated in Table 2. Each QoS policy has

∼2 attributes, with most attributes having an unbounded number of potential values (e.g.,

an attribute of type character string or integer). The DDS specification defines which QoS

policies are applicable for certain entities, as well as which combinations of QoS policy

values are semantically compatible as outlined in Section II.5.1.3. For example, if a data

reader and data writer associated via a common topic want data to flow reliably, they must

both specify reliable transmission via the reliability QoS policy.

DDS provides a wide range of QoS capabilities that can be configured to meet the

needs of topic-based distributed systems with diverse QoS requirements. DDS’ flexible

configurability, however, requires careful management of interactions between various QoS

policies so that the system behaves as expected.

The extensive QoS support of DDS and the flexibility of the QoS policies present the

challenges of appropriately managing the policies to form the desired QoS configuration.

These challenges not only include ensuring valid QoS parameter types and values but also

ensuring valid interactions between the policies and the DDS entities. Moreover, managing

16

DDS QoS Policy Description
Deadline Determines rate at which periodic data is refreshed
Destination Order Sets whether data sender or receiver determines order
Durability Determines if data outlives the time when written or

read
Durability Service Details how durable data is stored
Entity Factory Sets enabling of DDS entities when created
Group Data Attaches application data to publishers, subscribers
History Sets how much data is kept to be read
Latency Budget Sets guidelines for acceptable end-to-end delays
Lifespan Sets time bound for “stale” data
Liveliness Sets liveness properties of topics, data readers, data

writers
Ownership Controls writer(s) of data
Ownership
Strength

Sets ownership of data

Partition Controls logical partition of data dissemination
Presentation Delivers data as group and/or in order
Reader Data
Lifecycle

Controls data and data reader lifecycles

Reliability Controls reliability of data transmission
Resource Limits Controls resources used to meet requirements
Time Based Filter Mediates exchanges between slow consumers and fast

producers
Topic Data Attaches application data to topics
Transport Priority Sets priority of data transport
User Data Attaches application data to DDS entities
Writer Data
Lifecycle

Controls data and data writer lifecycles

Table 2: DDS QoS Policies

17

semantic compatibility increases the accidental complexity of creating valid QoS config-

uration since not all valid combinations of QoS policies will produce the desired system

behavior as outlined above with the flow of reliable data. It is incumbent upon the developer

to use the QoS policies appropriately and judiciously.

DSMLs can help address these challenges. DSMLs can reduce the variability com-

plexity of managing multiple QoS policies and their parameters by presenting the QoS

policies as modeling elements that are automatically checked for appropriate associations

and whose parameters are automatically typed and checked for appropriate values. DSMLs

can also codify constraints for semantic compatibility to ensure that data flows as intended.

Moreover, DSMLs can automatically generate implementation artifacts that accurately re-

flect the design. This section uses our MMS example from Section II.2 to present the

challenges of configuring DDS QoS policies so the system executes as intended.

II.5.1.2 Evaluating Common Alternative Solution Techniques

Several alternatives exist to address the challenges of QoS policy configurations de-

scribed above, including (1) point solutions, which iteratively modify QoS settings based

on system feedback, (2) pattern-based solutions, which incorporate documented design ex-

pertise, and (3) model-driven engineering (MDE) solutions, which use DSMLs to design

and validate configurations and synthesize implementations. Below we evaluate these alter-

natives in terms of their ability to document and realize proven QoS policy configurations

robustly.

Point solutions. This approach involves the three step process of (1) making modifica-

tions to the existing system’s QoS policies, (2) gathering feedback, and (3) making further

modifications based on the feedback. This iterative process can be done either at (1) run-

time (i.e., while the system is executing), or (2) development time (i.e., while the system is

being developed). In either case, developers must design a proper QoS policy configuration

and ensure correct configuration transformation from design to implementation.

18

Point solutions work best when a configuration expert is available, the configuration

is simple, and the configuration need not be maintained or enhanced. Under these cir-

cumstances the problem is simplified and the overhead of training others, codifying the

expertise, or otherwise developing for modifiability may not be needed.

Point solutions make it hard, however, to capture proven QoS policy configurations or

leverage from the expertise of others. The configuration solutions that are designed often

need the help and advice of human experts, which can create productivity bottlenecks. If

there are no experts available developers must generate expertise “on-the-fly” while solv-

ing configuration problems, which is tedious and error-prone. Moreover, point solutions do

not support automated transformation of configuration solutions from design to implemen-

tation.

We now describe two types of point solutions.

(1a) Run-time point solutions: To modify and evaluate system behavior at run-time,

DDS provides run-time mechanisms that notify a system when QoS policies between DDS

entities are incompatible or when QoS policies for a given DDS entity are inconsistent. A

subsystem for the application could therefore be developed to monitor when incompatibil-

ity between DDS entities and inconsistency for a particular DDS entity occurs and make

adjustments accordingly while the application is running.

This subsystem would necessarily be fairly complex and intelligent to support manage-

ment of the different QoS policies and make compatible and consistent QoS policy changes

while the system is running. For example, with the MMS example described above, the

spacecraft would need to include monitoring software to determine the lack of compatibil-

ity and consistency as well as logic to determine the appropriate QoS settings that should

be used. Since the spacecraft would at times not be within contact of a ground station, all of

this policy configuration management software would need to be autonomous. Addition-

ally, for distributed systems, determining a consensus of appropriate QoS settings can be

difficult with the plethora of monitors needed for each subsystem or computing node. The

19

system itself may become unstable as various policies are modified, feedback is gathered,

and additional modifications are made. The system may not be able to reach a stable state

and would execute in an unpredictable manner.

This approach would incur additional expense, code complexity, and development time.

Additionally, this type of solution is unacceptable for some systems such as hard real-time

and mission critical systems which are highly sensitive to jitter and latency. It is also

unacceptable for systems that require proof of the system properties.

(1b) Development-time point solutions: The development-time point solution ap-

proach involves an iterative process of coding, compiling, running, and checking com-

patibility and consistency, which is tedious and error-prone. Moreover, this approach intro-

duces accidental complexity since there is no separation between the code that configures

the QoS policies and the code that implements the application. A change to the code to

alleviate QoS incompatibilities and inconsistencies can change code affecting other QoS

settings or the code that affects the logic of the application. Additionally, testing can be

problematic since proving the interaction of the QoS policies to be correct is hard in a

non-trivial system. In the MMS example, for instance, the QoS policies for a given config-

uration must be proven to interact correctly (i.e., be compatible and consistent) so that data

will flow as intended.

One modification to the point solutions outlined above is to decouple the QoS policy

configuration settings from the application code by using QoS policy configuration files

that are read by the application when it is started. This would allow a QoS monitoring

and modification harness to be overlaid on top of an existing system. It also addresses

some of the accidental complexity of inadvertently modifying business code logic while

changing QoS policy settings. However, since these policy configuration files are edited

manually there is still the problem of accidental complexity occurring in the creation and

modification of the files themselves. QoS policy names, parameters, and values could be

mistyped. Additionally, there remains the accidental complexity of mistakenly modifying

20

a QoS policy unrelated to the current development iteration. This approach may be feasible

for simple systems where all the configuration paths can be rigorously tested and the system

will not be expanded or enhanced at a later point. However, this is the not case for most

systems interested in incorporating QoS properties.

Pattern-based solutions. In this approach configuration patterns are used to address

QoS policy configuration challenges. The patterns document the use of QoS policies that

provide shaping, prioritization, and management of a dataflow in a network [51]. For

example, developers of DDS-based systems could limit access to certain data by using the

DDS Controlled Data Access pattern, which utilizes the DDS Partition and User Data QoS

Policies along with other DDS elements to provide the desired QoS.

Configuration patterns enable the codification of configuration expertise so that it is

clearly documented and can be broadly reused. These patterns address the problems of

human expert availability by making the configuration policy expertise generally available.

However, a drawback with a pattern-based approach is the responsibility developers have

for correctly transferring the configuration design into implementation manually, which

can be tedious and error-prone. Various developers may also implement the patterns in

different ways, which can impede reuse and large-scale system integration.

Moreover, DDS is a relatively new technology and there are currently a limited set of

patterns that have been documented. The catalog of available patterns may not address a

given configuration scenario. It will take some time to build up the catalog of DDS patterns

and to fully understand their ramifications. In short, pattern-based solutions address the

design challenges for non trivial QoS policy configurations but do not address the imple-

mentation challenges.

DSML-based solutions. This approach to addressing the complexity of managing QoS

policy configurations involves the use of DSMLs that codify configuration expertise in the

metamodels developed for a particular domain. DSMLs also use an executable form of that

expertise to synthesize part or all of an implementation. For example, DSMLs can generate

21

valid QoS policy configuration files from valid QoS policy configurations modeled in the

DSMLs.

DSMLs can also ensure (1) proper semantics for specifying QoS policies and (2) all pa-

rameters for a particular QoS policy are properly specified and used correctly, as described

in Section I. At design time, therefore, they can detect many types of QoS policy config-

uration problems, such as invalid parameter values for a QoS policy and conflicting QoS

policies. They can also automate the generation of implementation artifacts (e.g., source

code and configuration files) that reflect design intent. Due to these benefits, this research

focuses on DSML-based solutions.

II.5.1.3 DDS QoS Policy Configuration: Challenges and DSML-based Solutions

In the context of DDS and the MMS case study, we developed a DSML-based solu-

tion to four types of challenges that arise when creating QoS policy configurations. We

chose a DSML-based solution over other common solution techniques (such as manually-

implementing point- and pattern-based [51] solutions) since DSMLs can ensure (1) proper

semantics for specifying QoS policies and (2) all parameters for a particular QoS policy

are properly specified and used correctly, as described in Section I. DSMLs can also detect

many types of QoS policy configuration problems at design time and can automatically

generate implementation artifacts (e.g., source code and configuration files) that reflect de-

sign intent.

MMS Challenge 1: Managing QoS Policy Configuration Variability.

Context. DDS provides three points of variability with respect to QoS policy configura-

tions: (1) the associations between a single DDS entity and two or more QoS policies, (2)

the associations between two or more entities, and (3) the number and types of parameters

per QoS policy.

22

Problem. When creating a DDS QoS policy configuration, associations are made be-

tween various entities (e.g., between a data writer sending collected data from an MMS

satellite and the publisher that manages the data writer). Not all possible associations are

valid, however. For example, the association between a data writer and a subscriber is in-

valid since a subscriber manages one or more data readers and not data writers. If the rules

governing valid associations between entities are not obeyed when associations are created

the QoS policy configuration will be invalid.

Associations can be made not only between DDS entities but also between a DDS entity

and the QoS policies. Not all QoS policies are valid for all DDS entities, however. For

instance, associating a Presentation QoS Policy with an MMS ground station’s data reader

is invalid. The rules that determine which QoS policies can be associated with which DDS

entities must be considered when creating valid QoS policy configurations.

Finally, the number and types of parameters differ for each QoS policy type. The num-

ber of parameters for any one QoS policy ranges from one (e.g., Deadline QoS Policy)

to six (e.g., Durability Service QoS Policy). The parameter types for any one QoS policy

also differ. The parameter types include boolean, string, long, struct, and seven

different types of enums. It is hard to track the number of parameters a particular QoS

policy has manually; it is even harder to track the valid range of values that any one single

parameter can have.

General DSML-based solution approach. A DSML can ensure that only appropriate

associations are made between entities and QoS policies. In addition, a DSML can list the

parameters and default values of any selected QoS policy. DSMLs ensure that only valid

values are assigned to the QoS policy parameters. For example, a DSML can raise an error

condition if a string is assigned to a parameter of type long. Section II.5.2.2 describes

how DQML addresses the QoS policy configuration variability challenge by allowing only

valid values to be assigned to parameters and checking for valid associations between QoS

23

QoS Policies Affected DDS Entities
Deadline Topic, data reader, data writer
Destination
Order Topic, data reader, data writer
Durability Topic, data reader, data writer
Latency Budget Topic, data reader, data writer
Liveliness Topic, data reader, data writer
Ownership Topic, data reader, data writer
Presentation Publisher, subscriber
Reliability Topic, data reader, data writer

Table 3: Potential Incompatible DDS QoS Policies

policies and entities.

MMS Challenge 2: Ensuring QoS compatibility.

Context. DDS defines constraints for compatible QoS policies. Table 3 lists the QoS

policies that can be incompatible and the relevant types of entities for those policies. In-

compatibility applies to QoS policies of the same type (e.g., reliability), across multiple

types of entities (e.g., data reader and data writer).

Problem. When compatibility constraints are violated, data will not flow between DDS

data writers and data readers (i.e., compatibility impacts topic dissemination). For example,

an incompatibility between deadline QoS policies will occur if an MMS ground station

expects data updates at least every 5 seconds but an MMS spacecraft only commits to data

updates every 10 seconds. The data will not flow between the spacecraft and the ground

station because the values of the QoS policies are incompatible, as shown in Figure 3.

General DSML-based solution approach. A DSML can include compatibility checking

in the modeling language itself. A DSML user can invoke compatibility checking to make

sure that the QoS policy configuration specified is valid. If incompatible QoS policies are

detected the user is notified at design time and given details of the incompatibility. Sec-

tion II.5.2.2 describes how DQML addresses the QoS compatibility challenge by providing

24

Deadline of 10 ms
specifiedDeadline of

5 ms
requested

X
Data will not

be transferred

Key:
= MMS ground station = MMS spacecraft = intended data flow

Figure 3: Incompatible MMS Ground Station and Spacecraft Deadline QoS

Consistency Constraints for QoS Policies
Deadline.period ≥ Time_Based_Filter.minimum separation
Resource_Limits.max_samples ≥
Resource_Limits.max_samples_per_instance
Resource_Limits.max_samples_per_instance ≥ History.depth

Table 4: DDS QoS Consistency Constraints

compatibility constraint checking on QoS policy configurations.

MMS Challenge 3: Ensuring QoS consistency.

Context. The DDS specification defines when QoS policies are inconsistent (i.e., when

multiple QoS policies associated with a single DDS entity are not valid). Table 4 describes

the consistency constraints for QoS policies associated with a single DDS entity.

For example, an inconsistency between the Deadline and Time-based Filter QoS poli-

cies occurs if an MMS ground station tries to set the Deadline QoS Policy’s deadline period

to 5 ms and the Time-based Filter QoS Policy’s minimum separation between incoming

pieces of data to 10 ms, as shown in Figure 4. This invalid configuration violates the DDS

constraint of deadline period ≥ minimum separation.

Time_based_filter.minimum_separation = 10ms

Deadline.period = 5 ms.

X
QoS policies
will not be set

Figure 4: Inconsistent QoS Policies for an MMS Ground Station

25

Problem. Manually checking for all possible consistency constraint violations is tedious

and error-prone for non-trivial pub/sub systems.

General DSML-based solution approach. A DSML can include consistency checking

in the modeling language itself. As with compatibility checking, DSML users can invoke

consistency checking to ensure that the QoS policy configuration is valid. If inconsistent

QoS policies are found, users are notified at design time with detailed information to help

correct the problem. Section II.5.2.2 describes how DQML addresses the QoS consistency

challenge by providing consistency constraint checking on QoS policy configurations.

MMS Challenge 4: Ensuring Correct QoS transformation.

Context. After a valid QoS policy configuration has been created it must be correctly

transformed from design to implementation.

Problem. A conventional approach is to (1) document the desired QoS policies, pa-

rameters, values, and associated entities often in an ad hoc manner (e.g., using handwritten

notes or conversations between developers) and then (2) transcribe this information into

the source code. This ad hoc process creates opportunities for accidental complexities,

however, since the QoS policies, parameters, values, and related entities can be misread,

mistyped, or misunderstood. The QoS policy configurations encoded in the system may

therefore differ from the valid configurations intended originally.

General DSML-based solution approach. A DSML can provide model interpreters to

generate correct-by-construction1 implementation artifacts. The interpreters iterate over

the QoS policy configuration model designed in the DSML to create appropriate imple-

mentation artifacts (e.g., source code, configuration files) that will correctly recreate the

QoS policy configuration as designed. Section II.5.2.2 describes how DQML addresses

the challenge of correct QoS transformation by providing an interpreter that traverses the

model and generates implementation specific artifacts.

1In our research “correct-by-construction” refers to QoS policy configuration artifacts that faithfully trans-
fer design configurations into implementation and deployment.

26

II.5.2 Structure and Functionality of DQML

The Distributed QoS Modeling Language (DQML) is a DSML that automates the anal-

ysis and synthesis of semantically compatible DDS QoS policy configurations. We de-

veloped DQML using the Generic Modeling Environment (GME) [64], which is a meta-

programmable environment for creating DSMLs. This section describes the structure and

functionality of DQML and explains how it resolves the challenges from Section II.5.1.3

in the context of DDS and the MMS case study.

II.5.2.1 Structure of the DQML Metamodel

The DQML metamodel constrains the possible set of models for QoS policy configura-

tions as described below.

Scope. The DQML metamodel includes all DDS QoS policy types shown in Table 2,

but supports only DDS entity types that have QoS policies associated with them. In addition

to topics, data readers, and data writers previously mentioned, DQML can associate QoS

policies with (1) publishers, which manage one or more data writers, (2) subscribers, which

manage one or more data readers, (3) domain participants, which are factories for DDS

entities for a particular domain or logical network, and (4) domain participant factories,

which generate domain participants. While other entities and constructs exist in DDS,

none directly use QoS policies and are thus excluded from DQML.

As an exemplar, Figures 5 and 6 illustrate a portion of the DQML metamodel pertaining

to the Deadline QoS Policy. Figure 5 shows the part of the DQML metamodel relevant to

the Deadline QoS Policy and its relationships to applicable DDS entities (i.e., data reader,

data writer, and topic). Figure 6 shows the part of the DQML metamodel relevant to the

OCL constraints placed on the Deadline QoS Policy to ensure semantic compatibility. The

compatibility constraints are associated with a topic since compatibility between a data

reader and a data writer is determined by a common topic.

This figure shows the appropriate relationships and the number of associations. In a

27

Figure 5: Deadline QoS Policy Relationships (UML notation)

Incompatibility caught
when data writer deadline

> data reader deadline

Figure 6: Deadline QoS Policy Compatibility Constraints

28

manner similar to Figures 5 and 6 the remainder of the metamodel describes the rest of the

QoS policies including the parameters and constraints for each policy.

Associations between entities and QoS policies. DQML supports associations be-

tween DDS entities and QoS policies rather than having DDS entities contain or own QoS

policies. This metamodel design decision allows greater flexibility and ease of constraint

error resolution. If QoS policies had been contained by the DDS entities then multiple

DDS entities could not share a common QoS policy. Instead, the policy would be manu-

ally copied and pasted from one entity to another, thereby incurring accidental complexity

when designing a QoS policy configuration.

In contrast, DQML supports multiple DDS entities having the same QoS policy by al-

lowing modelers to create a single QoS policy with the appropriate values. Modelers can

then create associations between the applicable DDS entities and the QoS policy. This ap-

proach also simplifies constraint errors resolution (e.g., if constraint errors are found, the

offending entities can be associated with a common QoS policy to eliminate the compati-

bility error).

Constraint definition. The DDS specification defines constraints placed on QoS poli-

cies for compatibility and consistency. The DQML metamodel uses GME’s Object Con-

straint Language (OCL) [105] implementation to define these constraints. As noted in

Section II.5.1.3 for challenges 2 and 3, compatibility constraints involve a single type of

QoS policy associated with more than one DDS entity, whereas consistency constraints in-

volve a single DDS entity with more than one QoS policy. In particular, Figure 6 highlights

the OCL constraint that catches the deadline incompatibility of Figure 3. Both incompati-

bility and inconsistency constraints are defined in the metamodel and can be checked when

explicitly initiated by users.

To maximize flexibility, DQML does not enforce semantic compatibility constraints

automatically in the metamodel since users may only want to model some parts of a DDS

29

Figure 7: DDS Entities Supported in DQML

application, rather than model all required entities and QoS policies. Only checking con-

straints when initiated by modelers enables this flexibility. Conversely, association con-

straints (i.e., the valid associations between DDS entities and QoS policies) are defined in

the metamodel and are thus checked automatically when associations are specified.

II.5.2.2 Functionality of DQML

DQML allows developers to designate any number of DDS entity instances involved

with QoS policy configuration. For example, DQML supports seven DDS entity types that

can be associated with QoS policies, as shown in Figure 7. QoS policies can be created and

associated with these entities as described below.

Specification of QoS policies. DQML allows developers to designate the DDS QoS

policies involved with a QoS policy configuration. DQML supports all DDS policies, along

with their parameters, the appropriate ranges of values, and the default parameter values.

Developers can then change default settings for QoS policy parameters as needed. More-

over, if a QoS policy parameter has a limited range of values, DQML enumerates only these

specific values and ensures that only one of these values is assigned to the parameter.

DQML also ensures that the type of value assigned is appropriate. For example, it en-

sures that a character value is not assigned to a parameter that requires an integer value. The

30

Figure 8: Example of DQML QoS Policy Variability Management

DQML interpreter externalizes the parameter values (whether set explicitly or by default)

so that no QoS policy has uninitialized parameters.

Figure 8 shows an example of how DQML addresses the challenge of managing QoS

policy configuration variability as outlined in Section II.5.1.3. In this example DQML

displays the parameters for the History QoS Policy along with the default values for the pa-

rameters in grey (i.e., history_depth = 1 and history_kind = KEEP_LAST).

Since history_kind is an enumerated type, DQML lists the valid values when the user

selects the parameter. Only one of the valid values can be assigned to the parameter.

Association between entities and QoS policies. DQML supports generating associa-

tions between the DDS entities themselves and between a DDS entity and the QoS policies.

DQML ensures that only valid associations are created (i.e., where it is valid to associate

two particular types of entities or associate a particular DDS entity with a particular type

of QoS policy). DQML will notify developers if the association is invalid and disallow the

association at design-time.

Checking compatibility and consistency constraints. DQML supports checking for

compatible and consistent QoS policy configurations. Users initiate this checking and

DQML reports any violations. Constraint checking in DQML uses default QoS parameter

31

values to determine QoS compatibility and consistency if no values are specified. Develop-

ers of QoS policy configurations might explicitly associate only a single QoS policy to an

entity and assume no checking for compatibility or consistency is applicable. A constraint

violation may exist, however, depending on the interaction of the explicit parameter values

and the default values for other entities.

For instance, if developers specify only a single Presentation QoS Policy in a config-

uration, associate it with a single subscriber entity, and change the default access scope

value from instance to topic or group, they may assume no constraint violations occur. The

explicit access scope value set on the subscriber is incompatible, however, with the implicit

(default) value of instance for any publisher associated via a common topic.

The constraint resolution problem is further exacerbated by QoS policies that can be

associated with a topic entity and then act as the default QoS policy for data readers or

writers. For example, the Reliability QoS Policy can be associated with a data reader, a

data writer, or a topic. If the policy is associated with a topic, any data readers or data

writers not explicitly associated with a reliability policy will use the topic’s Reliability QoS

Policy. DQML can check this type of QoS association for compatibility and consistency.

Figures 9 and 10 show examples of how DQML addresses the challenges of ensur-

ing QoS compatibility and consistency, respectively, as described in Section II.5.1.3. Fig-

ure 9 shows how DQML detects and notifies users of incompatible reliability QoS policies.

Likewise, Figure 10 shows an incompatible deadline period (i.e., 10 is less than the time

based filter’s minimum separation of 15). Both policies are associated with the same MMS

Ground Station data reader. DQML checks the consistency of the modeled QoS policies

and notifies users of violations.

Finally, the design decision was made to models DDS entities as GME models and

QoS policies as GME atoms. Within GME the use of models allows containment of other

GME objects while atoms do not allow this. Currently, DDS entities do not need to contain

anything else but initially this was not clear. In hindsight, the DDS entities may have been

32

Compatibility Constraint for Reliability - VIOLATED

Best effort data
transfer offered

Reliable data
transfer

requested

X
Key:

= MMS ground station = MMS spacecraft = intended data flow

Figure 9: Example of DQML QoS Policy Compatibility Constraint Checking

Consistency Constraint VIOLATED

Time_based_filter.minimum_separation = 10ms

Deadline.period = 5 ms.

X
QoS policies
will not be set

Figure 10: Example of DQML QoS Policy Consistency Constraint Checking

33

History QoS Policy parameters
implemented as designed

Figure 11: QoS Policy Configuration File for Figure 8

modeled as atoms although there may still be a need for containment at some point in the

future. It seems prudent to leave this option open for the time being.

Transforming QoS policy configurations from design to implementation. Figure 11

shows how DQML addresses the challenge of correctly transforming QoS policy config-

urations from design to implementation, as described in Section II.5.1.3. In this example,

DQML generates the QoS policy configuration file for an MMS satellite data writer as

modeled in Figure 8. The History QoS Policy associated with the data writer is shown

along with values for the policy. This file can then be seamlessly integrated into the MMS

implementation to ensure the desired QoS policy configuration.

II.5.3 DQML Productivity Analysis for the MMS Case Study

Model-driven engineering (MDE) helps address the problems of designing, implement-

ing, and integrating applications [6, 40, 59, 91]. MDE is increasingly used in domains

involving modeling software components, developing embedded software systems, and

configuring quality-of-service (QoS) policies. Key benefits of MDE include (1) raising the

level of abstraction to alleviate accidental complexities of low-level and heterogeneous soft-

ware platforms, (2) more effectively expressing designer intent for concepts in a domain,

and (3) enforcing domain-specific development constraints. Many documented benefits of

MDE are qualitative (e.g., use of domain-specific entities and associations that are familiar

to domain experts, visual programming interfaces where developers can manipulate icons

representing domain-specific entities to simplify development). There is a lack of doc-

umented quantitative benefits for DSMLs, however, that show how developers are more

productive using MDE tools and how development using DSMLs yields fewer bugs.

34

Conventional techniques for quantifying the benefits of MDE in general (e.g., com-

paring user-perceived usefulness of measurements for development complexity [3, 4]) and

DSMLs in particular (e.g., comparing elapsed development time for a domain expert with

and without the use of the DSML [69]) involve labor-intensive and time-consuming experi-

ments. For example, control and experimental groups of developers may be tasked to com-

plete a development activity during which metrics are collected (e.g., number of defects,

time required to complete various tasks). These metrics also often require the analysis of

domain experts, who may be unavailable in many production systems.

Even though DSML developers are typically responsible for showing productivity gains,

they often lack the resources to demonstrate the quantitative benefits of their tools. One way

to address this issue is via productivity analysis, which is a lightweight approach to quanti-

tatively evaluating DSMLs that measures how productive developers are, and quantitatively

exploring factors that influence productivity [14, 87]. We apply quantitative productivity

measurement using a case study of DQML.

We analyze the pros and cons of DQML by applying it in the context of the DDS

Benchmarking Environment (DBE) to evaluate the QoS behavior of the MMS scenario

presented in Figure 1. DBE is a suite of software tools that can examine and evaluate

various DDS implementations [106]. DBE requires correct QoS policy settings so that

data will flow as expected. If these policy settings are semantically incompatible QoS

evaluations will not run properly. DBE uses a set of Perl scripts that launches executables

for the DDS application (e.g., to deploy data readers and data writers onto specified nodes).

For each data reader and data writer DBE also deploys a QoS policy settings file that is

currently generated manually.

This section presents the results of productivity analysis using DQML. In particular,

we present the productivity benefit and the break-even point of using DQML vs. manu-

ally implementing QoS policy configurations for DBE. Manual implementation of config-

urations is applicable to both the point- and pattern-based solutions presented previously

35

in Section II.5.1.2 [46] since neither approach provides implementation guidance. Our

productivity analysis shows significant productivity gains compared with common alterna-

tives, such as manual development using third-generation programming languages. While

this section focuses on DQML, in general the productivity gains and analysis presented are

representative of DSMLs’ ability to reduce accidental complexity and increase reusability.

II.5.3.1 The DQML DBE Interpreter

To support DBE and its need to generate correct QoS policy configurations we devel-

oped a DQML interpreter that generates QoS policy parameter settings files for the data

readers and data writers that DBE configures and deploys. This interpreter can also ac-

commodate other DDS entities (e.g., topics, publishers, and subscribers). All QoS policies

from a DQML model are output for the data readers and data writers.

The DQML interpreter creates one QoS policy parameter settings file for each data

reader or data writer that is modeled. The names of the files are generated by using the name

of the data reader or data writer prepended with either “DR” or “DW” plus the current count

of data readers or data writers processed (e.g., DR1_Satellite1.txt). The filename

prefix is generated to ensure that a unique filename is created since the names of the data

readers and data writers modeled in DQML need not be unique.

A common DBE use-case for DQML thus becomes (1) modeling the desired DDS

entities and QoS policies in DQML, (2) invoking the DBE interpreter to generate the ap-

propriate QoS settings files, and (3) executing DBE to deploy data readers and data writers

using the generated QoS settings files.

II.5.3.2 Productivity Analysis

Productivity Analysis Approach.

When analyzing productivity gains for a given DSML, analysts can employ several

different types of strategies, such as

36

•Design development effort, comparing the effort (e.g., time, number of design steps [11],

number of modeling elements [56, 104]) it takes a developer to generate a design using tra-

ditional methods (e.g., manually) versus generating a design using the DSML,

• Implementation development effort, comparing the effort (e.g., time, lines of code)

it takes a developer to generate implementation artifacts using traditional methods (i.e.,

manual generation versus generating implementation artifacts using the DSML),

• Design quality, comparing the number of defects in a model or an application devel-

oped traditionally to the number of defects in a model or application developed using the

DSML,

• Required developer experience, comparing the amount of experience a developer

needs to develop a model or application using traditional methods to the amount of experi-

ence needed when using a DSML, and

• Solution exploration, comparing the number of viable solutions considered for a par-

ticular problem in a set period of time using the DSML as compared to traditional methods

or other DSMLs.

Our focus is on the general area of quantitative productivity measurement-specifically

on implementation development effort in terms of lines of code. The remainder of this

section compares the lines of configuration code manually generated for DBE data readers

and data writers to the lines of C++ code needed to implement the DQML DBE interpreter,

which in turn generates the lines of configuration code automatically.

Metrics for DQML Productivity Analysis.

Below we analyze the effect on productivity and the breakeven point of using DQML as

opposed to manual implementations of QoS policy configurations for DBE. Although con-

figurations can be designed using various methods as outlined previously in Section II.5.1.2,

manual implementation of configurations is applicable to these other design solutions since

these solutions provide no guidance for implementation.

Within the context of DQML, we developed an interpreter specific to DBE to support

37

DBE’s requirement of correct QoS policy configurations. The interpreter generates QoS

policy parameter settings files for the data readers and data writers that DBE configures

and deploys. All relevant QoS policy parameter settings from a DQML model are output

for the data readers and data writers including settings from default as well as explicitly

assigned parameters.

As appropriate for DBE, the interpreter generates a single QoS policy parameter set-

tings file for every data reader or data writer modeled. Care is taken to ensure that a unique

filename is created since the names of the data readers and data writers modeled in DQML

need not be unique. Moreover, the interpreter’s generation of filenames aids in QoS settings

files management (as described in Section II.5) since the files are uniquely and descriptively

named. The following subsections detail the scope, development effort, and productivity

analysis of DQML’s DBE interpreter versus manual methods.

Scope. DBE currently deals only with DDS data readers and data writers. Our produc-

tivity analysis therefore focuses on the QoS parameters relevant to data readers and data

writers. (Similar analysis can be done for other types of DDS entities associated with QoS

policies.) At a minimum, in the MMS scenario each MMS satellite, non-MMS satellite, and

ground station will have a data writer and data reader to send and receive data, respectively,

which yields seven data readers and seven data writers to configure. This scenario provides

the minimal baseline since production satellites and ground stations typically have many

data writers and data readers for use in sending and receiving not only to other systems but

also for use internally between various subsystems.

A data writer can be associated with 15 QoS policies with a total of 25 parameters, as

shown in Table 5. A data reader can be associated with 12 QoS policies with a total of 18

parameters, as shown in Table 6. The total number of relevant QoS parameters for DBE is

thus 18 + 25 = 43. Each QoS parameter value for a data reader or writer corresponds to one

line in the QoS policy parameter settings file for DBE, as shown in Figure 11.

Interpreter development. We developed the DBE interpreter for DQML using GME’s

38

QoS Policy # of Params Param Type(s)
Deadline 1 int
Destination Order 1 enum
Durability 1 enum
Durability Service 6 5 ints, 1 enum
History 2 1 enum, 1 int
Latency budget 1 int
Lifespan 1 int
Liveliness 2 1 enum, 1 int
Ownership 1 enum
Ownership Strength 1 int
Reliability 2 1 enum, 1 int
Resource Limits 3 3 ints
Transport Priority 1 int
User Data 1 string
Writer Data Lifecycle 1 bool
Total Parameters 25

Table 5: DDS QoS Policies for Data Writers

QoS Policy # of Params Param Type(s)
Deadline 1 int
Destination Order 1 enum
Durability 1 enum
History 2 1 enum, 1 int
Latency budget 1 int
Liveliness 2 1 enum, 1 int
Ownership 1 enum
Reader Data Lifecycle 2 2 ints
Reliability 2 1 enum, 1 int
Resource Limits 3 3 ints
Time Based Filter 1 int
User Data 1 string
Total Parameters 18

Table 6: DDS QoS Policies for Data Readers

39

Builder Object Network (BON2) framework, which provides C++ code to traverse the

DQML model utilizing the Visitor pattern [32]. When using BON2, developers of a DSML

interpreter only need to modify and add a small subset of the framework code to tra-

verse and appropriately process the particular DSML model. More specifically, the BON2

framework supplies a C++ visitor class with virtual methods (e.g., visitModelImpl,

visitConnectionImpl, visitAtomImpl). The interpreter developer then sub-

classes and overrides the applicable virtual methods.

