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CHAPTER |

INTRODUCTION

11 Aerodynamics of flapping flight

Insects, birds, and bats are very common flyers in natureserarimals flap their
wings in certain manners to acquirefistient lift to keep themselves aloft, to propel
through the air, and to maneuver in complex environmentppttey flight has been
studied by biologists for many years and enjoys reneweddste among engineers due
to the advent of micro air vehicles (MAVS) or unmanned airiglds (UAVS). These
vehicles have a wide range of military and civilian applicas such as surveillance
and environmental monitoring. Berent from traditional aircrafts, MAVs and UAVs
are small-sized and usually operate at relatively low Résiaumbers (below F.
Current designs of these vehicles are mostly based on coomehfixed wings or on
rotary wings. Inspired by great agility of the flyers in n&ubiomimetic wings with
flapping motions could potentially revolutionize of the M&dnd UAVs by drastically
improving their maneuverability. Therefore, a thorouglderstanding of the unsteady
aerodynamics of flapping wings becomes a key component iddéfielopment of the
bio-inspired aerial vehicles.

Early studies found that the traditional aerodynamicsh&ogely underestimated
the force production by insects and based on the theory sezis can not even stay

aloft in air. This dilemma has then led to researchers’ éitiario unsteady aerodynam-



ics which turned out to be substantial in explaining the naegdms employed by insects
(Weis-Fogh & Jenseri956. Weis-Fogh(1973 first proposed a ‘Clap and fling’ mech-
anism which accounts for the additional lift produced by adrng insect.Lighthill
(1973 modeled this mechanism and solved it analytically understsumption of two-
dimensional inviscid flowEdwards & Cheng1982 proposed an improved model in-
corporating vortex separatiokllingtonet al. (1996 visualized the leading-edge vortex
generated by flapping wings and pointed out that the ‘dynatail mechanism could
explain the large lift of flapping wing®Dickinsonet al. (1999 then used a scaled fruit-
fly model in an oil tank, and they found that significant lifigles were produced by the
wake capture after the wing reversilang (2000 used a two-dimensional numerical
simulation to show that a hovering wing can generate enattgh support the weight
of the insect. Suet al. did a series of three-dimensional numerical studies witiid-f
fly model to further study the unsteady flow and thieet of wing kinematics on the
lift production and power requirements, and they also dised the flight stability of
an insect during steady maneuver through their numeriagdiygSun & Tang 2002,b;
Sun & Dy, 2003 Sun & Wu, 2003 Sun & Wang 2007).

Those early studies have mainly focused rigid wings, anddleeof the wing flex-
ibility only starts to draw attentions from aerodynamisist recent yearsShyyet al.,
2010. Given that the structural deformation is common in flagpivings, it is rea-
sonable to believe that such a feature helps to enhance itheéyaamic performance
of the wings. The passive deformation of insects have besrugsed by several biol-
ogists. For exampleEnnos(198&) showed the importance of the vein properties in

torsion and bending in creating a camber on the wing chomd hendemonstrated that



the inertial load of the wing is large enough to account ferwhng rotation during re-
versal.Combes & Danie(2003) studied the flexural dtiness of insect wings and they
believe that the wing deformation is mostly caused by thetimldoad. Despite these
relevant studies, the detailed study on the aerodynamiéiexable flapping wings is
still rare, and the cause of the observed wing deformatittepahas not been well ex-
plained. There have been a few recent studies focusing dbl#exings (founget al.,
2009 Eldredgeet al,, 2010, but these studies are limited to specified wing defornmatio
or two-dimensional models. Therefore, the aeroelastimitflapping wings is still a

largely unaddressed topic.

1.2 Fish swimming and related research works

Another area closely related to flapping flight is fish swimgnitMajority of fish
use bodycaudal fin (BCF) for propulsion; others use median or pettora(MPF) for
their routine propulsive mode. Those fish relying on the BGddenutilize the MPF
mode instead for maneuvering and stabilizatigidéler, 1993. Analogous to the air
vehicles that are inspired by flying animals, unmanned waaler vehicles (UUVS)
mimicking the propulsive modes of fish have great potenti@dhieve high #iciency
and maneuverability. Also similar to the flapping flight, flav around fish fins is typ-
ically three-dimensional, unsteady, and largely sepdratberefore, in many situations
the fluid dynamics in the two problems can be studied in theesaay.

Pitching and heaving foils of simple shape in an incidentav ik frequently used as

a model to study the thrust production of the fin. Substanttak has been done on the



hydrodynamics of rigid pitching and heaving foils. Earlgtinetical studies were based
on linear inviscid theory of unsteady foil floA\(u, 1961, 1971, Lighthill, 1960, and
experimental studies were done Kgochesfahan{(1989; Triantafyllou et al. (1991,
1993; Andersonet al. (1998. The unsteady wake behind the foil on average was
found to be like a jet flow, and vortices closely resemble thie Karman vortex street
behind bldf objects but have reversed rotation. In addition, the thefistiency is
largely dependent on the Strouhal number, defined as tleelrativeen the transverse
velocity of the tail and the freestream velocity. A reviewtloése studies can be found
in Triantafyllouet al. (2004. More recently Schnipperet al. (2009 investigated the
effect of the oscillation frequency and amplitude on the wakectires produced by
a pitching foil in a soap film flow. For the foil at low aspecticat where the flow is
essentially three-dimensional, Buchhelzal. studied a rigid panel pitching around its
leading edge in a free strearBychholz & Smits 2006 2008. They found that the
thrust codficient depends on both the Strouhal number and the aspecaratithat the
propulsive diciency is sensitive to the aspect ratio when the span-todatadio is less
than 0.83. Dongt al. numerically studied a pitchirigeaving foil of elliptic shape and
investigated the three-dimensional topology of the wakenget al., 2006.

More realistic swimming kinematics has also been incorgaranto computational
studies of fish hydrodynamics. Using a 3D model fBbrazjani & Sotiropoulo$2008
studies the carangiform locomotion at various Reynoldsbemnand Strouhal numbers,
and they explained from a hydrodynamic perspective why #rangiform swimming
mode is preferred by fast swimmers in nature. Besides thsiegumode, there have

been great interests in the kinematics and hydrodynamittstofurning (sed®> & RW,



1997. For exampleEpps & Teche{2007) studied the vortex dynamics during a typical

C-start turning that is typically employed by fish during acape.

1.3 Wing/fin flexibility: observations and the fluid dynamics

Biological propulsors are usually highly flexible. For exas the jointed fin rays
of fish deform both actively and passively during swimminglsat the fin changes its
area and curvaturd.guder & Madden2007. Bird wings also deform significantly
while flapping. In addition to the active muscle control oé tleint motions that ad-
justs the wing span and planform, there are passive defansatiue to the flexible
feathers §hyy et al., 2008. One of the phenomena caused by passive feather mo-
tions is the popped up covert feathers on the upper surfaceritrol flow separa-
tion (Bechertet al, 1997). Bats have many independently controlled joints in their
wings, highly deformable boneSwartzet al,, 1992, and compliant thin-membrane
wing surfaces that enable a wide variation of the angle acktand the wing camber.
These features give bats a complex wing topology and areinggrtant to the flight
performance of these animalSHyy et al., 2008. The membranous wings of flying
insects are usually very flexible as well and they displaysaerable passive defor-
mations during flightWootton 1981 1992 Combes & Daniel2003; Lauder 2000.
In general, the deformation pattern of an insect wing candseribed by bending and
spanwise twist around the wing axis. These deformatiorufeatalter the instanta-
neous angle of attack, speed of stroke, and pitching vglgarigular velocity around

the spanwise axis). Wet al. measured thrust generation of several wing designs using



a test rig that flaps the wing®\u et al,, 2010. Significant thrust was produced due
to the passive feathering, twisting, and bending of theimimene wings. Addition-
ally, wing torsion may create a dynamic cambiénios 1988) which could improve
the lift production. Therefore, the wing deformation hagn#icant aerodynamic con-
sequences in insect flight. Earlier studies on the low-RiEgnumber aerodynamics
of flapping wings have mainly focused on rigid wings (eQickinsonet al., 1999
Sun & Tang 2002; Wang 2005. Among the existing studies on the aerodynamics
of flexible wings, several have shown that by adding somd lefvpassive flexibility

to a rigid flapping wing, the performance of the wing can basigantly improved.
For example, Vanellat al. used a two-link model to represent the chordwise flexibil-
ity (Vanellaet al, 2009. Their two-dimensional (2D) simulation shows that the gvin
deformation can increase the lift-to-drag ratio by 28% amel lift-to-power ratio by
39% and that the best performance is obtained when the figneiquency is a fraction
of the natural frequency of the wing structure. Using a sanhyl simplified model, El-
dredgeet al. investigated theféect of chordwise deformation over a range of hovering
kinematic parameter€(dredgeet al., 2010. They found that a mildly flexible wing
consistently has better poweffieiency compared to the rigid wing for a wide range
of phase dierences between pitching and wing translation. In additiotmnese com-
putational studies, experiments performed in liquid (Ex@mpraneeracét al., 2003
Heathcote & Gursul2007a) and in air Ramananarivet al, 2011 showed that the
chordwise deformation can significantly enhance the psopeiforce and giciency of
the wing. Despite these studies, there have been little worthe three-dimensional

fluid-structure interaction of the flapping wings (this imgés fish fins), mostly due to



the computational challenge involved in the simulation.n€amuently, details of the
role of the structural flexibility in the animal flight and swming await further investi-

gation.

1.4 Research Methods

Theoretical analysis of flapping wings and fins has been deimgextremely ide-
alized models under the assumption of linear inviscid flaghthill (196Q 1973, or
using a quasi-steady treatmekli¥gnget al., 2004). In more general situations, theo-
retical solutions are not available due to the complexityhef flow field. Therefore,
experimental and computational approaches become indiap&e. Experiments could
be done in a wind tunnel or liquid tank with real animals or gibgl models of the
wings and fins. However, the flow visualization in experinseist typically limited
to two-dimensional slices, and the forces in many situatiare not easy to measure.
Furthermore, the dynamic similarity for a flexible wing igfatiult to achieve because
it is often impractical to match the Reynolds number, masis,rand dimensionless
rigidity at the same time. Therefore, the numerical simatats an important tool for
understanding the fluid dynamics of flapping wings and fins.

Numerical approaches for simulating biological locomntionges on how to treat
the moving boundaries. In addition, the fluid—structureiattion poses great chal-
lenges. Conventional numerical solvers are usually basedeofinite-volume method
or the finite-element method that employs the body-confbgnd. Such a grid has to

adapt to the geometry change when a solid surface is movimgrefore mesh regenera-



tion is required, and the computation can become very exgerdn the other hand, the
immersed-boundary method has gain popularities for mebimgndary and complex-
geometry problems by employing simple and fixed meshbtdl & laccaring 2005.
There are several other methods using fixed and structuresl fgr moving-boundary
problems. For example, a finite-element method combinduaviictitious-domain for-
mulation was developed to simulate particle-laden flowsenethe rigid-body motion
inside the particle volume is enforced through Lagrangeiplidrs; a penaltfictitious-
domain method was designed to handle solid surfaces andntdage particle-laden
or multiphase flowsKhadraet al,, 2000 Randrianarivelcet al., 2005 Sarthouet al.,,
2008; and a ghost-fluid approach was developed to solve compledskows (Fed-
kiw et al, 1999. Compared to these methods, the sharp-interface immématdary
method based on flow reconstruction near the solid surfazptioaen to be an accurate
and dficient approach for simulating biological flying and swimgnjproblems Kittal

et al, 2008.

15 The specific objectives of this study
Given that an appropriate computational tool for simulgtime fluid—structure in-
teraction of biological flying and swimming is still lackiragd the role of the structural
flexibility in the fluid dynamics of the flapping fligldwimming is still poorly under-

stood, we have proposed the following specific researchcobgs in this study:

e Develop an accurate andfieient numerical method for computational model-

ing of the three-dimensional fluid—structure interactidril@pping winggfins in



nature; the method will combine an immersed-boundary ntetbiothe viscous
incompressible flow and and a nonlinear finite-element neetbo thin-walled

structures.

Use the pitchinfheavingrevolving thin foils at low aspect ratios as simple models
to study the fundamentattect of the structural flexibility on the force production

and on the three-dimensional flow.

Investigate the parameterization of real insect wings awtldp a high-fidelity
computational modeling approach to study the aeroelastrid its role in the

aerodynamics of the real insect wings.

The thesis is organized as follows.

e In Chapter 2, we describe the immersed-boundary methochtdsabeen devel-
oped in our lab for the viscous incompressible Navier—Sto&guation. The
finite-difference discretization, the boundary treatment, and thedgrto sup-
press the numerical oscillations associated with movingnbdaries will be de-
scribed. Validation cases will be presented to show theracguand versatility
of the method. In addition, the finite-element method for elod) thin-wall

structures will be introduced, and the approach for fluidiestire coupling will

be described.

In Chapter 3, we adopt a simple flexible pitching foil as a fisimfiodel to study
its thrust performance. The pitching amplitddequency and the structural flexi-
bility are systematically varied. We investigate ttigeet of the passive deforma-
tion on the thrust production and study the scaling law offidsable foil.

9



¢ In Chapter 4, we use a rectangular plate flapping around & pdiot to represent
the hovering motion of an insect. The interplay of the wingrtra, the aerody-
namic force, and the elastic force is investigated by varyfre mass ratio and the
rigidity of the plate, and theftect of the dynamic deformation of the wing on the
performance of the wing is examined in detail. In addititw, implication of the

result on the insect wings is discussed.

e In Chapter 5, we describe a high-fidelity modeling approawhnfiodeling the
cicada forewing, where experiment studies are performetig¢gasure the me-
chanical properties of the wing structure and to quantiy three-dimensional
wing kinematics during tethered flight. The computationaldel includes the
finite-element modeling of the vein network, the fluid—stawe simulation, and
the validation of the simulated wing deformation. The roléhe wing flexibil-
ity in the aerodynamic performance is studied by compariggflexible wing
model and the rigid wing model and also by comparing the caetbeing and

the uncambered wing.

¢ In Chapter 6, we summarize the current work and its contobst The future

direction of the work will be discussed.

10



CHAPTER I

NUMERICAL APPROACH

21 Flow solver
211 Governing equations and the finite-dference discretization
The flow is governed by the viscous incompressible Navieké&t equations. The

momentum equation and the continuity equation are writsen a

oy Ouju; 10p A%y

4 — = T4y

at  ox 0 0% axj?
oy,
U _ o 2.1
o @.1)

wherey; is the velocityp andy are the constant density and viscosity, grid the pres-
sure. The governing equations are discretized on a nonumi€@artesian grid using

a cell-centered, non-staggering arrangement of the pvienvariablesu; andp. The
incompressible momentum equation is integrated in timeguaivariation of Chorin’s
projection method which consists of three sub-st&isofin 1969. In the first sub-
step, an advection—dusion equation is solved in the absence of the pressure,rand a
intermediate velocity fieldy;, is obtained. In this step, both the nonlinear advection

terms and the viscous terms are discretized using the Ckotilson scheme to im-

11



prove the numerical stability. The discrete equation istesmi as

u —u' 1{eUju)" s(Uju)'] v 6 (du) o6 (oul
+ = + ==—1—+=—|=—11, (2.2)
At 2 6Xj 6Xj 2 6Xj (5Xj 6Xj 6Xj

whereU; is the velocity discretized at the face center of a compurtati cell, and&
represents a finite-fierence approximation of the spatial derivative using a rsg&co
order central scheme. The nonlinear algebraic systemveddly a successive substi-
tution approach.

In the second sub-step, a projection function is solved agpgnoximation of the

pressure,

n+1 oU*

(5Xj 6Xj a E6_XJ’
and an inhomogeneous Neumann boundary condition is impaisdtiboundaries. In
our serial code the Poisson equati@rgj is solved with an flicient geometric multigrid
method, as discussed Mittal et al. (2008, and in the parallel version it forms a large
linear system solved with AZTEC package. Once the pressuobtained, the cell-

centered velocity is updated as

At S pn+l

umt = u; ,
o 0%

(2.4)

and the final face-centered velocity"*, is updated by averaging™* along thej-

direction.
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2.1.2 The immersed boundary method

In recent years, the immersed-boundary method that is lwastek structured mesh
has gained considerable popularity in computational flyidadnics for solving com-
plex and moving-boundary problems. Despite its wide apfibois, so far there is not
a unified definition of the method, possibly because theraramy variations in the
existing implementations. Here we follow the classificategpproach byittal & lac-
carino (2005 where the immersed-boundary method is in general clagsifi® two
types. One type involves aftlised boundary whosetect on the flow field is incor-
porated as a volumetric force spread into the bulk fluid,dglby within the distance
of a few grid cells from the physical boundarfydskin 1972 Goldsteinet al,, 1993.
The volumetric force may be determined from the constieutaw in case of an elas-
tic boundary Peskin 1972 2002, or by a feedback mechanism in which the force
depends on the flerence between the interpolated velocity at the interfackthe
desired boundary conditioispldsteinet al., 1993. The other type of the immersed-
boundary method retains the singular representation gdhlgsical boundary and thus
the nature of the surface force exerted by the boundary omdiecent fluid. This
type of “sharp-interface” methods can typically achievghler order of accuracy than
the “diffuse-interface” methods. Several distinct sharp-intertgmproaches have been
formulated in the past to treat the boundary conditionsaflthid—solid interface. For
example, in the “cut-cell” approach tydaykumatet al.(2001), a finite-volume scheme
is designed to represent the conservation equations famréwgilar cells cut through by
the boundary, whereas the bulk flow is discretized using tidwedsird finite-dierence

method. In the method presented lbbg\Veque & Li(1994); Lee & Leveque(2003,
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the solution experiences discontinuities across the physiterface immersed in the
domain, and the finite-éierence formulae involving the nodes across the interfaee ar
corrected by taking into consideration of the discontilsit

In another type of sharp-interface methods, an unknownrfgrierm is introduced
only at the nodal points immediately next to the fluid—sotiteirface, whose direction
and magnitude are such that the boundary conditions at tdagidm of the fluid—solid
interface are satisfied. The forcing does not have to be @ttplcalculated but can
be incorporated through a local flow field reconstructioruacbthe forcing points. To
reconstruct the flow locally, an interpolation scheme idiedpand the pressure and ve-
locity information at the fluid—solid interface are inclubtlas input data in the scheme.
Therefore, the boundary conditions at the interface arereadl through the interpola-
tion, and actual evaluation of the forcing is never needadceSthere is no feedback
iteration involved, this method is also termed “direct fog® approach. Many existing
implementations fall into this categorfddlunet al, 200Q Kim et al., 2001, Tseng
& Ferziger, 2003 Yang & Balaras2006 Mittal et al., 2008 Berthelsen & Faltinsen
2008 Pan & Shen2009 Vanella & Balaras2009.

In the direct-forcing approach, the construction of thelipolation stencil is flexi-
ble and may take several topological forms. Fig2ireshows some of the examples of
the stencil. For simplicity, we only use a non-staggered fpr illustration. The inter-
polation points may be located either on the fluid side of tierface (Fig2.1(a,c)), or
on the solid side (Fig2.1(b,d)). In the latter case, the values of the flow variablebet
points inside the solid body can be considered a smoothptation of the physical

flow field (and thus, no discontinuity across the interfacevslved). In Fig.2.1(a,b),
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Figure 2.1: lllustration of the flow field reconstruction neae immersed boundary
using diferent interpolation stencils. (a,b) Unidirectional iptlations; (c,d) two-
dimensional interpolations whenes the surface normal and the shaded area represents
the region of support for the interpolatj@xtrapolation. The interpolation points are on
the fluid side in (a,c) and on the solid body side in (b,d).

the interpolation is carried out along the direction of onerdinate. Given boundary
conditions at the body-intercept with the coordinate linef{lled circle in the figure),

the fluid velocity at the node marked by a filled circle or sguiarinterpolated from

the flow field, and for the rest of the nodes on the fluid sideaadsrd finite-dierence

stencil can be applied to discretize the Navier—StokestamuaExamples of previous
works that adopted this strategy incluedlunet al. (2000 andBerthelsen & Faltinsen
(2008 among others.

In Fig. 2.1(c,d), a two-dimensional local region around the interpofapoint is
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chosen, and the normal intersect of the point with the iateris used to determine the
region of support in the stencil (correspondingly, a thdeéaensional region is chosen
for a 3D problem). This strategy, used by several previousksv@ seng & Ferziger
2003 Yang & Balaras2006 Mittal et al, 2008, has been more popular compared to
the unidirectional interpolation shown in Fig.1(a,b) since using the closest point on
the interface in the interpolation would reduce the nunatcror. In addition to these
examples, other flow reconstruction strategies have alsa bdopted, e.g., the least
squares fittingWYanella & Balaras2009 where the reconstruction is independent of the
mesh topology.

Compared to the other sharp-interface methods such as theeltUdaykumar
et al, 2001 and the discontinuity methods€Veque & Li, 1994 Lee & Leveque
2003, the direct-forcing or flow-reconstruction approach isamsimpler in formu-
lation and implementation. In addition, the reconstrutmwocedure does not incur
significant computational cost, and like the other methitasaintains the order of ac-
curacy of the finite-dterence discretization of the bulk flow. Given its advantates
direct-forcing approach is particularly attractive and eeen applied in many prob-
lems, especially in biological flowsrang & Balaras2006 Mittal et al,, 2008 where
the boundaries are typically highly complex and a boundaryforming mesh is di-
cult to generate. However, one drawback of the method isith&prone to temporal
oscillations when the boundary is movinghlmann 2005 Berthelsen & Faltinsen
2008 Pan & Shen2009 Liao et al, 2010. Specifically, pressure fluctuations may
happen when a boundary moves across the nodal points on ¢gevidkumetric mesh

and the numerical description of the boundary nodes changemtaneously between
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the standard finite-éierence formula and the flow reconstruction. To illustragsiob-
lem, we use the interpolation stencil shown in i@ as an example and provide a brief
explanation. As shown in Fi@.2(a), when the boundary advances into the fluid region,
some of the interpolated nodes may become occupied by tielsmdy, and nearby
nodes in bulk fluid region will thus be defined as the new |larwiof interpolation.
Correspondingly, the stencil at the latter nodes and theenigal description associ-
ated with the stencil changes immediately from those fordiserete Navier—Stokes
equation to those for the flow field interpolation. Similarlge immediate switch of
the stencil may occur for some of the nodes when the immerseddary retreats from
the fluid region, as shown in Fi@.2(b). Such instantaneous change of the numeri-
cal description at the boundary nodes creates a tempordiauity in the velocity.
The discontinuity is further amplified by a factor ofAlt for the right-hand side of the
pressure Poisson equation when solving an incompressiletiius causing the force
to oscillate significantly. From this perspective, thefanil oscillations as seen pre-
viously are caused by the inconsistent treatments betweebdundary nodes and the
bulk flow, and sudden change of the numerical descriptiams fone time step to next
has created the temporal jump. In Section 2.2, we will giveenietailed discussion of
this problem.

