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CHAPTER I

INTRODUCTION

1.1 Aerodynamics of flapping flight

Insects, birds, and bats are very common flyers in nature. These animals flap their

wings in certain manners to acquire sufficient lift to keep themselves aloft, to propel

through the air, and to maneuver in complex environment. Flapping flight has been

studied by biologists for many years and enjoys renewed interests among engineers due

to the advent of micro air vehicles (MAVs) or unmanned air vehicles (UAVs). These

vehicles have a wide range of military and civilian applications such as surveillance

and environmental monitoring. Different from traditional aircrafts, MAVs and UAVs

are small-sized and usually operate at relatively low Reynolds numbers (below 105).

Current designs of these vehicles are mostly based on conventional fixed wings or on

rotary wings. Inspired by great agility of the flyers in nature, biomimetic wings with

flapping motions could potentially revolutionize of the MAVs and UAVs by drastically

improving their maneuverability. Therefore, a thorough understanding of the unsteady

aerodynamics of flapping wings becomes a key component in thedevelopment of the

bio-inspired aerial vehicles.

Early studies found that the traditional aerodynamics theory largely underestimated

the force production by insects and based on the theory the insects can not even stay

aloft in air. This dilemma has then led to researchers’ attention to unsteady aerodynam-
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ics which turned out to be substantial in explaining the mechanisms employed by insects

(Weis-Fogh & Jensen, 1956). Weis-Fogh(1973) first proposed a ‘Clap and fling’ mech-

anism which accounts for the additional lift produced by a hovering insect.Lighthill

(1973) modeled this mechanism and solved it analytically under the assumption of two-

dimensional inviscid flow.Edwards & Cheng(1982) proposed an improved model in-

corporating vortex separation.Ellingtonet al.(1996) visualized the leading-edge vortex

generated by flapping wings and pointed out that the ‘dynamicstall’ mechanism could

explain the large lift of flapping wings.Dickinsonet al.(1999) then used a scaled fruit-

fly model in an oil tank, and they found that significant lift peaks were produced by the

wake capture after the wing reversal.Wang(2000) used a two-dimensional numerical

simulation to show that a hovering wing can generate enough lift to support the weight

of the insect. Sunet al. did a series of three-dimensional numerical studies with a fruit-

fly model to further study the unsteady flow and the effect of wing kinematics on the

lift production and power requirements, and they also discussed the flight stability of

an insect during steady maneuver through their numerical study (Sun & Tang, 2002a,b;

Sun & Du, 2003; Sun & Wu, 2003; Sun & Wang, 2007).

Those early studies have mainly focused rigid wings, and therole of the wing flex-

ibility only starts to draw attentions from aerodynamicists in recent years (Shyyet al.,

2010). Given that the structural deformation is common in flapping wings, it is rea-

sonable to believe that such a feature helps to enhance the aerodynamic performance

of the wings. The passive deformation of insects have been discussed by several biol-

ogists. For example,Ennos(1988b) showed the importance of the vein properties in

torsion and bending in creating a camber on the wing chord, and he demonstrated that
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the inertial load of the wing is large enough to account for the wing rotation during re-

versal.Combes & Daniel(2003a) studied the flexural stiffness of insect wings and they

believe that the wing deformation is mostly caused by the inertial load. Despite these

relevant studies, the detailed study on the aerodynamics offlexible flapping wings is

still rare, and the cause of the observed wing deformation pattern has not been well ex-

plained. There have been a few recent studies focusing on flexible wings (Younget al.,

2009; Eldredgeet al., 2010), but these studies are limited to specified wing deformation

or two-dimensional models. Therefore, the aeroelasticityof flapping wings is still a

largely unaddressed topic.

1.2 Fish swimming and related research works

Another area closely related to flapping flight is fish swimming. Majority of fish

use body/caudal fin (BCF) for propulsion; others use median or pectoral fins (MPF) for

their routine propulsive mode. Those fish relying on the BCF mode utilize the MPF

mode instead for maneuvering and stabilization (Videler, 1993). Analogous to the air

vehicles that are inspired by flying animals, unmanned underwater vehicles (UUVs)

mimicking the propulsive modes of fish have great potential to achieve high efficiency

and maneuverability. Also similar to the flapping flight, theflow around fish fins is typ-

ically three-dimensional, unsteady, and largely separated. Therefore, in many situations

the fluid dynamics in the two problems can be studied in the same way.

Pitching and heaving foils of simple shape in an incidental flow is frequently used as

a model to study the thrust production of the fin. Substantialwork has been done on the
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hydrodynamics of rigid pitching and heaving foils. Early theoretical studies were based

on linear inviscid theory of unsteady foil flow (Wu, 1961, 1971; Lighthill , 1960), and

experimental studies were done byKoochesfahani(1989); Triantafyllou et al. (1991,

1993); Andersonet al. (1998). The unsteady wake behind the foil on average was

found to be like a jet flow, and vortices closely resemble the von Karman vortex street

behind bluff objects but have reversed rotation. In addition, the thrustefficiency is

largely dependent on the Strouhal number, defined as the ratio between the transverse

velocity of the tail and the freestream velocity. A review ofthese studies can be found

in Triantafyllouet al. (2004). More recently,Schnipperet al. (2009) investigated the

effect of the oscillation frequency and amplitude on the wake structures produced by

a pitching foil in a soap film flow. For the foil at low aspect ratios where the flow is

essentially three-dimensional, Buchholzet al. studied a rigid panel pitching around its

leading edge in a free stream (Buchholz & Smits, 2006, 2008). They found that the

thrust coefficient depends on both the Strouhal number and the aspect ratio and that the

propulsive efficiency is sensitive to the aspect ratio when the span-to-chord ratio is less

than 0.83. Donget al. numerically studied a pitching/heaving foil of elliptic shape and

investigated the three-dimensional topology of the wake (Donget al., 2006).

More realistic swimming kinematics has also been incorporated into computational

studies of fish hydrodynamics. Using a 3D model fish,Borazjani & Sotiropoulos(2008)

studies the carangiform locomotion at various Reynolds numbers and Strouhal numbers,

and they explained from a hydrodynamic perspective why the carangiform swimming

mode is preferred by fast swimmers in nature. Besides the cruising mode, there have

been great interests in the kinematics and hydrodynamics offish turning (seeP & RW,
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1997). For example,Epps & Techet(2007) studied the vortex dynamics during a typical

C-start turning that is typically employed by fish during an escape.

1.3 Wing/fin flexibility: observations and the fluid dynamics

Biological propulsors are usually highly flexible. For example, the jointed fin rays

of fish deform both actively and passively during swimming sothat the fin changes its

area and curvature (Lauder & Madden, 2007). Bird wings also deform significantly

while flapping. In addition to the active muscle control of the joint motions that ad-

justs the wing span and planform, there are passive deformations due to the flexible

feathers (Shyy et al., 2008). One of the phenomena caused by passive feather mo-

tions is the popped up covert feathers on the upper surface tocontrol flow separa-

tion (Bechertet al., 1997). Bats have many independently controlled joints in their

wings, highly deformable bones (Swartzet al., 1992), and compliant thin-membrane

wing surfaces that enable a wide variation of the angle of attack and the wing camber.

These features give bats a complex wing topology and are veryimportant to the flight

performance of these animals (Shyy et al., 2008). The membranous wings of flying

insects are usually very flexible as well and they display considerable passive defor-

mations during flight (Wootton, 1981, 1992; Combes & Daniel, 2003b; Lauder, 2000).

In general, the deformation pattern of an insect wing can be described by bending and

spanwise twist around the wing axis. These deformation features alter the instanta-

neous angle of attack, speed of stroke, and pitching velocity (angular velocity around

the spanwise axis). Wuet al. measured thrust generation of several wing designs using
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a test rig that flaps the wings (Wu et al., 2010). Significant thrust was produced due

to the passive feathering, twisting, and bending of their membrane wings. Addition-

ally, wing torsion may create a dynamic camber (Ennos, 1988a) which could improve

the lift production. Therefore, the wing deformation has significant aerodynamic con-

sequences in insect flight. Earlier studies on the low-Reynolds-number aerodynamics

of flapping wings have mainly focused on rigid wings (e.g.Dickinson et al., 1999;

Sun & Tang, 2002b; Wang, 2005). Among the existing studies on the aerodynamics

of flexible wings, several have shown that by adding some level of passive flexibility

to a rigid flapping wing, the performance of the wing can be significantly improved.

For example, Vanellaet al. used a two-link model to represent the chordwise flexibil-

ity (Vanellaet al., 2009). Their two-dimensional (2D) simulation shows that the wing

deformation can increase the lift-to-drag ratio by 28% and the lift-to-power ratio by

39% and that the best performance is obtained when the flapping frequency is a fraction

of the natural frequency of the wing structure. Using a similarly simplified model, El-

dredgeet al. investigated the effect of chordwise deformation over a range of hovering

kinematic parameters (Eldredgeet al., 2010). They found that a mildly flexible wing

consistently has better power efficiency compared to the rigid wing for a wide range

of phase differences between pitching and wing translation. In additionto these com-

putational studies, experiments performed in liquid (e.g.Prempraneerachet al., 2003;

Heathcote & Gursul, 2007a) and in air (Ramananarivoet al., 2011) showed that the

chordwise deformation can significantly enhance the propulsive force and efficiency of

the wing. Despite these studies, there have been little workon the three-dimensional

fluid-structure interaction of the flapping wings (this includes fish fins), mostly due to

6



the computational challenge involved in the simulation. Consequently, details of the

role of the structural flexibility in the animal flight and swimming await further investi-

gation.

1.4 Research Methods

Theoretical analysis of flapping wings and fins has been done using extremely ide-

alized models under the assumption of linear inviscid flowLighthill (1960, 1973), or

using a quasi-steady treatment (Wanget al., 2004). In more general situations, theo-

retical solutions are not available due to the complexity ofthe flow field. Therefore,

experimental and computational approaches become indispensable. Experiments could

be done in a wind tunnel or liquid tank with real animals or physical models of the

wings and fins. However, the flow visualization in experiments is typically limited

to two-dimensional slices, and the forces in many situations are not easy to measure.

Furthermore, the dynamic similarity for a flexible wing is difficult to achieve because

it is often impractical to match the Reynolds number, mass ratio, and dimensionless

rigidity at the same time. Therefore, the numerical simulation is an important tool for

understanding the fluid dynamics of flapping wings and fins.

Numerical approaches for simulating biological locomotion hinges on how to treat

the moving boundaries. In addition, the fluid–structure interaction poses great chal-

lenges. Conventional numerical solvers are usually based on the finite-volume method

or the finite-element method that employs the body-conformal grid. Such a grid has to

adapt to the geometry change when a solid surface is moving. Therefore mesh regenera-
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tion is required, and the computation can become very expensive. On the other hand, the

immersed-boundary method has gain popularities for moving-boundary and complex-

geometry problems by employing simple and fixed meshes (Mittal & Iaccarino, 2005).

There are several other methods using fixed and structured grids for moving-boundary

problems. For example, a finite-element method combined with a fictitious-domain for-

mulation was developed to simulate particle-laden flows, where the rigid-body motion

inside the particle volume is enforced through Lagrange multipliers; a penalty/fictitious-

domain method was designed to handle solid surfaces and to simulate particle-laden

or multiphase flows (Khadraet al., 2000; Randrianariveloet al., 2005; Sarthouet al.,

2008); and a ghost-fluid approach was developed to solve compressible flows (Fed-

kiw et al., 1999). Compared to these methods, the sharp-interface immersed-boundary

method based on flow reconstruction near the solid surface has proven to be an accurate

and efficient approach for simulating biological flying and swimming problems (Mittal

et al., 2008).

1.5 The specific objectives of this study

Given that an appropriate computational tool for simulating the fluid–structure in-

teraction of biological flying and swimming is still lackingand the role of the structural

flexibility in the fluid dynamics of the flapping flight/swimming is still poorly under-

stood, we have proposed the following specific research objectives in this study:

• Develop an accurate and efficient numerical method for computational model-

ing of the three-dimensional fluid–structure interaction of flapping wings/fins in
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nature; the method will combine an immersed-boundary method for the viscous

incompressible flow and and a nonlinear finite-element method for thin-walled

structures.

• Use the pitching/heaving/revolving thin foils at low aspect ratios as simple models

to study the fundamental effect of the structural flexibility on the force production

and on the three-dimensional flow.

• Investigate the parameterization of real insect wings and develop a high-fidelity

computational modeling approach to study the aeroelasticity and its role in the

aerodynamics of the real insect wings.

The thesis is organized as follows.