The DDS entities relevant to DQML are referred to as model implementations in BON2.

Therefore, the DBE interpreter only needs to override the visitModelImpl() method

and is not concerned with other available virtual methods. When the BON2 framework in-

vokes visitModelImpl() it passes a model implementation as an argument. A model

implementation includes methods to (1) traverse the associations a DDS entity has (using

the getConnEnds()method) and specify the relevant QoS policy association as an input

parameter (e.g., the association between a data writer and a deadline QoS Policy), (2) re-

trieve the associated QoS policy, and (3) obtain the attributes of the associated QoS policy

using the policy’s getAttributes() method.

The DQML-specific code for the DBE interpreter utilizes 160 C++ statements within

the BON2 framework. We stress that any interpreter development is a one-time cost; specif-

ically there is no development cost for the DBE interpreter since it is already developed.

The main challenge in using BON2 is understanding how to traverse the model and access

the desired information. After interpreter developers are familiar with BON2, the inter-

preter development is fairly straightforward. We detail the steps of developing the DBE

interpreter below.

Figure 12 outlines the visitor class that has been created for the DBE interpreter for use

within the BON2 framework. This class is the only class that needs to be implemented for

the DBE interpreter. Line 1 determines the class name and its derivation from the BON2

Visitor class. Lines 3 and 4 declare the default constructor and destructor respectively.

40

Figure 12: Visitor Class for DBE Interpreter

Lines 7 - 9 declare the abstract methods visitAtomImpl, visitModelImpl, and

visitConnectionImpl inherited from the BON2 Visitor class that need to be defined

for the DBE interpreter. Lines 11 and 12 declare methods to process data readers and

data writers respectively. Lines 14 - 22 declare the main method that processes the QoS

properties for a data reader or data writer and writes the QoS parameters to the appropriate

file. Line 25 defines the debugging output file that had been used for debugging the DBE

interpreter.

As is shown in Figure 12, the structure of the DBE visitor class is fairly simple and

straightforward. Moreover, of the three methods inherited from the BON2 Visitor class

and declared on lines 7 - 9 only the visitModelImpl method declared on line 8 is a

non-empty method. For DBE, the only DQML entities of interest are what GME terms

the model elements which for DBE’s interests are the data readers and data writers. The

41

Figure 13: visitModelImpl Method

DBE interpreter is not concerned with traversing atom or connection elements since these

elements will be addressed by processing the model elements.

We now focus on the implementations of the relevant methods particularly as they re-

late to complexity and required background knowledge. The default constructor and de-

structor simply open and close the file used for debugging which is not required func-

tionality for the DBE interpreter. Therefore the implementations of these two methods

(which total two C++ statements) are excluded to save space. The visitAtomImpl and

visitConnectionImpl methods are defined (since the inherited methods are abstract)

but empty (since they are not needed).

As shown in Figure 13, the visitModelImpl method determines the type of model

element currently being processed and calls the appropriate method (i.e.,

processDataReaderQos for a data reader on line 6 and processDataWriterQos

for a data writer on line 12). The lines written to out_file_ are simply for debugging

purposes and are not required by DBE. The DBE interpreter developer required familiarity

with the DQML metamodel to know the names of the model elements of interest but the

model elements in the metamodel were given intuitive names to reduce accidental com-

plexity (e.g., DataReader and DataWriter on lines 3 and 9 respectively).

42

Figure 14: processDataWriterQos Method

43

Figure 14 outlines the processDataWriterQos method. For each QoS policy ap-

plicable to a data writer this method sets up a mapping of DQML QoS parameter names

to DBE QoS parameters names. Then the method calls the outputDDSEntityQoS

method to write the QoS parameter values to the appropriate file. The interpreter devel-

oper needed to have an understanding of the QoS parameter names for DBE, the QoS pa-

rameter names in the DQML metamodel, and the names of the associations between data

readers/writers and QoS policies in the DQML metamodel. However, as with the model

elements in the DQML metamodel, the QoS parameters were given intuitive names to re-

duce accidental complexity (e.g., history_kind and history_depth on lines 25

and 26 respectively) as were the connection names (e.g., dw_deadline_Connection

and dw_history_Connection on lines 16 and 30 respectively).

Figure 14 shows the source code for processing the deadline and history QoS policies.

The rest of the method, which has been elided for brevity, handles all the other QoS poli-

cies relevant to data writers. Finally, the method closes the QoS parameter file if one has

been opened previously and increments the count of data writers processed so that unique

filenames can be generated. Likewise, the processDataReaderQos method provides

the same functionality for QoS policies and parameters relevant to data readers. Its source

code is not included due to space constraints.

Figure 15 presents the outputDDSEntityQos method which traverses the connec-

tion that a data reader or data writer has to a particular QoS policy (e.g., connections to

QoS policies for data readers or data writers) and writes the QoS parameters out to the

QoS settings file for that data reader or writer. Lines 14 - 21 and 54 - 57 provide error

checking for the BON2 framework and have been elided for space considerations. Line

11 retrieves the associations that the data reader or writer has with a particular QoS policy

(e.g., all the associations between a data reader and the reliability QoS policy). Lines 24 -

27 retrieve the endpoint of the connection which will be the associated QoS policy of the

type specified as the input parameter of line 4. Lines 29 and 30 retrieve the parameters of

44

the associated QoS policy, lines 31 - 41 open a uniquely named DBE QoS settings file if

one is not currently open, and lines 42 - 52 iterate through the QoS parameters and write

them out to the opened file in the required DBE format using the attribute mapping passed

as an input parameter on line 6.

Since the BON2 framework relies on the Visitor pattern, familiarity with this pattern

can be helpful. This familiarity is not required, however, and developers minimally only

need to implement relevant methods for the automatically generated Visitor subclass. In

general, the DQML interpreter code specific to DBE (1) traverses the model to gather

applicable information, (2) creates the QoS settings files, and (3) outputs the settings into

the QoS settings files.

The C++ development effort for DQML’s DBE interpreter is only needed one time.

In particular, no QoS policy configuration developed via DQML for DBE incurs this de-

velopment overhead since the interpreter has already been developed. The development

effort metrics of 160 C++ statements are included only to be used in comparing manually

implemented QoS policy configurations.

Analysis for the MMS scenario. The hardest aspect of developing DQML’s DBE in-

terpreter is traversing the model’s data reader and data writer elements along with the asso-

ciated QoS policy elements using the BON2 framework. Conversely, the most challenging

aspects of manually implementing QoS policy configurations are (1) maintaining a global

view of the model to ensure compatibility and consistency, (2) verifying the number, type,

and valid values for the parameters of the applicable QoS policies, and (3) faithfully trans-

forming the configuration design into implementation artifacts. On average, implementing

a single C++ statement for the DBE interpreter is no harder than implementing a single

parameter statement for the DBE QoS settings files. When implementing a non-trivial QoS

policy configuration, therefore, development of the C++ code for the DBE interpreter is no

more challenging than manually ensuring that the QoS settings in settings files are valid,

45

Figure 15: outputDDSEntityQos Method

46

Figure 16: Metrics for Manual Configuration vs. DQML’s Interpreter

consistent, compatible, and correctly represent the designed configuration. Below we pro-

vide additional detail into what can be considered a non-trivial QoS policy configuration.

The development and use of the DBE interpreter for DQML is justified for a single QoS

policy configuration when at least 160 QoS policy parameter settings are involved. These

parameter settings correlate to the 160 C++ statements for DQML’s DBE interpreter. Using

the results for QoS parameters in Table 5 and Table 6 for data readers and data writers,

Figure 16 shows the justification for interpreter development. The development is justified

with ∼10 data readers, ∼7 data writers, or some combination of data readers and data

writers where the QoS settings are greater than or equal to 160 (e.g., 5 data readers and 3

data writers = 165 QoS policy parameter settings). For comparison, the break-even point

for data reader/writer pairs is 3.72 (i.e., 160/43).

We also quantified the development effort needed to support topics if the DBE inter-

preter required that functionality. Table 7 shows the DDS QoS policies and policy parame-

ters applicable to topics. To support topics an additional 59 C++ statements would need to

47

QoS Policy # of Params Param Type(s)
Deadline 1 int
Destination Order 1 enum
Durability 1 enum
Durability Service 6 5 ints, 1enum
History 2 1 enum, 1 int
Latency budget 1 int
Lifespan 1 1 int
Liveliness 2 1 enum, 1 int
Ownership 1 enum
Reliability 2 1 enum, 1 int
Resource Limits 3 3 ints
Transport Priority 1 1 int
Topic Data 1 string
Total Parameters 23

Table 7: DDS QoS Policies for Topics

be added. Conversely, for manual generation 23 more QoS parameters need to be consid-

ered for each topic. The break-even point for data reader/writer/topic triplets becomes 3.32

(i.e., (160 + 59)/(43 + 23)) which is less than the break-even point for data reader/writers

alone (i.e., 3.72).

This break-even point is less because the additional source code to support topics can

leverage existing code, in particular, the outputDDSEntityQos method outlined in

Figure 15. The break-even point can be applicable for any interpreter that leverages the

commonality of formatting regardless of the entity type (cf. outputDDSEntityQos

method). Moreover, the complexity of developing any DQML interpreter is lessened by

having the DBE interpreter as a guide. The design and code of the DBE interpreter can be

reused by another application-specific interpreter to navigate a DQML model and access

the QoS policies.

Table 8 also shows productivity gains as a percentage for various numbers of data read-

ers and data writers. The percentage gains are calculated by dividing the number of param-

eter values for the data readers and data writers involved by the number of interpreter C++

48

of Data Readers and Data Writers
(each)

Total # of
Params

Productivity
Gain

5 215 34%
10 430 169%
20 860 438%
40 1720 975%
80 3440 2050%

Table 8: Productivity Gains using DQML’s DBE Interpreter

statements (i.e., 160) and subtracting 1 to account for the baseline manual implementation

(i.e., ((# of data reader and writer parameters)/160) - 1). The gains increase faster than the

increase in the number of data readers and data writers (e.g., the gain for 10 data readers

and data writers is more than twice as much for 5 data readers and data writers) showing

that productivity gains are greater when more entities are involved.

The interpreter justification analysis shown relates to implementing a single QoS pol-

icy configuration. The analysis includes neither the scenario of modifying an existing valid

configuration nor the scenario of implementing new configurations for DBE where no mod-

ifications to the interpreter code would be required. Changes made even to an existing valid

configuration require that developers (1) maintain a global view of the model to ensure

compatibility and consistency and (2) remember the number of, and valid values for, the

parameters of the various QoS policies being modified. These challenges are as applica-

ble when changing an already valid QoS policy configuration as they are when creating an

initial configuration. Moreover, the complexity for developing a new interpreter for some

other application is ameliorated by having the DBE interpreter as a template for traversing

a model in BON2.

In large-scale DDS systems (e.g., shipboard computing, air-traffic management, and

scientific space missions) there may be thousands of data readers and writers. As a point

of reference with 1,000 data readers and 1,000 data writers, the number of QoS parameters

to manage is 43,000 (i.e., 18 * 1,000 + 25 * 1,000). This number does not include QoS

49

parameter settings for other DDS entities such as publishers, subscribers, and topics. For

such large-scale DDS systems the development cost of the DQML interpreter in terms of

lines of code is amortized by more than 200 times (i.e., 43,000 / 160 = 268.75).

The productivity analysis approach taken for DQML’s DBE interpreter is applicable

to other DSMLs since the complexities involved will be similar. A break-even point for

the development effort of an interpreter for any DSML will exist. We outline four areas

that directly influence this break-even point: number of entities, complexity of the entities,

complexity of associations between the entities, and level of maintainability needed.

The number of entities affects the break-even point for interpreter development since

the more entities that are to be considered the less likely any one individual will be able

to manage these entities appropriately. Miller [33] has shown that humans can process up

to approximately 7 items of information at a time. This guideline of 7 can be helpful in

exploring the break-even point for interpreter development. If there are more than 7 entities

to be considered then the accidental complexity increases since the developer must manage

the entities using some tool or device (e.g., a piece of paper, a database) external to the

person. With this external management comes the possibility of introducing errors in the

use of the management tool (e.g., incorrectly transcribing the entities from the developer’s

head to the tool).

Likewise, this same analysis holds for the complexity of entities as determined by the

number of fields or parameters. If an entity contains more than 7 fields then some external

tool should be used to manage this complexity. The use of a tool introduces accidental

complexity (e.g., incorrectly transcribing the order, names, or types of the parameters).

The same analysis can also be applied to the number of associations made between entities

to determine that complexity as well as the number of times a configuration will need to be

modified.

If any one of these four areas exceeds the threshold of 7 then an interpreter might

be warranted. If more than one of these areas exceeds the threshold (e.g., more than 7

50

entities with more than 7 associations between the entities) then the break-even point for an

interpreter is lowered. The exact determination for justifying interpreter development will

vary according to the application but the guidelines presented can provide coarse-grained

justification.

II.6 Lessons Learned

DQML is a DSML we developed to address key challenges of pub/sub middleware,

including (1) managing QoS policy configuration variability, (2) developing semantically

compatible configurations, and (3) correctly transforming QoS policy configurations from

design to implementation. In particular, DQML addresses the challenge of QoS policy

compatibility by allowing only valid connections between DDS entities and QoS policies.

It also provides compatibility constraint checking on a QoS policy configuration model as

it is being designed. In addition, it addresses the challenge of QoS policy consistency by

providing consistency constraint checking during QoS policy configuration design time.

Finally, it addresses the challenge of QoS policy configuration transformation by providing

interpreters that generate “correct-by-construction” implementation and deployment arti-

facts that can be incorporated into the system implementation.

DQML currently does not attempt to address other areas of interest for a system which

uses DDS such as deployment of DDS entities onto computer nodes. While this is an inter-

esting and needed area for research and development, it falls outside the initial objectives

of DQML and is an area for future work. The current focus is intentionally limited to

modeling compatible and consistent QoS policies for DDS entities.

The following lessons learned summarize our experience using DQML to model QoS

policy configurations for the OMG Data Distribution Service (DDS) in the context of the

MMS mission.

• OCL presents a significant learning curve for typical application developers.

Many application developers who are accustomed to using a functional or object-oriented

51

language, such as Java, C, or C++, are not familiar with rule-based constraint languages,

such as OCL. Moreover, tool support for OCL is often rudimentary (e.g., limited debugging

support, which impedes productivity). In future work we plan to address enforcing con-

straints by evaluating other constraint solving technologies, such as the Constraint Logic

Programming Finite Domain (CLP(FD)) [41], [54]. There is a fairly steep learning curve

for OCL especially since it not a programming language but rather a constraint language

where developers write rules that enforce the desired constraints. OCL does not support

some of the features with which computer programmers are comfortable. There is no pro-

gram and so there is no program to debug. Also, different modeling tools may implement

OCL in different ways so that a developer using OCL with one modeling tool may need to

be aware of subtle differences when using a different modeling tool.

• Management of QoS policy configurations is essential for large-scale systems.

Management of 1,000s of entities and QoS policies can be tedious and error-prone. Main-

taining the overall global perspective and supporting the low-level view of a single entity

or QoS policy is critical to understand overall system QoS. We plan to address this topic in

future work via automated model scalability [39].

• DSMLs should build upon pattern knowledge. A DSML can benefit from the

knowledge already documented in configuration patterns by incorporating these patterns

into the DSML itself. This approach ensures that different types of patterns provide seman-

tic compatibility and are implemented correctly. We are therefore targeting future DQML

enhancements to support patterns and higher level services (e.g., security and fault toler-

ance [96]).

• Run-time feedback provides crucial system performance insight. While DQML

ensures valid QoS policy configurations, some system properties (e.g., latency and CPU

resource utilization) are best evaluated at run-time. Incorporating this type of dynamic

information back into a QoS policy configuration model helps increase overall development

52

productivity and system robustness. We are evaluating ways to incorporate runtime and

emulation feedback [44] into DQML to enhance QoS policy configuration development.

• Leveraging a DSML into an existing modeling tool chains increases its applica-

bility. DSMLs can be incorporated into existing modeling tool chains to expand scope and

utility. We are incorporating DQML into MDE tool chains [35] that handle packaging and

deployment.

• Trade-offs and the break-even point for DSMLs must be clearly understood and

communicated. There are pros and cons to any technical approach including DSMLs. The

use of DSMLs may not be appropriate for every case and these cases must be evaluated

to provide balanced and objective analysis. For a DSML product line, the advantages of

DSMLs will typically outweigh the development costs. For a one-time point solution the

development of a DSML may not be justified, depending on the complexity of the domain.

• The context for DSML productivity analysis should be well defined. Broad gener-

alizations of a DSML being "X" times better than some other technology is not particularly

helpful for comparison and evaluation. A representative case study can be useful to provide

a concrete context for productivity analysis.

• Provide analysis for as minimal or conservative a scenario as possible. Using a

minimal scenario in productivity analysis allows developers to extrapolate to larger scenar-

ios where the DSML use will be justified.

In summary, our experiences developing and applying DQML showed that DQML is

an attractive tool for managing the QoS policy configuration complexity since it detects

design mistakes early in the development cycle. DQML is particularly appealing since it

alleviates the accidental complexities associated with managing (1) the validity and number

of associations among DDS entities, (2) the validity and number of associations between

DDS entities and QoS policies, and (3) the number, types, and valid values for QoS pol-

icy parameters. DQML also provides automated generation of QoS policy configuration

artifacts (e.g., policy configuration files) that can be seamlessly incorporated into system

53

development, thereby reducing costs and increasing confidence. In particular, a DSML like

DQML can be used to ensure that the desired QoS of the system is the implemented QoS

of the system, thereby reducing costs and effort while increasing confidence in the system

as deployed.

GME can be downloaded from www.isis.vanderbilt.edu/Projects/gme.

DQML is part of the Component Synthesis Model-Integrated Computing (CoSMIC) tool

suite which can be downloaded from http://www.dre.vanderbilt.edu/cosmic.

54

CHAPTER III

EMPIRICAL EVALUATION OF QOS MECHANISMS FOR QOS-ENABLED
PUB/SUB MIDDLEWARE

Chapter I presented an overview of the need for run-time evaluation of QoS mecha-

nisms for pub/sub DRE systems. This chapter presents more in-depth information by (1)

providing more detailed context, (2) illustrating a motivating example, (3) outlining ex-

isting research in the field of empirical evaluations of QoS mechanisms for pub/sub DRE

systems, (4) enumerating unresolved challenges with current research, and (5) resolving

the challenges via a solution approach. This chapter also presents empirical metrics data

obtained and evaluated using the solution approach.

III.1 Context

Emerging trends and challenges. Real-time Event Stream Processing (RT-ESP) ap-

plications support mission-critical systems (such as collaboration of weather monitoring

radars to predict life-threatening weather [86]) by managing and coordinating multiple

streams of event data that have (possibly distinct) timeliness requirements. Streams of event

data may originate from sensors (e.g., surveillance cameras, temperature probes), as well

as other types of monitors (e.g., online stock trade feeds). These continuously generated

data streams differ from streaming the contents of a data file (such as a fixed-size movie)

since the end of RT-ESP data is not known a priori. In general, streamed file data demand

less stringent delivery and deadline requirements, instead emphasizing a continuous flow

of data to an application.

RT-ESP applications require (1) timeliness of the event stream data and (2) reliability

so that sufficient data are received to make the result usable. Moreover, RT-ESP appli-

cations encompass multiple senders and receivers (e.g., multiple continuous data streams

55

can be produced and multiple receivers can consume the data streams). With the growing

complexity of RT-ESP application requirements (e.g., large number of senders/receivers,

variety of event types, event filtering, QoS, and platform heterogeneity), developers are

increasingly leveraging pub/sub middleware to help manage the complexity and increase

productivity [30, 63].

To address the complex requirements of RT-ESP applications, the underlying pub/sub

middleware must support a flexible communication infrastructure. This flexibility require-

ment is manifest in several ways, including the following:

• Large-scale RT-ESP applications require flexible communication infrastructure due

to the complexity inherent in the scale involved. As the number and type of event data

streams continue to increase, the communication infrastructure must be able to coordinate

these streams so that publishers and subscribers are connected appropriately. Flexible com-

munication infrastructure must adapt to fluctuating demands for various event streams and

environment changes to maintain acceptable levels of service.

• Certain types of large-scale RT-ESP applications require a flexible communication in-

frastructure due to their dynamic and ad hoc nature. These application environments incur

fluctuations in resource availability as they include mobile assets with intermittent connec-

tivity and underprovisioned or temporary assets from emergency responders. Examples of

ad hoc large-scale RT-ESP applications include tactical information grids, in situ weather

monitoring for impending hurricanes, and emergency response networks in the aftermath

of regional disasters.

For RT-ESP applications requiring synchronization across a variety of event streams

(e.g., weather monitoring, online stock trading, homeland security, and humanitarian relief

missions), modern datacenters provide a crucial computing platform for centralized pro-

cessing [9]. Where the number of comparatively costly mainframe servers has decreased

in recent years, the installed base of datacenter-class inexpensive commodity servers have

56

increased [36]. Moreover, modern datacenters, running heterogeneous systems and soft-

ware [76] are service-oriented and heavily virtualized [55]. Modern datacenters must also

increasingly support applications with real-time quality-of-service (QoS) requirements [9].

These datacenters typically comprise low-cost, commodity components [36] that operate

in ad hoc, tumultuous environments with multiple failure modes ranging in scope from loss

of packets to node crashes to large-scale local, regional, and national system failures [34].

Such datacenters must support the timeliness properties of RT-ESP applications as well as

recover from failures in relatively short timeframes (e.g., within seconds).

Real-time datacenters require a communication infrastructure that is scalable and flex-

ible. The scalability requirement comes from size of the datacenter itself. For any single

RT-ESP application, the datacenter needs to support the number and variety of data types

being provided and consumed along with the required QoS. Moreover, the datacenter must

be able to manage a wide variety of RT-ESP applications concurrently with event streams

being used across applications. The flexibility requirement is manifest in many ways, in-

cluding the following:

• Large-scale datacenters require flexible communication infrastructure due to the many

failure modes and complexity inherent in the scale involved. Flexible communica-

tion infrastructure can adapt to (1) fluctuating demands for various event streams and

(2) environment changes to maintain acceptable levels of service.

• Certain types of large-scale datacenters aggravate the demands of flexible commu-

nication infrastructure due to their dynamic and ad hoc nature. Examples of ad hoc

large-scale datacenters include tactical information grids, in situ weather monitoring

for impending hurricanes, and emergency response networks in the aftermath of a

regional or national disaster.

Several pub/sub middleware platforms have been developed to support large-scale data-

centric distributed systems, such as the Java Message Service [72], Web Services Brokered

57

Notification [66], and the CORBA Event Service [82]. These platforms, however, do not

support fine-grained and robust QoS. Some large-scale distributed system platforms, such

as the Global Information Grid [1] and Network-centric Enterprise Services, [2], require

rapid response, reliability, bandwidth guarantees, scalability, and fault-tolerance. More-

over, these systems are required to perform under stressful conditions and over connections

with less than ideal behavior, such as latency and bandwidth variability, bursty loss, and

routers quickly alternating destinations (i.e., route flaps).

Developing flexible communication infrastructure to address these challenges is hard

because it must have a detailed understanding of the capabilities that the underlying trans-

port protocols provide. The infrastructure must also understand how these protocols be-

have under different operating conditions stemming from both the application-imposed

workload changes, as well as system dynamics, such as failures and network congestion.

Building on this understanding, QoS-enabled pub/sub middleware can help alleviate the

complexity of managing multiple event streams and maintaining real-time QoS for multi-

ple event streams in highly dynamic environments.

Solution approach→A FLEXible Middleware And Transports (FLEXMAT) Eval-

uation Framework.

This chapter describes the design and capabilities of the FLEXible and Integrated Mid-

dleware and Transport Evaluation Framework (FLEXMAT) to address these requirements.

To evaluate the impact of various transport protocols that can lead to the realization of a

QoS-enabled pub/sub middleware we developed ReLate2, which is a composite metric for

FLEXMAT that considers both reliability and latency. We use the ReLate2 composite QoS

metric to evaluate the reliability and latency of transmitted data for various experimen-

tal configurations involving parameters such as sending rate, network loss, and number of

receivers.

To facilitate the empirical benchmarking environment, and collection of the Relate2

metrics, FLEXMAT integrates and enhances the following capabilities:

58

• The Adaptive Network Transports (ANT) framework, which provides infrastructure

for composing transport protocols that builds upon properties provided by the scalable reli-

able multicast-based Ricochet transport protocol [9]. Ricochet enables trade-offs between

latency and reliability, which are needed qualities for pub/sub middleware supporting RT-

ESP applications. Ricochet also supports modification of parameters to affect latency, reli-

ability, and bandwidth usage.

• OpenDDS [80], which is an open-source implementation of the OMG Data Distri-

bution Service (DDS) [84] standard that enables applications to communicate by publish-

ing information they have and subscribing to information they need in a timely manner.

OpenDDS provides support for various transport protocols, including TCP, UDP, IP mul-

ticast, and a reliable multicast protocol. OpenDDS also provides a pluggable transport

framework that allows integration of custom transport protocols within OpenDDS.

We apply the ReLate2 metric across various commonly used and custom FLEXMAT

transport protocols. We then empirically quantify the results and analyze the pros/cons of

various transport protocol configurations in the context of FLEXMAT. By capturing the

insights gained from this effort, our goal is to enhance the development and validation of

QoS-enabled pub/sub middleware.

III.2 Motivating Example: Search and Rescue (SAR) Operations for Disaster

Recovery

To highlight the challenges of providing timely and reliable event stream processing for

QoS-enabled pub/sub DRE applications, we present our work in the context of supporting

search and rescue (SAR) operations. These operations help locate and extract survivors in

a large metropolitan area after a regional catastrophe, such as a hurricane, earthquake, or

tornado. SAR operations can use unmanned aerial vehicles (UAVs), existing operational

monitoring infrastructure (e.g., building or traffic light mounted cameras intended for se-

curity or traffic monitoring), and (temporary) datacenters to receive, process, and transmit

59

UAV providing infrared scan stream

Infrastructure camera providing video stream

Ad-hoc
datacenter

Rescue helicopter

Disaster
victims

Figure 17: Search and Rescue Motivating Example

event stream data from various sensors and monitors to emergency vehicles that can be

dispatched to areas where survivors are identified.

Figure 17 shows an example SAR scenario where infrared scans along with GPS co-

ordinates are provided by UAVs and video feeds are provided by existing infrastructure

cameras.

These infrared scans and video feeds are then sent to a datacenter, where they are pro-

cessed by fusion applications to detect survivors. Once survivors are detected the applica-

tion will develop a three dimensional view and highly accurate position information so that

rescue operations can commence.

A key requirement of the data fusion applications within the datacenter is tight tim-

ing bounds on correlated event streams such as the infrared scans coming from UAVs and

video coming from cameras mounted atop traffic lights. The event streams need to match

up closely so the survivor detection application can produce accurate results. If an infrared

data stream is out of sync with a video data stream the survivor detection application can

generate a false negative and fail to initiate needed rescue operations. Likewise, with-

out timely data coordination the survivor detection software can generate a false positive

expending scarce resources such as rescue workers, rescue vehicles, and data center coor-

dinators unnecessarily.

Meeting the requirements of SAR operations is hard due to the inherent complexity of

60

synchronizing multiple event data streams. These requirements are exacerbated since SAR

operations will run in varying environments where resource availability changes from one

disaster environment to another. One operating environment might only provide a very

restrictive set of resources and conditions (e.g., highly unreliable, low-bandwidth networks

with many senders and receivers of data utilizing the network). Another operating environ-

ment might provide a relative surfeit of resources and conditions (e.g., relatively reliable,

high-bandwidth networks with few senders and receivers) where more fine-grained data can

be accommodated (e.g., higher resolution video). The remainder of this section describes

four challenges that FLEXMAT addresses to support the communication requirements of

the SAR operations presented above.

SAR Challenge 1: Maintaining Data Timeliness and Reliability. SAR operations

must receive sufficient data reliability and timeliness so that multiple data streams can be

fused appropriately. For example, the SAR operation example described above highlights

the exploitation of data streams (such as infrared scan and video streams) by several ap-

plications simultaneously in a datacenter. Figure 18 shows how fire detection applications

and power grid assessment applications can use infrared scans to detect fires and work-

ing HVAC systems respectively. Likewise, Figure 19 shows how security monitoring and

structural damage applications can use video stream data to detect looting and unsafe build-

ings respectively. Section III.5.1.2 describes how FLEXMAT addresses this challenge by

incorporating transport protocols that balance reliability and low latency.

SAR Challenge 2: Managing Subscription of Event Data Streams Dynamically.

SAR operations must seamlessly incorporate and remove particular event data streams dy-

namically as needed. Ideally, an application for SAR operations should be shielded from

61

UAVs providing infrared scans

Ad-hoc datacenter

SAR operations

Power grid
assessment

Fire
Detection

Figure 18: Uses of Infrared Scans during Disaster Recovery

Ad-hoc
datacenter

SAR operations

Looting
detection

Structural
assessment

Cameras providing video

Figure 19: Uses of Video Stream during Disaster Recovery

the details of when other applications begin to use common event data streams. More-

over, applications should be able to switch to higher fidelity streams as they become avail-

able. Section III.5.1.1 describes how we address this challenge by using anonymous QoS-

enabled pub/sub middleware that seamlessly manages subscription and publication of data

streams as needed.

SAR Challenge 3: Providing Predictable Performance in Varying Environment

Configurations. In scenarios where operating environments vary, such as with regional

disasters, the performance of SAR operations must be known a priori. SAR operations

tested only under a single environment configuration may not perform as needed when

introduced to a new environment. The operations could unexpectedly shut down at a time

62

when they are needed most due to changes in the environment. Section II.5.3 describes

how we determine application performance behavior for varying environments.

SAR Challenge 4: Adapting to Changing Environments. SAR operations not only

must understand their behavior in a single environment configuration, they must also adjust

to different operating environments. If SAR operations across different disaster scenarios

cannot adjust then they will fail to perform adequately for different operating environments

presented by various disaster situations. If resources change from one operating environ-

ment to another, the SAR operations must be configured to accommodate fewer resources

while maintaining a minimum level of service. If resources are added, the operations should

use them to provide higher fidelity or more expansive coverage. Section III.5.1.2 describes

how we are incorporating flexible transport protocols that can be easily adjusted for relia-

bility, latency, and/or network bandwidth usage.

III.3 Related Research

Evaluation of QoS mechanisms for pub/sub DRE systems enables developers to under-

stand the impact of various QoS mechanisms upon the QoS of the DRE pub/sub system.

Existing techniques that enable developers to evaluate QoS mechanisms can be classified

as follows:

Performance evaluation of network transport protocols. Much prior work has eval-

uated network transport protocols (e.g., Balakrishnan et al. [9] evaluate the performance of

the Ricochet transport protocol with the Scalable Reliable Multicast (SRM) protocol [31]).

Bateman et al. [12] compare the performance of TCP variations both using simulations and

in a testbed. Cheng et al. [26] provide performance comparisons of UDP and TCP for video

streaming in multihop wireless mesh networks. Kirschberg et al. [61] propose the Reliable

Congestion Controlled Multicast Protocol (RCCMP) and provide simulation results for its

performance. These evaluations specifically target the protocol level independent of the

63

context of QoS-enabled pub/sub middleware or composite QoS pub/sub concerns such as

reliability and low latency.

Performance evaluation of enterprise middleware. Xiong et al. [106] conducted

performance evaluations for three DDS implementations, including OpenDDS. That work

highlighted the different architectural approaches taken and trade-offs of these approaches.

However, that prior work did not include performance evaluations of various transport pro-

tocols as QoS mechanisms for DDS.

Sachs et al. [89] present a performance evaluation of message-oriented middleware

(MOM) in the context of the SPECjms2007 standard benchmark for MOM servers. The

benchmark is based on the Java Message Service (JMS). In particular, the work details per-

formance evaluations of the BEA WebLogic server under various loads and configurations.

However, that work did not integrate various transport protocols as QoS mechanims for the

middleware to evaluate its performance.

Tanaka et al. [97] developed middleware for grid computing called Ninf-G2. In addi-

tion, they evaluate Ninf-G2’s performance using a weather forecasting system. The evalu-

ation of the middleware does not integrate various protocols as pub/sub QoS mechanisms

and evaluate performance in this context.

Tselikis et al. [101] conduct performance analysis of a client-server e-banking appli-

cation. They include three different enterprise middleware platforms each based on Java,

HTTP, and Web Services technologies. The analysis of performance data led to the bene-

fits and disadvantages of each middleware technology. apart from measuring the impact of

various network protocols integrated with QoS-enabled pub/sub middleware.

Performance evaluation of embedded middleware. Bellavista et al. [13] describe

their work called Mobile agent-based Ubiquitous multimedia Middleware (MUM). MUM

has been developed to handle the complexities of wireless hand-off management for wire-

less devices moving among different points of attachment to the Internet. However, this

64

work does not focus on the performance or flexibility of QoS mechanisms in QoS-enabled

anonymous pub/sub middleware.