It has been limited study about the numerical oscillatisoamted with the direct-
forcing approachUhlmann(2005 pointed out that the methods Kim et al. (2001
and Fadlunet al. (2000 had led to strong force oscillations when simulating flows
interacting with rigid particles, and thus he adoptedffude-interface approach instead.

Berthelsen & Faltinse2008 dealt with stationary-boundary flows and only pointed
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Figure 2.2: lllustrations of the moving boundary where tlhwenerical description at
some nodes undergoes instantaneous change as the bourwasy across the grid
points.

out the potential problem with moving boundarieBan & Shen(2009 illustrated the
force oscillations that appeared in their simulation for avmg-cylinder problem, but
reduced the oscillations bgcreasingthe size of time step. In another workjao et al.
(2010 introduced a forcing term within the solid body when sotyithe momentum
equation. The treatment appears to suppress the forcéatiscis in their numerical
tests. However, itis not clear why the treatment would warkaw the treatment could

be extended to other direct-forcing implementations.

2.1.3 Numerical oscillations caused by moving boundaries

Using the discretization approach introduced in Sectidnl2 we now elaborate on
how a direct-forcing method could cause numerical osolie. As an example, we
use the specific interpolation approach shown in Big(a) to explain our point. The
nodal points in the figure represent the location of the @lters on a Cartesian mesh.

Eq. 2.2 is discretized at the nodes in the bulk flow region which aegked by open
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circles in Fig.2.1(a). The velocity at the points immediately next the bougdararked
by filled circles) is interpolated from the boundary velgand neighboring fluid node
using a linear function as shown. Thus, the discrete NaSiekes equation and the
interpolation form a closed algebraic system for the vé&yoat all the nodes on the fluid
side of the domain, which may be solved using an iterativecguh.

In a moving-boundary problem, the role of a grid point varessthe immersed
boundary moves across the point. That is, an interior fludenmay become an in-
terpolated node as the boundary intrudes on the fluid regioan interpolated node
may become an interior fluid node as the boundary withdraam fthe fluid region.

In the topology shown in FigR.2(a) where the boundary moves into the fluid region,
node A will be occupied by the solid body at the next time steq the fluid node B
thus will become a point of interpolation. Therefore, trensil for the velocity at node

B changes from the finite-flerence stencil for the discrete Navier—Stokes equation at
time leveln suddenly to the interpolation stencil for the flow reconstian at the next
time level,n + 1. Although both discrete schemes are valid approximatbtize same
flow field that is physically continuous. However, the twdfelient descriptions are
associated with discretization errors of their own chamastics, which in general are
not consistent to each other. Therefore, th€edence between the two types of error
creates a temporal discontinuity in the velocity, as nodevi2ckes from an interior
fluid node to a boundary node. Similarly, the temporal disicmiity is incurred as the
boundary withdraws from the fluid region as shown in EA@(b), where node A be-
comes immediately a regular fluid node and meanwhile nodeGrbes an interpolated

node.
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Figure 2.3: A 2D uniform grid showing the finiteftirence scheme used in the current
study, where the circles are the cell centers and the crassdble face centers.

In the present case, since both the flow interpolation anditite-discretization
employ a second-order accurate approach, then the nuinerices associated with
both stencils are oD(Ax?), and therefore, the filerence between them should also be
of O(Ax?). However, the corresponding temporal discontinuity fa tight-hand-side
term of the projection equation, EQR.8), is amplified by a factor of JAt. Note that
since the error is inversely proportional to the size of theetstep, the resulting pres-
sure oscillation will in fact increase when a smaliiis used. It should also be pointed
out that the magnitude of the temporal jump depends on thiereince between the dis-
cretization error of the finite-tlierence approximation and the interpolation error, and
thus, increasing the order of accuracy for the interpafaéitbone does not necessarily
reduce the magnitude of the jump. In order to attenuate ttm@ jwne could increase
the spatial resolution around the boundary or utilize higitrder schemes for both the
finite-difference discretization and the interpolation. Howeverh lmftthese two ap-

proaches would increase the computational cost.
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214 The improved immersed-boundary treatment

Noticing that the numerical oscillation is caused by théantaneous switch of the
numerical description for the nodes near the immersed banynae propose a remedy
where the temporal discontinuity can be regularized byahicing a smooth transition
of the stencils.

In the present numerical method, the surface of the soligf o presented by a set
of Lagrangian marker points and linear elements, i.e., degments in two dimensions
and flat triangles in three dimensions. This representatilows dficient calculations
of the geometrical quantities, e.g., the surface normal,intkerpolation of a variable
over the surface, and the location of a nodal point with resfiethe interface (either
inside or outside of the solid bodyMjttal et al., 2008. To impose the velocity and
pressure boundary conditions at the interface, we definstgiedls and hybrid cells
near the interface as follows. When a standard second-oet#ral diference scheme
is used to discretize the Navier—Stokes equation in the fleggbn, incomplete sten-
cils are encountered near the interface. Specifically,@ahtides immediately next to
the interface, the finite-tierence stencil will involve nodes that are located inside th
solid body. These special “fluid nodes” are termed here “idybodes”, and the cor-
responding nodes inside the solid body are termed “ghostsiodThese definitions
are illustrated in Fig2.4 in two dimensions. Note that the present categorization of
the ghost cells is the same as that Mittal et al. (2008, and the categorization of
the present hybrid cells is the same as that for the “forcmigtp” in Yang & Balaras
(2006. Next, we will discuss separately the treatment for thesgloells and for the

hybrid cells.
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2.1.5 Field extrapolation for the ghost nodes

The treatment of the ghost nodes is essentially the sameatignthMittal et al.
(2008, and it is summarized here to facilitate the subsequentidsgon of the hybrid
nodes. We use Fi@.4(a) to illustrate a 2D situation, but the corresponding 3idrfola-
tion is also provided in the discussion. To formulate a nuca¢description for a ghost
node which incorporates the boundary condition, the botiraept (Bl) and the image
point (IP) of the ghost node across the boundary are founddjgging the ghost node
onto the boundary along the surface normal. Note that whesite of the triangular
elements on the surface is comparable to or larger than thlaé @omputational cells
nearby, such a projection point may not be found. In that,casesdge point on the
surface that is closest to the ghost node is chosen as theiltedgept Mittal et al.,
2008. The generic variable, in the local area around the image point is approximated

by the following interpolating polynomial,

$(Xy)

CiXY + CoX + CgY + Cq4,

d(X,Y,2) = Ci1XYZ+ CoXY+ CyZ+ C4XZ+ CsX + Cgy + C7Z+ Cg, (2.5)

for 2D and 3D, respectively, wheog, m=1,2,..., N, are the polynomial cd&cients

(N = 4 for 2D and 8 for 3D). The interpolated value at the image ptaikes the form

N
bp = Z,Bm¢m, (2.6)
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whereg,, is one of theN data points, an@,, is the corresponding weight determined
from the interpolating polynomial.

To determineg;, the vertices on the cube enclosing the image point are used a
the interpolation data points, as shown in RRgd(a) for the ghost node A. In the case
where the corresponding ghost node is one of the verticgs,the ghost node B in
Fig. 2.4(a), the body intercept is used instead as a data point taagephe ghost node,
and the boundary condition fgrat the Bl is called upon to complete the equations for
the codficients of the polynomial. The boundary condition can eitiethe Dirichlet
condition (for the velocity)¢ = ¢g;, or the Neumann condition (for the pressure),
0p/on = [(0¢]0X, dp /0y, 0p/02) - n]. In the latter casa)p/on is used as one of the data
pointsin @.6).

The velocity at the ghost node (GN) is then obtained throlghfollowing linear

approximations along the surface normal,

UgNn + Uip = 2UB|, (27)

and the pressure at the ghost node is obtained through thexapation

op| _pp—pPen _ Du
—_ - —_ _p_.n

= 2.
on|g Al Dt BI ’ ( 8)

whereAl is the distance from IP to GN, and the inhomogeneous bourdengition for
the pressurejp/dn = —p(Du/Dt) - n has been assumed. Here /Dt represents the
material derivative of the velocity and can be easily inbdsped over the surface from

the acceleration of the Lagrangian marker points. The azpua.6) to (2.8) complete
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Figure 2.4: Two-dimensional schematics illustrating tmeniersed-boundary method
used in the present solver. (a) The field extrapolation dter¢he ghost nodes defined
inside the solid body. (b) The mixed interpolatifimite-difference stencil for the hy-
brid nodes defined inside the fluid region. The cross in (bjesgnts the second-order
central diference stencil. The shaded areas are the support regidhe fioterpolating
polynomials.

the numerical descriptions for the ghost-node velocity mressure, and the boundary

conditions at the body intercept have been imposed thrduggetdescriptions.

2.1.6 Velocity treatment at the hybrid nodes
With the flow variables described at the ghost nodes, thergowgequationsZ.2)

to (2.4) could be discretized at all the nodes located on the fluid.sidowever, we
introduce a mixed stencil for the hybrid nodes, which arefliie nodes near the im-
mersed boundary and are marked by filled circles in Eig(b). The new numerical
description for the hybrid nodes is a combination of the rditc Navier—Stokes equa-
tion and interpolation, which are shown in Fg4(b) by a five-point (seven-point in
3D) finite-difference stencil and a polygonal region, respectively. Weregjuire that

the numerical description undergo a smooth transitionasybrid nodes move toward
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or away from the immersed boundary. More specifically, tlset a hybrid node is to
the solid body, the more dominated is the mixed stencil byflthve reconstruction. On
the other hand, the farther the hybrid node is to the solid/pthet more dominated is
the stencil by the discrete Navier—Stokes equation. To ddaite the hybrid-node treat-
ment, we shall first discuss separately the discretizatidimeomomentum equation and
the interpolation.

For simplicity, we shall use a uniform grid and 2D illustmatias shown in Fig2.3,
and we will only show the treatment for thevelocity component. The treatments
for the other velocity components are exactly the same. Aytaith node {, j), the

advection—dtusion equation, Eq2(2), can be expanded as

ur - . U{:%,j(ui*ﬂ,j +Ur) - Ui*_%,j(ui*—l,j + )
At 4AX
. Vijjj+3_21(ui*,j+1 + ui*,j) B Vifj—%(ui*,j—l + ui*,i)
4Ay
LSuu sy
20X i 20y ij
v Uipj = 2U0 + ULy Uiy — 200 + U7y
2 AX2 Ay?
n n
Loy(ooun, ooy (2.9)
2\6X 6X Oy oy

whereU andV are the face-center velocity components and only the intpéons,
indicated by an asterisk, have been expanded. The exgliaiistat time leveh would
follow the same spatial discretization. EQ.9) can be re-arranged into

(1 Aty - YAt

5N - = D)uﬁj =R, (2.10)
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whereN;, represents the céiicient ofu;; from the nonlinear terms arfdthe coeficient

from the linear terms, i.e.,

D = - = -2 (2.11)

andR" is the summation of all the rest terms in EZ.9), which include both the explicit
terms and the implicit terms that contain the intermediatecity from the neighboring

nodes. Eq.2.10 is then expressed in the scalar form

. At o vAL T
“U:(“ENU‘TD) Ri=gR. (212)
where
. At vAt_\
g = 1+ ENU — TD . (213)

To design an interpolation scheme for the hybrid node (HN),project the node
onto the immersed boundary along the surface normal andHendddy intercept (Bl),
as shown in Fig2.4(b). Extending the line that connects the Bl and the hybrideno
into the fluid region, it will intersect with a cube on whichethybrid node is located.
The cube is termed interpolation cube. The velocity fieldhmlbcal region around the
hybrid node is then interpolated by the bilinear polynonmiaEq. 2.5), and the four
data points used to determine the polynomialfioents include the three vertices on

the interpolation cube, excluding the hybrid node itseticl ahe BI, as illustrated by
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the shaded region in Fi@.4(b). The interpolated-velocity at the hybrid node is thus

written as

4
Uy = Bl (2.14)
m=1

whereu, is the intermediate velocity at tmth data point, anfin is the corresponding
weight calculated from the interpolating polynomial.
To derive the mixed stencil, we combine E.X2 and Eq. 2.14) using the follow-

ing expression,

4
ui*,i =(1- a)g*Ri*,j Ta Zﬁmuzm)- (2.15)
m=1

where 0< a < 1 is the weight of the interpolation stencil and its caldglatwill be
discussed later. Thus, the velocity at the hybrid node isighted average between the
Navier—Stokes solution and the interpolated value. Simeka@ressions can be obtained
for 3D and for ther andw velocity components in a straightforward manner.

Another view of the weighted average is that the expressiandoy .15 mini-
mizes the following cost function

4 2
fu)=0-o)|u; - g*qu]2 talu - Zﬁmu;m)] . (2.16)

j=m

Differentiatef with respect tay;, and assume th@fRﬁj has insignificant dependence

onu;; (this is because thij, term ing« is on order ofAt). Requiring that the derivative

df/dui*’j vanish, we obtain the solution in the form of EQ.15.
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The constantr in Eq. .15 determines the relative importance of the interpolated
velocity compared to the solution of the advectiorffediion equation. To determinge

we specify the following principles:

1. Asthe hybrid node becomes a regular fluid nedshould approach zero.

2. As the hybrid node becomes a ghost node in the solid hoglould approach

unity.

3. In generalg should increase if the hybrid node moves toward the boundary

decrease if the hybrid node moves away from the boundary.

According to these principles, as a solid node moves achesbdundary into the
fluid region and changes its role from a ghost node to a hylwrderand later to a reg-
ular fluid node, the velocity at the node will be first calcaththrough the flow field
extrapolation as specified by EQ.T7), then through the hybrid expression E}.15),
and finally through the advectionfiision equation, Eq2(2). In Eq. .19, a gradu-
ally changes from unity to zero as the node moves away fronboledary, therefore
allowing a temporally smooth transition of the numericadctgtion near the boundary.

To find an appropriate algorithm for the weighthat satisfies the aforementioned
guidelines, we use the information of the ghost nodes tleahaxt to the hybrid node.
As shown by the 2D schematic in Fig.5a), the ghost nodes next to the hybrid node
HN are G1 in thex-direction and G2 in theg-direction. Here we assume that each
hybrid node has at most two ghost node neighbors and exdhadsituation where a
fluid node is cut out by the boundary from more than two dimdi(i.e., sharp inner

corners). LetA; andA, denote the distances to the boundary fromthandy-ghost
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Figure 2.5: The 2D (a) and 3D (b) schematic illustrating gtton of the weight,
which specifies the relative importance of the interpolatiothe mixed stencil for the
hybrid node HN. In (b), the shaded region represents thesitton of the boundary
with the cube.

node, respectively. We then computérom the following expression

T

whereAx andAy are the grid intervals in the- andy-directions. If the hybrid node has

only one neighboring ghost node, then the irrelevant terBgn2.17) is undefined and
is simply set to zero. Note that if the radius of the local etave of the boundary is
large compared to the cell size and the boundary is assuniedastraight line, them
given by Eq. 2.17) is always between zero and unity. One could alternativeiggute
a based on the lengths of the edges cut through by the intesfdgeh would involve

computation of the intersections.

29



Extending the algorithm fat to three dimensions, we have

S CRERE]

whereAx, Ay, Az are the grid intervals in thg-, y-, andz-directions, and\;, A, Az

are the distances to the interface from #gy-, andz-ghost nodes associated with the
hybrid node, as shown in Fi@.5b). In case that the hybrid node has only one or
two neighboring ghost nodes, the corresponding irreletants in Eq. 2.18) are set to
zero. Note that if the local boundary is flat as seen locdigntr in Eq. .18 is always
between zero and unity. In addition, it can be verified strdaywardly thate given by
(2.17 and Q.18 satisfy the three principles listed earlier.

So far, we have provided the numerical description of theaig} for the ghost
nodes, hybrid nodes, and the interior fluid nodes and thus faawnulated a complete

algebraic system for all the non-trivial nodes.

2.1.7 Pressure treatment at the hybrid nodes

Following the same spirit in the velocity treatment of thebhgl nodes, we now
derive a mixed stencil for the pressure that consists of thatiPoisson equation and an
interpolation scheme. In Section 2.1.5, we have describedtb compute the pressure
at the ghost nodes by extrapolating the pressure field. Usimgxed stencil for the
pressure at the hybrid nodes will allow smooth transitiothef numerical description
between the interpolation and the finitéfdrence discretization and will thus further

improve the temporal accuracy.
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Again, we use a 2D uniform grid to illustrate the pressurattreent. Re-write the

discrete Poisson equation, E2}3), and express the pressure at the hybrid node as

U, -u: Ve -V
1 . l '_l' .. l "'_l
i = = [Lp——p [ el ]] (2.19)
p

whereLp represents the discrete Laplacian with the term involvimg ybrid node

value excluded, and, is the codficient of p; ; in Eq. 2.3), i.e.,

Pisr1j + Pi-1j N Pij+1 + Pij-1
AX2 Ay? ’

2 2
Cp = R'l‘A—yz (220)

The time leveh + 1 in EQ.Q.3) has been dropped to simplify the notation.

The interpolation stencil for the hybrid-node pressuredsdal on the data points
used for the velocity interpolation, i.e., the three vasion the interpolation cube plus
the Bl point, as shown in Fig2.4(b). The bilinear polynomial, Eq2(5), is used as
the interpolant, and its cfficients are obtained by requiring the polynomial give the
desired pressure at the three vertex points and also the &euoonditiongp/on, at

the Bl point. The interpolated pressure at the hybrid nogebeawritten as

3
_ ap
Pij = ;lﬁmp(m) +Ba an s’ (2.22)

where pm is the pressure at theth data point, ang,, j = mto 4, is the weight
calculated from the interpolating polynomial. The inhorangous Neumann condition

is obtained fron¥p/don = —p(Du/Dt) - n.
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We now combine Eq.2.19 and Eq. 2.21) and compute the pressure at the hybrid
node according to

o 1 o .. % ap
pj=(1- a)c—p (Lp — Ed.l.v.) + Q[;ﬁmp(m) + B4 a—nLl), (2.22)

whered.i.v. represents the divergence term in E§.19, and« is the weight of the
interpolation stencil and is given by E®.18. Thus, the pressure at the hybrid node
is a combination of the solution to the Poisson equation aediriterpolated value.
In another perspective, The weighted pressure averageecaiewed as the solution

minimizing the following cost function

2

3 p)
p- (Z,Bmp(m) +Ba G_E‘BIJ] . (2.23)
m=1

2
+a

f(p) = (1-a) [p - C—lp (Lp - ﬁd.i.v.)

Note that since the pressure solution at a hybrid node giyebdp .22 does not
strictly satisfy Eq. 2.3). This introduces certain numerical error to the divergenc
free constraint at the hybrid node after the velocity cdroecaccording to Eq.4.4).
However, the error is small because the interpolated swiu$ still a reasonable ap-
proximation of the local pressure, and in addition, the gues will satisfy Eq. 2.3)

more when the hybrid node moves away from the solid surface.

2.1.8 Summary of the solution process
The solution procedure for the entire domain is summarizddlbows. At each time

step, the position of the body is updated. The fluid nodeg] soldes, ghost nodes, and

32



hybrid nodes are determined for the new geometry, and thregmonding stencils for
the ghost nodes and hybrid nodes are calculated. The adwedfifusion equation,
(2.2), is solved together with Eq2(7) and @.15 in an iterative manner to obtain the
intermediate velocityu* for the entire field. Note that the nodes in the bulk region
occupied by the solid body are irrelevant in the present fdation. In the iteration
process, the face-center velocity is also updated. Aftavexmence is reached for the
velocity, the Poisson equation?.8), is solved together with Eqns2.8) and .22
iteratively to obtain the full pressure field. Finally, thelecity is updated according to
Eq. 2.4 for all the fluid nodes including the hybrid nodes.

To calculate the total force on a solid surface such as littrag, the pressure and
shear stress are integrated over all the surface elemeasisnang that the stress dis-
tribution is uniform on each element. For each element, kbgest ghost node is first
identified, and then the pressure at the body-interceptisfginost node is computed
using a trilinear interpolation. To compute the shear sta¢she body-intercept, the ve-
locity at the image point in Eq2(7) is first obtained using the established interpolation
scheme in Eq.4.6). Theng—ﬁ is approximated using the finitefterence between the
image point and the ghost node. Finally, the tangentiassttgis computed using the
expressiorr,, = u(l — nn)g—ﬁ. The algorithm for force integration has been tested using

the exact solution of Stokes flow past a sphere.
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2.1.9 Treatment for infinitesimally thin bodies

In biological locomotion problems of current interest, afien has to deal with thin
bodies, e.g., wings and fins, whose thickness is much sncalhepared to the character-
istic length of the body. Such membranous bodies are ofteeiad as zero-thickness
structures. The vanishing thickness in this case will cdhsegresent method to fail,
since a ghost node is also a fluid node at the same time. To #woigroblemMittal
et al. (2008 employed auxiliary arrays to store the interpolated flowal@es at the
ghost node. In the present work, we circumvent the problemmtogducing a uniform
artificial thicknessh, along the membranous body. As shown in A5, the nodal
points whose distance to the membrane is less tfidrare defined as solid nodes, and
the rest of the nodal points are fluid nodes. Once the “intedand “exterior” regions
are determined, the ghost and hybrid nodes can be easilijfiddnn the same way as
a regular body. To construct the interpolation and extrafpmh stencils for the hybrid
and ghost nodes, the body intercepts of the nodes with tregedfsurface are needed.
Without a mesh representation of the inflated surface, wepobethe nearest point on
the physical boundary for each hybrid or ghost node, and tiet jis defined as the
true body intercept (BI) of the hybrid or ghost node. Thengbkeudo BI point (BI’)
for a hybrid node is found by truncatirgy 2 off the line connecting the Bl and the HN,
and for a ghost node, BI’ is found by extending the line from Bi to the GN toh/2
(Fig. 2.6). Sinceh is small, we assume that the boundary conditions at the Bihare
same as those at the corresponding BI'. After extendingtic&riess, the membranous
body can be treated in the same manner as a regular 3D bodie présent solver,

h is typically chosen to be around three cells wide. Thus, thificgl thickness is
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Figure 2.6: A 2D schematic showing the artificial thicknesa membrane-type struc-
ture, where HN and GN denote a hybrid node and ghost nodesatrsgly.

automatically decreased as the grid is refined.

