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CHAPTER I

WNT SIGNALING PATHWAYS PATTERN NEURAL CONNECTIONS

INTRODUCTION

I have divided this introduction into three main sections.  First, I will

describe canonical and non-canonical Wnt signaling pathways and their

relevance to development.  This section will highlight examples of the Wnt

pathways that antagonize each other.  Second, I will review the literature

describing the role of Wnt signaling in neuronal development.  Third, I will

describe the role of gap junction connections in a neural system.  A common

theme will emerge; Wnt signaling plays an indispensible role in multiple different

aspects of synaptic development.

Section 1:  Wnt Signaling

What is Wnt signaling?  First discovered in Drosophila based on a mutant

fly with no wings, the extracellular ligand Wingless, is the starting point for this

pathway. Here, I will provide an overview of the canonical Wnt pathway, but I

direct your attention to several recent reviews for a more comprehensive

discussion of the Wnt signaling pathway (Clevers 2006; Angers and Moon 2009;

Macdonald et al. 2009).

Drosophila Wingless is homologous to the oncogene int-1; the term “Wnt”

was adopted for this conserved signal in homage to both findings (Clevers 2006).
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Wnt is a secreted glycoprotein that functions by interaction with a variety of

receptors, the most well known are homologs of the Drosophila Frizzled protein.

Frizzled receptors are seven transmembrane domain proteins that bind Wnt

through a cysteine rich domain (CRD) (Clevers 2006).  Distinct Wnt receptors,

such as ROR kinase and MuSK, also bind Wnt through a CRD sequence

(Clevers 2006; Jing et al. 2009). The interaction of Wnt with a receptor can

trigger a variety of downstream signaling pathways.

The canonical Wnt signaling pathway.

The canonical Wnt signaling pathway (Figure 1.1) controls cytosolic levels

of the effector protein, β-catenin (Macdonald et al. 2009).  Normally, β-catenin is

kept low by a ‘destruction complex’, consisting of the scaffold proteins Axin and

adenomatous polyposis coli (APC), and the kinases Glycogen Synthase Kinase 3

(GSK3) and Casein Kinase 1α (CK1α) (Macdonald et al. 2009).  Axin, the central

scaffold protein binds APC, GSK3, CK1α to form the destruction complex and

recruits cytosolic β-catenin into the complex.  Upon binding, β-catenin is initially

phosphorylated by CK1α, which in turn leads to additional phosphorylation of β-

catenin by GSK3.  Phosphorylated β-catenin is then covalently linked to ubiquitin

via the E3 ligase β-TRCP.  This linkage targets β-catenin for degradation by the

ubiquitin proteosome system (Macdonald et al. 2009).  Thus, in the absence of

Wnt signaling, Axin and the destruction complex function to keep cytosolic β-

catenin levels low and thereby maintain the Wnt pathway in an ‘off’ state

(Macdonald et al. 2009).
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When Wnt binds to a Frizzled receptor, the intracellular concentration of β-

catenin is allowed to rise through inhibition of the destruction complex

(Macdonald et al. 2009).  The most well characterized mechanism for Wnt

induced stabilization of cytosolic β-catenin occurs via direct interaction between

the intracellular domain (ICD) of the co-receptor protein LRP5/6 with GSK3.  The

LRP5/6 ICD directly inhibits GSK3-dependant phosphorylation of β-catenin

(Cselenyi et al. 2008) (Figure 1.1).  In addition, Frizzled receptors signaling

through the membrane-associated protein, disheveled, cause the disassembly of

the destruction complex, ultimately leading to the degradation of Axin by an

unknown mechanism (Macdonald et al. 2009). The net outcome of these events,

the elevation of cytosolic β-catenin and concomitant reduction of Axin, is a

characteristic feature of β-catenin dependent Wnt signaling.

The stabilization of cytosolic β-catenin results in its translocation to the

nucleus where it interacts with the transcription factor TCF/LEF to activate gene

expression (Macdonald et al. 2009). In the absence of β-catenin, TCF associates

with the co-repressor protein Groucho, to mediate transcriptional repression.  β-

catenin recruits the nuclear adaptor proteins Legless/BCL-9 and Pygopus after

binding to TCF and displacing Groucho.  Legless/BCL-9 and Pygopus then

interact with the mediator complex to activate transcription. Therefore, activated

canonical Wnt signaling ultimately functions to convert TCF from a transcriptional

repressor protein to an activator protein (Macdonald et al. 2009) (Table 1.1).

Migration of the Q neuroblast in C. elegans provides a well-characterized

example of canonical Wnt signaling in neural development.  The QL and QR
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Figure 1.1. The Canonical Wnt signaling pathway.

Left.  In an inactive pathway, cytosolic levels of β-catenin are kept low by a
destruction complex consisting of Axin, GK3, APC, and CKIα.  In the nucleus,
Groucho interacts with TCF/LEF to prepress transcription.  Right. Wnt activates
the pathway through its interaction with Frizzled and co-receptor lrp5/6.  This
inhibits the destruction complex by Disheveled’s recruitment of Axin, blocking the
destruction complex. The intracellular domain of LRP5/6 further inactivates the
destruction complex by inhibiting GSK3.  This allows cytosolic β-catenin to
accumulate and leads to its subsequent translocation into the nucleus.  β-catenin
then interacts with TCF to displace Groucho.  Legless/BCL-9 and Pygopus then
interact with β-catenin and the mediator complex, effectively turning TCF from a
repressor into an activator.
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Drosophila C. elegans
Secretion Complex

Wntless Wntless/Evenness
interrupted

mig-14/mom-3

porcupine porcupine mom-1
retromer complex vps-35

Ligand
Wnt Wingless(wg) lin-44, egl-20, cwn-1,

cwn-2, mom-2

Receptor
Frizzled Frizzled, dFz2 lin-17, mig-1, mom-5,

cfz-2
Ror cam-1
Ryk Derailled lin-18

LRP5/6 Arrow N.C.

Intracellular
Disheveled Disheveled dsh-1, dsh-2, mig-5

Gαo goa-1?

Destruction
Complex

GSK-3 Shaggy gsk-3
Axin Axin pry-1

Caesin Kinase I kin-19
Adenomatous
Polyposis Coli

apc apr-1

Beta-Catenin Armadillo bar-1

Transcription Factor
TCF dTCF pop-1

Pygopus Pygopus N.C.
Legless Legless N.C.
Groucho Groucho unc-37

Table 1.1. Comparison of Drosophila, and C. elegans compoents of the
canonical Wnt signaling pathway.   

Each of these components has been implicated in canonical Wnt signal
transduction.  Many of these components are conserved, but remain
uncharacterized. (NC = not characterized).
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neuroblasts are born on opposite sides of the embryo (Sulston and Horvitz

1977).  After hatching, each neuroblast undergoes additional rounds of division to

produces 3 distinct types of neurons and a cell that undergoes apoptosis.  The

hox gene, mab-5, is selectively activated in QL and its descendants as they

migrate posteriorly whereas QR does not express mab-5 and moves toward the

anterior.  The different locations of the mechanosensory neurons AVM (daughter

of QR) in the anterior and PVM (daughter of QL) in the posterior are a direct

result of the opposite directions of migration adopted by these distinct neuroblast

lineages (Maloof et al. 1999).  The posterior migration of QL and its descendents

depend on mab-5 (Harris et al. 1996; Maloof et al. 1999).  Genetic results

indicate that a canonical Wnt signaling pathway controls expression of mab-5

(Maloof et al. 1999).  For example, mutations in egl-20/Wnt or in the frizzled

genes, mig-1 or lin-17, which act redundantly in this pathway, cause a loss of

mab-5 expression that induces QL descendants to reverse direction and migrate

toward the anterior (Harris et al. 1996).  The anterior direction of QR is also

perturbed by these mutations such that AVM ends up in a more posterior position

than in wildtype animals. Thus, QL and QR display opposite responses to EGL-

20/Wnt with the QR lineage migrating anteriorly and QL and its descendents

moving to the posterior. Wnt pathway components that drive the anterior

migration of QR are unknown. However, the migration toward the posterior

depends on canonical Wnt signaling. Mutations in the negative regulator of

canonical Wnt signaling, pry-1/Axin, result in ectopic mab-5 expression in the QR

daughter cells and induce their posterior migration (Maloof et al. 1999).
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Mutations in β-catenin, bar-1 block the pry-1 phenotype indicating that bar-1 is

required downstream of pry-1/Axin (Maloof et al. 1999) as predicted for canonical

Wnt signaling. The transcription factor pop-1/TCF also functions in this pathway

and is required for expression of mab-5 (Herman 2001).  Thus, a canonical Wnt

signaling pathway comprised of egl-20/Wnt, mig-1/ Frz and lin-17/Frz, bar-1/β-

catenin, and pop-1/TCF drives mab-5 expression and posterior migration of QL

and its lineal descendents.

Non-canonical Wnt signaling.

Wnt signals may also activate alternative downstream transduction

pathways in different cell types (Clevers 2006).  Several of these so-called “non-

canonical” Wnt signaling pathways do not involve the phosphorylation and

degradation of β-catenin.  The planar cell polarity pathway (PCP) and the Wnt

Ca2++ pathway are two examples of non-canonical pathways with important roles

in development (Angers and Moon 2009).  PCP signaling is required for the

uniform orientation of specific cellular structures, such as hair on the Drosophila

wing (Fanto and McNeill 2004).  One critical aspect of Wnt/PCP signaling is

asymmetric distribution of Wnt pathway components within the cell.  For

example, in the Drosophila imaginal wing disk, Frizzled, the ankryin repeat

protein Diego, Dishevled, and the atypical cadherin Flamingo, localize to the

distal portions of the cell.  Opposing this, Flamingo, Diego, the transmembrane

protein VanGoh/Strabizimus, and the LIM domain containing protein Prickle

localize to the proximal cell membrane.  This asymmetric distribution of pathway
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components helps to create a polarized cell (Fanto and McNeill 2004).  The Wnt

Ca2++ pathway functions by mediating the release of intracellular calcium by

activating PIP3 (phosphoinositol) signaling.  Here, Frizzled activates

phospholipase C (PLC), via G-protein signaling.  PLC then converts IP2 into IP3,

causing IP3 to interact with its receptor, IP3R, in the endoplasmic reticulum and

trigger the release of intracellular calcium from the endoplasmic reticulum (Kühl

2004).  One common feature of non-canonical Wnt signaling pathways, is that

they do not function by modulating cytosolic levels of β-catenin.

Non-canonical Wnt signaling plays an important role in the developing C.

elegans embryo (Figure 1.2). However, these pathways are distinguished from

non-canonical signaling pathways in other animals in that some involve β-

catenin.  The non-canonical, β-catenin-dependant, asymmetric cell division

pathway is critical for differentiating between anterior versus posterior cellular

fates (Figure 1.3) (Huang et al. 2007).  The critical determinant for this pathway’s

output is the nuclear ratio of SYS-1/β-catenin to pop-1/TCF.  A high SYS-1:POP-

1 ratio results in a posterior cell fate whereas a low ratio produces in an anterior

cell fate (Huang et al. 2007).  For example, in the 4-cell stage embryo, the ventral

blastomere EMS divides to produce two cells, the posterior daughter, E, which

gives rise to gut cells (endoderm), and the anterior daughter MS, which

generates muscle cells and other tissue (mesoderm) (Sulston et al. 1983). This

asymmetric division is dependant upon a MOM-2/Wnt (MOM = MOre

Mesoderm). Mutations in mom-5/Frizzled, apr-1/APC, and wrm-1/β-catenin also

result in the loss of endodermal tissue.  These effects are mimicked by laser
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Figure 1.2. Non-canonical Wnt signaling in C. elegans early embryo.

Divergence of the cytosolic processes in three C. elegans Wnt pathways.  A.
Canonical Wnt signaling functions through a well characterized mechanism and
appears preserved in some developmental processes such as vulval
development and Q cell migration.  B. Wnt/β-catenin asymmetry pathway.  This
pathway likely functions through disheveled to regulate two β-catenins, WRM-1
and SYS-1.  Ultimately, this pathway regulates the SYS-1 to POP-1/TCF ratio in
the nucleus to regulate gene transcription.  WRM-1 nuclear levels are also
thought to be regulated by apr-1(APC) through a branch in the pathway.  C. non-
canonical planar cell polarity pathway (PCP) in vertebrates and Drosophila.  Fz-
Dsh-dgo (Diego) and Stbm-(Strabismus)-Pk(Prickle) show opposite, polarized
locations at the cell cortex.  This pathway regulates the actin cytoskeleton
through RhoA, and transcription through JNK/p38 MAP kinase cascade. Wnt
may not actually be required in Drosophila to activate PCP signaling.

Figure taken from Figure 1 of (Mizumoto and Sawa 2007)
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ablation of the P2 blastomere, the source of the MOM-2/Wnt signal (Rocheleau

et al. 1997).  These experiments are consistent with a model in which MOM-

2/Wnt from P2 signals to EMS blastomere through the frizzled receptor MOM-5

which in turn activates the disheveled homologs, dsh-2 and mig-5.  DSH-2 is

recruited to the cell surface and signals through an unknown mechanism to

activate kin-19/CKIα, gsk-3/GSK3, apr-1/APC (Walston et al. 2004; King et al.

2009).  In this case, these components actually promote Wnt signal transduction,

a role opposite to their antagonistic roles in the canonical pathway function.

Once the pathway is activated, WRM-1/β-catenin interacts with LIT-1/Nemo-like-

kinase (NLK) (Rocheleau et al. 1999). Activation of this pathway also causes a

MOM-4(Map Kinase Kinase Kinase)/LIT-1(NLK) complex to form, which then

activates the WRM-1/LIT-1 complex (Shin et al. 1999).  The WRM-1/LIT-1

complex phosphorylates POP-1 causing its association with a 14-3-3 protein,

PAR-5, and POP-1 export from the nucleus. The net effect of these interactions

is to reduce the level of nuclear POP-1 in the anterior daughter cell (Lo et al.

2004).  MOM-2/Wnt signaling also elevates nuclear SYS-1/β-catenin, thus

effectively increasing the SYS-1:POP-1 ratio.  This promotes an anterior cell fate

by converting POP-1 from an activator protein into a repressor, turning off

transcription factors required for endoderm fate (Huang et al. 2007) (Figure 1.3).

As in PCP pathways in Drosophila, the asymmetric localization of frizzled

receptors is required for non-canonical signaling (Park et al. 2004; Angers and

Moon 2009).  For example, MOM-5/Frizzled asymmetric localization is required
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Figure 1.3. The C. elegans non-canonical asymmetry pathway.

Global regulation of anterior-posterior fate is regulated by a non-canonical, β-
catenin dependant Wnt signaling pathway coined the non-canonical asymmetry
pathway.  Here, the level of nuclear POP-1/TCF is controlled, in contrast to the
canonical pathway’s tight regulation of cytosolic β-catenin.  Anterior fate is
established by a high SYS-1(β-catenin) to POP-1(TCF) ratio, which turns the
SYS-1:POP-1 complex into a transcriptional repressor.  In contrast, posterior fate
is induced by a posterior Wnt signal.  This causes the MOM-4/LIT-1 complex to
export POP-1 from the nucleus, reducing the SYS-1 to POP-1 ratio and
activating gene transcription.
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for normal development. MOM-5::GFP is enriched at the posterior pole of

dividing cells.  MOM-5::GFP expression is up-regulated when the embryo has

reached the 32 cell stage.  MOM-5::GFP asymmetric distribution has also been

observed in several different larval cell divisions (Park et al. 2004).  Asymmetric

localization of dsh-2/Disheveled at the P2/EMS boundary has also been reported

(Walston et al. 2004).  These events have not been observed at the four-cell

stage, however, the asymmetric localization of Frizzled and Disheveled do

appear to occur in asymmetric postembryonic cell divisions later during

development, and thus may represent a common mechanism characteristic of

the asymmetric Wnt pathway (Wu and Herman 2007).

A different, non-canonical Wnt signaling pathway controls localization of

the mitotic spindle (Schlesinger et al. 1999).  In this case, MOM-5::GFP puncta

are associated with the centromere of dividing cells (Park et al. 2004).  mom-5 is

required for normal spindle orientation in the mitotic cell ABar, but mom-2/Wnt is

not, suggesting additional signals that may function to orient this pathway

(Rocheleau et al. 1997; Schlesinger et al. 1999). Genetic results have also

implicated several additional Wnt pathway components in this process including

dsh-1/Dsh, dsh-2/Dsh, mig-5/Dsh, gsk-3/GSK3β and kin-19/CKIα.  KIN-19/CKIα

localization at the mitotic spindle was also observed, suggesting that these

pathway components are acting on microtubules (Walston et al. 2004).  This non-

canonical pathway, however, does not require downstream genes including,

wrm-1/β-catenin, apr-1/APC and pop-1/TCF, which do not show a spindle

orientation defect.  Thus, it is likely that this signaling pathway is not dependant
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upon transcription (Rocheleau et al. 1997).  This model suggests that GSK3 and

other destruction complex proteins are acting directly on the mitotic spindle to

regulate its orientation.  It is also possible, however, that these Wnt pathway

components may function in a separate pathway that determines the timing of

mitotic spindle orientation during mitosis instead of acting to turn the spindle

directly (Walston et al. 2004).

Non-canonical Wnt signaling has been implicated in additional

developmental events. For example, a non-canonical asymmetry pathway is

thought to be involved fate determination of terminal asymmetric cell division in

C. elegans, although it is unclear if the pathway is also required for all

postembryonic cell divisions (Bertrand and Hobert 2009; Hingwing et al. 2009).

One report also implicated non-canonical Wnt signaling during gastrulation in C.

elegans through regulation of myosin contractility (Lee et al. 2006).

Wnts function redundantly to specify tissues in C. elegans.

Many of the Wnt-dependant signaling pathways in C. elegans function

through the interaction of multiple Wnts and Frizzled receptors to promote a

common developmental event.  One example of this functional redundancy

between receptors and lignads occurs during the development of the C. elegans

vulva (Sternberg 2005). Adult vulval epithelial cells are derived from six vulval

precursor cells (VPC) in the ventral epidermis. Several competing signals control

VPC differentiation including the LIN-3/EGF, which functions through LET-

60/Ras, LIN-12/Notch, and Wnt (Sternberg 2005).
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Vulval induction is initiated by a LIN-3/EGF signal from the anchor cell,

which is positioned in the gonad directly above the developing vulval epithelium.

LIN-44/Wnt and MOM-2/Wnt are also expressed within the anchor cell.  The

combined LIN-3/EGF and Wnt signals induce expression of the hox gene lin-39,

which in turn prevents VPC fusion with the hypodermal syncytium and stimulates

VPC division (Sternberg 2005).  Further genetic studies have provided a picture

of a highly redundant system: all five Wnt ligands, four of the five Frizzled

receptors, and a canonical signaling pathway all interact to coordinate

development of the vulval epithelium (Gleason et al. 2006).

An intriguing regulatory mechanism has been proposed for the

developmental event in which the CAM-1/Ror Wnt receptor modulates the

strength of Wnt signaling through a non-cell autonomous mechanism.  In this

model, the essential role of CAM-1/Ror is to act as a sink to prevent Wnt ligands

from triggering Wnt signaling pathways that affect VPC fate. It will be interesting

to determine if Wnt receptors adopt similar non-cell autonomous roles in other

Wnt depdendent developmental pathways (Green et al. 2007).

Antagonistic Wnt pathways regulate development.

Xenopus laevis, the African clawed frog, is a model system used to study

early embryonic development.  One of the first Wnt experiments was conducted

in Xenopus.  Injection of the oncogene int-1 into the developing embryo was

found to induce a secondary axis (McMahon and Moon 1989b; McMahon and

Moon 1989a).  Subsequent experiments revealed that induction of the Spemann
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organizer, which is critical to axis specification, is dependant upon the nuclear

accumulation of β-catenin (and dorsal TGFβ signaling) (Moon and Kimelman

1998).

One of the first experiments to suggest a functional antagonism between

Wnt ligands was also performed in the Xenopus system.  Xwnt8 normally

induces a secondary axis, however, a pre-injection of the embryo with Xwnt5a

can block this Xwnt8 induced effect (Torres et al. 1996).  Experiments in

zebrafish have also detected Wnt-5 and Wnt-8 antagonism (Slusarski et al. 1997;

Westfall et al. 2003).  Additional experiments in the Zebrafish blastomere have

shown that reduced levels of the ‘non-canonical’ Wnt-5 phenocopies over-

activation of canonical Wnt signaling; Wnt-5 loss-of-function animals display a

dorsalized phenotype and some animals show induction of a secondary axis that

is characteristic of hyperactivated canonical Wnt signaling (Westfall et al. 2003).

Consistent with these results are data showing that non-canonical Wnt signaling,

via Wnt-11 and Wnt-5, promotes a ventralized fate (Westfall et al. 2003). Thus,

these findings support a model of antagonism between a canonical Wnt signaling

pathway that favors a dorsal fate versus a non-canonical pathway that promotes

ventral fate (Westfall et al. 2003).

Recent results have shown a more direct interaction between the co-

receptor protein, lrp5/6, and the non-canonical Wnt signaling pathway that drives

convergent extension movements (Tahinci et al. 2007).  Animal caps, cultured in

vitro, normally differentiate into balls of epidermis.  However, treatment with

activin, a TGF-β homolog, causes cells to become mesoderm and intercalate into
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the cap, creating an enlongated structure.  Activin-induced animal cap elongation

is blocked by injection of the non-canonical Wnt, Xwnt11, known to induce

convergent and extension and antagonize activin-mediated mesoderm induction.

Furthermore, co-injection of suboptimal amounts of lrp5/6 morpholino reinforces

Xwnt11 injection, suggesting that lrp5/6 may antagonize non-canonical Wnt

signaling.  Inhibition of non-canonical Wnt signaling, is caused by a specific part

of the intracellular domain of lrp5/6 (Tahinci et al. 2007).  These experiments

have revealed a mechanism whereby antagonistic interactions between Wnt

pathways may result from direct interactions between canonical and non-

canonical pathway components.

Antagonism between competing Wnt pathways is also observed in C.

elegans vulval development (Figure 1.4).  For example, the effects of EGL-

20/Wnt on P7.p are antagonized by two Wnt ligands, LIN-44 and MOM-2

(Eisenmann and Kim 2000). Recent work has suggested that the Wnt ligand

EGL-20 serves as a mechanism to define a ‘ground’ polarity for defining the

asymmetric divisions of P7.p (Green et al. 2008).  This EGL-20/Wnt signal

functions through interactions with the PCP component vang-

1/VanGogh/Strabizimus and serves to orient the asymmetric cell divisions of both

2 cells (P5.p and P7.p) in a wildtype P5.p manner (Green et al. 2008).  However,

EGL-20/Wnt is a long-range signal (secreted in the tail), and although it has clear

effects in the mid-body, the Wnt ligands expressed from the anchor cell, lin-44
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Figure 1.4. Antagonistic Wnt signaling pathways in C. elegans vulval
development

A. Two competing Wnt signals function to orient asymmetric divisions of the
vulval epithelium via the non-canonical asymmetry pathway.  B. During
development P5.p. and P7.p. do not establish an intrinsic polarity.  C. The
posterior Wnt ligand, EGL-20, establishes a ‘ground’ polarity, orienting P5.p. and
P7.p. in a posterior direction.  D. The Wnt ligands, MOM-2 and LIN-44,
expressed between P5.p. and P7.p. above the vulval epithelium, induce a
‘refined’ polarity effectively reversing the orientation of P7.p.  This allows the
vulval epithelium to divide along a central axis and form the symmetrical vulval
structure.

Figure taken from figure 5 of (Green et al. 2008)
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and mom-2, are able to dominate lin-17/Frizzled and lin-18/Ryk mediated

signaling. Thus, although the ‘ground polarity’ is established by EGL-20, orienting

cells to divide in one direction, this polarity is later ‘refined’ by LIN-44 and MOM-2

such that P5.p. and P7.p. divide as mirror images of each other  (Green et al.

2008). In this refinement mechanism, LIN-44/Wnt and MOM-2/Wnt are

hypothesized to re-orient P7.p. cell fate via the non-canonical β-catenin

asymmetry pathway. Wnt signaling induces expression of transcription factors

cog-1/Nkx6 and lin-11/LIM, which promote cell fate in the posterior

daughters of P7.p (Inoue et al. 2005).  The exact role of canonical Wnt signaling

in vulval induction remains unclear.  Genetic studies have implicated all the major

intracellular pathway components (BAR-1/β-catenin, GSK-3/GSK3, KIN-19/CKIα,

PRY-1/Axin, POP-1/TCF), and the genetic model for their function in vulval

epithelial division seems to mirror the canonical pathway mechanism although

the system appears to be highly redundant (Olson et al. 1991; Gleason et al.

2006).

Although the axis of embryonic blastomere asymmetry may be established

via non-canonical Wnt signaling, it is important to note that mutations in non-

canonical pathway components do not induce severe defects in the vulval

epithelium (Green et al. 2008).  These results stand in contrast to bar-1/β-catenin

mutations, which exhibit a highly penetrant defect (Eisenmann and Kim 2000).

One possible explanation is suggested by the finding that EGL-20 regulates a

SYS-1 asymmetry, as well as a BAR-1 asymmetry, in primary VPCs (Green et al.
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2008).  This result suggests that there maybe an asymmetry in the VPC

responsiveness to canonical Wnt signaling.

Section 2:  Wnt Signaling in Neurons

Wnt signaling regulates multiple aspects of neuronal development.

Wnt signaling has multiple roles in neuronal development, including roles

in dendritic patterning (Rosso et al. 2005), axon guidance (Krylova et al. 2002;

Hilliard and Bargmann 2006; Maro et al. 2009), the localization of synapses

(Klassen and Shen 2007), and the assembly of pre-synaptic vesicle components

(Ahmad-Annuar et al. 2006).  Here, we will focus strictly on the role of Wnt in

synapse formation, and discuss the various model systems used to study

synapse development.  This discussion will start with vertebrates and then move

to invertebrate synapse development, highlighting parallels between these

systems along the way.  We will finish with a discussion of the role of Wnt

signaling in synaptic development in C. elegans, the model system used in this

dissertation.

Wnt plays a role in the classical model for synaptic specificity, Agrin/MuSK
signaling at the vertebrate neuromuscular junction.

The classical model for the induction of neuromuscular junction (NMJ)

formation by an extracellular ligand is derived from studies with the secreted

protein Agrin (Kummer et al. 2006).  Secreted by motor neurons as they enter the

neuromuscular junction target area, Agrin organizes smaller pre-clusters of
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acetylcholine receptors (AChR) into larger domains, which are eventually

localized immediately below the presynaptic membrane.  Agrin functions through

the receptor MuSK (Kummer et al. 2006).  However, clever experiments to test

this model suggest that Agrin is in fact dispensable for the initial clustering of

AChRs but is required to maintain these pre-established AChR clusters at the

site of innervation (Kummer et al. 2006).  New information has revealed an early

role for Wnt signaling in NMJ assembly.

Previous studies of the Agrin-MuSK signaling detected interaction with the

Wnt pathway to establish AChR clustering at neuromuscular junctions.  For

example, one study showed that a component of the destruction complex, APC,

binds to the β subunit of an acetylcholine receptor and is necessary to mediate

clustering upon stimulation with Agrin (Wang et al. 2003).  Mutations in

Disheveled 1 (Dvl1) also display reduced AChR clustering in the mouse

diaphragm (Henriquez et al. 2008).

Recently, lrp4, a low-density lipoprotein receptor with structural similarity

to the Frizzled co-receptor, lrp5/6, has been shown to function as a co-receptor

for MuSK (Kim et al. 2008).  Mice with mutations in lrp4 phenocopy MuSK

mutants with severe neuromuscular defects and die at birth (Kim et al. 2008).

MuSK and lrp4 are expressed in post-synaptic muscle cells (Weatherbee et al.

2006).  Cell-specific expression of lrp4 in muscle rescues Agrin-induced

phosphorylation of MuSK, indicating that lrp4 is required for Agrin-induced

phosphorylation of MuSK (Kim et al. 2008). The results of these experiments and

others have lead to a model in which lrp4 functions in a complex with MuSK, is
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necessary for the activation of MuSK by Agrin, and binds Agrin with MuSK (Kim

et al. 2008).  The critical domains for the binding and activation of MuSK are the

transmembrane and extracellular domains of lrp4 (Kim et al. 2008).

Recently, work in zebrafish has provided direct evidence that the

Agrin/MuSK signaling pathway and the Wnt pathway interact to coordinate

neuromuscular junction development. Unplugged, the MuSK homolog in

zebrafish, directly binds Wnt11, in vitro, through the interaction of the

unplugged/MuSK CRD domain, the Wnt binding domain shared among other

ROR and Frizzled receptors (Jing et al. 2009).  Wnt11 is also required for pre-

patterning the AChR clusters before innervation, which involves MuSK, but

happens before Agrin expressing neurons innervate the muscle, suggesting

Agrin is not required (Jing et al. 2009).  Furthermore, Wnt11 and MuSK seem to

function via a disheveled-dependant mechanism, and therefore the AChR pre-

patterning may occur via a non-canonical mechanism (Jing et al. 2009).  These

studies provide strong support for a model in which Wnt signaling fulfills a

synergistic role with Agrin/MuSK to regulate synaptogenesis.

Studies in the mouse neuromuscular junction, specifically the innervation

of the diaphragm, suggest a similar mechanism.  Recent work in this system has

also suggested that Wnt signaling patterns AChR clusters (Henriquez et al.

2008). Analysis of the Dvl1 mutant mouse reveals significant differences in the

gross structure of diaphragm neuromuscular junctions with an increase in the

overall width of the area that is innervated, a similar phenotype observed in

unplugged mutants (Henriquez et al. 2008).
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In the developing chick neuromuscular junction, a beautiful set of cell

implantation studies shows that over-expressing Wnt3 increases acetylcholine

receptor clustering, suggesting Wnt3 can induce AChR clustering.  On the other

hand, treatment of the NMJ with exogenous secreted Frizzled-related proteins

(sFRPs), which bind and sequester extracellular Wnt3 decreasing the amount of

Wnt3 available at the NMJ, results in a significant decrease in the number of

AChR clusters.  Thus, by manipulating the amount of extracellular Wnt3 available

to the developming NMJ, it is possible to change the density of AChR clusters.