• In Chapter 2, we describe the immersed-boundary method thathas been devel-

oped in our lab for the viscous incompressible Navier–Stokes equation. The

finite-difference discretization, the boundary treatment, and the remedy to sup-

press the numerical oscillations associated with moving boundaries will be de-

scribed. Validation cases will be presented to show the accuracy and versatility

of the method. In addition, the finite-element method for modeling thin-wall

structures will be introduced, and the approach for fluid–structure coupling will

be described.

• In Chapter 3, we adopt a simple flexible pitching foil as a fish fin model to study

its thrust performance. The pitching amplitude/frequency and the structural flexi-

bility are systematically varied. We investigate the effect of the passive deforma-

tion on the thrust production and study the scaling law of theflexible foil.
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• In Chapter 4, we use a rectangular plate flapping around a pivot point to represent

the hovering motion of an insect. The interplay of the wing inertia, the aerody-

namic force, and the elastic force is investigated by varying the mass ratio and the

rigidity of the plate, and the effect of the dynamic deformation of the wing on the

performance of the wing is examined in detail. In addition, the implication of the

result on the insect wings is discussed.

• In Chapter 5, we describe a high-fidelity modeling approach for modeling the

cicada forewing, where experiment studies are performed tomeasure the me-

chanical properties of the wing structure and to quantify the three-dimensional

wing kinematics during tethered flight. The computational model includes the

finite-element modeling of the vein network, the fluid–structure simulation, and

the validation of the simulated wing deformation. The role of the wing flexibil-

ity in the aerodynamic performance is studied by comparing the flexible wing

model and the rigid wing model and also by comparing the cambered wing and

the uncambered wing.

• In Chapter 6, we summarize the current work and its contributions. The future

direction of the work will be discussed.
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CHAPTER II

NUMERICAL APPROACH

2.1 Flow solver

2.1.1 Governing equations and the finite-difference discretization

The flow is governed by the viscous incompressible Navier-Stokes equations. The

momentum equation and the continuity equation are written as

∂ui

∂t
+
∂u jui

∂xj
= −1

ρ

∂p
∂xi
+ ν
∂2ui

∂x2
j

,

∂ui

∂xi
= 0, (2.1)

whereui is the velocity,ρ andν are the constant density and viscosity, andp is the pres-

sure. The governing equations are discretized on a nonuniform Cartesian grid using

a cell-centered, non-staggering arrangement of the primitive variables,ui and p. The

incompressible momentum equation is integrated in time using a variation of Chorin’s

projection method which consists of three sub-steps (Chorin, 1968). In the first sub-

step, an advection–diffusion equation is solved in the absence of the pressure, and an

intermediate velocity field,u∗i , is obtained. In this step, both the nonlinear advection

terms and the viscous terms are discretized using the Crank–Nicolson scheme to im-
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prove the numerical stability. The discrete equation is written as

u∗i − un
i

∆t
+

1
2

[

δ(U jui)∗

δxj
+
δ(U jui)n

δxj

]

=
ν

2

[

δ

δxj

(

δu∗i
δxj

)

+
δ

δxj

(

δun
i

δxj

)]

, (2.2)

whereU j is the velocity discretized at the face center of a computational cell, and δ
δxj

represents a finite-difference approximation of the spatial derivative using a second-

order central scheme. The nonlinear algebraic system is solved by a successive substi-

tution approach.

In the second sub-step, a projection function is solved as anapproximation of the

pressure,

δ

δxj

(

δpn+1

δxj

)

=
ρ

∆t

δU∗j
δxj
, (2.3)

and an inhomogeneous Neumann boundary condition is imposedat all boundaries. In

our serial code the Poisson equation (2.3) is solved with an efficient geometric multigrid

method, as discussed inMittal et al. (2008), and in the parallel version it forms a large

linear system solved with AZTEC package. Once the pressure is obtained, the cell-

centered velocity is updated as

un+1
i = u∗i −

∆t
ρ

δpn+1

δxi
, (2.4)

and the final face-centered velocity,Un+1
i , is updated by averagingun+1

i along the j-

direction.
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2.1.2 The immersed boundary method

In recent years, the immersed-boundary method that is basedon the structured mesh

has gained considerable popularity in computational fluid dynamics for solving com-

plex and moving-boundary problems. Despite its wide applications, so far there is not

a unified definition of the method, possibly because there aremany variations in the

existing implementations. Here we follow the classification approach byMittal & Iac-

carino(2005) where the immersed-boundary method is in general classified into two

types. One type involves a diffused boundary whose effect on the flow field is incor-

porated as a volumetric force spread into the bulk fluid, typically within the distance

of a few grid cells from the physical boundary (Peskin, 1972; Goldsteinet al., 1993).

The volumetric force may be determined from the constitutive law in case of an elas-

tic boundary (Peskin, 1972, 2002), or by a feedback mechanism in which the force

depends on the difference between the interpolated velocity at the interface and the

desired boundary condition (Goldsteinet al., 1993). The other type of the immersed-

boundary method retains the singular representation of thephysical boundary and thus

the nature of the surface force exerted by the boundary on theadjacent fluid. This

type of “sharp-interface” methods can typically achieve higher order of accuracy than

the “diffuse-interface” methods. Several distinct sharp-interface approaches have been

formulated in the past to treat the boundary conditions at the fluid–solid interface. For

example, in the “cut-cell” approach byUdaykumaret al.(2001), a finite-volume scheme

is designed to represent the conservation equations for theirregular cells cut through by

the boundary, whereas the bulk flow is discretized using the standard finite-difference

method. In the method presented byLeVeque & Li (1994); Lee & Leveque(2003),

13



the solution experiences discontinuities across the physical interface immersed in the

domain, and the finite-difference formulae involving the nodes across the interface are

corrected by taking into consideration of the discontinuities.

In another type of sharp-interface methods, an unknown forcing term is introduced

only at the nodal points immediately next to the fluid–solid interface, whose direction

and magnitude are such that the boundary conditions at the location of the fluid–solid

interface are satisfied. The forcing does not have to be explicitly calculated but can

be incorporated through a local flow field reconstruction around the forcing points. To

reconstruct the flow locally, an interpolation scheme is applied, and the pressure and ve-

locity information at the fluid–solid interface are included as input data in the scheme.

Therefore, the boundary conditions at the interface are enforced through the interpola-

tion, and actual evaluation of the forcing is never needed. Since there is no feedback

iteration involved, this method is also termed “direct forcing” approach. Many existing

implementations fall into this category (Fadlunet al., 2000; Kim et al., 2001; Tseng

& Ferziger, 2003; Yang & Balaras, 2006; Mittal et al., 2008; Berthelsen & Faltinsen,

2008; Pan & Shen, 2009; Vanella & Balaras, 2009).

In the direct-forcing approach, the construction of the interpolation stencil is flexi-

ble and may take several topological forms. Figure2.1shows some of the examples of

the stencil. For simplicity, we only use a non-staggered grid for illustration. The inter-

polation points may be located either on the fluid side of the interface (Fig.2.1(a,c)), or

on the solid side (Fig.2.1(b,d)). In the latter case, the values of the flow variables atthe

points inside the solid body can be considered a smooth extrapolation of the physical

flow field (and thus, no discontinuity across the interface isinvolved). In Fig.2.1(a,b),
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Figure 2.1: Illustration of the flow field reconstruction near the immersed boundary
using different interpolation stencils. (a,b) Unidirectional interpolations; (c,d) two-
dimensional interpolations wheren is the surface normal and the shaded area represents
the region of support for the interpolation/extrapolation. The interpolation points are on
the fluid side in (a,c) and on the solid body side in (b,d).

the interpolation is carried out along the direction of one coordinate. Given boundary

conditions at the body-intercept with the coordinate line (unfilled circle in the figure),

the fluid velocity at the node marked by a filled circle or square is interpolated from

the flow field, and for the rest of the nodes on the fluid side, a standard finite-difference

stencil can be applied to discretize the Navier–Stokes equation. Examples of previous

works that adopted this strategy includeFadlunet al.(2000) andBerthelsen & Faltinsen

(2008) among others.

In Fig. 2.1(c,d), a two-dimensional local region around the interpolation point is
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chosen, and the normal intersect of the point with the interface is used to determine the

region of support in the stencil (correspondingly, a three-dimensional region is chosen

for a 3D problem). This strategy, used by several previous works (Tseng & Ferziger,

2003; Yang & Balaras, 2006; Mittal et al., 2008), has been more popular compared to

the unidirectional interpolation shown in Fig.2.1(a,b) since using the closest point on

the interface in the interpolation would reduce the numerical error. In addition to these

examples, other flow reconstruction strategies have also been adopted, e.g., the least

squares fitting (Vanella & Balaras, 2009) where the reconstruction is independent of the

mesh topology.

Compared to the other sharp-interface methods such as the cut-cell (Udaykumar

et al., 2001) and the discontinuity methods (LeVeque & Li, 1994; Lee & Leveque,

2003), the direct-forcing or flow-reconstruction approach is much simpler in formu-

lation and implementation. In addition, the reconstruction procedure does not incur

significant computational cost, and like the other methods,it maintains the order of ac-

curacy of the finite-difference discretization of the bulk flow. Given its advantages, the

direct-forcing approach is particularly attractive and has been applied in many prob-

lems, especially in biological flows (Yang & Balaras, 2006; Mittal et al., 2008) where

the boundaries are typically highly complex and a boundary-conforming mesh is diffi-

cult to generate. However, one drawback of the method is thatit is prone to temporal

oscillations when the boundary is moving (Uhlmann, 2005; Berthelsen & Faltinsen,

2008; Pan & Shen, 2009; Liao et al., 2010). Specifically, pressure fluctuations may

happen when a boundary moves across the nodal points on the fixed volumetric mesh

and the numerical description of the boundary nodes changesinstantaneously between

16



the standard finite-difference formula and the flow reconstruction. To illustrate the prob-

lem, we use the interpolation stencil shown in Fig.2.2as an example and provide a brief

explanation. As shown in Fig.2.2(a), when the boundary advances into the fluid region,

some of the interpolated nodes may become occupied by the solid body, and nearby

nodes in bulk fluid region will thus be defined as the new locations of interpolation.

Correspondingly, the stencil at the latter nodes and the numerical description associ-

ated with the stencil changes immediately from those for thediscrete Navier–Stokes

equation to those for the flow field interpolation. Similarly, the immediate switch of

the stencil may occur for some of the nodes when the immersed boundary retreats from

the fluid region, as shown in Fig.2.2(b). Such instantaneous change of the numeri-

cal description at the boundary nodes creates a temporal discontinuity in the velocity.

The discontinuity is further amplified by a factor of 1/∆t for the right-hand side of the

pressure Poisson equation when solving an incompressible flow, thus causing the force

to oscillate significantly. From this perspective, the artificial oscillations as seen pre-

viously are caused by the inconsistent treatments between the boundary nodes and the

bulk flow, and sudden change of the numerical descriptions from one time step to next

has created the temporal jump. In Section 2.2, we will give more detailed discussion of

this problem.

It has been limited study about the numerical oscillation associated with the direct-

forcing approach.Uhlmann(2005) pointed out that the methods ofKim et al. (2001)

and Fadlunet al. (2000) had led to strong force oscillations when simulating flows

interacting with rigid particles, and thus he adopted a diffuse-interface approach instead.

Berthelsen & Faltinsen(2008) dealt with stationary-boundary flows and only pointed
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Figure 2.2: Illustrations of the moving boundary where the numerical description at
some nodes undergoes instantaneous change as the boundary moves across the grid
points.

out the potential problem with moving boundaries.Pan & Shen(2009) illustrated the

force oscillations that appeared in their simulation for a moving-cylinder problem, but

reduced the oscillations byincreasingthe size of time step. In another work,Liao et al.

(2010) introduced a forcing term within the solid body when solving the momentum

equation. The treatment appears to suppress the force oscillations in their numerical

tests. However, it is not clear why the treatment would work or how the treatment could

be extended to other direct-forcing implementations.

2.1.3 Numerical oscillations caused by moving boundaries

Using the discretization approach introduced in Section 2.1.1, we now elaborate on

how a direct-forcing method could cause numerical oscillations. As an example, we

use the specific interpolation approach shown in Fig.2.2(a) to explain our point. The

nodal points in the figure represent the location of the cell centers on a Cartesian mesh.

Eq. (2.2) is discretized at the nodes in the bulk flow region which are marked by open
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circles in Fig.2.1(a). The velocity at the points immediately next the boundary (marked

by filled circles) is interpolated from the boundary velocity and neighboring fluid node

using a linear function as shown. Thus, the discrete Navier–Stokes equation and the

interpolation form a closed algebraic system for the velocity at all the nodes on the fluid

side of the domain, which may be solved using an iterative approach.