Since the numerical accuracy is mainly limited by the resotuof the flow field,
the present thin-body treatment should nfieet the numerical accuracy significantly
compared to the zero-thickness representation. Note leamnethod in Mittal et al.
(2008 can also be applied in the present solver. However, byrgidhie ghost-node
flow variables together with the entire flow field, many domsiveeping calculations
such as a spatial derivative for the entire field can be dorgelaop without the need
to check whether any ghost node is required, thereby spgegirthe computation.
Moreover, the current method can deal with situations of thodies intersecting 3D

bodies, e.g., the wing joints of insects, without furthea@pl treatment.
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2.2 Structure solver

The structural solver is the FEM analysis tool for solid nmadhs, NONSTAD
(standing for nonlinear analysis of statics and dynamissitten by Prof. James F.
Doyle at Purdue University. NONSTAD is one of the analysigioies in QED, a visual
simulation tool developed by Prof. Doyle that encapsulatedeling, mesh generation,
statics and dynamics analysis, and visualization. NONSTR@esigned specially for
thin-walled structures such as frames, membranes, platdsshells. The software has
the capability of handling large displacements and largatians, and it incorporates
both elasticity and plasticity. In the flapping-wing MAV dgs, the wing structure often
consists of light frames and plastic membrar@ks4t al., 2008. Therefore, NONSTAD
is particularly suitable in the analysis of those bio-miimetructures.

For reinforced thin structures such as insect wings and fish\ie approximate the
spars with frames and the membranes with plates. For thes#ses, the local strain is
assumed to be small so that the linear stress-strain neddtip is used. However, since
the structures may experience large-displacement anetfatgtion deformations, geo-
metric nonlinearity is thus incorporated in the formulati®©nly 2D (for plates) or 1D
(for frames) discretization is needed for these structtoaiponents. Their deformation
under the resultant forces and moments on the cross secaonse derived using the
classical theory of beams and plates. The mathematicallations can be found in
many textbooks of solid mechanid3dyle, 2007).

For example, a 3D frame member has two nodes, and each nodi hiegrees of
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freedom (DoF),

{u} = {ug, Up, U, dx, By, ¢z}, (2.24)

whereu; is the displacement angl is the rotational angle. We usgto represent the
displacement measured in the local coordinate syst&m,{), with ¢ tangential to the
frame. In the local coordinates, the frame member has tlefeerdation behaviors. The
first is a rod action with axial displacemefnt} along the rodg), and the correspond-
ing force isF = EA%. The second is two beam actions with bending deformations.
The corresponding nodal DoFs in the plane are the transverse displacemerand
rotationg, (or the slope of the deflection curve at the node), and theibgmdoment is
M, = EI%’}. The nodal DoFs in th&Z plane areu; andg,, and the bending moment is
M, = EI%. The third behavior is a twisting action about the frame il the DoF
and corresponding torque age and M, = GJ‘%‘. HereEA EI, andGJ are the axial,
bending, and torsional #inesses, respectively.

A 3D plate element is a three-node triangular element whigipesrts both in-plane
(membrane) and out-of-plane (flexural) actions. We ws® represent the displace-
ment measured in the local coordinate systenm,¢), with £ normal to the plate. The
DoF at each node for the in-plane behaviofus = {u, Uy, ¢}, and the element im-
plementation is taken frorBergan & Felippa1985. Note that the drilling action is
included here since, = % %—% - %—‘;1). The out-of-plane behavior of the plate element is

represented by the Dofa} = {us, ¢, ¢,,} at each node, wherg: and¢, are rotational

deflections. The element used is the Discrete Kir¢hAioiangular (DKT) element,
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which has been widely researched and documented as beingf tme more éicient

flexural elementsRatozet al., 1980. In terms of the local coordinates, the in-plane

behavior of the plate can be written as

No_ _EN [ om
oa-gle Canl
Eh [ou, ouy |
N,, = Mo, (2.25)
" (1—V§)[f9n > ¢ |
Eh [ou; odu,]
N 74 .\ A A~ b
@ 2@+vy| oy o
and the out-of-plane (flexural) behavior of the plate can bdem as
M., — El 52U3+V82U3
T @@= ee " Cap |
El [06%U3 0%U3
M, = a9 [anz e ] (2.26)
M. = El  6%U3
a (1+ve) dnoé’

In these expressionk,is the thickness of the platé,= h3/12 is the area moment of
inertia of the cross section, is again the displacement measured in the local coordinate
system for whiclg andn are the two tangential coordinaté$;, andM;; are respectively
the resultant forces and moments acting on the cross section

The large-displacement and small-strain deformationérsthuctural solver is han-
dled using the corotational scheme. That is, a local coatdiystem is envisioned as
moving with each discrete element, and, relative to thisdioate system, the element
behaves linearly as described in previous paragraphs.egaestly, the nonlinearities

of the problem are results of the coordinate transformafidgre tangent sfiness of an
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element, k], is the combination of the elastic ftiess and the geometricfstiess,

[kr] = [ke] + [ka]. (2.27)

The dynamical system representing the structural vibmasabtained by assembling

the equations for all the elements,

[MI{@} + [CT{O} + [K{u} = {P}, (2.28)

where{P} is the external force vector incorporating the forces fromftuid in contact
with the structure. The time stepping is achieved using téeiNark scheme.
The description of the FEM approach used in NONSTAD and te&ution of the

software usage are provided in several publicati@oy(e, 1991, 2001, 2008.

2.3 Flow—structure coupling

The incompressible Navier—Stokes equation is combindutivé structural dynam-
ics through the boundary conditions including the no-siip;penetration, and traction
conditions. In the code implementation, the FEM code is tlivith the immersed-
boundary flow solver, and the communications between thectwes are coordinated
through the Message Passing Interface (MPI) library. WighNIPI, the two solvers are
running in parallel as independent processes on a comp@uteronly minimal modi-
fications of the two existing stand-alone softwares are e@éa order to couple them

together.
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Figure 2.7: Flow chart of the flow—structure iteration dgria complete time step.
The left and right panels represent the flow and structuraless, respectively, and
the dashed lines represent the data transfer between trentwars.

A

Furthermore, the flow solver and structural solver shardrtaegular mesh on the
wetted surface of the solid, which makes the interpretatiothe boundary displace-
ment and surface force between the two solvers straighti@wio achieve the implicit
coupling, the flow and structure are solved in an iterativemea. The algorithm for a

complete time step is summarized by the flow chart in Eig.
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2.4 Code validation and demo cases
This section includes several simulations performed tadag current code and
numerical algorithms and to demonstrate the capability el Wroblem descriptions
and setups are given in details, and the results are compéiegdrevious numerical or

experimental studies.

24.1 Grid convergence study

The interpolation schemes adopted here for flow recongtrucear the immersed
boundary, including both the ghost nodes and the hybrid s\dd®/e a second-order ac-
curacy, which is consistent to the accuracy of the spatsardtization of the bulk field.
The mixed reconstruction-fiierentiation approach at the hybrid nodes is expected to
preserve the accuracy of the overall numerical method. Tiiecgnvergence test is
performed using the flow past a circular cylinder. The RegiaslumbeRe= Ud/v is
100 whered is the cylinder diametet) is the free stream velocity. A small domain of
2d x 2d is used here with the cylinder placed at the center of the domazero normal
derivative is applied for the velocity at the outer boundamexcept the upstream side.
In all simulations presented in this work, the homogeneoasmiann condition for the
pressure is applied at the outer boundaries. Simulatia@suaron uniform grids with
a series of resolutions, 4040, 80x 80, 160x 160, 320x 320, and 640« 640. The
cylinder surface is discretized so that the length of théasersegments is smaller than
one third of the Cartesian cell size. A total number of 10@tetsteps are run with the

step size equal t0.0001d/U. The flow fields at the end of the simulations are used for
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Figure 2.8: Grid convergence study using the problem of flast@ 2D stationary
cylinder. (a) Contours afi; (lines) andu, (grey scale) for the solution using the 640
640 grid. (b) Distribution of the numerical error in thecomponent from the 160160
grid (only one every three mesh points in batiindy directions is shown). (c) Contours
of the divergence. (dl., andL. error norms of thes; andu, velocities for diferent
resolutions.

the study. To compute the error, we used the solution on tlestfigrid as the refer-
ence and compare the results from the other resolutionstinghieference. Fig2.8(a)

shows the contours of the two velocity components computethe finest grid, and
Fig. 2.8(b) shows the distribution of error magnitude in thevelocity obtained on the

160x 160 grid. The numerical error of the divergence field is jgldin Fig.2.8(c). Note

that the errors are concentrated in the region near the iseddyoundary, which is a
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typical phenomenon for the immersed-boundary methodsatitdérature (e.g.,Yang
& Balaras(2006); Mittal et al. (2008).

TheL, andL., norms of the error for the velocity components are showngnZB(d)
for the coarser grids. Both error norms confirm that the presemerical method has

an overall second-order accuracy.

2.4.2 Flow past a stationary cylinder

The 2D flow past a stationary cylinder is computed to assesdidkelity of the
present immersed-boundary solver. Here we run the sironkaforRe= 40, 100, 300
and 1000 on a 408 320 nonuniform grid, where= Ud/v with U as the freestream
velocity andd as the cylinder diameter. The domain size id #®0d, and the grid near
the cylinder is refined so that the smallest spacinyxs= Ay = 0.01d. A zero normal
derivative is applied for the velocity at the outer bounéaexcept the upstream side.

Fig. 2.9(a,b) shows the temporal variations of the drag and liffiecients defined
by Cp = Fp/(3pU%d) andC_ = F/(3pU?d), whereF andF, are the drag and lift on
the cylinder per unit span. To promote flow instability andrsén the simulation time,
small artificial disturbances are added to the flow initidlyinduce the asymmetry.
When the flow reaches a stationary state marked by periodtexvshedding behind
the cylinder, the drag cdiécient oscillates at a frequency twice of the frequency in the
lift coefficient. Fig.2.9(c) shows the vortex contours fBe= 300 in which the unsteady
vortices in the wake of the cylinder are well captured.

Strouhal number is defined I8t= fd/U wheref is the frequency of the lift cdgcient and

is equal to the vortex shedding frequency. The drag, lifti, g Strouhal number are tabulated
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Figure 2.9: Flow past a 2D stationary cylinder,i() Drag and lift codicients for

Re = 300 (a) andRe = 1000 (b). (c) Instantaneous contours of the spanwise yrtic
for Re= 300.

in Table2.1 for the Reynolds numbers considered here. The results femeral sources are
also listed for comparison. Among the previous resultsdéita from Williamson \Williamson
1992 was obtained from experiments, and the rest are from ngaleimulations, including the

spectral-element methotiénderson1995 and the immersed-boundary methiifellaet al,,
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Re 40 100 300 1000
Cpob St| Cp St | Cp St | Cp St
Present 153 —-|135 0.159 1.43 0.196| 1.56 0.235
Mittal etal. (2008 | 1.53 —-|1.35 0.165 1.36 0.210 1.45 0.230
Hendersor{1995 154 -|13 - |137 - |151 -
Marellaet al. (2005 | 1.52 - | 1.36 - 11.28 - - -
Williamson (1992 - - = 0157, - 0.203| - 0.206

Table 2.1: Laminar flow past a 2D stationary cylinder. Corrguans of the drag cdi-
cient and Strouhal number with previous results.

2005 Mittal et al., 2008. The comparison shows a very good agreement between alisrasd
the previous data. Note that f&e = 1000, the flow in a real situation has become essentially
three-dimensional, which explains the considerabtiedince in the Strouhal number between

the experimental result and numerical data.

2.4.3 Flow past a sphere

Flow past a stationary sphere is a canonical problem thawalls to test the 3D implemen-
tation of the immersed-boundary treatment. The problenowatReynolds numbers has been
studied extensively using both experiment&lift et al, 1978 Ormieres & Provansall999
Sakamoto & Haniu1995 and numerical approachedofinson & Patel1999 Mittal, 1999
Mittal et al., 2002 2008. Depending on the Reynolds numiie = Ud/v, the flow has three
distinct regimes. BeloiRe= 210, the flow past a sphere is axisymmetric and stelldyafajan
& Acrivos, 1993. BetweerRe= 210 and around 280, the flow is steady but loses axisymmetry.
AboveRe= 280, the flow is neither steady nor axisymmetric.

In the present study we performed simulations of the flow WighReynolds number ranging
from 100 to 350. Both qualitative and quantitative comparsswere made with available results
in the literature. For all Reynolds numbers studied, we eygad a 192 120x 120 nonuniform

grid with grid clustering around the sphere and in the nedd-fivake. The domain size used in
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Table 2.2: Comparison of the current results for flow pastreespwith existing exper-
imental and computational studies.

Re= 100 Re= 150 Re=300 | Re= 350
X/d  y/d Ly/d X/d  y/d  Ly/d St St
Mittal (1999 - - 0.87 - - - - 0.14
Bagchiet al. (2001 - - 0.87 - - - - 0.135
Johnson & Patg1999 | 0.75 0.29 0.88 082 029 1.2 0.137 -
Tanedg1956 0.745 0.28 0.8 082 029 1.2 - -
Marellaet al. (2005 - - 0.88 - - 1.19 0.133 -
Mittal et al. (2008 0.742 0.278 0.84 0.81 0.3 1.17 0.135 0.142
Present results 0.762 0.298 0.913 | 0.830 0.338 1.229 | 0.125 0.152

all the simulations is 16x 15dx 15d. These parameters were chosen so that a direct comparison
could be made with the results Mittal et al. (2008. A zero normal derivative is applied for
the velocity at the outer boundaries except the upstreaen sid

ForRe= 100 and 150, the computed flow is steady and axisymmetriceidre, the center
coordinates X, yc) of the flow recirculation bubbles in the wake of the spherelmaaccurately
determined. The length of the recirculation zones, defirseith@ distance from the back of the
sphere to the farthest point in the streamwise directionpti® byl,,, can also be calculated.
The values of these variables f&e = 100 and 150 are compared with previous studies in
Table2.2and are found to be in excellent agreement with those studies

For Re = 300 and 350, the flow is strongly unsteady. It is well establisthat for this
Reynolds number regime the wake is dominated by vortex |blogisare interlocked together
(Sakamoto & Haniu1995 Ormieres & Provansall999 Mittal, 1999. The 3D vortex features
were well captured in our simulations. Here we present tiheuBal numberSt which rep-
resents the nondimensional frequency of the vortex shgdiom the sphere. Note that the
simulations were run for long enough time so that a statostate was reached during which
the statistical quantities such as the Strouhal number arte fcodficients were taken. The
computed Strouhal number is tabulated in Téh2and shows good agreement with previous

studies. In Fig2.1Q a comparison is made between the computed mean dréigcead from
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Figure 2.10: Comparison of the computed mean dragficeent with experimental and
numerical data. The solid line is the correlation data fi©lift et al. (1978.

the present simulations and the results from a number ofqare\experimental and numerical

studies. The current result is once again in excellent ageeéwith those results.

2.4.4 Flow past an in-line oscillating cylinder

After successfully validated the present formulation fiatisnary-boundary problems, we
proceed to perform numerical tests for moving boundaridse first problem we consider is a
cylinder of diameted oscillating in a channel flow as shown F@.11 The channel has the
dimension of 4 x 4d, and the inlet velocity has a parabolic profile with the maximvalueU.
The no-slip and no-penetration conditions are applied eactiannel walls, and a zero normal
derivative is applied for the outlet. Although the chanrgeltao short to exclude theffect
of the exit, the channel length does nditeat the numerical oscillation related to the moving
boundary. The cylinder oscillates symmetrically along ¢eaterline of the channel, and its
prescribed velocity is given hy sin(2r ft), whereu. is the maximum translational velocity and
f is the frequency. We sei./U = 0.Lr and fd/U = 0.2 so that the stroke distance of the

cylinder is 05d. The Reynolds number in the tesRe= Ud/v = 100. A uniform grid of either
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Figure 2.11: Schematic of an in-line oscillating cylindei channel.

64 x 64 or 128x 128 points is used to discretize the domain. In additioredtditferent time
stepsAtU/d = 0.005, 0.01, and 0.02, are used to study tffiect of At.

To show the #ect of the current formulation on the force oscillation, wsoaperformed
the simulations without the mixed stencil at the hybrid reoda those simulations, we simply
set the weight of the interpolation stencit, = 1, in Eqns. 2.195 and @.22. That is, the
flow variables at the hybrid nodes are obtained completeiy finterpolation. To facilitate the
discussion, here we refer to the second approach as then$tegotion-only” method.

Figure2.12shows the drag history of the cylinder, normalized%lpjdz, for several combi-
nations of the spatial and temporal resolutions. In EijXa) where the the reconstruction-only
method is used with 64 64 points and\tU/d = 0.01, the drag displays substantial oscillations.
On the other hand, the drag in FB12b), which is computed using the present hybrid formu-
lation with the same simulation set up, contains only maeeftactuations. In these two tests,
the maximum CFL number, defined AHu; /AX + Up/Ay), is around 0.35.

In the next set of simulations, the 12828 grid is employed, and the maximum CFL is kept
at 0.35, i.e., the time step 1#U/d = 0.005. The drag histories are shown in Figs.2c) and

(d), respectively, for the reconstruction-only method #relhybrid method. It can be seen that
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Figure 2.12: The normalized drag of an in-line oscillatiygjrader in a 2D channel.
Left: the reconstruction-only immersed-boundary forntiola right: the present hybrid
formulation. The resolution is 6464 in (a) and (b), and 128128 in the other panels,
and the maximum CFL in the four rows is 0.35, 0.35, 0.7, andrégpectively.

the magnitude of the numerical oscillation is reduced ird(@ to the grid refinement but is still
significant. In comparison, the hybrid method only produsaght high-frequency fluctuations.
Then we use the 128 128 grid and increase the time-step size so that the maximieim C
is either 0.7 or 1.4 (i.eAtU/d = 0.01 or 0.02). The results are shown in Fgl2e) to (h)
for both immersed-boundary formulations. For the recamsion-only method, the magni-
tude of the oscillation is reduced proportionally&sis increased, as seen in FigslAc,e,q).

The observation is consistent to the qualitative analysiSdction 2.2. For the hybrid method,
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Figure 2.13: The velocity field and pressure contourdJgt = 9 for an in-line oscil-
lating cylinder in a channel using the (a) 8464 and (b) 128 128 grid.

Figs. 2.12d,f,h) show that the numerical oscillation in the drag ip@essed for these time-
step sizes and there is no significant error. Slight osidhatare still visible becauseftirent
interpolation stencils are involved when the boundary rs@oss the grid.

The flow field for the hybrid formulation is shown in Fig.13for the two resolutions at
tU/d = 9. For the 64x 64 grid, there are only 16 points across the cylinder, and the flow
around the immersed boundary is barely resolved. Nevedhelthe corresponding velocity
field in Fig.2.13a) is reasonably accurate. In F&§13b) where the finer resolution is used, the
flow field around the cylinder is captured with a much betteuaacy.

In order to evaluate theffiect of the Strouhal number, we varied the translationalueagy
of the cylinder but kept the stroke distance the same. Intiaddiwe studied thefeect of the
characteristic flow around the solid body by moving the @dinin the transverse direction. In
both studies, the performances of the present reconstndotily method and the hybrid method
are not #ected significantly. In conclusion, the hybrid method pnéseé here is #ective in

suppressing the numerical oscillation caused by the mdwinugndaries.

50



t=1.0
2.5

t

1.5
t=3.0

t

t=2.0

=35

t

Figure 2.14: Top view of wake development behind a statypnegtangular plate at an
angle of attack of 40 The 1st and 3rd columns are frofaira & Colonius(2009, and
the 2nd and 4th columns from the current simulation. The tsmermalized byc/U.

245 A suddenly started plate

This problem concerns an impulsive flow over a rigid rectdaigplate, which was studied
numerically byTaira & Colonius(2009. The stationary plate has a rectangular shape and has
an aspect ratio of 2. The angle of attack of the plate is fixetDatand the Reynolds number
based on the freestream velocilyand the chord length is Re = 500. The 3D simulation is
done in a 10 x 10c x 6¢ (in the streamwise, transverse, and spanwise directiamspoh and
on a 211x 121 x 141 grid. In figure2.14 we present the wake development by showing the
isosurface of the vorticity magnitude equal td & at different time instants in a top view. The
corresponding flow field frorfaira & Colonius(2009 is shown for comparison. It can be seen
that the instantaneous vortex structures from the two sitianls agree with each other very

well.
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Figure 2.15: Schematic of a 2D hovering wing showing the @ydvand backward
strokes.

2.4.6 Flow induced by a 2D hovering wing

In this moving-boundary test, we consider a rigid plate dihite span undergoing com-
bined oscillatory translation and rotation as shown in Rid5 This configuration has been
extensively used for modeling the hovering flight in aninglsh as insectd¥anget al., 2004
Eldredge 2007, where the plate represents a slice of the wing. The kinemaft the wing
section is described by a sinusoidal translation and aiootaround the wing center according

to the following equations

Xo(t) = g cos(zft) (2.29)
ot = g + Omsin(2eft + ¢) (2.30)

where xo(t) is the stroke positiong(t) is the angle between the wing and the horizontal axis
(measured in the counterclockwise directioA)js the stroke distance of the wingy, is the
angle amplitude f is the flapping frequency, anglis the phase dierence between the wing
translation and rotation. The vanishing phase #ag,0, is studied here.

The simulation is performed in a rectangular domain of stex220c, wherec is the chord

length of the wing section, and 3%@56 nonuniformly distributed grid points are used. Around
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Figure 2.16: The drag and lift c@icients of a 2D hovering wing.

the wing, the grid spacing is around@3c. The kinematic parameters ai¢c = 2.8, 6y, = n/4.
The Reynolds number defined B® = Unyac/v is 75, whereUmax = mAf is the maximum
translational velocity of the wing. One complete cycle isalged by 400 time steps. The

instantaneous drag and lift déieients are defined as

_ signéo(t)Fo o __F

Co , L= 7,
3pUZaC 3pUZaC

(2.31)

whereFp andF are total instantaneous horizontal and vertical forcespeetively. Previous
results of this problem obtained using a vortex particlehoétby Eldredge(2007) are com-
pared. The cdécients are plotted in Fiz.16 where the first four flapping cycles are shown.
The flow is initially quiescent and approaches a nearly jpécistate after two cycles.

An ellipsis-shaped wing with the aspect ratio of 10 was useé&ldredge(2007). In our

case, the cross section is uniform except at the two roundiegl @dges due to the approach of

53



introducing an artificial thickness. In the present simatatthe wing thickness is about 7% of
the chord length. Despite thefiirences in the wing geometry, both the drag and lifticcients

in the two simulations exhibit only slight discrepancy. btlbthe forward and backward strokes,
C. contains two peaks, one after the stroke reversal and tlee aggproximately at the midway

of the stroke when the wing has the maximum translationaboigl The first peak can be

explained by the wake capture mechanism where the wingacteewith the leading-edge vortex
generated prior to the stroke reversdélanget al, 2004. The drag, defined to always point
against the wing translation, also contains two peaks ih gatf stroke, which take place prior
to and shortly after the wing reversal due to the large anfjtack at the moment. The drag
becomes negative during the reversal. These features dreaprired in the present simulation
and the force history shows no significant oscillation, whahows the #ectiveness of the

present immersed-boundary method.