Wnt3 was also shown to cooperate with Agrin to increase the total number of

AChR clusters in cultured myotubes. Through this mechanism, Wnt appears to

increase the number of microclusters prior to Agrin-mediated aggregation of

these clusters, presumably through Rac1 (Henriquez et al. 2008).

Antagonistic Wnt pathways function at the vertebrate NMJ.

There is also evidence that antagonistic Wnt pathways regulate parallel

mechanisms to regulate AChR cluster formation.  One study, involving Wnt3,

suggests that a non-canonical mechanism functions to increase AChR clusters at

the NMJ (Henriquez et al. 2008).  The authors propose that Rac1 is involved

during Wnt3 mediated promotion of AChR clustering (Henriquez et al. 2008).

This is suggestive of a non-canonical mechanism promoting AChR assembly, as

Rac1 has been previously associated with a non-canonical Wnt signaling

mechanism (Angers and Moon 2009).  The authors also propose that Wnt3 and

Agrin function through a non-canonical mechanism based on the pharmacologic
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inhibition of GSK3 (Henriquez et al. 2008).  These experiments show that

inhibiting GSK3 does not increase the number of AChR clusters in the presence

of Wnt3, which would be the anticipated result if a canonical pathway were

involved, but in fact, antagonizes Wnt3 or Agrin mediated induction of AChR

clustering.  These results suggest that induction of AChR clustering by Wnt3 or

Agrin functions through GSK3 activation (Henriquez et al. 2008).  This result is

especially interesting because GSK3 activation functions to silence canonical

Wnt signaling.  This result alludes to the potential involvement of an antagonistic

canonical Wnt pathway that opposes AChR clustering.

Induction of AChR clustering by Wnt3 is antagonized by the related ligand

Wnt3a (Wang et al. 2008). This effect is mediated by down regulation of the

synaptic protein Rapsyn and appears to depend on a canonical mechanism.

Activation of canonical Wnt signaling, using the non-specific GSK3 inhibitor, LiCl,

causes a decrease in the amount of Rapsyn expressed, consistent with this

hypothesis (Wang et al. 2008).  Activation of β-catenin also decreased rapsyn

mRNA.  Curiously, this down regulation of Rapsyn appears to function without

the terminal effector protein TCF, and thus, the Wnt3a pathway must regulate

Rapsyn expression via a different, TCF-independent mechanism (Zhang et al.

2007; Wang et al. 2008).  Thus, the two Wnt ligands, Wnt3 and Wnt3a have

opposite effects on AChR clustering:  Wnt3 functions by a non-canonical

mechanism involving Rac1 and GSK3 activation, to increase the number of

AChR clusters, whereas Wnt3a, functions through a TCF-independent canonical

mechanism, and GSK3 inhibition to regulate Rapsyn levels and AChR cluster
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density.  This antagonistic relationship may function to fine-tune AChR clustering

at the vertebrate NMJ.

Other roles for Wnt pathway components are known at the synapse.  For

example, β-catenin has been shown to interact with rapsyn at the NMJ, although

the role of this relationship in synaptic assembly is unclear (Zhang et al. 2007).

Curiously, although overexpression of activated β-catenin causes a decrease in

AChR clustering, the effector of the pathway, TCF/LEF does not appear to be

involved in this transcriptional mechanism. This result may be indicative of a β-

catenin dependant pathway that does not involve TCF/LEF.

Wnt signaling regulates synapse formation in the vertebrate nervous
system.

Studies of vertebrate neural development have revealed that Wnt

signaling regulates many aspects of the assembly and specificity of synapses.

During cerebellum development, Granule cells secrete Wnt7a to signal mossy

fiber axon termini to remodel and differentiate into pre-synaptic structures (Hall et

al. 2000).  Mossy fiber neurons innervate granule cells with ‘en passant’

synapses, a basic geometry that also applies to most other synapses in the CNS.

(en passant synapses are also observed between side-by-side neuronal

processes in C. elegans (White et al. 1976b).)  Wnt-7a mutant mice have less

mature glomerular rosettes (pre-synaptic structures produced by a single mossy

fiber neuron making synapses onto several granule cells) suggesting a decrease

in synaptic complexity (Hall et al. 2000). Other studies show that in vitro addition

of Wnt-7a induces the clustering of synapsin 1, thereby indicating that Wnt-7a
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may stimulate presynaptic assembly (Hall et al. 2000).  Consistent with these

results, Dvl1 also localizes to presynaptic sites, and is important for pre-synaptic

assembly.  Double mutants of Wnt7a and Dvl1 genetically enhance each other,

and decrease the accumulation of synapsin 1 at glomerular rosettes.  This

genetic interaction is suggestive of a functional redundancy between Wnt

pathway components (Ahmad-Annuar et al. 2006).

A recent study of mouse hippocampal development has revealed a role for

Wnt7a in activity-dependent enhancement of synaptic assembly (Gogolla et al.

2009).  Exposure to an enriched environment is correlated with increased

synaptic number and the complexity of synaptic markers in hippocampal CA3

neurons. The enriched environment also induced increased levels of Wnt7a

(Gogolla et al. 2009). Synaptic activity is presumptively required for increased

Wnt7a activity, because treatment with tetrodotoxin reduces Wnt7a

immunoreactivity in hippocampal slice cultures.  However, the mechanism that

links neural activity to Wnt7a secretion is unknown.  An attractive model for these

effects suggests that Wnt7a plays an active role at the adult hippocampal

synapse, to increase the complexity of synaptic structures in response to

environmental stimuli.  This model has direct implications for learning and

memory since this effect can be reversed by treatment with sFRP-1, an

extracellular Wnt antagonist, or by removal from the enriched environment

(Gogolla et al. 2009).
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Wnt signaling functions in Drosophila synaptic development.

A large number of studies of Wnt signaling at the neuromuscular junction

have been performed in Drosophila melanogaster. The first mutants of Wnt

pathway components were identified by their distinctive phenotypes: Wingless

(Wg), Disheveled (Dsh), Frizzled, Shaggy(Sgg)/GSK3, and Armadillo (Arm).

Since these initial discoveries, roles for these components in Wingless signaling

have been discovered in various neuronal processes including axon guidance,

neuronal polarity, and synaptic development (Korkut and Budnik 2009).

The Drosophila larval NMJ is readily visualized and the pattern of neuronal

connectivity is stereotypic. A central role for Wnt signaling in NMJ development is

suggested by the finding that Wg mutations alter NMJ morphology and glutamate

receptor distribution (Packard et al. 2002).  These mutations also disrupt pre-

synaptic bouton morphology and a key structural component of the post-synaptic

zone, the subsynaptic reticulum, is missing or severely disrupted.

Wg is believed to have both pre-synaptic and post-synaptic functions at

the Drosophila NMJ (Figure 1.5).  This hypothesis is consistent with the finding

that both Wg and Frizzled 2 (Dfz2), its receptor, are both localized to the

neuromuscular junction, with Dfz2 positioned at both pre- synaptic and post-

synaptic locations (Packard et al. 2002).  Upon stimulation of the pre-synaptic

neuron, Wg is secreted from the neuromuscular synapse, crosses the synaptic

cleft and binds to Dfz2.  Both Dfz2 and Wg are endocytosed by muscle
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Figure 1.5. Wingless signaling at the Drosophila NMJ regulates synaptic
development.

Pre-synaptic secretion of Wg activates responses in both the presynaptic neuron
and the postsynaptic muscle.  Frizzled and lrp5/6 respond to Wg on either side of
the synapse.  Post-synaptically, Frizzled is internalized by GRIP.  Frizzled is then
cleaved sending its C-terminus into the nucleus.  Presynaptic response to Wg is
to activate a non-canonical signaling pathway that ultimately leads to GSK3
phosphorylation of Futsch.  This phosphorylation of Futsch ultimately leads to its
association with microtubules.

Figure and legend taken from Figure 2 of (Korkut and Budnik 2009)
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cells (Packard et al. 2002; Miech et al. 2008).  Endocytosis of Dfz2 leads to a

cleavage of the receptor C terminus, and both halves of Dfz2 are translocated to

the nucleus.  Antibodies to the N and C terminus of the protein have revealed

different sub-cellular localizations for either half of the protein.  At the synapse,

the two Dfz2 antibodies co-localize at the membrane, but inside the cytoplasm

the N-terminal antibody shows a peri-nuclear staining pattern, whereas the C

terminal antibody localizes to distinct, punctate cytosolic and nuclear structures.

Intranuclear staining of the Dfz2 C-terminus did not mark transcriptionally inactive

heterochromatin, thus suggesting an active transcriptional role for the C-terminal

fragment (although this remains to be confirmed). The protease that cleaves Dfz2

is unknown but a likely candidate is suggested by the presence of an ADAM

protease consensus sequence at the cleavage site in the C-terminus of Dfz2.

This Dfz2 internalization mechanism is Wg responsive and is blocked by mutants

in the endocytosis pathway (Shibire).  The cleavage of Dfz2 is also required for

activation of the pathway.  Furthermore, the fact that both N and C termini of

Dfz2 are required for rescue of the Dfz2 mutant phenotype suggests that this

mechanism may be critical for proper synaptic development of the Drosophila

NMJ (Mathew et al. 2005).

More recent work has shown that dGRIP, a 7-PDZ domain-containing

protein, is important for trafficking of Dfz2 to the peri-nuclear membrane. In Wg,

Dfz2, and dGRIP mutants, the occurrence of ‘ghost boutons’ was dramatically

increased. These boutons are rounded structures filled with synaptic vesicles and

synaptic vesicle associated proteins, such as synapsin and CSP, but lack a
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functional active zone and other pre-synaptic structures. Post-synaptic proteins

such as glutamate receptors, Scribble, Bazooka, Dfz2 and Spectrin are also

missing, suggesting that post-synaptic structures have not been completely

formed (Ataman et al. 2006).  In one hypothesis, ghost boutons are proposed to

correspond to immature pre-synaptic structures that have not fully differentiated.

Recent evidence has shown that activity-dependant modifications in synaptic

structure depend on bi-directional Wg signaling and formation of ‘ghost boutons’

requires Wg signaling in the pre-synaptic neuron.  A non-canonical mechanism,

via inhibition of GSK3/shaggy, appears to be required pre-synaptically.  The

postsynaptic response to secreted Wg functions through the frizzled nuclear

importation pathway (FNI) (Ataman et al. 2008).

Wg protein is secreted pre-synapticaly via exosome-like vesicles.  The

transmembrane protein, Evenness interrupted/Wntless, Evi, is required for pre-

synaptic secretion, as well as post-syaptic internalization of Wg.  Evi and Wg are

secreted via exosome-like vesicles, which are then internalized by the

postsynaptic membrane and ultimately lead to Dfz2 internalization and cleavage.

The exosome secretion mechanism is yet unknown, but points to an intriguing

mechanism for trans-synaptic communication (Korkut et al. 2009).

Although the presence of Sgg, Dsh, Arrow/lrp5/6 and Wg at the

Drosophila synapse is consistent with a classical canonical pathway, Armadillo/β-

catenin (Arm) does not localize to the synaptic bouton. This thus suggests that a

non-canonical Wnt pathway (non-β-catenin dependant) may be active at the

synapse.  Consistent with this model, Arrow/lrp5/6 mutants display a disrupted
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synaptic bouton morphology that phenocopies Wg mutants (Miech et al. 2008).

Moreover, the microtubule-associated protein Futsch/MAP1b, which normally

localizes with microtubule loops and is critical for NMJ development, does not

associate with microtubules in Arrow mutants (Roos et al. 2000).  However,

proper bouton morphology is not completely dependant upon Arrow expression

within the pre-synaptic neuron, as only a subset of boutons, in arrow mutants,

display a disrupted morphology (Miech et al. 2008). Pre-synaptic expression of

Arrow can rescue this defect, suggesting that Arrow does function pre-

synaptically, but is not required for postsynaptic morphology (Miech et al. 2008).

Other rescue experiments show that Disheveled and shaggy/GSK3 are

required pre-synapticaly for the formation of Futsch microtubule loops (Miech et

al. 2008). Furthermore, Shaggy/GSK3 phosphorylates Futsch at a conserved site

(Gögel et al. 2006).  Overexpression experiments of an active Armadillo/β-

catenin, or dominant negative pangolin/TCF did not show a role for these

proteins in Futsch/microtubuole association.  Thus, it is likely that shaggy,

disheveled, and arrow are operating via a local, non-canonical pathway to

regulate futsch loops and pre-synaptic differentiation (Miech et al. 2008) (Figure

1.5). Although, the authors suggest that their model depends upon a divergent

Wnt signaling pathway mediated by shaggy to control microtubule dynamics,

they also show that young bouton formation is dependant upon transcription and

translation (Ataman et al. 2008).
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Synaptic location in C. elegans is controlled by local, extracellular cues.

Studies in C. elegans have also revealed important roles for extracellular

cues in synaptogenesis.  Three examples of this local regulation are known:

First, UNC-6/Netrin is responsible for positioning synapses between the

interneurons AIY and RIA (Colón-Ramos et al. 2007).  Second, the

immunoglobulin containing protein SYG-1 and SYG-2 function together to direct

the localization of synapses between the HSN and VC motor neurons in the egg-

laying circuit (Shen and Bargmann 2003).  Third, Wnt signaling is critical for NMJ

position and localization in the ventral cord motor neuron DA9 (Klassen and

Shen 2007; Poon et al. 2008).  Each of these examples is discussed below.

UNC-6/Netrin coordinates the position of a central synapse.

The AIY and RIA interneurons are components of a sensory circuit in C.

elegans.  AIY receives en passant inputs from specific sensory neurons and

provides output to selected interneurons, including RIA. AIY inputs to RIA are

strictly localized to the AIY ventral process (White et al. 1976b).  Mutations in the

UNC-6/netrin receptor unc-40/DCC result in the loss of active zone markers

within this AIY region (Colón-Ramos et al. 2007). Surprisingly, these synaptic

defects are not a consequence of disrupted axon guidance despite the key roles

of UNC-6 and UNC-40 in growth cone guidance; AIY and RIA processes that

contribute to the active zone, are not misplaced in unc-6/unc-40 mutants. Thus,

the authors concluded in this instance, that both UNC-6 and UNC-40 are acting

directly at the synapse. The cephalic sheath cell envelops the AIY afferent
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Figure 1.6. Transient interactions coordinate synaptic specificity.

Examples in C. elegans where local environmental signals are responsible for
coordinating synaptic specificity.  A.  RIA to AIY synaptic location is controlled by
an UNC-6/Netrin signal from a local glial cell.  B. HSN to VC synapses are
controlled SYG-2 expression on the guidepost cell.  C. UNC-6/Netrin and LIN-
44/Wnt are critical for establishing an asynaptic domain in the DA9 process.
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process and appears to function as a glial cell. This sheath cell also expresses

UNC-6/Netrin and its proximal location, adjacent to the AIY to RIA synapse, is

critical for the correct localization of this synaptic connection. Thus, the location

of the synapse is specified by an UNC-6/Netrin signal, secreted from a local glial

cell process, which signals through the UNC-40 receptor in AIY to establish the

physical location of the presynaptic apparatus (Colón-Ramos et al. 2007).

Important questions for future studies include the signal transduction pathway

that links UNC-40 to presynaptic assembly and the identification of additional

signals that induce post-synaptic assembly in RIA.

Transmembrane proteins SYG-1 and SYG-2 determine synaptic location.

A more detailed mechanism for extracellular regulation of synaptic

connectivity has been established for the hermaphrodite specific neuron, HSN.

The HSN synapses with VC motor neurons near the vulval epithelium.  The

creation of the HSN presynaptic zone in this location depends on the provision of

a membrane bound cue, the Ig domain protein SYG-2, on the surface of a nearby

vulval epithelial cell (Shen and Bargmann 2003). Interaction of SYG-2 with a

second related type of Ig domain protein, SYG-1, on the HSN neuron triggers

presynaptic assembly (Shen et al. 2004) (Figure 1.7).  This model is supported

by a series of elegant experiments in by Kang Shen’s group. The HSN to VC

connections are stereotypic and are located on either side of the vulva opening

where these two neurons initially contact one another. Mutations in SYG-1 result
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Figure 1.7. VC to HSN synaptic location is specified by non-autonomous
signals

Signals from the vulval epithelium are critical for establishing the location of HSN
to VC synapses.  Top. Anatomy of neuromuscular architecture in the C. elegans
vulva.  The HSN neuron makes synaptic connections onto the VC motor neuron
and muscle in the primary synapse region.  Mutations in syg-1 and syg-2, cause
these synapses to relocate to the secondary synapse region.  Bottom.  SYG-2 is
expressed in a non-neural, guidepost cell that interacts with receptors expressed
within HSN.  This cell-cell contact causes SKR-1 to interact with SYG-1 and
blocks formation of the SEL-10, SKR-1, CUL-1 E3 ubiquitin ligase complex in
that local environment.  The E3 ligase complex is active in the secondary
synapse region and degrades synaptic proteins in that location.  In the absense
of syg-1/2, the E3 ligase complex is assembled and degrades the primary
synaptic region.

Figure taken from (Miller 2007).
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in the displacement of the presynaptic marker, RAB-3, to a distal, anterior

location in the HSN process after its entry into the ventral nerve cord.  A cell

autonomous role for SYG-1 in the HSN neuron is supported by transgenic rescue

with an HSN-specific promoter (Shen and Bargmann 2003).  Additional genetic

studies revealed a that SYG-2 expression in a vulval epithelial “guidepost” cell is

required for the normal location of SYG-1 and the HSN synapse (Shen et al.

2004). The interaction of the SYG-2 extracellular domain with SYG-1 on the HSN

cell surface triggers local accumulation of presynaptic components. This effect

depends in part on the inhibition of proteolysis by SYG-1. The SYG-1 intracellular

domain prevents local activation of an E3 ubiquitin ligase (the SCF complex) by

sequestering one of the SCF components, SKR-1. Constitutive SCF activity in

syg-1 and syg-2 mutants prevents local presynaptic assembly. In that case,

presynaptic domains emerge at a distal secondary location. The mechanism that

accounts for the differential stability of these secondary synapses is unclear but

may be indirectly stimulated by SYG-1 inhibition of the proteolytic pathway at the

primary synapse (Ding et al. 2007).  Although these studies have uncovered an

elegant intercellular signaling mechanism for defining the location of the

presynaptic apparatus, and its dependency upon extracellular cues, mechanisms

that regulate postsynaptic assembly at this connection are unknown.



36

Wnt signaling antagonizes the posterior localization of DA9 neuromuscular
junctions.

Frizzled receptors also regulate the intracellular location of the presynaptic

zone of a specific cholinergic motor neuron, DA9 (Klassen and Shen 2007). The

DA9 cell soma is located at the posterior end of the ventral nerve cord and

extends a single axon to the dorsal side of the animal to innervate dorsal body

muscles (White et al. 1976b).  In the wildtype, the DA9 NMJ is created in a

stereotypical location. The Shen lab used a GFP-labeled presynaptic marker,

GFP::RAB-3, to detect the posterior displacement of the DA9 synapses in a lin-

44/Wnt mutant (Klassen and Shen 2007). A similar phenotype was also observed

in a lin-17/Frz mutant. In both lin-44 and lin-17 mutants, the DA9 presynaptic

zone occupies a more posterior compartment than in the wild type. The origin of

this phenotype is informed by the known expression of LIN-44/Wnt in specific

cells in the tail region, posterior to the DA9 synapse. Thus, the authors proposed

that LIN-44/Wnt functions to prevent the posterior displacement of DA9 pre-

synaptic assembly. The LIN-17/Frz protein is localized to this posterior asynaptic

DA9 axonal compartment and therefore appears to function in this region to

exclude pre-synaptic assembly. In fact, in this case, LIN-44/Wnt may provide key

positional information; the location of LIN-17/Frz is perturbed by experiments that

modify the position or strength of LIN-44/Wnt expression in the tail region.

Genetic tests detected a role for dsh-1/Disheveled in this pathway, but

surprisingly did not reveal necessary functions for any other known component of

either canonical or non-canonical Wnt signaling in C. elegans (Klassen and Shen

2007).
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Additional studies revealed the surprising finding that UNC-6/Netrin and its

receptor UNC-5 also function to exclude pre-synaptic assembly from

inappropriate DA9 compartments (Poon et al. 2008).  In this case, a ventral

source of UNC-6 acts locally to prevent localization of pre-synaptic components

to the DA9 dendrite in the ventral nerve cord (Figure 7).  Additional experiments

suggest that LIN-44 and UNC-6 can function interchangeably to limit proximal

pre-synaptic assembly (Poon et al. 2008).  For example, ectopic expression of

UNC-6 from posterior cells in the tail was sufficient to rescue the posterior

synaptic mislocalization defects of lin-44 and lin-17 mutants. These results

suggest that UNC-6 and LIN-44 may regulate a common intracellular pathway to

limit pre-synaptic assembly.  Thus, two morphogen gradients, Wnt and Netrin,

are responsible for patterning the location of pre-synaptic components in a single

neuron.

 Although this work clearly established a role for UNC-6 in regulating

assembly of pre-synaptic components, UNC-6 does not appear to be required for

proper localization of gap junctions.  A YFP-tagged innexin, UNC-9, is largely

restricted to the ventral DA9 dendrite and appears as discrete puncta that likely

correspond to gap junctions with the interneuron AVA (White et al., 1986).  The

localization of the YFP::UNC-9 puncta is not altered in unc-6 mutants.  This result

suggests that unc-6 is required for the polarized localization of a specific subset

of motor neuron proteins but that other components such as UNC-9/innexin may

depend on other signaling pathways for proper polarized trafficking in the

developing neuron (Poon et al. 2008). Unfortunately, this work did not ask if the
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LIN-44/Wnt – LIN-17/Frz pathway is required for the polarized localization of

UNC-9 gap junctions and therefore did not explore the interesting possibility that

Wnt signaling regulates gap junction assembly.

SECTION 3:  THE ROLE OF GAP JUNCTIONS

In the following section, I will explore the role of gap junctions in neuronal

connectivity.  At the end, I will review the surprisingly sparse literature that

connects Wnt signaling and gap junction assembly.

Gap junction proteins: convergent evolution.

Gap junctions provide direct connections between the cytoplasm of

neighboring cells (Figure 1.8). In the nervous system, gap junctions regulate ion

flow between coupled neurons and can thus propagate changes in electrical

potential from one coupled neuron to the next. Gap junction proteins form

hexameric, transmembrane rings which interdigitate at the surface of adjacent

cells from the mature pore-like structure.  Three major classes of gap junction

proteins have been identified, connexins – found only in vertebrate species,

innexins – found in invertebrates, and pannexins – found in both invertebrates

and vertebrates (D'hondt et al. 2009). All three classes of gap junction proteins

share a similar functional mechanism, but little sequence homology; a classical

example of convergent evolution.
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Figure 1.8. Structure of neuronal gap junctions

A. Graphic of a gap junction in a vertebrate system.  Connexin proteins form
hemichannels from 6 subunits.  Homomeric hemichannels consist of the same
protein.  Hetermeric hemichannels consist of different subunits.  A homotypic gap
junction consists of a single protein subunit that makes up both hemichannels.
Heterotypic gap junctions consist of two protein subunits that make a gap
junction channel.  In the C. elegans VNC, UNC-7 and UNC-9 make homomeric
hemichannels and heterotypic gap junctions. B. Gap junction proteins have 4
transmembrane domains with 2 extracellular loops.
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Most gap junctions are permeable to cations but their subunit composition

may determine the specific cation transport properties of each channel (D'hondt

et al. 2009).  For example, gap junctions composed of Cx43 respond to a high

extracellular [Ca2+] by closing, thus regulating the flow of Ca2+ into the cell,

whereas gap junctions of Cx37 show a biphasic response, and close in response

to both high and low concentrations of intracellular Ca2+.

Furthermore, gap junctions can be composed of either a single subunit

type (homomeric) or multiple subunit types (heteromeric) within a hemichannel

(D'hondt et al. 2009).  Also, two hemichannels of different compositions can form

a complete gap junction (heterotypic) (Figure 1.8).  These different combinations

of subunits may contribute to different functional properties of the channel itself

(D'hondt et al. 2009).

Gap junctions function as electrical synapses in the vertebrate brain.

Gap junction networks are hypothesized to regulate coordinated action

within a group of interconnected neurons (Christie et al. 2005; Zufall 2005;

Fukuda 2007).  In the vertebrate CNS, gap junction connectivity has been

extensively documented for cortical GABAergic interneurons but has been

observed less frequently in other classes of brain neurons. For example, gap

junctions between GABA interneurons and glutamatergic interneurons have been

observed in EM studies of both the rat and cat neocortex, but are rare compared

to GABAergic interconnections (Fukuda and Kosaka 2003; Fukuda et al. 2006;

Fukuda 2007).  Because GABAergic interneurons modulate the excitation



41

threshold and output of glutamatergic interneurons, gap junction synchrony

among GABAergic interneurons is proposed to coordinate the output of

glutamatergic interneurons.  Physiological evidence is suggestive of subnetworks

of GABAergic interneurons (Hestrin and Galarreta 2005) within the larger system,

locally regulating specific populations of glutamatergic interneurons (Fukuda

2007).  About half of the 20 known vertebrate connexin genes are expressed in

the brain.  Members of the related pannexin family of gap junction proteins are

also expressed in the brain in specific subsets of neurons (Connors and Long

2004).  These observations offer the attractive possibility that subsets of gap

junctions are composed of selected classes of connexin or pannexin subunits.

The functional importance of connexin to brain development and function is

dramatically demonstrated in a knockout mouse that eliminates the connexin,

CX36.  Gap junction networks in the inferior olive (associated with the

cerebellum) are eliminated in the CX36 mutant.  Behavioral studies revealed

significant impairment of learning and memory in these animals, although gross

motor coordination appears to be unaffected (Van Der Giessen et al. 2008).

Physiological measurements indicate that electrical synapses may be important

for regulating rhythmic activity in spinal locomotory circuits after birth (Connors

and Long 2004).  These experiments suggest that gap junction connections are

created between specific neurons for specific functions and have roles in the

adult nevous system.  Although much is understood about the function of these

gap junctions, nothing is known about how this specificity is achieved.
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Gap Junctions in the C. elegans nervous system.

Gap junctions are important for normal physiological processes in

C.elegans.  For example, the gap junction INX-16 is responsible for propagating

a calcium wave along the C. elegans intestine that is critical for moving lumen

contents in concert with the defecation cycle (Peters et al. 2007). Gap junctions

comprised of the innexins, INX-6 or EAT-5, coordinate pharyngeal pumping by

electrically coupling pharyngeal muscle cells (Starich et al. 1996; Li et al. 2003).

Gap junctions also provide important developmental roles. For example, gap

junctions comprised of the innexin NSY-5 are required for the establishment of a

specific left-right asymmetry between a pair of chemosensory neurons (Chuang

et al. 2007).  Two AWC neurons, AWCL and AWCR, arise from similar cell

lineages on the left and right sides, respectively, of the developing C. elegans

embryo (Sulston et al. 1983).  Despite the bilateral symmetry of this neuron pair,

each AWC neuron senses different odorants. These alternative sensory

modalities are randomly adopted with one fate on either the left or right side. The

decision is regulated by a feedback loop involving a calcium-dependant kinase

signaling cascade that prevents the opposite cell from adoping a default state

(defined as the fate adopted when one of the cells is killed with a laser). Physical

interaction between the two AWC cells is critical for making this distinction

(Chuang et al. 2007).  The decision also depends on the formation of transient

networks of gap junctions comprised of the innexin, NSY-5, involving each AWC

and adjacent embryonic neurons (Chuang et al. 2007).
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Genetic analysis has confirmed a critical role for the innexin proteins UNC-

7 and UNC-9 in motor circuit function (Starich et al. 1993; Barnes and Hekimi

1997).  unc-7 and unc-9 mutants show similar jerky movements during forward

locomotion (Starich et al. 1993; Starich et al. 1996; Barnes and Hekimi 1997;

Starich et al. 2009b).  In each case, the phenotype can be rescued by expression

of the corresponding wildtype protein in the nervous system (Chen et al. 2007b;

Starich et al. 2009b). UNC-7 and UNC-9 are components of prominent gap

junctions between the interneuron AVB and B-class motor neurons, DB and VB,

in the ventral nerve cord. These structures can be specifically labeled by

transgenic expression of GFP-tagged UNC-7 and UNC-9 proteins. Mutation of

either gene disrupts localization of the other innexin at this location. For example,

the diffuse staining of UNC-7S::GFP expressed in AVB interneurons in an unc-9

mutant is rescued by expression of UNC-9 in B-class motor neurons. These

results are consistent with physiological experiments performed in Xenopus

oocytes showing that UNC-7 and UNC-9 assemble to form homotypic

hemichannels (i.e., hemichannels comprised of either UNC-7 or UNC-9 subunits)

that can interact to produce functional heterotypic gap junctions (Starich et al.

2009b). This model is also supported by cell-specific microarray data from the

Miller lab showing that the unc-9 transcript is the only C. elegans innexin that is

highly enriched in ventral cord motor neurons (Fox et al. 2005b) (D. Miller,

personal communication).

EM reconstruction has revealed that UNC-7 containing gap junctions with

AVB are consistently localized to the soma of B-class motor neuron partners
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(White et al., 1986).  This finding was confirmed by recent experiments showing

that UNC-7::GFP expression in AVB results in discrete, GFP-stained puncta

adjacent to the cell bodies of B-class motor neurons (counter-stained with the

fluorescent DNA dye, DAPI) (Von Stetina et al. 2007b; Starich et al. 2009b).  In

contrast, gap junctions between the interneuron AVA and A-class motor neuron

partners appear to be randomly located at different positions with respect to the

motor neuron soma (White et al. 1976b).  These results indicate that assembly of

gap junction proteins is not only limited to specific neuron partners but may also

be restricted to specific membrane domains. The mechanisms that regulate the

intracellular trafficking and neuron specificity of gap junction protein assembly are

unknown.