TinyDDS [15] is an implementation of DDS specialized for the demands of wireless

sensor networks (WSNs). TinyDDS defines a subset of DDS interfaces for simplicity and

efficiency within the domain of WSNs. TinyDDS includes a pluggable framework for non-

functional properties (e.g., event correlation and filtering mechanisms, data aggregation

functionality, power-efficient routing capability). However, this work does not focus on

properties of various transport protocols that can be leveraged to support QoS in pub/sub

middleware.

III.4 Unresolved Challenges

Existing approaches for incorporating and evaluating QoS mechanisms for pub/sub

DRE systems focus on various individual pieces of the problem. For example, some ap-

proaches focus only on a particular implementation. Other approaches focus only on com-

ponents or objects which are subsets of the more generalized pub/sub paradigm. Still other

approaches do not focus on QoS aspects and managing the richness of QoS-enabled pub/-

sub middleware for DRE systems.

The following challenges represent a gap in the current research regarding empirical

evaluation of QoS mechanisms for pub/sub DRE systems:

1. Traditionally, QoS mechanisms such as transport protocols are evaluated in isolation

apart from pub/sub DRE QoS concerns and outside of the context of pub/sub DRE

systems. The delivered QoS of a system is dependent not only upon QoS mecha-

nisms but incorporation of those mechanisms into the supporting system middleware.

Therefore, the trade-offs of transport protocols and the QoS properties they support

in various operating environments are not highlighted.

2. Pub/Sub middleware usually leverages a single or a very small handful of transport

protocols (e.g., UDP for low latency and TCP for reliability). Pub/Sub DRE systems

65

often need to address multiple QoS aspects which can be contentious such as low

latency and reliability which typically impacts latency. Therefore, the impact of the

QoS properties that transport protocols support for multiple, especially contentious,

pub/sub QoS concerns are not quanitfied.

3. Pub/sub middleware is generally not designed to easily modify transport protocol

parameters or to transition from one protocol to another to ease empirical evaluation

of different transport protocols as pub/sub QoS mechanisms. Moreover, pub/sub

middleware lacks support for incorporating custom and novel transport protocols that

can provide desirable QoS properties for pub/sub middleware in specific operating

environments.

Our solution approach integrates and enhances QoS-enabled pub/sub middleware with

a flexible transport protocol framework to easily support empirical evaluations of transport

protocols as QoS mechanisms for pub/sub middleware. Our approach also incorporates

composite QoS metrics that ease evaluation of multiple QoS concerns such as reliability

and low latency. Moreover, we provide empirical results and analysis of QoS-enabled pub-

/sub middleware leveraging multiple transport protocols in varying operating environments.

III.5 Solution Approach: FLEXible Middleware And Transports (FLEXMAT)

This section describes the structure and functionality of FLEXible Middleware And

Transports (FLEXMAT), which integrates and enhances QoS-enabled pub/sub middleware

with a flexible transport protocol framework. FLEXMAT also utilizes the ReLate2 compos-

ite QoS metrics to aid in evaluating the QoS properties of transport protocols. Moreover,

this section includes empirical evaluations of several transport protocols utilizing FLEX-

MAT and ReLate2.

66

III.5.1 The Structure and Functionality of FLEXMAT and the ReLate2 Composite

QoS Metric

This section presents an overview of FLEXMAT, including the OpenDDS and ANT

transport protocols it uses. We then describe the ReLate2 metric created to evaluate the

performance of FLEXMAT in various environment configurations to support RT-ESP ap-

plication requirements for data reliability and timeliness.

III.5.1.1 Design of FLEXMAT and Its Transport Protocols

FLEXMAT integrates and enhances QoS-enabled pub/sub middleware with adaptive

transport protocols to provide the flexibility needed by RT-ESP applications. FLEXMAT

helps resolve Challenge 2 in Section III.2 by providing anonymous publication and sub-

scription via the OMG Data Distribution Service (see Sidebar II.5.1.1 for a brief summary

of DDS). FLEXMAT is based on the OpenDDS implementation of DDS and incorporates

several standard and custom transport protocols.

We chose OpenDDS as FLEXMAT’s DDS implementation due to its (1) open source

availability, which facilities modification and experimentation, and (2) support for a plug-

gable transport framework that allows RT-ESP application developers to create custom

transport protocols for sending/receiving data. OpenDDS’s pluggable transport framework

uses patterns (e.g., Strategy [32] and Component Configurator [92]) to provide flexibility

and delegate responsibility to the protocol only when applicable.

III.5.1.2 Overview of Transport Protocols Used in FLEXMAT

OpenDDS currently provides several transport protocols. Other protocols for the FLEX-

MAT prototype are custom protocols (described below) that we integrated with OpenDDS

using its pluggable transport framework.

67

Pluggable Transport
FrameworkUDP IP Mcast

TCP

Figure 20: OpenDDS and its Transport Protocol Framework

OpenDDS Transport Protocols. By default, OpenDDS provides four transport proto-

cols in its transport protocol framework: TCP, UDP, IP multicast (IP Mcast), and a NAK-

based reliable multicast (RMcast) protocol, as shown in Figure 20. OpenDDS TCP is a

reliable unicast protocol, whereas UDP is an unreliable unicast protocol. IP Mcast can

send data to multiple receivers.

While TCP, UDP, and IP Mcast are standard protocols, RMcast warrants more descrip-

tion. It is a negative acknowledgment (NAK) protocol that provides reliability. as shown in

Figure 21. In this example, the sender sends four data packets, but the third data packet is

not received by the receiver. The receiver realizes this packet has not been received when

the fourth data packet is received. At this point the receiver sends a NAK to the sender

and the sender retransmits the missing data packet. The receiver sends a unicast message

to the sender for loss notification and the sender retransmits the missing data packet to the

receiver.

In addition to providing reliability, the RMcast protocol orders data packets. When the

protocol for a receiver detects a packet out of order it waits for the missing packet before

passing the data up to the middleware. The receiver must buffer any packets that have been

received but have not yet been sent to the middleware. RMcast helps resolve Challenge 1 in

Section III.2 by providing reliability and timeliness for certain environment configurations.

Adaptive Network Transport Protocols. The ANT transport protocol framework

68

0
1

3

2

Sender Receiver

NAK 2

Figure 21: A NAK Based Protocol Discovering Loss

supports various transport protocol properties, including multicast, packet tracking, NAK-

based reliability, ACK-based reliability, flow control, group membership, and membership

fault detection. These properties can be composed dynamically at run-time to achieve

greater flexibility and support adaptation.

The ANT framework originally was developed from the Ricochet [9] transport proto-

col. Ricochet uses a bi-modal multicast protocol and a novel type of forward error correc-

tion (FEC) called lateral error correction (LEC) to provide QoS and scalability guarantees.

Ricochet supports (1) time-critical multicast for high data rates with strong probabilistic

delivery guarantees and (2) low-latency error detection along with low-latency error recov-

ery.

We included ANT’s Ricochet transport protocol, ANT’s NAKcast protocol, which is

a NAK-based multicast protocol, and ANT’s baseline transport protocol in FLEXMAT.

The ANT Baseline protocol mirrors the functionality of IP Mcast as described in Sec-

tion III.5.1.2. Using ANT’s baseline protocol helps quantify the overhead imposed by the

ANT framework since similar functionality can be achieved using the OpenDDS IP Mcast

pluggable transport protocol.

Forward Error Correction (FEC). Ricochet is based on the concepts of FEC proto-

cols. FEC protocols are designed with reliability in mind. They anticipate data loss and

69

R = 5, C = 1

Key: = error correction info= data message

sender

receiver

receiver

receiver

Figure 22: FEC Reliable Multicast Protocol - Sender-based

R= 5, C = 3

Key: = error correction info= data message

sender

receiver

receiver

receiver

Figure 23: FEC Reliable Multicast Protocol - Receiver-based (LEC)

proactively send redundant information to recover from this loss. Sender-based FEC pro-

tocols have the sender send redundant information, as shown in Figure 22. In contrast,

receiver-based FEC (a.k.a. Lateral Error Correction (LEC)) have receivers send each other

redundant information as shown in Figure 23. The Ricochet protocol we employ in FLEX-

MAT is an example of an LEC protocol.

Lateral Error Correction (LEC). LEC protocols have the same tunable R and C rate

of fire parameters as sender-based FEC protocols. Unlike sender-based FEC protocols,

however, the recovery latency depends on the transmission rate of receivers. As with

70

Protocol Integrator Functionality
TCP OpenDDS unicast, reliable, packet ordering, flow control
UDP OpenDDS unicast, unreliable
IP Mcast OpenDDS multicast, unreliable
RMcast OpenDDS multicast, reliable, packet ordering, NAK-based
ANT Baseline ANT multicast, unreliable
ANT NAKcast ANT multicast, reliable, NAK-based
ANT Ricochet ANT multicast, probabilistically reliable

Table 9: Transport Protocols Evaluated

gossip-based protocols, LEC protocols have receivers send out to a subset of the total num-

ber of receivers to manage scalability and network bandwidth. Moreover, the R and C

parameters have slightly different semantics for LEC protocols than for sender-based FEC

protocols.

The R parameter determines the number of packets a receiver, rather than the sender,

should receive before it sends out a repair packet to other receivers. The C parameter

determines the number of receivers that will be sent a repair packet from any single receiver.

As described in Section II.5.3, we hold the value of C constant (i.e., the default value of 3)

while modifying the R parameter.

The Ricochet protocol helps resolve Challenge 1 in Section III.2 by providing high

probabilistic reliability and low latency error detection and recovery. Ricochet also helps

resolve Challenge 4 in Section III.2 by supporting tunable parameters that effect reliability,

latency, and bandwidth usage. We designed the ANT framework so that different transport

protocols can be switched dynamically. Table 9 presents a summary of all protocols we

included in our experiments in Section III.5.2.

III.5.1.3 Evaluation Metric for Reliability and Latency

We now describe considerations for evaluating FLEXMAT’s latency and reliability. We

present guidelines for unacceptable percentages of packet loss for multimedia applications.

71

We also introduce the ReLate2 metric used to evaluate FLEXMAT empirically in Sec-

tion III.5.2.

One way to evaluate the effect of transport protocols with respect to both overall latency

and reliability would be simply to compare the latency times of protocols that provide re-

liability. Since some reliability would be provided these protocols would presumably be

preferred over protocols that provide no reliability. The reliability provided by the reliable

protocols in our experiments, however, deliver different percentages of reliability. More-

over, depending upon the environment configuration the average data latency between pro-

tocols differs as well. To compare results, the level of reliability must also be quantified.

We initially designed the ReLate metric to account for both latency and reliability in a

fairly straightforward manner. ReLate divided the average latency of data packets for an

experiment using a particular protocol by the percentage of packets received. This metric

then accounted for reliability and latency. In particular, if latencies were equal between two

protocols then the protocol that delivered the most packets would have the lowest value.

The formula for ReLate is defined as:

ReLatep =
∑

r
i=1 li
r
÷ r

t

where p is the protocol being evaluated,

r = number of packets received,

li = latency of packet i,

and t = total number of packets sent.

The initial ReLate metric is helpful only for evaluating protocols that balance reliability

and latency. This metric does not help us evaluate all the protocols that we have currently

used, in particular the protocols that provide no reliability. Using this initial metric pro-

duces values that are lower than those for the reliable multicast and Ricochet protocols

even with a significant percentage of network loss (e.g., 3%).

For example, using the values from one of our experiments outlined in Section III.5.2.2,

72

time
Figure 24: MPEG Frame Dependencies

the ReLate metric produces the lowest values for OpenDDS UDP, OpenDDS IP Mcast, and

ANT Baseline even with 3% packet loss. None of these transport protocols with the lowest

ReLate value provide reliability. Figure 32 in Section III.5.2.2 presents these results in the

context of FLEXMAT.

For RT-ESP applications involving multimedia, such as our motivating example of SAR

operations in Section III.2, over 10% loss is generally considered unacceptable. Bai and

Ito [8] limit acceptable MPEG video loss at 6% while stating that a packet loss rate of more

than 5% is unacceptable for Voice over IP (VoIP) users [7]. Ngatman et al. [78] define

consistent packet loss above 2% as unacceptable for videoconferencing. We use these

values as guidelines to develop the ReLate2 metric that balances reliability and latency

The 10% loss unacceptability for multimedia is due to the interdependence of packets.

As shown in Figure 24, for example, MPEG frames are interdependent such that P frames

are dependent on previous I or P frames while B frames are dependent on both preceding

and succeeding I or P frames. The loss of an I or P frame therefore results in unusable

dependent P and B frames, even if these frames are delivered reliably and in a timely

manner.

We conservatively state that a 10% packet loss should result in an order of magnitude

73

increase in any metric value generated. We therefore developed our ReLate2 metric to

multiply the average latency by the percent packet loss as follows:

ReLate2p =
∑

r
i=1 li
r
× (

t− r
t
×100+1)

where p is the protocol being evaluated,

r = number of packets received,

li = latency of packet i,

and t = total number of packets sent.

We add 1 to the percent packet loss to normalize for any loss less than 1% where

the metric would otherwise yield a value lower than the average latency, specifically the

value 0 where all packets are delivered. This adjustment produces a ReLate2 value equal

to the average latency when there is no packet loss which still accommodates meaningful

comparisons for protocols that deliver all packets. Section III.5.2.2 uses the ReLate2 metric

to determine the transport protocols that best balance reliability and latency.

III.5.2 Experimental Setup, Results, and Analysis

The section presents the results of experiments we conducted to determine the perfor-

mance of FLEXMAT in a representative RT-ESP environment. The experiments include

FLEXMAT using multiple transport protocols with varying numbers of receivers, percent-

age data loss, and sending rates as would be expected with SAR operations in a dynamic

environment as described in Section III.2.

74

III.5.2.1 Experimental Setup

We conducted our experiments using two network testbeds: (1) the Emulab network

emulation testbed and (2) the ISISlab network emulation testbed. Emulab provides com-

puting platforms and network resources that can be easily configured with the desired com-

puting platform, OS, network topology, and network traffic shaping. ISISlab uses Emulab

software and provides much of the same functionality, but does not (yet) support traffic

shaping. We used Emulab due to its ability to shape network traffic and ISISlab due to the

availability of computing platforms.

As outlined in Section III.2, we are concerned with the distribution of data for SAR

datacenters, where network packets are dropped at end hosts [10]. The Emulab network

links for the receiving data readers were configured appropriately for the specified percent-

age loss. The experiments in ISISlab were conducted with modified source code to drop

packets when received by data readers since ISISlab does not yet support network traffic

shaping.

The Emulab network traffic shaping was mainly needed when using TCP. OpenDDS

does not support programmatically dropping a percentage of packets in end hosts for TCP.

We therefore used network traffic shaping for TCP which only Emulab provides.

Using the Emulab environment and the ReLate2 metric defined in Section III.5.1.3, we

next determined the protocols that balanced latency and reliability well, namely RMcast,

ANT NAKcast, and ANT Ricochet. Since we could programmatically control the loss of

network packets at the receiving end hosts with these protocols, we then used ISISlab due

to its availability of nodes to conduct more detailed experiments involving these protocols.

We obtained up to 27 nodes fairly easily using ISISlab, whereas this number of nodes was

hard to get with Emulab since it is often oversubscribed.

Our experiments using Emulab and ISISlab used the following traffic generation con-

figuration utilizing OpenDDS version 1.2.1: (1) one DDS data writer wrote data, variable

number of DDS data readers read data, (2) the data writer and each data reader ran on its

75

Point of Variability Values
Number of receiving data writers 3 - 10
Frequency of sending data 25 Hz, 50 Hz
Percent end-host network loss 0 to 3 %

Table 10: Emulab Variables

Point of Variability Values
Number of receiving data writers 3 - 25
Frequency of sending data 10 Hz, 25 Hz, 50 Hz, 100 Hz
Percent network loss 0 to 5 %

Table 11: ISISlab Variables

own computing platform, and (3) the data writer sent 12 bytes of data 20,000 times at a

specified sending rate. To account for experiment variations we ran 5 experiments for each

configuration (e.g., 5 receiving data writers, 50 Hz sending rate, 2% end host packet loss).

We used Ricochet’s default C value of 3 for both Emulab and ISISlab experiments.

Emulab configuration. For Emulab, the data update rates were 25 Hz and 50Hz for

general comparison of all the protocols. We varied the number of receivers from 3 up to

10. We used Ricochet’s default R value of 8. As defined in Section III.5.1.2, the R value is

the number of packets received before sending out recovery data.

We used the Emulab pc850 hardware platform, which includes an 850 MHz processor

and 256 MB of RAM. We ran the Fedora Core 6 operating system with real-time extensions

on this hardware platform, using experiments consisting of between 5 and 12 pc850 nodes.

The nodes were all configured in a LAN configuration. We utilized the traffic shaping fea-

ture of Emulab to run experiments with network loss percentages between 0 and 3 percent.

Table 10 outlines the points of variability for the Emulab experiments.

ISISlab configuration. We used ISISlab for experiments involving transport protocols

where we could programmatically affect the loss of packets in the end hosts. By modifying

the source code, we could discard packets based on the desired percentage. In particular,

76

we focused the ISISlab experiments on the ANT NAKcast and Ricochet protocols since

from the initial experiments these protocols showed the ability to balance latency and re-

liability. At times, OpenDDS RMcast showed the ability to balance reliability and low

latency. Since its behavior was erratic for a NAK-based protocol, however, we excluded

it from the detailed experiments. Table 11 outlines the points of variability for the ISISlab

experiments.

ISISlab provides a single type of hardware platform: the pc8832 hardware platform

with a dual 2.8 GHz processor and 2 GB of RAM. We used the same Fedora Core 6 OS

with real-time extensions as for Emulab. We ran experiments using between 5 and 27

computing nodes which map to between 3 and 25 data readers respectively. All nodes were

configured in a LAN as was done for Emulab. We ran experiments using Ricochet’s R

value of 8 and 4, as explained in Section III.5.2.2.

III.5.2.2 Results and Analysis of Experiments

This section presents and analyzes the results from our experiments, which resolves

Challenge 3 in Section III.2 by characterizing the performance of the transport protocols

for various environment configurations.

The Baseline Emulab Experiments. The initial set of experiments for the FLEXMAT

prototype included all the OpenDDS protocols as enumerated in Section III.5.1.2. These

experiments used Emulab as described in Section III.5.2.1. Our baseline experiments used

3 data readers, 0% loss, and 25 and 50 Hz update rates. As expected, all protocols delivered

all data to all data readers (i.e., 3 receivers * 20,000 updates = 60,000 updates).

As shown in Figures 25 and 26, the latency at times was lowest with protocols that do

not provide any reliability (i.e., OpenDDS UDP, OpenDDS IP Mcast, and ANT Baseline).

The OpenDDS RMcast and ANT Ricochet protocols were the only ones that never pro-

duced the lowest overall average latency. As expected, average latency times decreased as

the sending rate increased from 25 Hz to 50 Hz.

77

Figure 25: Emulab: Average update latency, 3 readers, 0% loss, 25Hz

Figure 26: Emulab: Average update latency, 3 readers, 0% loss, 50Hz

78

The next set of experiments added 1% network packet loss for the receiving end hosts.

We do not include figures for the 50 Hz update rate as the data are comparable to that seen

with a sending rate of 25 Hz. As shown in Figure 27, there is a clear delineation between

the protocols that provide reliability and those that do not.

TCP received all updates sent, whereas ANT NAKcast and ANT Ricochet received a

high percentage of updates with ANT NAKcast receiving all updates except for one exper-

iment run where it received 59,999 out of the 60,000 updates. Both configurations of ANT

Ricochet delivered a consistently high percentage of updates between 99.95% and 99.99%.

UDP, IP Mcast, and ANT Baseline group together in the figure with low reliability.

We were unable to configure OpenDDS IP Mcast to use Emulab’s network traffic shap-

ing. Instead we calculated the amount of packet loss that is comparable to the other unre-

liable transports (i.e., 1% loss). We are confident this calculation does not invalidate the

values seen and used for OpenDDS IP Mcast as the values for ANT’s version of IP Mcast

(i.e., ANT Baseline, produces similar results).

Figure 28 shows the erratic behavior of RMcast. At times RMcast received all updates

and other times it received all updates only up to a certain number and then received no

additional updates. The cause of this problem was not explained by the RMcast developers.

We therefore removed RMcast from further consideration.

Figure 29 highlights the latency overhead incurred by TCP. This latency is due to TCP’s

use of positive acknowledgments. Moreover, TCP’s latency overhead increases as the

amount of loss increases. All other protocols are fairly comparable with respect to latency

for this environment configuration.

Figure 30 shows the ReLate2 values for all the protocols considered. We see that using

ReLate2 splits the protocols that support both reliability and low latency from those that do

not. The separation of the protocols using ReLate2 is more pronounced with higher levels

of network loss and number of receivers.

For 1% network loss, TCP and NAKcast deliver all the packets for every experiment.

79

Figure 27: Emulab: Updates received, 3 readers, 1% loss, 25Hz, no RMcast

Figure 28: Emulab: Updates received, 3 readers, 1% loss, 25Hz

80

Figure 29: Emulab: Average update latency, 3 readers, 1% loss, 25Hz

Figure 30: Emulab: Relate2 values, 3 readers, 1% loss, 25Hz

81

Figure 31: Emulab: Updates Received, 3 readers, 3% loss, 50 Hz

OpenDDS Reliable Mcast delivers all the packets for some experiments but not all. ANT

Ricochet always delivers the second most highest number of updates with the percentage

delivered being between 99.5% and 99.6%.

We now analyze the results of the Emulab experiments, which involved all the trans-

port protocols presented in Section III.5.1.2. We utilize the ReLate2 metrics defined in

Section III.5.1.3 to evaluate the results from the initial Emulab experiments. The results

show that ANT NAKcast and ANT Ricochet always produced the lowest ReLate2 values

even for multiple configurations of the protocols (i.e., NAKcast timeout values of 0.05 and

0.025 and Ricochet R values of 4 and 8). The protocols that support reliability but un-

bounded latency and the protocols that support low latency but no reliability are clearly

separated from the protocols that support both low latency and reliability.

Moreover, the ReLate2 value is equal to the average latency when there is no loss, as is

the case for TCP and the majority of cases for NAKcast. When NAKcast does not receive

all updates, it is only missing some of the very last updates which could not be detected

since no packets were received after them. The data and figures show that the ReLate2

metric is useful for evaluating protocols that balance reliability and latency.

82

Figure 32: ReLate Metrics for Emulab Experiment: 3 readers, 3% loss, 50 Hz update
rate

Figure 33: ReLate2 Metrics for Emulab Experiment: 3 readers, 3% loss, 50 Hz up-
date rate

83

We compare the values from the ReLate2 metric as shown in Figure 33 with the values

in Figure 32 which were only based on the original Relate metric. The results show that

OpenDDS RMcast and ANT Ricochet always produce the lowest ReLate2 value. More-

over, when there is no loss, the ReLate2 value is equal to the average latency as is the case

for TCP. This comparison shows that the ReLate2 metric is useful for evaluating protocols

that balance reliability and latency.

The NAKcast and Ricochet Experiments. Our next set of experiments focused on

the protocols that are best suited for balancing reliability and latency based on the ReLate2

metric (i.e., ANT NAKcast and ANT Ricochet). We focus on these protocols for compar-

ison to gain a better understanding of trade-offs between them. We provide experimental

results and analyze the results. We note that if RMcast’s behavior would stabilize it would

also be a protocol worth evaluating for reliability and low latency.

In particular, for comparison we focused on specific configurations of NAKcast and

Ricochet (i.e., NAKcast with a timeout period of 0.05 seconds and Ricochet with an R

value of 4). We constrained the protocols in this way because configured correctly either

protocol can generally provide lower ReLate2 values than the other. However, we are

interested in a relative comparison of the protocols themselves rather than reconfigurations

that can make the one protocol outperform the other for a particular environment.

As noted in Section III.5.2.1, we used the ISISlab testbed for experiments involving

only ANT NAKcast and ANT Ricochet due to the availability of a larger number of hard-

ware nodes. We were able programmatically to induce packet loss at the end hosts for these

two protocols since the ANT source code is available and thus we did not require Emulab’s

network traffic shaping capability.

As with the Emulab experiments in Section III.5.2.2, we began with experiments where

the number of receivers and packet loss were low. We also expanded the sending rates to

include 10Hz and 100Hz along with the original rates of 25Hz and 50Hz. Adding sending

84

rates made sense as the packet loss recovery times for both of these protocols are sensitive

to the update rate.

The packet loss recovery time for NAKcast is sensitive to the update rate since loss

is only discovered when packets are received. If packets are received faster then packet

loss is discovered sooner and recovery packets can be requested, received, and processed

sooner. Likewise, the packet loss recovery time for Ricochet is sensitive to the update rate

since recovery data is only sent out after R packets have been received. When packets are

received sooner, recovery data is sent, received, and processed sooner.

Moreover, our results and analysis are focused on environment configurations with rel-

atively low (i.e., 1%) and high (i.e., 5%) network loss combined with relatively few (i.e.,

3) and many (i.e., 20) receivers. While we ran experiments that ran the spectrum of con-

figurations between these bounds, the particular experiments at these limits are useful for

understanding the behavior of the protocols. We show data collected while using 10Hz and

100Hz sending rates to highlight the behavorial distinctions of the protocols.

Figures 34 and 35 show that for a low number of receivers (i.e., 3), a low loss percent-

age (i.e., 1%), and low sending rate (i.e., 10Hz), NAKcast, in general, has lower ReLate2

values. In fact, NAKcast 0.05 provided the lowest ReLate2 values for all of the ISISlab

protocol configurations tried (i.e., NAKcast with timeout values of 0.05 and 0.025 seconds

and Ricochet with R values of 4 and 8). Ricochet provided lower average update latency

as the sending rate increases. We discuss this observation in more detail at the end of this

section. The number of updates received remains constant across various sending rates for

both protocols and we do not include those figures here.

Figures 34 and 35 also show the reliability of Ricochet at low loss rates. This reliability

can be seen by comparing the figures and noticing that the graphs appear very similar. This

similarity points out that Ricochet is almost as reliable as NAKcast with reliability rates

ranging from 99.97% to 99.99%. This reliability is fairly constant across the different

sending rates.

85

Figure 34: ISISlab: Average update latency, 3 readers, 1% loss

Figure 35: ISISlab: ReLate2 values, 3 readers, 1% loss

86

Figure 36: ISISlab: Average update latency, 3 readers, 5% loss

Figures 36 and 37 show the effect on the protocols of increasing packet loss. In this

environment configuration we have changed the network loss from 1% to 5%. We see that

NAKcast performed best not only for a sending rate of 10 Hz as was the case for 1% loss

but also for 25 Hz. Ricochet still provided the best ReLate2 values for sending rates of 50

Hz and 100 Hz. Moreover, while Ricochet average update latency improved over NAKcast,

the ReLate2 values don’t reflect this as Ricochet only had better ReLate2 values for sending

rates of 50 and 100 Hz. This is due to Ricochet’s reliability ranging from 99.42% to 99.56%

which has decreased from the experiments with 1% loss.

Figures 38 and 39 show the effect on the protocols of increasing the number of re-

ceivers. In this environment configuration we increased the number of receivers from 3

to 20. We see that now Ricochet and NAKcast performed equally well at 10 Hz where

NAKcast always performed best at that rate with only 3 receivers. Ricochet provided the

best ReLate2 values for the other sending rates. Moreover, Ricochet’s reliability is al-

most as high as with only 3 receivers ranging from 99.94% to 99.96% of updates received.

Finally, Figures 40 and 41 show the effect on the protocols of increasing the number of

87

Figure 37: ISISlab: ReLate2 values, 3 readers, 5% loss

receivers and loss rate. In this environment configuration we had 20 receivers and 5%

network loss.

We see that while Ricochet had a noticeable improvement in average update latency

compared to NAKcast, NAKcast offset this discrepancy with its higher reliability. For

higher rates (i.e., 25, 50, and 100 Hz), the ReLate2 values for Ricochet and NAKcast

are comparable. NAKcast always provided the lowest ReLate2 values for 10 and 25 Hz

while Ricochet always provided the lowest ReLate2 values for 50 and 100 Hz. Moreover,

Ricochet’s reliability is in the same range as for 3 receivers with 5% loss ranging from

99.46% to 99.55% of updates received.

Analysis of Experimental Results. The results in this section show that for a set proto-

col configuration there are performance trade-offs between NAK-based and LEC protocols.

In general, NAK-based protocols performed better with a lower network loss percentage,

lower sending rates, and few receivers. In this environment configuration there is no con-

cern for NAK storms where receivers flood the sender with requests for retransmissions.

Moreover, NAK-based protocols only needed to receive one update that is out of sequence

to determine loss whereas LEC protocols need to receive R updates before error detection

88

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5

A
vg

 U
pd

at
e

La
te

nc
y

(µ
s)

Experiment

20 receivers, 1% loss

NAKcast 0.05 10Hz Ricochet R=4 C=3 10Hz
NAKcast 0.05 25Hz Ricochet R=4 C=3 25Hz
NAKcast 0.05 50Hz Ricochet R=4 C=3 50Hz
NAKcast 0.05 100Hz Ricochet R=4 C=3 100Hz

Figure 38: ISISlab: Average update latency, 20 readers, 1% loss

Figure 39: ISISlab: ReLate2 values, 20 readers, 1% loss

89

Figure 40: ISISlab: Average update latency, 20 readers, 5% loss

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

Re
La

te
2

V
al

ue
s

Experiment

20 receivers, 5% loss

NAKcast 0.05 10Hz Ricochet R=4 C=3 10Hz
NAKcast 0.05 25Hz Ricochet R=4 C=3 25Hz
NAKcast 0.05 50Hz Ricochet R=4 C=3 50Hz
NAKcast 0.05 100Hz Ricochet R=4 C=3 100Hz

Figure 41: ISISlab: ReLate2 values, 20 readers, 5% loss

90

and correction information is sent among the receivers. NAK-based protocols also deliv-

ered consistently high reliability, at the cost of higher latency for higher sending rates.

LEC protocols, however, provided better performance when network loss was higher

and sending rates increased. LEC protocols did not incur increasingly more network usage

as network loss and number of receivers increased. LEC protocols scaled well in the num-

ber of receivers and in network loss. LEC protocols also generally provided lower latency

at the cost of small decreases in reliability.

NAKcast 0.05 provided the lowest ReLate2 values and lowest average latency for 3

receivers, 1% loss, and 10 Hz sending rate. The data make sense since the sending rate

was less than the timeout period and the loss rate and number of receivers were low. If the

network drops a packet the packet is as likely to be discovered in the same amount of time

by NAKcast with a timeout of 0.05 as it is with a higher timeout. The sending rate is so

low that increasing the NAKcast timeout to 0.025 seconds provided no benefit and indeed

added overhead as timeouts are generated and checked more frequently.

III.6 Lessons Learned

Developers of RT-ESP systems face a number of challenges when developing their

applications for dynamic environments. To address these challenges, we have developed

FLEXMAT to integrate and enhance QoS-enabled pub/sub middleware with flexible trans-

port protocols to support RT-ESP applications. This section defined the ReLate2 metric

to empirically measure the reliability and latency of FLEXMAT as a first step to having

QoS-enabled pub/sub middleware autonomically adapt transport protocols as the changing

environment dictates.

The following is a summary of lessons learned from our experience evaluating FLEX-

MAT’s performance with various transport protocols:

• Exploring a configuration space for trade-offs requires a disciplined approach

with analysis to guide the exploration. Depending on the number of dimensions involved

91

in the search space there can be many configurations to explore. In our case, we had

multiple variables (e.g., update rate, % loss, number of data readers, NAKcast’s timeout

value, and Ricochet’s R value). Since the number of potential experiments was large, we

found it helpful to make coarse-grained adjustments for initial experiments. We would

then analyze the results to guide areas of refinement to find trade-offs between transport

protocols. For example, varying Ricochet’s R value (see Section III.5.2.2) occurred as a

result of analyzing early experimental results.

• Integrating pub/sub middleware with transport protocols exacerbates the chal-

lenge of pinpointing the source of problems and anomalies. Certain experiments in-

curred unexpected behavior, such as RMcast at times only providing a small percentage of

updates. With the integration of middleware and transport protocols, determining where

deficiencies lie can be hard since problems could be in the middleware, the protocol, or

the combination of both. In addition to individually testing protocols and the middleware,

therefore, it was helpful to compare the anomalous behavior of a protocol with other proto-

cols keeping the same configuration environment. For example, Section III.5.2.2 described

how we used these comparisons to determine unexpected behavior coming from RMcast

rather than the OpenDDS transport protocol framework or pub/sub middleware.

• The manual integration of QoS with pub/sub middleware and transport proto-

cols is tedious and error-prone. Currently, pub/sub middleware and transport protocols

integrators must manually manage QoS properties specified in the middleware with QoS

properties provided by a transport protocol. For example, an integrator could mistakenly

select a transport protocol with no reliability support even though application develop-

ers specified reliable communication. The middleware does not help in determining the

mismatch between QoS properties and transport protocol properties. Our future work is

investigating ways to manage this complexity.