In a moving-boundary problem, the role of a grid point variesas the immersed

boundary moves across the point. That is, an interior fluid node may become an in-

terpolated node as the boundary intrudes on the fluid region,or an interpolated node

may become an interior fluid node as the boundary withdraws from the fluid region.

In the topology shown in Fig.2.2(a) where the boundary moves into the fluid region,

node A will be occupied by the solid body at the next time step,and the fluid node B

thus will become a point of interpolation. Therefore, the stencil for the velocity at node

B changes from the finite-difference stencil for the discrete Navier–Stokes equation at

time leveln suddenly to the interpolation stencil for the flow reconstruction at the next

time level,n+ 1. Although both discrete schemes are valid approximationsof the same

flow field that is physically continuous. However, the two different descriptions are

associated with discretization errors of their own characteristics, which in general are

not consistent to each other. Therefore, the difference between the two types of error

creates a temporal discontinuity in the velocity, as node B switches from an interior

fluid node to a boundary node. Similarly, the temporal discontinuity is incurred as the

boundary withdraws from the fluid region as shown in Fig.2.2(b), where node A be-

comes immediately a regular fluid node and meanwhile node C becomes an interpolated

node.
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Figure 2.3: A 2D uniform grid showing the finite-difference scheme used in the current
study, where the circles are the cell centers and the crossesare the face centers.

In the present case, since both the flow interpolation and thefinite-discretization

employ a second-order accurate approach, then the numerical errors associated with

both stencils are ofO(∆x2), and therefore, the difference between them should also be

of O(∆x2). However, the corresponding temporal discontinuity for the right-hand-side

term of the projection equation, Eq. (2.3), is amplified by a factor of 1/∆t. Note that

since the error is inversely proportional to the size of the time step, the resulting pres-

sure oscillation will in fact increase when a smaller∆t is used. It should also be pointed

out that the magnitude of the temporal jump depends on the difference between the dis-

cretization error of the finite-difference approximation and the interpolation error, and

thus, increasing the order of accuracy for the interpolation alone does not necessarily

reduce the magnitude of the jump. In order to attenuate the jump, one could increase

the spatial resolution around the boundary or utilize higher order schemes for both the

finite-difference discretization and the interpolation. However, both of these two ap-

proaches would increase the computational cost.
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2.1.4 The improved immersed-boundary treatment

Noticing that the numerical oscillation is caused by the instantaneous switch of the

numerical description for the nodes near the immersed boundary, we propose a remedy

where the temporal discontinuity can be regularized by introducing a smooth transition

of the stencils.

In the present numerical method, the surface of the solid body is represented by a set

of Lagrangian marker points and linear elements, i.e., linesegments in two dimensions

and flat triangles in three dimensions. This representationallows efficient calculations

of the geometrical quantities, e.g., the surface normal, the interpolation of a variable

over the surface, and the location of a nodal point with respect to the interface (either

inside or outside of the solid body) (Mittal et al., 2008). To impose the velocity and

pressure boundary conditions at the interface, we define ghost cells and hybrid cells

near the interface as follows. When a standard second-ordercentral difference scheme

is used to discretize the Navier–Stokes equation in the fluidregion, incomplete sten-

cils are encountered near the interface. Specifically, at the nodes immediately next to

the interface, the finite-difference stencil will involve nodes that are located inside the

solid body. These special “fluid nodes” are termed here “hybrid nodes”, and the cor-

responding nodes inside the solid body are termed “ghost nodes”. These definitions

are illustrated in Fig.2.4 in two dimensions. Note that the present categorization of

the ghost cells is the same as that inMittal et al. (2008), and the categorization of

the present hybrid cells is the same as that for the “forcing points” in Yang & Balaras

(2006). Next, we will discuss separately the treatment for the ghost cells and for the

hybrid cells.
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2.1.5 Field extrapolation for the ghost nodes

The treatment of the ghost nodes is essentially the same as that in Mittal et al.

(2008), and it is summarized here to facilitate the subsequent discussion of the hybrid

nodes. We use Fig.2.4(a) to illustrate a 2D situation, but the corresponding 3D formula-

tion is also provided in the discussion. To formulate a numerical description for a ghost

node which incorporates the boundary condition, the body intercept (BI) and the image

point (IP) of the ghost node across the boundary are found by projecting the ghost node

onto the boundary along the surface normal. Note that when the size of the triangular

elements on the surface is comparable to or larger than that of the computational cells

nearby, such a projection point may not be found. In that case, an edge point on the

surface that is closest to the ghost node is chosen as the bodyintercept (Mittal et al.,

2008). The generic variable,φ, in the local area around the image point is approximated

by the following interpolating polynomial,

φ(x, y) = c1xy+ c2x+ c3y+ c4,

φ(x, y, z) = c1xyz+ c2xy+ c3yz+ c4xz+ c5x+ c6y+ c7z+ c8, (2.5)

for 2D and 3D, respectively, wherecm, m= 1, 2, . . . ,N, are the polynomial coefficients

(N = 4 for 2D and 8 for 3D). The interpolated value at the image point takes the form

φIP =

N
∑

m

βmφm, (2.6)
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whereφm is one of theN data points, andβm is the corresponding weight determined

from the interpolating polynomial.

To determineβi, the vertices on the cube enclosing the image point are used as

the interpolation data points, as shown in Fig.2.4(a) for the ghost node A. In the case

where the corresponding ghost node is one of the vertices, e.g., the ghost node B in

Fig. 2.4(a), the body intercept is used instead as a data point to replace the ghost node,

and the boundary condition forφ at the BI is called upon to complete the equations for

the coefficients of the polynomial. The boundary condition can eitherbe the Dirichlet

condition (for the velocity),φ = φBI, or the Neumann condition (for the pressure),

∂φ/∂n = [(∂φ/∂x, ∂φ/∂y, ∂φ/∂z) ·n]. In the latter case,∂φ/∂n is used as one of the data

points in (2.6).

The velocity at the ghost node (GN) is then obtained through the following linear

approximations along the surface normal,

uGN + uIP = 2uBI , (2.7)

and the pressure at the ghost node is obtained through the approximation

∂p
∂n

∣

∣

∣

∣

∣

BI
=

pIP − pGN

∆l
= −ρDu

Dt
· n

∣

∣

∣

∣

∣

BI
, (2.8)

where∆l is the distance from IP to GN, and the inhomogeneous boundarycondition for

the pressure,∂p/∂n = −ρ(Du/Dt) · n has been assumed. Here Du/Dt represents the

material derivative of the velocity and can be easily interpolated over the surface from

the acceleration of the Lagrangian marker points. The equations (2.6) to (2.8) complete
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Figure 2.4: Two-dimensional schematics illustrating the immersed-boundary method
used in the present solver. (a) The field extrapolation stencil for the ghost nodes defined
inside the solid body. (b) The mixed interpolation/finite-difference stencil for the hy-
brid nodes defined inside the fluid region. The cross in (b) represents the second-order
central difference stencil. The shaded areas are the support regions forthe interpolating
polynomials.

the numerical descriptions for the ghost-node velocity andpressure, and the boundary

conditions at the body intercept have been imposed through these descriptions.

2.1.6 Velocity treatment at the hybrid nodes

With the flow variables described at the ghost nodes, the governing equations (2.2)

to (2.4) could be discretized at all the nodes located on the fluid side. However, we

introduce a mixed stencil for the hybrid nodes, which are thefluid nodes near the im-

mersed boundary and are marked by filled circles in Fig.2.4(b). The new numerical

description for the hybrid nodes is a combination of the discrete Navier–Stokes equa-

tion and interpolation, which are shown in Fig.2.4(b) by a five-point (seven-point in

3D) finite-difference stencil and a polygonal region, respectively. We will require that

the numerical description undergo a smooth transition as the hybrid nodes move toward
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or away from the immersed boundary. More specifically, the closer a hybrid node is to

the solid body, the more dominated is the mixed stencil by theflow reconstruction. On

the other hand, the farther the hybrid node is to the solid body, the more dominated is

the stencil by the discrete Navier–Stokes equation. To formulate the hybrid-node treat-

ment, we shall first discuss separately the discretization of the momentum equation and

the interpolation.

For simplicity, we shall use a uniform grid and 2D illustration as shown in Fig.2.3,

and we will only show the treatment for theu-velocity component. The treatments

for the other velocity components are exactly the same. At a hybrid node (i, j), the

advection–diffusion equation, Eq. (2.2), can be expanded as

u∗i, j − un
i, j

∆t
+

U∗
i+ 1

2 , j
(u∗i+1, j + u∗i, j) − U∗

i− 1
2 , j

(u∗i−1, j + u∗i, j)

4∆x

+

V∗
i, j+ 1

2
(u∗i, j+1 + u∗i, j) − V∗

i, j− 1
2
(u∗i, j−1 + u∗i, j)

4∆y

+
δ(Uu)n

2δx

∣

∣

∣

∣

∣

i, j
+
δ(Vu)n

2δy

∣

∣

∣

∣

∣

i, j

=
ν

2

(u∗i+1, j − 2u∗i, j + u∗i−1, j

∆x2
+

u∗i, j+1 − 2u∗i, j + u∗i, j−1

∆y2

)

+
ν

2

(

δ

δx
δun

δx
+
δ

δy
δun

δy

)

, (2.9)

whereU andV are the face-center velocity components and only the implicit terms,

indicated by an asterisk, have been expanded. The explicit terms at time leveln would

follow the same spatial discretization. Eq. (2.9) can be re-arranged into

(

1+
∆t
2

N∗U −
ν∆t
2

D

)

u∗i, j = R∗i, j , (2.10)
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whereN∗U represents the coefficient ofu∗i, j from the nonlinear terms andD the coefficient

from the linear terms, i.e.,

N∗U =

U∗
i+ 1

2 , j
− U∗

i− 1
2 , j

2∆x
+

V∗
i, j+ 1

2
− V∗

i, j− 1
2

2∆y

D = − 2
∆x2
− 2
∆y2
, (2.11)

andR∗i is the summation of all the rest terms in Eq. (2.9), which include both the explicit

terms and the implicit terms that contain the intermediate velocity from the neighboring

nodes. Eq. (2.10) is then expressed in the scalar form

u∗i, j =

(

1+
∆t
2

N∗U −
ν∆t
2

D

)−1

R∗i, j = g∗R∗i, j , (2.12)

where

g∗ =

(

1+
∆t
2

N∗U −
ν∆t
2

D

)−1

. (2.13)

To design an interpolation scheme for the hybrid node (HN), we project the node

onto the immersed boundary along the surface normal and find the body intercept (BI),

as shown in Fig.2.4(b). Extending the line that connects the BI and the hybrid node

into the fluid region, it will intersect with a cube on which the hybrid node is located.

The cube is termed interpolation cube. The velocity field in the local region around the

hybrid node is then interpolated by the bilinear polynomialin Eq. (2.5), and the four

data points used to determine the polynomial coefficients include the three vertices on

the interpolation cube, excluding the hybrid node itself, and the BI, as illustrated by
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the shaded region in Fig.2.4(b). The interpolatedu-velocity at the hybrid node is thus

written as

u∗i, j =
4

∑

m=1

βmu∗(m), (2.14)

whereu∗(m) is the intermediate velocity at themth data point, andβm is the corresponding

weight calculated from the interpolating polynomial.

To derive the mixed stencil, we combine Eq. (2.12) and Eq. (2.14) using the follow-

ing expression,

u∗i, j = (1− α)g∗R∗i, j + α
4

∑

m=1

βmu∗(m). (2.15)

where 0≤ α ≤ 1 is the weight of the interpolation stencil and its calculation will be

discussed later. Thus, the velocity at the hybrid node is a weighted average between the

Navier–Stokes solution and the interpolated value. Similar expressions can be obtained

for 3D and for thev andw velocity components in a straightforward manner.

Another view of the weighted average is that the expression given by (2.15) mini-

mizes the following cost function

f (u∗i, j) = (1− α)
[

u∗i, j − g∗R∗i, j
]2
+ α

















u∗i, j −
4

∑

j=m

βmu∗(m)

















2

. (2.16)

Differentiatef with respect tou∗i, j, and assume thatg∗R∗i, j has insignificant dependence

onu∗i, j (this is because theN∗U term ing∗ is on order of∆t). Requiring that the derivative

d f /du∗i, j vanish, we obtain the solution in the form of Eq. (2.15).
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The constantα in Eq. (2.15) determines the relative importance of the interpolated

velocity compared to the solution of the advection–diffusion equation. To determineα,

we specify the following principles:

1. As the hybrid node becomes a regular fluid node,α should approach zero.

2. As the hybrid node becomes a ghost node in the solid body,α should approach

unity.