A recent report suggests that hemichannels formed by UNC-7 might be

required for chemical synaptic assembly (Yeh et al. 2009). This model was

initially suggested by the observation that localization of the SYD-2 (α-liprin) to

GABAergic synapses with body muscle is disrupted in unc-7 mutants (Yeh et al.

2009).  A GFP fusion of UNC-10/Rim, also a marker of the active zone, was

similarly disorganized but localization of the synaptic vesicle associate proteins

synaptobrevin and synaptogyrin were normal. This finding suggested that the

unc-7 mutation disrupts active zone assembly but not localization of synaptic

vesicles to the presynaptic region.  An unc-9 mutant produced similar results

suggesting that UNC-7 and UNC-9 may function in a common pathway (Yeh et

al. 2009).  Mutants in unc-7 also show resistance to aldicarb, a cholinesterase

inhibitor, suggesting a defect in synaptic transmission (Yeh et al. 2009).
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Immunostaining revealed that the UNC-7 protein localized to small, punctate

domains in a peri-synaptic region surrounding a central domain that

counterstains with active zone markers (i.e., UNC-49, SYD-2, UNC-10). EM

analysis did not detect classical gap junctions in these locations leading these

authors to propose that UNC-7 and UNC-9 are likely assembling into

hemichannels in the motor neurons. The mechanism whereby gap junction

hemichannel function might regulate synaptic assembly is unknown (Ai et al.

2000; Yeh et al. 2009).

Gap junction regulation by Wnt signaling?

Several experiments have suggested that gap junction connectons may

be regulated by the Wnt signaling pathway.  Injection of Wnt-1 mRNA into the

developing Xenopus embryo increases gap junctional communication between

ventral cells; brighter staining for gap junction proteins was correlated with

enhanced intercellular transfer of Lucifer yellow (Olson and Moon 1992).  Xwnt-8,

a canonical Wnt, also had a similar function, but injection with Xwnt-5A, a non-

canonical Wnt, did not.  The authors speculate that gap junction communication

may be a target of Wnt signaling but the mechanism of this effect is unknown

(Olson et al. 1991). Additional studies in vertebrate systems have linked Wnt

signaling with the expression of connexin proteins (van der Heyden et al. 1998;

Ai et al. 2000; Robinson et al. 2006; Du et al. 2008).  Most studies linking Wnt

signaling to connexin expression were conducted in vitro with cultured vertebrate

cells.  For example, studies in PC12 cells, skeletal myoblasts and MC3T3-E1
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cells, showed upregulation of connexin 43 mRNA and protein with application of

exogenous Wnt ligands or treatment with lithium chloride to activate the Wnt

pathway (van der Heyden et al. 1998; Du et al. 2008). Treatment of

cardiomyocytes with exogenous Wnt increased a co-localization of β-catenin and

connexin 43 (Ai et al. 2000).  This result is especially suggestive of a relationship

between Wnt signaling and gap junction formation as β-catenin was originally

characterized as a component of tight junctions.  It is possible that gap junction

proteins and therefore gap junction assembly may be controlled by the canonical

Wnt signaling pathway.

This link appears to be conserved in other model organisms.  In

Drosophila, foregut development is regulated by a combination of wingless and

hedgehog signaling (Bauer et al. 2002). A mutation in the innexin2 gene, kropf,

disrupted foregut development by preventing an outward buckling of the

endoderm at a specific anatomical location in the midgut known as the “keyhole.”

Normally, cells surrounding the keyhole express Wingless.  Gain-of-function

experiments suggest the involvement of a canonical wingless signaling pathway

as ectopic Armadillo/β-catenin expression causes an increase in the mRNA of

innexin 2. Wingless expression also induces transcription of innexin 2 mRNA in

cell culture (Bauer et al. 2002).

In C. elegans, Wnt signaling opposes the pruning of lateral processes

between left and right AIM neurons that terminate in a gap junction connection

(Hayashi et al. 2009).  This contact between AIM neurons is normally established

during early embryonic development but is eliminated during the first larval stage.
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Local expression of the ligand CWN-2 is required to maintain this process.

Pruning is incomplete in the wildtype but is significantly enhanced by mutations

that disable specific Wnt signaling components.  Of particular interest is the

finding that the Wnt receptor and Ror kinase homolog, CAM-1, is specifically

involved (Hayashi et al. 2009).  Although it is not known if the gap junction

connection between AIML and AIMR is regulated directly by Wnt signaling, this

finding provides an intriguing example of a potential role for Wnt signaling in the

stability of electrical synaptic connections between specific neurons.

UNC-4 controls synaptic specificity in the C. elegans motor circuit.

In C. elegans, coordinated movement depends on specific connections in

the motor circuit involving both chemical synapses and gap junctions (Miller et al.

1992; White et al. 1992a; Starich et al. 2009a). To create this circuit, interneurons

from the head extend processes into the ventral nerve cord where they make

connections with specific motor neuron targets. In turn, motor neurons synapse

with body muscles (White et al. 1976b).  Subnetworks within this circuit are

correlated with movement in either forward or backward directions. Forward

movement is controlled by inputs from interneurons AVB (gap junctions) and

PVC (chemical synapses) to VB and DB motor neurons (Figure 1.9).  The

backward motor circuit consists of a separate set of interneurons AVA (gap

junction and chemical synapse), AVD (chemical synapse), and AVE (chemical

synapse) that synapse with VA and DA motor neurons (White et al. 1976b).  The
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Figure 1.9. unc-4 controls multiple pathways to coordinate synaptic
specificity

A. Structure of the ventral nerve cord of C. elegans.  The VNC contains two basic
motor circuits:  the interneurons (AVB, PVC) and motor neurons in red (DB, VB)
mediate forward locomotion, whereas the neurons in blue mediate backward
locomotion.  B. The VA and VB motor neurons are lineal sister cells that divide
and send processes into the opposite directions.  They then receive inputs from
different circuits and intercalate themselves into the existing nerve fascicle.  C.
UNC-4 functions to repress VB genes in VA motor neurons in wildtype animals.
In unc-4 mutants, parallel pathways, downstream of unc-4 block normal AVA to
VA inputs in favor of inputs from AVB.  Mutations in the transcription factor, ceh-
12, partially restores normal wiring.  blr indicates genes that function in parallel to
unc-4 that are discussed in Chapter 3.

A and B are taken from (Von Stetina et al. 2007b).
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distinct locomotory functions of these circuits are consistent with laser ablation

experiments and genetic results (Chalfie et al. 1985; White et al. 1992b).

Motor neurons within each circuit are comprised of two classes, A-class

motor neurons (DA and VA) that mediate backward movement and B-class motor

neurons that are required for forward locomotion. The members of each class

share common features with A-class motor neurons having anteriorly directed

axonal processes and inputs from AVA, AVD, and AVE and B-class motor

neurons with posteriorly directed axons and connections from AVB and PVC.

These motor neuron classes can be re-grouped according to developmental

origin and other shared morphological features. DA and DB motor neurons are

generated in the embryo and extend commissural processes to the dorsal nerve

cord to synapse with dorsal body muscles whereas VA and VB motor neurons

arise during the first larval stage and extend axons that are retained in the ventral

cord. VA and VB motor neurons are also distinguished by their origins from a

common progenitor cell; VAs arise from the anterior daughter of each neuroblast

Pn.a cell and VBs are generated from the posterior daughter. Because these

neurons arise after the embryonic ventral nerve cord is in place, VA and VB

processes must intercalate themselves into the existing nerve fascicle (Sulston

1976; White et al. 1976a).

Mutations in the transcription factor unc-4 disrupt backward locomotion

(Brenner 1974).  In unc-4 mutants, the usual inputs to VAs from AVA, AVD and

AVE are replaced with connections normally reserved for their VB sisters (i.e.,

gap junction with AVB and chemical synapse from PVC) (Miller et al. 1992; White
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et al. 1992a).  Although VAs adopt the VB pattern of synaptic inputs in unc-4

mutants, VA morphology and process placement in the ventral nerve cord are

normal and VAs retain their anteriorly directed axons (Miller and Niemeyer 1995)

(Figure 1.9). This finding suggests that unc-4 is a “synaptic specificity” gene that

controls synaptic choice but not other morphological features such as axon

guidance that could indirectly alter connectivity.  UNC-4 is expressed in VA and

DA motor neurons. Genetic and biochemical results showing that UNC-4 function

depends on interaction with the conserved transcriptional co-repressor protein

UNC-37/Groucho, are consistent with the hypothesis that UNC-4 preserves VA

inputs by repressing VB genes (Miller et al. 1993b; Pflugrad et al. 1997a; Winnier

et al. 1999).  In this model, ectopic expression of VB-specific genes in unc-4 or

unc-37 mutant VA motor neurons results in the imposition of VB type synaptic

inputs.

The Unc-4 miswiring defect was originally deduced from reconstruction of

EM serial sections of the ventral nerve cord (White et al. 1976a; White et al.

1992b). Recently developed tools now allow us to examine specific gap junctions

and synapses between neurons in this circuit in the light microscope (Von Stetina

et al. 2007a; Feinberg et al. 2008; Starich et al. 2009a).  AVB to VB gap junctions

can be visualized by using a GFP fusion with the gap junction protein UNC-7,

expressed specifically in the AVB interneuron.  AVB makes stereotypic gap

junctions on the motor neuron soma (DB and VB motor neurons in the wild type)

(White et al. 1992a) thereby allowing ready identification of motor neuron

partners from the proximity of UNC-7::GFP puncta adjacent to DAPI-stained
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motor neuron nuclei (Von Stetina et al. 2007a; Starich et al. 2009a).  Chemical

synapses between AVA and A-class motor neurons can also be observed in the

light microscope with a different type of GFP marker.  This approach exploits

split-GFP technology in which one half of GFP is expressed at the synapse by

AVA, and the other half is provided to the synaptic region by VA motor neurons.

In each case, either the N or C-terminal split GFP domains are fused to the

extracellular domain of a synaptically localized membrane protein.  With this

arrangement, discrete GFP puncta are observed at AVA to VA (and AVA to DA)

synapses in the ventral cord.  The specificity of this assay for AVA to A-class

synapses has been verified in unc-4 mutant animals, which display a loss of

GRASP ventral cord puncta (Feinberg et al. 2008).

The hypothesis that UNC-4 functions as a negative regulatory of VB

genes was confirmed by the discovery in the Miller lab that UNC-4 represses

expression of the VB-specific gene, CEH-12/HB9 (Von Stetina et al. 2007a). The

founding member of the family of homeodomain transcription factors, HB9, was

originally discovered to regulate motor neuron identity in birds but has since been

shown to exercise similar roles during both Drosophila and vertebrate motor

circuit development (Arber et al. 1999; Broihier and Skeath 2002).  ceh-12 was

discovered as an unc-4 target gene by cell-specific microarray profiling

experiments which compared transcripts from wildtype and unc-37 mutant VA

motor neurons. The resulting dataset provided a glimpse of a highly complex

regulated system, with 255 genes upregulated in unc-37 mutant animals (Von

Stetina et al. 2007a).
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In unc-4 mutant animals, CEH-12/HB9 is selectively de-repressed in a

subset of VA motor neurons in the posterior region of the ventral nerve cord.

Genetic epistasis experiments showed that ceh-12 expression in these posterior

VAs is required for the miswiring phenotype in unc-4 mutants (i.e., gap junctions

with AVB) but is not necessary for miswiring anterior VAs as predicted by the

pattern of ectopic ceh-12 expression (Von Stetina et al. 2007a). These results

strongly suggest that unc-4 must also regulate additional target genes that

function in parallel to ceh-12 in anterior VAs.

The quest to identify determinants of synaptic choice.

Several questions remained when I began working on the unc-4 project.

Why is ceh-12 derepressed only in posterior VA motor neurons?  What genes

function in parallel to ceh-12?  How does UNC-4 coordinate gap junction and

chemical synaptic specificity in the motor circuit?

The studies described in this dissertation were designed to address these

questions.  In chapter 2, I present a body of work linking two antagonistic Wnt

signaling pathways to the specification of electrical connections in the motor

circuit of C. elegans.  Chapter 3 describes the results of a genetic screens that

identified new loci that regulate the specificity of gap junction inputs to VAs in

pathways the function in parallel to ceh-12.  Chapter 4 features experiments that

highlight the conserved nature of the canonical Wnt signaling pathway in C.

elegans by showing that a small molecule inhibitor of casein kinase Iα (CKIα) in
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mammalian cells is also targets CK1α-dependent Wnt signaling pathways that

operate during C. elegans development.
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CHAPTER II

UNC-4 REGULATES SYNAPTIC CHOICE BY MODULATING ANTAGONISTIC
WNT PATHWAYS IN THE C. ELEGANS MOTOR CIRCUIT

INTRODUCTION

Gap junctions contribute to neuronal signaling by providing a direct

electrical link between neurons.  Comprised of two interlocking hemichannels in

adjacent cell membranes, gap junctions allow the ready movement of ionic

currents between the linked cells.  This role can be important for the proper

function of neuronal circuits. For example, gap junctions formed by connexin 36

in the vertebrate olfactory bulb effectively coordinate spike synchrony within

signaling glomeruli (Christie et al. 2005). In this capacity, electrical synapses are

thought to function as low pass filters allowing electrical current to pass between

two different neurons to alter their polarized electrical potential and firing

frequency (Christie et al. 2005).  Gap junctions play a role in human health.

During an ischemic stroke, the deregulation of gap junction gating has been

implicated as a precipitating factor in neuronal death (Thompson et al. 2006).

The gap junction proteins in vertebrates (connexins) and invertebrates

(innexins) appear to be evolutionarily distinct, although a conserved class of gap

proteins (pannexins) has been recently discovered (Chen et al. 2007b).  Despite

this apparent disparity, connexin and innexin proteins share many similar

characteristics (i.e., formation of hemichannels, a conserved proline residue in
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the second transmembrane domain, and a hypothesized ball-and-chain gating

mechanism) and therefore represent a clear example of convergent evolution

(Bauer et al. 2005; Chen et al. 2007b).

Here, we describe evidence that Wnt signaling pathways control the

specificity of both gap junction and chemical synaptic inputs in the C. elegans

motor circuit. We show that the normal function of unc-4 is to antagonize a Wnt

pathway that otherwise imposes VB-type inputs onto VA motor neurons. In the

absence of unc-4 function, the frizzled receptors MOM-5 and MIG-1 respond to

an available EGL-20/Wnt cue. The resultant activation of a canonical Wnt

signaling pathway induces expression of the homeodomain transcription factor

CEH-12/HB9 in the affected VAs.  Ectopic CEH-12/HB9 expression then results

in VB-like inputs. A surprising additional finding of this work is that a separate

non-canonical Wnt signaling pathway, involving LIN-44/Wnt and the frizzled

receptor, LIN-17, opposes the formation of VB-type inputs. Thus, our work has

identified a complex regulatory mechanism in which exogenous Wnt cues

function in concert with cell autonomous transcription factors to regulate the

specificity of electrical and chemical synaptic connectivity in motor circuit

development.

The experiments described in this chapter were conducted in collaboration

with Rachel Skelton, who performed all of the ceh-12::GFP experiments and the

experiment with the pry-1/Axin mutant.  We also collaborated on the construction

of many double mutant strains and she assisted with the verification of specific

genotypes.  This work would not have been possible without her contributions.
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MATERIALS AND METHODS

Strains and nematode culture.

C. elegans strains were cultured at 20°C, unless otherwise stated, on

NGM media agarose plates inoculated with the E. coli strain OP50-1 (Brenner

1974).  Mutants were obtained from the Caenorhabditis Genetics Center (CGC)

[egl-20(n585), lin-44(n1792), mig-1(e1787), lin-17(n671), mom-5(or57) dpy-

5(e61)/HT2, pry-1(mu38), cfz-2(ok1201), dsh-1(ok1445)], and by the generous

donation from other labs, mom-5(ne12) mig-1(e1781)/HT2 – Gian Garriga Lab,

lin-18(e620) – Bob Horvitz]. Specific mutants used in this study were: unc-

4(e2322ts, e2323, e120), unc-37(e262), ceh-12(gk391), Wnt:  egl-20(n585), lin-

44(n1792)  Frizzled:  mig-1(e1787), lin-17(n671), mom-5(or57) dpy-5(e61)/HT2,

mom-5(ne12) mig-1(e1781)/HT2, cfz-2(ok1201), Ryk: lin-18(e620), Axin: pry-

1(mu38), Disheveled: dsh-1(ok1445).

Molecular Biology.

wdEx611 [pmom-5::GFP, dpy-20(+)]

3kb of the mom-5 5’ promoter was obtained by PCR from genomic DNA

and cloned into the TOPO-XL vector.  mom-5 promoter was then subcloned into

the pPD95.75 (a gift from Andy Fire) vector using the restriction enzymes SalI

and XmaI and verified by sequencing.  The resultant plasmid pSV55 was

microinjected (Fire et al. 1991) with pMH86 (dpy-20+) to produce the transgenic

array. wdEx611 [pmom-5::GFP, dpy-20(+)]
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wdEx636 [punc-4::ΔNT-BAR-1; dpy-20(+)]

The unc-4 promoter was obtained by PCR from the plasmid pSV2 with the

primers punc-4_F2 (CCC GGA ACT GGG ATA TAA TTT C) and punc-4_REV

(ACC GTAT CAT TTT CAC TTT TTG). ΔNT-BAR-1 encodes a constitutively

active β-catenin that lacks C-terminal phosphorylation sites needed for

degradation by the destruction complex (Gleason et al. 2002b). The ΔNT-BAR-1

sequence was generated by PCR from pHCK19 (Gift of Rik Korswagen) with

primers 3'BAR-1_NT  (GCA TGT AGG GAT GTT GAA GA) and the overlap

primer ΔNT-BAR-1_OVER  (CAA AAA GTG AAA ATG ATC GGT ATG GCC

GAC TAT GAG CCG AT). punc-4::ΔNT-BAR-1 was generated by overlap PCR

(Hobert 2002) and microinjected (Fire et al. 1991) with the plasmid pMH86 (dpy-

20+) to produce the transgenic array NC1847 wdEx636[punc-4::ΔNT-BAR-1,

dpy-20+].

Genetics.

Integrated GFP reporters were used in genetic crosses to mark the

chromosome in trans to selected mutants:  euIs82a[unc-129::GFP; dpy-20+] (I),

juIs76[unc-25::GFP; lin-15+] (II), rhIs2[glr-1::GFP] (III), ayIs2[egl-15::GFP] (IV),

mIs11[myo-2::GFP, pes-10::GFP, gut::GFP] (IV), ccIs9753[myo-2::GFP] (V),

oyIs44[odr-1::RFP] (V), oxIs12[unc-47::GFP] (X). The deletion allele of ceh-

12(gk391) was verified by PCR as previously described (Von Stetina et al.

2007b) (Primers:  ceh-12_il (TAT TGC CAA GGA ACAAAG GC) ceh-12_ir (GCT

TGC CAT GCA TTT ACT GA).  egl-20(n585) was verified by the Egl trait and by
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sequencing with primers:  egl-20_SNP_F  (GGC AAT ATT CTC CTC CAT CT),

egl-20_SNP_R  (AA TGA ACT ATG CTG GCT GCC).  mig-1(e1787) was verified

by sequencing with primers (mig-1Ex7_SEQ_F CCT AGG CCA CCA ACT TCA

AA) and (mig-1Ex7_SEQ_R CG CA GAC TTC TCA ACT CTC A). dsh-1(ok1445)

is a 1132 bp deletion and was linked by recombination to unc-4(e120) and unc-

4(e2322ts) and confirmed by PCR using primers (GGA TCT CAT TGC ACC AGC

TG and GG CTC TTC TCT GCT ATT CCT). Other genotypes were verified with

visible phenotypic traits (e.g. abnormal vulva: lin-17, lin-44.  Sterility: mom-5, pry-

1.)

Gene expression.

wdEx310 [ceh-12::GFP; unc-119(+)]

ceh-12::GFP expression was visualized using the transgenic line NC802

wdEx310[ceh-12::GFP; unc-119+] (Von Stetina et al. 2007a). VA and VB motor

neurons were identified under DIC optics by location in the ventral nerve cord.

Each VA and VB neuron was scored for ceh-12::GFP expression (n > 20 for each

neuron, e.g. VA2 or VB3, etc.). The experimenter was blinded to genotype to

prevent bias.  L2 stage worms were scored in Figure 2.1. L3 stage worms were

scored in Figures 2.2, 2.4, and 2.7. Animals were anesthetized with either 0.25%

tricaine/0.025% tetramasol or with 10mM levamisole on a thin 2% agarose pad

and viewed through a coverslip. Statistical significance (p values) were

calculated using Fisher’s Exact Test.
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Frizzled receptors

lin-17::GFP expression was scored using the line KS411 [lin-17(n671);

unc-119(e2498) III; him-5(e1490) V; mhIs9[lin-17::LIN-17::GFP]] obtained from

the CGC (Wu and Herman 2007).  mom-5::GFP was scored using the line

wdEx611 and mig-1::GFP was scored using the line wdEx353 as previously

published (Fox et al. 2005a). Frizzled receptor expression was scored using a

similar methodology to ceh-12::GFP (Von Stetina et al. 2007a).

Anti-GFP immunostaining to detect AVB gap junctions with ventral cord
motor neurons.

The chromosomal integrant NC1694 wdIs54[punc-7::UNC-7S:GFP, col-

19::GFP] unc-7(e5) X was generated by gamma irradiation (4000 Rads)  EH578

(Starich et al. 2009b) and 10X backcrossed into the wildtype N2 strain. Standard

methods were used to cross wdIs54 into other genetic backgrounds (Brenner

1974). Embryos were obtained by hypochlorite treatment and allowed to hatch

overnight in M9 buffer.  The resultant growth-arrested L1 animals were applied to

bacterial feeding plates and gap junctions staining scored in the late L4 larval

stage.  AVB gap junctions with ventral cord motor neurons were detected by anti-

GFP immunostaining as previously described (Von Stetina et al. 2007a).  Motor

neuron soma with adjacent UNC-7S::GFP marked puncta (AVB gap junctions)

were scored in the region of the ventral nerve cord between VA2 and VA11 [e.g.

VA2-VA11, VB3-VB11, DA2-DA7, DB3-DB7, DD2-DD5, VD3-VD11, AS2-AS10,

and VC1-VC6].  At least 10 neurons at each position for each motor neuron class

were observed for a given genotype and assigned a score of gap junction
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'present' or 'absent'. The experimenter was blinded to genotype to rule out bias.

A Fisher's exact test was used to calculate p values (significance is suggested if

p < 0.05) for the presence versus absence of UNC-7S::GFP puncta for each

individual neuron compared between genotypes (e.g. VA2 of wildtype was

compared to VA2 of unc-4).

Microscopy.

ceh-12::GFP-positive neurons were scored in a Zeiss Axioplan

microscope equipped with a Hammamatsu Orca camera. UNC-7S::GFP puncta

(AVB gap junctions) were visualized with a 100x objective lens.  Confocal images

were obtained in an Olympus FV-1000 Inverted confocal microscope with a

60x/1.45 Plan-Apochromat objective lens. DAPI excitation was performed using a

Near-UV/Blue 405nm UV laser, and Cy3 excitation was performed with a 543nm

HeNe laser.  Pseudocolors and image overlays were generated using Olympus

software and Adobe Photoshop.

Movement Assay.

A movement assay was used to detect potential effects of specific mutants

on unc-4-dependent backward locomotion (Von Stetina et al. 2007b). The

experimenter was blinded to genotype to avoid bias.  For each genotype, > 50

L4-young adult animals, grown at 23°C, were tapped a single time on the head

with a platinum wire. Backward movement was scored as either Unc (coiled

instantly with no net backward movement) or as Non-Unc (detectable backward
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movement of posterior region or entire body in locomotory sinusoidal waves)

Statistical tests of differential effects on backward locomotion between

geneotypes were performed using the Fisher's Exact Test.

Lithium chloride treatment.

Lithium chloride was incorporated into NGM plates, resulting in the final

media concentration of 10mM LiCl.  Media was prepared as normal, and mixed

with LiCl solution after autoclaving, immediately prior to pouring.  Control plates

were prepared using an equivalent amount of water in place of LiCl solution.

Worms were synchronized by hypochloride treatment and incubated in M9 buffer

for 15 hours to the L1/L2 larval stage and then placed on LiCl plates and allowed

to grow over 3 days at 20°C.  The tapping assay was performed as described.

Results are compilation of 3 experimental replicates.

Statistical Analysis.

Gap junction connectivity, suppression of unc-4 tapping assay, and ceh-

12::GFP expression data was quantified using a binomial rubric (e.g. GFP was

scored as ‘present’ or ‘absent ‘in a given cell).  In order to accurately calculate

statistical significance between samples, we employed the Fisher’s Exact Test

for significance.  The Fisher’s Exact Test compares binomial categorical data and

is a powerful statistical test at low sample sizes (Motulsky 2010).  It is similar to

the chi-squared test, which is more appropriate to evaluate significance between

two groups with large sample sizes.  Due to the low n of our data (e.g. in our gap
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junction assay approximately 10-15 individual VA2 neurons were scored within a

particular genotype), this test was most appropriate to evaluate statistical

significance.

Pie graphs of tapping assay data, histograms of ceh-12::GFP  data, or line

graphs of UNC-7s::GFP data reflect a percentage of total animals scored.  To

generate these histograms/pie graphs, data from individual experiments were

compared to those previously performed.  For example, tapping assays always

included several positive and negative control strains such as N2, unc-4(e120)

and ceh-12(gk391); unc-4(e120).  Once the tapping assays were complete, we

compared the percentage of animals in each category for a given geneotype,

(e.g. Unc versus Non-Unc) to previous results.  If the tapping assay results were

found to be similar to previous results for our control strains, the experimental

data was included in our analysis.  If these controls were found to be statistically

different than previous results for these controls, the data was discarded and the

blind tapping assay repeated.  If these controls were conclusive, the data was

combined with that from previous experiments.
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RESULTS

EGL-20/Wnt signaling promotes ceh-12 expression in posterior VA motor
neurons.

ceh-12::GFP is exclusively detected in VB motor neurons in the wildtype

ventral nerve cord. In unc-4 mutant animals, ceh-12::GFP is also expressed in a

subset of posterior VA motor neurons. This ectopic ceh-12::GFP expression

obeys an apparent posterior to anterior gradient and is detected more frequently

in VA10 (posterior), than VA6 (mid-body) (Figure 2.1) (Von Stetina et al. 2007b).

We noted that the graded expression of ceh-12::GFP in posterior VAs mimics the

decreasing posterior to anterior gradient of the Wnt ligand, EGL-20 (Whangbo

and Kenyon 1999; Forrester et al. 2004; Coudreuse et al. 2006). We constructed

egl-20; unc-4 double mutants to test the idea that EGL-20/Wnt is required for

ceh-12::GFP expression in VAs.  As shown in Figure 2.1, ceh-12::GFP in

posterior VAs is significantly reduced by the loss-of-function egl-20(n585)

mutation. This result indicates that VA expression of ceh-12::GFP in an unc-4

mutant likely depends on an EGL-20/Wnt signal.  The role for EGL-20/Wnt

appears to be restricted to VA motor neurons, as ceh-12::GFP expression in VB

motor neurons is unaffected by the egl-20/Wnt mutation in both a egl-20 and unc-

4; egl-20 background.
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The Frizzled receptors MOM-5, MIG-1 and the Ryk homolog, LIN-18 are
required for EGL-20/Wnt dependent expression of ceh-12.

The C. elegans genome encodes four Frizzled family Wnt receptors (lin-

17, mig-1, mom-5, cfz-2) and one Ryk receptor (lin-18). To identify specific Wnt

receptors that mediate the EGL-20/Wnt signal, we tested mutants in mig-

1/Frizzled, mom-5/Frizzled and lin-18/Ryk for effects on ceh-12::GFP expression.

We determined that mutation of mom-5/Frizzled reduces ectopic ceh-12::GFP

expression in posterior VA motor neurons in unc-4(e120) (Figure 2.1).  mom-5

suppression is weaker than that seen in the unc-4; egl-20 mutant, however,

which suggested that additional Wnt receptors could be involved. This idea is

supported by the finding that mutations in mig-1/Frz and in lin-18/Ryk also afford

partial suppression of ectopic ceh-12::GFP in posterior VAs in unc-4(e120)

(Figure 2.1) (Pan et al. 2006). Our findings are consistent with earlier studies that

also detected overlapping roles for MOM-5/Frz and MIG-1/Frz in other Egl-

20/Wnt-dependent signaling pathways (Pan et al. 2006).

We note that single mutations in mig-1/Frz, mom-5/Frz or lin-18/Frz do not

disrupt normal VB expression of ceh-12::GFP.  These results are in line with the

finding above that EGL-20/Wnt signaling is not required for ceh-12 expression in

VB motor neurons in the wild type ventral nerve cord.

EGL-20/Wnt expression in the head induces ceh-12::GFP expression in
anterior VA motor neurons.

Our results indicate that the endogenous posterior source of the Wnt

ligand, EGL-20, functions as an instructive cue to drive miss-expression of ceh-
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Figure 2.1. Wnt signaling is required for ectopic ceh-12::GFP in VA motor
neurons.

A. ceh-12::GFP is restricted to VB motor neurons in the wildtype (WT) ventral
nerve cord. In unc-4 mutants, ceh-12::GFP is also detected in posterior VA motor
neurons (see, VA8-VA10).  B. Quantification confirms that ceh-12::GFP is
expressed more frequently in posterior (VA6 - VA10) than anterior VA motor
neurons (VA2-VA5). EGL-20/Wnt is secreted from specific cells in the tail region
to produce a decreasing posterior to anterior gradient. Mutants of egl-20/Wnt, the
frizzled receptors mom-5, mig-1, and the Ryk homolog lin-18 suppress ectopic
ceh-12::GFP in posterior VA motor neurons. Mutant alleles for these experiments
were: unc-4(e120), egl-20(n585), mom-5(or57), mig-1(e1787), lin-18(e620).
* Indicates statistical significance (p < 0.05 Fisher’s Exact Test)
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12 in posterior VA motor neurons in an unc-4 mutant (Figure 2.1). To determine if

EGL-20/Wnt is also sufficient to promote ceh-12::GFP expression, we used a

transgenic line in which EGL-20/Wnt is ectopically expressed in anterior cells

(Pan et al. 2006). As shown in Figure 2.2, an anterior source of egl-20/Wnt

enlarged the region of ectopic ceh-12::GFP expression to include anterior VA

motor neurons in addition to the posterior VAs that normally express ceh-

12::GFP in an unc-4 mutant background (Figure 2.1). Ectopic ceh-12::GFP in

anterior VAs was not observed in a WT background (data not shown) nor in an

unc-4 mutant in the absence of the anterior source of egl-20/Wnt (Figure 2.1).