One approach includes guidance to the application developer via patterns such as those

proposed by Hunt [51]. Even with the aid of patterns, however, there is no guidance for

92

implementation. Another approach is to have protocols register their supporting QoS prop-

erties (e.g., level of reliability) with the middleware. The middleware can then automati-

cally select transport protocols based on the QoS properties specified by the developer. A

third approach involves model-driven engineering [91] where a domain-specific modeling

languages (DSMLs) that provide profiles for certain types of applications, such as RT-ESP

applications. Once a profile is selected, the DSML could automatically generate correct

implementation artifacts for the application.

• Determining when one transport protocol provides advantages over another in

pub/sub middleware can be challenging. There are often many factors to consider when

selecting a transport protocol to be used with pub/sub middleware. One protocol might

produce the lowest packet latency but not deliver all the messages. Additionally, when

protocols do not perform as expected, particularly when scaling beyond previously tested

bounds, pinpointing the source of the irregularity takes time as the problem could be in the

transport protocol, the pub/sub middleware, or the integration between the two.

• High-level metrics are useful to quickly differentiate the performance of various

configurations. The use of metrics—even if coarse-grained—help explore a large con-

figuration space. Part of the impetus in developing the ReLate and ReLate2 metrics (see

Section III.5.1.3) is to ameliorate navigating a configuration space with several points of

variability.

• Specifying unacceptable loss for RT-ESP is hard to generalize. The amount of ac-

ceptable loss is specific to a particular application or application type. However, a general

acceptability guideline of 10% loss or less for multimedia applications has been helpful

in making initial evaluations of protocols that balance reliability and latency. Additional

composite metrics would be helpful for measuring and evaluating additional areas of inter-

est (e.g., jitter and network bandwidth usage). We plan to fine tune ReLate2 and develop

additional metrics as needed.

93

• Flexible transport protocols make manual management and tuning of the pro-

tocols hard. Our experiments show the flexibility of the NAKcast and Ricochet transport

protocols. Modifying NAKcast’s timeout value and Ricochet’s R value affects the average

overall latency, as shown by our results in Section III.5.2.2. Likewise, the modification

of Ricochet’s C value can affect the percentage of recovered packets with a corresponding

impact on bandwidth.

Keeping protocol parameter settings optimized in a turbulent environment can quickly

become overwhelming if done manually. Reaction time needed can swiftly surpass those of

humans. We are researching the use of machine learning to automatically adjust parameter

settings appropriately based on the environment and the QoS specified by the application.

We anticipate our experimental data to be used for supervised machine learning to dynam-

ically optimize parameter settings.

•Multicast with NAK-based reliability and LEC protocols balance reliability and

latency. After conducting the experiments and using our ReLate2 metric we determined

that when combining low latency and reliability, multicast with NAK-based reliability and

LEC protocols deliver the best performance. NAK-based protocols have fairly low over-

head and low bandwidth usage for low loss rates since only the detected loss of a packet

triggers recovery actions. Moreover, we found that Ricochet is consistently reliable with a

high probability. Ricochet also provides consistent bandwidth usage for R and C settings

which can be important for network constrained environments.

The latest information and source-code for FLEXMAT and related research can be

obtained at www.dre.vanderbilt.edu/~jhoffert/FLEXMAT.

94

CHAPTER IV

AUTONOMIC ADAPTATION OF QOS-ENABLED PUB/SUB MIDDLEWARE

Chapter I presented an overview of the need for autonomic adaptation of QoS-enabled

pub/sub DRE middleware. In particular, autonomic adaptation is needed for both (1) con-

figuration adaptation within flexible environments where the operating environment (e.g.,

available resources) is not known until runtime, and (2) ongoing modifications within dy-

namic environments where the operating environment changes while the system is running.

This chapter presents more in-depth information for both of these areas by (1) detailing a

motivating example for each type of adaptation to highlight adaptation’s broad applica-

bility, (2) outlining existing research in the field of autonomic adaptation of middleware

and software system infrastructure, (3) enumerating unresolved challenges with current re-

search, and (4) resolving the challenges via a solution approach. This chapter also presents

empirical metrics data obtained and evaluated using the solution approach.

IV.1 Autonomic Configuration in Flexible Environments

This section details the context, challenges, our solution approach, and results for au-

tonomically configuring QoS-enabled pub/sub middleware for flexible computing environ-

ments.

IV.1.1 Context

Emerging trends and challenges. Enterprise distributed real-time and embedded (DRE)

publish/subscribe (pub/sub) systems manage data and resources that are critical to the on-

going system operations. Examples include testing and training of experimental aircraft

95

across a large geographic area, air traffic management systems, and disaster recovery op-

erations. These types of enterprise DRE systems must be configured correctly to lever-

age available resources and respond to the system deployment environment. For example,

search and rescue missions in disaster recovery operations need to configure the image

resolution used to detect and track survivors depending on the available resources (e.g.,

computing power and network bandwidth) [93].

Many enterprise DRE systems are implemented and developed for a specific comput-

ing/networking platform and deployed with the expectation of specific computing and net-

working resources being available at runtime. This approach simplifies development com-

plexity since system developers need only focus on how the system behaves in one operat-

ing environment. Thus considerations of multiple infrastructure platforms are ameliorated

with respect to system QoS properties (e.g., responsiveness of computing platform, latency

and reliability of networked data, etc.). Focusing on only a single operating environment,

however, decreases the flexibility of the system and makes it hard to integrate into different

operating environments (e.g., porting to new computing and networking hardware).

Cloud computing [21, 77] is an increasingly popular infrastructure paradigm where

computing and networking resources are provided to a system or application as a service—

typically for a “pay-as-you-go” usage fee. Provisioning services in cloud environments

relieve enterprise operators of many tedious tasks associated with managing hardware and

software resources used by systems and applications. Cloud computing also provides en-

terprise application developers and operators with additional flexibility by virtualizing re-

sources, such as providing virtual machines that can differ from the actual hardware ma-

chines used.

Several pub/sub middleware platforms (such as the Java Message Service [72], and

Web Services Brokered Notification [66]) can (1) leverage cloud environments, (2) support

large-scale data-centric distributed systems, and (3) ease development and deployment of

these systems. These pub/sub platforms, however, do not support fine-grained and robust

96

QoS that are needed for enterprise DRE systems. Some large-scale distributed system

platforms, such as the Global Information Grid [1] and Network-centric Enterprise Ser-

vices [2], require rapid response, reliability, bandwidth guarantees, scalability, and fault-

tolerance.

Conversely, conventional cloud environments are problematic for enterprise DRE sys-

tems since applications within these systems often cannot characterize the utilization of

their specific resources (e.g., CPU speeds and memory) accurately a priori. Consequently,

applications in DRE systems may need to adjust to the available resources supplied by the

cloud environment (e.g., using compression algorithms optimized for given CPU power

and memory) since the presence/absence of these resources affect timeliness and other

QoS properties crucial to proper operation. If these adjustments take too long the mission

that the DRE system supports could be jeopardized.

Configuring an enterprise DRE pub/sub system in a cloud environment is hard because

the DRE system must understand how the computing and networking resources affect end-

to-end QoS. For example, transport protocols provide different types of QoS (e.g., relia-

bility and latency) that must be configured in conjunction with the pub/sub middleware.

To work properly, however, QoS-enabled pub/sub middleware must understand how these

protocols behave with different cloud infrastructures. Likewise, the middleware must be

configured with appropriate transport protocols to support the required end-to-end QoS.

Manual or ad hoc configuration of the transport and middleware can be tedious, error-

prone, and time consuming.

Solution approach→ Supervised Machine Learning for Autonomous Configura-

tion of DRE Pub/Sub Middleware in Cloud Computing Environments. This section

describes how we are (1) evaluating multiple QoS concerns (i.e., reliability and latency)

97

based on differences in computing and networking resources and (2) configuring QoS-

enabled pub/sub middleware autonomically for cloud environments based on these evalua-

tions. We have prototyped this approach in the ADAptive Middleware And Network Trans-

ports (ADAMANT) platform, which addresses the problem of configuring QoS-enabled

DRE pub/sub middleware for cloud environments. Our approach provides the following

contributions to research on autonomic configuration of DRE pub/sub middleware in cloud

environments:

• Supervised machine learning as a knowledge base to provide fast and predictable

resource management in cloud environments. Artificial Neural Network (ANN) tools

determine in a timely manner the appropriate transport protocol for the QoS-enabled pub/-

sub middleware platform given the computing resources available in the cloud environment.

ANN tools are trained on particular computing and networking configurations to provide

the best QoS support for those configurations. Moreover, they provide predictable response

times needed for DRE systems.

• Configuration of DRE pub/sub middleware based on guidance from supervised

machine learning. Our ADAMANT middleware uses the Adaptive Network Transports

(ANT) [45] framework to select the transport protocol(s) that best addresses multiple QoS

concerns for given computing resources. ANT provides infrastructure for composing and

configuring transport protocols such as the scalable reliable multicast-based Ricochet trans-

port protocol [9]. Supported protocols such as Ricochet enable trade-offs between latency

and reliability to support middleware for enterprise DRE pub/sub systems in cloud envi-

ronments.

We have implemented ADAMANT using multiple open-source pub/sub middleware

implementations (i.e., OpenDDS [80] and OpenSplice [90]) of the OMG Data Distribution

Service (DDS) [84] specification. DDS defines a QoS-enabled DRE pub/sub middleware

standard that enables applications to communicate by publishing information they have and

subscribing to information they need in a timely manner. The OpenDDS and OpenSplice

98

implementations of DDS provide pluggable protocol frameworks that can support stan-

dard transport protocols (such as TCP, UDP, and IP multicast), as well as custom transport

protocols (such as Ricochet and reliable multicast).

We validated ADAMANT by configuring Emulab (www.emulab.net) to emulate

a cloud environment that allows test programs to request and configure several types of

computing and networking resources on-demand. We then applied several composite met-

rics developed to ascertain how ADAMANT supports relevant QoS concerns for various

Emulab-based cloud configurations. These metrics quantitatively measure multiple inter-

related QoS concerns (i.e., latency and reliability) to evaluate QoS mechanisms (such as

transport protocols) used in QoS-enabled pub/sub DRE systems. Our supervised machine

learning tools use the results of these composite metrics to determine the most appropriate

transport protocol to apply in the Emulab cloud environment.

IV.1.2 Motivating Example - Search and Rescue Operations in Cloud Computing

Environments

This section builds on the Search and Rescue Operations motivating example described

in Section III.2 by leveraging resources in a cloud computing environment to motivate the

runtime configuration challenges that ADAMANT addresses.

IV.1.2.1 Search and Rescue Operations for Disaster Recovery

To highlight the challenges of configuring enterprise DRE pub/sub systems for cloud

environments in a timely manner, our work is motivated in the context of supporting search

and rescue (SAR) operations, as previously described, but which are able to leverage cloud

infrastructure. In addition to using UAVs, existing operational monitoring infrastructure

(e.g., building or traffic light mounted cameras intended for security or traffic monitoring),

and (temporary) datacenters to receive, process, and transmit data from various sensors and

99

monitors to emergency vehicles that can be dispatched to areas where survivors are iden-

tified, the datacenters can be mobile (e.g., in truck trailers or large command-and-control

aircraft if roads are damaged) and brought into the disaster area as needed. Moreover, these

datacenters can be connected to cloud infrastructure via high-speed satellite links [52] since

ground-based wired connectivity may not be available due to the disaster. In particular, our

work focuses on configuring the QoS-enabled pub/sub middleware used by the temporary

ad hoc datacenter for data dissemination.

Figure 17 in Section III.2 shows an example SAR scenario where infrared scans along

with GPS coordinates are provided by UAVs and video feeds are provided by existing in-

frastructure cameras. These infrared scans and video feeds are then sent to a datacenter

facilitated by cloud infrastructure where the data are disseminated, received by fusion ap-

plications, and processed to detect survivors. Once survivors are detected, the SAR system

will develop a three dimensional view and highly accurate position information so that

rescue operations can commence.

A key requirement of data fusion applications within the datacenter is the tight tim-

ing bounds on correlated event streams such as the infrared scans coming from UAVs and

video coming from cameras mounted atop traffic lights. The event streams need to match

up closely so the survivor detection application can produce accurate results. If an infrared

data stream is out of sync with a video data stream, the survivor detection application can

generate a false negative and fail to initiate needed rescue operations. Likewise, with-

out timely data coordination the survivor detection software can generate a false positive

thereby expending scarce resources such as rescue workers, rescue vehicles, and data center

coordinators unnecessarily. The timeliness and reliability properties of the data are affected

by the underlying hardware infrastructure (e.g., faster processors and networks can decrease

latency and allow more error correcting data to be transmitted to improve reliability).

SAR operations in the aftermath of a disaster can be impeded by the lack of computing

and networking resources needed for an ad hoc datacenter. The same disaster that caused

100

missing or stranded people also can diminish or completely eliminate local computing re-

sources. Cloud infrastructure located off-site can provide the needed resources to carry

out the SAR operations. Applications using cloud resources can be preempted to support

emergency systems such as SAR operations during national crises much as emergency ve-

hicles preempt normal traffic and commandeer the use of traffic lights and roadways. The

resources that the cloud provides, however, are not known a priori. Thus, the effective QoS

for the SAR operations are dependent on the computing resources provided.

IV.1.2.2 Key Challenges in Supporting Search and Rescue Operations in Cloud Com-

puting Environments

Meeting the requirements of SAR operations outlined in Section IV.1.2.1 is hard due to

the inherent complexity of configuring enterprise DRE pub/sub middleware based on the

computing resources the cloud provides. These resources are not known a priori and yet

the QoS of the system is affected by the specific resources provided. The remainder of this

section describes four challenges that ADAMANT addresses to support the communication

requirements of the SAR operations presented above.

Challenge 1: Configuring for data timeliness and reliability. SAR operations must

receive sufficient data reliability and timeliness so that multiple data streams can be fused

appropriately. For instance, the SAR operation example described above shows how data

streams (such as infrared scan and video streams) can be exploited by multiple applications

simultaneously in a datacenter. The top half of Figure 42 shows how security monitoring

and structural damage applications can use video stream data to detect looting and unsafe

buildings, respectively. The bottom half of Figure 42 shows how fire detection applications

and power grid assessment applications can use infrared scans to detect fires and working

HVAC systems, respectively.

Likewise, the SAR systems must be configured to best use the computing and network-

ing resources from the cloud to address data timeliness and reliability. These systems must

101

Ad-hoc
datacenter

Looting
detection

Structural
assessment

Cameras providing video

UAVs providing infrared scans

SAR operations

Power grid
assessment

Fire
Detection

Figure 42: Uses of Infrared Scans & Video Streams during Disaster Recovery

therefore (1) use transport protocols that provide both reliability and timeliness and (2)

know how these protocols behave in different computing and networking environments.

Sections IV.1.5.1 and IV.1.3.1 describe how ADAMANT addresses this challenge by uti-

lizing composite QoS metrics to measure both timeliness and reliability and incorporating

transport protocols that configure the datacenter’s pub/sub middleware to balance reliability

and low latency.

Challenge 2: Timely configuration. Due to timeliness concerns of DRE systems

such as SAR systems, the ad hoc datacenter used for SAR operations must be configured

in a timely manner based on the computing and networking resources provided by the

cloud. If the datacenter cannot be configured quickly, invaluable time will be lost leading

to survivors not being saved and critical infrastructure (such as dams and power plants)

not being safeguarded from further damage. During a regional or national emergency any

wasted time can mean the difference between life and death for survivors and the salvaging

or destruction of key regional utilities.

Moreover, applications and systems used during one disaster can be leveraged for other

102

disasters. Available computing and networking resources differ from one set of disaster

recovery operations to another. Depending on the available cloud resources, therefore,

the configuration times of ad hoc datacenters for SAR operations, for example, must be

bounded and fast to ensure appropriate responsiveness. Determining appropriate config-

urations must also provide predictable response to ensure rapid and dependable response

times across different computing and networking resources. Sections IV.1.4.4 and IV.1.5.4

describe how ADAMANT addresses this challenge by utilizing an artificial neural net-

work machine learning tool to autonomically configure the datacenter’s pub/sub middle-

ware quickly and predictably.

Challenge 3: Accuracy of configurations. Since data timeliness and reliability is

related to the computing resources available and the configuration of the datacenter sup-

porting the SAR operations in a cloud as noted in Challenge 1, configuring the datacenter

must be done in an accurate manner. If the datacenter is incorrectly configured then the

timeliness and reliability of the data (e.g., the UAV scans and camera video used to de-

tect survivors) will not be optimal for the given computing resources. For critical opera-

tions during disasters, such as rescuing survivors, the supporting SAR system must utilize

the available resources to their fullest extent. Sections IV.1.4.4 and IV.1.5.4 describe how

ADAMANT addresses this challenge by using the artificial neural network machine learn-

ing tool to configure the datacenter’s pub/sub middleware accurately.

Challenge 4: Reducing development complexity. Regional and local disasters occur

in many places and at many different times. The functionality of applications used during

one disaster may also be needed for other disasters. A system that is developed for one par-

ticular disaster in a particular operating environment, however, might not work well for a

different disaster in a different operating environment. SAR operations could unexpectedly

fail at a time when they are needed most due to differences in computing and networking

resources available. Systems therefore must be developed and configured readily between

the different operating environments presented by cloud computing to leverage the systems

103

across a wide range of disaster scenarios. Section IV.1.4.4 describes how ADAMANT ad-

dresses this challenge by using an artificial neural network machine learning tool to manage

mapping the computing and network resources and application parameters (e.g., data send-

ing rate, number of data receivers) to the appropriate transport protocol to use.

IV.1.3 Overview of ADAptive Middleware And Network Transports (ADAMANT)

for Timely Configuration

This section presents an overview of the ADAptive Middleware And Network Transports

(ADAMANT) platform, which is QoS-enabled pub/sub middleware that integrates and

enhances the Adaptive Network Transports (ANT) framework to support multiple trans-

port protocols and the Artificial Neural Network (ANN) machine learning technology to

select appropriate transport protocols in a timely and reliable manner. In the context of

ADAMANT we empirically evaluate (1) the QoS delivered by DDS pub/sub middleware

with respect to differences in computing and networking resources provided by cloud en-

vironments and (2) the accuracy and timeliness of ANN-based machine learning tools in

determining appropriate middleware configurations.

Figure 43 shows how ADAMANT works in a cloud environment (e.g., the ad-hoc SAR

datacenter) to deploy cloud resources. Since ADAMANT configures itself based on the

resources in a cloud, it must determine those resources autonomically when the cloud en-

vironment makes them available. ADAMANT queries the environment for hardware and

networking resources using OS utilities.

For example, on Linux ADAMANT accesses the /proc/cpuinfo file to gather CPU

information and executes the ethtool program to query network characteristics. ADA-

MANT combines this hardware information with other relevant application properties (e.g.,

number of receivers and data sending rate) and sends it as input to the ANN, which deter-

mines the appropriate protocol in a timely manner and passes this information to ANT.

104

ADAMANT

SAR
Topic(s)

Adaptive Network Transport
(ANT) Protocols

Data
Writer

Data
Reader

Data
Reader

App
Publisher

App
Subscriber

Domain
…

Protocol Optimizer (ANN)

Key:
Control interaction between subsystems Assoc. between reader/writer and topic

DDS

1. ADAMANT queries
environment for resources.

2. Resource information
passed to ANN.

3. ANN selects appropriate
protocol in a timely manner &
notifies ANT

Cloud Computing
Environment

ADAMANT 4. ANT configures the protocol
for the middleware

Figure 43: ADAMANT Architecture and Control Flow for Cloud Computing Envi-
ronments

105

ANT then configures the DDS middleware to use the appropriate transport protocol. The

remainder of this section describes the structure and functionality of ADAMANT.

IV.1.3.1 Adaptive Network Transports (ANT) Framework

The ANT framework supports various transport protocol properties, including mul-

ticast, packet tracking, NAK-based reliability, ACK-based reliability, flow control, group

membership, and membership fault detection. These properties can be configured at startup

to achieve greater flexibility and support configuration adaptation.

The ANT framework originally was derived from the Ricochet [9] transport protocol,

which uses a bi-modal multicast protocol and a novel type of forward error correction

(FEC) called lateral error correction (LEC) to provide QoS and scalability properties. Ric-

ochet supports (1) time-critical multicast for high data rates with strong probabilistic deliv-

ery guarantees and (2) low-latency error detection along with low-latency error recovery.

We included ANT’s Ricochet protocol and ANT’s NAKcast protocol, which is a NAK-

based multicast protocol supporting a timeout parameter for when to send NAKs to the

sender, with the evaluations done in this section. These protocols have been selected due

to their support for balancing reliability and low latency [45].

The Ricochet protocol has two tunable parameters. The R parameter determines the

number of packets a receiver should receive before it sends out a repair packet to other

receivers. The C parameter determines the number of receivers that will be sent a repair

packet from any single receiver. These two parameters affect the timeliness, reliability, and

jitter of the data received as shown in Section IV.1.5.3. ANT helps address Challenge 1 in

Section IV.1.2.2 by supporting transport protocols that balance reliability and low latency.

106

IV.1.4 Evaluating Adaptation Approaches for SAR Operations

Several approaches can be used to adapt transport protocols for QoS-enabled pub/-

sub systems operating in flexible environments. Below we evaluate (1) policy-based ap-

proaches, (2) reinforcement learning, and (3) supervised machine learning with and with-

out bounded search times. We focus on timely, bounded adaptation and leave other anal-

ysis aspects of the approaches (e.g., memory requirements) as future work. Moreover,

ADAMANT includes leveraging the QoS-enabled middleware to prioritize adjustments so

that transition times are acceptable. We also present evaluation criteria relevant to develop-

ing and deploying an adaptation approach for SAR operations, including (1) boundedness

in searching for a solution, (2) accuracy of solution for known environments, (3) robustness

to unknown operating environments, and (4) accidental development complexity.

IV.1.4.1 Evaluating Policy-based Adaptation Approaches

Policy-based approaches provide a straightforward way to determine optimal transport

protocols for a given operating environment. After certain operating conditions are checked

and met, the system can be directed by the policies to alter its behavior. Figure 44 shows an

example where the application checks for three environment aspects: (1) percentage loss in

the network (i.e., network_loss_percent), (2) number of data receivers (i.e., num_receivers),

and (3) the rate at which data is published (i.e., sending_rate).

Policy-based approaches can be optimized since the bounded number of (1) conditions

that are checked and (2) the behaviors used to direct the system are explicitly identified.

As shown in Figure 44, a switch statement or nested if statements in a programming

language can be used to implement policy-based approaches. In general, policy-based ap-

proaches can provide boundedness in searching for an adaptation solution and therefore

address the boundedness evaluation criterion for adaptation approaches (e.g., switch state-

ments can be optimized to constant time performance). Policy-based approaches also are

highly accurate for known solutions since developers can codify the exact behavior needed

107

Figure 44: Policy-based Example

for a known environment, thereby addressing the evaluation criterion for accuracy in known

environments.

Policy-based approaches, however, do not provide robustness in the face of conditions

not considered a priori. Policy-based approaches must have complete knowledge of all

conditions that can affect the system so that this knowledge can be imperatively codified.

If conditions exist that were not anticipated then unexpected system behavior can occur,

which can be disastrous for mission-critical pub/sub DRE systems, so policy-based ap-

proaches do not address the robustness evaluation criterion for adaptation approaches.

Even when all relevant conditions are considered and all appropriate responses are cod-

ified, manually managing the conditions and responses for policy-based approaches in-

creases accidental complexity. Figure 44 presents only three operating environment aspects

that are checked. Since each aspect can take an infinite range of values there is an infinite

number of combinations that can be checked. Even using ranges of values can lead to infi-

nite number of combinations. Moreover, if the policies need to be modified the chance of

introducing an error increases with the number of aspects considered along with the num-

ber of ranges of values for each aspect. Policy-based approaches therefore do not address

the accidental development complexity criterion for adaptation approaches.

108

IV.1.4.2 Evaluating Reinforcement Learning

Reinforcement learning provides robustness and flexibility when not all conditions and

appropriate system responses are known a priori. Reinforcement learning approaches

leverage high-level abstract guidance for a proposed solution (e.g., determining the solu-

tion to be good or bad). For example, reinforcement learning sets certain system behaviors

as goals and uses positive and negative reinforcements to guide the resolution of system

behavior as change in an operating environment occurs [95].

Reinforcement learning explores the possible solution space to determine generalized

solutions of the negative and positive reinforcements given. Reinforcement learning is thus

unbounded in its determination of an appropriate response due to online exploration of the

solution space and modification of decisions while the system is running. As indicated by

Bu [19], performance of reinforcement learning benefits from an additional run-time ini-

tialization period before system startup. Reinforcement learning therefore does not address

the evaluation criterion for boundedness when searching for an adaptation solution.

Reinforcement learning generalizes knowledge gained from positive and negative rein-

forcements of multiple proposed solutions. With this generalization comes a loss of infor-

mation for the specific solutions that have been tried. Reinforcement learning thus does not

entirely address the criterion for accuracy in known environments.

In contrast, the generalization of knowledge for reinforcement learning does allow the

approach to interpolate and extrapolate from solutions of known environments to unknown

environments. Accordingly, reinforcement learning addresses the criterion for robustness

to unknown operating environments.

Even when all conditions of the operating environment are known and all appropriate

responses determined, reinforcement learning can manage the conditions and appropriate

responses rather than forcing developers to address these areas programmatically. Know-

ing how to respond to various operating environments is resolved by the reinforcement

109

learning approach itself. Reinforcement learning thus addresses the criterion of accidental

development complexity.

IV.1.4.3 Evaluating Supervised Machine Learning

Supervised machine learning techniques classify new examples while incorporating

generalized knowledge from previous examples. These techniques are supervised by being

provided solutions to the problem which they use to expand the generalized knowledge.

Supervised machine learning techniques generally have an offline training period to build

up knowledge and then are used online when a system is running. Below we evaluate

two common supervised machine learning approaches of decision trees (DTs) and artificial

neural networks (ANNs).

DTs build a tree structure that branches on decisions which lead down to a leaf node

that can accurately classify a new example [74]. A DT generates decision branches that

split the data. Decisions that split the data more evenly are placed closer to the root of the

tree. In general, a DT can be unbounded in the levels of the tree that is generated.

The attributes that are used for classification to generate the tree can be combined in an

exponential number of ways. These combinations are then used to determine branches in

the tree. As shown in Figure 45, the attribute network_bytes is used multiple places in

the tree to branch the tree. DTs thus do not address the boundedness criteria for adaptation.

Moreover, as with machine learning in general, the knowledge obtained is generalized

to apply to a wide variety of operating environments. This generalization of knowledge

implies that DTs do not perfectly address the accuracy criterion for known operating envi-

ronments. They can, however, provide solutions to environments not seen previously and

therefore address the robustness criterion. In addition, DTs automatically capture branch-

ing decisions to determine an appropriate transport protocol configuration, thereby address-

ing the criterion of accidental development complexity.

An ANN is a supervised machine learning technique that is modeled on the interaction

110

Figure 45: A Decision Tree For Determining Appropriate Protocol

of neurons in the human brain [85]. As shown in Figure 46, an ANN has an input layer

for relevant aspects of the operating environment (e.g., percent network loss, sending rate).

An output layer represents the solution that is generated based on the input. Connecting

the input and output layers is a hidden layer. As the ANN is trained on inputs and cor-

respondingly correct outputs, it strengthens or weakens connections between the layers to

generalize based on the inputs and outputs.

Figure 46 also shows how an ANN can be configured statically in the number of hid-

den layers and the number of nodes in each layer that directly affects the processing time

complexity between the input of operating environment conditions and the output of an

appropriate transport protocol and settings. This static configuration structure supports

bounded response times. ANNs thus address the boundedness criterion for generating a

solution.

111

1

Network % loss

receivers

Sending rate

protocol

parameters

Artificial Neural
Network

Figure 46: Artificial Neural Network For Determining Appropriate Transport Proto-
col

As ANNs generalize the knowledge from the supervised training, they provide inter-

polation and extrapolation of known training sets to handle conditions for which the tech-

niques have not been trained. Although ANNs do not entirely address the accuracy criterion

for known environments they do address the robustness criterion for unknown operating en-

vironments. Moreover, since ANNs automatically encapsulate the generalization of knowl-

edge across supervised training data, they address the criterion of accidental development

complexity since developers need not determine appropriate transport protocol configura-

tions given operating environment features. Since ANNs address more of our objectives

than the other approaches, we have chosen ANNs in the remainder of our work. We are

also researching ways to increase the accuracy of ANNs for known environments.

Based on the evaluation of adaptation approaches in this section, we have determined

ANNs are a promising adaptation approach for DRE systems like SAR operations. ANNs

support (1) bounded time complexity for determining a solution, (2) robustness for un-

known operating environments, and (3) reduction of accidental development complexity.

Moreover, as shown in Section IV.2.3.1, ANNs can be configured and trained for known en-

vironments so that the accuracy is greatly increased and becomes comparable with policy-

based approaches (i.e., 100% accurate).

112

IV.1.4.4 Artificial Neural Network Tools to Determine Middleware Configurations

Several machine learning approaches can be used to configure middleware autonomi-

cally in a cloud computing environment. We selected ANN technology [48] due to its (1)

fast and predictable performance, (2) accuracy for environments known a priori (i.e., used

for ANN training) and unknown until runtime (i.e., not used for ANN training), and (3)

low accidental development complexity. In particular, we chose the Fast Artificial Neu-

ral Network (FANN)(leenissen.dk/fann) implementation due to its configurability,

documentation, ease of use, and open-source code. Section IV.1.5.4 shows the accuracy

and timeliness of a neural network trained and tested using the data collected from the

experiments described in Section IV.1.5.3. In particular, neural networks provide 100%

accuracy for environments known a priori, high accuracy for environments unknown until

runtime, and the low latency, constant time-complexity required for DRE systems such as

SAR operations.

The use of an ANN helps address Challenges 2 and 3 in Section IV.1.2.2 by providing

accurate, fast, and predictable guidance for determining an appropriate ADAMANT config-

uration for a given cloud computing environment. An ANN also helps address Challenge

4 in Section IV.1.2.2 by autonomically managing the mappings from the computing and

network resources available and the application parameters (e.g., data sending rate, number

of data receivers) to the appropriate transport protocols. An ANN thus reduces the devel-

opment complexity for configuring the pub/sub middleware appropriately as compared to

manual adaptation approaches (e.g., implementing switch statements), which are tedious

and error-prone [57].

IV.1.4.5 DDS Implementations Used

Several DDS implementations exist on the market today. We chose OpenDDS and

OpenSplice as ADAMANT’s DDS implementations due to their (1) open source avail-

ability, which facilities modification and experimentation, and (2) support for a pluggable

113

transport framework that allows SAR application developers to create and integrate custom

transport protocols for transmitting data. The pluggable protocol architectures provided by

OpenDDS and OpenSplice differ in the following ways. OpenDDS’s pluggable transport

framework uses patterns (e.g., Strategy [32] and Component Configurator [92]) to provide

flexibility and delegate responsibility to the protocol only when applicable. Application

developers inherit from key classes to override and define the behavior for a particular

protocol. OpenSplice provides an efficient C API and an XML interface to describe the

functions that support a transport protocol.

IV.1.5 Experimental Results and Analysis

The section presents the results of experiments we conducted to empirically evaluate (1)

the effect of computing and networking resources on the QoS provided by ADAMANT as

measured by the composite QoS metrics defined in Section IV.1.5.1 and (2) the timeliness

and accuracy of an ANN in determining an appropriate ADAMANT configuration given

a particular cloud computing environment. The experiments include ADAMANT with

multiple aspects of the operating environment varied (e.g., CPU speed, network bandwidth,

DDS implementation, percent data loss in the network) along with multiple aspects of

the application being varied as would be expected with SAR operations (e.g., number of

receivers, sending rate of the data).

IV.1.5.1 Composite QoS Metrics for Reliability and Timeliness

Our work on FLEXMAT as outlined in Chapter III indicated that some transport pro-

tocols provide better reliability (as measured by the number of network packets received

divided by the number sent) and latency for certain environments while other protocols are

better for other environments. We therefore developed several composite QoS metrics to

evaluate multiple QoS aspects simultaneously, thereby providing a uniform and objective

evaluation of ADAMANT in cloud computing environments.

114

Reliability of data in networked systems often implies discovering lost data via positive

or negative acknowledgments and then retransmitting the lost data. This loss discovery

and retransmission process takes time which increases the latency of the data. Composite

metrics help to show how well the ADAMANT middleware addresses the multiple QoS

concerns in a given operating environment via leveraging different transport protocols.

The ReLate2 metric, as described previously in Section III.5.1.3, has been expanded to

a family of metrics that focus on data reliability and latency which are often in tension with

each other in DRE systems. Our composite QoS metrics focus on reliability and average

latency and include the QoS aspects of (1) jitter (i.e., standard deviation of the latency of

network packets), (2) burstiness (i.e., the standard deviation of average bandwidth usage

per second of time), and (3) network bandwidth usage.

We have extended the ReLate2 metric to include other QoS properties relevant to DRE

systems. In particular, jitter (i.e., standard deviation of the latency of network packets)

is also an important QoS consideration for applications using multimedia data, such as

SCAAL’s personal surveillance video or 3-dimensional health monitoring information. For

example, as outlined in Section III.5.1.3, late arriving MPEG data can be worse than not

receiving the data at all. Jitter provides a way to measure the variance of data arrival times

and is an important QoS consideration for data that depends on preceding or succeeding

data.