3. In general,α should increase if the hybrid node moves toward the boundary, and

decrease if the hybrid node moves away from the boundary.

According to these principles, as a solid node moves across the boundary into the

fluid region and changes its role from a ghost node to a hybrid node and later to a reg-

ular fluid node, the velocity at the node will be first calculated through the flow field

extrapolation as specified by Eq. (2.7), then through the hybrid expression Eq. (2.15),

and finally through the advection–diffusion equation, Eq. (2.2). In Eq. (2.15), α gradu-

ally changes from unity to zero as the node moves away from theboundary, therefore

allowing a temporally smooth transition of the numerical description near the boundary.

To find an appropriate algorithm for the weightα that satisfies the aforementioned

guidelines, we use the information of the ghost nodes that are next to the hybrid node.

As shown by the 2D schematic in Fig.2.5(a), the ghost nodes next to the hybrid node

HN are G1 in thex-direction and G2 in they-direction. Here we assume that each

hybrid node has at most two ghost node neighbors and exclude the situation where a

fluid node is cut out by the boundary from more than two directions (i.e., sharp inner

corners). Let∆1 and∆2 denote the distances to the boundary from thex- andy-ghost
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Figure 2.5: The 2D (a) and 3D (b) schematic illustrating calculation of the weightα,
which specifies the relative importance of the interpolation in the mixed stencil for the
hybrid node HN. In (b), the shaded region represents the intersection of the boundary
with the cube.

node, respectively. We then computeα from the following expression

α =

√

(

∆1

∆x

)2

+

(

∆2

∆y

)2

, (2.17)

where∆x and∆y are the grid intervals in thex- andy-directions. If the hybrid node has

only one neighboring ghost node, then the irrelevant term inEq. (2.17) is undefined and

is simply set to zero. Note that if the radius of the local curvature of the boundary is

large compared to the cell size and the boundary is assumed tobe a straight line, thenα

given by Eq. (2.17) is always between zero and unity. One could alternatively compute

α based on the lengths of the edges cut through by the interface, which would involve

computation of the intersections.
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Extending the algorithm forα to three dimensions, we have

α =

√

(

∆1

∆x

)2

+

(

∆2

∆y

)2

+

(

∆3

∆z

)2

, (2.18)

where∆x, ∆y, ∆z are the grid intervals in thex-, y-, andz-directions, and∆1, ∆2, ∆3

are the distances to the interface from thex-, y-, andz-ghost nodes associated with the

hybrid node, as shown in Fig.2.5(b). In case that the hybrid node has only one or

two neighboring ghost nodes, the corresponding irrelevantterms in Eq. (2.18) are set to

zero. Note that if the local boundary is flat as seen locally, thenα in Eq. (2.18) is always

between zero and unity. In addition, it can be verified straightforwardly thatα given by

(2.17) and (2.18) satisfy the three principles listed earlier.

So far, we have provided the numerical description of the velocity for the ghost

nodes, hybrid nodes, and the interior fluid nodes and thus have formulated a complete

algebraic system for all the non-trivial nodes.

2.1.7 Pressure treatment at the hybrid nodes

Following the same spirit in the velocity treatment of the hybrid nodes, we now

derive a mixed stencil for the pressure that consists of boththe Poisson equation and an

interpolation scheme. In Section 2.1.5, we have described how to compute the pressure

at the ghost nodes by extrapolating the pressure field. Usinga mixed stencil for the

pressure at the hybrid nodes will allow smooth transition ofthe numerical description

between the interpolation and the finite-difference discretization and will thus further

improve the temporal accuracy.
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Again, we use a 2D uniform grid to illustrate the pressure treatment. Re-write the

discrete Poisson equation, Eq.(2.3), and express the pressure at the hybrid node as

pi, j =
1
cp

















LP −
ρ

∆t

















U∗
i+ 1

2 , j
− U∗

i− 1
2 , j

∆x
+

V∗
i, j+ 1

2
− V∗

i, j− 1
2

∆y

































, (2.19)

whereLP represents the discrete Laplacian with the term involving the hybrid node

value excluded, andcp is the coefficient of pi, j in Eq. (2.3), i.e.,

Lp =
pi+1, j + pi−1, j

∆x2
+

pi, j+1 + pi, j−1

∆y2
,

cp =
2
∆x2
+

2
∆y2
. (2.20)

The time leveln+ 1 in Eq.(2.3) has been dropped to simplify the notation.

The interpolation stencil for the hybrid-node pressure is based on the data points

used for the velocity interpolation, i.e., the three vertices on the interpolation cube plus

the BI point, as shown in Fig.2.4(b). The bilinear polynomial, Eq. (2.5), is used as

the interpolant, and its coefficients are obtained by requiring the polynomial give the

desired pressure at the three vertex points and also the Neumann condition,∂p/∂n, at

the BI point. The interpolated pressure at the hybrid node can be written as

pi, j =

3
∑

m=1

βmp(m) + β4
∂p
∂n

∣

∣

∣

∣

∣

BI
, (2.21)

where p(m) is the pressure at themth data point, andβm, j = m to 4, is the weight

calculated from the interpolating polynomial. The inhomogeneous Neumann condition

is obtained from∂p/∂n = −ρ(Du/Dt) · n.
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We now combine Eq. (2.19) and Eq. (2.21) and compute the pressure at the hybrid

node according to

pi. j = (1− α) 1
cp

(

LP −
ρ

∆t
d.i.v.

)

+ α


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






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3
∑
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∂p
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∣

∣

∣

∣

∣
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













, (2.22)

whered.i.v. represents the divergence term in Eq. (2.19), andα is the weight of the

interpolation stencil and is given by Eq. (2.18). Thus, the pressure at the hybrid node

is a combination of the solution to the Poisson equation and the interpolated value.

In another perspective, The weighted pressure average can be viewed as the solution

minimizing the following cost function

f (p) = (1− α)
[

p− 1
cp

(

LP −
ρ

∆t
d.i.v.

)

]2

+ α


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2

. (2.23)

Note that since the pressure solution at a hybrid node given by Eq. (2.22) does not

strictly satisfy Eq. (2.3). This introduces certain numerical error to the divergence-

free constraint at the hybrid node after the velocity correction according to Eq. (2.4).

However, the error is small because the interpolated solution is still a reasonable ap-

proximation of the local pressure, and in addition, the pressure will satisfy Eq. (2.3)

more when the hybrid node moves away from the solid surface.

2.1.8 Summary of the solution process

The solution procedure for the entire domain is summarized as follows. At each time

step, the position of the body is updated. The fluid nodes, solid nodes, ghost nodes, and

32



hybrid nodes are determined for the new geometry, and the corresponding stencils for

the ghost nodes and hybrid nodes are calculated. The advection–diffusion equation,

(2.2), is solved together with Eq. (2.7) and (2.15) in an iterative manner to obtain the

intermediate velocityu∗ for the entire field. Note that the nodes in the bulk region

occupied by the solid body are irrelevant in the present formulation. In the iteration

process, the face-center velocity is also updated. After convergence is reached for the

velocity, the Poisson equation, (2.3), is solved together with Eqns. (2.8) and (2.22)

iteratively to obtain the full pressure field. Finally, the velocity is updated according to

Eq. (2.4) for all the fluid nodes including the hybrid nodes.

To calculate the total force on a solid surface such as lift ordrag, the pressure and

shear stress are integrated over all the surface elements, assuming that the stress dis-

tribution is uniform on each element. For each element, the closest ghost node is first

identified, and then the pressure at the body-intercept of this ghost node is computed

using a trilinear interpolation. To compute the shear stress at the body-intercept, the ve-

locity at the image point in Eq. (2.7) is first obtained using the established interpolation

scheme in Eq. (2.6). Then ∂u
∂n is approximated using the finite difference between the

image point and the ghost node. Finally, the tangential stressτw is computed using the

expressionτw = µ(I − nn)∂u
∂n . The algorithm for force integration has been tested using

the exact solution of Stokes flow past a sphere.
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2.1.9 Treatment for infinitesimally thin bodies

In biological locomotion problems of current interest, oneoften has to deal with thin

bodies, e.g., wings and fins, whose thickness is much smallercompared to the character-

istic length of the body. Such membranous bodies are often modeled as zero-thickness

structures. The vanishing thickness in this case will causethe present method to fail,

since a ghost node is also a fluid node at the same time. To avoidthe problem,Mittal

et al. (2008) employed auxiliary arrays to store the interpolated flow variables at the

ghost node. In the present work, we circumvent the problem byintroducing a uniform

artificial thickness,h, along the membranous body. As shown in Fig.2.6, the nodal

points whose distance to the membrane is less thanh/2 are defined as solid nodes, and

the rest of the nodal points are fluid nodes. Once the “interior” and “exterior” regions

are determined, the ghost and hybrid nodes can be easily identified in the same way as

a regular body. To construct the interpolation and extrapolation stencils for the hybrid

and ghost nodes, the body intercepts of the nodes with the inflated surface are needed.

Without a mesh representation of the inflated surface, we compute the nearest point on

the physical boundary for each hybrid or ghost node, and the point is defined as the

true body intercept (BI) of the hybrid or ghost node. Then thepseudo BI point (BI’)

for a hybrid node is found by truncatingh/2 off the line connecting the BI and the HN,

and for a ghost node, BI’ is found by extending the line from the BI to the GN toh/2

(Fig. 2.6). Sinceh is small, we assume that the boundary conditions at the BI arethe

same as those at the corresponding BI’. After extending the thickness, the membranous

body can be treated in the same manner as a regular 3D body. In the present solver,

h is typically chosen to be around three cells wide. Thus, the artificial thickness is
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Figure 2.6: A 2D schematic showing the artificial thickness of a membrane-type struc-
ture, where HN and GN denote a hybrid node and ghost node, respectively.

automatically decreased as the grid is refined.

Since the numerical accuracy is mainly limited by the resolution of the flow field,

the present thin-body treatment should not affect the numerical accuracy significantly

compared to the zero-thickness representation. Note that the method in Mittal et al.

(2008) can also be applied in the present solver. However, by storing the ghost-node

flow variables together with the entire flow field, many domain-sweeping calculations

such as a spatial derivative for the entire field can be done ina loop without the need

to check whether any ghost node is required, thereby speeding up the computation.

Moreover, the current method can deal with situations of thin bodies intersecting 3D

bodies, e.g., the wing joints of insects, without further spacial treatment.
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2.2 Structure solver

The structural solver is the FEM analysis tool for solid mechanics, NONSTAD

(standing for nonlinear analysis of statics and dynamics),written by Prof. James F.

Doyle at Purdue University. NONSTAD is one of the analysis modules in QED, a visual

simulation tool developed by Prof. Doyle that encapsulatesmodeling, mesh generation,

statics and dynamics analysis, and visualization. NONSTADis designed specially for

thin-walled structures such as frames, membranes, plates,and shells. The software has

the capability of handling large displacements and large rotations, and it incorporates

both elasticity and plasticity. In the flapping-wing MAV design, the wing structure often

consists of light frames and plastic membranes (Ol et al., 2008). Therefore, NONSTAD

is particularly suitable in the analysis of those bio-mimetic structures.

For reinforced thin structures such as insect wings and fish fins, we approximate the

spars with frames and the membranes with plates. For these structures, the local strain is

assumed to be small so that the linear stress-strain relationship is used. However, since

the structures may experience large-displacement and large-rotation deformations, geo-

metric nonlinearity is thus incorporated in the formulation. Only 2D (for plates) or 1D

(for frames) discretization is needed for these structuralcomponents. Their deformation

under the resultant forces and moments on the cross sectionscan be derived using the

classical theory of beams and plates. The mathematical formulations can be found in

many textbooks of solid mechanics (Doyle, 2001).

For example, a 3D frame member has two nodes, and each node hassix degrees of
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freedom (DoF),

{u} = {u1, u2, u3, φx, φy, φz}, (2.24)

whereui is the displacement andφi is the rotational angle. We use ¯ui to represent the

displacement measured in the local coordinate system, (ξ, η, ζ), with ξ tangential to the

frame. In the local coordinates, the frame member has three deformation behaviors. The

first is a rod action with axial displacement{ū1} along the rod (ξ), and the correspond-

ing force isF = EA∂ū1
∂ξ

. The second is two beam actions with bending deformations.