These data confirm that loss of unc-4 is necessary for activation of ceh-12

expression by egl-20/Wnt and that egl-20/Wnt functions upstream of ceh-12

(Figure 2.1). This result establishes that the unc-4 mutation effectively sensitizes

VA motor neurons throughout the length of the VNC to an available egl-20/Wnt

cue.

To determine if the Frizzled receptor MIG-1, is required for induction of

ceh-12 by this novel anterior source of EGL-20/Wnt, we assayed a mig-1; unc-

4(0) double mutant for ceh-12::GFP expression. As predicted by our model

(Figure 2.3D), mutation of mig-1/Frz attenuated ectopic ceh-12::GFP expression

in anterior as well as posterior VAs.  We attribute residual ceh-12::GFP

expression to the partially redundant function of mom-5 and lin-18 in this pathway

(Figure 2.1).
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EGL-20/Wnt signaling contributes to the Unc-4 movement defect.

The Miller Lab has previously shown that ectopic ceh-12/HB9 is partially

responsible for the backward movement phenotype of unc-4 mutants and has

attributed this incomplete effect to selective de-repression of ceh-12 in posterior

but not anterior VA motor neurons (Von Stetina et al. 2007b). If egl-20/Wnt is

required for ectopic ceh-12 expression in posterior VAs, then this model predicts

that loss-of-function mutations in egl-20 should also partially suppress the Unc-4

backward movement defect.  This phenotype can be detected in a “tapping

assay” in which individual animals are touched on the head to stimulate

backward locomotion. unc-4 mutants are unable to crawl backward and instead

curl dorsally (“Unc-4 phenotype”); Unc-4 suppression is readily detected as

animals that can either sustain or at least initiate backward movement (“non-

Unc”) (see Methods). The missense mutant, unc-4(e2323), was used to sensitize

this assay because ceh-12 mutations afford strong suppression of “weak” or

hypomorphic unc-4 alleles (Von Stetina et al. 2007b).  As shown in Figure 2.3A,

the egl-20 mutation restores backward movement to unc-4(e2323) mutant

animals. As expected, egl-20 also partially suppresses the backward Unc defect

of a hypomorphic mutant of the UNC-4 transcriptional cofactor, unc-37/Groucho

(Figure 2.2A).

We employed an additional genetic test to confirm that egl-20 and ceh-12

function in a common pathway. For this experiment, we utilized the null allele,

unc-4(e120) which is weakly suppressed by ceh-12. If egl-20 is required for

activation of a pathway functioning in parallel to ceh-12, then the ceh-12; egl-20
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Figure 2.2. EGL-20 is sufficient to drive ceh-12::GFP expression in unc-4
mutant VA motor neurons.

A. The plim-4::EGL-20 transgene is expressed in head neurons to produce a
novel source of EGL-20/Wnt. The combined anterior and posterior EGL-20/Wnt
signals induce expression of ceh-12::GFP in nearby unc-4 mutant VA motor
neurons. B. Inactivation of the MIG-1 frizzled receptor in a mig-1 mutant reduces
EGL-20-dependent expression of ceh-12::GFP in unc-4 mutant VA motor
neurons. Mutant alleles for these experiments were: unc-4(e120) and mig-
1(e1787).
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double mutant should show stronger suppression of Unc-4 than either egl-20 or

ceh-12 single mutants alone. However, this experiment shows that egl-20 does

not enhance ceh-12 suppression of unc-4(e120) and therefore favors a linear

model in which egl-20/Wnt and ceh-12/HB9 function in a common pathway

(Figure 2.3B).

To confirm the roles of other components of the egl-20/Wnt pathway in VA

input specificity, we also tested alleles of mig-1 and mom-5 Frizzled receptors for

suppression of the Unc-4 backward movement defect. For these experiments, we

utilized a temperature sensitive mutant, unc-4(e2322ts). In this case, this assay

was sensitized by the use of an intermediate of 23°C at which unc-4(ts) animals

can be strongly suppressed by mutations in either egl-20 (Figure 2.3C) or ceh-12

(Von Stetina et al. 2007b). Our results show that mutations in either mig-1 or

mom-5 result in significant restoration of backward locomotion for unc-4(ts)

(Figure 2.3C).  mom-5 RNAi also strongly suppresses Unc-4 movement (Figure

2.4B). These effects are consistent with the proposed overlapping roles of mom-

5/Frz and mig-1/Frz in unc-4 mutant VA motor neuron miswiring and consequent

backward locomotory defects. Based on these results, we hypothesized that mig-

1 and mom-5 frizzled receptors may function redundantly to promote VB-type

inputs to VAs (Figure 2.2). Consistent with this hypothesis, mig-1 mom-5 double

mutants suppress the Unc-4 backward movement defect in null allele of unc-4

(Figure 2.4A).  A cfz-2/Frz mutant had no effect on the Unc-4 phenotype and is

therefore unlikely to affect VA inputs (Figure 2.3C).



70

Figure 2.3.  Mutants in Wnt pathway genes suppress the Unc-4 movement
defect.

A.  The hypomorphic mutation, unc-4(e2323), displays a partial Unc-4 phenotype
(compare to unc-4(e120) in B).  Mutations in ceh-12 (transcription factor) and in
egl-20(n585)/Wnt restore backward locomotion to e2323 animals. The egl-20
mutant also enhances backward locomotion for a mutation that disables the
UNC-4 transcriptional co-factor protein, UNC-37 (Groucho) B. The backward
locomotion defect for the null allele unc-4(e120) is weakly rescued by ceh-
12/HB9 and egl-20/Wnt mutations; the egl-20 mutant does not enhance ceh-12
suppression of unc-4(e120), a result consistent with model in which egl-20/Wnt
functions upstream of ceh-12. C.  Mutation of mig-1(e1787)/Frz suppresses the
temperature sensitive allele, unc-4(e2322ts), whereas the cfz-2 mutation has no
effect. lin-17/Frz enhances the Unc phenotype of e2322ts.  D. Proposed Model:
UNC-4/UNC-37 antagonize an Egl-20/Wnt signaling pathway that functions
through the Frizzled receptors, MIG-1 and MOM-5 to activate ceh-12 expression
and impose VB type inputs onto VA motor neurons. p values were calculated
using Fisher’s exact test, n > 50 for all genotypes.
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Figure 2.4.  mig-1 and mom-5/Frizzled suppress unc-4.

A.  An egl-20 mutant weakly suppresses the backward move
ment defect of an null allele unc-4(0). Comparable suppression of unc-4(e120)
was observed for a mig-1, mom-5 double mutant. This result is consistent with a
model in which the Frizzled receptors MOM-5 and MIG-1 function downstream of
EGL-20/Wnt to promote miswiring of VA motor neurons in unc-4 mutants. Mutant
alleles were unc-4(e120), egl-20(n585), and mig-1(e1787) mom-5(ne12). B.
RNAi of ceh-12, mom-5 and mig-1 suppress the Unc-4 backward movement
defect in a non-temperature sensitive hypomorphic allele of unc-4(e2323). p
values were calculated with Fisher’s exact test.
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LIN-44/Wnt and LIN-17/Frz oppose ectopic ceh-12 expression in VA motor
neurons.

In contrast to mutations in mig-1/Frz and mom-5/Frz, which suppress the

Unc-4 backward movement defect, we discovered that a lin-17/Frz mutant

appeared to enhance the Unc-4 phenotype (Figure 2.3C). This effect is

particularly evident at the permissive temperature of 16°C at which unc-4(ts)

animals display wildtype backward movement. Backward locomotion at 16°C is

significantly impaired in the lin-17; unc-4(ts) double mutant in comparison to

either unc-4(ts) or lin-17/Frz single mutants. In addition, lin-17 alone shows a

weak backward Unc defect (Figure 2.5A). One explanation for these results is

that LIN-17/Frz normally functions to prevent ectopic expression of ceh-12 in VA

motor neurons. This model is consistent with experiments showing that over-

expression of CEH-12 protein in VAs is sufficient to induce an Unc-4-like

movement defect (Von Stetina et al. 2007b). To test this idea, we examined ceh-

12::GFP expression in a lin-17; unc-4(0) double mutant. As shown in Figure

2.5B, the lin-17 mutation expands the region of ectopic ceh-12::GFP to include

anterior as well as posterior VAs. A mutation in lin-44/Wnt produces a similar

effect of enhancing the Unc-4 phenotype to include ectopic ceh-12::GFP in

anterior VAs. These results support the hypothesis that LIN-44/Wnt and LIN-

17/Frizzled function to preserve wildtype VA inputs by blocking expression of

ceh-12. We propose that the LIN-44/Wnt dependent signaling opposes the egl-

20/Wnt pathway that promotes ceh-12 expression and the consequent imposition

of an alternative set of VB-type motor neuron input.
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Figure 2.5.  LIN-44/Wnt and LIN-17/Frz block ceh-12 expression that
imposes the Unc-4 movement defect.

A. A lin-17(n671) mutation enhances the backward movement defect of the
temperature sensitive unc-4(e2322ts) allele at the permissive temperature of
16°C. B.  lin-44(n1792) and lin-17(n671) mutations result in ectopic ceh-12::GFP
expression in anterior VA motor neurons in an unc-4(0) mutant.  This ectopic
expression is in addition to the posterior VAs in which ceh-12::GFP is expressed
in a lin-17(+) and lin-44(+) background.  C.  Proposed model: LIN-44/Wnt and
LIN-17/Frz oppose ceh-12 expression to preserve wildtype VA inputs.



74

Opposing Wnt signaling pathways regulate the specificity of interneuron
gap junction with VA motor neurons.

Reconstruction of the C. elegans ventral nerve cord from serial electron

micrographs (EM) established that the interneuron AVB makes gap junctions with

DB and VB motor neurons (White et al. 1976a). These connections can be

visualized in the light microscope with a GFP-tagged gap junction protein

(innexin), UNC-7S::GFP, expressed in AVB. Localization of UNC-7S::GFP

puncta adjacent to the motor neuron cell soma allows ready identification of AVB

partner motor neurons in animals counter-stained with a DNA dye (DAPI)

(Starich et al. 2009a). We have previously used UNC-7S::GFP to show that ceh-

12/HB9 is required for the creation of AVB gap junctions with posterior but not

anterior VAs (Von Stetina et al. 2007b). Therefore, if EGL-20/Wnt signaling is

necessary for ectopic expression of ceh-12/HB9 in posterior VA motor neurons

as our model suggests (Figure 2.5), then these aberrant AVB gap junctions with

posterior VAs should be eliminated in egl-20 mutants. As shown in Figure 2.6,

the frequency of UNC-7S::GFP puncta associated with posterior VA motor

neurons is substantially reduced in an unc-4; egl-20 double mutant. A similar

effect is noted for mig-1; unc-4 in which ectopic AVB gap junctions with posterior

VAs are reduced in comparison to the unc-4 mutant alone (Figure 2.6C).  These

results are consistent with the proposal that EGL-20/Wnt and MIG-1/Frz function

together to promote ceh-12/HB9 expression leading to the creation of gap

junctions between AVB and VA motor neurons.
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Figure 2.6.  EGL-20/Wnt signaling promotes the creation of ectopic AVB
gap junctions with posterior VA motor neurons.

A. Posterior ventral nerve cord depicting AVB gap junctions (green puncta)
adjacent to cell soma (red filled circles) of motor neuron partners in wildtype and
in unc-4 mutants. B. Confocal images of posterior ventral nerve cord with UNC-
7S::GFP puncta (green) and motor neuron nuclei stained with DAPI (red).
Lateral view of adult with anterior to left, ventral down. A mutation in mig-1
suppresses the creation of AVB gap junctions with VAs. Scale bar is 5 um. C.
Mutations in egl-20, mig-1 and ceh-12 rescue the AVB miswiring defect for
posterior unc-4 mutant VA motor neurons and for VA2. (Mutations in mig-1
rescue gap junctions in VA9 and VA10) (n > 10 for each VA) p values were
calculated with Fisher’s exact test. * p < 0.05. Mutant alleles were unc-4(e120),
ceh-12(gk391), mig-1(e1787), egl-20(n585).
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Our finding that mutations in lin-17/Frz enhance the Unc-4 movement

defect and also result in ectopic ceh-12::GFP expression predicts that LIN-17/Frz

functions to antagonize the formation of AVB to VA gap junctions. We used the

UNC-7S::GFP gap junction marker to test this idea. As shown in Figure 2.7A,

ectopic UNC-7S::GFP puncta are detected adjacent to VA motor neurons VA6

and VA10 in the lin-17 mutant. Although aberrant AVB gap junctions are limited

to a subset of VAs in this experiment, these effects are statistically significant and

are also consistent with the mild backward movement defect of the lin-17 mutant

(Figure 2.5A). The strong lin-17-dependent enhancement of the Unc-4 movement

phenotype (Figure 2.5A) suggests that LIN-17/Frz is likely to function in all VAs to

oppose the creation of AVB to VA gap junctions. Taken together, the results of

our assays with the UNC-7S::GFP marker support the hypothesis that LIN-17/Frz

prevents the imposition of AVB inputs with VA motor neurons by opposing the

activity of an EGL-20/Wnt signaling pathway that functions through mom-5/Frz,

mig-1/Frz and lin-18/Ryk.

Frizzled receptors are expressed in VA motor neurons.

Our model predicts that the MOM-5, MIG-1, and LIN-17 frizzled receptors

and LIN-18/Ryk function cell autonomously in VA motor neurons.  mig-1

expression in VAs is supported by cell-specific microarray results and

experiments with a mig-1::GFP reporter gene (Von Stetina et al. 2007a). lin-17 is

expressed in the closely-related embryonic DA motor neurons
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Figure 2.7.  LIN-17/Frz inhibits miswiring of VA motor neurons with AVB
gap junctions.

A. Posterior region of ventral nerve cord showing AVB gap junctions (green
puncta) with motor neuron soma (red filled circles) B. Confocal image of lin-17
mutant showing ectopic AVB gap junction (green puncta) on VA10 soma of
DAPI-stained motor neurons (red). Lateral view of adult, anterior to left, ventral
down. Scale bar is 5 um. Aberrant AVB to VA gap junctions are observed on VA6
and VA10 in a lin-17(n671) mutant in comparison to a wildtype background.
Wildtype and unc-4(e120) results shown here are also depicted in Figure 2.6.  n
> 10 for each VA motor neuron. p values were calculated by Fisher’s exact test
for comparison of lin-17 vs wildtype results. * p < 0.05.
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l(Klassen and Shen 2007; Von Stetina et al. 2007b) (Table 2.1) and a plin-

17::LIN-17::GFP transgenic line also shows expression in VAs (data not shown).

Finally, a 3kb promoter wdEx611[mom-5::GFP] fusion is expressed in several

ventral cord motor neurons including VAs (Figure 2.8). These results suggest

that the Frizzled receptors MOM-5, MIG-1 and LIN-17 may be constitutively

expressed in wildtype VA motor neurons.  (We have not verified the expression

pattern of LIN-18/Ryk.)  However, microarray results have shown that both the

mom-5 and mig-1 transcripts are significantly upregulated in VA motor neurons

when the unc-4 pathway is disabled by an unc-37/Groucho mutant (Von Stetina

et al. 2007b) (Table 2.1). This finding requires confirmation (see Discussion) but

offers the intriguing possibility that unc-4 effectively quells the VA motor neurons

response to EGL-20/Wnt by preventing MOM-5 and MIG-1 levels from exceeding

a critical threshold.

UNC-4 Antagonizes a canonical Wnt signaling pathway.

Wnt signaling pathways are generally classified as either canonical or

non-canonical. In C. elegans, canonical signaling involves the transcription factor

β-catenin, BAR-1. In this pathway, Wnt signaling stabilizes BAR-1 by inhibiting

the activity of a so-called “destruction complex” that includes the conserved

proteins Axin, GSK3β, and Casein Kinase Iα.  In the absence of a Wnt signal, the

destruction complex phosphorylates cytosolic β-catenin, leading to its

degradation.  Thus, if BAR-1/β-catenin functions in a canonical pathway to
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Figure 2.8.  Frizzled Receptors are expressed in VA motor neurons.

Two GFP reporters to wdEx611[mom-5::GFP] and wdEx353[mig-1::GFP] show
GFP expression in VA motor neurons.  L2 animals are shown.  Scale bar is 5
microns.
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Microarray Data GFP reporters
Wnt Receptors 1,2DA 3,4 WT VA 5unc-37 VA Transgenics VA
mom-5 EG EG 1.8X mom-5::GFP Yes
mig-1 EG 1.6X 1.8X mig-1::GFP Yes
lin-17 1.7X ND ND lin-17::GFP Yes
cfz-2 ND EG ND ?
lin-18 ND ND ND ?
cam-1 EG EG ND ?
11471-2164-6-42-s7.xls
21471-2164-6-42-s9.xls
3gb-2007-8-7-r135-s13.xls
4gb-2007-8-7-r135-s4.xls
5unc-37 up anno 071806 no dups no DA cat.xls

Table 2.1.  Microarray results suggest Wnt receptors are expressed in A-
class motor neurons and are regulated by UNC-4.

Frizzled receptors mom-5 and mig-1 are detected in VA and DA motor neurons.
by both microarray results and GFP reporters.  mom-5 and mig-1 transcripts are
also upregulated in unc-37 mutant animals, suggesting that unc-4 functions to
regulate the expression, and thus sensitivity of VA motor neurons to a Wnt
signal.  lin-17 mRNA is detected in DA motor neurons, but is not in VAs,
however, our GFP reporter data suggests that lin-17 is expressed in VA motor
neurons.

Footnotes refer to file names of microarray data sets showing relative expression
levels of Wnt receptors in DA/VA motor neurons.  EG refers to “expressed
genes” that are detected but not enriched (Fox et al. 2005a; Von Stetina et al.
2007a).
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promote VA miswiring, then a loss-of-function bar-1 mutation should suppress

this defect. We observe weak suppression of unc-37(e262) in the tapping assay

(Figure 2.9B) but not unc-4 mutants (Figure 2.9D is not statistically significant p >

0.05). One explanation for this ambiguous result is that bar-1 mutant animals are

Unc possibly due to a required function in another motor neuron class

(Vashlishan et al. 2008) and are thus difficult to score in our movement assay.

To resolve this question, we performed four additional experiments to test

the requirement of the destruction complex in the Unc-4 phenotype. In C.

elegans, genetic ablation of pry-1/Axin effectively over-activates canonical Wnt

signaling by preventing degradation of BAR-1/β-catenin. It follows that if PRY-

1/Axin negatively regulates EGL-20/Wnt-dependent signaling in VA motor

neurons, then a pry-1 mutation should constitutively activate this pathway. We

tested this idea by exploiting the temperature sensitive unc-4(ts) allele which is

capable of wildtype backward locomotion at the permissive temperature of 16°C.

pry-1 animals also show normal movement at this temperature. Backward

locomotion is strongly impaired, however, in the pry-1; unc-4(ts) double mutant

(Figure 2.10A). This synthetic Unc-4 phenotype is consistent with a model in

which both unc-4 and pry-1 function as negative regulators of a Wnt pathway that

leads to VA miswiring (Figure 2.10).

In the second experiment to test the role of the destruction complex in the

VA miswiring defect, we treated animals with LiCl to inhibit GSK3β activity and

thus hyperactivate canonical Wnt signaling. As shown in Figure 2.10A, treatment

of wildtype animals induces a strong backward movement defect. This LiCl-
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Figure 2.9.  Inhibition of intracellular canonical Wnt signaling suggests
EGL-20 functions via a canonical mechanism.

A.  Lithium is a potent GSK3β inhibitor.  N2 and ceh-12 mutant animals have
normal backward locomotion.  Treatment of a synchronized population of L1/L2
animals with 10 mM LiCl induces a backward Unc phenotype.  Mutations in ceh-
12 partially attenuate the backward Unc phenotype.  Results shown are the sum
of three individual experimental replicates. B. Mutants in the intracellular effector
protein dsh-1 rescues unc-4(e120).  B + D. bar-1/β-catenin mutations suppress
unc-37(e262) but not alleles of unc-4(e120, e2323). * p > 0.05 using Fisher’s
Exact Test.
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Figure 2.10. Canonical wnt pathway components, PRY-1/Axin and BAR-1/β
catenin regulate ceh-12 expression and VA motor circuit function.

A.  A mutation in the Axin homolog pry-1 enhances the Unc-4 phenotype of
temperature sensitive allele, unc-4(e2322ts) at permissive temperature (16°C).
Backward movement was scored in the tapping assay as either Unc (no backing)
or non-Unc (detectable backward movement) (see Methods). (n > 50 * p < 0.05
Fisher’s exact test).  B. Expression of constitutively active β-catenin/BAR-1 in
wildtype VA motor neurons induces ectopic ceh-12::GFP. VA expression of ceh-
12::GFP in unc-4(e120) is also depicted in Figure 2.1.  The extrachromosomal
array wdEx636[unc-4::delNT-BAR-1] induces ectopic ceh-12::GFP in VA motor
neurons.  C.  wdEx636 induces an Unc-4 phenotype at low frequency.  D.
Proposed model: LIN-44/WNT signaling and UNC-4 antagonize a canonical Wnt
signaling pathway that promotes ceh-12 expression and the miswiring of VA
motor neurons with VB-type inputs.
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induced Unc-4 phenotype is attenuated in a ceh-12 null mutant, a result

predicted by a model in which VA miswiring depends on activation of ceh-12

expression by canonical Wnt signaling.

If inhibition of the destruction complex by either the pry-1/Axin mutation or

by LiCl treatment, prevents degradation of BAR-1/β-catenin, then a constitutively

active BAR-1/β-catenin protein should produce a similar phenotypic effect.  In our

third experiment, we tested this prediction with ΔNT-BAR-1, a truncated β-catenin

protein lacking N-terminal phosphorylation sites that trigger Axin/GSK3-mediated

degradation (Gleason et al. 2002a). Selective expression of ΔNT-BAR-1 in A-

class motor neurons results in an Unc-4-like movement defect resembling that

produced by CEH-12/HB9 overexpression (Figure 2.10C) (Von Stetina et al.

2007b).  Moreover, the punc-4::ΔNT-BAR-1 transgene also induces ectopic ceh-

12::GFP expression in VA motor neurons in which wildtype unc-4 function is

intact (Figure 2.10B).  In summary, activation of a canonical Wnt signaling

pathway by three independent approaches pry-1/Axin mutation, LiCl-treatment,

and constitutively active BAR-1/β-catenin. phenocopies Unc-4 and therefore

supports a model in which UNC-4 antagonizes a canonical Wnt signaling

pathway to prevent ceh-12/HB9 expression and VA miswiring.

In a final experiment, we utilized the canonical Wnt-pathway inhibitor,

pyrvinium, to correlate activity of the destruction complex with the Unc-4

phenotype. As described in Chapter 4, experiments performed by Curtis Thorne

in Ethan Lee’s lab have shown that pyrvinium interacts with Casein Kinase 1α to
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Figure 2.11.  Pyrvinium suppresses the unc-4 movement defect in unc-
4(e2322ts) animals at 23°C.

Treatment of unc-4(e2322ts) animals with the Caesin Kinase Iα activator,
pyrvinium, suppresses the Unc-4 backward movement defect in a dose
dependant manner.  Results shown are derived from two replicate experiments.
unc-4(ts); egl-20(n585) tapping assay result shown for comparison.
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activate the destruction complex and downregulate β-catenin. Experiments that I

performed (Chapter 4) have confirmed that pyrvinium inhibits other

developmental processes (neuroblast migration, vulval morphogenesis) in C.

elegans that depend on canonical Wnt signaling (Thorne et al., submitted). We

tested the hypothesis that unc-4 antagonizes a canonical Wnt pathway by

activating CK1α with pyrvinium. As shown in Figure 11, pyrvinium treatment

suppresses the Unc-4 movement defect of the unc-4(ts) hypomorphic allele.

Taken together, our results provide strong support for the hypothesis that UNC-4

preserves VA type synaptic inputs by antagonizing an EGL-20/Wnt dependent

canonical signaling pathway.

DISCUSSION

This chapter describes the discovery that Wnt signaling controls the

specificity of motor neuron inputs in the C. elegans ventral nerve cord. Our

findings underscore the conserved role of Wnt in patterning neural connections

and provide a potentially new model for how this evolutionarily ancient cue can

regulate synaptic specificity. For these studies, we exploited a simple, well-

defined circuit in which sister VA and VB motor neurons are connected to

separate sets of pre-synaptic interneurons. We propose a model in which UNC-4

preserves normal VA motor neuron inputs by preventing VAs from responding to

a local EGL-20/Wnt cue, possibly by repressing transcription of specific frizzled

receptors, MOM-5 and MIG-1; in unc-4 mutants, a canonical Wnt signaling
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pathway is activated to drive expression of the VB gene, CEH-12/HB9, and the

consequent rewiring of VA motor neurons with VB-type inputs. A more complex

role for Wnt signaling in this model is revealed by our discovery of a separate

pathway, involving a distinct Wnt ligand (LIN-44) and frizzled receptor (LIN-17),

that antagonizes ceh-12/HB9 expression. Thus, our results have revealed

competing pathways that drive the creation of alternative sets of specific

connections in a functional motor circuit. The strong conservation of the

transcription factors and Wnt signaling components that regulate these events

suggests that similar mechanisms may also control regional wiring specificity in

more complex nervous systems.

UNC-4 may control the sensitivity of VA motor neurons to an EGL-20/Wnt
signal.

Our genetic evidence indicates that UNC-4 antagonizes a canonical Wnt

signaling pathway that is activated by EGL-20/Wnt. VA motor neurons located in

the posterior ventral nerve cord in a region near EGL-20/Wnt expressing cells in

the C. elegans tail region are uniquely responsive to EGL-20 in unc-4 mutants.

This finding indicates that one important function of UNC-4 is to prevent this

subset of posterior VAs from responding to a local Wnt cue. Because similar

effects are observed for a mutant that disables the transcriptional co-repressor

protein, UNC-37/Groucho, it seems likely that the critical role of UNC-4 is to block

expression of specific target genes. The de-repression of ceh-12/HB9 in these

posterior unc-4 mutant VA motor neurons is a clear indication of this possibility.

We also have results from a microarray experiment that are consistent with the
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alternative possibility that UNC-4 prevents VA motor neurons from responding to

EGL-20/Wnt by blocking transcription of the frizzled receptors mom-5 and mig-1.

However, experiments with promoter-GFP reporter genes for mig-1 and mom-5

did not detect de-repression in either unc-4 or unc-37 mutants (data not shown).

In the future, it will be important to resolve this question. We have recently

established a collaboration with Rik Korswagen (Hubrecht Institute, The

Netherlands) who has developed a new, in situ hybridization method based on

FISH technology that could answer this question by directly measuring

endogenous mom-5 and mig-1 transcript levels in the VAs in wildtype and unc-4

mutant animals.

Connectivity experiments suggest an anterior source of EGL-20/Wnt.

Our model should also account for the surprising finding that the motor

neuron VA2, which is located at the anterior end of the ventral nerve cord,

appears to be as responsive to EGL-20/Wnt as VA motor neurons at the posterior

end of the nerve cord. This conclusion is based on our finding that loss of

function mutations in either egl-20 or its presumptive frizzled receptor, mig-1,

suppress Unc-4 miswiring (gap junctions with AVB) of VA2 as well as that of VA9

and VA10 (Figure 2.6). This result suggests that VA2 is unusually responsive to

the distal EGL-20 cue originating with posterior cells or that another local,

anterior source of EGL-20 is involved. A similar hypothesis has been proposed to

explain the effect of LIN-44, which is also highly expressed in the tail, on vulval

development in the midbody region.  In that case, a hypothesized lin-44/Wnt
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signal expressed in the nearby anchor cell is necessary for coordinating

asymmetric cell divisions (Green et al. 2008).

EGL-20 activates a canonical Wnt signaling pathway.

Our genetic and pharmacological results demonstrating roles for the

destruction complex and for BAR-1/β-catenin in the Unc-4 miswiring phenotype,

strongly suggest that EGL-20/Wnt activates a canonical Wnt signaling pathway.

This assumption is based on the observation that the destruction complex and

BAR-1 are exclusively employed by canonical Wnt signaling pathways in C.

elegans. Additional evidence in support of this hypothesis is our finding, reported

in Chapter 3, that mutations in pop-1/TCF, were isolated as weak suppressors of

the Unc-4 movement defect. This genetic epistasis result is consistent with a

canonical signaling model in which BAR-1/β-catenin activates POP-1/TCF to

promote transcription of ceh-12/HB9. The ceh-12 promoter contains a consensus

POP-1/TCF binding site but biochemical experiments are needed to determine if

POP-1 function is required in this pathway in vivo. It will also be interesting to

explore the mechanism whereby the Ryk receptor, LIN-18, contributes to readout

of the EGL-20/Wnt signaling cascade. Finally, our results show that a separate

Wnt signaling pathway activated by LIN-44/Wnt and LIN-17/Frz oppose the EGL-

20-dependent signaling. The downstream elements of the lin-44/lin-17 pathway

are unclear. One possible model is suggested by recent reports of a non-

canonical pathway responsible for asymmetric neuroblast divisions.  (Bertrand

and Hobert 2009; Hingwing et al. 2009)  In these studies, the β-catenins sys-1
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and wrm-1 interact with the POP-1/TCF to specify cell fate. A high SYS-1:POP-1

ratio in the nucleus produces an anterior neuron fate whereas a low SYS-1:POP-

1 ratio results in a posterior neuron fate.  In this context, LIN-44/LIN-17 signaling

could be promoting an A-class wiring phenotype independently of unc-4, by

enhancing an anterior neuronal fate through the β-catenin asymmetry pathway.