Our new ReLate2Jit metric extends the original ReLate2 metric to include jitter. Re-

Late2Jit yields a numeric value that can be used to quantifiably compare the performance of

transport protocols w.r.t. reliability, average latency, and jitter. ReLate2Jit values increase

with an increase in jitter and low values are more desirable than high values. We calculate

the standard deviation of the packet arrivals and multiply this value by the ReLate2 metric

as follows:

ReLate2Jitp = ReLate2p×σp

115

where p is the protocol being evaluated and

σp = standard deviation of packet latency times for protocol p.

We multiply the various QoS concerns (e.g. latency, reliability) to give fair weighting

(e.g., latency time units, percentage loss for reliability). We present experimental results

using the ReLate2Jit metric. Our experimental environment is similar to the one used for

our ReLate2 results [45], except that we use the OpenSplice DDS rather than OpenDDS.

We send data from a publisher to subscribers while varying the sending rate, the percent

loss in the network, and the number of subscribers.

We focus only on the transport protocols from previous work that balanced reliability

and latency, that is, (1) the NAKcast protocol, which is a NAK-based multicast protocol,

with a retransmission timeout set to 0.05 and 0.025 seconds, and (2) the Ricochet protocol,

which is a lateral error correction protocol, with the R parameter set to 4 and 8 and the C

parameter set to 3. Ricochet’s R value determines how many packets are received before

an error correction packet is sent out to the other receivers. Ricochet’s C value determines

how many other receivers are sent the error correction packet.

Figure 47 shows results of using the ReLate2Jit metric for an operating environment

with 3 receivers, 1% network loss, and a sending rate of 100Hz. The results show that the

Ricochet protocol performs well when considering reliability, average latency, and jitter

compared against NAKcast. The ReLate2Jit values between Ricochet and NAKcast are

not as profound for lower sending rates although Ricochet generally outperforms NAKcast.

As sending rates increase Ricochet’s jitter decreases proportionately accounting for greater

disparity between Ricochet and NAKcast at higher rates.

Being able to predict and provision for adequate resources is an important aspect of

DRE systems. If allocated resources are inadequate then DRE systems running in resource

constrained environments will not perform as intended, so that related QoS (such as relia-

bility and latency) will not be met. Network bandwidth is an important resource considera-

tion in DRE systems since it must be provisioned and managed appropriately. Moreover, as

116

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

1 2 3 4 5

Re
La

te
2J

it
 V

al
ue

s

Experiment

3 receivers, 1% loss, 100Hz

NAKcast 0.05

NAKcast 0.025

Ricochet R=4

Ricochet R=8

Figure 47: ReLate2Jit for 3 Receivers, 1% Network Loss, and 100Hz Sending Rate

ultra-large-scale systems [53] become more prevalent, changes in network resources (e.g.,

bandwidth) will become more dynamic and require more online adjustments.

To evaluate the concerns of reliability, latency, and network bandwidth we also have

developed the ReLate2Net and ReLate2Burst composite metrics. ReLate2Net multiples the

ReLate2 metric by the average network bandwidth usage per second to determine how a

transport protocol balances reliability, latency, and network bandwidth. ReLate2Burst mul-

tiples the ReLate2 metric by the network bandwidth’s burstiness (i.e., the standard devia-

tion of average bandwidth usage per second of time) to determine how a transport protocol

balances reliability, latency, and packet burstiness.

The inclusion of network bandwidth information with the ReLate2 metric provides

guidance for DRE systems in evaluating transport protocols and appropriately provisioning

constrained DRE systems to function as needed in dynamic environments. Moreover, for

ULS systems that must manage fluctuating network bandwidth capacity, the ReLate2Net

and ReLate2Burst metrics can be used to select an appropriate transport protocol.

117

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

1 2 3 4 5

Re
La

te
2N

et
 V

al
ue

s

Experiment

3 receivers, 1% loss, 100Hz

NAKcast 0.05

NAKcast 0.025

Ricochet R=4

Ricochet R=8

Figure 48: ReLate2Net for 3 receivers, 1% network loss, and 100Hz sending rate

Figures 48 and 49 show results of using the ReLate2Net and ReLate2Burst metrics re-

spectively for an operating environment with 3 receivers, 1% network loss, and a sending

rate of 100Hz. The ReLate2Net results highlight that the Ricochet protocol uses consid-

erably more network bandwidth on average than NAKcast which is to be expected. Note

that NAKcast with a shorter retransmission timeout (i.e., 0.025 seconds) has a consistently

lower ReLate2Net value than does NAKcast with a longer retransmission timeout (i.e.,

0.05 seconds). While NAKcast 0.025 does use more network bandwidth on average than

NAKcast 0.05, it also has a lower average latency since lost messages are requested sooner.

The ReLate2Burst results mimic the ReLate2Net results for this environment configuration.

We apply our family of composite metrics to QoS-enabled DDS pub/sub middleware

using various transport protocols supported by ANT to train the ANN. The ANN is trained

with an understanding of how integration of middleware with each protocol affects the

118

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

1 2 3 4 5

Re
La

te
2B

ur
st

 V
al

ue
s

Experiment

3 receivers, 1% loss, 100Hz

NAKcast 0.05

NAKcast 0.025

Ricochet R=4

Ricochet R=8

Figure 49: ReLate2Burst for 3 receivers, 1% network loss, and 100Hz sending rate

QoS properties of reliability and latency given the variability of computing and networking

resources of a cloud environment.

IV.1.5.2 Experimental Setup

We conducted our experiments using the Emulab network testbed, which provides on-

demand computing platforms and network resources that can be easily configured with

the desired OS, network topology, and network traffic shaping. We used Emulab due to

its (1) support for multiple types of computing platforms, (2) numbers of computing plat-

forms, and (3) support for multiple network bandwidths. The flexibility of Emulab presents

a representative testbed to train and test ADAMANT’s configurability support for cloud

computing environments.

As described in Section IV.1.2, we are concerned with the distribution of data for SAR

119

Table 12: Environment Variables

Point of Variability Values
Machine type pc850, pc3000
Network bandwidth 1Gb, 100Mb, 10Mb
DDS Implementation OpenDDS, OpenSplice
Percent end-host network loss 1 to 5 %

Table 13: Application Variables

Point of Variability Values
Number of receiving data readers 3 - 15
Frequency of sending data 10 Hz, 25 Hz, 50 Hz, 100 Hz

datacenters, where network packets are typically dropped at end hosts [10]. The ADA-

MANT software for the receiving data readers supports programmatically dropping ran-

dom data packets. We modified ADAMANT to drop packets based on the loss percentage

specified for the experiment.

Our experiments were configured with the following traffic generation models using

version 1.2.1 of OpenDDS and version 3.4.2 of OpenSplice. One DDS data writer sent out

data, a variable number of DDS data readers received the data. The data writer and each

data reader ran on its own computing platform and the data writer sent 12 bytes of data

20,000 times at a specified sending rate. To account for experiment variations we ran 5

experiments for each configuration (e.g., 3 receiving data writers, 50 Hz sending rate, 2%

end host packet loss, pc3000 computing platform, and 1Gb network bandwidth).

We configured ADAMANT with Ricochet and NAKcast to determine how well it per-

forms using these protocols. We modified NAKcast’s timeout value as well as Ricochet’s

R and C parameters as described in Section IV.1.3.1. Table 12 outlines the points of vari-

ability provided by the cloud computing environment.

We include the DDS implementation in this table since some cloud computing envi-

ronments provide hardware and software resources. We include network loss in the table

120

since the network characteristics in cloud computing can be specified in an end-user license

agreement, which identifies the services that the cloud computing environment will provide

and that consumers accept. The middleware for the SAR operations can then be configured

appropriately using this information.

Table 13 outlines the points of variability due to the SAR operations. In particular,

we varied the number of data receivers since only a few SAR applications might be inter-

ested in one data stream (e.g., for a localized area with fine-grained searching) while many

applications might be interested in a different data stream (e.g., for a broader area with

coarse-grained searching). Likewise, the sending rate might be high for SAR operations

that need high-resolution imaging for detailed searching while a lower sending rate is suffi-

cient for SAR operations where lower resolution imaging is sufficient for more generalized

searching.

For computing resources we used Emulab’s pc850 and pc3000 hardware platforms. The

pc850 platform includes an 850 MHz 32-bit Pentium III processor with 256 MB of RAM.

The pc3000 platform includes a 3 GHz 64-bit Xeon processor with 2 GB of RAM. We used

the Fedora Core 6 operating system with real-time extensions on these hardware platforms

to collect high resolution timings. The nodes were all configured in a LAN configuration

indicative of a datacenter.

IV.1.5.3 Evaluating How Cloud Computing Resources Affect QoS

Below we analyze the results from experiments involving different cloud computing

environments. We show experimental data where the selection of ADAMANT’s transport

protocol to support QoS differs based on the cloud computing environment. Information in

this section addresses Challenge 1 in Section IV.1.2.2 by characterizing the performance of

the transport protocols for various cloud computing environments.

Figures 50 and 51 show the results of experiments where we held constant the number

of receivers (3), the percent loss (5%), and the DDS middleware (OpenSplice). We varied

121

the computing platform and the network bandwidth using the pc850 and pc3000 platforms,

and 100Mb and 1Gb LANs, respectively. We ran the experiments using NAKcast with a

NAK timeout setting of 50ms, 25ms, 10ms, and 1ms, and Ricochet with R=4, C=3 and

R=8, C=3. We only include NAKcast with a timeout of 1ms and Ricochet R=4 C=3 since

these were the only protocols that produced the best (i.e., lowest) ReLate2 values for these

operating environments. Likewise, we ran the ADAMANT experiments with sending rates

of 10Hz, 25Hz, 50Hz, and 100Hz but only show results for 10Hz and 25Hz since these

highlight different protocols that produce the lowest ReLate2 value.

Figure 50 shows two cases where the Ricochet protocol with R = 4 and C = 3 produces

the best (i.e., lowest) ReLate2 values for sending rates of both 10Hz and 25Hz when us-

ing the pc3000 computing platform and the 1Gb network. Conversely, Figure 51 shows

how the NAKcast protocol with a NAK timeout set to 1 ms produces the best (i.e., low-

est) ReLate2 values for the same sending rates of 10Hz and 25Hz when using the pc850

computing platform and the 100Mb network. These figures show that by changing only the

CPU speed, amount of RAM, and network bandwidth, different protocols produce a better

ReLate2 value and therefore better support the QoS properties of reliability and average la-

tency. The SAR datacenter pub/sub middleware should therefore be configured differently

depending on the computing and networking resources that a cloud computing environ-

ment provides. No single protocol performs best in all cases based on the computing and

networking resources.

We decompose the ReLate2 metric into its constituent parts of reliability and average

packet latency to gain a better understanding of how changes in hardware can affect the

QoS properties relevant to the ReLate2 metric. Figures 52 and 53 show the reliability of the

NAKcast 0.001 and Ricochet R4 C3 protocols. The reliability of the protocols is relatively

unaffected by differences in hardware and network resources as would be expected. The

percent network loss is held constant for these experiments and the differences in hardware

are not expected to affect how many packets are delivered reliably.

122

7000

8000

9000

10000
pc3000, 1Gb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz
Ricochet R4 C3 - 10Hz

3500

4500

1 2 3 4 5

Re
La

te
2

Va
lu

es

Experiment

NAKcast 0.001 25Hz
Ricochet R4C3 - 25Hz

Figure 50: ReLate2: pc3000, 1Gb LAN, 3 receivers, 5% loss, 10 & 25Hz

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1 2 3 4 5

Re
La

te
2

Va
lu

es

Experiment

pc850, 100Mb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKCast 0.001 - 25Hz

Ricochet R4 C3 - 25Hz

Figure 51: ReLate2: pc850, 100Mb LAN, 3 receivers, 5% loss, 10 & 25Hz

123

59700

59750

59800

59850

59900

59950

60000

60050

1 2 3 4 5

Pa
ck

et
s R

ec
ei

ve
d

Experiment

pc3000, 1 Gb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKcast 0.001 - 25Hz

Ricochet R4 C3 - 25 Hz

Figure 52: Reliability: pc3000, 1Gb LAN, 3 receivers, 5% loss, 10 & 25Hz

Figures 54 and 55 show that differences in computing speed and networking bandwidth

have an effect on the average latency of packet arrival. In particular, there is a wider gap

in the average latency times between the NAKcast and the Ricochet protocol when faster

computing and networking resources are used. The faster the computing hardware and

networking resources are, the faster the data packets on average should be received by the

data receiver.

Since protocol reliability in these experiments is virtually constant, the difference in

NAKcast performing better in one environment and Ricochet performing better in another

stems from differences in average latency. With faster hardware and networks, Ricochet’s

average latency can overcome its lower reliability to perform better when reliability and

average latency are both considered. Note that the graphs for the individual QoS property

of average latency consistently show Ricochet performing better, while the graphs con-

sistently show NAKcast performing better for reliability. Only when the QoS properties

are combined in the ReLate2 metric is there a distinction between the appropriate protocol

based on the hardware resources.

Figures 56 and 57 show that the differences in hardware resources affect the protocol to

124

59700

59750

59800

59850

59900

59950

60000

60050

1 2 3 4 5

Pa
ck

et
s R

ec
ei

ve
d

Experiment

pc850, 100Mb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKCast 0.001 - 25Hz

Ricochet R4 C3 - 25Hz

Figure 53: Reliability: pc850, 100Mb LAN, 3 receivers, 5% loss, 10 & 25Hz

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5

Av
g.

 L
at

en
cy

 (µ
s)

Experiment

pc3000, 1 Gb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKcast 0.001 - 25Hz

Ricochet R4 C3 - 25 Hz

Figure 54: Latency: pc3000, 1Gb LAN, 3 receivers, 5% loss, 10 & 25Hz

125

0
2000
4000
6000
8000

10000
12000
14000
16000

1 2 3 4 5

Av
g.

 L
at

en
cy

 (µ
s)

Experiment

pc850, 100Mb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKCast 0.001 - 25Hz

Ricochet R4 C3 - 25Hz

Figure 55: Latency: pc850, 100Mb LAN, 3 receivers, 5% loss, 10 & 25Hz

0.00

50000000.00

100000000.00

150000000.00

200000000.00

250000000.00

300000000.00

1 2 3 4 5

Re
La

te
2J

it
Va

lu
es

Experiment

pc3000, 1Gb LAN, 15 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Figure 56: ReLate2Jit: pc3000, 1Gb LAN, 15 receivers, 5% loss, 10Hz

126

310000000.00

320000000.00

330000000.00

340000000.00

350000000.00

360000000.00

370000000.00

380000000.00

1 2 3 4 5

Re
La

te
2J

it
Va

lu
es

Experiment

pc850, 10Mb LAN, 15 rcvrs, 5% loss

NAKCast 0.001 - 10Hz
Ricochet R4 C3 - 10Hz

Figure 57: ReLate2Jit: pc850, 100Mb LAN, 15 receivers, 5% loss, 10Hz

choose based on the ReLate2Jit metric which measures reliability, average packet latency,

and the standard deviation of packet latency (i.e., jitter). The number of receivers is 15,

the network percent loss is 5%, and the DDS middleware is OpenSplice. We again varied

the computing platform and the network bandwidth using the pc850 and pc3000 platforms

and 100Mb and 1Gb LANs, respectively. The figures only include data for NAKcast with

a 1 ms timeout and Ricochet R=4 C=3 both with a 10Hz sending rate since, with this rate,

the environment has triggered the selection of different protocols based on the ReLate2Jit

values.

Figure 56 shows Ricochet R=4 C=3 to consistently have the best (i.e., lowest) Re-

Late2Jit values when using pc3000 computers and a 1Gb network. Figure 57 shows NAKcast

with a timeout of 1 ms as most of the time (4 out of 5 experiment runs) having the better

ReLate2Jit value. We decompose the ReLate2Jit values to have a better understanding of

the differences.

Figures 58 and 59 show the average latency broken out from the ReLate2Jit values

above. These figures show that Ricochet R=4 C=3 consistently has the lowest average la-

tencies regardless of the computing and network resources. Likewise, Figures 60 and 61

127

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5

Av
g.

 L
at

en
cy

 (µ
s)

Experiment

pc3000, 1Gb LAN, 15 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Figure 58: Latency: pc3000, 1Gb LAN, 15 receivers, 5% loss, 10Hz

0
2000
4000
6000
8000

10000
12000
14000
16000

1 2 3 4 5

Av
g.

 L
at

en
cy

 (µ
s)

Experiment

pc850, 10Mb LAN, 15 rcvrs, 5% loss

NAKCast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Figure 59: Latency: pc850, 100Mb LAN, 15 receivers, 5% loss, 10Hz

128

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5

La
te

nc
y

St
d.

 D
ev

ia
tio

n
(µ

s)

Experiment

pc3000, 1Gb LAN, 15 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Figure 60: Jitter: pc3000, 1Gb LAN, 15 receivers, 5% loss, 10Hz

show that Ricochet R=4 C=3 consistently has lower jitter values across the different hard-

ware. Figures 62 and 63 again show that NAKcast provides high reliability, while Ricochet

provides less reliability.

All figures for individual QoS properties (i.e., Figures 58 through 63) related to the

ReLate2Jit measurements in Figures 56 and 57 show fairly consistent results across dif-

fering hardware. When these QoS properties are combined into a single, objective value,

however, we are better able to distinguish one protocol from another thus highlighting the

advantages to using composite metrics.

IV.1.5.4 Determining Appropriate Protocol with Artificial Neural Networks

As described in Section IV.1.4.4, ADAMANT uses an Artificial Neural Network (ANN)

trained on experiment data (as shown in Section IV.1.5.3) to provide guidance in determin-

ing an appropriate transport protocol given (1) hardware resources provided by the cloud

computing environment (e.g., CPU speed, network bandwidth and loss) and (2) application

properties (e.g., sending rate, number of receivers). This section describes our accuracy

and timeliness results using the Fast Artificial Neural Network (FANN) library.

129

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5

La
te

nc
y

St
d.

 D
ev

ia
tio

n
(µ

s)

Experiment

pc850, 10Mb LAN, 15 rcvrs, 5% loss

NAKCast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Figure 61: Jitter: pc850, 100Mb LAN, 15 receivers, 5% loss, 10Hz

297500

298000

298500

299000

299500

300000

300500

1 2 3 4 5

Pa
ck

et
s R

ec
ei

ve
d

Experiment

pc3000, 1Gb LAN, 15 rcvrs, 5% loss

NAKcast 0.001 - 10Hz
Ricochet R4 C3 - 10Hz

Figure 62: Reliability: pc3000, 1Gb LAN, 15 receivers, 5% loss, 10Hz

130

297500

298000

298500

299000

299500

300000

300500

1 2 3 4 5

Pa
ck

et
s R

ec
ei

ve
d

Experiment

pc850, 10Mb LAN, 15 rcvrs, 5% loss

NAKCast 0.001 - 10Hz
Ricochet R4 C3 - 10Hz

Figure 63: Reliability: pc850, 100Mb LAN, 15 receivers, 5% loss, 10Hz

Evaluating the Accuracy of Artificial Neural Networks

The first step to using an ANN is to train it on a set of data. We provided the ANN

with 394 inputs where an input consists of data values outlined in Tables 12 and 13 plus the

composite metric of interest (i.e., ReLate2 or ReLate2Jit). We also provided the expected

output (i.e., the transport protocol that provided the best composite QoS value for ReLate2

or ReLate2Jit).

An example of one of the 394 inputs is the following: 3 data receivers, 1% network loss,

25Hz sending rate, pc3000 computers, 1Gb network, OpenSplice DDS implementation,

and ReLate2Jit as the metric of interest. Based on our experiments, the corresponding

output would be the NAKcast protocol with a NAK timeout of 1 ms. All the 394 inputs are

taken from experiments that we ran as outlined in Section III.5.2.

FANN offers extensive configurability for the neural network, including the number of

hidden nodes that connect inputs with outputs. We ran training experiments with the ANN

using different numbers of hidden nodes to determine the most accurate ANN. For a given

number of hidden nodes we trained the ANN five times. The weights of the ANN determine

how strong connections are between nodes. The weights are initialized randomly and the

initial values effect how well the ANN learns.

131

82
84
86
88
90
92
94
96
98

100
102

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Training Run

ANN Accuracy (known envs)

36 hidden nodes, 0.0001 error
24 hidden nodes, 0.0001 error
12 hidden nodes, 0.0001 error
6 hidden nodes, 0.0001 error

Figure 64: ANN Accuracy for environments known a priori

Figures 64 and 65 show the ANN accuracies for environment configurations that were

known a priori and environments that were unknown until runtime respectively.

The ANN was configured with different numbers of hidden nodes and a stopping error

of 0.0001 (i.e., an indication to the ANN that it should keep iterating over the data until

the error between what the ANN generates and the correct response is 0.0001). Additional

experiments were conducted with higher stopping errors (e.g., 0.01), but lower stopping

errors consistently produced more accurate classifications as expected.

Accuracy for environments known a priori was determined by querying the ANN with

the data on which it was trained. Since we know the answer we gave to the ANN when it

was trained we check to make sure the answer matches the ANN’s response. Over the 10

training runs shown in Figure 64 the highest number of 100% accurate classifications was

generated using 24 hidden nodes (i.e., 8).

Accuracy for environments unknown until runtime is determined by splitting out the

394 environment configurations into mutually exclusive training and testing data sets. This

132

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 fo
r e

xc
lu

de
d

da
ta

 (%
)

Training Run

ANN Accuracy (10-fold cross-validation)

36 hidden nodes, 0.0001 error

24 hidden nodes, 0.0001 error

12 hidden nodes, 0.0001 error

6 hidden nodes, 0.0001 error

Figure 65: ANN Accuracy for environments unknown until runtime

approach is referred to as n-fold cross-validation where n is the number of mutually exclu-

sive training and testing data sets [68]. The value of n also determines the amount of data

excluded from training and used only for testing.

We used 10-fold cross-validation which indicates 10 sets of training and testing data

where for each fold the training and testing data are mutually exclusive and the training

data excludes 1/10 of the total data which is used only for testing. N-fold cross-validation

provides insight into how well a machine learning technique generalizes for data on which

it has not been trained. As shown in Figure 65 the ANN with 24 hidden nodes and a

stopping error of 0.0001 produced the highest average accuracy of 89.49%. We conducted

our timings tests using this ANN since it provided the highest number of 100% accurate

classifications for environments known a priori and the highest accuracy for environments

unknown until runtime.

Evaluating the Timeliness of Artificial Neural Networks

As described in Challenge 2 in Section IV.1.2.2, the datacenter for the SAR operations

needs to have timely configuration adjustments. We now provide timing information based

on the ANN’s responsiveness when queried for an optimal transport protocol. Timeliness

133

Figure 66: ANN average response times

was determined by querying the ANN with all 394 inputs on which it was trained. A high

resolution timestamp was taken right before and right after each call made to the ANN.

Figures 66 and 67 show the average response times and standard deviation of the re-

sponse times, respectively, for 5 separate experiments where for each experiment we query

the ANN for each of the 394 inputs. The figures show that the ANN provides timely and

consistent responses. As expected, the response times on the pc850 platform are slower

than for the pc3000.

Inspection of the ANN source code confirmed experimental results that the ANN pro-

vides fast and predictable responses for both environments known a priori and unknown

until runtime. When queried for a response with a given set of input values, the ANN

loops through all connections between input nodes, hidden nodes, and output nodes. The

number of nodes and number of connections between them were determined previously

when the ANN was trained. With a high level of accuracy, predictability, and minimal

development complexity, ANNs provide a suitable technique for determining ADAMANT

configurations.

134

Figure 67: Standard deviation for ANN response times

IV.1.6 Lessons Learned

Developers of systems which use DRE pub/sub middleware face several configuration

challenges for cloud computing environments. To address these challenges, this section

presented the structure, functionality, and performance of ADAptive Middleware And Net-

work Transports (ADAMANT). ADAMANT is pub/sub middleware that uses supervised

machine learning to autonomously configure cloud environments with transport protocols

that enhance the predictability of enterprise DRE systems.

The results in this section empirically showed how computing hardware environments

affect QoS for these systems and how ADAMANT configures the system based on the

computing resources provided at startup in a fast and accurate manner while reducing de-

velopment complexity over manual adaptation approaches. We selected ANNs to deter-

mine appropriate configurations since they provide (1) the highest level of accuracy possi-

ble for known environments, (2) better than random or default guidance for environments

not known until runtime, and (3) the timing complexity required for DRE systems. The

following is a summary of lessons learned from our experience evaluating ADAMANT’s

configuration performance in various cloud environments:

• Computing resources affect which QoS mechanism provides the best support.

135

Differences in CPU speed and network bandwidth affect the choice of the most appropriate

QoS mechanism. For certain computing environments, one transport protocol provided the

best QoS; for other environments a different transport protocol was best. We leveraged

this information to select the appropriate protocol for given computing resources. We are

investigating other machine learning techniques that provide timeliness and high accuracy

to compare with ANNs.

• Quantifying the effect of hardware configurations on QoS is tedious and time-

consuming. While leveraging artificial neural networks with DRE pub/sub middleware

provides fast, predictable configuration, neural networks need to be trained on the oper-

ating environment and the best protocol for that hardware environment. Performing em-

pirical experiments and formatting the data take time—steps that are required regardless

of the adaptation approach taken. While scripts and programs can be written to allevi-

ate error-prone aspects of data gathering and transformation and thereby reduce accidental

development complexity, running the experiments takes the greatest amount of time for

preparing the neural network for training. We are researching integration of more general-

ized supervised machine learning techniques to provide guidance for previously unknown

environments. This integration would complement neural networks so that the neural net-

works would provide guidance for known environments and the more generalized approach

would provide even more accurate guidance for environments unknown until runtime.

• Fast, predictable configuration for DRE pub/sub systems can support dynamic

autonomic adaptation. ADAMANT can accurately and quickly configure a DRE pub/sub

system at startup in cloud environments. Some systems, however, run in operating environ-

ments that change during system operation. The ADAMANT results have motivated future

work on autonomic adaptation of middleware and transport protocols to support QoS in

turbulent environments. Fast, predictable configuration can be used to adapt transport pro-

tocols to support QoS while the system is monitoring the environment. When the system

136

detects environmental changes (e.g., increase in number of receivers or increase in send-

ing rate), supervised machine learning can provide guidance to support QoS for the new

configuration.

• Composite QoS metrics should be decomposed to better understand behavior of

the system. A change in the values from composite QoS metrics can be caused by changes

in any of the individual QoS concerns or any combination of the concerns. The compos-

ite QoS metrics provide a higher level of abstraction for evaluating QoS and, as with any

abstraction, details which might be important can be obfuscated. The composite QoS met-

rics we use are fairly easy to decompose as shown by Figures 50–55 in Section IV.1.5.3,

although the more QoS properties that are composed the more decomposition is needed,

which is hard, tedious, and time-consuming. However, if data for the individual QoS con-

cerns are not available (e.g., average latency, reliability) due to interpolation or extrapola-

tion of data, it can be hard to determine why values from QoS metrics have changed.

IV.2 Autonomic Adaptation in Dynamic Environments

This section details the context, challenges, our solution approach, and results for au-

tonomically configuring QoS-enabled pub/sub middleware for flexible computing environ-

ments.

IV.2.1 Context

Emerging trends and challenges. The use of pub/sub technologies for DRE systems

has grown in recent years due to the advantages of performance, cost, and scale as com-

pared to single computers [49, 98]. In particular, pub/sub middleware has been leveraged to

ease the complexities of data dissemination for DRE systems. Examples of pub/sub middle-

ware include the CORBA Notification Service [88], the Java Message Service (JMS) [75],

Web Services Brokered Notification [79], and the Data Distribution Service (DDS) [84].

137

These technologies support the propagation of data and events throughout a system us-

ing an anonymous publication and subscription model that decouples event suppliers and

consumers.

Pub/sub middleware is used across a wide variety of application domains, ranging from

ship-board computing environments to cloud computing to stock trading. Moreover, the

middleware provides policies that affect the end-to-end QoS of applications running in

DRE systems. Policies that are common across various middleware technologies include

grouped data transfer (i.e., transmitting a group of data atomically), durability (i.e., saving

data for subsequent subscribers), and persistence (i.e., saving data for current subscribers).

Even though tunable policies provide fine-grained control of system QoS, several chal-

lenges emerge when developing pub/sub systems deployed in dynamic environments. Mid-

dleware mechanisms used to ensure certain QoS properties for one environment configura-

tion may be ineffective for different configurations. For example, a simple unicast protocol,

such as the User Datagram Protocol (UDP), may address the specified latency QoS when

a publisher sends to a small number of subscribers. UDP could incur too much latency,

however, when used for a large number of subscribers due to its point-to-point property,

leaving the publisher to manage the sending of data to each subscriber.

Challenges also arise when considering multiple QoS policies that interact with each

other. For example, a system might need low latency QoS and high reliability QoS, which

can affect latency due to data loss discovery and recovery. Certain transport protocols,

such as UDP, provide low overhead but no end-to-end reliability. Other protocols, such as

Transmission Control Protocol (TCP), provide reliability but unbounded latencies due to

acknowledgment-based retransmissions. Still other protocols, such as lateral error correc-

tion protocols [10], manage the potentially conflicting QoS properties of reliability and low

latency, but only provide benefits over other protocols in specific environment configura-

tions.

It is hard to determine when to switch from one transport protocol to another or modify

138

parameters of a particular transport protocol so that desired QoS is maintained. Moreover,

manual intervention is often not responsive enough for the timeliness requirements of the

system. DRE systems operate within strict timing requirements that must be met for the

systems to function appropriately. The problem of timely response is exacerbated as the

scale of the system grows (e.g., as the number of publishers or subscribers increases).

Solution approach → Integrated Supervised Machine Learning Techniques and

Flexible Transport Protocol Management for Timely and Accurate Autonomic Adap-

tation of DRE Pub/Sub Middleware. This article describes how our work (1) monitors

environment changes that affect QoS, (2) determines in a timely manner which appropriate

transport protocol changes are needed in response to environment changes, (3) integrates

the use of multiple supervised machine learning techniques to increase accuracy, and (4)

autonomically adapts the network protocols used to support the desired QoS. We have pro-

totyped this approach in the ADAptive Middleware And Network Transports (ADAMANT)

platform [47] that supports environment monitoring and provides timely autonomic adap-

tation of the middleware. ADAMANT provides the following contributions to research on

autonomic configuration of pub/sub middleware in dynamic environments:

• Leveraging anonymous publish and subscribe middleware based on the DDS

specification. DDS defines topic-based high-performance pub/sub middleware to support

DRE systems. ADAMANT leverages the middleware to provide environment monitoring

information that is disseminated throughout the DRE system (e.g., change in sending rate,

change in network percentage loss) to updates to the environment occur.

•Multiple supervised machine learning (SML) techniques as a knowledge base to

provide fast and predictable adaptation guidance in dynamic environments. ADAMANT

provides timely integrated machine learning (TIML), a novel approach to provide high ac-

curacy and timely determination of which SML technique to use for a given operating

environment.

• Configuration of DRE pub/sub middleware based on guidance from supervised

139

machine learning. Our ADAMANT middleware uses the adaptive network transports

(ANT) framework [45] to select the transport protocol(s) that best addresses multiple QoS

concerns for given computing resources. ANT provides an infrastructure for composing

and configuring transport protocols using modules that provide base functionality (e.g., an

IP multicast module that handles multicasting the data to the network). Supported proto-

cols include Ricochet, which uses a variation of forward error correction called lateral error

correction that exchanges error correction information among receivers [9], and NAKcast,

which uses negative acknowledgments (NAKs) to provide reliability. These protocols en-

able trade-offs between latency and reliability to support middleware for enterprise DRE

pub/sub systems.

IV.2.2 Motivating Example - Ambient Assisted Living in a Smart City Environment

This section describes Smart City Ambient Assisted Living (SCAAL) applications,

which combine Ambient Assisted Living (AAL) in the context of a smart city. It also

presents research challenges associated with SCAAL applications. SCAAL applications

help motivate the need for managing QoS interactions and providing timely adjustments

of transport protocols for QoS-enabled pub/sub middleware deployed in dynamic envi-

ronments. The objective for smart cities is to meld computational infrastructure into the

surrounding environment and establish ubiquitous, context-aware services in a metropoli-

tan area [25]. The purpose of AAL is to increase the independence and quality of life for

elderly people, while decreasing the need for direct interaction of healthcare workers so

they are freed up for other concerns.

As an example SCAAL scenario depicted in Figure 68, imagine an elderly person is

navigating a large metropolitan area equipped with multiple technological devices. These

devices aid in various aspects of the person’s ability to be aware of her environment (e.g.,

mobility, sensory enhancement, communication, and monitoring devices). In particular,

the elderly person has a history of heart disease and 3-dimensional high-resolution heart

140

High-resolution
health monitoring

GPS

Videocamera

Cell
phone

Mobility

Personal
DataCenter

PDA

Sensory
Enhancing
Equipment

Smart City

Law
enforcement

Doctors
Surveillance

infrastructure

FirefightersEMS

Healthcare
facilities

Figure 68: Smart City Ambient Assisted Living (SCAAL) Example

monitoring equipment is periodically transmitting data. A personal datacenter publishes

and subscribes to the data being managed by the personal devices including the heart mon-

itoring data, and interfaces with the smart city by publishing and subscribing to data from

the ambient environment. More specifically, health care workers, hospitals, and emergency

medical services specialists are subscribing to the heart monitoring information that is be-

ing published.