2.4.7 Simulating a robotic fruit fly

This is a three dimensional moving-boundary problem. Weukite the flow around two
robotic fruit fly wings, replicating the experiment Dickinsonet al. (1999. The wings are
models ofDrosophila melanogasteand have a span & = 0.25 m. The area of each wing is
S = 0.0167 nt and the average chord@s= 8.79 cm. The wing shape used is similar to the one
reproduced iBai et al.(2009. In the experiment dDickinsonet al. (1999, one flapping period
is composed of two half-strokes and the flapping frequené€y=9.145 Hz. The wings sweep in
the horizontal plane and rotate at the end of each strokewirtgerotation occurs symmetrically
with respect to the stroke reversal and lasts 16% of the figppériod. The stroke amplitude is
160, and the angle of attack at mid-stroke is 4The Reynolds number Re= UC/v = 164,

whereU = 0.215 nys is the mean translational velocity at the wing tip and 115 cSt is the
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Figure 2.17: Instantaneous lift dbeient for a robotic fly.

kinematic viscosity of the fluid. The total lift force, is defined in the direction perpendicular
to the stroke plane, and the total lift dbeient is defined a€_ = 2F /(pU?S).

A nonuniform grid of 25%251x181 is used. The size of the computational domain is
equivalent to that of the oil tank in the experiment. DiregtHboundary conditions for the velocity
are imposed on the side walls, and open boundary conditiensi@osed on the top and bottom
boundaries. The simulation is conducted for five flappingdes/c The temporal variation of
the lift codficient during each stroke is virtually identical after th@dhcycle. Figure2.17
shows the time history of the lift c@igcient from the 4th cycle for the case with symmetrical
rotation, together with the experiment&li¢kinsonet al., 1999 and two numerical result$S(n
& Tang, 200; Kweon & Choi 2010. As we can see, our simulation captures the two lift
peaks produced near the beginning and end of the half-stFakéhermore, our result compares
better with the experimental data than the other two nurakrésults. It should be stressed that
the numerical results froilBun & Tang(2002) andKweon & Choi(2010 were obtained from
simulations of only one single wing, while both the curréntidation and the experiment have

a pair of wings.
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Figure 2.18: The 3D geometry and hovering kinematics of tiramingbird model. (a)
Downstroke (forward stroke) and (b) upstroke (backwardksty. The leading edge of
the wing sweeps in a horizontaty) plane.

2.4.8 Simulating a hummingbird

In the last case study, we consider aerodynamics of the hogiind hovering flight. The
simplified hummingbird body and wing anatomy is based on esag a Rufous Hummingbird
(Selasphorus rufys Each wing is represented here by a half ellipsis with aeets@tio of 3:1.
The shoulder corner of the wing is used as the pivot point. sthitace mesh for the humming-
bird model consists of 814 triangular elements for the baty3¥ 2 triangular elements for each
wing.

The size of the computational domain is8&x 19cx 14c, wherec s the chord length equal
to the length of the short axis of the ellipsis. A 3@b0x160 nonuniform grid is used, which
provides clustered points around the hummingbird body andsv The detailed kinematics of
the Rufous Hummingbird are available ifobalskeet al. (2007). In the present simulation, a
simple representation of the wing kinematics was choseshaan in Fig.2.18 The leading
edge, defined as the line through the pivot point and lyingh@wing surface, rotates sinu-
soidally in the stroke plane with an amplitude of 1,1&nd meanwhile each wing surface rotates
sinusoidally around the leading edge with an amplitude @F hd a 10 delay with respect

to the flapping angle. The distribution of the angle of attatkhe wing is asymmetric: the

56



minimum angle is 27 during the downstroke and 1@luring the upstroke. Here the angle of
attack is defined as the acute angle between the wing suriddb@stroke plane. The Reynolds
number,Re = Utipc/v, is 1570, Wheréjtip is the average wing-tip velocity. Equivalently, the
Reynolds number is 2465 in terms of the maximum wing-tip e&jo Note that the Reynolds
number of the real hummingbird may be above 5088sfuleret al, 2004. A lower Reis used
here to reduce the computational load that would be reqdiimedirect numerical simulation of
the turbulent flow.

Figure2.19shows the flow structures generated by the hummingbird naddeiee diferent
stages during downstroke. In the simulatibs; O is the beginning of downstroke. The figure
shows the isosurfaces Af the maximum imaginary part of the three complex eigenwati¢he
velocity gradient tensoiSoria & Cantwell 1994). Both the 3D view and the top view of the flow
field are shown. Figure3.19a) and (d) shows the early stage of downstroke, where thiiga
edge vortex Ellington et al, 1996 on the top surface of the wings is being formed. As the
wings accelerate downward, depicted in FB4.9b) and (e), the leading-edge vortex remains
attached to the wing surface. At the same time, a trailingeedbrtex is being shed and its
outboard portion is merging with the tip vortex. As the wingelerate and the angle of attack
increases at the end of downstroke, a large region of sepbflatv is generated behind each
wing and near the wing tip, as depicted in Figsl9c) and (f). Throughout the flapping cycle,
the flow is dominated by small-scale, randomly orientedesofilaments, which illustrates the
complexity of the flow behavior even at the moderate Reynolasber.

Figure2.20shows the time-varying force cfieients averaged between the two wings dur-
ing first three flapping cycles. The force ¢eients,Cy, Cy, andC,, are defined as the force
components on a single wing normalized bs,ioiﬁpé. The lift codficient,C,, is characterized

by a large peak during each half stroke, which roughly ocduring the mid-stroke when the
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Figure 2.19: Vortex structures at three stages in downstwbk modeled hummingbird
in hovering flight. The time stamp is= 3.2T for (a,d), 33T for (b,e), and 3T for
(c,f), whereT is the period of a full flapping cycle.

wings undergo the maximum flapping velocity. The dragfitcoent, C4, during downstroke is
comparable t&,, but its peak is slightly delayed. During upstroki, has a reverse sign and is
significantly lower in magnitude compared to downstrokee Tdteral forceCy, is nearly zero
since the two wings flap symmetrically and §xéorces cancel each other. In the present setup,
the stroke plane is parallel to the horizontal plane, and the lift codficient during upstroke
is close to that during downstroke. Tobalskeet al. (2007, the stroke plane angle is around
B = 15° when the hummingbird is hovering. To incorporate thiset, we may simply transform
the coordinate system and re-compute the lifttioent according t&€; = C,cosB + Cxsing.
The result is also plotted in Fi@.20 which shows that the lift during upstroke is significantly
lower than that during downstroke. This is in line with theuk from Warrick et al. (2009,
who performed a particle image velocimetry (PI1V) study & tummingbird flight. In their
experiment, the average circulation around the wing dudiognstroke is about twice of the

average circulation during upstroke, which indicates &éidift during downstroke.
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Figure 2.20: Time histories of the normalized force commsi&,, C,, C, during the
first three flapping cycles. The simulation starts from thgifne@ing of the downstroke.
C, is the lift codficient when the stroke plane is tilted forward by 15
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CHAPTER I

HYDRODYNAMIC PERFORMANCE OF A FLEXIBLE LOW-ASPECT-RATIO

PITCHING PLATE

3.1 Background

A pitching/heaving foil in an incoming flow is a reasonable approximatbthe caudal fin
of a fish and can be used to study the thrust production. Sulstavork has been done on
the hydrodynamics of rigid foils. Early experimental seslof a foil in a steady stream were
done byKoochesfahan(1989; Triantafyllou et al. (1991, 1993; Andersonet al. (1998. The
averaged wake behind the foil was found to be like a jet flowd,\@rtices closely resemble the
von Karman vortex street behind ffiwbjects but have reversed rotation. In addition, the thrust
efficiency is largely dependent on the Strouhal number. A rewkthese work can be found
in Triantafyllou et al. (2004. More recently, $chnipperet al., 2009 investigated theféect of
the oscillation frequency and amplitude on the wake strestproduced by a pitching foil in
a soap film flow. Buchholz & Smits(2006 2008 studied a rigid panel of lowAR pitching
around its leading edge in a free stream. They found thathhestt codficient depends on
both the Strouhal number and the aspect ratio and that thplsiee dficiency is sensitive to
the aspect ratio when the span-to-chord ratio is less tr&8 Donget al. (200§ numerically
studied a pitchingneaving foil of elliptic shape and investigated the thr@aahsional topology
of the wake.

In comparison to rigid foils, existing studies on flexiblelscare mainly limited to foils of

large span-to-chord ratios and two-dimensional flows. Kamgle, Heathcoteet al. (2004);
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Heathcote & Gursu{2007) investigated theféect of chordwise deformation on thrust gener-
ation and power consumption of an elastic foil in water taModerate flexibility was found
to increase the thrustieciency compared to the rigid foil and an optimal flexibilityagnexist
for given heaving frequency and amplitudéhu (2007 assumed an inviscid flow and utilized
a boundary-element method to study the problem. In theigadriven case, he found that the
chordwise flexibility reduces both the thrust and the prsjoul dficiency; in the fluid-driven
case, the chordwise flexibility increases thBogncy, which is consistent to the experiment
result inHeathcote & Gursu{2007). In another workMichelin & Llewellyn Smith (2009
studied the ffect of structural resonance on the thrust performance o&eaig foil. More re-
cently, Ferreira de Sousa & Alle(201]) performed a two-dimensional viscous flow simulation
of a pitching plate and obtained similar conclusion as tleipus research.

For insects and fish, the span-to-chord ratio of their wings fns is typically less than
10 (Donget al,, 2006. Thus, the wake of the biological propulsors is highly gitBmensional.
Currently it is still not clear how the structural defornwatiwill affect the 3D vortices in the
wake and how the result has to do with the performance of thpybsor. A computational
study that addresses the fluid—structure interaction aswlves the 3D flow pattern will help
answer these questions.

In this chapter, we consider a flexible plate of low aspedb rpitching around its own
leading edge in a free stream. The three-dimensional fltrigktsre interaction is simulated.
We systematically vary the pitching amplitude, frequersyell as the rigidity of the plate and
investigate the thrust and powseftieiency. The &ect of the elasticity on the performance of the
propulsor and the vortex structures in the wake will be dised. The problem is formulated
in §3.2 a grid study is given in 8.3, the results and discussions are provided B.480 §3.6,

final conclusion is given in 8.7.
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Figure 3.1: Schematic of the elastic panel pitching in a teeam.

3.2 Problem specification

We consider a thin, flexible rectangular panel that rotatesral its leading edge harmon-
ically as illustrated in Fi3.1 The pitching angle is specified as= a sin(2r fot), wherefy is
the oscillation frequencyy is the maximum angle of attack. The uniform free stream viloc
is U, and the domain is unbounded. The panel is considered tofheiestly thin such that
its thicknessh has no significantféect on the flow. The homogeneous and isotropic panel has
lengthL, width W, densityps, Young’s modulus, and Poisson’s raties. The panel is assumed
to be nearly inextensible but may bend under the hydrodynéonte. The displacement of the
panel is arbitrarily large, but the strain is assumed to ballsso that the material still obeys the

constitutive law of linear elasticity, which in the localadinates X, y) states

EIViwg = (X Y) (3.1)

wherel = h3/12 is the area moment of inertia of the cross section per pait,8/q is the deflec-
tion of the plate, and, is the normal stress on the plate surface which in the prgsebtem,
includes both inertial and hydrodynamic forces. The omeraf is biharmonic operator in the
(X, y) coordinates.

The nondimensional parameters governing the problemsharadpect rati?V/L, pitch-
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ing amplitudeq, reduced frequency = foL/U, Reynolds numbeRe = UL/v, mass ratio
psh/(osL), reduced sffnessk = El/(pU?L%). Mass ratio is set to 0.1 for all, backed by real
data of fish fins. The Poisson’s ratio of the plate is setat0.25, the aspect ratid//L = 0.54,
and the Reynolds number Re= 640, for all the simulations. These parameters are chosen to
match those in the experiment Byichholz & Smitg(2008.

To evaluate the performance of propulsion, we define thesttoodficient Ct and power

codlicient as

Fx P

Cr=-—X%_, Co=-r—,
T 02wl SRFTEV

(3.2)

whereFy is the total force on the plate in thedirection, andP is the total power spent for
propulsion and is calculated By = - jif -vdS. The propulsive fiiciencyn is then defined to

be the ratio between the thrust and powerfioents, = g—;

3.3 Convergence study
A grid convergence study is performed foe 1, = 12°, andK = 5 using three grids: the
coarse grid with 23& 116x 168 points and minimum spacing o025_ in each direction, the
normal grid with 330« 142x 222 points and minimum spacing aPQ6L, and the fine grid with
420x 164x 272 points and minimum spacing abQ23_. Figure3.2shows the time histories of
the tail excursion an@t computed on these three grids. Based on the results, theahgrit

is deemed satisfactory and is used for most of the simukation
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Figure 3.2: Histories of (a) the tail excursiazy;, and (b) the thrust cdicient com-
puted on three grids fof = 1, @ = 12 andK = 5. The inset in (a) shows a zoom
view.

3.4 Structural response

Nondimensional bending rigidity is defined lis= E1/(ps U?L3). Since the spanwise vari-
ation of deformation is very small as we observed in all oordated cases, we examine the
deformation at the midspan of the plate only. All the platesocm well-periodically and in
a nearly sinusoidal history pattern. Simulations are fuistfor a series of bending finesses
ata = 12°, f = 1 or 2. Fig.3.3 shows the normalized peak-to-peak excursion amplitude at
the trailing edgeA/L, and the phase delay between the trailing edge and the pigth af the
leading edgeg. It can be seen from Fi@.3(a) that at a particular value &f that depends off,
the excursion amplitude is maximized. Foe 1 this critical stitness is neaK = 2.5, and for

f = 2 itis nearK = 10. The result thus indicates that system resonance has pédee. Note
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Figure 3.3: The normalized tail excursion (a) and the phatsydetween the trailing
edge and the leading edge (b) foe= 12°. The value oK corresponding to resonance
of the plate free-vibrating in vacuum is marked iyfor f = 1 andK, for f = 2.

that the system resonance here iadent from the resonance of the free plate vibrating in vac-
uum. In Fig.3.3(b) we have marked the valueskfthat would lead to the first natural vibration
mode of the plateK; = 0.32 for f = 1 andK, = 1.28 for f = 2. The values oK that would
lead to the second natural mode are much lower (less tha®)0.G3y. 3.3(b) shows that the
trailing edge exhibits a significant phase delay and it iases as the bending rigidity is reduced.
These results are consistent with the 2D analysis of Minh&ILlewellyn Smith Michelin &
Llewellyn Smith(2009 for a flexible plate with small heaving amplitude. Note ttiet bending
rigidity here needs to be further reduced in order to achiieeesecond resonant mode as seen in
Michelin & Llewellyn SmithMichelin & Llewellyn Smith(2009, where they studied the higher
deformation modes by reducing the platgfatiss by several orders of magnitude. Neverthe-
less, the possible trend of the second resonance can bendéign3.3(a) for the case of = 2,
where the tail excursion starts to increaséas reduced to 0.1. By comparing their numerical
model with a linear analysis for the fluid-solid system, Mith & Llewellyn Smith Michelin

& Llewellyn Smith (2009 found that the resonant frequencies can be well predicgdahbar
theory. In the present case, the resonance takes plac&ne&5 for f = 1 and neakK = 10

for f = 2. Therefore, the resonant frequency here scales rougtity Vi1, i.e., similar to the

vibration in vacuum, although the present system includasunding fluid.
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Figure 3.4: Deformation patterns of the platedoe 12° andf = 1.

The deformation pattern of the plate is shown in Bgtfor f = 1 andK = 0.1, 0.5, 1.0,
2.5. Forf = 1, the plate behaves essentially as a rigid one wKas larger than 100, and
significant deformations can be seen wiiers less than 10. InMichelin & Llewellyn Smith
(2009, they characterized the vibration modes according totimeber of necks in the enclosing
envelope of the superimposed instantaneous plate shames.wé define neck as the portion
of the envelope narrower than both its upstream and dovamtsides. Following this notion,
the vibration pattern shown here fiir= 1.0 and 2.5 would correspond to the first mode, or the
no-neck mode. The pattern f& = 0.1 would correspond to the second mode, or the one-neck
mode. In the case df = 0.5, the enclosing envelope has a section that is nearly lexetdn
still be grouped into the first mode. It should be pointed bat the present characterization
of the deformation modes isftierent from that of the eigenmodes at which the plate ressnate
For the current pitching plate, the second deformation noagidake place either when the plate
rigidity is very low or when the pitching amplitugleelocity is very large.

In this work, we mainly focus on the first-mode deformatiomietn has much higher thrust
and propulsive #iciency than the other modedichelin & Llewellyn Smith, 2009. As pointed
out in Michelin & Llewellyn Smith (2009, this mode does not appear for a passive flag whose
flapping motion is induced by system instability. Therefoegher than extracting energy from

the flow, this mode would require energy from an external raagm.

66



@ (b)
0.7 T .
K K
ol 0.6t f =1 :2 f =2 jzooo 1
—e— 5000 —<—1
0.5¢ 0.5¢ ——0.5
——0.35
0.4¢ —=—0.25 7]
0.4 ——0.2
g o" 0.3 —£—0.15 ]
0.3t ——0.1
02 —-005 |
N /
0.1
0.1 ol /';/A?;»
0 : : : : : -0.1 : : : : :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
a a
(c)
04—
0.35[
L w O
0.3F o'
0.25 % /
0.2 \
L < //
o 0.15—<
0.1r \
I —
0.05| === o«
o- \%
L L] ///
~0.05- o, <
I >
g 1 R R . L |
Z0.2 0 0.2 0.4 0.6 0.8 1
St

Figure 3.5: The tail excursion (a) and thrust ffmgent (b) of the plate for a range of
pitching amplitudes and bendingftiesses. (c) The thrust d@eient re-plotted against

the Strouhal numbeB tdefined using the tail excursion.

3.5

Thrust production and power dficiency

More series of simulations were run for a range of value ahda. The nondimensional

frequency remains d@t = 1 or f = 2. The results of these cases are plotted in 8i§. where

the data belonging to the sarievalues have been grouped using the same symbol 3FE@)
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shows that for all the cases considered here, the tail eércunmscreases monotonically asis
raised. Meanwhile, the thrust produced by the plate, as shoWwig. 3.5b), grows as well due
to the increased flapping amplitude. For most cases, thexailrsion of the flexible plate is
significantly lower than that of the rigid plate (represenby K = 5000) whenv is fixed. For
some cases where the plate oscillates near the systenyargscequency, e.gk = 5, the tail
excursion exceeds that of the rigid plate, and correspghgithe flexible plate produces higher
thrust than its rigid counterpart.

For a flexible wing, we define the Strouhal numberSas= fUA, where the peak-to-peak
excursionA in used. Such a definition has been used extensively to seatbrust performance
of arigid pitching wingTriantafyllouet al. (2004, and here the same definition will allow us to
compare the flexible wing with the rigid wing that has an eglaat flapping amplitude.

In Fig. 3.5(c), we plot the thrust cdicient against the Strouhal number, which is in the
range between 0.1 and 0.7. The deformation patterns of sgoieak cases are shown in this
figure to aid the analysis. We draw an approximate boundasgparate the cases where the
plate has the second-mode pattern from the cases with thentige pattern, and we use | and
Il to mark the two regions as shown. It can be seen that in Rebighere the rigid cases
and the first-mode cases lie, the data roughly collapse betsame curve regardless various
combinations off, K, anda in these cases. The result implies that despite the wingmefion,
the propulsive force of the present wing depends almosusxely on the Strouhal number as
long as the wing deformation is of the first mode. On the ottzrdh in Region Il where the
second-mode cases lie, the data are scattered and do nat &pfellow a general curve. In
addition, these cases have lower thrust compared to these taRegion | at the same Strouhal
number. We point out that the boundary between the two regstiould not be viewed as a

sharp line but represents instead a transition zone. Asiteemediate cases with= 1 andK
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Figure 3.6: The power cdigcientCp (a) and power ficiencyn (b) versus the Strouhal
number. The rigid-wing cases have been marked with dashes iin (b).

varying from 0.2 to 0.5 indicate, the appearance of the stooode is in a gradual rather than
drastic manner.

In a recent experimental study Bphl & Koochesfahan{2009, a rigid NACA-0012 airfoll
pitching sinusoidally at small amplitude and high reducesjiencies was used to study the
flow field and to obtain the scaling law of the thrust versusStreuhal number fo6t < 0.25.

In their study, a control volume analysis that takes intaaot the streamwise velocity fluctu-
ations and the pressure term was adopted to estimate thethreah Although the Reynolds
number in that study is much higher (on order of)1he scaled thrust iBohl & Koochesfahani
(2009(see Fig. 15) shows a similar trend and magnitude as in adyst

The plots of the thrust and power dheients versus the plate $tiess would show that at the
system resonance, both the thrust and power consumptioh tiegir respective peak values like
the reduced excursioA/L shown in Fig3.3(a). In addition, the optimalf&ciency would take
place at a lower value df than that for the resonance. These results are consistémthei2D

analysis ilMichelin & Llewellyn Smith (2009 and are thus not further discussed in the present
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work. Here we plot the power cfitcient against the Strouhal number in F&6(a), where
some cases with intermediate valuekdfiave been excluded to avoid data clustering. It can be
seen that unlike the thrust déieient, the power cdicient does not collapse onto a generalized
curve. Overall, the power céicient increases aStis raised. At a constarst especially
whenSt > 0.3, the flexible cases typically have a lower powerfiiognt than the rigid case.
Therefore, by deforming passively and stofietpasing energy at filerent phases, the flexible
plate may require less power input while still producing shene amount of thrust compared to
the rigid plate with the equivalent oscillating frequeneydanagnitude of excursion.

The power éiciency is plotted versus the Strouhal number in Big(b). It can be seen that
for the rigid plate, the best performance is found$dmear 0.4. Belowst= 0.2, the dficiency
would drop quickly and it may become negative with the thitushing into drag. Beyond
St = 0.4, the dficiency is not particularly sensitive to the Strouhal numb@ompared to the
rigid plate, the flexible plate shows a similar trendsdss varied, but its peakfgciency typically
occurs at a higher range of Strouhal numbers, e.g., betwdeand 0.6. Consistent with the
power analysis, the flexible plate in most cases has higfiieiemcy than the corresponding
rigid plate whenStis fixed. Exceptions are found in those cases with low plajelity, e.g.,

K = 0.1 andf = 1, where the plate has exceedingly large deformation anithiexithe second-

mode pattern.