Future experiments are needed to explore this model.

unc-4 controls gap junction specificity by modulating Wnt signaling.

Our results indicate that unc-4 controls gap junction specificity by

modulating the output of two distinct Wnt signaling pathways in VA motor

neurons.  Normally, lin-17/Frizzled functions in VA motorneurons and acts in

parallel to unc-4 to antagonize ceh-12 expression and inputs from AVB.  UNC-4

performs this function by antagonizing the sensitivity of VA motor neurons to a

posterior EGL-20/Wnt signal, hypothetically by controlling the expression of the

Frizzled receptors mom-5 and mig-1 in VA motor neurons.  Once VA motor

neurons become sensitized, EGL-20 activates a canonical Wnt pathway to turn

on ceh-12 and VAs receive ectopic inputs from AVB.

One hypothesis suggests that the choice between AVB versus AVA inputs

may be due to the relative location gap junction proteins are positioned on the

cell body.  AVB makes connections directly with cell soma of motor neurons

whereas AVA makes gap junctions with neuronal processes.  This subcellular

compartmentalization may be play a role in the specification of these particular

inputs.  Wnt signaling has been previously shown to regulate neuromuscular
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junction location via compartmentalization.  In the dorsal projecting motor neuron,

DA9, pre-synaptic components are restricted to the dorsal, longitudinal process

where DA9 normally makes neuromuscular junctions onto dorsal muscles

(Klassen and Shen 2007).  The dorsal projecting process, where LIN-17 is

expressed is devoid of pre-synaptic components.  Loss of lin-17/Frizzled results

an expansion of pre-synaptic domain into the former location of LIN-17

expression.  Thus, LIN-17 is restricting the pre-syanptic domain and

compartmentalizing this neuron.  Since Wnt signaling has been shown to control

the subcellular compartmentalization of pre-syaptic components, it is also

possible that it may have a similar effect on gap junction proteins.   If this is the

case, it may be  possible to miswire a VA motor neuron by targeting the post-

synaptic gap junction components to a different subcellular domain.

Conclusions.

This study, and recently reported results from other laboratories, indicate

that synaptic specificity may be regulated by non-cell autonomous cues that do

not originate with the synaptic partner neurons (Klassen and Shen 2007; Poon et

al. 2008; Pecho-Vrieseling et al. 2009).  Here, we show that two different

exogenous Wnt signals trigger transduction pathways that operate within a

common cytoplasm to promote opposite patterns of synaptic inputs. Our results

indicate that UNC-4 functions to bias one outcome versus the other. It is

interesting to note, however, that the necessity for this UNC-4 activity is limited to

a subset of VA motor neurons that are responsive to EGL-20. Other VAs, which
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are also miswired in unc-4 mutants, must therefore depend on additional cell-

specific unc-4 regulated pathways. Genetic experiments described in the Chapter

3 were designed to identify genes in these additional unc-4-regulated pathways.



93

Strain % Unc % Non-Unc
WT 0 100
unc-4(e2320) 98 2
unc-4(e120) 99 1
ceh-12(gk391); unc-4(e120) 54 46
ceh-12(gk391); unc-4(e2320) 58 42
dsh-1 unc-4(e120) 84 16
unc-4(e120); egl-20(n585) 87 13
unc-4(e2320); egl-20(n585) 46 54

ceh-12(gk391); unc-4(e120); egl-20(n585) 65 35

ceh-12(gk391); unc-4(e2320); egl-20(n585) 69 31
unc-4(e2320); bar-1(mu39) 99 1
unc-4(e120); bar-1(ga80) 99 1
unc-4(e120); egl-20(n585); bar-1 99 1
unc-4(e120); dpy-20 wdEx636 100 0

mig-1(e1787) mom-5(ne12)/Ht2 12 88
mig-1(e1787) mom-5(ne12)/Ht2; unc-4(e120) 90 10

dpy-20 wdEx636 20 80
ceh-12(gk391); dpy-20 wdEx636 40 60

lin-17 lin-44 MT4705 4 96
lin-17 lin-44; unc-4(e120) 94 6

egl-20(n585) 36 64
egl-20(n585); bar-1(mu39) 7 93

unc-37(e262) 87 13
unc-37(e262); bar-1(mu39) 64 36
unc-37(e262); egl-20(n585) 70 30

unc-4(e2323) 63 38
ceh-12(gk391); unc-4(e2323) 6 94
unc-4(e2323); egl-20(n585) 13 87
unc-4(e2323); bar-1(mu39) 54 46
unc-4(e2323); dpy-20 wdEx636 74 26
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at 23 C
unc-4(e2322ts) 80 20
unc-4(e2322ts); egl-20(n585) 22 78
unc-4(e2322ts); bar-1(ga80) 81 19
unc-4(e2322ts); bar-1(mu39) 69 31
unc-4(e2322ts); egl-20(n585) 29 71

at 23 C
WT 0 100
unc-4(ts) 80 20
unc-4(ts);egl-20 26 74
unc-4(ts);lin-44 70 30
unc-4(ts);mig-1 42 58
unc-4(ts);mom-5(or57) 67 33
unc-4(ts);lin-17 90 10
unc-4(ts) dsh-1 29 71
unc-4(ts);bar-1(ga80) 42 58
unc-4(ts);pop-1 22 78

at 16C
unc-4(e2322ts) 0 100
lin-17 10 90
unc-4(e2322ts); lin-17 55 45
pry-1 0 100
unc-4(e1222ts);pry-1 38 62

unc-4(e2322ts) 0 100
lin-17 10 90
unc-4(e2322ts); lin-17 55 45
pry-1 0 100
unc-4(e1222ts);pry-1 38 62

N2 0 100
ceh-12 1 99
N2 + 10mM LiCl 77 23
ceh-12 + 10mM LiCl 62 38

Table 2.2.  Compilation of Tapping Assay Data.

Percentages of Unc versus Non-Unc animals in each genetic background tested
are listed here.  n >50 for each geneotype tested.
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CHAPTER III

GENETIC SCREENS IDENTIFY NEW UNC-4 SUPPRESSOR LOCI THAT
FUNCTION THROUGH PATHWAYS IN PARALLEL TO CEH-12 TO

REGULATE SYNAPTIC CHOICE

INTRODUCTION

Coordinated movement depends on the creation of specific connections in

the motor circuit. Interneurons that enter the axial nerve cord synapse with

selected motor neuron targets to establish functional circuits.  Guidance cues

and receptors that steer interneurons to their destinations have been identified

but much less is known about how neurons choose synaptic partners.

Recent work has revealed that target recognition may depend on local,

extracellular cues.  For example, studies of the Drosophila neuromuscular

junction have implicated the diffusible morphogen Wnt in targeting the

appropriate muscle for innervation (Inaki et al. 2007).  Differential microarray

experiments identified Wnt4 as a local repulsive cue that prevents motor neurons

destined for muscle M12 from innervating M13 (Inaki et al. 2007). In this case,

motor neurons that innervate M13 are intrinsically insensitive to Wnt4 whereas

motor neurons that innervate M12 are repelled (Inaki et al. 2007).  A similar role

for a repulsive cue has been observed in the developing vertebrate spinal cord.

Central synaptic connections between selected pools of motor and sensory

neurons are altered by changing the PlexinD1-SemaE3 signaling system (Pecho-

Vrieseling et al. 2009).  In the wild type animal, sensory afferents from a specific
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muscle synapse with relay neurons which in turn connect with motor neurons that

innervate the same muscle.  However, genetic ablation of either the Sema3e

ligand or its receptor Plexnd1 results in the inappropriate targeting of sensory

afferents to motor neurons (Pecho-Vrieseling et al. 2009).  This result suggests

that Sema3e-Plexnd1 signaling prevents the creation of direct inputs from

sensory neurons to motor neurons in this circuit (Pecho-Vrieseling et al. 2009).

Chapter 2 described experiments that characterize how UNC-4 regulates

ceh-12 expression to control motor neuron inputs.  Our previous data suggest

that UNC-4 regulates multiple pathways, which function in parallel to ceh-12, to

specify inputs to VA motor neurons.  In an effort to identify genes that function in

these parallel pathways, we utilized a sensitized genetic screen to isolate

mutations that suppress the Unc-4 backward movement defect.  This idea is

based on the observation that mutations that disable ceh-12 or its upstream egl-

20/Wnt signaling pathway partially restore backward locomotion to an unc-4

mutant.  Thus, we reasoned that mutations in unc-4-regulated genes functioning

in parallel pathways should also result in Unc-4 suppression. (Figure 3.1)  Our

approach has uncovered 16 independent complementation groups with a Blr

(Backward Locomotion Restored) phenotype.  These blr loci include components

of the egl-20/Wnt pathway in addition to genes that antagonize unc-4 dependent

wiring in anterior VA motor neurons. Future molecular analysis of these loci

should reveal genes with key roles in synaptic choice.
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My contribution to this project was to oversee the project goals, perform

the genetic screens, outcross the blr mutants, complete restriction endonuclease

single nucleotide polymorphism (‘SNIP’ SNP) mapping experiments, construct

genetic strains, perform movement assays, and use GFP markers to score gap

junction and chemical synaptic inputs to VA motor neurons.  I have been

fortunate to work with several additional individuals who have also contributed to

this project.  Of particular note, this work was performed in collaboration with

Rachel Skelton, who assisted with outcrossing, mapping, and complementation

tests for blr mutations.  Rachel also scored the gap junctions for wd83 and wd95.

Dan Ruley, an undergraduate from the College of Wooster, performed many of

the SNIP SNP PCR gels.  Zhaoying Xu, an undergraduate from Grinnell College,

characterized wd88 by verifying the mapping results for wd88, constructing

strains with wd88, and assisting with wd88 gap junction scoring.  Skye Baccus,

an undergraduate from Vanderbilt, verified SNIP SNP mapping data for wd76

and constructed strains with wd87.  Kristy Hamilton, a Vanderbilt undergraduate,

worked on wd95 with Rachel.  Ian Boothby, a high school senior at Hume-Fogg,

created strains with multiple blr mutations and assisted with validating previous

results.
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Figure 3.1. UNC-4 controls multiple, parallel pathways to specify VA inputs.

A.  The postembryonic VA and VB motor neurons arise from a common
progenitor and receive inputs from different sets of command interneurons.  VAs
receive inputs from interneurons (AVA, AVD, AVE) that drive backward
locomotion and VB motor neurons are connected to interneurons (AVB, PVC)
that control forward movement.  B. UNC-4 functions with UNC-37 to repress VB
genes.  C. Mutations in unc-4/37 cause de-repression of at least two targets,
including the VB gene ceh-12/Hb9.  D. Mutations in ceh-12, cause the partial loss
of gap junction inputs from the forward circuit, improving locomotion.  E.
Mutations in both downstream pathways depicted in this schematic should
restore backward locomotion.
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MATERIALS AND METHODS

Culture of C. elegans.

Nematodes were cultured according to previously established protocols

(Brenner 1974).  Nematodes were cultured on NGM plates inoculated with OP50-

1 or Na22 E. coli strains.   The N2 strain was used as a wildtype reference and

all mutant lines were derived from the N2 background.  Strains used in this work

were obtained from the Caneorhabditis Genetics Center (CGC) (University of

Minnesota), K. Shen (Stanford), and J. Shaw (University of Minnesota).

Strains used in this work include, ceh-12(gk391); unc-4(e2322ts, e2323,

e120, e1220, wd1); unc-37(e262); unc-24(e138); lin-17(n671); mig-1(e1787)

(Brenner 1974; Miller et al. 1993a; Maloof et al. 1999; Von Stetina et al. 2007a)

blr-1(wd76); blr-2(wd77, wd86); blr-3(wd82); pop-1(wd92, wd97, wd99); mig-

1(wd96, wd89, wd100); blr-5(wd84); blr-8(wd87, wd98); blr-9(wd88); unc-

37(wd85); blr-11(wd90); blr-12(wd91); blr-15(wd95); blr-19(wd101); blr-

20(wd102), blr-21(wd103) (This work).

Strains used in genetic crosses include: euIs82a[unc-129::GFP; dpy-20+]

(I), juIs76[unc-25::GFP; lin-15+] (II), rhIs2[glr-1::GFP] (III), ayIs2[egl-15::GFP]

(IV), mIs11[myo-2::GFP, pes-10::GFP, gut::GFP] (IV), ccIs9753[myo-2::GFP] (V),

oyIs44[odr-1::RFP] (V), oxIs12[unc-47::GFP] (X). The GRASP stain, [TV1477

(wyEx1914[unc-4::NLG-1::spGFP1-10, flp-18::NLG-1::spGFP11, flp-

18::mCherry::rab-3, odr-1::DsRed2])] and UNC-7::GFP strain (EH578 [punc-
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7::UNC-7S:GFP, col-19::GFP]) were generously provided by K. Shen (Stanford)

and J. Shaw (U. Minnesota), respectively.

Chromosomal deficiencies used in this study include: mDF10/nT1 (-0.3 to

0.075), mDF4/nT1 (-0.8 to 2.167), dpy-13 ama-1 mDF8/nT1 (0.9 to 2.45),

mDF9/nT1 (-0.969 to 2.15), eDF19/dpy-20 unc-24, and nDF41/bli-6 egl-19 unc-

24 (1.65 to 3.37).  (CGC)

Hypochloride treatment

Age-synchronous populations of worms were isolated using hypochloride

treatment.  A confluent plate of gravid adult worms were washed into a 50mL

conical tube using water.  Worms were pelleted using a low-speed spin in a

clinical centrifuge and the supernatant aspirated to remove suspended bactera. A

hypochloride solution (7.5mL water, 2mL bleach, 0.5mL 10N NaOH) was added

to approximately 1 mL of worms and mixed by inversion, causing the gravid

adults to rupture and release their eggs.  This was monitored using a drop of

solution containing the worms under a stereo-dissecting microscope.  Once

~50% of the adults lysed, the tube was filled with M9 to stop the reaction.

Isolated eggs were washed with M9 three times to remove residual bleach, and

transferred to a new tube.  Isolated eggs were placed on a new 100mm NGM

OP50-1 plate and incubated at 20°C.
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Isolation of Unc-4 suppressor mutations.

Pilot Screen

Recessive unc-4 suppressor mutations were isolated using two genetic

screens: first, a pilot screen of 5,000 haploid genomes, and second, a ‘stuck

screen’ of 40,000 haploid genomes.

The pilot screen was conducted using the sensitized strain, ceh-12(gk391); unc-

4(wd1).  In this case, the double mutant strain is unable to execute a full

backward sinusoidal wave but has significantly greater mobility than the unc-

4(wd1) mutant alone (Table 3.2).  Animals were synchronized by hypochlorite

treatment and mutagenized with 0.05M ethyl methansulfonate (EMS) during the

L4 larval stage (Brenner 1974).  100-200 animals were placed on 100mm NGM

plates, inoculated with E. coli OP50-1, and grown at 20°C overnight to recover

from mutagenesis.  P0 animals were picked, 5 at a time, to individual NGM

OP50-1 plates and grown at 20C for 3-4 days.  F1 progeny were then picked

onto individual NGM OP50-1 plates at a density of 3 F1s/plate.  F2 animals were

screened for backward locomotion in response to head touch.  Mutations that

resulted in suppression of the Unc-4 backward locomotion defect were labeled as

blr loci for Backward locomotion restored for their ability to suppress the Unc-4

backward locomotion phenotype.  New blr mutants were transferred to individual

NGM OP50-1 plates for self fertilization.  F3 progeny were re-examined to

confirm backward locomotion.  Two independent blr alleles (wd76, wd77) were

isolated from the progeny of 5,000 F1 animals.
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‘Stuck’ screen

To increase the throughput of our Unc-4 suppression screen, we adopted

a second genetic background, NC25[unc-4(e2322ts); unc-24(e138)], in which

animals are unable to execute either forward or backward locomotion (Miller et

al. 1993a) (Figure 3.2).  This synthetic “stuck” phenotype results from the

combined effects of the unc-4 (unable to crawl backward), and unc-24

(uncoordinated forward movement) mutants.  In previous work from this

laboratory, dominant Unc-4 suppressors with improved backward locomotion

were isolated as F1 progeny that could traverse a 100mm plate to reach a patch

of bacteria (food).  We reasoned that a similar approach could be utilized to

isolate F2 recessive suppressors of unc-4(ts).  To test this idea, we performed an

experiment, to determine whether ceh-12(0) could be detected in this assay.

NC25 animals were “raced” overnight versus ceh-12; unc-4(ts); unc-24(e138)

worms at 25°C.  The ceh-12; unc-4(ts); unc-24 mutant worms were able to

chemotax to the food whereas the NC25 “stuck” mutants did not.  Based on this

result, we concluded that our genetic screen had the potential to discover

recessive mutations that partially rescue the unc-4 defect.
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Figure 3.2.  Methodology for stuck screen.

unc-4; unc-24  double mutants are defective in both forward and backward
locomotion.  P0 animals were mutagenized with EMS and grown to the F2
generation.   To identify suppressors of the Unc-4 backward locomotion defect,
worms were ‘raced’ along a chemotaxis gradient to isolate worms with enhanced
locomotion.  We isolated strains that were suppressed for both forward (unc-24
suppressors) and backward locomotion (unc-4 suppressors).  Unc-4 suppressed
worms were identified from the ‘winners’ of this race by tapping each candidate
on the head to stimulate backward locomotion.  Unc-24 suppressors were
discarded.
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The “stuck” suppression genetic screen was performed as previously

described (Miller et al. 1993b), with minor modifications.  NC25 animals were

synchronized by hypochlorite treatment, and mutagenized with 0.05M EMS

during the L4 larval stage.  P0 animals were placed on 150mm, plates seeded

with Na22 E. coli bacteria, and grown at 25°C (25 P0 animals per plate) until F2

animals were largely L2 to L4 larve.  F2 progeny were collected by rinsing with

M9 buffer and washed 3-4 times by low speed centrifugation to remove bacteria.

The number of F2 animals was estimated by placing a drop (~50µL) on a glass

slide and counting under a stereo-dissecting microscope.  A total of 106 F2

animals were screened or ~20,000 F1s (assuming ~50 F2 progeny/F1) for

~40,000 haploid genomes.

To initiate the screen, washed F2 animals were placed on one side of a

100mm NGM plate opposite a small patch of food (OP50-1) (Figure 3.2) and

incubated overnight at 25°C.  Animals in the bacterial patch were tapped on the

head with the tip of a platinum wire to confirm enhanced backward locomotion.

Candidate blr mutants were then picked individually to 60mm NGM OP50-1

plates for self-fertilization. 50 independent blr mutant strains were isolated from

this screen.  Unc-24 suppressor mutations (i.e. restored forward locomotion)

were also identified in this screen but were discarded.

Outcrossing of blr mutants.

All crosses were performed at 25°C, unless otherwise stated.  All Blr

strains were outcrossed from the mutagenized NC25 genetic background by
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mating with unc-4(e2322ts) males (previously grown at the permissive

temperature of 16°C).  Unc-4 cross-progeny hermaphrodites (unc-4(ts)/unc-4(ts);

unc-24/+; blr/+) were picked from this mating and allowed to self-fertilize.  Blr,

non-Unc-24, animals were recovered from the next generation and picked for

selfing until homozygous for unc-24(+).  Most blr mutants segregated in the F2

generation at a 1:3 Blr/non-Blr frequency, indicating that they were recessive

mutations.  In the case of the dominant blr mutation (wd85), all outcrossed F1

animals were Blr and segregated 3:1 Blr/non-Blr.  In contrast, a subset of

suppressor strains did not segregate 1:3 Blr/non-Blr animals in the F2 generation

in, but rare Blr animals were discovered as F2s.  These were recognized as

potential synthetic Unc-4 suppressors, with more than one mutation occurring in

a single animal. All mutations characterized in this study have been outcrossed,

> 10x.

Blr mutant phenotype classification.

Outcrossed blr mutants were classified into four groups based on a

qualitative assessment of the strength of unc-4(ts) suppression at 25°C.  Class I

mutations were well-suppressed, appearing almost wildtype in an unc-4(e2322ts)

background (Figure 3.3).  Class II were less suppressed than Class I, but could

execute backward movement (Figure 3.3). Class III mutants required significant

prodding, but would execute at least 2 full backward body bends (Figure 3.3).
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Figure 3.9.  blr mutants suppress unc-4(ts); unc-24 “Stuck” animals.

blr mutations exhibit a wide range Unc-4 suppression. Pannels are displayed
from left to right from Class I to Class IV according to decreasing strength of Unc-
4 suppression.  Top:  Genotype of animals is shown for comparison.  Middle:
pannels from movies.  Animals were tapped on the head (Red triangle) to
stimulate backward locomotion.  Bottom:  Overlayed, central spinal traces from
the first and last video frame.  Relative degree of locomotion can be assessed
from these traces.
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Class IV mutants show improved movement in comparison to NC25 but were

typically limited to a single backward body bend (Figure 3.3).

Mapping and complementation.

The SNIP SNP mapping protocol was used to map blr alleles (Davis et al.

2005).  Due to weak suppression of the unc-4(ts) allele conferred by the class III

and class IV mutations, these mutations were mapped at 23°C in order to lower

the threshold for Unc-4 suppression.  Class I and II mutations were mapped at

25C (Figure 3.4).  To initiate SNIP SNP mapping, the original, suppressed 'stuck'

strain (e.g., blr-3; unc-4(ts); unc-24) was crossed with Hawaiian males

(CB4856).  F1 animals were allowed to self-fertilize at 25C and Unc-4, non-Blr F2

animals, (unc-4(ts); blr/+; unc-24/+) were isolated.  For each strain, > 40

individual F3 Blr animals are picked to individual plates and allowed to lay eggs

overnight.   F3 adults from each individual plate were combined into a single tube

containing 20µL of lysis buffer (50mM KCl, 10mM Tris pH 8.3, 2.5mM MgCl2,

0.45% IGEPAL CA-630, 0.45% Tween 20, 0.01% gelatin, 60µg/mL proteinase

K), and frozen at –80°C for bulk segragate analysis (Davis et al. 2005).  10µL of

DNA from pooled F3 animals was used for a PCR master mix containing 424µL

water, 52µL 10X PCR buffer (10x: 22.5 mM MgCl2, 500mM Tris-HCl, 140 mM

(NH4)2SO4, pH 9.2 at 25C), 10.4 µL 10mM dNTPs, and 3.12 µL Go-Taq

(Promega).  A control master mix was made using 50 wildtype, N2 animals.

Each master mix was pipetted into alternating 8-lane rows of a 96 well plate. A
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Figure 3.4.  SNIP SNP mapping strategy.

A mapping strain containing suppressor mutations are crossed with Hawaiian
males (CB4856), which contain different SNPs along the length of their genome.
Worms are then homozygosed for unc-4, then suppressor mutations.  B.
Suppressed worms are pooled and used as template for PCR reactions that flank
SNPs.  These SNPs can be distinguished between the Bristol and Hawaiian
Geneotypes by using the restriction endonuclease DraI.  C. PCR reactions are
performed in a 96 well format on both the template bulk segregate DNA from the
previous genetic step, as well as a control DNA containing only Bristol DNA.
This allows a direct comparison between the different SNPs.  D.  Comparison
between an Unlinked chromosome and linked chromosome.  Because the
mutagenesis was performed in the Bristol strain, and we are selecting for these
mutations, the local area of a chromosome containing the suppressor mutation
will segregate with a majority of Bristol SNPs.  Thus, these locations will appear
to be Bristol on a gel.  Unlinked chromosomes will segregate 50% Bristol and
50% Hawaiian, and will appear unlinked.
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pin-replicator was used to add primers from a 96-well template (96 well plate) of

10µM for each primer pair.  For each of the 6 chromosomes, 8 individual SNPs

were compared by DraI restriction endonuclease digestion.  PCR reactions were

performed using the following conditions:  2 minutes at 94°C, 35x (15s 94°C, 45s

60°C, 1 min 72°C), 5 min 72°C, 4°C.  Digestion was performed by adding 6µL to

each well of the Master mix (4.15µL water, 1.6µL 10x NEB Buffer 3 (New

England Biolabs), 0.25µL DraI) and incubation at 37°C at the minimum of 4

hours.  Digested PCR products were loaded onto a 1.5% agarose gel by

alternating lanes with N2 and blr DNA.  This arrangement placed the N2 control

PCR reaction immediately adjacent to the blr PCR reaction for each

corresponding SNP there by allowing rapid visual inspection of the gel to identify

adjacent blr mutant lanes with predominant Bristol (N2) SNPs and thus the

chromosomal interval for the mapped blr allele. Individual plates containing the

F4 progeny of these animals were numbered and grown to confluency.  These

plates were washed off with water into 1.5mL microcentrifuge tubes and pelleted

at 3,000 rpm in a clinical centrifuge.  Supernatant was removed and washed 3x

times with water to remove residual bacteria.  Animals were pelleted and 30µL of

worm pellet was placed into concentrated 4x lysis buffer.  PCR was performed as

above, but 5µL of each primer pair (100µM), for an individual SNP, was added to

the master mix instead of DNA.  DNA template from the 96-well plate was pin-

replicated into the plate containing the master mixes.  Each SNIP (8 in total) for a

single chromosome was examined using this method.  This technique allowed us

to isolate a specific interval using positional information conferred by Hawaiian
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and Bristol SNPs.  Using this technique, we have outcrossed and mapped 22

independent blr mutations.

Isolation of synthetic Blr mutations.

The genetic screen isolated  two strains that contained mutations which

function together to confer a synthetic Blr phenotype with unc-4(e2322ts).  The

mutations wd90 and wd91 were first isolated within a single Class I suppressor

strain.  We noticed that upon outcrossing of this strain into a unc-4(e2322ts), the

suppressor did not segregate with a 3:1 non-Blr to Blr ratio; Blr worms showed up

in the F2 generation at a much lower frequency.  We suspected that this strain

contained mutations in multiple loci that conferred a synthetic Blr phenotype onto

unc-4(ts).  To test this model, we mapped these mutations using our SINP SNP

protocol, however, we searched within the F3 generation (unc-4(ts); blr/Hawaiian;

blr/Hawaiian) to find rare, Blr worms, in order to be certain that these mutations

are recovered as homozygotes.  Examination of the F4 progeny confirmed Blr

phenotype in the isolated strains and thus suggested the blr mutations were

homozygous.  Our SNIP SNP results clearly showed linkage to two

chromosomes, V and X (wd90 and wd91), which is highly suggestive of a

synthetic Blr phenotype conferred by two independent mutations.  Similar results

were obtained for the mutations wd101 and wd102 which were originally isolated

as a single Class II Blr strain.  These mutations mapped to chromosomes I

(wd101) and III (wd102).   Due to the difficulty of working with a synthetic Blr
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phenotype, these mutations (wd90, wd91, wd101, wd102) were not characterized

further for this analysis.

Deficiency experiments.

SNIP SNP mapping data placed wd77 near dpy-13 on chromosome IV.

Chromosomal deficiencies (large chromosomal deletions) were used to confirm

these results and to establish physical boundaries flanking wd77. To perform the

deficiency mapping, egl-15::GFP males were mated with ceh-12; unc-4(wd1)

animals producing ceh-12/+; unc-4(wd1)/+; egl-15::GFP/+ males, which were

mated with nT1/Df.  This mating generated the strains:  (ceh-12 or +)/+; (unc-

4(wd1) or +)/+; (nT1 or Df)/(egl-15::GFP or +).  In order to homozygose the

balancer and deficiency, GFP+ males and hermaphrodites from this mating

(either nT1/egl-15::GFP or Df/egl-15::GFP) were mated back into each other and

viable, non-GFP progeny (nT1/Df) were picked.  A low frequency of viable, non-

GFP animals from this mating, (1/16) would contain both a ceh-12 mutation and

an unc-4 mutation.  These animals were identified by PCR (ceh-12) and visual

inspection of the F2 generation (unc-4).  From this mating, the final strain ceh-12;

unc-4(wd1); nT1/Df was achieved.  ceh-12; unc-25::GFP II; egl-15::GFP IV males

were mated with ceh-12; unc-4(wd1); nT1/Df  to produce ceh-12; unc-4/unc-

25::GFP; egl-15::GFP/Df males which were then mated with ceh-12; unc-4; blr-

2(wd77).  The resulting non-GFP F1 progeny (ceh-12; unc-4; wd77 / (Df or nT1)

were tapped on the head with a metal pick to determine if they were Blr.  (50% of

non-GFP progeny should be Df/blr whereas 50% should be nT1/blr). To control
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against the possibility of assaying self-progeny from ceh-12; unc-4; wd77, we

assayed only male animals, which should represent cross progeny (Males occur

at a frequency of ~50% in male/hermaprodite matings, whereas they occur at a

frequency of ~0.1% in hermaprodite self-fertilization).  Results were (failure to

complement wd77 shown in bold) mDF10 (-0.3 to 0.075), mDF4 (-0.8 to 2.167),

dpy-13 ama-1 mDF8 (0.9 to 2.45), mDF9 (-0.969 to 2.15), eDF19, and nDF41

(1.65 to 3.37) (Figure 3.5).
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Figure 3.5.  wd77 is likely a loss of function mutation and is near dpy-13 on
chromosome IV.

Complementation tests using chromosomal deficiencies near dpy-13 on
chromosome IV suggest wd77 is located within a 1-megabase region on this
chromosome.  No obvious candidate Wnt pathway genes lie within this region.
wd77 fails to complement multiple deficiencies that cover this region suggesting
that wd77 likely represents a loss of function allele.
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Complementation tests.

Complementation tests were performed to identify allelic mutations.

Mutations that mapped to a specific chromosome were crossed with each other

using the following genetic strategy:  unc-4(e2322ts) males (grown at 16°C),

were mated with a unc-4(ts); blr-A hermaphrodites, and grown at 16°C to

generate F1 unc-4(ts); blr-A/+ males.  These unc-4(ts); blr-A/+ males were mated

with a unc-4(ts); blr-B strain, generating 50% progeny unc-4(ts); blr-A/blr-B, and

50% unc-4(ts); +/blr-B.  Weak Blr alleles (Class III, IV) were performed in

duplicate and independently scored for complementation by two blinded

observers (JS and Rachel Skelton).  Discrepancies were resolved by additional

complementation experiments.  This method resulted in the identification of 16

different complementation groups involving 22 independent suppressor

mutations.