The personal datacenter operates in a dynamic environment since (1) the elderly person

moves through space in the smart city and updates personal information in time and (2) the

smart city enhances and updates the amount and kind of data that it provides as it moves

through time. Our research focuses on (1) composite metrics to evaluate transport protocols

in support of multiple QoS concerns (such as reliability and low latency for high-resolution

3D heart monitoring information), (2) evaluations of multiple transport protocols in dif-

ferent operating environments using the composite metrics, (3) support for monitoring the

environment, (4) supervised machine learning techniques to determine transport protocols

that best support the QoS that a personal datacenter device must manage in a SCAAL ap-

plication, and (5) autonomically adapting the transport protocols to provide the best QoS

141

given the changes in the environment. Supporting autonomic adaptation of the personal

datacenter presents the following challenges:

Challenge 1: Managing interacting QoS requirements. The personal datacenter

must manage multiple interacting QoS requirements (e.g., data reliability so enough data is

received and low latency and jitter for soft realtime data so that detailed 3-dimensional heart

monitoring data arrive before they are needed). For example, the streamed data must be re-

ceived soon enough so that successive dependent data can also be used, such as dependent

MPEG B and P frame data being received before the next I frame makes them obsolete.

Moreover, the personal datacenter must balance the interacting QoS requirements with an

environment that varies dynamically (e.g., number of data senders and receivers, network

bandwidth, network packet loss). Section IV.2.4.3: Addressing Challenge 1: Managing

Interacting QoS Requirements describes how we address this challenge by supporting run-

time migration and reconfiguration in bounded time of transport protocols used as the QoS

mechanisms to provide needed QoS.

Challenge 2: Accurate Adaptation. The personal datacenter must be able to adjust to

changes in the environment accurately. As changes in environment occur (e.g., increases

in heart data updates, decreases in networking capability, requests for data from additional

senders and receivers), the personal datacenter must accommodate data needs for data pro-

ducers and consumers, take advantage of additional resources, or provide access to ad-

ditional data producers and consumers while maintaining QoS. For a given environment

configuration, the SCAAL application must accurately implement adjustments that are ap-

propriate to the operating environment. If the personal datacenter cannot make accurate

adjustments as the environment changes then situation awareness and critical health infor-

mation could be lost or delayed causing loss of orientation or injury to the elderly person.

Section IV.2.4.3: Addressing Challenge 2: Accurate Adaptation describes how we address

this challenge by leveraging DDS to disseminate the environment monitoring information

142

needed to determine an accurate adaptation and TIML to accurately determine the appro-

priate transport protocol.

Challenge 3: Timely Adaptation. Due to timeliness concerns of DRE systems such

as SCAAL applications, the personal datacenter must adjust in a timely manner as the en-

vironment changes. If the personal datacenter cannot adjust quickly enough it will fail to

perform adequately and critical data such as 3-D heart information will not be received in

time. As the amount of data relevant to the SCAAL application fluctuates and the demand

for information varies with a corresponding change in the data update rate, the personal dat-

acenter must be configured to accommodate these changes with appropriate responsiveness

to maintain the specified quality of service. Configuration changes must not only be timely

in general but they must also be bounded—and ideally constant time—so that critical in-

formation updates (such as health monitoring) are not lost or received too late to be of use.

Section IV.2.4.3: Addressing Challenge 3: Timely Adaptation describes how we address

this challenge by using constant-time complexity machine learning techniques, constant-

time integration of these techniques, and constant-time migration of transport protocols.

Challenge 4: Reducing development complexity. Many elderly people can use a

personal datacenter to improve their independence. Likewise, the health care industry can

benefit from the decreased workload for health care providers. A personal datacenter that

is developed for one particular elderly individual in a particular operating environment,

however, might not work well for a different elderly individual in a different operating

environment with different personal equipment. Personal datacenters should therefore be

developed and configured readily between the different operating environments presented

by different metropolitan areas, differences in personal equipment, and differences in the

data needs of various individuals to leverage the personal datacenters across a wide range of

individuals and locales. Section IV.2.4.3: Addressing Challenge 4: Reducing Development

Complexity describes how we address this challenge by leveraging DDS to disseminate

143

environment updates, and using machine learning to map environment configurations to

the appropriate transport protocols.

IV.2.3 Evaluating Supervised Machine Learning Techniques for DRE Systems

In this section we present the context for evaluating supervised machine learning tech-

niques for use in DRE systems. We also present the empirical results of our evaluations. We

use these results to determine the appropriate techniques for different situations (i.e., envi-

ronment configurations known a priori or unknown until runtime) so that the challenges in

Section IV.2.2 are addressed.

IV.2.3.1 Context

An autonomic system operates by managing itself without external intervention [60].

Many enterprise DRE pub/sub systems autonomically (1) monitor their environment and

(2) adjust their operational behavior as the environment changes since manual adjustment

is tedious, slow, and error prone. For example, a shift in network reliability can prompt

QoS-enabled middleware, such as DDS, to change mechanisms (such as the transport pro-

tocol used to deliver data) since some mechanisms provide better reliability than others

in certain environments. Likewise, applications leveraging cloud computing environments

where elastically allocated resources (e.g., CPU speeds and memory) cannot be character-

ized accurately a priori may need to adjust to available resources (such as using compres-

sion algorithms optimized for the available CPU power and memory) at system startup. If

adjustments take too long the mission(s) the system implements could be jeopardized.

One way to autonomically adapt enterprise DRE pub/sub systems involves policy-based

approaches [5, 27, 67] that externalize and codify logic to manage the behavior of the sys-

tems. Policy-based approaches provide deterministic response times to guide appropriate

adjustments given changes in the environment and can be optimized to ensure low latency

performance. The complexity of developing and maintaining policy-based approaches for

144

enterprise DRE systems can be unacceptably high, however, since developers must deter-

mine and implement the policies which are applicable for certain environmental configu-

rations. Moreover, developers must manage how the policies interact to provide needed

adjustments.

Machine learning techniques support algorithms that allow systems to adjust behavior

based on empirical data (e.g., inputs from the environment. These techniques can be used

to support autonomic adaptation by learning appropriate adjustments to various operat-

ing environments. Unlike policy-based approaches, however, machine learning techniques

automatically recognize complex sets of environment properties, provide highly accurate

support for environment properties not previously known or encountered, and make appro-

priate decisions accordingly.

Conventional machine learning techniques, such as decision trees [16] and reinforce-

ment learning [20], have been used to address autonomic adaptation for non-DRE sys-

tems [43]. As shown in Section IV.1.4.3, these techniques are not well suited for enterprise

DRE pub/sub systems, however, since they do not provide bounded times when determin-

ing adjustments [48]. Some techniques, such as reinforcement learning [19], explore the

solution space until an appropriate solution is found, regardless of the elapsed time. Other

techniques, such as decision trees, have time complexities that are dependent upon the spe-

cific data and cannot be determined a priori. Moreover, decision trees may contain decision

branches that are much longer than others, thereby making the determination of appropriate

adaptations unpredictable, which is undesirable for DRE pub/sub systems.

Supervised machine learning techniques with bounded times provide a promising way

to addressing the accuracy, timeliness, and development complexity of DRE pub/sub sys-

tems. Some techniques, however, provide higher accuracy for environment configurations

known a priori, whereas other techniques provide higher accuracy for environment con-

figurations unknown until runtime. Since known and unknown environment configurations

145

are relevant in dynamic operating environments, both types of techniques should be lever-

aged when they are most appropriate.

In general, machine learning uses guidance from past known environments to han-

dle new and unknown environments. This generality sacrifices some accuracy, however,

that would otherwise be provided for known environments. Machine learning techniques

that are specialized for the environments they have seen—and on which they have been

trained—are said to be overfitted [29], which makes the accuracy comparable to policy-

based approaches (i.e., 100% accurate). Overfitted techniques are particularly suited for

environments known a priori where the technique can be specialized for the known cases.

Generalized machine learning techniques, however, are more appropriate for handling en-

vironments unknown until runtime.

This section describes how we evaluated both overfitted machine learning and general-

ized machine learning to (1) reduce the complexity of autonomic adaptive enterprise DRE

pub/sub systems, (2) provide the constant time complexity required of DRE pub/sub sys-

tems, and (3) increase the adaptation accuracy over any one single machine learning tech-

nique. In particular, our approach tunes an artificial neural network (ANN) [85] (which is

a technique modeled on the interaction of neurons in the human brain) to retain as much

information about environment configurations and adjustments known a priori as possible

(e.g., greatly increasing the number of connections between input environment characteris-

tics and output adjustments typically used in an ANN). Our approach also tunes a support

vector machine (SVM) to provide highly accurate adaptations for environments unknown

until runtime.

IV.2.3.2 Experimental Results and Analysis

This section presents the results of experiments that use ANNs and SVMs to determine

development complexity, timeliness, and accuracy in selecting an appropriate transport

146

protocol for ADAMANT given a particular operating environment. We conducted exper-

iments for both environments known a priori (i.e., using the same data for training and

testing of the machine learning technique) and environments unknown until runtime (i.e.,

using mutually exclusive data for training and testing). The experimental input data used to

train the ANNs and SVMs include ADAMANT with multiple properties of the operating

environment varied (e.g., CPU speed, network bandwidth, DDS implementation, percent

data loss in the network), along with multiple properties of the application being varied

(e.g., number of receivers, sending rate of the data) as would be expected for an ad hoc

datacenter used for SAR operations.

From our previous experiments that empirically evaluate how transport protocols per-

form in different operating environments [45] we gathered 394 inputs where an input con-

sists of data values for features that determine a particular operating environment (e.g., CPU

speed, network bandwidth, number of data receivers, sending rate). Table 14 delineates the

inputs for both of the machine learning techniques that ADAMANT utilizes (i.e., ANNs

and SVMs). The composite QoS metrics combine multiple QoS concerns into a single

value. ReLate2 combines reliability and average network packet latency while ReLate2Jit

extends the ReLate2 metric to also include standard deviation of packet arrival times (i.e.,

packet jitter).

We also provided the expected output to the machine learning techniques, that is, the

transport protocol that provided the best QoS with respect to data reliability, average la-

tency, and jitter (i.e., standard deviation of the latency of network packets) depending on

which combination of these QoS properties were required. Both machine learning tech-

niques used output a transport protocol and protocol settings given the operating environ-

ment inputs. An example of one of the 394 inputs is the following: 15 data receivers, 5%

network loss, 100Hz data sending rate, 3GHz CPU, 1Gb network, using the OpenSplice

DDS implementation, and specifying the combination of reliability and average latency as

147

Machine Learning Inputs Values
Number of data receivers 3 to 25
Network bandwidth 1 Gb/s, 100 Mb/s, 10 Mb/s
DDS implementation OpenDDS, OpenSplice
Percent end-host network loss 3 to 10%
CPU type 850 MHz, 3 GHz
Data sending rate 10 Hz, 25 Hz, 50 Hz, 100 Hz
Available RAM 500 MB, 2 GB
Composite QoS metric ReLate2, ReLate2Jit

Table 14: Machine Learning Inputs

the QoS properties of interest. Based on our experiments, the corresponding output would

be the Ricochet transport protocol with the R and C parameters set to 4 and 6, respectively.

We next empirically evaluated the accuracy of ANNs and SVMs for both environments

known a priori and unknown until runtime. We ran experiments with various numbers of

hidden nodes and stopping errors. We used the Fast Artificial Neural Network (FANN)

library (leenissen.dk/fann) as our ANN implementation due to its configurability, docu-

mentation, ease of use, and open-source availability. FANN offers extensive configurabil-

ity for the neural network including the number of hidden nodes that connect the inputs

with the output. We used the libSVM library (www.csie.ntu.edu.tw/∼cjlin/libsvm) for our

SVM implementation due to its configurability, documentation, tutorials, and open-source

availability.

Evaluating the Accuracy of ANNs and SVMs for Environments Known A Priori.

Below we evaluate the accuracy of ANNs and SVMs for environments known a priori.

We first focus on ANNs and then SVMs. Our first step to measuring the accuracy of

ANNs for environments known a priori was to train ANNs on the 394 inputs described in

Section IV.1.5.4. We ran training experiments with the ANNs using different numbers of

hidden nodes to determine the most accurate ANN. For a given number of hidden nodes

we trained the ANN 10 different times. The weights of the ANNs determine how strong

148

82
84
86
88
90
92
94
96
98

100
102

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Training Run

ANN Accuracy (known envs)

36 hidden nodes, 0.0001 error
24 hidden nodes, 0.0001 error
12 hidden nodes, 0.0001 error
6 hidden nodes, 0.0001 error

Figure 69: Accuracy of ANN with 6, 12, 24, & 36 Hidden Nodes & 0.0001 Stopping
Error

connections are between nodes. The weights are randomly initialized and these initial

values have an effect on how well and how quickly the ANN learns.

Figure 69 shows the accuracies for the ANNs configured with 6, 12, 24, and 36 hidden

nodes and a 0.0001 stopping error over 10 training runs. Additional experiments were

conducted with higher stopping errors (e.g., 0.01) but lower stopping errors consistently

produced more accurate classifications as expected. Figure 69 also shows the effect of

random initial weights on the accuracy of the ANN since the accuracy can vary across

training runs. Accuracy was determined by querying the ANN with the 394 inputs on

which it was trained.

A 100% accurate classification was generated at least once with all ANN configura-

tions. The ANN with 24 hidden nodes provided the best accuracy (as measured by the

number of 100% accurate classifications) across all the training runs even compared to us-

ing 36 hidden nodes—100% accuracy all but 2 times out of 10. The ANNs with 36 and 12

hidden nodes both provided 100% accuracy 7 out of 10 times.

149

Figure 70: Cumulative Errors for ANNs with 100% Accuracy

The amount of error between values generated by the ANN and the known correct val-

ues is another measure of accuracy. The transport protocol output produced by the ANN

is considered accurate if it is closer numerically to the correct protocol than to any other

protocol. The ANN produces numerical values that are compared to the numerical repre-

sentation of the correct protocol. The differences between these values can be accumulated

across the 394 inputs and compared between different ANN configurations (e.g., 36 hidden

nodes, 24 hidden nodes).

Figure 70 shows the errors accumulated for all the data of a single training & test

run (i.e., using the 394 inputs). The training runs here are only included if the ANN had

100% accuracy (as shown by Figure 69) in that run since we want 100% accuracy for

environments known a priori. For example, the ANN configured with 6 hidden nodes had

only 3 training runs where the ANN was accurate for 100% of the 394 inputs and thus only

3 data points exist for that ANN configuration.

Across all the runs where the ANNs produced 100% accuracy, the ANN with 36 hidden

150

nodes produced the lowest average error (i.e., 8.99). The ANN with 24 hidden nodes, how-

ever, produced the second lowest average error (i.e., 9.18) with only a 2.1% increase over

the lowest error value. In this regard there is not a significant difference in the cumulative

errors between the ANNs configured with 36 and 24 hidden nodes. By contrast, the 3rd

lowest average error (i.e., 10.65 using 12 hidden nodes) represents a 19% increase.

As with the ANNs, we trained the SVMs on the 394 inputs to compare accuracy for

environments known a priori. SVMs are a specialized kind of linear classifier that utilize

kernels, which create additional features from the inputs that can be used for training and

classification [99]. A variety of kernels can be used, such as radial basis function (RBF)

and polynomial kernels, which produce different levels of accuracy.

We ran training experiments with the SVMs using different kernels and scaling the data

in different ways. In addition to RBF and polynomial kernels, we included a simple linear

classifier as a baseline to compare to the SVMs. The libSVM library provides the flexibility

to utilize the SVMs with RBF and polynomial kernels as well as a simple linear classifier.

In addition, we scaled the data in 4 different ways: (1) no scaling (i.e., using the original

environment configuration values), (2) scaling the input values (i.e., environment configu-

rations) to be between -1 and 1, (3) scaling the input to be between -1 and 1 and scaling the

output (i.e., the transport protocol specified) to be between 0 and 1, and (4) scaling both

input and output to be between -1 and 1. Since there is no nondeterminism with training

SVMs there is no need to have multiple training runs for a single SVM configuration (e.g.,

SVM with polynomial kernels and no scaling of data).

Figure 71 shows the accuracies for the linear classifier and the SVMs using the RBF

and polynomial kernels. The SVM with the RBF kernel (SVM-RBF) was able to correctly

predict the appropriate transport protocol for 100% of the environment configurations. This

result is somewhat surprising since SVMs are designed to generalize their learning and to

handle environment configurations unknown until runtime. The SVM using the polynomial

kernel (SVM-Polynomial) and the linear classifier produced their highest accuracy when

151

1

Figure 71: Accuracy of SVMs with RBF, Polynomial, and Linear Kernels

the input data was scaled between -1 and 1 (92.39% and 91.17% accuracy respectively).

Figure 71 also shows the affect that data scaling has on accuracy.

SVM-RBF had its highest accuracy (100%) when the data was not scaled while the

linear classifier and SVM-Polynomial had their highest accuracy when only the input data

was scaled. SVM-Polynomial was not able to complete training when the data was not

scaled and therefore has no accuracy for that case. SVM-RBF, SVM-Polynomial, and

the linear classifier all had their lowest accuracies when the output data (i.e., the selected

transport protocol) was scaled. Figures 69, 70, and 71 show that ANNs with 24 and

36 hidden nodes and an SVM with RBF kernels and unscaled data produce the highest

accuracies when the environment configurations are known a priori.

Evaluating the Accuracy of ANNs and SVMs for Environments Unknown until

Runtime. Below we measure the accuracy of ANNs and SVMs for environment con-

figurations that are unknown until runtime. This scenario splits out the 394 environment

configurations into mutually exclusive training and testing data sets, which is referred to

as n-fold cross-validation where n is the number of mutually exclusive training and testing

152

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 fo
r e

xc
lu

de
d

da
ta

 (%
)

Training Run

ANN Accuracy (10-fold cross-validation)

36 hidden nodes, 0.0001 error

24 hidden nodes, 0.0001 error

12 hidden nodes, 0.0001 error

6 hidden nodes, 0.0001 error

Figure 72: ANN Accuracies for 10-fold Cross-validation (0.0001 Stopping Error)

data sets [68]. The value of n also determines the amount of data excluded from training

and used only for testing. A 10-fold cross-validation indicates 10 sets of training and test-

ing data where for each fold the training and testing data are mutually exclusive and the

training data excludes 1/10 of the total data, which is used only for testing. N-fold cross-

validation provides insight into how well a machine learning technique generalizes for data

on which it has not been trained.

We started by examining the accuracy of ANNs for environments unknown until run-

time using 10-fold cross-validation. Since we are focusing on generalizing the machine

learning for environment configurations not previously encountered, we added ANN con-

figurations to those listed in Section 4.2.1 to include a larger stopping error to see the effect

on accuracy. Figure 72 shows the accuracy for the excluded data across the 10-folds for

10 different training runs. The ANNs in this figure all use the stopping error of 0.0001.

Figure 73 shows the accuracy for the excluded data across the 10-folds using a stopping

error of 0.01. We split out these data into 2 separate figures for clarity.

As Figures 72 and 73 show, the accuracy for determining the correct transport protocol

153

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 fo
r e

xc
lu

de
d

da
ta

 (%
)

Training Run

ANN Accuracy (10-fold cross-validation)

36 hidden nodes, 0.01 error

24 hidden nodes, 0.01 error

12 hidden nodes, 0.01 error

6 hidden nodes, 0.01 error

Figure 73: ANN Accuracies for 10-fold Cross-validation (0.01 Stopping Error)

given the unknown environment configurations was highest with the lower stopping error

of 0.0001. The lowest accuracy for any run with a stopping error of 0.0001 was 75.89%

(for 6 hidden nodes) while the lowest accuracy for any run with a stopping error of 0.01

was 71.57% (again for 6 hidden nodes). The highest accuracy was obtained by 24 hidden

nodes and stopping error of 0.0001 for training run 9 (i.e., 92.39%). This configuration

also produced the highest average accuracy across all the training runs (i.e., 89.49%) with

the ANN configuration of 36 hidden nodes and a stopping error of 0.0001 producing the

second highest average accuracy across all the training runs (i.e., 87.79

To evaluate the linear classifier and SVMs, we used the same 10-fold cross-validation

data described earlier in this section. Figure 74 shows accuracies for the excluded data for

the same linear classifier and the SVMs described in Section 4.2.1. As in Figure 71, SVM-

RBF again produces the highest accuracy for all the SVMs and the linear classifier (i.e.,

87.56%). This accuracy was produced, however, when the input data was scaled to values

between -1 and 1. When no scaling of the data was performed, the accuracy of SVM-RBF

decreased by 14.49% (i.e., 74.87% accuracy).

154

1

Figure 74: SVM Accuracies for 10-fold Cross-validation (0.01 Stopping Error)

SVM-RBF produced the highest accuracies across all data scalings compared to SVM-

Polynomial and the linear classifier. As was the case with known environments, SVM-

Polynomial was unable to complete training when the data was unscaled. When the input

data was scaled between -1 and 1, SVM-RBF, SVM-Polynomial, and the linear classifier

all produced their highest accuracies.

With the current experiments involving environments unknown until runtime, the ANN

with 24 hidden nodes and a stopping error of 0.0001 produced the highest accuracy. To

see if these results would hold with an increased percentage of unknown data, we created

2-fold cross-validation data. For this set of data, half of the environment configurations

would be used to train the ANNs and SVMs and the other half would be used to test the

ANNs and SVMs for accuracy.

Figures 75 and 75 show the accuracy for 2-fold cross-validation of ANNs configured

with 6, 12, 24, and 36 nodes and 0.0001 and 0.01 stopping errors respectively. The highest

average accuracy across the 10 trainings run is produced by the ANN with 36 hidden nodes

155

Figure 75: ANN Accuracies for 2-fold Cross-validation (0.0001 Stopping Error)

and a stopping error of 0.0001 (i.e., 78.35% average accuracy). The second highest average

accuracy is now produced by the ANN with 24 hidden nodes and a stopping error of 0.0001

(i.e., 77.69% average accuracy). It is also interesting to note that the ANN with 6 hidden

nodes and a stopping error of 0.01 (i.e., 74.19% average accuracy) produced higher average

accuracies than with a stopping error of 0.0001. This result indicates that the ANN with 6

nodes generalizes its learning better with a higher stopping error.

Figure 77 shows the accuracy of SVM-RBF, SVM-polynomial, and the linear classifier

for 2-fold cross-validation. In this case, both SVM-RBF and SVM-Polynomial produce

the highest accuracy (i.e., 86.29%) when the input data is scaled from -1 to 1. Scaling the

input data this way again produces the highest accuracies for SVM-RBF, SVM-Polynomial

and the linear classifier as it did for 10-fold cross-validation. SVM-RBF also produced the

worst 2-fold cross-validation accuracy when the input data was scaled from -1 to 1 and

the output data was scaled from 0 to 1 (i.e., 49.49% accuracy). Overall, SVM-RBF and

156

Figure 76: ANN Accuracies for 2-fold Cross-validation (0.01 Stopping Error)

SVM-Polynomial produced the most accurate results for 2-fold cross-validation even when

including the accuracy results for the ANNs.

Evaluating the Timeliness of ANNs and SVMs. For the SAR motivating example, we

are not only interested in accurate transport protocol guidance. We also need low latency,

constant time-complexity to meet the needs of DRE systems as outlined in Section 2.1.2.

We now empirically evaluate the runtime timeliness of ANNs and SVMs.

To gather timing data, we used a 3 GHz CPU with 2GB of RAM running the Fedora

Core 6 operating system with realtime extensions. Timeliness was determined by querying

the ANNs and SVMs with all 394 inputs on which it was trained (i.e., timing was done for

the case of environments known a priori). A high resolution timestamp was taken before

and after each call made to the ANN, the SVM, or the linear classifier and the times were

calculated by subtracting the timestamp taken before the call from the timestamp taken

after the call.

Figures 78 and 79 show the average response times and standard deviation of the

157

1

Figure 77: SVM Accuracies for 2-fold Cross-validation

response times for ANNs, respectively, for 10 separate experiments where for each ex-

periment we query the ANN for each of the 394 inputs. The figures show that the ANN

provides timely and consistent responses. The standard deviations for all the ANNs and all

the classification runs are below 1 µs. As expected, the response times using more hidden

nodes are slower than response times with fewer hidden nodes. The increase in latency is

less than linear, however (e.g., response times using 12 hidden nodes are less than twice

that using 6 hidden nodes).

Figures 80 and 81 show the average response times and standard deviations of the

response times, respectively, for SVM-RBF, SVM-Polynomial, and the linear classifier

where the data is scaled as described in Section 4.2.1. When trained on data that has

been scaled differently, there is a difference in the average response time. The more data is

scaled, the lower the average response time is (e.g., scaling all the data values to be between

-1 and 1 vs. no scaling). SVM-RBF has the highest average response times. This result

is not surprising since the RBF kernels create more complicated calculations to determine

the appropriate transport protocol. The standard deviations for the response times are fairly

158

Figure 78: ANN Average Response Times (µs)

Figure 79: Standard Deviation for ANN Response Times (µs)

159

Figure 80: SVM Average Response Times (µs)

consistent regardless of scaling. SVM-RBF exhibits an unusually high standard deviation

when the data is not scaled. This data might show an anomaly with the libSVM library

with respect to timeliness since we also needed to modify the implementation to remove

sources of unbounded time complexity for testing timeliness (e.g., replace calls to malloc()

with statically allocated memory since malloc() provides no bounded time guarantees).

Analyzing the Experimental Results. The ANN with 24 hidden nodes and a stopping

error of 0.0001 produced the most accurate result for experiments dealing with environ-

ments known a priori. The ANN with 36 hidden nodes was comparable in its accuracy

for environments known a priori. When considering the timeliness advantage of 24 hidden

nodes compared to 36 hidden nodes, however, the ANN with 24 hidden nodes seems the

most appropriate for environments known a priori.

With the 10-fold cross-validation experiments, the ANN with 24 hidden nodes and a

stopping error of 0.0001 produced the highest accuracy over the other ANN configurations,

the linear classifier, and the SVMs. This result is somewhat surprising since SVMs are

designed to be more general and handle unknown input well whereas over-fitted ANNs

160

Figure 81: Standard Deviation for SVM Response Times (µs)

are not expected to do as well. However, with the 2-fold cross-validation experiments, the

ANN with 36 hidden nodes and a stopping error of 0.0001 produced more accurate results

averaged over 10 training runs than the ANN with 24 hidden nodes and the same stopping

error. These differing results indicate that if only ANNs are used for machine learning, we

should use one type of ANN for environments known a priori (i.e., 24 hidden nodes and

stopping error of 0.0001) and one type for environments unknown until runtime (i.e., 36

hidden nodes and a stopping error of 0.0001). We speculate that the excluded environment

configurations for the 10-fold cross-validation was a small enough percentage of the overall

data that it was not different enough to cause a different ANN configuration or an SVM to

be more accurate. The results of the 2-fold cross-validation support this conclusion.

The experimental results shown in this section illustrate that different supervised ma-

chine learning techniques provide different levels of accuracy depending on whether the

environment configuration is known a priori or unknown until runtime. Based on these

experimental data, we have chosen to use an ANN with 24 hidden nodes and a stopping

error of 0.0001 for environments known a priori due to its (1) perfect accuracy and (2)

161

low latency constant classification time. We have also chosen to use an SVM with a poly-

nomial kernel for environments unknown until runtime since this technique (1) provided

the highest accuracy for all the configurations of ANNs and SVMs tested with the most

generalized data for validation (i.e., 2-fold cross validation data) and (2) provided lower

response latencies than the SVM with the RBF kernel. We combine both of these machine

learning techniques in our TIML approach to increase the overall accuracy of ADAMANT

and leverage constant-time perfect hashing to determine if the environment configuration

is known a priori or unknown until runtime and use the machine learning that will provide

the highest accuracy.

IV.2.4 Structure and Functionality of ADAMANT

This section presents the structure and functionality of the ADAMANT middleware

platform, focusing on its software architecture and control flow. It also describes how

ADAMANT addresses the challenges of SCAAL applications presented in Section IV.2.2.

IV.2.4.1 Architecture of ADAMANT

Figure 82 shows ADAMANT’s control flow and logical architecture. This section de-

tails the architecture of ADAMANT while the following Section IV.2.4.2 describes how

autonomic adaptation is manifested in ADAMANT in each one of the steps illustrated in

Figure 82.

ADAMANT integrates and enhances the following technologies and innovative tech-

niques to provide autonomic adaptation of DRE pub/sub middleware in dynamic environ-

ments and address the challenges listed in the motivating example section:

• The OMG Data Distribution Service (DDS) is standards-based QoS-enabled pub/sub

middleware for exchanging data in event-based DRE systems. It provides a global data

store in which publishers and subscribers write and read data, respectively. ADAMANT

162

Figure 82: ADAMANT Architecture and Control Flow for SCAAL Applications

163

uses DDS to provide the infrastructure for disseminating environment monitoring infor-

mation needed to determine accurate adaptations, as well as normal application data, such

as the health monitoring information in SCAAL applications. DDS enables applications

to communicate by publishing information they have and subscribing to information they

need in real time.

DDS enables flexibility and modular structure by decoupling; location, via anonymous

publish/subscribe; redundancy, by allowing any numbers of readers and writers; time, by

providing asynchronous, time-independent data distribution; and platform, by supporting

a platform-independent model that can be mapped to different languages (e.g., Java and

C++).

The DDS architecture consists of two layers: (1) the datacentric pub/sub (DCPS) layer

that provides APIs to exchange topic data based on chosen QoS policies and (2) the data

local reconstruction layer (DLRL) that makes topic data appear local. Our work focuses on

DCPS since it is more broadly supported than the DLRL. Moreover, DCPS provides finer

grained control of QoS.

The DCPS entities in DDS include topics, which describe the type of data to write

or read; data readers, which subscribe to the values or instances of particular topics; and

data writers, which publish values or instances for particular topics. Moreover, publishers

manage groups of data writers and subscribers manage groups of data readers. Various

properties of these entities can be configured using combinations of the 22 DDS QoS poli-

cies shown in Table 2. DDS’ rich support for QoS can be applied for application data

and for the environment monitoring topic that ADAMANT provides (e.g., prioritization for

transporting and managing the operating environment updates as well as the application

data).

• TIML provides a novel integration of multiple supervised machine learning tech-

niques as a knowledge base. This knowledge base, in turn, provides fast and predictable

adaptation guidance in dynamic environments. TIML uses machine learning techniques

164

to manage the inherent complexity of providing the appropriate transport protocol recom-

mendation for a given operating environment. TIML utilizes perfect hashing [17] on the

mapping of environment configurations to transport protocols to provide constant-time de-

termination of which supervised machine learning technique to use for a given environment

configuration. In particular, TIML utilizes the GPERF [70] open-source implementation of

perfect hashing.

For our ADAMANT prototype TIML uses several supervised machine learning tech-

niques, including Artificial Neural Networks (ANNs) [85] to determine in a timely manner

the appropriate transport protocol for the QoS-enabled pub/sub middleware platform given

an environment configuration that is known a priori (i.e., used for training). It also uses

Support Vector Machines (SVMs) [73] to determine in a timely manner the appropriate

transport protocol for an environment configuration unknown until runtime (i.e., not used

for training).

An ANN is a supervised machine learning technique modeled on neuron interactions

in the human brain. As shown by Figure 46 in Section IV.1.4.3, an ANN has an input layer

for aspects of the operating environment (e.g., percent network loss and sending rate). An

output layer represents the solution generated based on the input. A hidden layer connects

the input and output layers. As the ANN is trained on inputs and correspondingly correct

outputs, it strengthens or weakens connections between layers to generalize based on inputs

and outputs.

Figure 46 also shows how an ANN can be configured statically in the number of hid-

den layers and the number of nodes in each layer that directly affects the processing time

complexity between the input of operating environment conditions and the output of an

appropriate transport protocol and settings. This static configuration structure supports

bounded response times.

SVMs are supervised learning methods used for classification and prediction. Given a

set of training examples where each example is denoted as belonging to a particular class

165

1

At
tr

ib
ut

e
1

Attribute 2

Key:
example in classification grouping A
example in classification grouping B
linear classifier C1
linear classifier C2

new example

Figure 83: Maximizing Grouping Differences in a Support Vector Machine

or grouping, an SVM builds a model that predicts into which grouping a new example

should be categorized. The SVM generates the boundaries between the different groupings

to maximize the differences between the groupings. This maximization helps to correctly

classify new examples that have not been used in training the SVM model using the heuris-

tic of locality (i.e., examples that belong in the same group should be fairly close to each

other in the classification space).

Figure 83 illustrates conceptually how an SVM makes its determination for classifica-

tion boundaries. The examples in grouping A are represented by solid circles while the

examples in grouping B are represented by hollow circles. For simplicity and clarity, the

examples are classified using two attributes. The dashed line C1 and the solid line C2

represent two different classifiers. An SVM produces a classifier similar to C2 since its

margin between the two classification groupings is larger than with C1. A new example

(i.e., a solid grey circle) that needs to be classified using the SVM belongs in classification

grouping A. The example is close to the line C1 but on the opposite side of the rest of

the examples for that grouping and is therefore incorrectly classified whereas with C2 the

new example would be correctly classified. An SVM maximizes the margin of differences

between classification groupings.