The corresponding nodal DoFs in theξη plane are the transverse displacement ¯u2 and

rotationφζ (or the slope of the deflection curve at the node), and the bending moment is

Mζ = EI ∂
2ū2
∂ξ2

. The nodal DoFs in theξζ plane are ¯u3 andφη, and the bending moment is

Mη = EI ∂
2ū3

∂ξ2
. The third behavior is a twisting action about the frame axis, and the DoF

and corresponding torque areφξ andMξ = GJ∂φξ
∂ξ

. HereEA, EI, andGJ are the axial,

bending, and torsional stiffnesses, respectively.

A 3D plate element is a three-node triangular element which supports both in-plane

(membrane) and out-of-plane (flexural) actions. We use ¯ui to represent the displace-

ment measured in the local coordinate system, (ξ, η, ζ), with ζ normal to the plate. The

DoF at each node for the in-plane behavior is{ū} = {ū1, ū2, φζ}, and the element im-

plementation is taken fromBergan & Felippa(1985). Note that the drilling action is

included here sinceφζ = 1
2(∂ū2
∂ξ
− ∂ū1
∂η

). The out-of-plane behavior of the plate element is

represented by the DoF{u} = {u3, φξ, φη} at each node, whereφξ andφη are rotational

deflections. The element used is the Discrete Kirchhoff Triangular (DKT) element,
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which has been widely researched and documented as being oneof the more efficient

flexural elements (Batozet al., 1980). In terms of the local coordinates, the in-plane

behavior of the plate can be written as

Nξξ =
Eh

(1− ν2s)

[

∂ū1

∂ξ
+ νs
∂ū2

∂η

]

,

Nηη =
Eh

(1− ν2s)

[

∂ū2

∂η
+ νs
∂ū1

∂ξ

]

,

Nξη =
Eh

2(1+ νs)

[

∂ū1

∂η
+
∂ū2

∂ξ

]

,

(2.25)

and the out-of-plane (flexural) behavior of the plate can be written as

Mξξ =
EI

(1− ν2s)

[

∂2ū3

∂ξ2
+ νs
∂2ū3

∂η2

]

,

Mηη =
EI

(1− ν2s)

[

∂2ū3

∂η2
+ νs
∂2ū3

∂ξ2

]

,

Mξη =
EI

(1+ νs)
∂2ū3

∂η∂ξ
.

(2.26)

In these expressions,h is the thickness of the plate,I = h3/12 is the area moment of

inertia of the cross section, ¯ui is again the displacement measured in the local coordinate

system for whichξ andη are the two tangential coordinates,Ni j andMi j are respectively

the resultant forces and moments acting on the cross section.

The large-displacement and small-strain deformation in the structural solver is han-

dled using the corotational scheme. That is, a local coordinate system is envisioned as

moving with each discrete element, and, relative to this coordinate system, the element

behaves linearly as described in previous paragraphs. Consequently, the nonlinearities

of the problem are results of the coordinate transformation. The tangent stiffness of an
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element, [kT ], is the combination of the elastic stiffness and the geometric stiffness,

[kT ] = [kE] + [kG]. (2.27)

The dynamical system representing the structural vibration is obtained by assembling

the equations for all the elements,

[M]{ü} + [C]{u̇} + [K]{u} = {P}, (2.28)

where{P} is the external force vector incorporating the forces from the fluid in contact

with the structure. The time stepping is achieved using the Newmark scheme.

The description of the FEM approach used in NONSTAD and the instruction of the

software usage are provided in several publications (Doyle, 1991, 2001, 2008).

2.3 Flow–structure coupling

The incompressible Navier–Stokes equation is combined with the structural dynam-

ics through the boundary conditions including the no-slip,no-penetration, and traction

conditions. In the code implementation, the FEM code is coupled with the immersed-

boundary flow solver, and the communications between the twocodes are coordinated

through the Message Passing Interface (MPI) library. With the MPI, the two solvers are

running in parallel as independent processes on a computer,and only minimal modi-

fications of the two existing stand-alone softwares are needed in order to couple them

together.
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Figure 2.7: Flow chart of the flow–structure iteration during a complete time step.
The left and right panels represent the flow and structural solvers, respectively, and
the dashed lines represent the data transfer between the twosolvers.

Furthermore, the flow solver and structural solver share thetriangular mesh on the

wetted surface of the solid, which makes the interpretationof the boundary displace-

ment and surface force between the two solvers straightforward. To achieve the implicit

coupling, the flow and structure are solved in an iterative manner. The algorithm for a

complete time step is summarized by the flow chart in Fig.2.7.
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2.4 Code validation and demo cases

This section includes several simulations performed to validate current code and

numerical algorithms and to demonstrate the capability as well. Problem descriptions

and setups are given in details, and the results are comparedwith previous numerical or

experimental studies.

2.4.1 Grid convergence study

The interpolation schemes adopted here for flow reconstruction near the immersed

boundary, including both the ghost nodes and the hybrid nodes, have a second-order ac-

curacy, which is consistent to the accuracy of the spatial discretization of the bulk field.

The mixed reconstruction–differentiation approach at the hybrid nodes is expected to

preserve the accuracy of the overall numerical method. The grid convergence test is

performed using the flow past a circular cylinder. The Reynolds numberRe= Ud/ν is

100 whered is the cylinder diameter,U is the free stream velocity. A small domain of

2d×2d is used here with the cylinder placed at the center of the domain. A zero normal

derivative is applied for the velocity at the outer boundaries except the upstream side.

In all simulations presented in this work, the homogeneous Neumann condition for the

pressure is applied at the outer boundaries. Simulations are run on uniform grids with

a series of resolutions, 40× 40, 80× 80, 160× 160, 320× 320, and 640× 640. The

cylinder surface is discretized so that the length of the surface segments is smaller than

one third of the Cartesian cell size. A total number of 1000 time steps are run with the

step size equal to 0.0001d/U. The flow fields at the end of the simulations are used for
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Figure 2.8: Grid convergence study using the problem of flow past a 2D stationary
cylinder. (a) Contours ofu1 (lines) andu2 (grey scale) for the solution using the 640×
640 grid. (b) Distribution of the numerical error in theu1 component from the 160×160
grid (only one every three mesh points in bothx andy directions is shown). (c) Contours
of the divergence. (d)L2 andL∞ error norms of theu1 andu2 velocities for different
resolutions.

the study. To compute the error, we used the solution on the finest grid as the refer-

ence and compare the results from the other resolutions withthis reference. Fig.2.8(a)

shows the contours of the two velocity components computed on the finest grid, and

Fig. 2.8(b) shows the distribution of error magnitude in theu1 velocity obtained on the

160×160 grid. The numerical error of the divergence field is plotted in Fig.2.8(c). Note

that the errors are concentrated in the region near the immersed boundary, which is a
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typical phenomenon for the immersed-boundary methods in the literature (e.g.,Yang

& Balaras(2006); Mittal et al. (2008)).

TheL2 andL∞ norms of the error for the velocity components are shown in Fig.2.8(d)

for the coarser grids. Both error norms confirm that the present numerical method has

an overall second-order accuracy.

2.4.2 Flow past a stationary cylinder

The 2D flow past a stationary cylinder is computed to assess the fidelity of the

present immersed-boundary solver. Here we run the simulations forRe= 40, 100, 300

and 1000 on a 400× 320 nonuniform grid, whereRe= Ud/ν with U as the freestream

velocity andd as the cylinder diameter. The domain size is 40d×50d, and the grid near

the cylinder is refined so that the smallest spacing is∆x = ∆y = 0.01d. A zero normal

derivative is applied for the velocity at the outer boundaries except the upstream side.

Fig. 2.9(a,b) shows the temporal variations of the drag and lift coefficients defined

by CD = FD/(1
2ρU

2d) andCL = FL/(1
2ρU

2d), whereFD andFL are the drag and lift on

the cylinder per unit span. To promote flow instability and shorten the simulation time,

small artificial disturbances are added to the flow initiallyto induce the asymmetry.

When the flow reaches a stationary state marked by periodic vortex shedding behind

the cylinder, the drag coefficient oscillates at a frequency twice of the frequency in the

lift coefficient. Fig.2.9(c) shows the vortex contours forRe= 300 in which the unsteady

vortices in the wake of the cylinder are well captured.

Strouhal number is defined byS t= f d/U where f is the frequency of the lift coefficient and

is equal to the vortex shedding frequency. The drag, lift, and the Strouhal number are tabulated
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Figure 2.9: Flow past a 2D stationary cylinder. (a,b ) Drag and lift coefficients for
Re= 300 (a) andRe= 1000 (b). (c) Instantaneous contours of the spanwise vorticity
for Re= 300.

in Table2.1 for the Reynolds numbers considered here. The results from several sources are

also listed for comparison. Among the previous results, thedata from Williamson (Williamson,

1992) was obtained from experiments, and the rest are from numerical simulations, including the

spectral-element method (Henderson, 1995) and the immersed-boundary method (Marellaet al.,
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Re 40 100 300 1000
CD S t CD S t CD S t CD S t

Present 1.53 – 1.35 0.159 1.43 0.196 1.56 0.235
Mittal et al. (2008) 1.53 – 1.35 0.165 1.36 0.210 1.45 0.230
Henderson(1995) 1.54 – 1.35 – 1.37 – 1.51 –
Marellaet al. (2005) 1.52 – 1.36 – 1.28 – – –
Williamson(1992) – – – 0.157 – 0.203 – 0.206

Table 2.1: Laminar flow past a 2D stationary cylinder. Comparisons of the drag coeffi-
cient and Strouhal number with previous results.

2005; Mittal et al., 2008). The comparison shows a very good agreement between our results and

the previous data. Note that forRe= 1000, the flow in a real situation has become essentially

three-dimensional, which explains the considerable difference in the Strouhal number between

the experimental result and numerical data.

2.4.3 Flow past a sphere

Flow past a stationary sphere is a canonical problem that allows us to test the 3D implemen-

tation of the immersed-boundary treatment. The problem at low Reynolds numbers has been

studied extensively using both experimental (Clift et al., 1978; Ormieres & Provansal, 1999;

Sakamoto & Haniu, 1995) and numerical approaches (Johnson & Patel, 1999; Mittal, 1999;

Mittal et al., 2002, 2008). Depending on the Reynolds numberRe= Ud/ν, the flow has three

distinct regimes. BelowRe= 210, the flow past a sphere is axisymmetric and steady (Natarajan

& Acrivos, 1993). BetweenRe= 210 and around 280, the flow is steady but loses axisymmetry.

AboveRe= 280, the flow is neither steady nor axisymmetric.

In the present study we performed simulations of the flow withthe Reynolds number ranging

from 100 to 350. Both qualitative and quantitative comparisons were made with available results

in the literature. For all Reynolds numbers studied, we employed a 192×120×120 nonuniform

grid with grid clustering around the sphere and in the near-field wake. The domain size used in
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Table 2.2: Comparison of the current results for flow past a sphere with existing exper-
imental and computational studies.

Re= 100 Re= 150 Re= 300 Re= 350
xc/d yc/d Lb/d xc/d yc/d Lb/d St St

Mittal (1999) - - 0.87 - - - - 0.14
Bagchiet al. (2001) - - 0.87 - - - - 0.135
Johnson & Patel(1999) 0.75 0.29 0.88 0.82 0.29 1.2 0.137 -
Taneda(1956) 0.745 0.28 0.8 0.82 0.29 1.2 - -
Marellaet al. (2005) - - 0.88 - - 1.19 0.133 -
Mittal et al. (2008) 0.742 0.278 0.84 0.81 0.3 1.17 0.135 0.142
Present results 0.762 0.298 0.913 0.830 0.338 1.229 0.125 0.152

all the simulations is 16d×15d×15d. These parameters were chosen so that a direct comparison

could be made with the results inMittal et al. (2008). A zero normal derivative is applied for

the velocity at the outer boundaries except the upstream side.

ForRe= 100 and 150, the computed flow is steady and axisymmetric. Therefore, the center

coordinates (xc, yc) of the flow recirculation bubbles in the wake of the sphere can be accurately

determined. The length of the recirculation zones, defined as the distance from the back of the

sphere to the farthest point in the streamwise direction, denoted byLb, can also be calculated.

The values of these variables forRe = 100 and 150 are compared with previous studies in

Table2.2and are found to be in excellent agreement with those studies.

For Re = 300 and 350, the flow is strongly unsteady. It is well established that for this

Reynolds number regime the wake is dominated by vortex loopsthat are interlocked together

(Sakamoto & Haniu, 1995; Ormieres & Provansal, 1999; Mittal, 1999). The 3D vortex features

were well captured in our simulations. Here we present the Strouhal number,S t, which rep-

resents the nondimensional frequency of the vortex shedding from the sphere. Note that the

simulations were run for long enough time so that a stationary state was reached during which

the statistical quantities such as the Strouhal number and force coefficients were taken. The

computed Strouhal number is tabulated in Table2.2 and shows good agreement with previous

studies. In Fig.2.10, a comparison is made between the computed mean drag coefficient from
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Figure 2.10: Comparison of the computed mean drag coefficient with experimental and
numerical data. The solid line is the correlation data fromClift et al. (1978).

the present simulations and the results from a number of previous experimental and numerical

studies. The current result is once again in excellent agreement with those results.