Genetic tests.

Outcrossing of suppressor mutations

Blr alleles were outcrossed into a N2 background using an integrated GFP

reporter in trans to the blr mutation.  unc-4(ts); blr animals were crossed with

males homozygous for a GFP reporter integrated on the same chromosome as

the blr mutation.  GFP+ cross-progeny were allowed to self-fertilize and F2 non-

Unc, non-GFP animals were picked in successive generations to isolate a

homozygous Blr strain that did not segregate Unc-4. unc-4(ts) males were

crossed back into the blr strain to confirm the presence of the blr mutation. Only
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one mutation showed an Unc phenotype on its own; blr-2(wd77), displays a

loopy, backward Unc trait.  This loopy Unc phenotype, however, did not interfere

with blr-2(wd77) animals ability to complete sinusoidal locomotory waves that

promote backward movement.

Construction of strains containing multiple mutations

All crosses were performed at 23°C, unless otherwise stated. Integrated

GFP reporters were used in genetic crosses to mark the chromosome in trans to

selected mutants:  euIs82a[unc-129::GFP; dpy-20+] (I), juIs76[unc-25::GFP; lin-

15+] (II), rhIs2[glr-1::GFP] (III), ayIs2[egl-15::GFP] (IV), mIs11[myo-2::GFP, pes-

10::GFP, gut::GFP] (IV), ccIs9753[myo-2::GFP] (V), oyIs44[odr-1::RFP] (V),

oxIs12[unc-47::GFP] (X). The deletion allele of ceh-12(gk391) was verified by

PCR as previously described (Von Stetina et al. 2007b).

Quantification of the blr phenotype

A movement assay was used to detect effects of specific blr mutants on

unc-4-dependent backward locomotion (Von Stetina et al. 2007b). The

experimenter was blinded to genotype to avoid bias.  For each genotype, > 50

L4-young adult animals (at 23°C, unless otherwise noted) were tapped a single

time on the head with the tip of a platinum wire. Backward movement was scored

as either Unc (coiled instantly with no net backward movement) or as Non-Unc

(detectable backward movement of posterior region or entire body). Statistical

tests of differential effects on backward locomotion were performed using the

Fisher's Exact Test.
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Anti-GFP immunostaining to detect AVB gap junctions with ventral cord
motor neurons.

The chromosomal integrant NC1694 (wdIs54[punc-7::UNC-7S:GFP, col-

19::GFP] unc-7(e5) X) was generated by gamma irradiation (4000 Rads) (Mello

et al. 1991) of EH578 (Starich et al. 2009a) and 10X backcrossed into the

wildtype N2 strain. Standard methods were used to cross wdIs54 into other

genetic backgrounds (Brenner 1974). Embryos were obtained by hypochlorite

treatment and allowed to hatch overnight in M9 buffer. The resultant growth-

arrested L1 animals were applied to bacterial feeding plates and gap junctions

staining scored in the late L4 larval stage. AVB gap junctions with ventral cord

motor neurons were detected by anti-GFP immunostaining as previously

described (Von Stetina et al. 2007a).  Motor neuron soma with adjacent UNC-

7S::GFP marked puncta (AVB gap junctions) were scored in the region of the

ventral nerve cord between VA2 and VA11.  [VA2-VA11, VB3-VB11, DA2-DA7,

DB3-DB7, DD2-DD5, VD3-VD11, AS2-AS10, and VC1-VC6].  At least 10

neurons at each position for each motor neuron class were observed for a given

genotype and assigned a score of gap junction 'present' or 'absent'. The

experimenter was blinded to genotype to rule out bias. A Fisher's exact test was

used to estimate statistically significant differences (p < 0.05) for the presence

versus absence of UNC-7S::GFP puncta for each individual neuron for each

genotype (e.g. VA2 of wildtype was compared to VA2 of unc-4).
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GRASP (GFP Reconstitution Across Synaptic Partners).

GRASP (split-GFP) experiments were performed using the TV1477

(wyEx1914[unc-4::NLG-1::spGFP1-10, flp-18::NLG-1::spGFP11, flp-

18::mCherry::rab-3, odr-1::DsRed2]) generously provided by K. Shen (Stanford).

The split-GFP signal appears as discrete puncta, which corresponds to specific

chemical synapses between AVA and A-class (DA, VA) motor neurons in the

ventral nerve cord.  To limit quenching by exciting light, GFP puncta were scored

within specific zones:  Zone 1, VA2-VA4; Zone 2, VA5-VA6; Zone 3, VA7-VA8;

Zone 4, VA9, VA10.  Scoring was limited to animals showing expression of the

co-selectable marker odr-1::DsRed2 in the head and split-GFP puncta adjacent

to VA11, which is not miswired in unc-4 mutants (White et al. 1992a).  The

experimenter was blinded to genotype to rule out bias.  To score each animal,

the 100x objective lens positioned over each zone using DIC optics within the

plane of the ventral nerve cord before exposing the region to GFP exciting light

and quickly noting the presence or absence of GFP puncta.

RESULTS

A pilot mutant screen for Unc-4 suppressor genes that function in parallel
to ceh-12/HB9.

Previous work in the Miller lab showed that the unc-4 target gene, ceh-

12/HB9, is selectively de-repressed in posterior VA motor neurons in unc-4

mutants to induce miswiring with VB-type inputs. The functional role of ceh-

12/HB9 was confirmed by a genetic epistasis experiments in which ceh-12 loss-
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of-function mutants suppress the formation of ectopic VB-type gap junctions with

the command interneuron AVB. This role of ceh-12 is limited to VA motor

neurons in the posterior ventral nerve cord which therefore suggests that unc-4

must regulate (i.e., repress) at least one additional target that functions in parallel

to ceh-12 in anterior VAs (Figure 3.1) (Von Stetina et al. 2007a).  This model is

also consistent with the finding that ceh-12 affords only weak suppression of the

backward movement defect of an unc-4(0) allele, presumably due to the

restoration of normal inputs only to posterior VAs. We reasoned that a mutation

in an anterior VA target should enhance ceh-12 suppression and therefore

should be detectable as a  “blr” (backward locomotion restored) mutant with

significantly improved backward movement in comparison to the ceh-12(0); unc-

4(0) parent strain. This reasoning provided the rationale for an initial pilot screen

for blr alleles. Hermaphrodites that were mutant for both ceh-12 and unc-4 null

alleles [ceh-12(gk391); unc-4(wd1)] were mutagenized with EMS.  F2 progeny of

~5,000 F1 animals were examined in a clonal screen for improved backward

locomotion. Two recessive blr alleles, wd76 and wd77, were identified. (A

detailed phenotypic characterization of these alleles is provided below). Genetic

mapping (see below) and complementation tests confirmed that wd76 and wd77

affect different genes and thus that the screen was not saturated. The pilot

screen was labor intensive, however, and prompted us to develop a more

efficient strategy for isolating additional blr mutations.
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Isolation of recessive Unc-4 suppressor mutants from a synthetic Unc
phenotype.

As noted above, ceh-12(0) is a weak suppressor of unc-4 null alleles; ceh-

12(0);unc-4(0) double mutant animals are capable of initiating sinusoidal waves

(i.e., wiggling the tail) but are unable to sustain backward locomotion (see

Methods). In contrast, ceh-12(0) double mutants with unc-4 hypomorphic alleles

show a robust Blr phenotype with strong backward movement. For example, 96%

of animals that are mutant for ceh-12 and the temperature sensitive allele, unc-

4(e2322ts), show virtually wildtype backward locomotion at restrictive

temperature (25°C) (Table 3.2).  We reasoned therefore, that an independent

mutation in a pathway acting in parallel to ceh-12 (e.g., to regulate inputs to

anterior VA motor neurons) should also afford strong suppression of unc-

4(e2322ts). This prediction was confirmed by our finding that the wd76 and wd77

blr alleles isolated as ceh-12 enhancers of Unc-4 suppression, also restore

backward locomotion to unc-4(ts) at 25°C (Table 3.1). To enhance detection of

new potential blr alleles, we utilized an allele of unc-24, which blocks forward

locomotion. This combination of unc-4 and unc-24 mutations results in a

synthetic “Stuck” phenotype in which unc-4(ts); unc-24(0) animals are unable to

crawl either forward or backward. In this genetic background, however, ceh-12(0)

animals can move sufficiently well to traverse a 100 mm plate and reach a patch

of bacterial food in an overnight test (data not shown) whereas the majority of

“Stuck” animals are immobilized. This approach effectively selects for candidate

Blr mutants (i.e. F2 progeny that reach the bacterial patch) and therefore avoids

the necessity of testing each F2 animal individually for improved backward
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movement as in the pilot screen.  The unc-4; unc-24 stuck strain was previously

utilized in the Miller lab to isolate dominant F1 suppressor alleles of unc-

37/Groucho (Miller et al. 1993b).  The unc-37(d) allele isolated in the earlier

screen corresponds to an UNC-37 missense mutation that restores physical

interaction with mutant UNC-4 protein (Pflugrad et al. 1997b; Winnier et al.

1999). In this case, we screened F2 animals to search for potential recessive

loss-of-function blr alleles. With this approach, we tested ~106 F2 animals to

identify > 50 blr mutants. Blr alleles were initially grouped in four broad categories

based on a qualitative estimate of the strength of Unc-4 suppression (Table 3.1).

Outcrossing recovered 22 independent blr alleles that map to 16 different

complementation groups (see Methods). A selected group of these blr alleles is

characterized in detail below.

Blr mutations correspond to Wnt pathway genes.

We noticed that a group of six alleles with comparable Blr phenotypes

mapped to the left arm of chromosome I in the vicinity of the Wnt pathway genes

mig-1/Frizzled and pop-1/TCF. Independent experiments in the Miller lab have

established that ectopic ceh-12 expression in posterior VAs depends on an EGL-

20/Wnt signal emanating from nearby cells in the tail (Chapter 2). This model is

supported by genetic epistasis experiments showing that egl-20 displays a strong

Blr phenotype as a double mutant with unc-4(ts). Moreover, egl-20 does not

enhance the Blr trait of ceh-12 in combination with unc-4(0) alleles. Additional
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Figure 3.6.  Map of suppressor mutants identified in genetic screen.

We have mapped 22 suppressor mutants to locations on the C. elegans genome,
resulting in a total of 16 complementation groups. Two of these complementation
groups fail to complement known components of the Wnt signaling pathway
(pop-1 and mig-1).  Other Wnt pathway loci and genetic interactions with unc-4
are indictaed.



123

Degree of unc-4(e2322ts)
suppression Mutation

Class I wd85, (wd90, wd91)
Class II wd76*, wd89, wd98, wd104, (wd101,

wd102)
Class III wd77*, wd82, wd83, wd87, wd88,

wd93, wd94, wd96
Class IV wd84, wd92, wd95, wd86, wd97, wd99,

wd100, wd103
Table 3.1.  Degree of unc-4 suppressor activity of mutations in unc-
4(e2322ts) background.

Unc-4 suppressor mutations were initially classified according to suppressor
strength. Class IV mutations were extremely weak, and required significant
prodding in order to complete a sinusoidal backward movement whereas Class I
mutations were almost wildtype at 25°C.  Alleles in boldface are characterized in
this study.  * Indicates alleles identified in pilot screen. () Synthetic Unc-4
suppressor mutations isolated in same strain.  See methods.
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genetic tests established that the Wnt receptor encoding gene mig-1/Frz

functions downstream of egl-20 to activate ceh-12 expression in posterior VAs

 (Chapter 2). Complementation tests confirmed that blr alleles, wd89, wd96 and

wd100 are mig-1 alleles. As homozygotes, wd89, wd96 and wd100, show a

similar extent of Unc-4 suppression as the canonical loss-of-function allele mig-

1(e1787).  Additional genetic experiments revealed that blr alleles wd92, wd97

and wd99 fail to complement pop-1(hu9). This result is consistent with a model in

which pop-1/TCF functions downstream of MIG-1/Frz in a canonical Wnt

signaling pathway to drive ceh-12 expression (Chapter 2).  In addition to

providing independent confirmation of the role of Wnt signaling in ceh-12

expression, these results also show that our Blr mutant screens were capable of

detecting bona fide suppressors of the Unc-4 defect.

Genetic test for blr alleles that function in parallel to ceh-12.

blr alleles affecting genes that function in parallel to ceh-12 are predicted

to satisfy three conditions:  (1) Phenocopy ceh-12 suppression of hypomorphic

unc-4 alleles; (2) Enhance ceh-12 suppression of unc-4(0) alleles; (3) Suppress

the appearance of ectopic AVB gap junctions with anterior, but not posterior,

VAs.  These criteria were evaluated for six independent blr mutations (wd76,

wd77, wd82, wd87, wd88, wd95) (Figure 3.6) each one representing a different

complementation group.
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blr mutations rescue the Unc-4 backward locomotion defect in unc-4
hypomorphic alleles.

We tested the first condition using two different hypomorphic alleles of

unc-4, e2322ts and e2323. The temperature sensitive allele unc-4(e2322ts),

corresponds to a L to F amino acid substitution in the DNA-binding

homeodomain. Although ectopic ceh-12 expression is limited to posterior VA

motor neurons in unc-4(ts) mutant animals, ceh-12(0) strongly suppresses the

unc-4(ts) backward movement defect. In contrast, ceh-12(0) results in weak

suppression of unc-4 null alleles (Table 3.2). One explanation for this disparity is

that the UNC-4(ts) protein retains residual transcriptional repressor activity. In

this scenario, UNC-4 target genes functioning in anterior VAs are partially

repressed in unc-4(ts) animals such that the loss of ceh-12 activity in posterior

VAs elevates overall VA activity above a critical threshold that restores backward

movement (Von Stetina et al. 2007b).  All of the blr alleles (wd76, wd77, wd82,

wd87, wd88, wd95) suppress unc-4(ts).  The e2323 mutation corresponds to an

R to Q amino acid substitution that disrupts physical interaction with UNC-

37/Groucho and thus perturbs repression of unc-4 target genes (Winnier et al.

1999). In this case, only three of the six blr alleles tested (wd77, wd87, wd95)

suppress unc-4(e2323) and in each instance, ceh-12(0) displays a stronger

suppressor phenotype. We attribute these results to the potentially distinct

molecular effects of these mutations on unc-4 pathway function.
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Table 3.2.

Percentage
Unc

Percentage
Suppressed p < 0.05

WT 0 100
unc-4(e2320) 98 2
unc-4(e120) 99 1
ceh-12(gk391); unc-4(e120) 54 46 *
ceh-12(gk391); unc-4(e2320) 58 42 *
ceh-12(gk391); unc-4(wd1) 62 38 *
unc-37(e262) 87 13

WT 0 100
blr-2(wd77) 0 100
blr-1(wd76) 0 100
blr-9(wd88) 0 100
blr-8(wd87) 2 98
blr-3(wd82) 0 100
blr-15(wd95) 0 100

ceh-12(gk391) 0 100
ceh-12(gk391); blr-2(wd77) 0 100
ceh-12(gk391); blr-1(wd76) 2 98
ceh-12(gk391); blr-8(wd87) 0 100
ceh-12(gk391); blr-3(wd82) 0 100

unc-4(e2323) 63 38
unc-4(e2323); blr-2(wd77) 23 77 *
unc-4(e2323); blr-1(wd76) 50 50
blr-9(wd88); unc-4(e2323) 62 38
unc-4(e2323); blr-8(wd87) 28 72 *
unc-4(e2323); blr-3(wd82) 64 36
unc-4(e2323); blr-15(wd95) 20 80 *

unc-4(e2320) 98 2
unc-4(e2320); blr-2(wd77) 99 1
unc-4(e2320); blr-1(wd76) 100 0
blr-9(wd88); unc-4(e2320) 100 0
unc-4(e2320); blr-3(wd82) 96 4

unc-4(e120) 99 1
unc-4(e120); blr-2(wd77) 100 0
blr-9(wd88); unc-4(e120) 94 6
unc-4(e120); blr-8(wd87) 80 20 *
unc-4(e120); blr-3(wd82) 96 4
unc-4(e120); blr-15(wd95) 64 36 *
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ceh-12(gk391); unc-4(e2320) 58 42
ceh-12(gk391); unc-4(e2320); blr-2(wd77) 96 4 *
ceh-12(gk391); unc-4(e2320); blr-1(wd76) 46 54
ceh-12(gk391); unc-4(e2320); blr-8(wd87) 51 49
ceh-12(gk391); unc-4(e2320); blr-3(wd82) 38 62 *

ceh-12(gk391); unc-4(wd1) 62 38
ceh-12(gk391); unc-4(wd1); blr-2(wd77) 86 14 *
ceh-12(gk391); unc-4(wd1); blr-1(wd76) 24 76 *

ceh-12(gk391); unc-4(e120) 54 46
ceh-12(gk391); unc-4(e120); blr-15(wd95) 16 84 *
ceh-12(gk391); unc-4(e120); blr-1(wd76) 1 99 *
ceh-12(gk391); unc-4(e120); blr-3(wd82) 16 84 *

unc-37(e262) 87 13
ceh-12(gk391) unc-37(e262) 49 51 *
unc-37(e262); blr-2(wd77) 94 6 *
unc-37(e262); blr-2(wd76) 80 20

unc-4(e120); blr-8(wd87) 80 20
blr-9(wd88); unc-4(e120); blr-8(wd87) 82 18

unc-4(e2320); egl-20(n585) 46 54
blr-9(wd88); unc-4(e2320); egl-20(n585) 96 4 *

Table 3.2:  Genetic results of blr mutants on Unc-4 suppression.

Table of genetic suppressor mutations and their effect on the restoration of unc-4
backward movement.  Mutations in wd82, wd76, wd95, wd77, function in parallel
to ceh-12.  wd87 mutants do not appear to enhance ceh-12 suppression of Unc-
4. Boldface and * indicates statistical significance (p < 0.05 from control strain
by Fisher’s Exact Test).  Control strain is listed as first strain in each group,
except for the first group listed which compares ceh-12 suppression of individual
unc-4 alleles.  n > 50 for all strains listed.
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Table 3.3. Genetic evidence for blr gene function in parallel to ceh-12
blr
alleles

Enhance ceh-12 suppression of
Unc-4 movement

Suppress AVB gap junctions with
anterior VA motor neurons

wd76 yes (wd1, e120) yes (VA3, VA6, VA7)
wd77 no no (VA10)
wd82 yes (e2320, e120) yes (VA5, VA6)
wd87 no* yes (VA2-4, VA8)
wd88 ND yes (VA2, VA3, VA5, VA8)
wd95 yes (e120) yes (VA3, VA6, VA7)
* wd87 fails to enhance ceh-12 suppression of unc-4(e2320) but was not tested against
ceh-12; unc-4(e120).

Table 3.3.  Genetic evidence for blr gene function in parallel to ceh-12.

This table summarizes the data presented in Table 3.2.  Four suppressor alleles
(wd76, wd77, wd82, and wd95) enhance suppression of ceh-12 in at least one
unc-4(0) allele.  Two of these alleles (wd76, wd95) also suppress ectopic inputs
from AVB in unc-4(e120).  Note about wd77: tapping assay results show that
wd77 seems to antagonize ceh-12 suppression of unc-4 although wd77 was
originally isolated in a genetic screen in the ceh-12; unc-4(wd1) background as
an enhancer of ceh-12.
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A subset of blr mutations enhance ceh-12 suppression of unc-4(0).

Our results showing that blr alleles suppress unc-4 hypomorphic

mutations are consistent with the alternative possibilities that the blr mutations

disrupt genes that function either in the ceh-12 pathway or in parallel. To

distinguish between these models, we tested these blr alleles for enhancement of

ceh-12(0) suppression of unc-4(0) mutants and thus evidence for function in a

parallel pathway. (wd88 was not tested in this assay because of linkage to ceh-

12 on chromosome I).

Experiments with three different unc-4 null mutations detected three

recessive blr alleles (wd76, wd82, wd95) that enhance ceh-12 suppression of

Unc-4: all three alleles, wd76, wd82, and wd95, enhance suppression of ceh-12;

unc-4(e120); one allele, wd76, enhances suppression in the ceh-12; unc-4(wd1)

background (Table 3.2, 3.3);  one allele, wd82, enhances backward locomotion

of ceh-12; unc-4(e2320).  All three of these unc-4 alleles are predicted nulls:

e120 frame shifts the translational reading frame in the conserved C-terminal

UNC-37/Groucho domain; wd1 is a large deletion that removes the unc-4 gene

and upstream regions; e2320 deletes exons encoding the UNC-4 homeodomain

and disrupts the reading frame. The reasons for the different genetic interactions

of these unc-4 alleles with ceh-12 and blr mutants are unclear. For example,

wd76 enhances ceh-12 suppression of unc-4(e120) and unc-4(wd1) but has no

effect on ceh-12; unc-4(e2320).  In any case, the observed enhancement of the

ceh-12 Blr phenotype in at least one of these unc-4(0) genetic backgrounds is
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consistent with the proposal that three of these blr genes, wd76, wd82, and

wd95, function in parallel to ceh-12.

blr mutations suppress the Unc-4 miswiring defect of specific VA motor
neurons.

VA motor neurons are miswired with gap junctions from AVB interneurons

in unc-4 mutants (White et al. 1992b; Von Stetina et al. 2007b). In wild type

animals, gap junctions with AVB are normally reserved for B-class motor neurons

(DB and VB)(White et al. 1976b). We have previously shown that ceh-12

expression is limited to posterior VAs in unc-4 mutants and that ceh-12 functions

in this subset of VA motor neurons to promote the creation of gap junctions with

AVB (Von Stetina et al. 2007b). Thus, mutations in blr genes from pathways in

parallel to ceh-12 are predicted to eliminate AVB gap junctions with anterior VAs.

We tested this idea by assaying blr alleles for suppression of the Unc-4 AVB gap

junction defect. For these experiments, we utilized an UNC-7S::GFP marker (see

Methods) that co-localizes with AVB gap junctions in the ventral nerve cord as

discrete GFP-stained puncta adjacent to the cell soma of motor neuron partners

(Von Stetina et al. 2007b; Starich et al. 2009b).

The results of this assay confirmed that blr alleles wd76 and wd95 are

likely to affect genes that function in parallel to ceh-12. In both cases, the

creation of AVB gap junctions with anterior unc-4 mutant VA motor neurons is

suppressed. For example, all VA motor neurons scored in this assay (VA2-VA10)

show ectopic UNC-7S::GFP puncta in the reference allele, unc-4(e120) (Figure

3.7).  However, in the double mutant unc-4(e120); blr-15(wd95), AVB gap
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Figure 3.7.  blr mutants suppress the unc-4 AVB to VA gap junction
miswiring defect for specific VA motor neurons.

blr mutants suppress ectopic AVB to VA gap junction connections onto specific
VA motor neurons in unc-4 mutants. Ectopic AVB gap junction connections (red
circles) represent statistically significant differences in wiring (p < 0.05, Fisher’s
Exact Test) when the frequency of AVB gap junction connections in blr; unc-
4(e120) double mutants versus unc-4(e120).  wd76, wd87, and wd88 suppress
ectopic gap junction connections in a similar subset of motor neurons (VA2-4,
VA8) and may function in a common pathway.  wd95 suppresses ectopic
connections only in VA6 and VA7, suggesting it may represent a different
signaling pathway.  ceh-12, egl-20, and mig-1, mutations function in a common
pathway and suppress gap junctions in VA2, VA9, and VA10.
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junctions are observed at a significantly lower frequency for VA3, VA6 and VA7.

Similarly, wd76 suppresses the AVB gap junction defect for VA2-VA4 and VA7-

VA9. These results are consistent with the finding above that wd76 and wd95

enhance ceh-12 suppression of the unc-4(e120) backward movement defect

(Table 3.3).

Surprisingly wd87 did not enhance ceh-12 suppression of unc-4(e2320) in

the tapping assay (Table 3.3); wd87 does suppress the AVB gap junction defect

for anterior VA motor neurons (VA2-4, VA8) in the null allele unc-4(e120) and

therefore is also likely to function in parallel to ceh-12. Similarly, wd88, which was

not tested as a ceh-12 enhancer of backward movement (see above), effectively

reduces ectopic AVB gap junctions for VA motor neurons in which ceh-12 does

not function (i.e. VA3, VA5, VA8) and therefore is likely to regulate the specificity

of VA inputs to these cells.  The effects of wd87 and wd88 on a common set of

VA motor neurons, led us to hypothesize that these two mutations may affect

genes that function in the same pathway.  In order to test this hypothesis, we

created the strain blr-9(wd88); unc-4(e120); blr-8(wd87).  Based on the

assumption that wd88 and wd87 are null alleles, our hypothesis suggests that if

these two mutations function in parallel pathways, then these mutations are likely

to have a synergistic function and wd88 mutations will enhance wd87

suppression of the Unc-4 backward movement defect in unc-4(e120).  If these

mutations function in a common pathway, however, our hypothesis suggests that

wd88 will not enhance wd87 suppression of unc-4(e120).  In the tapping assay,

blr-9(wd88); unc-4(e120); blr-8(wd87) animals were no more suppressed than
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the unc-4(e120); blr-8(wd87) mutant alone (Table 3.2). This result is consistent

with the finding that wd87 and wd88 suppress the AVB gap junction defect in an

overlapping set of VA motor neurons (VA2, VA3, VA8) and could function in a

common pathway.

We note that wd77 specifically suppresses the AVB gap junction defect for

VA10 but not for more anterior VAs (Figure 3.7). This result was surprising

because ceh-12 also functions in VA10 and the isolation of blr-2(wd77) in the

pilot Unc-4 suppressor screen suggests that wd77 enhances ceh-12 suppression

of Unc-4 movement (Table 3.3). We note, however, that the tapping assay failed

to confirm that the outcrossed wd77 allele enhances ceh-12 suppression of Unc-

4.  We attribute this discrepancy a potential synthetic Blr phenotype for the

original wd77 isolate and that one of the suppressor loci was lost during

outcrossing. Together these results suggest that ceh-12 and blr-2(wd77) may

function in the same pathway to regulate the specificity of interneuron gap

junctions with VA10. This model could be tested by asking if wd77 affects ceh-

12::GFP expression.

We note that wd82, which enhances ceh-12 suppression of Unc-4

movement (Table 3.3), was not tested for suppression of the AVB gap junction

defect. Evidence for parallel roles for blr genes in VA motor neuron connectivity

is also supported by our finding of two synthetic blr strains that depend on the

simultaneous occurrence of mutations in separate loci (see Methods). In

summary, these assays identified alleles from five different blr loci (wd76, wd82,

wd87, wd88, wd95) that suppress the AVB to VA gap junction defect in anterior
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VA motor neurons and thus are likely to affect genes that function in parallel to

ceh-12.

As a positive control for these experiments, we confirmed that ceh-12

suppresses the AVB gap junction defect for posterior VAs as previously reported

(Von Stetina et al. 2007b) (Figure 3.7). We also observe ceh-12(0) suppression

of AVB gap junctions with VA2 at the anterior end of the ventral nerve cord

although a ceh-12::GFP reporter is exclusively expressed in posterior VAs in

unc-4 mutants (Von Stetina et al. 2007b).  However, here we note that mutations

in Wnt pathway genes, egl-20/Wnt and mig-1/Frz, that are required for ectopic

expression of ceh-12::GFP in posterior VAs, also suppress the AVB gap junction

miswiring defect in VA2. These results strongly suggest that the endogenous

ceh-12 gene must be expressed in VA2 in unc-4 mutants and that this effect

depends on Wnt signaling. A role for Wnt signaling in VA2 is surprising because

EGL-20 is reported to be exclusively expressed in cells in the tail region that are

posterior to VA10 (Coudreuse et al. 2006).  Either VA2 is particularly sensitive to

this remote egl-20/Wnt cue or EGL-20 is also expressed in anterior cells that

have not been previously detected.

blr mutants restore AVA to VA chemical synaptic inputs.

GFP Reconstitution Across Synaptic Partners (GRASP) was recently

developed as an assay for detecting specific synapses between two individual

neurons (Feinberg et al. 2008). GRASP relies on split-GFP technology in which

two halves of GFP are tagged with the NRG-1/Neuroligan protein, which



135

localizes to pre and post-synaptic domains, and expressed in two different

neurons.  These NRG-1::GFP-fragments then interact trans-synaptically to

reconstitute a complete fluorescent GFP protein at sites of synaptic contact

between the NRG-1::GFP-expressing neurons.

Expression of the flp-18::NLG-1::spGFP11 in AVA and the unc-4::NLG-

1::spGFP1-10 in VA motor neurons produces discrete GFP puncta in the ventral

nerve cord that correspond to AVA synapses with A-class motor neurons; a

subset of GRASP GFP puncta are eliminated in unc-4 mutants (Feinberg et al.

2008) as predicted by EM studies showing that AVA synapses with VA motor

neurons (VA2-VA10) are absent in unc-4 mutant animals (White et al, 1986). I

used this strain to ask if blr alleles restore AVA to VA synapses as double

mutants with unc-4. As shown in Figure 3.8, GRASP puncta are largely

undetectable in L4 stage unc-4(ts) animals (grown at 25°C). In contrast, unc-4(ts)

animals at the L1 larval stage showed significantly more GRASP staining. This

result suggests that unc-4 function is required for maintaining AVA to VA

synapses but is not necessary for the initial establishment of these connections.

This finding is consistent with temperature shift experiments with the unc-4(ts)

allele showing that unc-4 function is required during the L2 and L3 stages (Miller

et al. 1992). However, it will be important to replicate this GRASP experiment

with an unc-4 null allele to determine if initial AVA to VA synapses are a

consequence of residual UNC-4 function in the unc-4(ts) allele. A comparison of

these findings for the unc-4(ts) allele to GRASP results for blr alleles, wd76 and

wd77, detected significantly more GRASP GFP puncta in the wd76; unc-4(ts)
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Figure 3.8.  blr mutants restore AVA to VA wiring in unc-4 mutants.