• ADAMANT uses the ANT framework to select the transport protocol(s) that best

166

address multiple QoS concerns for a given operating environment. ANT provides in-

frastructure for composing and configuring transport protocols via base modules, such

as the IPMulticastModule that supports sending out and receiving data using IP Multi-

cast. These modules can flexibly and dynamically be connected together by publishing

and subscribing to event types (e.g., SEND_PACKET_EVENT, GOT_PACKET_EVENT,

SEND_NAK_EVENT, and GOT_NAK_EVENT).

ANT supports transport protocols that balance the need for reliability and low latency.

For example, Ricochet enables trade-offs between latency and reliability to support middle-

ware for DRE pub/sub systems involved with dissemination of multimedia data. The ANT

framework allows ADAMANT to change and reconfigure transport protocols (including

protocol parameters) while an application is running. The time complexity for ANT to

reconfigure and transition between protocols is bounded as needed for DRE systems.

• A QoS monitoring topic defines the data for environment information relevant to

adapting transport protocols. ADAMANT leverages DDS to provide this topic dedicated

to describing the operating environment of an application. This environment information is

used to determine appropriate adaptation of the QoS mechanisms in ADAMANT, namely,

the transport protocols. Moreover, since ADAMANT leverages DDS to create the environ-

ment monitoring topic, DDS QoS policies can also be applied to the dissemination of this

topic data providing fine-grained control as to when and how environment configuration

updates are propagated in the SCAAL application (e.g., applying DDS’ transport priority

QoS policy to health monitoring data to ensure the data has priority over other data on the

network).

• Autonomic control manages the adaptation process. ADAMANT provides an auto-

nomic controller that responds to changes in the operating environment. Whenever envi-

ronment changes are communicated via ADAMANT’s environment monitoring topic, the

167

controller passes the changes to TIML to determine the appropriate response. The con-

troller then passes TIML’s recommended adaptations to the ANT framework to change the

transport protocols while the system is running.

IV.2.4.2 Control Flow of ADAMANT

ADAMANT supports the Monitor, Analyze, Plan, Execute - Knowledge approach [50],

which abstracts the management architecture into the four needed functions of collecting

data, analyzing the data, creating a plan of action based on the updated data and correspond-

ing analysis, and executing the plan. ADAMANT components are physically distributed

across the computing platforms in the system (e.g., each computing platform has its own

identical instantiation of TIML and the autonomic adaptation controller). Since environ-

ment configuration changes are published to all subscribers via DDS, all local ADAMANT

components receive the same updates. Since components are deterministic, they gener-

ate the same transport protocol to use and initiate the same protocol modifications. This

distributed architecture enables scalability in the number of publishers, subscribers, and

computing platforms.

The first step in ADAMANT’s control flow (shown as Step 1 in Figure 82) is receiving

changes to the environment configuration. ADAMANT creates and supports an environ-

ment monitoring topic to which various application data senders and receivers can publish

and subscribe, respectively. For example, the heart monitoring portion of the SCAAL ap-

plication can publish changes to the environment monitor topic when it adjusts its data

sending rate based on requests from health workers subscribing to the data. Likewise, data

subscribers can query the environment monitor topic for the periodic sending rate of the

data and then calculate the percent loss in the network by dividing the expected number of

data updates for a given period with the actual number of updates received.

Figure 84 shows the data described in environment monitor topic. The data is de-

scribed in the platform-independent interface definition language (IDL) as defined by the

168

Figure 84: Environment Monitor Topic

OMG. Our prototype is interested in the following aspects of the environment information

since the data values for these aspects are used to determine the most appropriate transport

protocol:

• receiver_count: the number of receivers currently receiving application data (e.g., 5

=> 5 receivers receiving application data).

• percent_network_loss: the percent packet loss in the network (e.g., 3 => 3% loss of

packets in the network).

• send_rate_in_Hz: the data sending rate for the heart monitoring data in Hz (e.g., 50

=> sending rate of 50 Hz).

• cpu_speed: the speed of the CPU being used in MHz (e.g., “2992.883” => CPU speed

of 2.992883 GHz). For clarity and simplicity, the ADAMANT prototype assumes common

CPU speeds for all machines used.

• RAM: the amount of random access memory available on the machines being used in

bytes (e.g., “2062172” => 2 GB of RAM). Again, for clarity and simplicity, the ADAMANT

prototype assumes common amount of RAM for all machines used.

• network_speed: the speed of the network being used in Mb/sec (e.g., “1000” => 1

Gb/sec network).

• dds_impl: the DDS implementation being used (e.g., “OpenSplice” indicates the use

of PrismTech’s OpenSplice DDS implementation). For simplicity as a proof of concept,

169

the ADAMANT prototype only currently supports the OpenSplice DDS implementation,

though support for the OpenDDS or RTI DDS implementations can easily be added.

• composite_metric: the composite metric that is of interest to the application (e.g.,

“Re-Late2”). The ReLate2 family of composite metrics quantitatively evaluates multiple

QoS properties. For example, the ReLate2 metric combines data reliability and latency to

produce a single value used for objective comparison. Other composite metrics include

ReLate2Jit that quantitatively evaluates data reliability, latency, and jitter; ReLate2Net that

evaluates reliability, latency, and network bandwidth usage; and ReLate2Burst that evalu-

ates reliability, latency, and network data burstiness [48]. ADAMANT supports all these

composite metrics while easing the incorporation of additional composite metrics.

Once updates have been made to the environment monitor topic, the autonomic con-

troller receives the updated environment configuration (outlined as Step 2 in Figure 82).

The autonomic controller then compares the new and previous environment configurations.

If the configurations are different the controller invokes TIML to determine which transport

protocol and parameter values best support the desired QoS. If the configurations do not

differ the autonomic controller simply returns since no adaptation is needed.

Step 3 in Figure 82 shows how TIML receives the new environment configuration and

determines if the configuration is one on which the machine learning techniques have been

trained. If the machine learning techniques have previously been trained offline using the

configuration TIML uses an ANN to determine the appropriate transport protocol and pa-

rameter settings. Since we overfitted the ANN to the training data, the ANN will produce

100% accurate determinations for these known environment configurations.

If machine learning techniques have not previously been trained on an environment

configuration, however, TIML uses an SVM to determine the appropriate transport proto-

col and parameter settings. Our work on evaluating machine learning techniques in Sec-

tion IV.2.3.2 shows how an SVM will provide higher accuracy for determining the appro-

priate protocol and parameters than an ANN when the input environment configuration

170

was not used during offline training (i.e., unknown until runtime). The overall accuracy of

ADAMANT is enhanced by combining the 100% accuracy of an overfitted ANN for envi-

ronment configurations known a priori with the higher accuracy of an SVM for environ-

ment configurations unknown until runtime. In particular, we see an increase in accuracy of

8.6% combining both an ANN and an SVM, compared to only using an ANN (i.e., 77.69%

average ANN accuracy for environments unknown until runtime compared to 86.29% for

the SVM = 8.6% increase).

Both ANNs and SVM provide constant-time complexity for determining protocols and

parameters. The mechanism used to determine if the environment configuration have been

known a priori must therefore also provide constant-time complexity to maintain this time

complexity for the entire protocol optimization process. TIML utilizes perfect hashing

for the environment configurations to determine in constant time whether or not an envi-

ronment configuration is known a priori (i.e., used for training) or unknown until runtime.

TIML provides the environment configurations on which the ANN has been trained as keys

to the perfect hashing to map to the corresponding scaled environment configuration data.

If the key is found via the perfect hash then TIML knows that the environment configura-

tion has been seen before in offline training and uses the ANN since it will provide perfect

accuracy. If the key is not mapped, then TIML will use the SVM since it provides the

highest accuracy for environment configurations that are unknown until runtime.

Once the appropriate transport protocol has been decided, TIML returns this result to

the autonomic controller (Step 4 in Figure 82). The controller then compares the recom-

mended transport protocol and protocol parameters with the current transport protocol and

protocol parameters. If there is no difference, the controller need not take any further ac-

tion. If there are differences between the current protocol and the recommended protocol,

the controller passes the new protocol settings to ANT to make the needed adaptation.

Our ADAMANT prototype uses the OpenSplice DDS implementation, which uses a

networking daemon on each machine to send and receive data across machine boundaries.

171

The ANT framework resides in the networking daemon since the ANT protocols are used to

disseminate the application data across the network. The autonomic controller resides in the

application executable since it needs to respond to updates in the environment as facilitated

by the environment monitor topic. For a single computer platform, OpenSplice uses shared

memory to communicate between the SCAAL application executable and the OpenSplice

daemon. Since the daemon runs as a separate process from the application executable,

some form of interprocess communication (IPC) is needed to have the controller inform

ANT of the needed protocol changes.

The form of IPC used when communicating between the autonomic controller and ANT

can vary depending upon the needs of the application and the IPC mechanisms supported

by the operating system. In our ADAMANT prototype the autonomic controller residing in

the application executable sends a signal to ANT residing in the networking daemon. The

OpenSplice networking daemon is enhanced to include a signal handler. In particular, when

the controller determines the transport protocol must be modified it sends a SIGHUP signal

to the networking daemon. When the networking daemon processes the SIGHUP signal,

the daemon invokes ANT to reconfigure. ADAMANT utilizes the Component Configurator

pattern [92] for ANT to reconfigure itself by constructing the appropriate configuration file

and then signaling ANT to reconfigure.

The need for IPC depends upon the DDS implementation. For example, rather than us-

ing a network daemon, the OpenDDS DDS implementation supports direct point-to-point

network connectivity between application executables residing on different machines. For

ADAMANT using OpenDDS, intraprocess communication would be needed rather than

IPC. ADAMANT would set a variable accessible across threads using appropriate lock-

ing mechanisms. ANT would then wait until the variable was set (e.g., using a condition

variable) and reconfigure the transport protocol as needed.

After ANT receives the signal to reconfigure (Step 5 in Figure 82) it determines whether

to modify an existing transport protocol or switch to a new protocol. ANT keeps track of

172

the current transport protocol being used for comparison. If the current protocol must be

modified then ANT invokes the appropriate methods on the relevant protocol modules to

change the protocol parameters. If a new protocol must be used ANT first disables the

existing protocol and enables the new protocol.

The modules in the ANT framework use pub/sub communication to consume and sup-

ply events of interest. This approach allows for flexibility in the way modules are connected

together to create the functionality needed for a particular transport protocol. This approach

also allows the enabling/disabling of transport protocols simply by registering and unreg-

istering for particular events. ANT thus unregisters event interest for the modules involved

with the old protocol to disable the old protocol and registers event interest for the modules

involved with the new protocol to enable the new protocol.

IV.2.4.3 Addressing Challenges of SCAAL Applications

This section describes how ADAMANT addresses the challenges of SCAAL applica-

tions presented in Section IV.2.2.

Addressing Challenge 1: Managing interacting QoS requirements. ADAMANT

addresses the challenge of managing interacting QoS requirements by using the transport

protocols provided by the ANT framework. ANT supports transport protocols that address

interacting QoS requirements. In particular, it provides the NAKcast and Ricochet trans-

port protocols that balance the contentious QoS requirements of data reliability and low

latency. As shown in previous work [45], these protocols ameliorate the loss of network

data packets while imposing low latency overhead. In particular, the NAKcast protocol

uses negative acknowledgments (a.k.a. NAKs) that the receiver sends to the sender for no-

tification of lost data packets. NAKcast provides a tunable timeout parameter to determine

when NAKs should be sent. The Ricochet protocol supports error correction information

that the receivers send to each other to recover from lost data packets. Ricochet provides

a tunable parameter to determine how many data packets need to be received before error

173

correction is sent out. Ricochet also provides a tunable parameter to determine how many

other receivers receive the error correction information from a single receiver.

Addressing Challenge 2: Accurate adaptation. ADAMANT addresses the challenge

of accurate adaptation in several ways. First, it leverages the use of DDS to provide the

infrastructure to disseminate the environment monitoring information needed to determine

an accurate adaptation. Second, it uses TIML to provide an integration of multiple su-

pervised machine learning techniques to provide high accuracy for both operating envi-

ronments known a priori and operating environments unknown until runtime. TIML sup-

ports accurate adaptation guidance in dynamic environments by using the most accurate

machine learning technique for operating environments known a priori (i.e., ANNs) inte-

grated with the most accurate technique for operating environments unknown until runtime

(i.e., SVMs). Third, ADAMANT’s autonomic controller ensures accuracy by managing the

adaptation process of receiving environment updates, delegating this information to TIML

to provide guidance, and passing the recommended transitions to ANT.

Addressing Challenge 3: Timely adaptation. ADAMANT addresses the challenge

of timely adaptation in several ways. First, it uses DDS to disseminate the environment

monitoring information needed to determine an accurate adaptation. Second, since the

monitoring information is realized as a DDS topic, the DDS QoS policies can be applied

to the topic and the applicable entities involved with the topic (e.g., data readers, data

writers). For example, the transport priority QoS policy can be applied to the environment

monitoring data to ensure the environment updates have priority over other data on the

network.

ADAMANT supports constant-time runtime transition and reconfiguration of trans-

port protocols used as the QoS mechanisms to provide needed QoS, as discussed in Sec-

tion IV.2.5. In particular, TIML utilizes an ANN to provide adaptation guidance in constant

time for operating environments known a priori. TIML uses an SVM to guide adaptation

in constant time for operating environments unknown until runtime. Moreover, TIML uses

174

constant-time perfect hashing to integrate the machine learning techniques and determine

the appropriate technique to use.

Addressing Challenge 4: Reducing development complexity. ADAMANT addresses

the challenge of reducing development complexity by using machine learning techniques

that manage the inherent complexity of providing the appropriate transport protocol recom-

mendation for a given operating environment. The machine learning techniques can also

be used directly in the ADAMANT implementation. These techniques thus reduce devel-

opment complexity by eliminating the accidental complexity of transforming the mapping

of environments to protocols from design to implementation [48]. Moreover, ADAMANT

provides an environment monitoring topic that disseminates and handles the environment

information updates relevant to adapting the QoS mechanisms of transport protocols.

IV.2.5 Experimental Results and Analysis

This section describes the setup, design, and analysis of results from experiments we

conducted to identify the need for autonomic adaptation of transport protocols and evaluate

the timeliness of the adaptations in dynamic environments representative of the SCAAL ap-

plications presented in Section IV.2.2. These results quantify (1) the effect of changes in the

operating environment on the QoS provided by ADAMANT as measured by the composite

QoS metrics defined below, (2) the timeliness of TIML’s determination of an appropriate

transport protocol, and (3) the timeliness of ADAMANT’s adaptation of transport protocols

via the ANT framework.

IV.2.5.1 Experimental Setup

We conducted our experiments using the Emulab testbed (www.emulab.net) at the Uni-

versity of Utah. Emulab allows the configuration of various types of computing and net-

working platforms. For our experiments highlighting the need for adaptation, we held the

175

computing and networking platform constant (i.e., 3 GHz CPU, 1 Gbps LAN). We used the

Redhat Fedora Core release 6 OS with realtime patches across all the computing nodes.

The points of variability for the experiments were indicative of dynamic environments.

In particular, we varied the number of data receivers, the percent loss in the network, and

the data sending rate as outlined in Section IV.2.4.2. By adjusting these variables we were

able to highlight scenarios where changes in the environment mandated changes to the

transport protocols being used to provide the highest level of QoS for the multiple QoS

properties involved.

IV.2.5.2 Composite QoS Metrics for Reliability and Timeliness

Our previous work on QoS-enabled pub/sub middleware performance [45, 48] showed

that some transport protocols provide better reliability (as measured by the number of net-

work packets received divided by the number sent) and latency for particular environments

while other protocols are better for other environments. We therefore developed several

composite QoS metrics to quantitatively evaluate multiple QoS aspects simultaneously.

These composite metrics provide a uniform and objective evaluation of ADAMANT in

dynamic environments. Our family of composite metrics are based on the QoS concerns

of reliability and average latency and optionally include the QoS aspects of (1) jitter (i.e.,

standard deviation of the latency of network packets), (2) network bandwidth usage, and

(3) burstiness (i.e., the standard deviation of average bandwidth usage per second of time).

In particular, we defined the ReLate2 family of composite QoS metrics. The ReLate2

metric is defined by the product of the average data packet latency and the percent loss

that the transport protocol provides + 1 (to account for 0% loss) which implies an order

of magnitude increase for 9% loss. Based on previous research [7, 8, 78], this adjustment

is relevant for multimedia data such as the high-resolution 3-D health data in our SCAAL

example. For example, if for a given protocol the average packet latency is 1,000 µs and

the percent loss is 0 (i.e., no packets lost) then the ReLate2 value is 1,000. Having 9% and

176

Figure 85: Effect of Changing Data Sending Rate

19% loss with the same average latency produces the ReLate2 values of 10,000 and 20,000,

respectively. ReLate2Jit is a product of the ReLate2 value and the jitter of the data packets

to quantify the multiple QoS concerns of jitter, reliability, and average latency.

IV.2.5.3 Experiments Highlighting Need for Autonomic Adaptation

We now present the results of experiments for autonomic adaptation of the QoS mech-

anisms of transport protocols. We apply the composite metrics defined in the previous

section to several different operating environments to highlight how differences in the en-

vironment trigger differences in the transport protocols used to support QoS. Figure 85

shows a change in the sending rate corresponds to a change in the protocol that provides

the best QoS.

In particular, for an operating environment using the OpenSplice DDS implementation,

177

machines with 3 GHz CPUs, 5 data receivers, and 5% network packet loss, we see that for

a data sending rate of 25Hz, the NAKcast protocol (with a timeout parameter to determine

NAK transmissions of 0.001 seconds) performs better (i.e., has lower ReLate2Jit values)

than Ricochet (with an R value of 4 and a C value of 3).

Ricochet’s R value determines how many data packets are received before error cor-

rection data is sent (e.g., 4 packets received before one error correction packet is sent) and

Ricochet’s C value determines how many other receivers this receiver sends error correct

data (e.g., 3 receivers receive error correction data from any one receiver). When the send-

ing rate is changed to 50Hz, however, Ricochet performs better. Finally, when the sending

rate is further increased to 100Hz NAKcast again performs better (i.e., has lower ReLate2Jit

values).

IV.2.5.4 Timeliness of TIML

We next describe the timeliness of TIML as it decides the most appropriate transport

protocol for a given environment configuration. As described in Challenge 2 (timely adap-

tation) in Section IV.2.2, the personal datacenter for the SCAAL application needs to have

timely adaptations. We now provide timing information based on the responsiveness of

TIML when queried for an optimal transport protocol. We used the Emulab configuration

as described in Section IV.2.5.1. A high resolution timestamp was taken right before and

right after each call was made to TIML.

TIML combines and integrates the use of ANN and SVM machine learning techniques.

These techniques present different response times (although the times for each technique

remain constant). We therefore conducted experiments with operating environment con-

figurations that would use the ANN (i.e., the configurations that were known a priori) and

configurations that would use the SVM (i.e., the configurations that were unknown until

runtime). Since these techniques provide constant-time performance, their compute times

178

1

Figure 86: Integrated Supervised Machine Learning Response Times

are invariant to the specific environment configuration, so we did not run timing test for all

different environment configurations.

Figure 86 presents the response times for TIML in ADAMANT for 1,000 iterations

when TIML selects and uses either an ANN or the SVM. The figure highlights the times

used within the integrated machine learning techniques when the environment configura-

tion is (1) known a priori and thus triggers the use of an ANN and (2) unknown until

runtime triggering the use of an SVM. On average, TIML, when using the ANN, presents

the lower response time of 11.161 µs while TIML using the SVM presents an average re-

sponse time of 11.996 µs. The bound on TIML is then the maximum between the two (i.e.,

11.996 µs). The figure also appears to show that TIML using the ANN has more jitter than

TIML using the SVM. The jitter is within the resolution of the timers (i.e., 1 µs) used for

179

collecting the times, however, since the times only vary by +/- 1 µs from the median values

(i.e., 11 µs for the TIML when the ANN is used and 12 µs when the SVM is used).

IV.2.5.5 Timeliness of ANT Reconfiguration

We now describe the experiments we conducted to show the timeliness of the ANT

framework as it transitions from one transport protocol to another. As described in Chal-

lenge 2 (timely adaptation)in Section IV.2.2, the personal datacenter for the SCAAL ap-

plication needs to have timely adaptations. In the previous section we presented timing

results for determining the appropriate transport protocol. In this section we provide timing

information on the reconfiguration of transport protocols supported in the ANT framework

portion of ADAMANT. We used the same experimental environment as described in Sec-

tion IV.2.5.1. A high resolution timestamp was taken right before and right after each call

made to ANT to reconfigure transport protocols.

Figure 87 shows the times taken for transport protocol reconfiguration across 1,000

iterations. The figure includes times for three different scenarios. Two of the scenarios are

most relevant for the transport protocols that best handle reliability and latency (i.e., the

NAKcast and Ricochet protocols). The third scenario presents a baseline when checks are

performed to determine if a protocol transition is needed but no transition is needed.

The baseline times for no reconfiguration shows 0 µs taken to determine that no proto-

col reconfiguration is needed. Obviously, some time is taken to make the determination that

no reconfiguration is needed but this time is smaller than the resolution of the timestamps

(i.e., < 1 µs). These times provide an idea of the overhead required in making any protocol

reconfiguration.

The remaining two scenarios are when (1) the NAKcast protocol is running and a tran-

sition is made to the Ricochet protocol and (2) when the Ricochet protocol is running and

a transition is made to the NAKcast protocol. The times for these transitions should be

constant since, when reconfiguring, ANT registers a constant number of events and event

180

1

Figure 87: Transport Protocol Reconfiguration Times within ANT

handlers for the new protocol and unregisters a constant number of events and event han-

dlers for the old protocol. The number of event and event handlers is known a priori at

development time. Registering and unregistering events and event handlers correspond to

inserting and removing items from a queue which are constant time operations.

In particular, for the NAKcast and Ricochet protocols, we know a priori the number

and kinds of events and event handlers that each protocol uses. ADAMANT first unreg-

isters all the relevant events and event handlers for an old protocol and then registers all

the relevant events and event handlers for the new protocol. Since ADAMANT controls

how and in what order events and event handlers are registered and unregistered in ANT,

managing the lists for these events and event handlers can be done in constant time. The

Ricochet to NAKcast transition consistently takes 4 µs while the NAKcast to Ricochet

transition consistently takes 5 µs. For the ADAMANT prototype using the OpenSplice

DDS implementation, these transitions are happening within the single network daemon

181

per computing platform. As noted in Section IV.2.4.2, ANT’s transitions are deterministic

with the DDS middleware ensuring that all the computing platform see the same updates

and therefore make the same transitions. These empirical transition times verify that ANT

protocol transitions are made in a constant amount of time.

IV.2.5.6 Summary of Results

The results of experiments presented in this section show that there are scenarios where

a change in the operating environment requires a change in the QoS mechanisms (e.g.,

transport protocols) that ADAMANT is utilizing. Based on this information, the experi-

ments show that ADAMANT delivers constant-time decision making regarding the appro-

priate the transport protocol to use as well as constant-time transitioning from one transport

protocol to another. For QoS-enabled DRE pub/sub applications ADAMANT provides the

constant-time complexity needed for detecting environment changes, determining the ap-

propriate course of action, and executing that plan.

IV.2.6 Lessons Learned

Developers of systems that utilize DRE pub/sub middleware face a number of chal-

lenges when developing and deploying their systems in dynamic environments. To ad-

dress these challenges, we have developed ADAMANT to integrate and enhance (1) QoS-

enabled pub/sub middleware, (2) an environment monitoring topic, (3) a flexible transport

protocols, (4) a novel integration of supervised machine learning techniques, and (5) an au-

tonomic controller to provide fast and predictable reconfiguration of middleware and trans-

port protocols for enterprise DRE pub/sub systems. This section empirically shows how

ADAMANT can autonomically adapt to changing conditions in operating environments to

support QoS in a fast, constant-time, and accurate manner.

The following is a summary of lessons learned from our experience evaluating ADAMANT’s

autonomic adaptation performance in various operating environments:

182

• Several trade-offs exist when using machine learning in dynamic environments.

There are several trade-offs between having machine learning that (1) is completely ac-

curate for environments known at training time, (2) highly accurate for environments un-

known until runtime, (3) can accommodate new data on which to train as the system is

running, and (4) can expend the appropriate amount of time interactively training machine

learning tools while the system is running. Since overfitting an ANN to environment con-

figurations known a priori provides perfect accuracy and low response times, it is prefer-

able to incorporate new operating environment configurations unknown until runtime into

the ANN training set while the system is running. A low-priority thread could be used to

constantly retrain the ANN and swap in the updated ANN at appropriate times. While this

approach would incorporate new environment configurations, our future work will address

trade-offs between when to migrate to using the updated ANN and how to determine the

priority of the low-priority training thread so that it will not be starved.

• Preparing environment information for use in machine learning tools is time

consuming and tedious. Data should be scaled since scaling the data typically produces

the best results. The scaling factors used on the data for training the machine learning tools

should be applied to the data collected from the environment during runtime.

• To increase accuracy of determining appropriate responses to changes in the

operating environment, multiple machine learning approaches can be integrated to

handle configurations known a priori and environment configurations not known un-

til runtime. Some machine learning techniques provide higher accuracy than others for

operating environments known a priori. In particular, ANNs can be overfitted to the data to

provide 100% accuracy for these kinds of environments. Other techniques provide higher

accuracy for environments unknown until runtime. An integration of multiple machine

learning techniques can provide higher overall accuracy than can be provided by any single

machine learning technique.

If timeliness is a concern, then when integrating multiple techniques, care must be

183

taken to ensure that the integration itself does not change the time complexity character-

istics. ADAMANT incorporates TIML to increase its overall accuracy for both operating

environments known a priori and environments unknown until runtime while also ensuring

that the integration itself maintains the constant-time complexity needed by DRE systems.

• Transport protocols need to be selectively used based on the QoS specified. While

several DDS implementations provide pluggable transport frameworks to leverage stan-

dard and custom transport protocols (e.g., OpenDDS and OpenSplice), the properties of

the transport protocols need to be dictated by the QoS specified by the application. For

example, in our work we would like to specify that the environment monitoring topic in-

formation be sent and received reliably. The DDS implementations, however, provide no

infrastructure for mapping between the transport protocols (e.g., Ricochet, NAKcast) used

and the QoS properties specified (e.g., reliable data communication, best-effort).

We are researching the development of a transport protocol taxonomy that a QoS-

enabled middleware would be able to leverage to determine which protocol to use based

on QoS specified at the application level using the DDS QoS policies. The properties that

transport protocols provide can be used to classify the protocols with respect to QoS. The

middleware can then select the most appropriate transport protocol based on the QoS prop-

erties needed. The middleware can also select different transport protocols for different

QoS properties.

• QoS-enabled middleware provides a fairly coarse-grained approach to relia-

bility. Utilizing transport protocols such as Ricochet and NAKcast allows QoS-enabled

middleware to provide finer-grained reliability as well as considering latency. However,

reliability is typically only supported as the dichotomy of best-effort or reliable with no

consideration of highly probabilistic reliability. Moreover, the semantics of combining

multiple QoS aspects (e.g., reliability and latency) are not clearly defined at the middle-

ware level. Transport protocols such as Ricochet and NAKcast capture the finer-grained

reliability property of high probability of reliability but not perfect reliability

184

• High-level metrics are useful to quickly differentiate the performance of various

configurations. The use of metrics—even coarse-grained metrics—helps explore a large

configuration space. Part of the impetus in developing composite metrics (e.g., ReLate and

ReLate2) is to ameliorate navigating a configuration space with several points of variability.

IV.3 Related Research

This section compares our work on autonomic adaptation of QoS-enabled DRE pub/sub

middleware in flexible and dynamic environments with related R&D efforts.

Specialized embedded middleware. Bellavista et al. [13] present their work on em-

bedded middleware called Mobile agent-based Ubiquitous multimedia Middleware (MUM).

MUM has been developed to handle the complexities of wireless hand-off management for

wireless devices moving among different points of attachment to the Internet. In this sense,

MUM presents adaptation functionality to an application as it moves through its environ-

ments. In contrast, our work on ADAMANT focuses on adaptively configuring embedded

middleware based on the QoS of the application and the resources presented in the envi-

ronment.

Boonma et al. [15] have developed a DDS implementation called TinyDDS which is

specialized for the demands of wireless sensor networks (WSNs). TinyDDS defines a sub-

set of DDS interfaces for simplicity and efficiency within the domain of WSNs. TinyDDS

includes a pluggable framework for non-functional properties (e.g., event correlation and

filtering mechanisms, data aggregation functionality, power-efficient routing capability).

However, TinyDDS provides no support for adaptively configuring itself given different

resources provided by the environment as is the case with ADAMANT.

Support for adaptive middleware. The Mobility Support Service (MSS) [22] pro-

vides a software layer on top of pub/sub middleware to enable endhost mobility. The pur-

pose of MSS is to support the movement of clients between access points of a system using

pub/sub middleware. In this sense, MSS adapts the pub/sub middleware used in a mobile

185

environment. Mobile clients notify MSS when mobility starts and ends. MSS buffers mes-

sages and manages connections while the client moves to a different access point. MSS

is designed to support multiple pub/sub technologies (e.g., implementations of JMS) and

adapt to the technology-specific characteristics. Unlike ADAMANT, however, MSS does

not configure itself with respect to the available computing resources.

Ostermann et al. [83] present the ASKALON middleware for cloud environments that

is based on middleware for grid workflow application development but enhanced to lever-

age clouds. ASKALON provides an infrastructure that allows the execution of workflows

on conventional grid resources but that can adapt on-demand to supplement these resources

with additional cloud resources as needed. Whenever the ASKALON task scheduler deter-

mines that existing grid computing resources are fully utilized, the scheduler can optionally

include cloud resources to enhance the computing capability to execute a workflow more

quickly. In contrast to ADAMANT, however, ASKALON does not address the adaptive

configurability needs of enterprise DRE systems in elastic clouds.

Gridkit [37] is a middleware framework that supports reconfigurability of applications

dependent upon the condition of the environment and the functionality of registered com-

ponents. Gridkit focuses on grid applications which are highly heterogeneous in nature.

For example, these applications will run on many types of computing devices and across

different types of networks.

To register components, application developers use Gridkit’s API which is based on

binding contracts. Gridkit then uses the contract information along with a context engine

to determine which components to include in the application. The context engine takes

into account the context of the host machines (e.g., battery life, network connectivity). In

contrast to ADAMANT, however, Gridkit does not address timely adaptation, nor does it

focus on discovering and leveraging the elastic provisioning of cloud resources.

David and Ledoux have developed SAFRAN [28] to enable applications to become

186

context-aware themselves so that they can adapt to their contexts. SAFRAN provides re-

active adaptation policy infrastructure for components using an aspect-oriented approach.

SAFRAN follows the structure of a generic AOP system by supporting (1) a base program

which corresponds to a configuration of components, (2) point-cuts which are invoked in

response to internal events (e.g., invocations on interfaces) and external events (e.g., change

in system resources), (3) advices which define functionality to be executed for point-cuts,

and (4) adaptation which uses adaptation policies to link join points to advices.

The SAFRAN component framework, however, provides only development support for

maintaining specified QoS. The adaptive policies and component implementation are the

responsibility of the application developer. Moreover, SAFRAN does not address timely

configuration of components across the elastic resources of cloud computing. In contrast,

ADAMANT provides a middleware implementation that adapts to the cloud resources pre-

sented to it.

Machine learning in support of autonomic adaptation. Vienne and Sourrouille [103]

present the Dynamic Control of Behavior based on Learning (DCBL) middleware that in-

corporates reinforcement machine learning in support of autonomic control for QoS man-

agement. Reinforcement machine learning not only allows DCBL to handle unexpected

changes but also reduces the overall system knowledge required by the system develop-

ers. System developers provide an XML description of the system, which DCBL then uses

together with an internal representation of the managed system to select appropriate QoS

dynamically.

In contrast to ADAMANT, however, DCBL focuses only on a single computer, rather

than scalable DRE pub/sub systems. Moreover, reinforcement learning used by DCBL

can have non-constant and even unbounded time complexities unlike ADAMANT which

provides fast and predictable decision making. DCBL also requires developers to specify in

an XML file the selection of operating modes given a QoS level along with execution paths,

which increases accidental development complexity whereas ADAMANT ameliorates this

187

complexity by having an artificial neural network manage the appropriate operating modes

for a given environment.

RAC [19] uses reinforcement learning for the configuration of Web services. RAC

autonomically configures services via performance parameter settings to change the ser-

vices’ workload and also to change the virtual machine configurations. The reinforcement

learning component of RAC is enhanced with an additional runtime initialization period at

system startup.

Reinforcement learning explores the possible solution space to determine generalized

solutions of the negative and positive reinforcements given. Due to RAC’s use of reinforce-

ment learning, its determination of an appropriate response is unbounded due to online ex-

ploration of the solution space and modification of decisions while the system is running.

In contrast, ADAMANT uses multiple supervised machine learning techniques to provide

fast, predictable complexity decision making and high accuracy.

Tock et al [100] utilize machine learning for data dissemination in their work on Multi-

cast Mapping (MCM). MCM hierarchically clusters data flows so that multiple topics map

to a single session and multiple sessions are mapped to a single reliable multicast group.

MCM manages the scarce availability of multicast addresses in large-scale systems and

uses machine learning for adaptation as user interest and message rates change during the

day. MCM is designed only to address the scarce resource of IP multicast addresses in

large-scale systems, however, rather than timely adaptation based on available resources as

done with ADAMANT.