3.6 Wake structure
The vortices in the wake are visualized by plotting the isla®e of an invariant of the
velocity gradient tensor as defined Nittal & Balachandar(1995. Fig. 3.7 shows the wake
structure for the plate pitching with = 12°, f = 1, andK = 0.1, 05, or 25. The Strouhal

numbers in these three cases @te= 0.15, 0.28, and 0.47, respectively. As discusseBuch-
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Figure 3.7: The wake structure far= 12°, f = 1, and (a)K = 0.1 (St= 0.15), (b)
K=0.5(St=0.28),and (cK = 25 (St=0.47).

holz & Smits (2006, wake transitions are found when increasing the Stroutiaibrer for the
rigid plate. Such transitions are also observed here follélible plate by varyindk. We point
out that the specific Strouhal numbers for the transitioreuinsimulations are lower compared
to those inBuchholz & Smitg2006, possibly because we have varied the excursion amplitude,
rather than the pitching frequency, when changing the aboumber. In Fig3.7(a) where
St=0.15, a chain of horseshoe-shape vortices are developedheydre interlocked together,
forming a reverse von Karman vortex street behind the pla#hen the Strouhal number is
increased to 0.28 (Fig8.7(b)), the horseshoe vortices turn into vortex rings whichnfdwo
separate trains, and the rings are mostly oriented in tearstvise direction. Hairpin-like legs
can be seen connecting the two vortex trains. As the Straulmaber is further increased to
0.47 (Fig.3.7(c)), the vortex rings in the wake become more oriented irirdnesverse direction,
and they develop more complex hairpin legs. Because of dnigintation and the self-induced
motion, these vortices also travel transversely and thueserntze wake become wider. More
details of the similar vortex topology have been discussdsichholz & Smits(2006 2008
for the rigid plate.

The wake topology of the flexible plate was also examinedregaine corresponding rigid

plate at the same Strouhal number. An example of this cosgais shown in Fig3.8 where
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Figure 3.8: Wake structures of the rigid platexat 14° (a,b,c) and the flexible plate at
K = 0.5 anda = 24 (d,e,f). In both cased, = 1 andSt= 0.48. The 3D view, side
view, and top view are shown.

f = 1 andSt = 0.48. For the flexible casel = 0.5 anda = 24° have been used in the
simulation, and for the rigid case, = 14° is used to achieve the same Strouhal number. As
shown in Fig.3.5c), the thrust coficients of these two cases are very close to each other and
both are aroun€+ = 0.18. From Fig.3.8 we note that the wake patterns are similar between
the two cases, e.g., the shape and orientation of the varigg, rthe branches of the vortex
trains, and the angle between the two trains. In a recentriexgetal study by Deweyet al.
(2012, the bifurcation distance of the vortex branches behindsuillating batoid fin scales
with the Strouhal number, which is also defined using the ntad@ of excursion. Therefore,
our result appears to be consistent with theirs in that tegenom Fig.3.8 we can see that there
are some slight dierences between the rigid and the flexible cases. For exathplevake of
the rigid plate has the multiple complex-shaped hairpis @t connects the two vortex trains,
while many of those legs have diminished in the wake of theilflexplate. In addition, the
vortex rings of the flexible plate also appear to be thinned, the wake is more compressed in

the spanwise direction compared to the wake of the rigicepl@hese results indicate that the
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wing deformation has somewhat simplified the wake structure

3.7 Conclusion

A three-dimensional fluid—structure interaction of a fléipitching plate at a low aspect
ratio and a low Reynolds number is studied numerically. Titehimg amplitude, frequency,
and bending sfiness of the plate are varied, and the propulsive performasnstidied. It is
found that the thrust céicient scales reasonably well with the Strouhal number thdéfined
using the trailing edge excursion of the plate in the trarsadirection, provided that the defor-
mation pattern is the first mode as defined by the shape of desing envelope. Under such
a condition, the flexible plate would produce approximatbly same amount of thrust as the
rigid plate pitching at the same frequency and with an edemtaexcursion, and furthermore,
the flexible plate is more poweffieient compared to the rigid plate. The wake topologies are
similar between the flexible and rigid plates with equal Stva number, although hairpin-like

vortex structures may take a simpler form in the flexible case
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CHAPTER IV

DYNAMIC PITCHING OF AN ELASTIC RECTANGULAR WING IN HOVERING

MOTION

4.1 Background

A flapping wing is subject to an inertial force due to its ownssiand also to the aerody-
namic forces from the surrounding air. Previous studiegssigthat both forces may be able
to cause an insect wing to deform. For examBenos(198&) measured the force manually
applied on the wings of two species of flies, and he conclublatithe aerodynamic forces ex-
perienced by the insect wings during flight would béisient to produced the observed values
of wing twist and camber. In another studinnos(198&) measured the mass distribution and
determined the torsional axis of three species of flies, haddsult shows that the inertial ef-
fect alone could develop the pitching velocity observedtiatke reversal.Combes & Daniel
(2003) compared vibrations of the excised hawkmoth wing in air embelium (15% of the
air density) and noticed that the deformation patterns éntivo cases are close to each other.
Their result suggests that the hawkmoth wing is mainly deéat by the wing inertia during
stroke. Whether it is the wing inertia or the aerodynamicdsrthat cause the wing deformation
may determine timing of the deformation. The reason is theietis a phase flerence between
the inertial force and the aerodynamic forces in a flappirgilecyRoughly speaking, the inertial
force reaches its maximum around stroke reversal when thg kas the highest acceleration,
while the aerodynamic forces peak around mid-stroke whemvihg has the fastest translation.

If the aerodynamic forces are strong enough, they may maitita passive pitching caused by
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the inertial €fects at stroke reversaE(nos 198&). Though these qualitative considerations
make sense, a detailed study is needed to find out the exangtamd contribution of all the
forces involved. Furthermore, it is necessary to includaflstructure interaction in such a
study and to simultaneously investigate the aerodynamisemuences of the wing deforma-
tion. Currently, the relative roles of the inertial and ameamic torques in the deformation and
performance of flapping wings are still elusive.

Since the aerodynamic pressure scales plil, wherep is the fluid density andJ is the
characteristic velocity of the wing, and the inertial foqmer unit area scales withshU?/ L,
whereps is the density of the wing materiah, is the membrane thickness (collectivetyh is
the surface density), and is the characteristic length scale, the ratio between thiah effect
and the aerodynamidfect is thus represented by the mass ratly (0L), denoted byn* here.

In the current study, we choose the chord lengfior the length scale. From the previously
available insect dat&(in & Luo (2010 estimated that the mass ratio is around= 1 for the
dragonfly used irChenet al. (2008 and aroundn* = 5 for the hawkmoth used i€ombes
& Daniel (2003). Using the mass distribution measured Exynos(198&), we estimate that
the mass ratio of the hoverfly in his experiment is aroorid= 0.5 near the wing tip. These
estimates give us a sense of relative importance of théah&étce in the wing deformation of
these insects and will form the basis for the choice of thesmat#o in the current study.

In the study byYin & Luo (2010 a numerical simulation of the fluid—structure interaction
for a wing section was performed and tHEeet of the wing inertia in hovering flight was investi-
gated. By comparingn” = 1, 5, and 25, they found that the wing at low mass ratios caieaeh
much higher lift per unit power and it does so by yielding litse the aerodynamic forces and
reducing the drag force. In addition, significant phasiedence in the deformation of the wing

was found between the high mass ratio and the low mass rai#s chn the present work, we use
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a flexible rectangular plate at a low aspect ratio to modeéffeet of chordwise deformation in
hovering flight. The plate revolves around a pivot point arehnwhile rotates around its rigid
leading edge to mimic stroke and global pitching (activelpitg at the wing root) of a real in-
sect wing. The 3D fluid—structure interaction is solved byglmmg an immersed-boundary flow
solver and a nonlinear finite-element method for the strattdynamics. By systematically
varying the wing stiness, mass ratio, and phase of the global pitching, we hogaindnsight

into the interplay among the inertial, aerodynamic, andtaldorces in the flapping flight. The
paper is organized as follows. The problem statement igithestin 84.2, results are presented

in §4.3to 84.7; and finally conclusions are given ird83.

4.2 Problem formulation
We consider a thin rectangular plate of aspect ratio 2 whitstes around theaxis while
pitching around its leading edge as shown in Fg%a,b). The plate has a chord lengthnd a
spanwise width of. = 2c. The leading edge is rigid, but the bulk surface of the plattexible
and is both homogeneous and isotropic (Bid(c)). The wing is activated by the torques at the

pivot point so that the leading edge undergoes two degrefgsarlom rotations described by

A g
¢ = > sin(2rft + 5)
a = % sin(2rft + ¢), (4.1)

wheref is the frequencyy is the stroke angle defined as the angle between the leadjegaed
they-axis, « is the active pitching angle specified at the wing rqas the phase angle between
wing stroke and the pitching motion with = 0 corresponding to symmetric pitchingy, and

A, are the amplitudes of stroke and pitching, respectivelye Kihematics of the leading edge
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Figure 4.1: The wing model used in current studg) Configuration and mesh of
a rectangular wing. k) Sketch of the specified kinematicsc) (nstantaneous wing
deformation during a stroke.

is shown in Figs4.1(a,b). The origin of the coordinate system is located at thet point, and
the length of the wing arm (from the pivot point to the innegeaf the plate) is equal taI.

In current study, we choos®&; = 27/3 andA, = /3, which are in the range of real insect
data (e.gWanget al,, 2003 Hedricket al., 2009.

The plate is characterized by its surface dengify, whereps is the density of the solid
andh is the thickness of the plate, Poisson’s ratjp and the flexural sfinessEl, whereE is
Young’s modulus and = h3/12 is the second moment of area of the cross section. Passon’
ratio is assumed to bg, = 0.25. In addition to the phase angje the other non-dimensional
groups of the problem include the Reynolds number, mass eatd frequency ratio of the plate,

which are given by

Re: —_—, m = —_—, w s (42)

whereU is the characteristic velocity, chosen to be the mean tipeity of the leading edge,

77



U = 2A,f(L + 0.1c) = 8.797cf, p andv are the fluid density and viscosity, respectively, and
wn = %2512 \/p% is the first natural frequency of the plate using the clas&cger-Bernoulli
beam theory. Note that when the other parameters are fixed; O corresponds to a rigid
plate, and a&* is increased, the plate becomes more flexible. An altemafimormalizing the
bending rigidity is to use the dynamic pressys&? (e.g. Prempraneeracht al, 2003. The
approach in Eq.4.2) is chosen here since it gives a direct measure of how claséapping
frequency is to the resonant frequency of the wing structure

To evaluate the wing performance, we define theHjftas thez-component of the resultant
fluid force, the drad-p as the force component in tikg-plane and perpendicular to the leading
edge. In each half-stroke, the drag is positive when it isregdhe translation of the leading
edge. The aerodynamic poweris computed by integrating the dot product of the fluid force
and local velocity of the wing over the entire wing surfaceeTift and drag coicients,C, and

Cp, are defined by normalizing the corresponding force \&}iU 2cL, and the power caicient,

Cp, is defined by normalizing with 3pU3cL.

4.3 Wing deformation

The wing deformation is dominated by the typical chordwisading illustrated in Figd.2
Since the bending is greater at the wing-tip than at the neetd the non-uniform load along the
span, the entire wing surface is also warped. To quantifiatheunt of chordwise deformation,
we define the local passive pitching angig, as the included angle between the deformed
wing and its equilibrium position, measured in a plane pedpailar to the leading edge (see
Fig. 4.2). The dfective pitching angleqe, is then given byre = a + ap. The active pitching
angle, passive pitching angle, arfteetive pitching angle at mid-span for = 5 andw* = 0.36

are shown in Fig4.3(a) for an established cycle. Passive angles overall in phase witl.
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Figure 4.3: (a) Active, passive, anffective pitching angles at mid-span in a cycle for
m* = 5. (b) Passive pitching angle at mid-span fdfetient mass ratios. In these cases,

w* =0.36 andy = 0.

The magnitude ofrp, exhibits two distinct peaks during each half cycle, onertglplace during
the wing-acceleration stage and the other during the wetglération stage. The temporal
characteristics of the passive pitching angle can be engflaby the combination of the wing
inertia, the aerodynamic drag and lift, and the elasticd@tcdiferent phases of a single stroke.
The passive pitching angle at mid-span is plotted in Bi§b) for different mass ratios. For
all the casesq has two peaks within each half cycle. The two peaks are maibleias

m* is increased, indicating the natural vibration of wing bees more significant at higher
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mass ratios. The natural vibration is most obvious forfie= co case, where the aerodynamic
forces are absent. In fact, since there is no external daympihis case, the wing deformation is
significantly aperiodic, with the phases of the two peakatiedly consistent but the magnitudes
varying randomly from cycle to cycle by approximately 30% the other hand, for the lowest
mass ratiom* = 0.5, the two peaks are much less clear, indicating that the défigrmation is
sustained by the aerodynamic forces during mid-stroke.

The instantaneous deformed wing shape is visualized indH4dor m* = 0.5, 5 for a mod-
erate rigidity (tip view). Surface warping(spanwise defation) is characterized by showing
both base and tip edges. Foi = 5, large surface warping is observed during wing reversal
when the wing experiences the greatest acceleration, dgdsorall spanwise deformation is
seen during mid-stroke. Fan® = 0.5, large spanwise deformation is observed during both
wing reversal and mid-stroke, and its magnitude is muchdrigfiran that in the case of" = 5,
especially during wing reversal. Chordwise deformatioh e discussed later.

The two-peak oscillations in the pitching angle are als@oled in real insect wing&\alker
et al, 201Q see Fig.4 in). In the present case, the first peak is caustiteliyertia force and the
second one has significant contribution from the flow. As $e®n the plot ofae in Fig. 4.3a),
the temporal behavior of the passive pitching causes thépitthing angle to deviate from the
active pitching significantly. Such deviation has an imaottdtect on the lift and drag forces
and will be discussed later in §4.4.

Pitching torques(the torque with respect to the leadingedge checked to understand the
temporal behavior of the wing deformation. The results & in Fig.4.5 for the cases of
m* = 0.5, 1, and 5. These cases correspond to those iMdE3(h). Form® = 5, the maximum
inertial torque takes place soon after the start of the stanksomewhere before one-forth of

the half cycle. In comparison, the aerodynamic torque ishmiawer and is only comparable
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Figure 4.5: Instantaneous inertial and aerodynamic ta@ueund the leading edge
reduced bygpU?c?L for (@)m’ = 5, (b)m* = 1, and (c)m" = 0.5 wherew* = 0.36 and
¢ = 0. Here the torques are normalized3plJ?c?L.

to the second peak of the inertial torque. As the mass ratedisced, the aerodynamic torque
becomes more important relative to the inertial torque. &&edynamic torque reaches its

maximum level well after the inertial torque and has a muctgéy duration. In the cases of
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Figure 4.6: Passive pitch angle at mid-span in one cycledses of various frequency
ratios for @ m* =5, (o) m* =1 and ¢€) m* = 0.5.

m* = 1 and 0.5, the second peak of the inertial torque has disegbpeae to the increased fluid
damping.

From the torque plots, it is straightforward to explain tlehévior of the passive pitching
in Fig. 4.3(b). At mass ratian® = 0.5, the total torque is relatively constant during much of
the half-stroke and has produced a similar pattern in theiy@gpitching angle. In addition, the
opposite aerodynamic torque before and during stroke salemrks against the inertial torque
for the low mass ratios, and thus the pitching rotation ofwing is delayed fom* = 0.5 and 1.

The dfect of wing rigidity on the passive pitching angle at mid+sgs shown in Fig4.6
for mass ratiogn* = 0.5, 1, and 5. For all the mass ratios, the maximum value of tissipa
pitching angle is raised as the frequency ratidincreases. This value varies between511
and 38 for m* = 5 asw* goes from 0.25 to 0.51. The range of variation decrease®vzerl
mass ratios mainly due to raising of second peak. The figemesilows that in the most flexible
casew” = 0.51, the two-peak pattern af, disappears and is replaced by a much wider single
peak for all three mass ratios. For low mass ratios suai‘as 0.5, the single peak af at
w* = 0.51 has a nearly flat top and is apparently caused by the pretoagrodynamicfiect.

In the cases of low mass ratios and high frequency ratios (&'g= 0.5 andw* = 0.51), ap has
an opposite sign in the beginning of a half-stroke compapeti¢ rest of the half-stroke. That

is, ap is negative at/T = 0 and positive at/T = 0.5, which means that the wing rotation at
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stroke reversal is delayed. The situation is opposite fgi Innass ratios. In the caserof = 5,

the wing rotation at stroke reversal is advanced.

4.4 Lift, drag and aerodynamic power

The instantaneous lift and drag dheients are shown in Figd.7(a-d), the corresponding
effective pitching anglege, is plotted in Fig.4.7(e,f). All lift graphs display a single peak
around or after the mid-stroke due to the sinusoidal kin@s.aFor low mass ratio, as the wing
becomes more flexible the peak lift is reduced. There are t@siple reasons for this reduction.
First, the éective angle of attack, defined as the angle between sti@ghtonnecting leading
and trailing edges of a chord and the direction of the strakdower as the wing deforms
more. According tdickinsonet al. (1999, the optimal angle of attack is around°46r a rigid
uncambered wing. The lowest angle of attack in the preseetisanear 25for the most flexible
case. Second, the deformed chord forms a reverse cambeeramsrFig.4.4, and is thus not
beneficial for lift production.

Form* = 5, the value and timing of the peak lift do not appear to haversistent trend.
Instead, the lift may peak either before, near, or after thg-stroke. This can be explained
by looking at the characteristics of wing deformation. Hwe tving atw® = 0.36, the passive
pitching angle history in Figd.3(a) shows thatrp has a sharp drop after the first peak, which
suggests that the wing is recovering its shape due to eladimund. Such a quick recovery
counteracts the active pitching and leads a sudden drogeidféctive pitching angle prior to
mid-stroke as seen in Fig.7(f). Thus, the trailing edge of the wing presses downward and
produces extra lift, causing the total lift to peak beforelsiroke. This fect is not obvious
for m* = 0.5 where the aerodynamic forces act as a strong damping sdel&gng the wing

recovery.
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Figure 4.7: Lift @,b), drag €,d), and dfective pitch €,f) histories form* = 0.5(left
column) andn*® = 5(right column). The phase = 0.

The drag histories plotted in Fig.7(d) show that the drag produced by the flexible wing
is comparable to that by the rigid wing. This result is in ghaontrast with that fom* = 0.5.
Generally the drag by higher mass ratio wings is much largertd the elastic recovery, which
does not only increase the frontal area of the wing but algeecthe wing to move faster relative
to the fluid.

From the histories of the aerodynamic forces and wing dedition, we see that the lift and
drag of a flexible wing depends not only on the instantaned@ukipg angle but also on the rate
of pitch and camber of the wing. To compare the overall peréorce of the wings, we compute

the mean force and power deients for all the cases. The averaged data are taken owaatev
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established cycles. The results are shown in £i8.from which we may see clearly thétect
of wing flexibility and inertia.

The mean lift cofficient is plotted against the frequency ratio in Fg8(a) for the three
mass ratiosm* = 0.5, 1, and 5. Here the rigid wing is represented by the ease- 0, at
which the wing inertia has noffect on the aerodynamics since the wing kinematics has been
prescribed. For each mass ratio, we see that moderate whilgilitg increases the lift, but
exceeding flexibility may not help with lift production andes leads to lift loss. As discussed
earlier, the lift augmentation mechanisms fditelient mass ratios are not entirely the same. At
high mass ratios, the lift enhancement is due to the passtatian of the wing during elastic
recovery, while at low mass ratios, the enhancement is nialy ldue to a combination of wing
recovery and the prolonged favorable angle of attack duaistroke. Similar to the 2D study
by Yin & Luo (2010, there exists an optimab* at which the highest lift is produced, and this
optimal point moves to a higher value as the mass ratio isdaiigure4.8a) shows that the
optimal w* is around 0.2, 0.25, and 0.35 for the mass ratio= 0.5, 1, and 5, respectively.
Furthermore, the figure shows that the maximum lift is higloerthe wing with larger mass
ratios. This maximum value §, = 0.55 form* = 0.5 andC, = 0.65 form* = 5.

Figure.4.8(b) shows the mean drag dteient for the three mass ratios and a range of wing
flexibility. The overall trend is that the drag drops whenwiag flexibility is increased. At the
highest mass ration® = 5, the drag is only slightly lower than that of the rigid wingy imost
of the cases except far* = 0.51, where the drag is also significantly reduced. The lowestsm
ratio,m" = 0.5, has the lowest drag among the three mass ratios, whicllerstandable since
the wing yields to the aerodynamic torque during wing traish and on average it has the least
frontal area and the lowest rate of pitch. This result is =test to the 2D study ifYin & Luo

(2010.
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the three mass ratios agd= 0.

The elastic wing serves as an energy capacitor by temppsidting energy in the forms

of elastic potential and later releasing it in the forms afdtic energy and work output done on

the fluid. In Figs.4.8(c,d) we plot the mean power dbeient and the aerodynamidhieiency.

Unlike the 2D study ofYin & Luo (2010, here we exclude the inertial power and evaluate

the power éiciency by calculating the net aerodynamic power only. Thegyacodficient in

Fig. 4.8(c) displays a similar trend as the drag fiment asw*® and m* are varied. This is

because most of the energy has been consumed through theatiragthan through the lift.

86



Form* = 5 the power coféicient does not change significantly @5 is varied. For the other
two mass ratios, the power d@eient drops quickly as)* is increased. Thefkciency plotted

in Fig. 4.8(d) clearly shows the advantage of the wings with moderaigbilgy. The optimal
flexibility for all three mass ratios is arourd = 0.3 to 0.35, where the pealffieiency is about
CL/Cp =0.62form" =5, 0.70 form* = 1, and 0.74 fom* = 0.5. These values are significantly
higher than the féiciency in the rigid case, which h& /Cp = 0.51. At all frequency ratios
exceptw* = 0, the lift eficiency is increased as* is reduced. This result can be explained from

the considerably low drag generated by the wing with a lowsmaso.

4.5 Advanced and delayed pitching

We have seen that in the present simulation, the chordwisibifiey increases the fective
pitching angle of the wing. In addition, a high mass ratiak# an advanced pitching motion
with respect to the wing stroke, while a low mass ratio leadsdelayed pitching. Furthermore,
we have shown that the timing of the passive pitching has aoitant éfect on aerodynamic
forces and powerficiency of the wing. These observations motivate us to vaptiase of the
active pitching and then see if the wing deformation stil tize similar &ect, i.e., causing the
pitching motion to be further advanced or delayed. Thisystsdione by setting the phase angle
in (4.1) to ¢ = n/4 for advanced pitching ap = —n/4 for delayed pitching, which are typical
values used in previous wing modeWdnget al., 2004 Eldredgeet al,, 2010.