GRASP GFP puncta corresponding to AVA to A-class synapses were scored in
four distinct zones along the A/P body axis (see Figure 3.7). AVA-A-class
synapses progressively declined from L2 animals as the worms aged.  Very few
GFP puncta were detected in L4 unc-4(e2322ts).  Note strains restoration of
AVA-A-class synapses in posterior Zone 4 for wd77 and a detectable increase in
GRASP puncta for wd76.  mig-1(wd86) resulted in strong restoration of AVA-VA
synapses throughout the VNC.
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and wd77;unc-4(ts) doubles than in unc-4(ts) alone. Restoration of GRASP

puncta was more pronounced in L4 than for L1 animals but some suppression

was detected at all larval stages examined.  The mig-1(wd86) allele results in

restoration of GRASP puncta throughout the ventral cord. This result is surprising

given our findings that mig-1 is selectively required for miswiring of posterior VAs

with AVB gap junctions. Additional tests with genes that function in the EGL-

20/Wnt pathway (Chapter 2) are needed to confirm this result.

blr alleles induce miswiring of selected VA motor neurons.

As noted above, mutations in ceh-12 and in selected blr genes suppress

the creation of AVB gap junctions with specific VA motor neurons. These results

suggest that the wildtype blr gene products promote the AVB miswiring defect in

unc-4 mutants. We were therefore surprised to detect evidence that some of the

blr genes in fact adopt the opposite role in other VA motor neurons of inhibiting

the creation of AVB gap junctions (Figure 3.9). For this assay, we examined the

potential effects of blr mutations on VA inputs in a wildtype background. For

example, wd95 suppresses AVB gap junction inputs with VA3, VA6 and VA7 in

unc-4(e120) but appears to induce miswiring of VA9 in unc-4(+) animals. The

differential effects of wd87 are even more striking; in this case, we observed

suppression of AVB gap junctions with VA2-4 and VA8 in unc-4(e120) (Figure

3.7) as opposed to the imposition of ectopic AVB gap junctions with VA4-6, VA9

and VA10 in the wildtype (Figure 3.9). These results suggest that genetic circuits

controlling gap junction specificity may differ significantly among members of the
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VA motor class with a given gene adopting a positive role in one VA and the

opposite and negative function in another. To test this idea, we examined AVB

gap junction inputs to VAs in a lin-17/Frz mutant. As described in Chapter 2, lin-

17 encodes a member of the frizzled class of Wnt receptors that antagonizes

expression of ceh-12 and the consequent miswiring of VA motor neurons. This

model is consistent with our finding that a subset of VAs (VA6 and VA10) are

miswired with AVB inputs in the lin-17 mutant alone; this result is consistent with

a mild backward Unc phenotype displayed by unc-17 mutants and with our

finding that the unc-17 allele does not suppress AVB gap junctions for other VAs

in an unc-4 mutant. In contrast, mig-1/Frz mutants do suppress the creation of

AVB gap junctions with selected VAs (VA2 and VA10) (Figure 3.9) as predicted

from the role of MIG-1 as a frizzled receptor that mediates EGL-20/Wnt-

dependent expression of ceh-12 (Figures 2.1 and 2.2 in Chapter 2). Here, our

results showing that the mig-1 mutation results in ectopic AVB inputs to VA5 and

VA6, have also revealed that MIG-1/Frizzled could function in these specific VAs

to antagonize the imposition of VB type inputs. These results suggest that MIG-1

functions in one subset of VA motor neurons in concert with LIN-17 to preserve

VA type inputs but acts in other VAs to oppose the LIN-17 pathway. Finally, we

note the interesting finding that wd77, wd83, wd87 and wd95 result in ectopic

AVB gap junctions with VA11 (Figure 3.9), one of three VA motor neurons (VA2,

VA11, VA12) that is not miswired in unc-4 mutants (White et al. 1992a).  These

results underscore the likelihood that blr alleles isolated in our screen could have

roles in synaptic choice that are independent of unc-4 function.
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Figure 3.9.  blr mutants prevent AVB to VA gap junctions in wildtype VAs.

blr genes and Wnt signaling components function in wildtype VAs to prevent
ectopic AVB to VA gap junction connections. Ectopic AVB gap junction
connections (red circles) represent statistically significant differences in wiring (p
< 0.05, Fisher’s Exact Test) when the frequency of AVB gap junction connections
in blr mutants versus wildtype. Mutations in wd77, wd83, wd87, and wd95, all
result in ectopic AVB to VA11 gap junctions.
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blr-9(wd88) antagonizes Unc-4 suppression by egl-20.

blr-9(wd88) displays interesting genetic properties: (1) wd88 suppresses

unc-4(ts) but not other unc-4 alleles; (2) wd88 suppression of unc-4(ts) is

synthetically enhanced by mutations in unc-24;  (3) wd88 antagonizes egl-20

suppression of unc-4(e120).  The reasons for these genetic results are unclear.

Of particular note are results showing that wd88 is strong suppressor of the AVB

to VB gap junction defect in anterior unc-4 mutant VA motor neurons (Figure 3.7)

suggesting that wd88 could function in parallel to ceh-12. If this model is correct,

then wd88 would be expected to enhance Unc-4 suppression by a mutation in

egl-20/Wnt since wildtype egl-20 function is required for ectopic ceh-12

expression in unc-4 mutant VAs. (Linkage of wd88 to ceh-12 on chromosome I

prevented construction of a wd88 ceh-12 double.) Surprisingly, the combination

of wd88 with egl-20 did not improve backward locomotion of the null allele unc-

4(e120). This result stands in contrast to other blr alleles (wd76 and wd95) that

suppress AVB gap junctions with anterior VAs (Figure 3.7) and also enhance

ceh-12 suppression of Unc-4 (Table 3.2, 3.3).  We conclude that wd88 may

function in a common pathway with egl-20, due to the fact that wd88 does not

enhance egl-20 suppression of unc-4(0). It is also possible that wd88 is a

hypomorphic mutation, and therefore, may have only a limited effect on

suppression of the movement phenotype.
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DISCUSSION

One of the fundamental problems in neurobiology is to understand how

neurons select synaptic targets.  Our evidence indicates that this decision can be

controlled by neuron-specific gene expression.  In the nematode, C. elegans, the

UNC-4 transcription factor is selectively expressed in VA motor neurons to block

expression of downstream genes that result in an alternative pattern of

presynaptic inputs that is normally restricted to VB class motor neurons. One of

these UNC-4 target genes, ceh-12, which is normally expressed in VB motor

neurons, is also ectopically expressed in a subset of posterior VA motor neurons

in unc-4 mutants.  One consequence of ectopic CEH-12 expression in posterior

VAs is the adoption of inappropriate gap junctions with AVB.  Ectopic AVB

miswiring in anterior VA motor neurons, however, is not dependant upon ectopic

ceh-12 expression, suggesting the involvement of additional pathways that

function, in parallel to ceh-12, to promote ectopic AVB inputs to anterior VAs.

The work described in this chapter uses a genetic screen, based on this model,

to identify mutations in genes that function in parallel to ceh-12 to regulate VA

motor neuron input specificity. We report the isolation of 22 independent Unc-4

suppressor or blr (backward locomotion restored) alleles mapping to 16

complementation groups.  We describe detailed phenotypic characterization of

six of these Unc-4 suppressors mutations that identify at least three blr loci that

function in parallel to ceh-12.
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We examined ectopic AVB to VA gap junctions in unc-4 mutant animals to

determine if these blr loci promoted ectopic AVB to VA gap junction connections.

ceh-12 mutations rescue the ectopic AVB gap junction defect in posterior unc-4

mutant VA motor neurons (VA8, VA9, VA10).  We found that five blr alleles

(wd77, wd76, wd87, wd88, wd95) also suppress ectopic AVB gap junctions with

anterior VAs.  Three blr alleles (wd76, wd87, wd88) suppress AVB to VA gap

junction within the same group of anterior motor neurons (VA2, VA3, and VA8)

(Figure 3.7). This observation is consistent with the genetic result showing that

wd87 and wd88 do not enhance each other’s Blr trait and therefore could

function in a common pathway. (Figure 3.7, Table 3.2)  wd76 stands apart as the

only allele in this group that enhances ceh-12 suppression of Unc-4 and

therefore is likely to function in parallel to ceh-12. This model predicts that the

wd76, ceh-12 double mutant will suppress the AVB gap junction defect in both

posterior (ceh-12 pathway) and anterior (wd76) pathways. Whether wd76

functions in the wd87-wd88 pathway can be determined by examining double

mutants for enhanced Unc-4 suppression.  wd95 appears to suppress the ectopic

gap junction defect in VA3 and in the midbody VA motor neurons, VA6 and VA7)

(Figure 3.7).  This result is consistent with the finding that wd95 enhances ceh-12

suppression of the Unc-4 backward movement defect and therefore supports the

model in which wd95 affects a gene that functions in parallel to ceh-12.

Our genetic screens also identified a mutation in at least one new gene

that likely functions in the ceh-12 pathway. Although blr-2(wd77) was isolated in

a screen designed to detect recessive enhancers of ceh-12,  retesting of the
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outcrossed wd77 allele did not confirm enhancement of the ceh-12 Blr

phenotype. This result is consistent with the independent observation that the

outcrossed wd77 allele suppresses the AVB gap junction defect for a posterior

VA motor neuron (VA10) in which ceh-12 functions but does not suppress this

Unc-4 trait in anterior VAs (Figure 3.7). One explanation for this result is that

wd77 affects a gene that functions in the EGL-20/Wnt pathway. This possibility

can be tested by determining if wd77 suppresses ectopic ceh-12::GFP

expression in unc-4 mutants. It is interesting to note, however, that no previously

identified Wnt pathway gene maps to the wd77 interval. An alternative and

exciting possibility is that wd77 affects a gene that functions downstream of ceh-

12.

Our gap junction data also predicts that because wd95 and wd76 seem to

suppress wiring defects in different neurons, it is possible that these two

mutations may genetically enhance suppression of unc-4(0).  This hypothesis

can be tested by the creation of double and triple mutant strains (e.g. unc-

4(e120); wd76; wd95) with these blr mutations.

We have described an unusual blr mutation, wd88, that is enhanced by

mutations in unc-24.  unc-24 encodes a stomatin protein and mutants show a

jerky, forward movement defect.  A similar phenotype is displayed by mutations

in the stomatin gene, unc-1 and in the innexin genes, unc-7 and unc-9. The

UNC-1 protein co-localizes with UNC-9 and physiological measurements are

consistent with a model in which UNC-1 regulates the activity of UNC-9/innexin

gap junction channels (Chen et al. 2007a). These results point to a likely role for



144

these genes (unc-24, unc-1, unc-7 and unc-9) in gap junction assembly or

function in the forward locomotory circuit involving AVB and B-class motor

neurons. It will be interesting to determine if mutations in unc-7, unc-9 and unc-1

also enhance the Blr phenotype of wd88. This result would be consistent with

model in which wd88 functions in parallel to these forward Unc genes. Perhaps,

in this scenario, the forward Unc genes contribute to VA miswiring in unc-4

mutants (e.g. ectopic AVB gap junctions) such that this defect is strongly

suppressed in double mutants with wd88.

Preliminary results obtained with the GRASP split-GFP synaptic marker

indicate that mutations in blr alleles can restore AVA to VA synapses in an unc-4

mutant. Although these results require confirmation with a recently generated

GRASP marker with significantly brighter GFP fluorescence (R. Skelton, personal

communication), the result showing that wd77 suppresses both the gap junction

(AVB-VB) and chemical synaptic (AVA-VA) unc-4 defects in posterior VAs (zone

4) (Figure 3.7) is promising.

Our results show that ceh-12 and other blr genes identified in this work

function to promote the creation of VB type inputs (AVB gap junctions) to VA

motor neurons. We did not detect, however, a role for any of these blr genes,

including ceh-12, in the formation of AVB gap junctions with VB motor neurons.

This result is consistent with a model in which blr genes share redundant

functions in VB motor neurons but not when ectopically activated to drive the

creation of AVB gap junctions with VAs. This model could be tested by examining
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the effects of double mutants of ceh-12 and blr genes on AVB gap junctions with

VB motor neurons.

Future experiments will focus on the molecular identification of blr genetic

loci by genome re-sequening with high throughput Illumina technology (Sarin et

al. 2008). These results are expected to provide a foundation for a detailed cell

biological analysis of the mechanism of synaptic choice in this motor circuit.
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CHAPTER IV

PYRVINIUM, A SMALL MOLECULE INHIBITOR OF CASEIN KINASE Iα,
FUNCTIONS IN C. ELEGANS TO BLOCK MULTIPLE

WNT SIGNALING PATHWAYS.

The following section describes experiments conducted in collaboration

with Curtis Thorne in the laboratory of Ethan Lee, MD, PhD at Vanderbilt

University in the Department of Cell and Developmental Biology. Curtis

performed a chemical screen using Xenopus egg extracts and identified

pyrvinium, an FDA-approved drug, as a potent inhibitor of canonical Wnt

signaling.  Pyrvinium functions through a novel mechanism, acting as an

activator of the destruction complex protein Caesin Kinase Iα (CKIα).  The goal

of the collaboration was to determine if this newly discovered small molecule

inhibitor of the Wnt signaling pathway, pyrvinium, blocks canonical Wnt signaling

in C. elegans.  The following chapter details experiments designed to test this

hypothesis.

I performed all C. elegans experiments described in this section. Curtis

Thorne in Ethan Lee’s lab performed the initial chemical genetics screen.  The

section discussing the chemical screen is paraphrased from the recent paper

(Thorne et al. 2010, submitted) on this work.
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INTRODUCTION

A critical step in the canonical Wnt signaling pathway is the degradation of

β-catenin via the destruction complex.  This complex, consisting of Axin, GSK3,

CKIα, and APC, keeps cytosolic levels of β-catenin low.  Upon Wnt activation,

the destruction complex is blocked, increasing intracellular levels of the effector

protein, β-catenin and simultaneously degrading the scaffold Axin.

Mutations in the destruction complex component APC were identified as

the culprit in a familial form of colon cancer, and increased cytosolic levels of β-

catenin have been linked to epithelial cell transformation (Nakamura et al. 1991).

Over 80% of sporadic cases of colon cancer are attributed to a mutation in APC,

and 10% are caused by a gain of function mutation in β-catenin.  Thus, spurious

activation of the Wnt pathway is strongly liked to tumorogenesis.  In an effort to

identify potential compounds for the treatment of colon cancer, the Lee laboratory

utilized a cytoplasmic Wnt signaling pathway, reconstituted from Xenopus egg

extracts, to screen a small molecule library for inhibitors of an activated pathway.

Pyrvinium, an FDA approved drug, was identified as a small molecule activator of

the destruction complex component Caesin Kinase Iα.

Pyrvinium is an antihelminthic compound that is FDA approved for the

treatment of Enterobius vermicularis, commonly known as pinworms. Pinworms

are one of the oldest known human pathogens, having been detected in

fossilized human feces dating from around 7837 BCE (Fry and Moore 1969), and

continue to plague modern industrialized societies (Downey et al. 2008). Aristotle
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(384-322 BCE) is said to have discussed pinworms and their associated malady

in his writings (Horne 2002). Transmission occurs via a fecal-oral route and

presents clinically as a mild gastritis, prurtis ani, and/or restless sleeping,

however most affected individuals show no clinical symptoms (Feldman M 2006;

Downey et al. 2008). Pyrvinium, first FDA-approved in 1955 for the treatment of

pinworms, has been phased out of use in the United States by more potent and

broad-spectrum antihielmenthics. One reason for its low potency may be due to

its limited solubility in aqueous solutions.  In addition, pyrvinium does not cross

the intestinal epithelium and 90% of ingested drug is excreted in feces (Yu et al.

2008). These characteristics, although limiting for pinworm treatment, can be

desirable for the treatment of other intraluminal parasites such as

Cryptosporidium parvum (Downey et al. 2008).  Despite over 50 years of use, the

mechanism of action of pyrvinium against these parasites remains unknown

(Downey et al. 2008).

Here, I describe experiments designed to characterize the effects of

pyrvinium on the canonical Wnt signaling pathway in the free-living, soil

nematode, C. elegans.  We find that pyrvinium treatment phenocopies inhibition

of the canonical Wnt signaling pathway in three developmental contexts: Vulval

morphogeneisis, neuroblast migration, and the unc-4 pathway. In addition, I

describe the effects of pyrvinium on the non-canonical asymmetric pathway in

the early embryo.  Finally, I propose a hypothetical chemical genetic screen

designed to identify regulators of kin-19/CKIα in C. elegans.
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MATERIALS AND METHODS

C. elegans strains.

Nematodes were cultured according to standard practices (Brenner 1974).

This work utilized the following alleles:  mat-2(ax102) (CGC), pop-1(hu9);

mnIs32[mec-7::GFP] (G. Garriga), unc-4(e2322ts) (Miller et al. 1992).  All

nematodes were cultured on standard NGM plates inoculated with OP50-1 E. coli,

unless otherwise stated.

Pyrvinium treatment of C. elegans.

Pyrvinium was prepared using the pamoate salt. (Generous donation from

Lee lab – sigma) Pyrvinium pamoate is blood-red in color and fluoresces under

yellow light. Pyrvinium is very hydrophobic and is only weakly soluble in water.

Unc-4 assay:  Pyrvinium was mixed to a maximum concentration of 100µM in

soybean oil (CVS pharmacy) and applied directly to the surface of the plate in

question.  This has been used previously to treat C. elegans with naphthalene

(Kokel et al. 2006).  Pyrvinium was found to be only partially soluble in mineral

oil, as un-dissolved crystals of pyrvinium were seen upon inspection under 10x

magnification.  However, centrifugation of the pyrvinium/soybean oil mixture

removed crystals but not the fluorescence.  In addition, a visual inspection of

treated worms showed red fluorescence indicative of ingested pyrvinium.

Experimental results were compared between pyrvinium-treated animals

and vehicle controls. Adult worms of the requisite geneotype for each experiment

were placed onto treatment plates, and their F1 progeny were used for data
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collection.  Treatment of Adult worms ensured that all progeny scored would

have been exposed to pyrvinium during their entire life cycle.  3-4 adult worms

were placed on each pyrvinium treatment plate and vehicle control plate.  Worms

were scored as L4 to young adults for each experiment.

Vulval morphology assay

Pyrvinium pamoate was dissolved in 95% ethanol to a final concentration

of 1mM.  100uL of 1mM ethanol/pyrvinium mixture was added to 10mL of NGM

media immediately prior to pouring plates.  Final concentration of ethanol in plate

was 1%, which is below threshold for biological activity. This mixture resulted in a

final concentration of 10uM per plate. Experimental results were compared

between pyrvinium treated animals and vehicle controls. Adult worms of the

requisite geneotype for each experiment were placed onto treatment plates, and

their F1 progeny were used for data collection.  Treatment of Adult worms

ensured that all progeny scored would have been exposed to pyrvinium during

their entire life cycle.  3-4 adult worms were placed on each pyrvinium treatment

plate and vehicle control plate.  Worms were scored as L4 to young adults for

each experiment.

mat-2 lethality and Q cell migration assays

DMSO plates were created using the same procedure as ethanol plates.

Experimental results were compared between pyrvinium treated animals and

vehicle controls.  Experimental results were compared between pyrvinium treated

animals and vehicle controls. Adult worms of the requisite geneotype for each

experiment were placed onto treatment plates, and their F1 progeny were used
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for data collection.  Treatment of Adult worms ensured that all progeny scored

would have been exposed to pyrvinium during their entire life cycle.  3-4 adult

worms were placed on each pyrvinium treatment plate and vehicle control plate.

Worms were scored as L4 to young adults for each experiment.

Data collection.

Unc-4 locomotion

We assayed unc-4 locomotion as previously described (Chapter 2 and 3).

Animals were treated with pyrvinium/soybean oil mixture and incubated at 23C

for 3 days and then their backward movement was quantified.

Vulval development

Pyrvinium’s effect on vulval development was scored for visual defects at

100x magnification under DIC light microscopy using a Ziess Axioplan

microscope, retrofitted with a CCD camera and OpenLab software.  Visual

defects observed ranged from abnormal morphology to protrouding vulva (pvl).

All animals were scored by picking individual, adult animals onto glass slides.

Slides were prepared with a 2% agarose pad, and worms were anesthetized

using a 0.1% tricane and 0.1% tetramisole mixture.  Slides were scored blind to

geneotype and treatment paridigm.

Egg retention in the uterus was ascertained from this population by

counting the number of eggs directly visualized under these conditions.
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RNAi.

RNA interference was conducted using the feeding method (Kamath et al.

2001).  Worms were fed bacteria expressing double stranded RNA from the

Arringer library. dsRNA expression in E. coli was induced using a β-lactose

induction protocol. (Protocol from Eric Lambie)

(www.genetics.wustl.edu/tslab/Protocols/Lactose_RNAi_Plates.htm)  1L of NGM

plates were supplemented with 20mL of 20% sterile filtered β-lactose in water.

Pyrvinium/DMSO was added after supplementation with β-lactose and before

plates were poured.  E. coli colonies were picked from a toothpick stab of the

Ahringer library.  A single colony was used to inoculate a 2 mL culture, grown

overnight at 37°C with 10µL of 100mg/mL ampicillian in a 15 mL falcon tube.

The overnight culture was diluted 1:100 in LB/AMP and grown at 37°C, with

shaking, for 6 hours.  200µL of LB/AMP/E. coli mixture was plated on each plate,

allowed to dry, and incubated at room temperature for 4 days before using.

mat-2 experiments.

4 adult worms of requisite genotype were placed on each plate and

allowed to lay eggs for 48 hours at the indicated temperature.  All adult worms

were then removed, and plates grown for 24-72 hours (depending on

temperature) at the same temperature as the previous step.  This step was

necessary to control against a developmental delay induced by low temperature

conditions and pyrvinium treatment by allowing all surviving eggs to hatch.  Total

Live progeny vs. dead (unhatched) eggs were counted on each plate.
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Experiments were conducted in duplicate.  Fisher’s exact test was used for all

statistical analysis.

Q neuroblast migration.

Q neuroblast migration was scored using the marker mec-7::GFP.  mec-

7::GFP is expressed in the six touch receptor neurons AVM, PVM, ALML, ALMR,

PVML, and PVMR.  I used the neurons ALML/R and PVML/R as positional

markers, which are not sensitive to a Wnt signal.   Treated animals were isolated

and the AVM and PVM cell bodies were scored under a fluorescent stereo

dissecting scope under a GFP filter according to their relative positions along the

AP axis.  Abnormal migration was scored as positive in an animal if PVM had

migrated past the midbody position of ALML/R.

RESULTS

A Xenopus extract screen identifies pyrvinium as a potent small molecule
inhibitor of the canonical Wnt pathway

The canonical Wnt signaling pathway is kept inactive by the constitutive

phosphorylation and degradation of β-catenin by the destruction complex.

Normal intracellular signaling levels of Axin, a scaffold protein for the destruction

complex, are kept high.  Upon treatment with LRP6ICD, a section of the

intracellular domain of LRP6 that activates the Wnt pathway, β-catenin and Axin

levels display an inverse relationship: the destruction complex is directly blocked
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by LRP6ICD binding to GSK3 and Axin is eventually degraded (by an unknown

mechanism), allowing β-catenin levels to increase its intracellularly (Cselenyi et

al. 2008).  This relationship underlies the general mechanism present in this

signaling pathway.

Recent work in Ethan Lee’s lab developed a specific assay in which

Xenopus egg extracts is used as an in vitro model to study the cytoplasmic

components of canonical Wnt signaling.  (Figure 4.1A)  Treatment of cytosolic

Xenopus egg extracts with the LRP6ICD induces robust activation of the

pathway.  in vitro, translated fluorescent proteins (Axin-Renila luciferase and β-

catenin-Firefly-Luciferase) were added to the extracts, allowing bimodal

monitoring of the pathway’s activation state (Cselenyi et al. 2008).  Activation is

detected by a coincident decreased activity of Axin-Renilla luciferase versus an

enhanced activity of β-catenin-firefly luciferase. This bimodal assay allowed for a

high-throughput screen of chemical modulators of the Wnt signaling pathway,

under which active compounds (inhibitors of the pathway) would be expected to

increase the ratio of renilla(Axin) versus firefly(β-catenin) luciferase activity, thus

reversing the ratio.

The primary screen using this system identified 20 candidate molecules

(both activators and inhibitors) that modulated the β-catenin/Axin ratio at least 3

standard deviations from the mean. (Figure 4.1B) Pyrvinium pamoate was the

most potent inhibitor of this pathway. (Figure 4.1C)
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Figure 4.1. Xenopus egg extract screen identifies pyrvinium as a potent
inhibitor of canonical Wnt signaling.

A. Diagram of high-throughput screen.  Xenopus egg extract contains exogenous
Axin-renilla and β-catenin-firefly luciferase tagged proteins.  Wnt signaling is
activated by addition of exogenous LRP6ICD.  Chemicals from chemical libraries
are added to activated extract in 384-well plates and incubated for 4 hours at
25°C.  Renilla and firefly-luciferase levels are examined individually and
quantified relative to controls.  High and low luciferase levels are shown as
indicated. B. Normalized scatter plot of Axin and Renilla luciferase levels for FDA
approved compounds examined within this screen.  Both activators and inhibitors
are shown.  Shaded region represents levels less than 3 standard deviations
from the mean.  Pyrvinium, a potent inhibitor is circled in red.  C.  Chemical
structure of pyrvinium.  (Adapted from Thorne, et al. submitted)
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Pyrvinium functions via a conserved mechanism across phyla.

In order to determine if pyrvinium interacts with a conserved component

and functions as an inhibitor of the canonical Wnt signaling pathway, Curtis

tested pyrvinium for the inhibitory effects on the canonical Wnt pathway in

several different model organisms. One of the classical examples of ectopic Wnt

signaling is the induction of a primary axis duplication. Injection of Wnt3a induces

a duplicate axis in Xenopus through a canonical Wnt signaling mechanism.

Treatment with pyrvinium blocks formation of the Wnt3a induced secondary axis

and confirms that pyrvinium inhibits a Wnt signaling, in vivo.  In the fruitfly,

Drosophila, Wingless signaling helps pattern the denticle-banded cuticle.

Injection of pyrvinium disrupts denticle banding in Drosophila embryos.  This

result confirms that pyrvinium treatment blocks Wnt signaling in Drosophila and

that the target of pyrvinium may be conserved.  In human cell culture, nuclear β-

catenin accumulation is characteristic of an activated Wnt signaling pathway.

Pyrvinium blocks Wnt3 induced nuclear β-catenin accumulation in human cell

culture, suggesting that the target of this pathway is also conserved in humans.

These experiments were performed in the Lee laboratory (Thorne, et al.

submitted).

Pyrvinium blocks Q cell migration in C. elegans.

To determine if the target of pyrvinium is conserved in C. elegans, I asked

if pyrvinium would perturb Q cell migration, which is regulated by canonical Wnt

signaling (Ch'ng et al. 2003). The QL and QR neuroblasts are born embryonically
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at the same time and migrate from their initial positions about an hour after the

animal hatches. The neuron QL, and its descendents, activate expression of the

hox gene mab-5, and migrate towards the posterior of the animal, whereas the

QR interneuron does not express mab-5 and migrates toward the anterior.

QL responds directly to an EGL-20 Wnt signal from the posterior, signals

through lin-17 and mig-1/Frizzled and bar-1/β-catenin to induce MAB-5/HOX

expression (Maloof et al. 1999).  The expression of mab-5 causes the QL

daughter cell to migrate towards the posterior.  Mutations that affect positive

regulators of canonical Wnt signaling (e.g. bar-1/β-catenin, pop-1/TCF, egl-

20/Wnt), cause the QL cell to reverse direction and migrate towards the anterior

(Maloof et al. 1999).  Mutations in negative regulators of Wnt signaling, such as

pry-1/Axin mutants, cause the QR daughter cell to express mab-5, and migrate

towards the posterior.  Mutations in the destruction complex like pry-1/Axin,

cause an intracellular rise in β-catenin that activates Wnt signaling in the QR cell,

which normally does not respond to Wnt.  Thus, I reasoned that Q-cell migration

would serve as a sensitive assay for detecting pyrvinium dependant inhibition of

Wnt signaling.

C. elegans has a cuticle which is impermeable to many types of

pharmacological agents (Lewis et al. 1980a; Lewis et al. 1980b). We reasoned

that this may prevent pyrvinium from reaching the neuroblasts at a significant

concentration.  Therefore, a sensitized genetic background may be necessary to

see the effects of pyrvinium.  We used a hypomorphic allele in pop-1/TCF to
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Figure 4.2.  Pyrvinium treatment results in abnormal Q cell migration.

Q cell progeny migrate in opposite directions depending on their response to a
posterior Wnt signal.  Mutations that block canonical Wnt signaling cause both Q
cell progeny to migrate toward the anterior.  Hypomorphic mutations in pop-
1/TCF cause an incompletely penetrant migration phenotype.  Pyrvinium
treatment enhances pop-1-disrupted Q cell migration.
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sensitize the genetic background to pyrvinium.  Figure 4.2 shows that treatment

of pop-1(hu9); mnIs32[mec-7::GFP] animals with pyrvinium results in a dose

dependant increase in the number of anteriorly displaced QL neuroblast progeny.

For example, treatment of pop-1 with 100µM pyrvinium increases the number of

displaced QL progeny from 58 to 84%.  (Figure 4.2)  This inhibition of posterior

migration is presumably due to the loss of activated canonical Wnt signaling in

the QL neuroblast.

Pyrvinium blocks vulval development in C. elegans.

Vulval development depends on multiple interacting Wnt signaling

pathways (Green et al. 2008).  Mutations in the β-catenin homolog, bar-1, display

a range of vulval morphology defects (Eisenmann and Kim 2000; Gleason et al.

2006).  Thus, we hypothesized that vulval morphogenesis should be disrupted by

pyrvinium if it targets Wnt signaling in this tissue.

Pyrvinium treatment produces a broad array of vulval morphology defects.

Ranging from protrouding vulva (pvl) to vulvaless (vul) phenotypes.  In adult

animals, these vulval defects occurred approximately ~30% of the time after

treatment with 10µM pyrvinium.  (Figure 4.3)  To confirm these results, we asked

if animals also displayed an egg retention phenotype (Egl), which is consistent

with a disrupted vulval epithelium.  Pyrvinium-treated animals had a statistically

significant (p >0.0005) increase in the number of eggs retained in the vulva

compared to vehicle controls.   Wildtype animals averaged 9.9 eggs/worm

whereas pyrvinium treated worms had 12.9 eggs/animal.  We conclude from
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Figure 4.3.  Pyrvinium disrupts vulval morphology in C. elegans.