Infrastructure for autonomic computing. Grace et al. [38] describe an architecture

metamodel for adapting components that implement coordination for reflective middleware

distributed across peer devices. This work also investigates supporting reconfiguration

types in various environmental conditions. The proposed architecture metamodel, however,

only provides proposed infrastructure for autonomic adaptation and reconfiguration and

does not directly provide an adaptation implementation as ADAMANT does.

188

Valetto et al. [102] have developed network features in support of service awareness to

enable autonomic behavior. Their work targets communication services within a Session

Initiation Protocol (SIP) enabled network to communicate monitoring, deployment, and

advertising information. As an autonomic computing infrastructure, however, this work

does not directly provide an implementation unlike ADAMANT.

Autonomic adaption of service level agreements. Herssens et al. [42] present work

centering around autonomically adapting service level agreements (SLAs) when the con-

text of the specified service changes. This work acknowledges that both offered and the

requested QoS for Web services might vary over the course of the interaction and accord-

ingly modifies the SLA between the client and the server as appropriate. However, this

work does not address the timeliness concerns that are addressed in ADAMANT.

Autonomic adaption of networks. The Autonomic Real-time Multicast Distribution

System (ARMDS) [18] is a framework that focuses on decreasing excessive variance in ser-

vice quality for multicast data across the Internet. The framework supports the autonomic

adaptation of the network nodes that form the multicast graph to enhance the consistency of

service delivery. The framework includes (1) high level descriptions of policies and objec-

tives, (2) a multicast topology management protocol supported by network nodes, (3) mea-

surement and monitoring infrastructure, and (4) a control component that autonomously

manipulates the protocol and infrastructure to reduce variance. While ARMDS provides

timely adaptation its focus is at the level of the network itself rather than on the higher level

abstractions presented by QoS-enabled pub/sub middleware.

189

CHAPTER V

CONCLUDING REMARKS

In this thesis we initially presented the Distributed QoS Modeling Language (DQML),

which is a domain specific modeling language that provides design-time QoS configuration

management. Specifically, DQML (1) allows developers to model desired entities and asso-

ciated QoS policies for pub/sub DRE middleware, (2) reduces the accidental complexity of

QoS variability, (3) checks the semantic compatibility of the modeled QoS configuration,

and (4) and automatically generates implementation artifacts for a validated configuration

model.

We then described FLEXible Middleware And Transports (FLEXMAT), which is an

evaluation framework for transport protocols as QoS mechanisms for QoS-enabled pub/sub

middleware. FLEXMAT integrates and enhances (1) QoS-enabled pub/sub middleware

and (2) a flexible transport protocol framework. FLEXMAT utilizes the ReLate2 family

of composite QoS metrics we developed to evaluate multiple QoS concerns in providing

empirical evaluations and analysis.

Finally, we presented ADAPtive Middleware And Network Transports (ADAMANT),

which is a software platform to support QoS of pub/sub DRE systems in flexible and

dynamic operating environments. ADAMANT combines and enhances (1) QoS-enabled

pub/sub middleware, (2) a flexible network transport framework, (3) QoS monitoring in-

frastructure, (4) machine learning techniques, and (5) a controller to manage the monitor-

ing and adaptation. Moreover, ADAMANT is intended (1) to provide timely and bounded

adaptation as is needed for pub/sub DRE systems and (2) robust response as is needed for

DRE systems operating in flexible and dynamic environments.

Table 15 presents the summary of research contributions and is followed by a list related

research publications.

190

Table 15: Summary of Research Contributions

Category Contributions

Correct QoS Design DQML: design and implementation of a domain
specific modeling tool that (1) manages QoS
variability complexity, (2) checks the semantic QoS
compatibility, and (4) and automatically generates
implementation artifacts for a validated QoS
configuration model.

Quantitative Evaluation of
Multiple QoS Concerns

ReLate2 Metrics: a family of metrics that combines
multiple QoS concerns to provide quantitative
evaluation of (1) reliability, (2) average latency, (3)
jitter, (4) network bandwidth usage, and (5)
network packet burstiness.

Evaluation of QoS Mechanisms FLEXMAT: QoS mechanism evaluation techniques
integrating (1) pub/sub middleware, (2) a flexible
transport framework, (3) composite QoS metrics,
and (4) empirical evaluations and analysis.

Autonomic Adaptation for Qos ADAMANT: autonomic configuration of
QoS-enabled pub/sub middleware to support QoS
in flexible computing environments (e.g., cloud
computing infrastructure) and autonomic
adaptation to support QoS in dynamic operating
environments. ADAMANT provides this support
via (1) QoS-enabled pub/sub middleware, (2) a
flexible network transport framework, (3) QoS
monitoring infrastructure, (4) machine learning
techniques, and (5) a controller to manage the
monitoring and adaptation.

191

Summary of Publications and Presentations

Research on DQML, FLEXMAT, ReLate2 metrics, and ADAMANT has led to the

following referred journal, conference, book chapter, and workshop publications.

Journal Publications

1. Joe Hoffert, Daniel Mack, & Douglas Schmidt, Integrating Machine Learning Tech-

niques to Adapt Protocols for QoS-enabled Distributed Real-time and Embedded

Publish/Subscribe Middleware, International Journal of Network Protocols and Al-

gorithms (NPA): Special Issue on Data Dissemination for Large-scale Complex Crit-

ical Infrastructures, Vol. 2, No. 3 (2010)

Conference Publications

1. Joe Hoffert & Douglas Schmidt, Adapting Distributed Real-time and Embedded Pub-

lish/Subscribe Middleware for Cloud-Computing Environments, ACM/IFIP/USENIX

11th International Middleware Conference (Middleware 2010), Bangalore, India,

November 2010

2. Joe Hoffert & Douglas Schmidt, Evaluating Supervised Machine Learning for Adapt-

ing Enterprise DRE Systems, 2010 International Symposium on Intelligence Infor-

mation Processing and Trusted Computing (IPTC 2010), Huanggang, China, October

2010

3. Joseph W. Hoffert, Douglas Schmidt, & Aniruddha Gokhale, Evaluating Transport

Protocols for Real-time Event Stream Processing Middleware and Applications, The

11th International Symposium on Distributed Objects, Middleware, and Applications

(DOA ’09), Algarve, Portugal, November 2009

192

4. Joseph W. Hoffert & Douglas Schmidt, Maintaining QoS for Publish/Subscribe Mid-

dleware in Dynamic Environments, The 3rd ACM International Conference on Dis-

tributed Event-Based Systems (DEBS ’09), Nashville, TN, USA, July 2009

5. Joseph W. Hoffert, Douglas Schmidt, & Aniruddha Gokhale, DQML: A Modeling

Language for Configuring Distributed Publish/Subscribe Quality of Service Policies,

The 10th International Symposium on Distributed Objects, Middleware, and Appli-

cations (DOA ’08), Monterrey, Mexico, November 2008

6. Joseph W. Hoffert, Douglas Schmidt, & Aniruddha Gokhale, A QoS Policy Con-

figuration Modeling Language for Publish/Subscribe Middleware Platforms, The

Inaugural International Conference on Distributed Event-Based Systems, Toronto,

Ontario, Canada, June 20-22, 2007.

7. Joseph W. Hoffert, Shanshan Jiang, & Douglas C. Schmidt, A Taxonomy of Discovery

Services and Gap Analysis for Ultra-Large Scale Systems, 2007 ACM Southeast

Conference, Winston-Salem, North Carolina, USA, March 23 - 24, 2007.

Book Chapters

1. Joe Hoffert, Douglas Schmidt, & Aniruddha Gokhale, Productivity Analysis of the

Distributed QoS Modeling Language, in Model-Driven Domain Analysis & Software

Development: Architectures & Functions. Ed. Dr. Janis Osis & Dr. Erika Asnina,

Riga Technical University, Latvia.

Workshop Publications

1. Joe Hoffert, Douglas Schmidt, & Annirudha Gokhale, Adapting and Evaluating Dis-

tributed Real-time and Embedded Systems in Dynamic Environments, The 1st Inter-

national Workshop on Data Dissemination for Large scale Complex Critical Infras-

tructures (DD4LCCI 2010), Valencia, Spain, April 2010

193

2. Joseph W. Hoffert, Daniel Mack, & Douglas Schmidt, Using Machine Learning to

Maintain Pub/Sub System QoS in Dynamic Environments, The 8th Workshop on

Adaptive and Reflective Middleware (ARM) 2009, Urbana Champaign, IL, Decem-

ber 2009

3. Joseph W. Hoffert & Douglas Schmidt, FLEXible Middleware And Transports (FLEX-

MAT) for Real-time Event Stream Processing (RT-ESP) Applications, Workshop on

Distributed Object Computing for Real-time and Embedded Systems (OMG RTWS

’09), Washington, D.C., USA, July 13-15, 2009.

4. Joe Hoffert, Mahesh Balakrishnan, Douglas Schmidt, & Ken Birman, Supporting

Large-scale Continuous Stream Datacenters via Pub/Sub Middleware and Adaptive

Transport Protocols, The 2nd Workshop on Large-Scale Distributed Systems and

Middleware (LADIS 2008), Yorktown, New York, USA, September 15-17, 2008.

5. Mahesh Balakrishnan, Joe Hoffert, Ken Birman, & Douglas Schmidt, Rethinking Re-

liable Transport for the Datacenter, The 2nd Workshop on Large-Scale Distributed

Systems and Middleware (LADIS 2008), Yorktown, New York, USA, September

15-17, 2008.

6. Joe Hoffert, Mahesh Balakrishnan, Doug Schmidt, & Ken Birman, Supporting Scala-

bility and Adaptability via ADAptive Middleware And Network Transports (ADAMANT),

Workshop on Distributed Object Computing for Real-time and Embedded Systems

(OMG RTWS ’08), Washington, D.C., USA, July 14-16, 2008.

Submitted Papers

1. Joe Hoffert, Douglas Schmidt, & Aniruddha Gokhale, Evaluating Timeliness and

Accuracy Trade-offs of Supervised Machine Learning for Adapting Enterprise DRE

Systems in Dynamic Environments, International Journal of Computational Intelli-

gence Systems.

194

2. Joe Hoffert, Aniruddha Gokhale, & Douglas Schmidt, Autonomic Adaptation of Pub-

lish/Subscribe Middleware in Dynamic Environments, International Journal of Adap-

tive, Resilient and Autonomic Systems.

195

REFERENCES

[1] Global Information Grid. The National Security Agency, www.nsa.gov/ia/industry/
gig.cfm?MenuID=10.3.2.2.

[2] Net-Centric Enterprise Services. Defense Information Systems Agency,
http://www.disa.mil/nces/.

[3] Silvia Abrahão and Geert Poels. Experimental evaluation of an object-oriented func-
tion point measurement procedure. Inf. Softw. Technol., 49:366–380, April 2007.

[4] Silvia Abrahão and Geert Poels. A family of experiments to evaluate a functional
size measurement procedure for web applications. J. Syst. Softw., 82:253–269,
February 2009.

[5] D. Agrawal, Kang-Won Lee, and J. Lobo. Policy-based management of networked
computing systems. Communications Magazine, IEEE, 43(10):69 – 75, October
2005.

[6] Colin Atkinson and Thomas Kuhne. Model-driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, 2003.

[7] Yan Bai and Mabo R. Ito. A study for providing better quality of service to voip
users. In AINA ’06: Proceedings of the 20th International Conference on Advanced
Information Networking and Applications, pages 799–804, Washington, DC, USA,
2006. IEEE Computer Society.

[8] Yan Bai and M.R. Ito. A new technique for minimizing network loss from users’
perspective. Journal of Network Computing Applications, 30(2):637–649, 2007.

[9] Mahesh Balakrishnan, Ken Birman, Amar Phanishayee, and Stefan Pleisch. Rico-
chet: Lateral Error Correction for Time-Critical Multicast. In NSDI 2007: Fourth
Usenix Symposium on Networked Systems Design and Implementation, Boston, MA,
2007.

[10] Mahesh Balakrishnan, Stefan Pleisch, and Ken Birman. Slingshot: Time-Critical
Multicast for Clustered Applications. In The IEEE Conference on Network Comput-
ing and Applications, 2005.

[11] Krishnakumar Balasubramanian, Douglas C. Schmidt, Zoltan Molnar, and Akos
Ledeczi. Component-based system integration via (meta)model composition. In
ECBS ’07: Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, pages 93–102, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[12] Martin Bateman, Saleem Bhatti, Greg Bigwood, Devan Rehunathan, Colin Allison,

196

Tristan Henderson, and Dimitrios Miras. A comparison of tcp behaviour at high
speeds using ns-2 and linux. In CNS ’08: Proceedings of the 11th communications
and networking simulation symposium, pages 30–37, New York, NY, USA, 2008.
ACM.

[13] Paolo Bellavista, Antonio Corradi, and Luca Foschini. Context-aware handoff mid-
dleware for transparent service continuity in wireless networks. Pervasive and Mo-
bile Computing, 3(4):439 – 466, 2007. Middleware for Pervasive Computing.

[14] B.W. Boehm. Improving software productivity. Computer, 20(9):43–57, Sept. 1987.

[15] Pruet Boonma and Junichi Suzuki. Middleware support for pluggable non-functional
properties in wireless sensor networks. SERVICES ’08: Proceedings of the 2008
IEEE Congress on Services - Part I, pages 360–367, July 2008.

[16] L. Breiman, J. Freidman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth, Monterey, CA, 1984.

[17] Andrej Brodnik and J. Ian Munro. Algorithms - ESA ’94, chapter Membership in
constant time and minimum space, pages 72–81. Springer LNCS, Berlin / Heidel-
berg, 1994.

[18] Bjorn Brynjulfsson, Gisli Hjalmtysson, Kostas Katrinis, and Bernhard Plattner. Au-
tonomic network-layer multicast service towards consistent service quality. In AINA
’06: Proceedings of the 20th International Conference on Advanced Information
Networking and Applications, pages 494–498, Washington, DC, USA, April 2006.
IEEE Computer Society.

[19] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. A Reinforcement Learning Approach
to Online Web Systems Auto-configuration. In The 29th IEEE International Confer-
ence on Distributed Computing Systems, pages 2–11, Washington, DC, USA, 2009.
IEEE Computer Society.

[20] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforce-
ment Learning and Dynamic Programming Using Function Approximators. CRC
Press, Inc., Boca Raton, FL, USA, 1st edition, 2010.

[21] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud Computing and Emerging IT platforms: Vision, Hype, and Reality
for Delivering Computing as the 5th Utility. Future Generation Computer Systems,
25(6):599 – 616, 2009.

[22] M. Caporuscio, A. Carzaniga, and A.L. Wolf. Design and evaluation of a support
service for mobile, wireless publish/subscribe applications. Software Engineering,
IEEE Transactions on, 29(12):1059–1071, Dec. 2003.

197

[23] Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf. A routing
scheme for content-based networking. In INFOCOM, 2004.

[24] Kenneth Chan and Iman Poernomo. Qos-aware model driven architecture through
the uml and cim. In Enterprise Distributed Object Computing Conference, 2006.
EDOC ’06. 10th IEEE International, pages 345 –354, October 2006.

[25] Mani Chandy, Opher Etzion, Rainer von Ammon, and Peter Niblett. 07191 summary
– event processing. In Mani Chandy, Opher Etzion, and Rainer von Ammon, editors,
Event Processing, number 07191 in Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, 2007. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany.

[26] Xiaolin Cheng, Prasant Mohapatra, Sung-Ju Lee, and Sujata Banerjee. Performance
evaluation of video streaming in multihop wireless mesh networks. In NOSSDAV
’08: Proceedings of the 18th International Workshop on Network and Operating
Systems Support for Digital Audio and Video, pages 57–62, New York, NY, USA,
2008. ACM.

[27] Abdur Rahim Choudhary. Policy based management in the global information grid.
International Journal of Internet Protocol Technology, 3(1):72–80, 2008.

[28] Pierre-Charles David and Thomas Ledoux. An Aspect-Oriented Approach for De-
veloping Self-Adaptive Fractal Components. In Welf Löwe and Mario Südholt, ed-
itors, Software Composition, volume 4089 of Lecture Notes in Computer Science,
pages 82–97. Springer Berlin / Heidelberg, 2006.

[29] Tom Dietterich. Overfitting and undercomputing in machine learning. ACM Comput.
Surv., 27(3):326–327, 1995.

[30] G. Eisenhauer, K. Schwan, and F.E. Bustamante. Publish-subscribe for high-
performance computing. Internet Computing, IEEE, 10(1):40–47, Jan.-Feb. 2006.

[31] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang. A
reliable multicast framework for light-weight sessions and application level framing.
IEEE/ACM Trans. Netw., 5(6):784–803, 1997.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

[33] Miller George. The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information. Psychological Review, 63:81–97, 1956.

[34] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

198

[35] Aniruddha Gokhale, Balachandran Natarajan, Douglas C. Schmidt, Andrey Nechy-
purenko, Jeff Gray, Nanbor Wang, Sandeep Neema, Ted Bapty, and Jeff Parsons.
CoSMIC: An MDA Generative Tool for Distributed Real-time and Embdedded
Component Middleware and Applications. In Proceedings of the OOPSLA 2002
Workshop on Generative Techniques in the Context of Model Driven Architecture,
Seattle, WA, November 2002. ACM.

[36] B.T. Gold, J. Kim, J.C. Smolens, E.S. Chung, V. Liaskovitis, E. Nurvitadhi, B. Fal-
safi, J.C. Hoe, and A.G. Nowatzyk. TRUSS: A Reliable, Scalable Server Architec-
ture. Micro, IEEE, 25(6):51–59, Nov.-Dec. 2005.

[37] Paul Grace, Geoff Coulson, Gordon S. Blair, and Barry Porter. Deep Middleware for
the Divergent Grid. In Middleware ’05: Proceedings of the ACM/IFIP/USENIX 2005
International Conference on Middleware, pages 334–353, New York, NY, USA,
2005. Springer-Verlag New York, Inc.

[38] Paul Grace, Geoff Coulson, Gordon S. Blair, and Barry Porter. A Distributed Ar-
chitecture Meta-model for Self-managed Middleware. In Proceedings of the 5th
Workshop on Adaptive and Reflective Middleware (ARM ’06), page 3, New York,
NY, USA, 2006. ACM.

[39] Jeff Gray, Yuehua Lin, Jing Zhang, Steve Nordstrom, Aniruddha Gokhale, Sandeep
Neema, and Swapna Gokhale. Replicators: Transformations to Address Model Scal-
ability. In Lecture Notes in Computer Science: Proceedings of 8th International
Conference Model Driven Engineering Languages and Systems (MoDELS 2005),
pages 295–308, Montego Bay, Jamaica, November 2005. Springer Verlag.

[40] Brent Hailpern and Peri Tarr. Model-Driven Development: The Good, the Bad, and
the Ugly. IBM Systems Journal, 45(3):451–461, July 2006.

[41] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, MA, USA, 1989.

[42] Caroline Herssens, Stéphane Faulkner, and Ivan J. Jureta. Context-driven autonomic
adaptation of sla. In ICSOC ’08: Proceedings of the 6th International Conference on
Service-Oriented Computing, pages 362–377, Berlin, Heidelberg, 2008. Springer-
Verlag.

[43] Andrea Hess, Michael Nussbaumer, Helmut Hlavacs, and Karin Anna Hummel.
Principles, Systems and Applications of IP Telecommunications. Services and Se-
curity for Next Generation Networks, chapter Automatic Adaptation and Analysis
of SIP Headers Using Decision Trees, pages 69–89. Springer Berlin / Heidelberg,
2008.

[44] James H. Hill, John Slaby, Steve Baker, and Douglas C. Schmidt. Applying System

199

Execution Modeling Tools to Evaluate Enterprise Distributed Real-time and Embed-
ded System QoS. In Proceedings of the 12th International Conference on Embed-
ded and Real-Time Computing Systems and Applications, Sydney, Australia, August
2006.

[45] Joe Hoffert, Aniruddha Gokhale, and Douglas Schmidt. Evaluating Transport Pro-
tocols for Real-time Event Stream Processing Middleware and Applications. In Pro-
ceedings of the 11th International Symposium on Distributed Objects, Middleware,
and Applications (DOA ’09), Vilamoura, Algarve-Portugal, November 2009.

[46] Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale. A QoS Policy Configuration
Modeling Language for Publish/Subscribe Middleware Platforms. In Proceedings of
International Conference on Distributed Event-Based Systems (DEBS), pages 140–
145, Toronto, Canada, June 2007.

[47] Joe Hoffert and Douglas C. Schmidt. Maintaining qos for publish/subscribe mid-
dleware in dynamic environments. In Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems (DEBS 09), Nashville, TN, USA,
July 2009.

[48] Joe Hoffert, Douglas C. Schmidt, and Aniruddha Gokhale. Adapting and Evaluating
Distributed Real-time and Embedded Systems in Dynamic Environments. In Pro-
ceedings of the 1st International Workshop on Data Dissemination for Large scale
Complex Critical Infrastructures (DD4LCCI 2010), Valencia, Spain, April 2010.

[49] Yi Huang and Dennis Gannon. A comparative study of web services-based event
notification specifications. Proceedings of the International Conference on Parallel
Processing Workshops, 0:7–14, 2006.

[50] Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing-
degrees, models, and applications. ACM Comput. Surv., 40:7:1–7:28, August 2008.

[51] Gordon Hunt. DDS Use Cases: Effective Application of DDS Patterns and QoS.
In OMG’s Workshop on Distributed Object Computing for Real-time and Embedded
Systems, Washington, D.C., July 2006. Object Management Group.

[52] M. Ibnkahla, Q.M. Rahman, A.I. Sulyman, H.A. Al-Asady, Jun Yuan, and A. Safwat.
High-speed Satellite Mobile Communications: Technologies and Challenges. Pro-
ceedings of the IEEE, 92(2):312 – 339, February 2004.

[53] Software Engineering Institute. Ultra-Large-Scale Systems: Software Challenge of
the Future. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, June
2006.

[54] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. Jour-
nal of Logic Programming, 19/20:503–581, 1994.

200

[55] Yi Jin, Xu Liu, Jianfeng Zhan, and Shuang Gao. A Dynamic Provisioning Frame-
work for Multi-tier Internet Applications in Virtualized Data Center. Parallel and
Distributed Computing, Applications and Technologies, 2008. PDCAT 2008. Ninth
International Conference on, pages 329–332, Dec. 2008.

[56] Amogh Kavimandan and Aniruddha Gokhale. Automated Middleware QoS Config-
uration Techniques using Model Transformations. In Proceedings of the 14th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2008),
pages 93–102, St. Louis, MO, USA, April 2008.

[57] Amogh Kavimandan, Anantha Narayanan, Aniruddha Gokhale, and Gabor Karsai.
Evaluating the Correctness and Effectiveness of a Middleware QoS Configuration
Process in Distributed Real-time and Embedded Systems. In Proceedings of the 11th

IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC 2008), pages 100–107, Orlando, FL, USA, May 2008.

[58] Stuart Kent. The unified modeling language, pages 126–152. Cambridge University
Press, New York, NY, USA, 2001.

[59] Stuart Kent. Model Driven Engineering. In Proceedings of the 3rd International
Conference on Integrated Formal Methods (IFM 02), pages 286–298, Turku, Fin-
land, May 2002. Springer-Verlag LNCS 2335.

[60] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, 2003.

[61] J.M. Kirschberg, M.S. Delgado, and S.S. Ribes. Rccmp: reliable congestion con-
trolled multicast protocol. In 1st EuroNGI COnference on Next Generation Internet
Networks Traffic Engineering, April 2005.

[62] Arvind S. Krishna, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt.
Model-Driven Techniques for Evaluating the QoS of Middleware Configurations for
DRE Systems. In Proceedings of the 11th Real-time Technology and Application
Symposium (RTAS ’05), pages 180–189, San Francisco, CA, March 2005. IEEE.

[63] Vibhore Kumar, Brian F. Cooper, and Karsten Schwan. Distributed stream manage-
ment using utility-driven self-adaptive middleware. In Autonomic Computing, 2005.
ICAC 2005. Proceedings. Second International Conference on, pages 3 –14, June
2005.

[64] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg Nordstrom,
Jonathan Sprinkle, and Gábor Karsai. Composing Domain-Specific Design Envi-
ronments. Computer, 34(11):44–51, 2001.

[65] Guoli Li and Hans-Arno Jacobsen. Composite Subscriptions in Content-based
Publish/Subscribe Systems. In Proceedings of the 6th International Middleware

201

Conference, Grenoble, France, 2005.

[66] Qingping Lin, Hoon Kang Neo, Liang Zhang, Guangbin Huang, and Robert Gay.
Grid-based Large-scale Web3D Collaborative Virtual Environment. In Web3D ’07:
Proceedings of the Twelfth International Conference on 3D Web Technology, pages
123–132, New York, NY, USA, 2007. ACM.

[67] Suping Liu and Yongsheng Ding. An adaptive network policy management frame-
work based on classical conditioning. In Proceedings of the 7th World Congress on
Intelligent Control and Automation, (WCICA 2008), pages 3336 –3340, June 2008.

[68] Yong Liu. Create Stable Neural Networks by Cross-Validation. In IJCNN ’06:
Proceedings of the International Joint Conference on Neural Networks, pages 3925–
3928, 2006.

[69] Joseph Loyall, Jianming Ye, Richard Shapiro, Sandeep Neema, Nagabhushan Ma-
hadevan, Sherif Abdelwahed, Michael Koets, and Denise Varner. A Case Study
in Applying QoS Adaptation and Model-Based Design to the Design-Time Opti-
mization of Signal Analyzer Applications. In Military Communications Conference
(MILCOM), Monterey, California, November 2004.

[70] Robert C. Martin, editor. More C++ gems, chapter GPERF: a perfect hash function
generator, pages 461–491. Cambridge University Press, New York, NY, USA, 2000.

[71] David McKinnon, Kevin E. Dorow, Tarana R. Damania, Olav Haugan, Wesley E.
Lawrence, David E. Bakken, and John C. Shovic. A Configurable Middleware
Framework with Multiple Quality of Service Properties for Small Embedded Sys-
tems. In 2nd IEEE International Symposium on Network Computing and Applica-
tions, pages 197–204. IEEE, April 2003.

[72] M. Menth and R. Henjes. Analysis of the Message Waiting Time for the Fiora-
noMQ JMS Server. Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE
International Conference on, pages 1–1, 2006.

[73] David Meyer, Friedrich Leisch, and Kurt Hornik. The support vector machine under
test. Neurocomputing, 55(1-2):169 – 186, 2003. Support Vector Machines.

[74] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[75] Richard Monson-Haefel and David A. Chappell. Java Message Service. O’Reilly,
1st edition, December 2000.

[76] Ripal Nathuji, Canturk Isci, Eugene Gorbatov, and Karsten Schwan. Providing Plat-
form Heterogeneity-awareness for Data Center Power Management. Cluster Com-
puting, 11(3):259–271, 2008.

202

[77] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-Clouds: Managing Per-
formance Interference Effects for QoS-Aware Clouds. In Proceedings of EuroSys
2010, pages 237–250, Paris, France, April 2010.

[78] Mohd Farhan Ngatman, Md Asri Ngadi, and Johan M. Sharif. Comprehensive study
of transmission techniques for reducing packet loss and delay in multimedia over
ip. International Journal of Computer Science and Network Security, 8(3):292–299,
2008.

[79] P. Niblett and S. Graham. Events and service-oriented architecture: the oasis web
services notification specifications. IBM Syst. J., 44:869–886, October 2005.

[80] Object Computing Incorporated. OpenDDS. http://www.opendds.org,
2007.

[81] Object Management Group. Data Distribution Service for Real-time Systems Spec-
ification, 1.2 edition, January 2007.

[82] Carlos O’Ryan, Douglas C. Schmidt, David Levine, and Russell Noseworthy. Ap-
plying a Scalable CORBA Events Service to Large-scale Distributed Interactive
Simulations. In Proceedings of the 5th Workshop on Object-oriented Real-time De-
pendable Systems, Montery, CA, November 1999. IEEE.

[83] S. Ostermann, R. Prodan, and T. Fahringer. Extending Grids with Cloud Resource
Management for Scientific Computing. In 10th IEEE/ACM International Conference
on Grid Computing, 2009, pages 42 –49, 13-15 2009.

[84] Gerardo Pardo-Castellote. OMG Data-Distribution Service: Architectural
Overview. In Proceedings of the 23rd International Conference on Distributed Com-
puting Systems, ICDCSW ’03, pages 200–206, Washington, DC, USA, 2003. IEEE
Computer Society.

[85] Dan W. Patterson. Artificial Neural Networks: Theory and Applications. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1998.

[86] Beth Plale, Dennis Gannon, Jerry Brotzge, Kelvin Droegemeier, Jim Kurose, David
McLaughlin, Robert Wilhelmson, Sara Graves, Mohan Ramamurthy, Richard D.
Clark, Sepi Yalda, Daniel A. Reed, Everette Joseph, and V. Chandrasekar. CASA
and LEAD: Adaptive Cyberinfrastructure for Real-Time Multiscale Weather Fore-
casting. Computer, 39(11):56–64, 2006.

[87] R. Premraj, M. Shepperd, B. Kitchenham, and P. Forselius. An empirical analysis of
software productivity over time. Software Metrics, 2005. 11th IEEE International
Symposium, Sept. 2005.

203

[88] S. Ramani, K.S. Trivedi, and B. Dasarathy. Performance analysis of the corba no-
tification service. In Reliable Distributed Systems, 2001. Proceedings. 20th IEEE
Symposium on, pages 227 –236, October 2001.

[89] Kai Sachs, Samuel Kounev, Jean Bacon, and Alejandro Buchmann. Performance
evaluation of message-oriented middleware using the SPECjms2007 benchmark.
Perform. Eval., 66:410–434, August 2009.

[90] D.C. Schmidt and H. van’t Hag. Addressing the challenges of mission-critical infor-
mation management in next-generation net-centric pub/sub systems with opensplice
dds. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1 –8, April 2008.

[91] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31,
2006.

[92] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects,
Volume 2. Wiley & Sons, New York, 2000.

[93] Nishanth Shankaran, Xenofon Koutsoukos, Chenyang Lu, Douglas C. Schmidt, and
Yuan Xue. Hierarchical Control of Multiple Resources in Distributed Real-time and
Embedded Systems. Real-Time Systems, 1(3):237–282, April 2008.

[94] Surjalal Sharma and Steven Curtis. Magnetospheric Multiscale Mission. Springer
Verlag, 2005.

[95] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. The
MIT Press, March 1998.

[96] Sumant Tambe, Akshay Dabholkar, and Aniruddha Gokhale. Generative Techniques
to Specialize Middleware for Fault Tolerance. In Proceedings of the 12th IEEE In-
ternational Symposium on Object-oriented Real-time distributed Computing (ISORC
2009), Tokyo, Japan, March 2009. IEEE Computer Society.

[97] Yoshio Tanaka, Hiroshi Takemiya, Hidemoto Nakada, and Satoshi Sekiguchi. De-
sign, Implementation and Performance Evaluation of GridRPC Programming Mid-
dleware for a Large-Scale Computational Grid. In GRID ’04: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing, pages 298–305, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[98] Sasu Tarkoma and Kimmo Raatikainen. State of the Art Review of Distributed Event
Systems. Technical Report C0-04, University of Helsinki, 2006.

[99] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition, Third
Edition. Academic Press, Inc., Orlando, FL, USA, 2006.

204

[100] Yoav Tock, Nir Naaman, Avi Harpaz, and Gidon Gershinsky. Hierarchical Cluster-
ing of Message Flows in a Multicast Data Dissemination System. In Proceedings
of Parallel and Distributed Computing and Systems (PDCS 2005), pages 320–326,
November 2005.

[101] Christos Tselikis, Sarandis Mitropoulos, and Christos Douligeris. An evaluation of
the middleware’s impact on the performance of object oriented distributed systems.
Journal of Systems and Software, 80(7):1169 – 1181, 2007. Dynamic Resource
Management in Distributed Real-Time Systems.

[102] Giuseppe Valetto, Laurent Walter Goix, and Guillaume Delaire. Towards Service
Awareness and Autonomic Features in a SIP-Enabled Network. In Autonomic Com-
munication, pages 202–213, Berlin, Heidelberg, 2006. Springer-Verlag.

[103] Patrice Vienne and Jean-Louis Sourrouille. A Middleware for Autonomic QoS Man-
agement Based on Learning. In Proceedings of the 5th International Workshop
on Software Engineering and Middleware, pages 1–8, New York, NY, USA, 2005.
ACM.

[104] Jens von Pilgrim. Measuring the level of abstraction and detail of models in the
context of mdd. In Second International Workshop on Model Size Metrics, pages
10–17, October 2007.

[105] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[106] Ming Xiong, Jeff Parsons, James Edmondson, Hieu Nguyen, and Douglas C.
Schmidt. Evaluating Technologies for Tactical Information Management in Net-
Centric Systems. In Proceedings of the Defense Transformation and Net-Centric
Systems conference, Orlando, Florida, April 2007.

[107] Jianming Ye, Joseph Loyall, Richard Shapiro, Richard Schantz, Sandeep Neema,
Sherif Abdelwahed, Nagabhushan Mahadevan, Michael Koets, and Denise Varner.
A Model-Based Approach to Designing QoS Adaptive Applications. In Proceed-
ings of the 25th IEEE International Real-Time Systems Symposium, pages 221–230,
Washington, DC, USA, 2004. IEEE Computer Society.

205