2.4.4 Flow past an in-line oscillating cylinder

After successfully validated the present formulation for stationary-boundary problems, we

proceed to perform numerical tests for moving boundaries. The first problem we consider is a

cylinder of diameterd oscillating in a channel flow as shown Fig.2.11. The channel has the

dimension of 4d × 4d, and the inlet velocity has a parabolic profile with the maximum valueU.

The no-slip and no-penetration conditions are applied at the channel walls, and a zero normal

derivative is applied for the outlet. Although the channel is too short to exclude the effect

of the exit, the channel length does not affect the numerical oscillation related to the moving

boundary. The cylinder oscillates symmetrically along thecenterline of the channel, and its

prescribed velocity is given byuc sin(2π f t), whereuc is the maximum translational velocity and

f is the frequency. We setuc/U = 0.1π and f d/U = 0.2 so that the stroke distance of the

cylinder is 0.5d. The Reynolds number in the test isRe= Ud/ν = 100. A uniform grid of either
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Figure 2.11: Schematic of an in-line oscillating cylinder in a channel.

64× 64 or 128× 128 points is used to discretize the domain. In addition, three different time

steps,∆tU/d = 0.005, 0.01, and 0.02, are used to study the effect of∆t.

To show the effect of the current formulation on the force oscillation, we also performed

the simulations without the mixed stencil at the hybrid nodes. In those simulations, we simply

set the weight of the interpolation stencil,α = 1, in Eqns. (2.15) and (2.22). That is, the

flow variables at the hybrid nodes are obtained completely from interpolation. To facilitate the

discussion, here we refer to the second approach as the “reconstruction-only” method.

Figure2.12shows the drag history of the cylinder, normalized by1
2ρU

2, for several combi-

nations of the spatial and temporal resolutions. In Fig.2.12(a) where the the reconstruction-only

method is used with 64×64 points and∆tU/d = 0.01, the drag displays substantial oscillations.

On the other hand, the drag in Fig.2.12(b), which is computed using the present hybrid formu-

lation with the same simulation set up, contains only moderate fluctuations. In these two tests,

the maximum CFL number, defined as∆t(u1/∆x+ u2/∆y), is around 0.35.

In the next set of simulations, the 128×128 grid is employed, and the maximum CFL is kept

at 0.35, i.e., the time step is∆tU/d = 0.005. The drag histories are shown in Figs.2.12(c) and

(d), respectively, for the reconstruction-only method andthe hybrid method. It can be seen that
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Figure 2.12: The normalized drag of an in-line oscillating cylinder in a 2D channel.
Left: the reconstruction-only immersed-boundary formulation; right: the present hybrid
formulation. The resolution is 64× 64 in (a) and (b), and 128× 128 in the other panels,
and the maximum CFL in the four rows is 0.35, 0.35, 0.7, and 1.4, respectively.

the magnitude of the numerical oscillation is reduced in (c)due to the grid refinement but is still

significant. In comparison, the hybrid method only producesslight high-frequency fluctuations.

Then we use the 128× 128 grid and increase the time-step size so that the maximum CFL

is either 0.7 or 1.4 (i.e.,∆tU/d = 0.01 or 0.02). The results are shown in Fig.2.12(e) to (h)

for both immersed-boundary formulations. For the reconstruction-only method, the magni-

tude of the oscillation is reduced proportionally as∆t is increased, as seen in Figs.2.12(c,e,g).

The observation is consistent to the qualitative analysis in Section 2.2. For the hybrid method,
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Figure 2.13: The velocity field and pressure contours attU/d = 9 for an in-line oscil-
lating cylinder in a channel using the (a) 64× 64 and (b) 128× 128 grid.

Figs. 2.12(d,f,h) show that the numerical oscillation in the drag is suppressed for these time-

step sizes and there is no significant error. Slight oscillations are still visible because different

interpolation stencils are involved when the boundary moves across the grid.

The flow field for the hybrid formulation is shown in Fig.2.13 for the two resolutions at

tU/d = 9. For the 64× 64 grid, there are only 16 points across the cylinder, and thus the flow

around the immersed boundary is barely resolved. Nevertheless, the corresponding velocity

field in Fig.2.13(a) is reasonably accurate. In Fig.2.13(b) where the finer resolution is used, the

flow field around the cylinder is captured with a much better accuracy.

In order to evaluate the effect of the Strouhal number, we varied the translational frequency

of the cylinder but kept the stroke distance the same. In addition, we studied the effect of the

characteristic flow around the solid body by moving the cylinder in the transverse direction. In

both studies, the performances of the present reconstruction-only method and the hybrid method

are not affected significantly. In conclusion, the hybrid method presented here is effective in

suppressing the numerical oscillation caused by the movingboundaries.
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Figure 2.14: Top view of wake development behind a stationary rectangular plate at an
angle of attack of 40◦. The 1st and 3rd columns are fromTaira & Colonius(2009), and
the 2nd and 4th columns from the current simulation. The timeis normalized byc/U.

2.4.5 A suddenly started plate

This problem concerns an impulsive flow over a rigid rectangular plate, which was studied

numerically byTaira & Colonius(2009). The stationary plate has a rectangular shape and has

an aspect ratio of 2. The angle of attack of the plate is fixed at40◦, and the Reynolds number

based on the freestream velocityU and the chord lengthc is Re= 500. The 3D simulation is

done in a 10c × 10c × 6c (in the streamwise, transverse, and spanwise directions) domain and

on a 211× 121× 141 grid. In figure2.14 we present the wake development by showing the

isosurface of the vorticity magnitude equal to 5U/c at different time instants in a top view. The

corresponding flow field fromTaira & Colonius(2009) is shown for comparison. It can be seen

that the instantaneous vortex structures from the two simulations agree with each other very

well.
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Figure 2.15: Schematic of a 2D hovering wing showing the forward and backward
strokes.

2.4.6 Flow induced by a 2D hovering wing

In this moving-boundary test, we consider a rigid plate of infinite span undergoing com-

bined oscillatory translation and rotation as shown in Fig.2.15. This configuration has been

extensively used for modeling the hovering flight in animalssuch as insects (Wanget al., 2004;

Eldredge, 2007), where the plate represents a slice of the wing. The kinematics of the wing

section is described by a sinusoidal translation and a rotation around the wing center according

to the following equations

x0(t) =
A
2

cos(2π ft) (2.29)

θ(t) =
π

2
+ θm sin(2π ft + φ) (2.30)

wherex0(t) is the stroke position,θ(t) is the angle between the wing and the horizontal axis

(measured in the counterclockwise direction),A is the stroke distance of the wing,θm is the

angle amplitude,f is the flapping frequency, andφ is the phase difference between the wing

translation and rotation. The vanishing phase lag,φ = 0, is studied here.

The simulation is performed in a rectangular domain of size 20c× 20c, wherec is the chord

length of the wing section, and 320×256 nonuniformly distributed grid points are used. Around
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Figure 2.16: The drag and lift coefficients of a 2D hovering wing.

the wing, the grid spacing is around 0.023c. The kinematic parameters areA/c = 2.8, θm = π/4.

The Reynolds number defined asRe = Umaxc/ν is 75, whereUmax = πA f is the maximum

translational velocity of the wing. One complete cycle is resolved by 400 time steps. The

instantaneous drag and lift coefficients are defined as

CD =
sign(ẋ0(t))FD

1
2ρU

2
maxc

, CL =
FL

1
2ρU

2
maxc
, (2.31)

whereFD andFL are total instantaneous horizontal and vertical forces, respectively. Previous

results of this problem obtained using a vortex particle method byEldredge(2007) are com-

pared. The coefficients are plotted in Fig.2.16where the first four flapping cycles are shown.

The flow is initially quiescent and approaches a nearly periodic state after two cycles.

An ellipsis-shaped wing with the aspect ratio of 10 was used by Eldredge(2007). In our

case, the cross section is uniform except at the two rounded wing edges due to the approach of
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introducing an artificial thickness. In the present simulation, the wing thickness is about 7% of

the chord length. Despite the differences in the wing geometry, both the drag and lift coefficients

in the two simulations exhibit only slight discrepancy. In both the forward and backward strokes,

CL contains two peaks, one after the stroke reversal and the other approximately at the midway

of the stroke when the wing has the maximum translational velocity. The first peak can be

explained by the wake capture mechanism where the wing interacts with the leading-edge vortex

generated prior to the stroke reversal (Wanget al., 2004). The drag, defined to always point

against the wing translation, also contains two peaks in each half stroke, which take place prior

to and shortly after the wing reversal due to the large angle of attack at the moment. The drag

becomes negative during the reversal. These features are well captured in the present simulation

and the force history shows no significant oscillation, which shows the effectiveness of the

present immersed-boundary method.

2.4.7 Simulating a robotic fruit fly

This is a three dimensional moving-boundary problem. We simulate the flow around two

robotic fruit fly wings, replicating the experiment inDickinson et al. (1999). The wings are

models ofDrosophila melanogasterand have a span ofR = 0.25 m. The area of each wing is

S = 0.0167 m2 and the average chord isc = 8.79 cm. The wing shape used is similar to the one

reproduced inBai et al.(2009). In the experiment ofDickinsonet al.(1999), one flapping period

is composed of two half-strokes and the flapping frequency isf = 0.145 Hz. The wings sweep in

the horizontal plane and rotate at the end of each stroke. Thewing rotation occurs symmetrically

with respect to the stroke reversal and lasts 16% of the flapping period. The stroke amplitude is

160◦, and the angle of attack at mid-stroke is 40◦. The Reynolds number isRe= Uc/ν = 164,

whereU = 0.215 m/s is the mean translational velocity at the wing tip andν = 115 cSt is the
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Figure 2.17: Instantaneous lift coefficient for a robotic fly.

kinematic viscosity of the fluid. The total lift forceFL is defined in the direction perpendicular

to the stroke plane, and the total lift coefficient is defined asCL = 2FL/(ρU2S).

A nonuniform grid of 251×251×181 is used. The size of the computational domain is

equivalent to that of the oil tank in the experiment. Dirichlet boundary conditions for the velocity

are imposed on the side walls, and open boundary conditions are imposed on the top and bottom

boundaries. The simulation is conducted for five flapping cycles. The temporal variation of

the lift coefficient during each stroke is virtually identical after the third cycle. Figure2.17

shows the time history of the lift coefficient from the 4th cycle for the case with symmetrical

rotation, together with the experimental (Dickinsonet al., 1999) and two numerical results (Sun

& Tang, 2002b; Kweon & Choi, 2010). As we can see, our simulation captures the two lift

peaks produced near the beginning and end of the half-stroke. Furthermore, our result compares

better with the experimental data than the other two numerical results. It should be stressed that

the numerical results fromSun & Tang(2002b) andKweon & Choi(2010) were obtained from

simulations of only one single wing, while both the current simulation and the experiment have

a pair of wings.
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(a) (b)

Figure 2.18: The 3D geometry and hovering kinematics of the hummingbird model. (a)
Downstroke (forward stroke) and (b) upstroke (backward stroke). The leading edge of
the wing sweeps in a horizontal (xy) plane.

2.4.8 Simulating a hummingbird

In the last case study, we consider aerodynamics of the hummingbird hovering flight. The

simplified hummingbird body and wing anatomy is based on images of a Rufous Hummingbird

(Selasphorus rufus). Each wing is represented here by a half ellipsis with an aspect ratio of 3:1.

The shoulder corner of the wing is used as the pivot point. Thesurface mesh for the humming-

bird model consists of 814 triangular elements for the body and 372 triangular elements for each

wing.

The size of the computational domain is 17.5c×19c×14c, wherec is the chord length equal

to the length of the short axis of the ellipsis. A 300×360×160 nonuniform grid is used, which

provides clustered points around the hummingbird body and wings. The detailed kinematics of

the Rufous Hummingbird are available inTobalskeet al. (2007). In the present simulation, a

simple representation of the wing kinematics was chosen, asshown in Fig.2.18. The leading

edge, defined as the line through the pivot point and lying in the wing surface, rotates sinu-

soidally in the stroke plane with an amplitude of 112◦, and meanwhile each wing surface rotates

sinusoidally around the leading edge with an amplitude of 134◦ and a 10◦ delay with respect

to the flapping angle. The distribution of the angle of attackof the wing is asymmetric: the
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minimum angle is 27◦ during the downstroke and 19◦ during the upstroke. Here the angle of

attack is defined as the acute angle between the wing surface and the stroke plane. The Reynolds

number,Re= Utipc/ν, is 1570, whereU tip is the average wing-tip velocity. Equivalently, the

Reynolds number is 2465 in terms of the maximum wing-tip velocity. Note that the Reynolds

number of the real hummingbird may be above 5000 (Altshuleret al., 2004). A lowerReis used

here to reduce the computational load that would be requiredfor direct numerical simulation of

the turbulent flow.