The time-averaged lift, drag, power, and lift-to-power fé@gents for both advanced and
delayed pitching are plotted in Fig.9 for mass ratiosn* = 0.5 and 5 and for a sequence of
frequency ratios. Overall, advanced pitching leads to mhigher lift, drag, and power than
delayed pitching, and the symmetric pitching cases faljhbyibetween those for advanced and

delayed pitching here. Moderate wing flexibility again siglantly increase the lift regardless
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the mass ratio. In addition, the wing flexibility at the low ssaratio leads to a much lower
aerodynamic power than the rigid case, while the power gopsion at the high mass ratio is
comparable with that of the rigid case. As a result, all thgilfle cases have higher lift-to-
power dficiency than the corresponding rigid case, ho matter thgeaptiching is delayed or
advanced.

There are several common features among symmetric, delayebladvanced pitching.
First, the case oim* = 5 has a little lower lift than the case off = 0.5 at low frequency
ratios but has a much higher lift at large frequency ratioscd®d, the high mass ratio also
corresponds to a higher drag and thus greater power recemterfihird, the net gain ofh* = 5
as measured by the lift-to-power ratio turns out to be lowantthat ofm* = 0.5 for most of
the cases. One exception is in Hg(d), where for the case witm* = 5 and delayed pitching,
the power éiciency increases nearly monotonicallyeaisis raised and is even higher than that
of m* = 0.5 whenw* = 0.51. It can be found the passive pitching in this case has cosaped
the delayed active pitching, rendering an almost symmetirig) motion to generate larger lift.
From our simulation results, symmetric pitching generids to the highest liftféciency at

constant mass and frequency ratios.
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Figure 4.9: Mean lift§), drag b), power (c), and lift-to-power (d) cdicients for ad-
vanced (thin-solid lines) and delayed pitching (dasheekljrwherem® = 0.5 (squares)
andm® = 5 (triangles). The corresponding cases with symmetritipitgare re-plotted
here as thick-solid lines for comparison.
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4.6 Vortical structures

Vortex structures are visualized by plotting the isoswefat the maximal imaginary part
of complex eigenvalues of the velocity gradient tensgfax. This quantity has been used
previously to capture the topological flow patterns in a 3vffeld (e.g.Dong et al.,, 2006.
Figure.4.10shows the vortex evolution during a half cycle for the casenofE 1, w* = 0.36,
andy = 0. From the flow field we can identify a few major vortical stwes. First, the leading
edge vortex(LEV) can be seen formed on the back side of thg,wimd along the leading edge,
it becomes stronger from the wing base to a location nearipheTthe LEV is captured by
the wing after the wing reversal and thus interacts with tirlgwSecond, a tip vortex (TV) is
seen in the figure at, e.g/T = 0.75 and 0.85, which is formed at the tip edge of the wing
and stretches into the wake as a long vortex filament. Thitdaikng edge vortex (TEV) is
formed behind the wing and is connected to the trailing etigeugh a thin vortex sheet. In
addition to these three major vortical structures, a vofilexnent is formed around the base
edge of the wing and also stretches into the wake; a semiikegortex wraps around the tip
vortex filament and is formed during wing reversal near theeobetween the wing tip and
the trailing edge. Termed BV and CV here, the last two vortstaictures are largelyfiected
by the particular choice of the rectangular wing shape inctireent study. These vortices are
connected to each other and form a vortex loop during wingstedion. During wing reversal,
these vortices would shed from the wing surface, exceptatliatge portion of the LEV away
from the tip would remain connected to the leading edge. &lehe vortices pinchedfb
from the wing travel in the negativedirection along with the net downwash flow. The vortex
loop seen here is a typical flow feature observed previouslyoiv-aspect-ratio rigid flapping
foils (e.g. Triantafyllou et al., 2004 Taira & Colonius 2009 (also see figur@.14). One major

difference in the present study is that the wing flaps by rotatingral a pivot point, while
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Figure 4.10: Vortical structures féite= 176,m* = 1, w* = 0.36, andp = O att/T = 0.5
(stroke reversal), 0.6, 0.75 (mid-stroke), and 0.85. Theaar level is 1Q/c.

in previous studies the wing motion is uniform along the sp&s a result, the BV here is
much weaker than the TV. Furthermore, since the present isipgrform a hovering motion
and there is no freestream flow, the vortex loop is disruptedhb wing after reversal. For
a pitchingheaving foil in a freestream, the vortex loops would be cote@ away from the
foil, and those vortices from consecutive flapping cyclesiidde typically interconnected (e.g.
Triantafyllouet al,, 2004).

In Fig.4.11, we show the vortical structures in the flow for a rigid case @vo flexible cases
with m" = 0.5, 5 andw* = 0.36. Symmetric pitching is used in these cases. Both midkestaod
wing reversal are shown. Overall, the major vortices in¢hibsee cases have a similar topology.
Differences in the evolution and shedding of these vortices eabberved by inspecting the
temporal series of the plots, and thes@eaitences are related to the dynamic deformation of the
wing.

Fig. 4.12shows the corresponding flow field in a horizontal plane aedsganwise velocity
during mid-stroke for the rigid case and the case with= 0.5 andw® = 0.36. Comparing
the two cases, we notice that for the rigid wing there is aisterst spanwise flow along much
of the wingspan, while the spanwise flow is concentrated teamwing tip for the flexible
wing. To explain the phenomenon, we point out that the wameathce of the flexible wing

has an impedancefect on the spanwise flow. In addition, the larger deformatibthe wing
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Figure 4.11: Vortical structures for (a,d) the rigid casgee]m* = 0.5 andw* = 0.36,
and (c,fim" = 5 andw* = 0.36,¢ = 0, andRe= 176 during (a-c) mid-stroke and (d-f)
wing reversal. The contour level is WQc.

tip reduces the dlierence in the actual velocity between the tip edge and the édge. As a
result, these is less need for the fluid to move toward theotigotnpensate an otherwise void
space created due to the wing displacement. To conclud8tvéng deformation may have a

significant éfect on the spanwise flow of a flapping wing.

4.7 Effect of the Reynolds number
To investigate the influence of the Reynolds number, w&set 500 and 1000 and run se-
lected cases on the high-resolution grid discussed in idegnvergence test. At each Reynolds
number, two simulations are run with* = 1 or 5 andw* = 0.36. Figure4.13shows the flow
field for the case witlRe = 500 andm* = 1. In comparison with the loviRe cases presented
earlier, this case contains a much more complex wake wittioraify oriented vortices. Nev-

ertheless, some major vortical structures such as thenigaatige vortex and the long vortex
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Figure 4.12: Top view of the velocity field in the placg3 below the leading edge
(thick line) for (a) the rigid case and (b) = 0.5 andw* = 0.36,¢ = 0, andRe= 176
during mid-stroke. Vectors at every three points are sh@and,the contours represent
they-velocity component.

Figure 4.13: Vortical structures fdRe = 500, m" = 1, w* = 0.36, andy = 0 at
t/T = 0.5 (stroke reversal), 0.6, 0.75 (mid-stroke), and 0.85. Tdwetaur level is
10U/c.

filaments stretched from the tip vortex and the base vortexbeastill clearly identified. The
other major vortices develop finer-scale irregularitiesirdutheir formation and once pinched
off from the wing, they soon break up into smaller vortices spindhe wake. Theféect of the
Reynolds number on the wing deformation is found to be snizdpecially for the high mass
ratio, m* = 5 the Reynolds number has only a sligfteet on the dynamics of the wing due to
the relatively low influence of the fluid forces.

The dfect of the Reynolds number on the aerodynamic performantteeafing is summa-

rized by the statistics in Tabke1l Comparing the lift cofficient at the three Reynolds numbers
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Re| CL | Cp | Cp | C/Cp | CL/Cp
176| 0.54| 0.83| 0.78| 0.64 0.69
m =1| 500| 0.60| 0.81| 0.76| 0.74 0.78
1000| 0.62| 0.79| 0.75| 0.79 0.83

176| 0.66| 1.23| 1.07| 0.54 0.62
m'=5| 500|0.72| 1.23| 1.07| 0.58 0.67
1000| 0.74| 1.22| 1.08| 0.61 0.69

Table 4.1: Comparison of the aerodynamic performancefiardnt Reynolds numbers,
wherew* = 0.36 andy = 0.

from Re= 176 toRe = 1000, we see that there is a 16% increas€irfor m* = 1 and 12%
for m* = 5. For the drag and power dbeients, varying the Reynolds number has only a slight
effect on the data. As a result, both the lift-to-drag and theid{power ratios have increased
asReis raised. Specifically, fom* = 1, C_ /Cp andC._/Cp have grown by 22% and 19%,
respectively, aRkRegoes from 176 to 1000. while fon* = 5, the increments are by 13% and
11%, respectively. Finally, we compare the two mass ratidseasame Reynolds number, and
we notice that then" = 5 case has consistently higher lift and drag thannthe= 1 case but

meanwhile the former has lower aerodynantitcéency.

4.8 Conclusion

Here we have performed a three-dimensional simulationefithid—structure interaction of
a low-aspect-ratio rectangular wing performing a hovetype of flapping motion. The wing
surface is clamped to a rigid leading edge and is otherwésetfr deform. The simulation shows
that the chordwise deformation of the wing causes a dynaitghipg in addition to the active
pitching applied at the wing root. The aerodynamic perforoeeof the wing is fiected not only
by the increased pitching amplitude due to the deformatigralso by the phase and rate of the
passive pitch.

Other than the specified kinematics at the wing root and ifimasss of the wing, the dy-
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namic pitching also largely depends on the mass ratio, wigpresents the relative importance
of the wing inertia and aerodynamic forces in the wing defaiion. At high mass ratios where
the inertial torque is dominant, a phase advance is prodncdn efective pitching angle dur-
ing stroke reversal by the wing deformation, while at low mestios where the aerodynamic
torque becomes equally important, a phase delay is proddedg stroke reversal. During
wing translation, the rate of passive pitch varies due tatmebined inertial acceleration, elas-
tic recovery, and in the case of low mass ratios, aerodyndariaping.

Whenw/wy, < 0.3, the wing deformation significantly enhances the lift pretibn and also
improves the lift ficiency although a disadvantageous camber is formed during stroke.
In particular, when the inertial pitching torque near wiegersal is assisted by an aerodynamic
torque of comparable magnitude during wing translatiom, lifi efficiency can be markedly
improved. This result thus confirms the insightful hypotbdxs Ennos(1988a). Furthermore,
the performance of the flexible wing is found to be consisfiendifferent phase angles of active
pitching and Reynolds numbers.

In the present study the wing-root kinematics is fixed. Inréed world, insects with dif-
ferent wing stifness and mass ratios could achieve their best performanogtingizing the
wing-root kinematics. The wing deformation in this studyaiso largely limited to chordwise

bending since the leading edge is rigid.
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CHAPTER YV

AN INTEGRATED STUDY OF THE AERODYNAMICS AND AEROELASTICITY  OF

THE CICADA FOREWING

5.1 Background

The membranous wings of insects are very thin structurgscéily less than 10@m in
thickness). Nevertheless, these wings have to endure tbesfof large magnitude which are
generated during their high-frequency flapping motion. &ample, blowflies are capable of
producing up to 2 of horizontal acceleration andglof vertical acceleration in flight3chilstra
& Hateren 1999, which means that the aerodynamic force on the wing can loe @s great as
the body weight of the insect. Reinforced by a vein networt atier structural features such
as the surface corrugation and camber, the insect wingsadrmaegcellent design that provides
the necessary $ihess and is meanwhile mas§i@ent. However, the insect wings are not
meant to be as rigid as possible with given mass, as pointebyolEnnos(1988a). Allowing
certain amount of deformability could reduce the impactltam environmental disturbances
(e.g., running into a solid object or wing gust). In addititime deformation could be beneficial
to the aerodynamics of the wing as well. This function hassegested by several previous
studies Walkeret al, 201Q Younget al,, 2009 Yin & Luo, 2010 and our own studies presented
in previous chapters.

Identifying the structural mechanism and the physidéécat that leads to the wing defor-
mation is important for guiding modeling of the aeroelastiof insect wings. First, wing

deformation of an insect is passive, and it may be causedlgrehe inertial force of the wing,
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the aerodynamic force from the surrounding air, or a contlinaof both. Several studies have
addressed the cause to the deformation and its particut@rpaEnnos(198&) measured the
mass distribution of the wings of two species of flies and sftbthat the wing inertia alone
could develop the angular velocity around the torsionat afithe wing that is observed at
stroke reversal (assuming the torsional axis to be contpénaugh to allow such a rotation).
Ennos(198&) then used a simple static analysis to study the mechanéteior of a model
insect wing consisting of a few veins branching from the legddge, and he also subjected
the wings of three species of flies to static point-forcesteSeveral important conclusions were
made from his study. First, torsion of the leading edge sparldvresult in spanwise twist of
the wing and also set up a camber automatically due to thesmonding rotational responses
of the obliquely arranged vein branches. As for the coneeali airplane wings, the camber
formed by the wing deformation would be favorable for lifbduction. Second, he estimated
that the aerodynamic forces produced during the wing str¢kssumed to be at the same mag-
nitude as the body weight of the insect) will befstient to generate the observed torsion and
camber, and to maintain the changes in pitch caused byaheffiects at stroke reversal. In
another studyCombes & Danie(2003) compared vibrations of the excised hawkmoth wing
in air and in helium (15% of the air density) and noticed thatdeformation patterns in the two
cases are close to each other. Their result suggests tHaawhenoth wing is mainly deformed
by the wing inertia during stroke. For some other insectadwer, evidences suggest that aero-
dynamic forces can be at least comparable, if not dominarthet wing inertia, as discussed in
our recent workYin & Luo, 201Q Dai. et al,, 2012. If the aerodynamics forces are significant
in determining the wing dynamics, then a two-way fluid—dinte interaction (FSI) has to be
solved to capture the deformation of the wing in a computatictudy.

As the computing power and experimental techniques havenaed in recent years, further
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studies are carried to investigate tHEeet of the wing deformation on the aerodynamic perfor-
mance. These computationahu, 2007 Michelin & Llewellyn Smith 2009 Vanellaet al,
2009 Eldredgeet al, 201Q Yin & Luo, 201Q Dai. et al,, 2012 and experimentalRrempra-
neerachet al, 2003 Heathcoteet al,, 2004 2008 studies typically use heaving and pitching
foils as simplified wing models, and they have shown thatwhag flexibility may lead to sig-
nificant benefit to the aerodynamic force production and paffciency. A study that uses a
more realistic insect model is dounget al. (2009, who performed a full-body numerical sim-
ulation of the forward flight of locusts by incorporating twéng kinematics reconstructed from
high-speed imaging. For comparison, they also performghtfiimulations based the modified
wing kinematics by removing the camber and spanwise twishfthe full-fidelity wing mo-
tion. One major limitation of this study is that the fluid-siture interaction is excluded from
the study. Furthermore, théfect of the wing deformation is limited to static featuresisas
camber and spanwise twist. For flapping wings, since the wivagpe is time-varying, it is ex-
pected that the dynamic deformation may also play a roledgratrodynamics. In our previous
work, Dai. et al. (2012 used a rectangular wing in hovering motion and showed tbgonly
the amount of wing deformation, but also the rate and phatteeadeformation, lead to marked
differences in the aerodynamics of the wing.

Having discussed the causes of the wing deformation and tiftgoie manners in which the
wing deformation fects the aerodynamics, we note that there have been vetgdimitempts
to simulate the fluid—structure interaction using a realistsect wing model that incorporates
the inhomogeneous and anisotropic behavior of the wingrelée possibly two major reasons
for this shortage of study. First, such a study would be végllenging due to the high cost
associated with the moving boundary, large displacemeuntjtaration for solving the fluid and

structure. Second, it remains an open question what kinélahbe is appropriate between the
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model complexity and the computational cost that one cofilstdh Note that the insect vein
itself has a complex microstructure which strongtieats its macro propertieRén & Wang
2012. Furthermore the wing is not an ideal 2D planar surface bueltomplex corrugations.
Including all these details into the wing structure obvigusould not only require strenuous
effort and but also render a model that is verffidult to compute. It is therefore our goal in the
current work to address both these two issues.

As discussed in previous chapters, we have developed adhmamsional numerical ap-
proach to simulate the interaction between a viscous utigtdawv and deformable thin struc-
tures. The in-house code features a flow solver based on tihes@a grid immersed-boundary
method and a finite-element solver that incorporates atyasfestructural types such as frame,
membrane, and plate elements. The program is particulabdeifor modeling insect wings.
In the current work, this numerical method will be integtht@th an experimental approach to
model the aerodynamic function of a full wing. More specificave use the cicada forewing
as a case study. A nonlinear finite-element model is devdlbpsed on the experimental mea-
surements of the mass and elastic properties of the stalelements, i.e., the membrane and
veins. In addition, a high-speed camera is used to film theg wintion for the tethered insect.
The wing-root kinematics is reconstructed from the videwl the deformation pattern observed
from the video is used to validate the simulated wing dynarfiem the FSI model. The work
described here is the first attempt, at our best knowledgeuthize such an integrated approach
to develop a high-fidelity model for the aerodynamics andelesticity of flapping wings in na-
ture. We envision such a computational tool and the modetiethodology will become very
useful for the future studies of insect flight and for the depment of man-made biomimetic

aerial vehicles.
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5.2 Some discussions of the scaling parameters of the ins&dhg

Leaving out the details of the surface corrugation and thildution and orientation of the
veins, the bulk wing surface can be approximated as a honeogsrand isotropic plate. The
basic dimensional parameters involved in the FSI problasiude the density of the wing mate-
rial, ps, wing thicknessh, Young’s modulusE, a characteristic length such as the chord length,
¢, wing lengthL, fluid density,p+¢, viscosityu, and flapping frequency or w = 2zf. Note
that if the wing is approximated by an infinitely thin platetivequivalent mass and Stiess,
the thickness ratioh/c, does not have to show up in the dimensionless groups, asitfaes
density can be normalized a$ = psh/(p¢c), as in the previous chapters. The mass ratio is
defined to roughly represent the relative importance of teetial force of the wing per unit
surface area with respect to the dynamic pressure. For lidewiings,m* >> 1 corresponds to
the situation where the wing deformation is dominated bwihey’s own inertia. On the other
hand,m" << 1 corresponds to the situation where the deformation isschosinly by the fluid
force. Experiments done in air (e.Bamananariveet al, 2011 typically falls in the former
situation, while those in water (e.geathcoteet al., 2008 is the later situation due to the much
higher density of water.

In the context of insect flight, we can define the mass ratioolews. A wing with a
length ofL flapping in an angular magnitude & and frequency off has a mean tip velocity
U = 2L®f, and a mean tip acceleratian= 47® 2L, then the ratio of the inertial force to the

fluid force on a unit area at the wing tip, or the mass ratioxpgessed as

psha _ pshdnd 2L _ 2rpsh
sp1U2  3p(2L@f)?2  prld

(5.1)

To scale the flexural gfness of the wing, either the dynamic pressure or the indotieé of

the wing can be used, since the elastic force would balamse tivo external forces. In previous
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chapter, we showed that for* = 0.5 such as fruitfly wingsEnnos 1988&; Dai. et al,, 2012, the
aerodynamic pitching torque is comparable in magnitudéeadrtertial torque of the wing, and
for largerm® like dragonflies Chenet al., 2008 Dai. et al., 2012 and hawkmothsGombes &
Daniel 2003; Dai. et al, 2012, the inertial torque is greater. Thus, itis appropriatedale the
bending stifnessEl, | = h3/12, using the inertial forcgsshU?/c, and a dimensionless group,
El/(pshU?c?), would be formed. ItJ = cf is used and we take the inverse of the square root of
this dimensionless parameter and then multiply it by a @ristve get the frequency ratio; =
f/fn, where f, o« 1/¢2 \/E1/(psh) is the natural frequency of the first mode of the chordwise
bending. In the context of insect wings; is between 0 and 1, whet& = 0 corresponds to a
rigid wing andw* = 1 corresponds to the case in which the wing flaps at its resdreuency
to cause large deformation. It should be noted that sevecaht studiesManellaet al., 2009
Yin & Luo, 2010 Ramananarivet al., 2011) have suggested that insect wings should operate at
significantly lower frequencies than the resonant frequesiace the overly large deformation
is not beneficial for force production.

The mechanics of the vein branches could be analyzed usimgliied cylindric beam
model. A beam element is characterized by the lengthinear density,osA, where A is
the area of the cross section, the bendingrstss,Elyy, wherelyy is the second moment of
area about the symmetry plane, and the torsionéines,GJ, whereG is the shear mod-
ulus andJ is the torsional constant. The frequency ratib = f/f, can again be used to
represent the normalized flexibility of the beam structufée natural frequency of bending
deformation isfy o« 1/12\/Elyy/(psA), and the natural frequency of torsional deformation is

fn oc 1/1 G J/(pslz2), wherel,, is the polar moment of inertia of area of the cross section.
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(b)

Figure 5.1: (a) The magicicada used in this study. (b) Fargwiand hind wings re-
moved from the cicada, where the markers are labeled fonthaging experiment. (c)
The forewing is sliced into three parts for mass measurement

Wing length () Chord width €) Flapping frequencyf() Stoke amplituded)
3cm 0.76 cm 25Hz 120

Table 5.1: The characteristic geometric and kinematic dftiae cicada forewing.

5.3 Measurement of the elastic properties of the cicada wing
The subjects used in this study are the periodic 13-yeaiespetMagicicada tredecassini
(Brood XIX) captured in the summer of 2011 when a large population ofleeies emerged
in the middle Tennessee (Fi§.1(a)). The average body weight of Magicicada tredecassini

is 185 mg based on a sample of around 50 individuals by a rémort Ginger Rowell and
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Wing portion A B C C (base) C (tip)
Mass (mg) 1.280.11 2.6@0.33 3.04-0.68 1.7 0.35
Areglinear density 0.9 2.6 - 1.7 0.35

Table 5.2: Mass of each part from the cicada forewing. Theafrthe area density is
mg/cn?, and the unit for the linear density is rieg.