A. Normal vulval morphology (vehicle) B. Protrouding vulva (Pvl) on 10µM
treated pyrvinium plates.  C.  One third of pyrvinium treated animals have
disrupted vulval morphology.  D.  Pyrvinium treatment results in egg (embryo)
retention in the uterus, a trait that is consistent with disrupted vulval function.
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these results that pyrvinium phenocopies Wnt signaling mutants by disrupting

vulval morphogenesis and development.

Pyrvinium suppresses the Unc-4 backward movement defect.

We have shown that UNC-4 antagonizes a Wnt signaling pathway to

inhibit the expression of the VB gene, ceh-12.  (Chapter 2)  I have hypothesized

that ceh-12 expression depends on a canonical Wnt signaling pathway and

therefore should be inhibited by treatment with pyrvinium.  In this assay, the

repression of ceh-12 expression was motivated by assessing a related

behavioral phenotype.  As described in Chapter 2, Wnt dependent expression of

ceh-12 in VA class motor neurons results in a backward movement defect

caused by the miswiring of VAs with VB motor neuron-type inputs.  Mutations in

Wnt pathway genes block VA expression of ceh-12 and the concurrent backward

movement phenotype.  Thus, we reasoned that pyrvinium should also suppress

Unc-4 movement if its target is required for ceh-12 expression. (Figure 2.1)

To test this hypothesis, unc-4(e2322ts) animals were treated with two

concentrations of pyrvinium at the threshold temperature of 23C.  As shown in

Figure 4.4, Pyrvinium showed dose dependant suppression of the Unc-4

backward movement defect.  This result provides additional conformation that the

pyrvinium target is conserved and that it functions in a canonical Wnt signaling

pathway.
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Figure 4.4.  Pyrvinium suppresses the Unc-4 backward movement defect.
A.  UNC-4 normally functions to prevent an EGL-20/Wnt dependent signaling
pathway from activating expression of ceh-12/HB9 in posterior VAs and disrupted
backward movement. Blocking a canonical Wnt signaling, via pyrvinium, should
rescue the backward movement defect. B.  Inactivation of Wnt signals quells ceh-
12 expression and restores backward locomotion.  Treatment of an unc-4
hypomorphic mutant rescues backward movement in a dose dependant manner.
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Pyrvinium induces a synthetic lethal phenotype in C. elegans embryos.

Experiments performed in the Lee laboratory established that pyrvinium is

the only known small molecule that can suppress an adenomatous polyposis coli

(APC) mutation (SW480 cells) that is responsible for the familial form of colon

cancer.  To determine if this function of pyrvinium is also conserved in C.

elegans, I obtained a mutant in the apc-1/mat-2 gene from the Caneorhabditis

Genetics Center.  Upon treatment of mat-2(ax102) worms with pyrvinium I

observed a highly penetrant synthetic lethal phenotype. (Table 4.1)  This result

was initially surprising since the model of pyrvinium action predicted the opposite

result; i.e suppression of the apc-1/mat-2 phenotype. I then realized that apc-

1/mat-2 in C. elegans actually encodes a conserved subunit of the Anaphase

Promoting Complex or Cyclosome (APC/C) (a.k.a.  Apc1 in S. cerevisiae) and

not the homolog of adenomatous polyposis coli (APC) (which is apr-1 in C.

elegans).  This fortuitous discovery also provided evidence of the inhibition of

Wnt signaling by pyrvinium.

mat-2 null mutants are embryonic lethal (Golden et al. 2000). For our

studies, we used a hypomorphic allele, mat-2(ax102), that is temperature

sensitive. For example, ~80% of the progeny of a mat-2(ax102) hermaphrodite

are viable at 15˚C; viability declines to ~20% at 20˚C (Table 4.1). Treatment with

100 µM pyrvinium at either 15˚C or 20˚C consistently reduced viability of mat-2

embryos to ~5% (Table 4.1). Wildtype (N2) C. elegans embryos are unaffected

by pyrvinium alone or by carrier (DMSO). These results indicate that pyrvinium

induces a synthetic lethal phenotype in combination with mat-2(ax102ts) allele.
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Pyrvinium Induces a Synthetic Lethal Phenotype with mat-2 (ax102)

[Pyrvinium] µM % Viable P-value
(vs DMSO)

 15˚C DMSO 78.9
10 72.7 0.089
100 4.2 2.9E-36

  20˚C DMSO 21.3
10 7.4 0.00015
100 5.0 0.00012

Table 4.1. Pyrvinium Induces a Synthetic Lethal Phenotype with mat-2
(ax102).

Pyrvinium induces synthetic lethality with the of the APC/C mutant mat-
2(ax102)at both permissive (15˚C) and non-permissive (20˚C) temperature. P-
values were determined using Fisher’s exact test.
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RNAi of pop-1/TCF Confers Increased Lethality to mat-2

RNAi clone N2 % live mat-2 % live P-value
N2 vs mat-2

P-value
(vs EV)

Empty Vector 69.6 10.0 6.65E-29
bar-1 100.0 11.0 3.18E-86 0.457
pop-1 (clone 1) 4.0 0.8 0.011 3.29E-06
pop-1 (clone 2) 3.3 0.0 0.004 9.22E-07

Table 4.2. RNAi of pop-1/TCF Confers Increased Lethality to mat-2.

An RNAi assay tested the hypothesis that knockdown of a wnt signaling
component critical for early embryonic development would enhance mat-2
lethality. bar-1 (one of several β-catenin genes) is not involved in early embryonic
development and represents a Wnt pathway control.  RNAi of pop-1(TCF/LEF)
enhanced lethality in the mat-2 genotype vs wildtype (N2) control. The
experimenter was blind to genotype and to the identity of RNAi clones. P-values
were determined using Fisher’s exact test.
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Wnt signaling is required for early embryonic development in C. elegans.

The combined defects in Wnt signaling and the APC/C pathway could account

for the synthetic lethality of pyrvinium with the mat-2 mutant. This model predicts

that genetic ablation of other components of the early embryonic Wnt pathway

should also result in lethality in combination with mat-2. To test this idea, we use

RNAi for knockdown of the TCF-LEF transcription factor, POP-1, an essential

component of the early embryonic Wnt signaling pathway in C. elegans

(Rocheleau et al. 1997).  As shown in Table 4.2, RNAi of pop-1 produces an

almost fully penetrant lethal phenotype in combination with mat-2. [Although

RNAi of pop-1 alone induces lethality, penetrance is significantly enhanced by

mat-2 (p < 0.004-0.01).] As a control, we used RNAi to deplete bar-1/β-catenin,

which is not required for Wnt dependant signaling in the early embryo

(Rocheleau et al. 1997).  No significant difference was found with bar-1 RNAi

versus empty vector control plates.  These results are consistent with one

hypothesis that inhibition of Wnt signaling by pyrvinium is responsible for the

enhanced lethality of the mat-2 phenotype in early embryos.  This fortuitious

discovery also suggested a genetic strategy to identify C. elegans genes that

mediate the effects of pyrvinium treatment (see below).

DISCUSSION

A small molecule inhibitor of the Wnt signaling pathway is currently lacking

as a research tool (Clevers 2006).  A small molecule inhibitor also has the
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potential to revolutionize the treatment of β-catenin-derived tumors.  Experiments

performed in the Lee laboratory established that the FDA-approved drug,

pyrvinium is a potent, small molecule inhibitor of canonical Wnt signaling.  My

work has now confirmed that pyrvinium phenocopies Wnt signaling pathway

mutants in C. elegans and therefore is likely to target a conserved Wnt signaling

pathway component.

Biochemical assays performed in the Lee lab have now established that

pyrvinium targets Casein Kinase Iα, a conserved component of the destruction

complex.  These results indicate that pyrvinium functions as an activator,

enhancing the activity of CKIα.  Phosphorylation of β-catenin by CKIα acts as a

priming step for GSK3-dependant phosphorylation of β-catenin and subsequent

degradation by the ubiquitin-proteosome pathway. Overactivation of CKIα would

inhibit the pathway by ectopically phosphorylating β-catenin and inducing the

destruction complex to function more effectively.

In C. elegans, the homolog of CKIα, kin-19, functions in vulval morphology

and early embryonic development (Peters et al. 1999; Walston et al. 2004;

Gleason et al. 2006).  As discussed in the introduction of this thesis, the

patterning of the EMS blastomere is dependant upon a Wnt signal.  Previous

studies have shown that kin-19 RNAi blocked endoderm development in early

embryonic development, which phenocopies a mutant in the downstream

transcription factor pop-1/TCF.  This effect was enhanced in the presence of

another component of the destruction complex, apr-1/APC, which is consistent
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with its role as a positive effecter in the non-canonical β-catenin asymmetry

pathway.

Future Directions.

In experiments to measure the effects of pyrvinium on C. elegans

embryonic development, we discovered that pyrvinium treatment of animals with

a weak mutation in the apc-1 subunit of the Anaphase Promoting

Complex/Cyclosome (mat-2) results in a highly penetrant synthetic lethal

phenotype. Synthetic lethality may arise from convergent roles of CKIα/Wnt

signaling and APC/C function in early embryonic development (Rappleye et al.

2002; Nakamura et al. 2005; Huang et al. 2007). Weak mat-2 alleles (e.g. mat-

2(ax102) used in this study) result in early embryonic anterior/posterior polarity

defects (Rappleye et al. 2002).  APC/C function is required for PAR-2 localization

to the posterior membrane of the 1-cell stage and subsequent asymmetric

division (Rappleye et al. 2002).  In C. elegans, the Wnt pathway contributes to

the polarization of the ABar blastomere by differentially regulating the placement

of its duplicated centrosomes (Walston et al. 2004).  Significantly, kin-19/CKIα

regulates both the Wnt/β-catenin pathway and a separate spindle orientation

pathway. Thus, it is likely that defects in A-P patterning, present at a basal level

in mat-2(ax102) animals, is exacerbated by the combined effects of pyrvinium on

Wnt signaling (inhibition) and CKIα (activation).

The mat-2 synthetic lethality with pyrvinium affords a powerful strategy for

detecting “suppressor” mutant hits in the CKIα/Wnt pathway. Mutants that block
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pyrvinium activity (e.g. mutations in CKIα, protein targets of CKIα in the Wnt

pathway, or regulators of CKIα activity) should rescue lethality. Strong selection

for suppressor mutants (i.e. viability) should allow high-throughput screens with

the capacity to reveal these classes of CKIα/Wnt pathway gene mutations.

The genetic screen (Figure 4.5) is designed to detect rare suppressors of

pyrvinium-dependent lethality. Initially, we will screen for dominant suppressors.

For example, a mutation that prevents pyrvinium binding to 50% of available

CKIα could be detected as a haplo-insufficient dominant suppressor; this model

assumes that only one copy of the wildtype CKIα gene would reduce the potency

of pyrvinium at the selection threshold and therefore restore essential CKIα/Wnt

signaling in the embryo. A mutation with such a highly specific effect, however, is

likely to be rare because of the dual requirement of blocking pyrvinium-mediated

CKIα activity but not other essential functions (RNAi of kin-19 is lethal). Earlier

genetic screens in the Miller lab have detected site-specific and allele-specific

dominant suppressor mutations in C. elegans at a frequency of 10-5 per F1

progeny (Miller et al. 1993a). Our screen is designed to detect pyrvinium-

resistant (i.e. viable) mutations at a similar low frequency.
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Figure 4.5.  Hypothetical genetic screen for kin-19 regulators.

Genetic screen to isolate suppressor mutations in pyrvinium target.  TOP:
Pyrvinium in NGM plates. Primary Screen: Mutagenized animals are cultured on
15 C pyrvinium plates. Secondary Screen: Escapers (~5% of progeny) produce
few F2 progeny and are discarded. Mat-2 suppressors (mat-2SUP) are viable at
25˚C and are discarded. Authentic pyrvinium suppressor (PyrSUP) mutants
(viable at 15˚C, lethal at 25˚C) are recovered from 15˚C replica plates.
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CHAPTER V

GENERAL DISCUSSION AND FUTURE DIRECTIONS

It is clear from work done by others and the experiments contained within

this document, that environmental cues play a large role in shaping neuronal

connections within a developing circuit.  Its possible that it is the concentration of

long-range cues, as well as local guidepost signals, create a specific

environment whereby a single neuron responds to these cues in an either pro- or

anti- synaptogenic manner.  This hypothesis offers an alternative model to the

idea that specific connections are coordinated exclusively by signals between

synaptic partners. Our work, does not exclude the possibility of interaction

between two neurons but points to additional roles for external signals during the

process of synaptic choice.

Wnt signaling is critical for proper synaptogenesis.

As described in Chapter I, local Wnt signals are critical cues for the

development of pre- and post-synaptic structures and Wnt has been shown to

regulate the formation of chemical synapses in a wide array of model organisms.

Both β-catenin and non-β-catenin-dependant mechanisms have been shown to

promote or inhibit synapogenesis.  Furthermore, there is evidence of antagonism

between Wnt signaling pathways in multiple different organisms for the

development of non-neural tissues and in synaptogenesis.  Key developmental
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events in both neurons and in other tissues may be controlled by Wnt signaling

pathways that antagonize each other.

Chapter 2 describes results that are consistent with a model in which

UNC-4/37 modulates the sensitivity of VA motor neurons to two antagonistic Wnt

signaling pathways.  One pathway functions by promoting the creation of

inappropriate, ectopic VB-type inputs to VA motor neurons.  In this pathway,

EGL-20/Wnt promotes expression of ceh-12/HB9, in posterior VA motor neurons.

Our evidence indicates that downstream signaling depends on the cytoplasmic

components of a canonical Wnt pathway.  unc-4 limits the sensitivity of VA

neurons to EGL-20/Wnt presumably by repressing the expression of the Frizzled

receptors MIG-1 and MOM-5.  A different Wnt pathway, involving LIN-44/Wnt and

LIN-17/Frizzled functions to antagonize VB-like inputs onto VA motor neurons,

potentially via a non-canonical Wnt pathway mechanism.  Our evidence indicates

that LIN-44/LIN-17 represses ceh-12 expression but the mechanism of this effect

and how it antagonizes EGL-20/MOM-5 dependent activation of ceh-12

expression is not understood.

Chapter 3 describes genetic screens designed to identify pathways in

parallel to ceh-12/HB9 to regulate VA motor neuron inputs.  Genetic analysis of

the mutations isolated in these screens identified at least three genes (blr-1, blr-

3, and blr-15) that are likely to function in parallel to ceh-12.  First, these blr

alleles suppress unc-4 hypomorphic mutations as would be expected for genes

that act in opposition to the unc-4 pathway.  Second, these blr mutations

enhance ceh-12 suppression of unc-4(0) alleles, indicating their likely function in
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a parallel pathway to ceh-12.  Third, blr-15(wd95) and blr-1(wd76) suppress the

ectopic AVB to VA gap junction inputs in anterior regions that are not rescued by

mutations in ceh-12; this result suggests that the pathways regulated by blr-1 and

blr-15 may function in these anterior VA motor neurons to promote VB wiring.

Chapter 4 describes experiments to test the potency of the CKIα inhibitor,

pyrvinium, on Wnt signaling in C. elegans.  These experiments confirmed that

pyrvinium phenocopies genetic mutants of canonical Wnt pathway components

in multiple different C. elegans tissues.  Furthermore, pyrvinium is able to

suppress the Unc-4 phenotype, lending additional support to our proposal that

unc-4 antagonizes a canonical Wnt pathway.  This result also suggests that CKIα

may play a role downstream of unc-4.  On the basis of these experiments, we

conclude that pyrvinium blocks canonical Wnt signaling in C. elegans.  Chapter 4

also describes a fortuitous result, which led to the design of a genetic screen that

exploits a synthetic lethality between pyrvinium and the Anaphase Promoting

Complex/Cyclosome subunit apc-1.  This screen is designed to isolate

suppressor mutations that target the binding cite of pyrvinium on CKIα or genes

that regulate CKIa’s activity.  This work has the potential to uncover new

information about the regulation of CKIα, as well as early embryonic

development and the role of the APC/Cyclosome.

Future directions – Chapter 2. Wnt signaling.

We have proposed a model whereby UNC-4 negatively regulates the

expression of frizzled receptors MOM-5 and MIG-1 to prevent VA motor neurons
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from responding to a posterior EGL-20/Wnt signal.  Our work suggests that UNC-

4 dependant modulation of this response accounts for the mechanism whereby

that UNC-4 controls synaptic choice in posterior subset of VA motor neurons.

This model proposes several questions that remain to be answered. Cell-specific

microarray experiments found that both mom-5 and mig-1 transcripts are

elevated in VA motor neurons in unc-37 mutants but experiments with

promotor::GFP fusions have not confirmed that unc-4 negatively regulates these

targets.  As an alternative strategy to answer this question, we are collaborating

with Rik Korswagen to use a new method of Fluorescent In Situ Hybridization

(FISH) that can detect specific transcripts at single cell resolution (Raj et al.

2008).  Previous efforts in C. elegans to utilize in situ hybridization relied on a

single RNA probe.  Unfortunately, the old methodologies were unable to resolve

expression at the single cell level and yielded highly ambiguous data.  This new

methodology overcomes several technological limitations by using multiple,

short, non-overlaping probes designed to complement a single mRNA transcript.

Experiments in the Korswagen lab show that this protocol produces a clear

punctate signal, which can be used to determine relative expression levels

between cells. This methodology, combined with a volumetric scan of the imaged

tissue by confocal microscopy, may have the sensitivity required to validate our

microarray results.  We have initiated a collaboration with Rik Korswagen in order

to test the hypothesis that mutations in unc-4 cause an upregulation in mom-5

and mig-1 mRNA in VA motor neurons.
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Results reported in Chapter 2 are consistent with a model in which the lin-

17/lin-44 pathway functions in parallel to unc-4 to antagonize AVB inputs to VA

motor neurons.  This model predicts that overexpression of the LIN-17/Frizzled

protein in VA motor neurons could prevent inappropriate inpust from AVB and

therefore restore backward locomotion to an unc-4 mutant.  We can test this

model by directly assessing ectopic wiring in an unc-4; punc-4::LIN-17 animal

using our AVB gap junction marker.  A different way to test this model would be

to overexpress the Wnt ligand LIN-44 globally in an unc-4 mutant.  LIN-44 is

normally expressed in the posterior of the animal and potentially in the anchor

cell in the midbody region.  This restricted pattern of LIN-44 expression may limit

its antagonizing effects on ceh-12 expression in distal VA motor neurons.

However, if global overexpression of LIN-44 can rescue the Unc-4 defect, then

these results would suggest that the EGL-20 pathway is antagonized by

increased LIN-44/LIN-17 pathway activation.

We have proposed that lin-17 opposes ceh-12 expression and that this

accounts for the observations that (1) ceh-12::GFP is ectopically expressed in VA

motor neurons in a lin-17 mutant and (2) lin-17 mutants enhance the Unc-4

miswiring defect.  This model can now be tested by a simple genetic epistasis

experiment.  If ceh-12 is required for the lin-17 miswiring defect, then the ceh-12

mutant should restore backward locomotion to a lin-17; unc-4(ts) double mutant

as well as suppress the appearance of ectopic AVB inputs to VAs.

Because our results did not detect a role for canonical signal components

in the lin-17 pathway, it is possible that lin-17 may antagonize VB inputs by a
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non-canonical Wnt signaling pathway. This model can be tested using genetic

mutations in established non-canonical pathway genes.  For example, if the non-

canonical asymmetry pathway functions downstream of lin-17, then mutations in

the non-canonical asymmetry pathway, such as lit-1 or mom-4 should phenocopy

mutations in lin-17 and enhance the Unc-4 defect.

Future directions – Chapter 3. Genetic Screen.

The “stuck” genetic screen for Unc-4 suppressors, or blr mutants, isolated

over 50 individual mutant lines which suppress the Unc-4 defect.  This success,

however, came with the realization that I would not be able to fully characterize

these alleles within my time in David’s lab.  My eventual goal for this project was

to characterize these mutations at a basic level, such that future graduate

students could pick one or two interesting mutants as a PhD project.

During the past 4 years, we have only been able to extensively

characterize 6 alleles isolated in this screen, and have found a total of 3 blr

alleles that function in parallel to ceh-12.  Due to this trend we can assume that

additional loci that function in parallel pathways downstream of UNC-4 will be

uncovered.  The characterization of these mutations would proceed at a much

faster rate due to the tools and techniques we have developed.  The first step is

to outcross the blr mutations, map them to the genome, and perform

complementation tests with known blr alleles.  Second, mutations would need to

be subjected to a battery of genetic tests to determine if they function in parallel

to ceh-12 or in the ceh-12 pathway (Chapter 3).  Third, an examination of the
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effect that these mutations have on ectopic AVB to VA gap junctions should yield

insight as to where these blr pathways function.

One potential method of characterizing these mutations that was only

partially explored in my studies was the use of GRASP (split-GFP) to

characterize the AVA to VA synapses.  With this assay it should be possible to

determine if blr mutants restore normal VA inputs.  This outcome seems highly

likely given the restoration of backward locomotion in blr; unc-4 doubles but it is

important to provide direct confirmation to substantiate this assumption.  The

GRASP technique has been difficult to utilize, however, due to a weak signal and

mosaic expression.  Recently, Rachel Skelton has generated new GRASP

transgenic lines that show strong AVA to VA puncta and therefore should be

useful for addressing this important question.

The identification of Wnt, a secreted morphogen, as a potential

determinant of synaptic choice, suggests the possibility that additional local

secreted signals may be interpreted as local synaptogenic signals.  As described

in chapter I, other non-cell autonomous signals like UNC-6/Netrin can also

function to regulate the location of specific synapses in C. elegans.  Thus, it may

prove advantagous to test mutants in other morphogens, such as lin-3/EGF, let-

22/FGF, UNC-6/Netrin, SLT-1/Slit, etc, for defects in VA motor neuron wiring.

It is also possible that a blr mutant isolated in our genetic screen, could be

in a pathway controlled by the Ig domain containing protein, rig-3.  A split-GFP

experiment I performed in collaboration with Clay Spencer, suggested that rig-3

mutants have reduced AVA to A-class synapses when compared to wildtype
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animals. The only known function of rig-3 is its role in the maintenance of the

VNC fascicle, in combination with other IgCAM proteins (Schwarz et al. 2009).

However, experiments Clay has performed suggest that the loss of AVA to VA

synapses in rig-3 mutants is not likely to be due to a defasiculated phenotype

because rig-3 mutants alone do not have a defasiculated VNC.  rig-3 is also the

only rig mutant, to our knowledge, that is backward Unc.  This result, along with

the GRASP data suggests that rig-3 may play a role in AVA to VA

synaptogenesis.  Clay Spencer is currently testing this possibility for his thesis

project.

Ultimately the success of this project depends upon the molecular

identification of blr mutations that function downstream of UNC-4.  One of the

new techniques used by the C. elegans community to identify these mutations is

high-throughput genome sequencing (Sarin et al. 2008). This approach provides

a robust, fast, and high throughput methodology for identifying novel genes in the

unc-4 pathway.  We are currently implementing this protocol to identify the

molecular lesion of selected blr loci.

Once the specific molecular lesion and loci are known for each mutation, it

will be interesting to examine the expression pattern of these blr loci in a wildtype

and unc-4 mutant background to determine if unc-4 regulates their expression.

Also, overexpressing these genes in VA motor neurons should induce an Unc-4

defect, similar to that observed by overexpressing CEH-12 or ΔNT-BAR-1 in VA

motor neurons.  We may find that some blr mutant loci are directly regulated by

unc-4, potentially in anterior VA motor neurons.
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We also admit the possibility that some blr mutations may lie in genes that

suppress the Unc-4 backward locmotion defect, but are not transcriptionally

regulated by unc-4.  It is possible that these blr mutations may affect a

component of a signaling pathway or protein complex important for synaptic

choice.  unc-4 may, instead, regulate the activity of this pathway by repressing

the transcription of a different component, key to the pathway’s function.  For

example, although mutations in egl-20/Wnt suppress the backward locomotion

defect, it is doubtful that unc-4 directly regulates EGL-20/Wnt expression.  In this

case, unc-4 controls the Wnt signaling pathway by modulating the potency of the

EGL-20/Wnt ligand in VA motor neurons, but unc-4 does not exert its influence

this pathway by directly controlling egl-20 transcription.  It is plausible that some

of these blr mutations may also affect other intracellular signaling pathways in

similar ways.

Future Directions – Chapter 4. Pyrvinium.

Due to the fortuitous discovery that pyrvinium induces a synthetic lethality

in a mat-2(ax102) genetic background, we now have the opportunity to perform a

genetic screen to identify genes that functionally interact with kin-19/CKIα.

However, additional experiments that should be perfomed before the genetic

screen to potentially optimize this protocol.

First, we should determine if pyrvinium genetically interacts with other

components of the APC/C.  Many hypomorphic mutants have been isolated in

cyclosome components and would be amenable to testing using the existing
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lethality assay described in Chapter 4.  This survey may provide a better genetic

background for the genetic screen than mat-2(ax102) as another allele/gene may

have a more penetrant lethality with pyrvinium.

Second, it will be informative to perform experiments that verify the

activation of kin-19/CKIα by pyrvinium.  This can be tested by demonstrating that

treatment of a mat-2 animal with pyrvinium leads to an increase in endoderm at

the expense of mesoderm in the early embryo, as has been previously

characterized (Peters et al. 1999).  This effect would be consistent with our

model suggesting that pyrvinium functions through kin-19/CKIα to block

mesoderm development.  Antibodies to perform these experiments (using gut-

specific monocolonal antibody ICB4 and pharynx specific antibody 3NB12) exist,

and GFP reporters that specifically mark these tissues are also available.

One way to extend this analysis is to perform some basic biochemical

experiments using C. elegans proteins.  One set of experiments involves

confirming that the pyrvinium target is kin-19, by using a C. elegans destruction

complex reconstituted in vitro. In these experiments, the destruction complex

components, kin-19/CKIα, pry-1/Axin, apr-1/APC, and gsk-3/GSK-3 can be

reconstituted in vitro and mixed with bar-1/β-catenin.  The overall

phosphorylation of β-catenin can be measured using incorporation of [γ32P]ATP

onto bar-1/β-catenin and SDS-PAGE/autoradiography. By comparing pyrvinium

treated or non-treated samples, we can determine if pyrvinium is able to activate

a C. elegans destruction complex in vitro.  Furthermore, by using this in vitro

method, the functional binding site of pyrvinium on kin-19 can be determined by



181

mutating conserved domains.  We can also test for conservation of function by

adding purified KIN-19 to CKIα-depleted Xenopus egg extracts and determining if

the destruction complex is able to function normally.

Another mechanism to validate a physical interaction between kin-19 and

pyrvinium is to repeat a biochemical experiment that Curtis Thorne performed in

Ethan Lee’s lab.  Curtis took purified CKIα and other members of the destruction

complex and spot-blotted them onto a nitrocellulose membrane.  He then washed

the membrane with a medium containing pyrvinium. Pyrvinium is blood-red and

fluoresces under green light.  After several washes, Curtis imaged the

nitrocellulose and found that pyrvinium stuck to the spot containing CKIα, but not

to Axin, β-catenin, GSK3, or APC.  This finding led him to hypothesize that

pyrvinium directly interacts with CKIα.  This experiment can be readily performed

with C. elegans KIN-19 and would help verify that pyrvinium also interacts with

KIN-19 (Thorne, et al. submitted).

One experiment we can use to verify that pyrvinium blocks KIN-19 is to

determine if kin-19 overactivation is able to overcome GSK3 inhibition.

Treatment of adult C. elegans with lithium chloride causes embryonic lethality at

20mM.  It may be possible to rescue this lethality with pyrvinium treatment.  This

outcome is predicted by the antagonistic functions of these two compounds on

destruction complex function; lithium chloride inhibits the destruction complex

from phosphorylating β-catenin, whereas pyrvinium causes an overactivation of

the destruction complex.  Thus, it is possible that pyrvinium could suppress this

LiCl-induced lethal phenotype.
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kin-19 is also highly conserved in C. elegans and contains over 40%

homology to human CKIα (Korswagen 2002).  The only mutants available of kin-

19 (deletions) are lethal in C. elegans, and it would be interesting to determine if

Drosophila, Xenopus, or human CKIα can rescue the kin-19 mutant in C.

elegans.  This would suggest a conservation of function between components of

the destruction complex and other species.

Experiments using structural analogs of pyrvinium may also be insightful

to understand more about the interaction of this compound in C. elegans.  First, a

more potent inhibitor of kin-19 than pyrvinium may be identified from treatment of

N2 animals with pyrvinium analogs.  From these experiments, we may be able to

identify a compound that induces lethality at a much lower dose in mat-2(ax102)

animals, and thus, may provide for a more efficient genetic screen.

Overall relevance of the project.

Ultimately, the goal of the UNC-4 project is to identify the determinants of

synaptic choice.  The experiments presented in this dissertation add to our

understanding of this problem:  Local signals are interpreted within the post-

synaptic neuron to dictate synaptic choice.  Specifically, we have learned that

unc-4 antagonizes an EGL-20/Wnt signal that functions through MIG-1 and

MOM-5/Frizzled and a canonical pathway to promote ceh-12 expression and

AVB (forward circuit) inputs.  An antagonistic LIN-44/Wnt pathway, functions via

LIN-17/Frizzled to antagonize ceh-12 expression in these motor neurons.  We

have also learned that multiple pathways function downstream of unc-4 to
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coordinate inputs to VA motor neurons along an anterior-posterior axis.  Thus, on

the basis of these studies and from other work cited in the introduction, we can

conclude that the mechanism of synaptic choice is not limited to signaling

between adjacent neurons, but may also be regulated by extrinsic, positional

cues derived from non-neuronal cells.  In other words, the mere presence of an

appropriate target may not be the critical step in coordinating the proper synaptic

inputs.  The local environment, composed of surrounding cells and morphogen

concentrations, acts as a functional partner to specify an individual synaptic

connection.
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