Figure2.19shows the flow structures generated by the hummingbird modelat three different

stages during downstroke. In the simulation,t = 0 is the beginning of downstroke. The figure

shows the isosurfaces ofΛ, the maximum imaginary part of the three complex eigenvalues of the

velocity gradient tensor (Soria & Cantwell, 1994). Both the 3D view and the top view of the flow

field are shown. Figures2.19(a) and (d) shows the early stage of downstroke, where the leading-

edge vortex (Ellington et al., 1996) on the top surface of the wings is being formed. As the

wings accelerate downward, depicted in Figs.2.19(b) and (e), the leading-edge vortex remains

attached to the wing surface. At the same time, a trailing-edge vortex is being shed and its

outboard portion is merging with the tip vortex. As the wingsdecelerate and the angle of attack

increases at the end of downstroke, a large region of separated flow is generated behind each

wing and near the wing tip, as depicted in Figs.2.19(c) and (f). Throughout the flapping cycle,

the flow is dominated by small-scale, randomly oriented vortex filaments, which illustrates the

complexity of the flow behavior even at the moderate Reynoldsnumber.

Figure2.20shows the time-varying force coefficients averaged between the two wings dur-

ing first three flapping cycles. The force coefficients,Cx, Cy, andCz, are defined as the force

components on a single wing normalized by 0.5ρU
2
tipc2. The lift coefficient,Cz, is characterized

by a large peak during each half stroke, which roughly occursduring the mid-stroke when the
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(a) (b) (c)
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Figure 2.19: Vortex structures at three stages in downstroke of a modeled hummingbird
in hovering flight. The time stamp ist = 3.2T for (a,d), 3.3T for (b,e), and 3.4T for
(c,f), whereT is the period of a full flapping cycle.

wings undergo the maximum flapping velocity. The drag coefficient,Cx, during downstroke is

comparable toCz, but its peak is slightly delayed. During upstroke,Cx has a reverse sign and is

significantly lower in magnitude compared to downstroke. The lateral force,Cy, is nearly zero

since the two wings flap symmetrically and they-forces cancel each other. In the present setup,

the stroke plane is parallel to the horizontal plane, and thus the lift coefficient during upstroke

is close to that during downstroke. InTobalskeet al. (2007), the stroke plane angle is around

β = 15◦ when the hummingbird is hovering. To incorporate this effect, we may simply transform

the coordinate system and re-compute the lift coefficient according toCL = Czcosβ +Cx sinβ.

The result is also plotted in Fig.2.20, which shows that the lift during upstroke is significantly

lower than that during downstroke. This is in line with the result from Warrick et al. (2009),

who performed a particle image velocimetry (PIV) study of the hummingbird flight. In their

experiment, the average circulation around the wing duringdownstroke is about twice of the

average circulation during upstroke, which indicates a higher lift during downstroke.

58



0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

t/T

C
x, C

y, C
z

 

 

C
x

C
y

C
z

C
L

Figure 2.20: Time histories of the normalized force components,Cx, Cy, Cz during the
first three flapping cycles. The simulation starts from the beginning of the downstroke.
CL is the lift coefficient when the stroke plane is tilted forward by 15◦.
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CHAPTER III

HYDRODYNAMIC PERFORMANCE OF A FLEXIBLE LOW-ASPECT-RATIO

PITCHING PLATE

3.1 Background

A pitching/heaving foil in an incoming flow is a reasonable approximation of the caudal fin

of a fish and can be used to study the thrust production. Substantial work has been done on

the hydrodynamics of rigid foils. Early experimental studies of a foil in a steady stream were

done byKoochesfahani(1989); Triantafyllou et al. (1991, 1993); Andersonet al. (1998). The

averaged wake behind the foil was found to be like a jet flow, and vortices closely resemble the

von Kármán vortex street behind bluff objects but have reversed rotation. In addition, the thrust

efficiency is largely dependent on the Strouhal number. A reviewof these work can be found

in Triantafyllou et al. (2004). More recently, (Schnipperet al., 2009) investigated the effect of

the oscillation frequency and amplitude on the wake structures produced by a pitching foil in

a soap film flow. Buchholz & Smits(2006, 2008) studied a rigid panel of lowAR pitching

around its leading edge in a free stream. They found that the thrust coefficient depends on

both the Strouhal number and the aspect ratio and that the propulsive efficiency is sensitive to

the aspect ratio when the span-to-chord ratio is less than 0.83. Donget al. (2006) numerically

studied a pitching/heaving foil of elliptic shape and investigated the three-dimensional topology

of the wake.

In comparison to rigid foils, existing studies on flexible foils are mainly limited to foils of

large span-to-chord ratios and two-dimensional flows. For example,Heathcoteet al. (2004);
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Heathcote & Gursul(2007b) investigated the effect of chordwise deformation on thrust gener-

ation and power consumption of an elastic foil in water tank.Moderate flexibility was found

to increase the thrust efficiency compared to the rigid foil and an optimal flexibility may exist

for given heaving frequency and amplitude.Zhu (2007) assumed an inviscid flow and utilized

a boundary-element method to study the problem. In the inertia-driven case, he found that the

chordwise flexibility reduces both the thrust and the propulsion efficiency; in the fluid-driven

case, the chordwise flexibility increases the efficiency, which is consistent to the experiment

result inHeathcote & Gursul(2007b). In another work,Michelin & Llewellyn Smith (2009)

studied the effect of structural resonance on the thrust performance of a heaving foil. More re-

cently,Ferreira de Sousa & Allen(2011) performed a two-dimensional viscous flow simulation

of a pitching plate and obtained similar conclusion as the previous research.

For insects and fish, the span-to-chord ratio of their wings and fins is typically less than

10 (Donget al., 2006). Thus, the wake of the biological propulsors is highly three-dimensional.

Currently it is still not clear how the structural deformation will affect the 3D vortices in the

wake and how the result has to do with the performance of the propulsor. A computational

study that addresses the fluid–structure interaction and resolves the 3D flow pattern will help

answer these questions.

In this chapter, we consider a flexible plate of low aspect ratio pitching around its own

leading edge in a free stream. The three-dimensional fluid–structure interaction is simulated.

We systematically vary the pitching amplitude, frequency,as well as the rigidity of the plate and

investigate the thrust and power efficiency. The effect of the elasticity on the performance of the

propulsor and the vortex structures in the wake will be discussed. The problem is formulated

in §3.2, a grid study is given in §3.3, the results and discussions are provided in §3.4 to §3.6;

final conclusion is given in §3.7.
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Figure 3.1: Schematic of the elastic panel pitching in a freestream.

3.2 Problem specification

We consider a thin, flexible rectangular panel that rotates around its leading edge harmon-

ically as illustrated in Fig.3.1. The pitching angle is specified asα = α sin(2π f0t), where f0 is

the oscillation frequency,α is the maximum angle of attack. The uniform free stream velocity

is U, and the domain is unbounded. The panel is considered to be sufficiently thin such that

its thicknessh has no significant effect on the flow. The homogeneous and isotropic panel has

lengthL, width W, densityρs, Young’s modulusE, and Poisson’s ratioνs. The panel is assumed

to be nearly inextensible but may bend under the hydrodynamic force. The displacement of the

panel is arbitrarily large, but the strain is assumed to be small so that the material still obeys the

constitutive law of linear elasticity, which in the local coordinates ( ¯x, ȳ) states

EI∇4wd = fn(x̄, ȳ) (3.1)

whereI = h3/12 is the area moment of inertia of the cross section per unit span,wd is the deflec-

tion of the plate, andfn is the normal stress on the plate surface which in the presentproblem,

includes both inertial and hydrodynamic forces. The operator ∇4 is biharmonic operator in the

(x̄, ȳ) coordinates.

The nondimensional parameters governing the problems are the aspect ratioW/L, pitch-
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ing amplitudeα, reduced frequencyf = f0L/U, Reynolds numberRe = UL/ν, mass ratio

ρsh/(ρ f L), reduced stiffnessK = EI/(ρU2L3). Mass ratio is set to 0.1 for all, backed by real

data of fish fins. The Poisson’s ratio of the plate is set atνs= 0.25, the aspect ratioW/L = 0.54,

and the Reynolds number isRe= 640, for all the simulations. These parameters are chosen to

match those in the experiment byBuchholz & Smits(2008).

To evaluate the performance of propulsion, we define the thrust coefficient CT and power

coefficient as

CT = −
Fx

1
2ρU

2WL
, CP = −

P
1
2ρU

3WL
, (3.2)

whereFx is the total force on the plate in thex-direction, andP is the total power spent for

propulsion and is calculated byP = −
∮

f · vdS. The propulsive efficiencyη is then defined to

be the ratio between the thrust and power coefficientsη = CT
CP

.

3.3 Convergence study

A grid convergence study is performed forf = 1,α = 12◦, andK = 5 using three grids: the

coarse grid with 238× 116× 168 points and minimum spacing of 0.025L in each direction, the

normal grid with 330×142×222 points and minimum spacing of 0.016L, and the fine grid with

420×164×272 points and minimum spacing of 0.0125L. Figure3.2shows the time histories of

the tail excursion andCT computed on these three grids. Based on the results, the normal grid

is deemed satisfactory and is used for most of the simulations.
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Figure 3.2: Histories of (a) the tail excursion,ztail, and (b) the thrust coefficient com-
puted on three grids forf = 1, α = 12◦ andK = 5. The inset in (a) shows a zoom
view.

3.4 Structural response

Nondimensional bending rigidity is defined asK = EI/(ρ f U2L3). Since the spanwise vari-

ation of deformation is very small as we observed in all our simulated cases, we examine the

deformation at the midspan of the plate only. All the plates deform well-periodically and in

a nearly sinusoidal history pattern. Simulations are first run for a series of bending stiffnesses

at α = 12◦, f = 1 or 2. Fig.3.3 shows the normalized peak-to-peak excursion amplitude at

the trailing edge,A/L, and the phase delay between the trailing edge and the pitch angle of the

leading edge,φ. It can be seen from Fig.3.3(a) that at a particular value ofK that depends onf ,

the excursion amplitude is maximized. Forf = 1 this critical stiffness is nearK = 2.5, and for

f = 2 it is nearK = 10. The result thus indicates that system resonance has taken place. Note
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Figure 3.3: The normalized tail excursion (a) and the phase delay between the trailing
edge and the leading edge (b) forα = 12◦. The value ofK corresponding to resonance
of the plate free-vibrating in vacuum is marked byKa for f = 1 andKb for f = 2.

that the system resonance here is different from the resonance of the free plate vibrating in vac-

uum. In Fig.3.3(b) we have marked the values ofK that would lead to the first natural vibration

mode of the plate,Ka = 0.32 for f = 1 andKb = 1.28 for f = 2. The values ofK that would

lead to the second natural mode are much lower (less than 0.033). Fig. 3.3(b) shows that the

trailing edge exhibits a significant phase delay and it increases as the bending rigidity is reduced.

These results are consistent with the 2D analysis of Michelin & Llewellyn SmithMichelin &

Llewellyn Smith(2009) for a flexible plate with small heaving amplitude. Note thatthe bending

rigidity here needs to be further reduced in order to achievethe second resonant mode as seen in

Michelin & Llewellyn SmithMichelin & Llewellyn Smith(2009), where they studied the higher

deformation modes by reducing the plate stiffness by several orders of magnitude. Neverthe-

less, the possible trend of the second resonance can be seen in Fig.3.3(a) for the case off = 2,

where the tail excursion starts to increase asK is reduced to 0.1. By comparing their numerical

model with a linear analysis for the fluid-solid system, Michelin & Llewellyn SmithMichelin

& Llewellyn Smith (2009) found that the resonant frequencies can be well predicted by linear

theory. In the present case, the resonance takes place nearK = 2.5 for f = 1 and nearK = 10

for f = 2. Therefore, the resonant frequency here scales roughly with
√

EI, i.e., similar to the

vibration in vacuum, although the present system includes asurrounding fluid.
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Figure 3.4: Deformation patterns of the plate forα = 12◦ and f = 1.