Robert Grammer in Belmont College. The characteristic dathe insect’s forewing are listed
in Table5.1 To obtain the mass distribution, each of the forewing sas sliced into three
parts: the distal half (A), the proximal half (B), and thedaa-edge spar (C), as shown in
Fig. 5.1(b). Each part is measure separately. The leading-edgeisfather split into two
segments: a distal segment and a proximal segment, eackeiselgaing 1 cm long. The mass
of each part is measured by an electronic balance with aramcwf 0.1 mg. For the two
leading-edge segments, 10 samples of each segment areretetmgether. Images of the two
wing surface parts are taken and imported into Matlab, aeid #ieas are calculated by tracing
the boundary. The average mass of each part, the area dehpiyts A and B, and the linear
density of the leading-edge segments are then calculategl data are listed in Tabe2 The
mean chord lengthe = S/L, whereS is the total surface area, of a typical wing is 0.76 cm.
Using Eqg. 6.1), the mass ratio of the distal area is around 0.85. For trmuahion, we have
usedd = 12C%, L=3 cm, angps=1.2 mgcm®. This mass ratio implies both the inertial and fluid
forces are important in causing the wing deformation. Tloeeg two-way coupling is necessary
in the study of the fluid—structure interaction in this case.

The flexural sfithess of veins and membrane surface is measured on the sarpigsd
from the wings. The samples are selected from various sité¢lseowing according the distribu-
tion and orientation of the veins. These samples are showigirb.2(a), where 6 pieces from
each forewing are taken and labeled as F1 to F6. All of therslared into roughly rectangular

pieces with a length of approximately 5 mm. For each piecefa of 5 samples are used for
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measuring the bending gtiess, which is done through a sequence of static load tesite N
that specimen F6 is used for measuring the bendirfipstis of the membrane, so the bending
is applied in the perpendicular direction to the veins ingpecimen. The samples are glued to
a glass cover slip, as shown52(b). Then the cover slip is secured using a magnet on a hor-
izontal beam attached to a micrometer stage that can ttangdically. The load is measured
from the same electronic balance as used in the mass measurehhne experimental setup is
shown in Fig5.3. The specimen on the cover slip is translated down by theamieter stage so
that it touches the support on the balance. Then the micesrattge is further translated, each
time by 0.2 mm, and the force reading on the balance is redor8@ach sample is measured
from both ventral and dorsal sides to average out the dmegtidiference. The beam equation
is used to calculate the Stiess of each vein and the membrane. The data from the expe¢aime

tests are listed later in Tabfe3 along with the values chosen in the FEM model.

5.4 Creation of the finite-element model

In this study, only one forewing of the cicada is modeled, @mednsect body is not included
in the simulation. The finite-element model of the forewisgonstructed with a thin membrane
structure reinforced by a network of frame elements withalhii shares mesh nodes. A similar
modeling approach is seenWioottonet al. (2003 who created finite-element models for the
desert locust and sphingid moth wings. In the current mdtelmembrane is assumed to be
homogeneous and isotropic. The veins are traced in Mattab & stationary image of the
wing, and they are grouped into seven levels, each wittifardint diameter, linear density, and
bending stifness. The cross section of the veins is assumed to be cirGagerally, the veins
close to the wing root and the leading edge are larger inaimbthe veins distributed around the

trailing edge and near the tip are weaker structures andasesubject to larger deformations.
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(b)

Figure 5.2: Measurement of the bendindfagss of the representative components from
the cicada forewing. (a) Representative components cHosemeasurement. Note that
F6 will be used for measuring the bendingfsiess of the membrane without the vein
effect. (b) Attachment of the samples on a cover slip for theécdtzdd test. In (a) some
points are marked with white circles, which include pointAtbe leading edge, point
B at the trailing edge and closer to the root, point C on thidingpedge and closer to
the tip, and point D at the wing tip. The pivot point is labe&sdO. As discussed later,
these points are used in description of the wing kinematics.

Fig. 5.4(a) illustrates the grouping of the veins for the current wingdal.

Like many other insect wings, a pre-existing camber is tleabserved on the cicada
forewing at rest. In the present model, we measured the memiramber by placing the
wing on a flat surface and probing the surface using the mietenstage. Then distribution of
the camber is prescribed according the characteristicrfeatf the wing. The contours of the
camber is shown in Figh.4(b), where the contours are assumed to be elliptical. Thatese
camber occurs at the wing center with a height of around 108eothord length. The camber

is concave on the ventral side.
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Figure 5.4: The FEM model of the cicada forewing. (a) The \gwups on the wing
surface. (b) The contours of the pre-existing camber.

Table5.3lists the measured fiiness and the values chosen in the wing model for the vein
groups and the wing membrane. Also listed are the assignofi¢iné linear density of the vein
groups and the surface density of the membrane. Assumihththaross section of the veins is

circular, the torsional dtiness can be simply calculated based on the bendifigests.
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Component groups Experimental data Value in the model

El El GJ linearsurface density

Vein 1 - | 5500 11000 1.33
Vein 2 275+104| 275 550 0.46
Vein 3 21.7+12.1| 22 44 0.29
Vein 4 10.5:5.5| 10.5 21 0.29
Vein 5 43+2.8| 4.3 8.6 0.17
Vein 6 -1 05 1.0 0.11
Vein 7 0.37+0.15| 0.37 0.74 0.023
Membrane 0.47+0.14| 0.47 - 0.40
Total mass 6.4 mg

Table 5.3: Bending sfiness of the veins and membrandfagss. (Unit: 16 mg-cm?®/s?
for the vein stitness, 10 mg-cn?/s? for the membrane $fness, mgem for the linear
density of the vein and nign? for the surface density of the membrane.)

\
nilimi

Figure 5.5: The experimental setup for high-speed imaginigeowing motion.

5.5 High-speed imaging and reconstruction of the wing kinermtics
For the high-speed imaging experiment, a cicada with thewiiimgs removed is glued on

a vertical pole and is stimulated to flap, and a high-speedecarfniom Dr. Jon Edd’s Lab at
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Figure 5.6: High-speed recording of the wing deformatiotigya of a cicada tethered
to a pole. The interval on the background scale represents [egth. Significant
spanwise twist can be observed during first half of upstroke.

Vanderbilt University is used to film the insect at 1000 framper second from a side view. The

experimental setup is shown in Fi§.5. The wing being filmed is pre-labeled with markers.

Fig. 5.6 shows a typical sequence of the deformation pattern asc¢hdaiflaps its wings.
Ideally, it is suficient to use only one camera to reconstruct the motion ofidwang rotat-

ing in 3D space based on a 2D view and the known distance betargetwo points. However,

108



one camera is not enough to achieve full reconstruction afarchable surface. The attempt
of using only one camera to film fromfierent views at dierent times for 3D reconstruction
is unfruitful due to the cycle-to-cycle variations of thengimotion. The common technique
to film and reconstruct a real insect wing is to set up multgdeneras to simultaneously take
images, by which the 3D position of any visible point couldeb#éracted accuratelyKbehler
etal, 2012.

In the present work, we only need to reconstruct the actudiicematics at the wing root,
where the wing is much ster than the rest part of the wing and experiences little dedion.
Therefore, one camera isfigient. Once the high-speed videos are taken, the marketseon t
wing surface can be traced conveniently using the Matlabvsoé developed by Dr. Tyson
Hedrick at the University of North Carolina at Chapel HHédrick 2008.

We track three points near the wing root (one at the root, an¢he leading edge, and
one on the trailing edge) as shown in Fig2 Assume this portion of the wing is rigid, and
the distances among these three points are measured &tenaling experiment. The 3D
positions of these points can be reconstructed from the 2ig&® as discussed later. The other
points on the deformable portion of the wing surface caneatbonstructed in 3D, but their 2D
positions will be used to validate the fluid—structure siatiohs. Around 40 frames are obtained
for each flapping cycle, which corresponds to a flapping feegy around 25 Hz (from 23 Hz
to 28 Hz according to our measurements).

Fig. 5.7 shows the measured and reconstructed trajectories of thpdimts on the wing in
a selected cycle from which the periodic motion is conseddbr numerical simulations. In the
reconstruction the wing is assumed to rotate around a paiot,and the three Euler angles are
calculated from the measured data. In Fg, the reconstructed points match the experimental

data very well.
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Figure 5.7: (a) Trajectory of point A as labeled in Fig2(a); (b) trajectory of point
B as labeled in Fig5.2(a). The circles are the measured data. The blue curves are
reconstructed trajectories.

The stroke plane is defined as the plane spanned by the hmyid$he lowest positions of
the wing axis. As in the experiment, the insect body is fixedzomtally in the model. So the
stroke plane is a slightly inclined backward. Once the 2Ditjprs of point A or point B is
obtained from the video, we use the actual distance of thet poithe pivot point to calculate
the corresponding 3D positions. As illustrated in Fag3(@), given two coordinateg and z
(extracted from the 2D video), the third coordinatef point A can be found if the actual

distance to the rooAO = | is measured,

y= X2 (5.2)

As long as the coordinates of point A and point B are known thinee angles, the stroke
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angle, the deviation angle, and the pitch angle, can bele#dcl As shown in Fig5.8(b) the
stroke plane is defined by the two extreme positions of thaingaedge OH andOL. The po-
sition of the leading edg@®A, is first projected t@Bin the stroke plane, whefis calculated
by

—~

B=OA- (OA-n)n, (5.3)

wheren is the surface normal of the stroke plane. Then the angbetweenOB and OH,

defined as the stroke angle, is calculated by

cose = OB- OH/(/OBOH), (5.4)

and the angl® betweenOB andOA, defined as the deviation angle, is found by

cosd = OA- OB/(IOA|OB). (5.5)

Finally, the pitch angle is introduced to specify the selation of the wing around its

leading edge using the convention that the wing surfacegpelipular to the stroke plane gives

a zero pitch angle. The histories of these angle reconstiwesd discussed above are shown in

Fig. 5.9for a few flapping cycles. The average stroke amplitude ightul2C. There is a 50

maximum deviation angle indicating the wing moves behireldtioke plane during upstroke.

The pitch angle can reach 1000ne typical cycle of these angle histories is selected @&s th

periodic input for the numerical simulation.
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Figure 5.8: (a) Calculation of the 3D coordinates from 2D gesused for the recon-
struction of the wing-root actuation. (b) Definition of theghes used to describe the
wing actuation kinematics.
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Figure 5.9: The stroke angle, the deviation angle, and ttol pingles as reconstructed
from the high-speed imaging data for five flapping cycles.

5.6 Simulation results and discussions
5.6.1 Eigenmodes of the cicada forewing
The single wing simulations are run in a flow domain o£2118c x 22c wherec is the
average chord length of wing, using a grid of 23628x 158 (2.8M) points. The finite-element

wing model is first analyzed numerically by computing itsurat modes. The first mode takes
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Figure 5.10: The first three eigenmodes calculated from itteeda forewing model.
The rest configuration is drawn in black together with theerigode shown in red. The
eigenfrequencies are 192, 306 and 466 Hz, respectively.

place at 192 Hz, and as shown in FiglQ@a), the mode displays a spanwise twist that mainly
happens at the distal half of the wing. This mode is qualgdti similar to the deformation
mode seen in the high-speed video. The second mode showdniserbending deformation
and takes place at 306 Hz. The third mode has a higher-ordginggpattern and takes place at
466 Hz. Note all of these modes have much higher frequenicgsthe flapping frequency of
the wing (25 Hz). Therefore, we can conclude the struct@sdmance is not dictating the wing

deformation.

5.6.2 Validation of the FSI simulation

A few cycles of the FSI simulation are performed. We first déscthe validation of the
present computational model. For the validation, we comffag simulated trajectory of a point
on the wing with that obtained quantitatively from the higipeed imaging data. Fi§.11(a,b)
shows the trajectories of point C and point D labeled on thegwiAs indicated in Fig5.2(a),
point C is located on the trailing edge, while point D is lezh@at the wing tip. The trajec-
tories in Fig.5.11(a,b) are in a 2D view (since only 2D images were taken fromirteeging

experiment). In Fig5.11(a,b), we see that the simulated trajectories match theuresajec-
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Figure 5.11: Comparison of the simulated and the measunegl tnajectories. The 2D
trajectory is plotted for (a) point C and (b) point D, whicledabeled in Fig5.2(a).
Red lines are the data points from the imaging experimemnttia@ blue lines are the
simulation data.
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Figure 5.12: A comparison between the simulated and the dimeag shapes. The
time stamps are/T =1/38, 1338, 2238, 2638, 3438, and 3738 from left to right.
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tories well during downstroke. However, significant digemecy can be seen during the early
upstroke, where the simulated trajectories deviate soraefsdm the measured data. Next, we
will compare the deformation pattern affdrent phases.

The wing shapes at a few time moments are compared quaditaiiv Fig. 5.12 These
images from the imaging experiment show that during dowRst(a-c), the wing deformation
is not very clear. However, during upstroke (d-e), the wirgegiences significant bending and
twisting deformations. These essential features have deggnred by the numerical simulation.
There are still some notableftérences between the simulation and the images. For exaimple,
Fig.5.12d) the real wing exhibits some chordwise bending so thatithieal surface is concave.
This feature is not present in the simulated deformationother place is in Fig5.12f), the
wing-tip area in the simulation has nearly recovered frardgformation, but the the trailing
edge of the real wing near the tip still shows some twistingve®al factors could have con-
tributed to these dierences. First, the distal half of the wing is assumed todid during the
wing-root reconstruction. However, point B in Fi2is seen to experience some deformation
during upstroke in the video, and thus the area is not comlglégid. Second, only a few veins
are measured in the experiment to obtain thérsss, and the results are averaged over several
insect samples. Therefore, the exact elastic propertitgeqgdarticular subject used in the video
are not necessarily accurately represented in the modspiteghese dierences, the simulated
wing deformation pattern still overall exhibits the sigoéfint spanwise twisting during upstroke,

which resembles what is happening for the real insect.

5.6.3 Analysis of the wing deformation pattern
The rigid wing and the simulated flexible wing are plottedeibger for a few time instances

in Fig. 5.13a) for both downstroke and upstroke. The comparison allesvgo examine the
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Figure 5.13: Comparison of the simulated flexible wing agéiihe rigid wing. (a) The
flexible wing from the FSI simulation (green) along with tigid wing (grey) at evenly
distributed time intervals within one cycle. (b) The 2D wietgprd at 12 wingspan and
3/4 wingspan from the root, where the blue dashed lines représe rigid wing.
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deformation pattern in 3D. It can be seen that during dowhsirthe flexible wing is somewhat
twisted with the trailing edge lagging behind the leadingeedDuring early upstroke, a substan-
tial first-mode type deformation occurs at a large distatiporof the wing. During remaining
upstroke, the wing recovers most of its shape and the defmmmappears to be small. The
2D view of the wing chord at the/2 and 34 wingspan are drawn in Fi¢.13b) to show the
chordwise deformation. From this figure, it can be clearnsthat the deformation causes the
change of the angle of attack (AoA), which is defined as thdeabgtween the chord and the
stroke plane. The change of the AoA is more pronounced at/thaidgspan than at the/Z
wingspan, which is a result due to the spanwise twist of thregwi

The simulated displacement of the wing tip measured at [Wwifsee Fig5.2(a)) in the 3D
space is plotted in Figh.14a), where a peak value over 0.4 cm occurs during early Ugstro
This peak displacement is almost twice of the maximum degstaent during the entire down-
stroke, which is consistent to the asymmetric deformatettepn as observed in the high-speed
video. As shown earlier, the passive deformation causedditianal pitching motion to a wing
chord. In Fig.5.14b), we plot the &ective pitch angle of the wing chord at th&2land 34
wingspan. Note that the pitch angle is the complementarjeasfghe AoA. The figure shows
that the pitch angle is increased due to the wing deformagastracting the active pitch angle
of the wing chord from the féective pitch angle, we obtain the passive pitch angle, wisch
plotted in Fig.5.14c). At the 34 wingspan, the passive pitch angle reaches a peak valué of 25
after the suppination due to the large wing deformation aetmioment. For the/2 wingspan,
the peak value is around 15During downstroke, the passive pitch angle is only less .

All of these figures have shown significant asymmetry in thegndleformation between
downstroke and upstroke. In particular, the greatest dedbion takes place shortly after the

suppination. Overall, the deformation characteristias loa explained from the wing kinemat-
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Figure 5.14: Dynamic pitching motion due to the wing defotioa (a) The history
of the total displacement at the wing tip (measured at poimidked in Fig5.2(a)).
The total displacement is calculated with respect to thie mgng in 3D from the FSI
simulation. (b) The history of thefiective pitch angle at the/8 wingspan for the
flexible wing and the rigid wing. (c) The passive pitch andltha 12 and 34 wingspan.
In all the figures of this chapter, the first half period représ downstroke and the
second half represents upstroke, unless otherwise noted.

ics, the wing inertial force, and the aerodynamic force frin@ flow. Qualitatively speaking,
the inertial force becomes greatest during suppinationpodation, when the wing experi-

ences largest acceleration and deceleration, and theyaamdt force becomes greatest during
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the mid stroke when the wing has fastest translational itglddowever, the situation is compli-

cated by the details of the wing kinematics. For examplewting has a greater angle of attack
during downstroke than during upstroke. Therefore, thedgramic force is greater during
downstroke as well. During pronation, the inertial forceises the wing to pitch and perform
some level of passive pronation. Then during downstroke jhssive deformation is sustained
by the great aerodynamic force during this period. Corredply, the passive pitch angle is
relatively flat during downstroke, as shown in Figl4(c).

During suppination, the wing again experiences a greatiahéorce. What makes the sup-
pination diferent from the pronation is that during suppination, thegrafso moves backward
while moving upward. Therefore, the inertial torque on thagrhbecomes even greater during
suppination. Furthermore, the wing is undergoing elagteovery from the deformation sus-
tained during the downstroke. As a result, the combinedialeiorce and elastic overshoot
causes the wing to have large deformation shortly afterdppisation. Finally, the pre-existing
camber makes the wing to be structurally asymmetric and @stributes to the asymmetric

deformation pattern. Thisiect will be discussed later.

5.6.4 Lift, thrust, and power of the flexible wing

The averaged lift, thrust, and aerodynamic power for thelflexving (one single wing)
and the rigid wing are listed in Tabk4. Also listed are the data for the flexible wing with the
pre-exisithng camber removed, which will be discussed.ldt@icompare the wing performance,
we also compute the total aerodynamic force as the restittead of the lift and thrust. Since it
is tethered in the experiment, the cicada may want to proldugest force to escape. Therefore,
the force vector may be directed more in the horizontal ¢ivacso that it does not have to

counteract the gravity. As seen in the table, the thrustgkdrithan the lift for both the flexible
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Fr FL F P F/P  Fr/P
(10mg) (10mg) (10mg) (TFW) (NW) (N/W)

Flexible wing 7.2 5.4 9.0 29.1 0.31 0.25
Rigid wing 6.6 6.0 8.9 33.4 0.27 0.20
Uncambered wing 7.9 3.7 8.7 25.0 0.35 0.32

Table 5.4: ThrustKy), lift (F), lift-trust-combined F), and power ) of the cicada
forewing from the numerical simulation, which are averageer a few flapping cycles.
The power economy is calculated by dividing the power byegithor F+. Note that

the force data are shown for one single wing only.

wing and the rigid wing. In addition, since the hindwings semoved from the insect, the total
force produced by two forewings is only close to the body Wwedjf the insect.

Comparing the flexible and the rigid wings, we find that theiflexwing produces 9.1%
higher thrust, but the lift is approximately 10% lower. Tlotat force of the flexible wing is
about the same as the rigid wing. Looking at the power consompwe see that the flexible
wing consumes 29x10~4 W on average, which is 13% lowered than the 38404 W by
the rigid wing. As a result, the power economy, defined by thal fforce F per unit power,
is F/P = 0.31 N/W for the flexible wing, which is 15% higher compared to 0.2F\\by the
rigid wing. Consider that the cicada is tethered in the expent and the horizontal thrust may
be mainly the useful force for the insect as discussed earlie alternatively us&r /P as the
efficiency measure. According to this criterion, the power eooy of the flexible wing is 0.25
N/W and is 25% higher than the rigid wing.

The instantaneous lift, thrust, and power are shown inF:ithfor the flexible wing and the
rigid wing. Note that lift and thrust are defined here in thebgll coordinate system. That is, the
lift is in the opposite direction of the gravity, and the tsiris in the horizontal direction. Since
the wing stroke is along the stroke plane, aerodynamic iift drag can be defined using the
convention of airfoil theory. That is, the aerodynamic iftperpendicular to the stroke plane,

while the aerodynamic drag is parallel to the stroke plarteapposite to the wing stroke. For
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the cicada tethered in the experiment, the stroke planed@mgbout 85. Therefore, the aerody-
namic lift contributes to the physiological lift and thrute aerodynamic drag contributes to the
physioloigcal lift only during downstroke and to the phyeical thrust only during upstroke.
During other times, the aerodynamic drag has negativeibatitns to the physioloigcal lift or
thrust. With this understanding in mind, we may make coriardbetween the instantaneous
wing posture and the force production.

Fig. 5.15a) shows that the flexible wing produces somewhat less uifing downstroke
than the rigid wing but also generates less negative lifinduupstroke. The reduced lift during
downstroke has to do with the passive wing twist that leadegs projected wing area in the
horizontal plane. Figs.15b) shows that the flexible wing produces slightly greatenshthan
the rigid wing during downstroke and significantly higheruist during upstroke. The thrust
increase during upstroke has to do with the large wing dedtion during early upstroke, where
the wing is moving upward and backward and it has more prejeatea in the vertical plane
due to the twisting deformation. Fi§.15c) shows that the flexible wing requires significantly
lower power during downstroke than the rigid wing and butrailsir amount of power during

upstroke. For both the flexible and the rigid wings, more poweequired during downstroke.

5.6.5 Wing deformation in vacuum

Have quantified the passive deformation of the flexible wim@ir, we now examine the
wing deformation in vacuum, which is done by simply runing #olid-dynamics solver only.
This study will allows us to compare the deformation pattesith that in air and to better
undertand the cause of the wing deformation. big§a,b) shows the wing chord at th&land
3/4 wingspan locations for both the in-vacuum and the in-flomgypatterns that are obtained

from the numerical simulations. The corresponding insta@bus passive pitch angle for both
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Figure 5.15: Lift, thrust, power comparison between theilflexwing and the rigid
wing, where the history of the lift (a), thrust (b) and aerdsic power (c) are shown
for two flapping cycles. Note that the data are shown for onglsiwing.

wings is shown in Fig5.16c,d) at the same spanwise locations.

First of all, we see that during wing reversals, the wing imwfloas the same amount of
deformation as the wing in vacuum, but the deformation isvgbat delayed in flow. Second,
during downstroke the deformation of the wing in vacuum imless than that of the wing
in flow. This is because the wing in vacuum does not have thedgeamic force to sustain

its deformation. Third, during early upstroke, the wing iowilshows greater deformation than
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the wing in vacuum, especially at thgd3wingspan where the aerodynamic force is large. At
the 12 wingspan, the wing in flow has greater deformation in gdnduwang early upstroke,
but the peak deformation is similar to that of the wing in wawu From these observations, we
can conclude that the aerodynamic force indeed has sigmiftcatributions to the deformation
pattern of the wing, especially at the distal area where thgsmatio is low as discussed before.

Finally, Fig.5.16c,d) shows that there are more oscillations seen in theriestof the wing
chords for the wing in vacuum. These oscillations are cabgedtie free vibration of the wing
in the absence of the surrounding fluid.

Since the first natural mode has a frequency more than sevies higher than the flapping
frequency, the oscillations of the wing in vacuum is due t® tiatural vibration of the wing
structure. In the presence of the fluid, these oscillatiordargely dampened out by the fluid

forces.

5.6.6 Hfect of the pre-existing camber

A particular question we would like to address in this workhis dfect of the pre-existing
camber on the wing deformation and on the aerodynamic pedioce of the flexible wing. As
seen in Fig5.1(a) for the cicada, many insect wings have a pre-existingbeauthat is convex
on the dorsal side but concave on the ventral side. It is eéggestich a curvature would enhance
the spanwise dtiness of the wing. Such spanwiseffsiess is much needed as the wings bear
most of their load in the form of the moment about the longitatlaxis of the body. However,
the camber also introduce dorsal-ventral asymmetry to ihg structure, and itsfBect on the
aerodynamics and on the wing deformation is not yet clear.

We first perform a static-load test to examine tffee of camber on the $fhess symmetry

of the wing. Using the finite-element model, we apply a camsfiarce on a chosen point on the
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Figure 5.16: Wing deformation in vacuum v.s. in flow. The 2Dhgvchord is shown
at (a) the 12 wingspan and (b) the/8 wingspan for both in-vacuum (black color) and
in-flow (green) deformations. The instantaneous passtet pingle is plotted in (c) for
the 72 wingspan and in (d) for the/8wingspan.

wing surface from either ventral or dorsal side. The forc&dsng, about one-third of the total
mass of the insect. Two positions are chosen as the loading pe indicated in Figs.17by F1

and F2. The displacement of point C, a point on the trailingeeobtained from the simulation
is used for measurement. Both the cambered wing and the flatuftbered) wing are tested.
Results are given in Tab®5. It is found that for the cambered wing, the deformation edus
by a ventral force is significantly lower than that by a dofsate. For the uncambered wing,
symmetric deformation is seen from the table, as expectedh&more, the uncambered wing

has greater deformation than the cambered wing when thedaatthe ventral side. When the
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Figure 5.17: The static-load test for thigezt of the pre-existing camber, where the load
is applied normal to the wing surface.

Cambered wing Uncambered wing
Load applied|| ventral load dorsal load ventral load dorsal load
F1=60mg 0.28 -0.35 0.36 -0.36
F2=60mg 0.29 -0.47 0.51 -0.51

Table 5.5: The static-load test for thifext of the pre-existing camber, where the dis-
placement is measured at point C in the static-load tests.ufit of the displacement
is cm.

load is on the dorsal side, the uncambered wing has onlytlslitdrger deformation than the
cambered wing. Therefore, the pre-existing camber sthemgtthe flexural sfiness of the wing
mainly for the ventral load. The camber thus introduces gmasetric stifness to the wing,
which is important for the dynamic deformation of the wing.

Next, we run the FSI simulation for the uncambered wing andpgare the wing defor-
mation with that from the cambered wing simulation. The defation pattern is analyzed in
Fig. 5.18where the tip displacement, the instantaneous wing chowd tlze passive pitch an-
gle at the 12 and 34 wingspans are shown. Together shown are the result frorcatimbered
wing. Consistent with the static-load test, the uncamberieg) shows much greater deforma-
tion during downstroke than the cambered wing, while duripgtroke, the uncambered wing

has similar amount of deformation with the cambered wingrif@uthe early upstroke, both
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wings have a similar peak value in the passive pitch angleeMaantitatively, the tip displace-
ment during downstroke is nearly doubled for the uncamberned) compared to that of the
cambered wing.

From these results, we see that the pre-existing cambeoha#xited to the stiness asym-
metry of the wing structure. Partially becauase of thi$retss asymmetry, the wing deformation
becomes asymmetric between upstroke and downstroke. Aasigfiect was discussed previ-
ously for other insects like butterfliesMpotton 1993. However, it is important to point out that
in the present study, even if this camber is absent, we &t#eove a significant asymmetry in
the wing deformation. This feature can be seen from 5.ig8d,e) where the uncambered wing
still shows a greater peak deformation during early upstroks discussed earlier, this peak
deformation is caused due to the combined the aerodynamtie &md wing inertia. Therefore,
this particular asymmetric pattern can be caused not onthéstructural design of the wing,
but also by the inertial and aerodynamic loads on the wing.

The wing model after removing the pre-exisiting camber dias diterent aerodynamic
performance. Figb.19a-c) shows the instantaneous lift, thrust, and power fah Ioe cam-
bered and uncambered wings. As discussed earlier, the casmeportant to maintain the
rigidity and reduce wing deformation during downstroke.rtRermore, a camber is beneficial
for the production of the aerodynamic lift as in the case eftiiaditional airfoil. Therefore,
in Fig. 5.19a), we see that the lift force is significantly reduced dgridownstroke after the
camber is removed.

Shown in Fig5.19b), the thrust of the uncambered wing is also reduced dulimgnstroke.
However it is increased during upstroke, especially duthmgearly stage. Overall, Tabte4
shows that the average lift of the uncambered wing is redbge80% and the average thrust

is increased by 10%. The power cost is also lower for the ubeaead wing, which is reduced
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Figure 5.18: Hect of the pre-exising camber on the wing deformation in @J.The
tip displacement in 3D; (b,c) the instantaneous wing chottd@l2 wingspan (b) and
the 34 wingspan (c); (d,e) the passive pitch angle at ff2ewlingspan (d) and the/3
wingspan (e).

from 29.1x10~* W to 25.0<10~* W, and the overall power economy reaches 0.8/l terms

of F/P and 0.32 MW in terms ofFt/P. Both of these two measures are slightly higher than the
corresponding data of the cambered wing. Therefore, in thegnt case, the camber does not
seem to introduce significant benefit in tf&aency of the wing. However, since the contours

of the camber is somewhat arbitrary in this study, the exacter &ect on the aerodynamics
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Figure 5.19: Instantaneous lift (a), thrust (b), and povegof the uncambered wing
along the data for the cambered wing.

will be studied in future with more realistic camber speeifion.

5.6.7 Unsteady flow field

The flow field is visualized by plotting the vortex structuieghe flow. The isosurface is
defined as the maximal imaginary part of complex eigenvabiid¢ke velocity gradient tensor,
Amax- Fig. 5.20shows the vortex fields at timgT =2, 2.25, 2.5, 2.75, which correspond to

pronation, mid-downstroke, suppination and mid-upstrakspectively. Under the tethering
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condition, there is no incoming flow to convect the vorticenerated by the wing to the far
field. Therefore, the flight in this case may be viewed as hogeflight where the fore-aft
axis is treated as the vertical axis in hovering flight andgrevity is acting in the negative
x-direction. In the absence of freestream, the vortices énflibw are more likely to interact
with each other. From these figures, we can identify variargex structures that are distinct
features of flapping wings in general, such as the leadigg-@drtex, the trailing-edge vortex,

and the tip vortex.

5.7 Conclusion

In this study, we have described an integrated approach ttehtbe aerodynamics and
aeroelasticity of the flexible wings of insects. The foregvof the periodical magicicada is used
as the subject. The study integrates high-speed imagindpéowing kinematics, experimental
measurement of the elastic properties of the wing, threesdsional simulation of the fluid—
structure interaction of the wing with the surrounding fuadd validation of the computational
model against the experimental data. To the best of our ledyd, this is the first time for such
a methodology to be used in modeling flexible wings of insetkas, it represents a significant
advancement in the study of insect flight.

In the model, the complex structure of the cicada wing ismetrocted from images of the
wing and the material properties are parametrized by ongwnaviariables for the vein groups.
Yet the essential features of the dynamic deformation pektas been captured in the numerical
simulation. Therefore, the modeling approach may provaful guideline for the future study
of the insect wings.

Our scaling and simulation results show that the wing deédion of the cicada forewing

is caused by both the wing inertia and the aerodynamic foredyzed by the wing itself. Fur-
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Figure 5.20: Instantaneous flow field of the flexible wing, vehthe vortex structures
are shown for (a) pronation, (b) middle downstroke, (c) sugon, and (d) middle

upstroke. The isosurface of the vortex structures is shawvehitais colored with the

pressure level. Note that the insect body is added to irelibet relative wing position
but it is not actually included in the simulation.

thermore, the deformation is significantly asymmetric ander many other insects. That is,
the deformation is greater during upstroke than during ciseke. According to our analysis,
such an pattern has to do with both the wing design, i.e., thespisting camber on the wing
surface, and asymmetric wing kinematics, and also the fitideture interaction. For the last
factor, the aerodynamic force modulates the phase of tisiectieformation and recovery, and

along with the wing inertia, they lead to a peak displacenoéittie wing during early upstroke.
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Our simulation suggests that thi&eet of the wing flexibility is beneficial for the aerody-
namic performance in terms of poweffieiency. This result is consistent to the studies we
presented in previous chapters using idealized flappimgrwiodels. By running the simula-
tion with the pre-existing camber removed, we found thatwirg stiffness is reduced during
downstroke but is notféected significantly during upstroke. Therefore, the cancbetributes
to the asymmetrical gfness of the wing. However, even if the camber is removed, shima
metric deformation as discussed earlier still persistsclwbonfirms the contributions from the
aerodynamic and wing inertial factors.

Finally, although the insect is tethered in the presentysamt therefore the wing motion
may be diterent from that in the real flight, the results described Imexeertheless shed some
light into the role of the wing flexibility in the aerodynarsiof the insect and also the mecha-

nism of the wing deformation.
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CHAPTER VI

SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

6.1 Summary of this thesis

In this thesis, we focus on the computational modeling offthiel—structure interaction
involved in flexible insect wings and fish fins. Given that dhceent method for this type
of problem is still lacking, we first developed a generalgmse 3D numerical approach that
is suitable for flows interacting with thin-walled struatsr Based on a fixed Cartesian grid
and an improved immersed-boundary solver, the method ean firge displacements of the
boundary without the need for mesh regeneration. The feléerent method used to solve
the solid-body dynamics employs the classical formulatiohthin-walled structures such as
frames, membranes, and plates and is thus suitable for mgdéke vein or ray network of
the biological propulsors. The fluid—structure couplingchieved by iterating the two solvers
alternatingly until convergence is reached. Thereforehdall time step is implicit, and strong
coupling is achieved. Although more computationally exgdemthan an explicit approach, the
current strong-coupling approach greatly improves the erigal stability and leads to much
more robust simulations. We have provided several casesttalvalidate the current numerical
method.

Three model configurations have been developed to studgusdspects of the fluid—
structure interaction of the flapping wingas. In the first model, a rectangular low-aspect-ratio
elastic panel pitching in a freestream to model propulsibaroelastic fish fin. By varying

the magnitude of the pitching angle and the fin rigidity, werfd that when the fin has the
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first-mode deformation pattern, the thrust ffiméent is primarily a function of Strouhal number,
which is defined on using the swimming speed, pitching fraqueand the tail excursion of
the deformable fin. In another word, compared to the rigideparith the same pitching angle
and frequency, the flexible panel has an increased excuasiplitude due to deformation and
thus produces more thrust. In terms of power consumptiangiiciency of the fin is signif-
icantly enhanced due to the elasticity of the fin. Compareth¢origid panel flapping at an
equivalent amplitude, the flexible panel produces the sam@uat of thrust but requires less
power input. Therefore, the result suggests that the pasigiformation of fins is beneficial to
the hydrodynamic performance of fish.

In the second configuration, we investigaté&etient roles of the wing inertia and the aero-
dynamic pressure in the deformation of insect wings andeniting performance. The relative
importance of the inertia with respect to the pressure isaditerized by a dimensionless pa-
rameter, the mass ratio, and the flexibility is characteriag the ratio between the flapping
frequency and the natural frequency of the wing, i.e., thie tzetween the inertial force and the
elastic force in the wing. Using a rectangular plate in himgecondition and varying its mass
ratio and flexibility, we found that the chordwise deforroatiof the wing causes a dynamic
pitching, and the aerodynamic performance of the wingfiscéed not only by the increased
pitching amplitude due to the deformation but also by thesphand rate of the passive pitching.
At high mass ratios, the wing exhibits an advanced pitchivigle at low mass ratios, the wing
exhibits a delayed pitching. Regardless the mass ratiay d&fiormations of proper magnitude
enhance the lift production and improve the powsiceency. Furthermore, at low mass ratios,
the aerodynamic force sustains the chordwise deformatitiated by the inertial force at the
wing reversals, and the poweltieiency can be further improved. The results suggests tkat th

low mass ratio of many insect wings in the distal area hasfggnt aerodynamic advantages.
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In the third configuration we, for the first time, have develd@ high-fidelity computational
model of the real insect wing and have studied the aerodysaard aeroelasticity simultane-
ously for a real insect. The overall methodology integrétigg-speed imaging of the insect
wing kinematics, experimental measurements of the mechgpioperties of the wing, compu-
tational modeling of the 3D flow and wing deformation, anddaiion of the simulation results
against the experimental data. In this study, the cicadawfiolg is used as the subject. A so-
phisticated finite-element model is built to resolve thegisrvein network, so that the inhomo-
geneous and anisotropic properties of the entire wing @@ jiorated by these frame elements.
The mass distribution and bendingfisiess of the veins are measured, and the data are inserted
into the structural model. The wing actuation kinematicseisonstructed from one camera
view. Finally, the FSI model is validated by comparing thegiated wing displacement with
that obtained from the high-speed imaging measurement. rddt shows that the complex
wing structure of the insect can be parametrizéatiently using a few variables. Comparing to
the rigid wing, the flexible wing has led to significant powéiaency. Furthermore, the wing
deformation depends on both the wing inertia and the aeadimforce. The inertial and aero-
dynamic forces work in diierent phases of a wing stroke, and together they cause ardefon
pattern that assists with the wing reversal and improvegdiwe production during the wing
stroke. The simulated deformation pattern is asymmetiiat s, the wing has greater deforma-
tion during upstroke than during downstroke. This patterndnsistent with the experimental
observation of the cicada wing, and it is also common in mahgransects. This asymmetry
has to do with both the pre-existing camber and the wing &otu&inematics. Therefore, the
result suggests that the asymmetric wing deformation iadtssis dependent not only on the
asymmetric design in the wing structure, i.e., the cambeh®rone-way hinges”, but also on

the asymmetric wing kinematics and consequently the asyriaraerodynamignertial forces
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on the wing.

6.2 Contributions of this thesis
Given that the three-dimensional fluid—structure inteoscin insect flight and fish swim-
ming has been rarely studied previously, and there is dtitla of the proper numerical method

for this type of problem, this thesis has made the followiiggigsicant contributions:

e We have developed a three-dimensional numerical methaifarating the fluid—structure
interaction between a viscous incompressible flow andwahed structures with large-
displacement and large-rotation deformations, sinceetlsea lack of proper methods of
such in literature. Based on the immersed-boundary methothé flow and the finite-
element method for the structure, the method can handlengddundaries without the
need for mesh regeneration, and it is particularly suit&menodeling biological struc-
tures such as insect wings and fish fins that consist of membi@md veifray networks.
We envision this method will be useful for in-depth undemngiag of the fluid dynamics
involved in the flying and swimming in nature and also for théufe development of

biomimetic aerigunderwater vehicles.

e \We have utilized the computational approach to study a Ispeet-ratio flexible pitching
foil in free stream, an idealized model for the caudal fin ofifiand have obtained a
scaling law for its thrust production. In addition, its pawagticiency and the three-

dimensional wake are characterized.

e We have utilized a 3D hovering wing model to study tlfieet of wing flexibility on the
aerodynamic performance of flapping wings. The new findinggssts that thefiect

of the wing deformation should not only be viewed from a gistigtic point of view,
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e.g., change of the angle of attack or creation of a cambehdyléformation; instead,
the phase and rate of pitching due to the dynamic deformatiange the instantaneous
lift, drag, and power and thus have significafiieet on the performance of the wing.
Furthermore, the study has clarified the cause of the wingrohition in terms of the
inertia-induced or inertia-and-pressure-induced de&tion and has found the aerody-

namic consequences associated with each of the defornsitii@tions.

e For the first time, we have utilized an integrated approachaealel the aerodynamics
and aeroelasticity of real insect wings with high fidelityhelresults have significant
implication on the accurate andhieient parametrization of insect wings. Furthermore,
the results confirms the role of the wing flexibility found ngithe idealized models in
improving the aerodynamic performance of the wing, and teaye led to new findings

in the exact cause of the particular wing deformation patéerobserved in real insects.

The work described in this thesis has been presented in the b the following peer-

reviewed journal publications or conference abstracts:

1. Tian, F.-B.Dai, H., Luo, H., Doyle, J.F., Rousseau, B. (2013) Fluid-structateraction
involving large deformations: 3D simulations and applmas$ to biological systems.

Submitted to Journal of Computational Physics.

2. Dai, H., Luo, H., Ferreira de Sousa, P., Doyle, J. F. (2012) Thrugibpeance of a

flexible low-aspect-ratio pitching plate. Physics of Fli@4, 101903.

3. Dai, H., Luo, H., Doyle, J. F. (2012) Dynamic pitching of an elasgctangular wing in

hovering motion. Journal of Fluid Mechanics. 693, 473-499.

4. Luo, H.,Dai, H., Ferreira de Sousa, P., Yin, B. (2012) On numerical osihabf the

direct-forcing immersed-boundary method for moving bames. Computers & Fluids.
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10.

11.

12.

56, 61-76

. Dai, H., Luo, H., Song, J., Doyle, J.F., (2013Jféct of the pre-existing camber on fluid—

structure interaction of cicada wings. AIAA Paper 2013-952

Luo, H., Dai, H., Mohd Adam Das, Shahrizan Syawal, Song J., Doyle, J. F. (2012
Toward high-fidelity modeling of the fluid-structure intetin for insect wings. AIAA

Paper 2012-1212.

Luo, H.,Dai, H., & Doyle, J. (2010) Three-dimensional flow-structure iation in

dragonfly wings. AIAA Paper 2010-556.

Luo, H.,Dai, H., Doyle, D.F. Three-dimensional simulations of fluid andsetity for

flapping wings and fingFluids & Elasticity 2012 November 14-16, 2012, La Jolla, CA.

Luo, H., Dai, H., Mohd Adam Das, Shahrizan Syawal, Song J., Doyle, J. F. (2012
Toward high-fidelity modeling of the fluid-structure intetian for insect wings. The

50th AIAA Aerospace Sciences Meetidgn. 9-12, 2012. Nashville, TN.

Dai, H., Mohd Adam Das, Shahrizan Syawal, Luo, H. Observation ofitimg deforma-
tion and CFD study of cicada3he 64th Annual Meeting of ARS-D, November 20-22,

2011. Baltimore, Maryland.

Ferreira de Sousa, Rai, H., Luo, H., Doyle, J. Thrust performance and wake structure
of a pitching flexible plate at low aspect ratidshe 63rd AP®FD Annual MeetingNov.

21-23, 2010. Long Beach, California.

Luo, H.,Dai, H., Doyle, J. Three-dimensional flow-structure interactiandragonfly

wings. The 48th AIAA ASM Meetindgan 4-7, 2010. Orlando, FL.
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13. Luo, H.,Dai, H., Ferreira de Sousa, P. A hybrid formulation to suppresstingenical os-
cillations caused by immersed moving boundaridse 62nd AP®FD Annual Meeting

Nov. 22-24, 2009. Minneapolis, MN.

14. Dai, H., Luo, H., Deng, X. Flapping counter force - a unique flighbdtaing mechanism
enabled by flapping wingsThe 62nd AP®FD Annual Meeting Nov. 22-24, 2009.

Minneapolis, MN.

15. Luo, H.,Dai, H. Unsteady flow motions in the supraglottal region during @tmm. The

61st APEFD Annual MeetingNov. 23-25, 2008. San Antonio, TX.

6.3 Directions of the future work
Based on the work described in this thesis, we make the follpwuggestions for the di-

rections of the future research:

e More advanced CFD methodst terms of the numerical method, higher-order approaches

capable of handling large-displacement moving boundadesbe developed for model-
ing flapping wings. As other common CFD methods, the curremiarical method is

second-order accurate. However, the relatively low Raygmaumber flows of the flap-
ping winggfins can be still be turbulent, e.g., large-size birds and figtich may lead to

prohibitive computational cost for direct numerical siations. Without resorting to the
less accurate turbulent modeling approaches, one way svielap a higher-order (e.g.,
6th- or 10th-order) approach to simulate the turbulent floihwnoderate resolution.
Such a method could be very useful for modeling Mistt and small-size biomimetic

unmanned aerialnderwater vehicles.

e Furtherin-depth understanding of the aerodynamics and aeroelastihe complex flow
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behavior of the flapping wings and fins require more in-depiliss, especially in three
dimensions and when fluid—structure interaction is inv@lv&or example, what is the
role of the spanwise flow in a 3D situation? Is there a quastittlationship between the
vortical structures in the wake and the force productiorheffiropulsor for general situ-
ations? Does the role of the wing flexibility still remain te@me for various species of
insects when their wing structures, morphology, and kintermare drastically dierent?
And if so, how can the dierent deformation patterns provide the same function? We

expect computational modeling can be used as a powerfuld@riswer these questions.

Fluid dynamics in unsteady maneuveg far there has been very limited study on the

fluid dynamics involved in the unsteady flight modes, e.¢#gtaf, perching, fast yayoll/pitch
turning. Unlike conventional aircrafts, in these flight nesdhe aerodynamics of the flap-
ping wings is closely coupled with the flight dynamics. Ful) 8imulations would be
needed along with the experiments to understand the flow @dtbrque production
during execution of unsteady maneuvers. In addition, thdimear stability problems
involved in these flight modes need to be thoroughly investid to better understand the

flight control of these animals.

Engineering development of the biomimetic rob@srrent designs of the flyirgwimming

robots that emulate the animals are still largely based titive and qualitative under-
standing of the fluid dynamics. It requires further study ée fiow the understanding
of the biological propulsors can be translated into the mewying designs that do not
necessarily fully replicate the actuation mechanism onvthvey/fin structure in nature.
Another important topic is about the development of lowesrfiow models (e.g., 1D or
lumped-parameter models) that require only minimal caleoihs but still have a satisfac-

tory level of fidelity. Such models will be extremely usefof the design optimization
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and the implementation of the feedback control algorithnurréntly, such models do
not yet exist for flapping wingéns in general. We envision that the high-order models
that we are developing will be useful in identifyjicgeatingcalibrating those low-order

models in the future.
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