The deformation pattern of the plate is shown in Fig.3.4 for f = 1 andK = 0.1, 0.5, 1.0,

2.5. For f = 1, the plate behaves essentially as a rigid one whenK is larger than 100, and

significant deformations can be seen whenK is less than 10. InMichelin & Llewellyn Smith

(2009), they characterized the vibration modes according to the number of necks in the enclosing

envelope of the superimposed instantaneous plate shapes. Here we define neck as the portion

of the envelope narrower than both its upstream and downstream sides. Following this notion,

the vibration pattern shown here forK = 1.0 and 2.5 would correspond to the first mode, or the

no-neck mode. The pattern forK = 0.1 would correspond to the second mode, or the one-neck

mode. In the case ofK = 0.5, the enclosing envelope has a section that is nearly level but can

still be grouped into the first mode. It should be pointed out that the present characterization

of the deformation modes is different from that of the eigenmodes at which the plate resonates.

For the current pitching plate, the second deformation modecan take place either when the plate

rigidity is very low or when the pitching amplitude/velocity is very large.

In this work, we mainly focus on the first-mode deformation, which has much higher thrust

and propulsive efficiency than the other modes (Michelin & Llewellyn Smith, 2009). As pointed

out in Michelin & Llewellyn Smith(2009), this mode does not appear for a passive flag whose

flapping motion is induced by system instability. Therefore, rather than extracting energy from

the flow, this mode would require energy from an external mechanism.
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Figure 3.5: The tail excursion (a) and thrust coefficient (b) of the plate for a range of
pitching amplitudes and bending stiffnesses. (c) The thrust coefficient re-plotted against
the Strouhal numberS tdefined using the tail excursion.

3.5 Thrust production and power efficiency

More series of simulations were run for a range of values ofK andα. The nondimensional

frequency remains atf = 1 or f = 2. The results of these cases are plotted in Fig.3.5, where

the data belonging to the sameK values have been grouped using the same symbol. Fig.3.5(a)
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shows that for all the cases considered here, the tail excursion increases monotonically asα is

raised. Meanwhile, the thrust produced by the plate, as shown in Fig.3.5(b), grows as well due

to the increased flapping amplitude. For most cases, the tailexcursion of the flexible plate is

significantly lower than that of the rigid plate (represented by K = 5000) whenα is fixed. For

some cases where the plate oscillates near the system’s resonant frequency, e.g.,K = 5, the tail

excursion exceeds that of the rigid plate, and correspondingly, the flexible plate produces higher

thrust than its rigid counterpart.

For a flexible wing, we define the Strouhal number asS t = f A
U , where the peak-to-peak

excursionA in used. Such a definition has been used extensively to scale the thrust performance

of a rigid pitching wingTriantafyllouet al. (2004), and here the same definition will allow us to

compare the flexible wing with the rigid wing that has an equivalent flapping amplitude.

In Fig. 3.5(c), we plot the thrust coefficient against the Strouhal number, which is in the

range between 0.1 and 0.7. The deformation patterns of some typical cases are shown in this

figure to aid the analysis. We draw an approximate boundary toseparate the cases where the

plate has the second-mode pattern from the cases with the first-mode pattern, and we use I and

II to mark the two regions as shown. It can be seen that in Region I where the rigid cases

and the first-mode cases lie, the data roughly collapse onto the same curve regardless various

combinations off , K, andα in these cases. The result implies that despite the wing deformation,

the propulsive force of the present wing depends almost exclusively on the Strouhal number as

long as the wing deformation is of the first mode. On the other hand, in Region II where the

second-mode cases lie, the data are scattered and do not appear to follow a general curve. In

addition, these cases have lower thrust compared to those cases in Region I at the same Strouhal

number. We point out that the boundary between the two regions should not be viewed as a

sharp line but represents instead a transition zone. As the intermediate cases withf = 1 andK
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Figure 3.6: The power coefficientCP (a) and power efficiencyη (b) versus the Strouhal
number. The rigid-wing cases have been marked with dashed lines in (b).

varying from 0.2 to 0.5 indicate, the appearance of the second mode is in a gradual rather than

drastic manner.

In a recent experimental study byBohl & Koochesfahani(2009), a rigid NACA-0012 airfoil

pitching sinusoidally at small amplitude and high reduced frequencies was used to study the

flow field and to obtain the scaling law of the thrust versus theStrouhal number forS t< 0.25.

In their study, a control volume analysis that takes into account the streamwise velocity fluctu-

ations and the pressure term was adopted to estimate the meanthrust. Although the Reynolds

number in that study is much higher (on order of 104), the scaled thrust inBohl & Koochesfahani

(2009)(see Fig. 15) shows a similar trend and magnitude as in our study.

The plots of the thrust and power coefficients versus the plate stiffness would show that at the

system resonance, both the thrust and power consumption reach their respective peak values like

the reduced excursionA/L shown in Fig3.3(a). In addition, the optimal efficiency would take

place at a lower value ofK than that for the resonance. These results are consistent with the 2D

analysis inMichelin & Llewellyn Smith(2009) and are thus not further discussed in the present
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work. Here we plot the power coefficient against the Strouhal number in Fig.3.6(a), where

some cases with intermediate values ofK have been excluded to avoid data clustering. It can be

seen that unlike the thrust coefficient, the power coefficient does not collapse onto a generalized

curve. Overall, the power coefficient increases asS t is raised. At a constantS t, especially

whenS t > 0.3, the flexible cases typically have a lower power coefficient than the rigid case.

Therefore, by deforming passively and storing/releasing energy at different phases, the flexible

plate may require less power input while still producing thesame amount of thrust compared to

the rigid plate with the equivalent oscillating frequency and magnitude of excursion.

The power efficiency is plotted versus the Strouhal number in Fig.3.6(b). It can be seen that

for the rigid plate, the best performance is found forS tnear 0.4. BelowS t= 0.2, the efficiency

would drop quickly and it may become negative with the thrustturning into drag. Beyond

S t = 0.4, the efficiency is not particularly sensitive to the Strouhal number. Compared to the

rigid plate, the flexible plate shows a similar trend asS tis varied, but its peak efficiency typically

occurs at a higher range of Strouhal numbers, e.g., between 0.4 and 0.6. Consistent with the

power analysis, the flexible plate in most cases has higher efficiency than the corresponding

rigid plate whenS t is fixed. Exceptions are found in those cases with low plate rigidity, e.g.,

K = 0.1 and f = 1, where the plate has exceedingly large deformation and exhibits the second-

mode pattern.

3.6 Wake structure

The vortices in the wake are visualized by plotting the isosurface of an invariant of the

velocity gradient tensor as defined inMittal & Balachandar(1995). Fig. 3.7 shows the wake

structure for the plate pitching withα = 12◦, f = 1, andK = 0.1, 0.5, or 2.5. The Strouhal

numbers in these three cases areS t= 0.15, 0.28, and 0.47, respectively. As discussed inBuch-
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Figure 3.7: The wake structure forα = 12◦, f = 1, and (a)K = 0.1 (S t = 0.15), (b)
K = 0.5 (S t= 0.28), and (c)K = 2.5 (S t= 0.47).

holz & Smits(2006), wake transitions are found when increasing the Strouhal number for the

rigid plate. Such transitions are also observed here for theflexible plate by varyingK. We point

out that the specific Strouhal numbers for the transitions inour simulations are lower compared

to those inBuchholz & Smits(2006), possibly because we have varied the excursion amplitude,

rather than the pitching frequency, when changing the Strouhal number. In Fig.3.7(a) where

S t= 0.15, a chain of horseshoe-shape vortices are developed, and they are interlocked together,

forming a reverse von Kármán vortex street behind the plate.When the Strouhal number is

increased to 0.28 (Fig.3.7(b)), the horseshoe vortices turn into vortex rings which form two

separate trains, and the rings are mostly oriented in the streamwise direction. Hairpin-like legs

can be seen connecting the two vortex trains. As the Strouhalnumber is further increased to

0.47 (Fig.3.7(c)), the vortex rings in the wake become more oriented in thetransverse direction,

and they develop more complex hairpin legs. Because of theirorientation and the self-induced

motion, these vortices also travel transversely and thus make the wake become wider. More

details of the similar vortex topology have been discussed in Buchholz & Smits(2006, 2008)

for the rigid plate.

The wake topology of the flexible plate was also examined against the corresponding rigid

plate at the same Strouhal number. An example of this comparison is shown in Fig.3.8, where
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Figure 3.8: Wake structures of the rigid plate atα = 14◦ (a,b,c) and the flexible plate at
K = 0.5 andα = 24◦ (d,e,f). In both cases,f = 1 andS t = 0.48. The 3D view, side
view, and top view are shown.

f = 1 andS t = 0.48. For the flexible case,K = 0.5 andα = 24◦ have been used in the

simulation, and for the rigid case,α = 14◦ is used to achieve the same Strouhal number. As

shown in Fig.3.5(c), the thrust coefficients of these two cases are very close to each other and

both are aroundCT = 0.18. From Fig.3.8, we note that the wake patterns are similar between

the two cases, e.g., the shape and orientation of the vortex rings, the branches of the vortex

trains, and the angle between the two trains. In a recent experimental study by Deweyet al.

(2012), the bifurcation distance of the vortex branches behind anoscillating batoid fin scales

with the Strouhal number, which is also defined using the magnitude of excursion. Therefore,

our result appears to be consistent with theirs in that regard. From Fig.3.8we can see that there

are some slight differences between the rigid and the flexible cases. For example, the wake of

the rigid plate has the multiple complex-shaped hairpin legs that connects the two vortex trains,

while many of those legs have diminished in the wake of the flexible plate. In addition, the

vortex rings of the flexible plate also appear to be thinner, and the wake is more compressed in

the spanwise direction compared to the wake of the rigid plate. These results indicate that the
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wing deformation has somewhat simplified the wake structure.

3.7 Conclusion

A three-dimensional fluid–structure interaction of a flexible pitching plate at a low aspect

ratio and a low Reynolds number is studied numerically. The pitching amplitude, frequency,

and bending stiffness of the plate are varied, and the propulsive performanceis studied. It is

found that the thrust coefficient scales reasonably well with the Strouhal number that is defined

using the trailing edge excursion of the plate in the transverse direction, provided that the defor-

mation pattern is the first mode as defined by the shape of its enclosing envelope. Under such

a condition, the flexible plate would produce approximatelythe same amount of thrust as the

rigid plate pitching at the same frequency and with an equivalent excursion, and furthermore,

the flexible plate is more power-efficient compared to the rigid plate. The wake topologies are

similar between the flexible and rigid plates with equal Strouhal number, although hairpin-like

vortex structures may take a simpler form in the flexible case.
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CHAPTER IV

DYNAMIC PITCHING OF AN ELASTIC RECTANGULAR WING IN HOVERING

MOTION

4.1 Background

A flapping wing is subject to an inertial force due to its own mass and also to the aerody-

namic forces from the surrounding air. Previous studies suggest that both forces may be able

to cause an insect wing to deform. For example,Ennos(1988a) measured the force manually

applied on the wings of two species of flies, and he concluded that the aerodynamic forces ex-

perienced by the insect wings during flight would be sufficient to produced the observed values

of wing twist and camber. In another study,Ennos(1988b) measured the mass distribution and

determined the torsional axis of three species of flies, and the result shows that the inertial ef-

fect alone could develop the pitching velocity observed at stroke reversal.Combes & Daniel

(2003b) compared vibrations of the excised hawkmoth wing in air andin helium (15% of the

air density) and noticed that the deformation patterns in the two cases are close to each other.

Their result suggests that the hawkmoth wing is mainly deformed by the wing inertia during

stroke. Whether it is the wing inertia or the aerodynamic forces that cause the wing deformation

may determine timing of the deformation. The reason is that there is a phase difference between

the inertial force and the aerodynamic forces in a flapping cycle. Roughly speaking, the inertial

force reaches its maximum around stroke reversal when the wing has the highest acceleration,

while the aerodynamic forces peak around mid-stroke when the wing has the fastest translation.

If the aerodynamic forces are strong enough, they may maintain the passive pitching caused by
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the inertial effects at stroke reversal (Ennos, 1988a). Though these qualitative considerations

make sense, a detailed study is needed to find out the exact timing and contribution of all the

forces involved. Furthermore, it is necessary to include fluid–structure interaction in such a

study and to simultaneously investigate the aerodynamic consequences of the wing deforma-

tion. Currently, the relative roles of the inertial and aerodynamic torques in the deformation and

performance of flapping wings are still elusive.

Since the aerodynamic pressure scales withρU2, whereρ is the fluid density andU is the

characteristic velocity of the wing, and the inertial forceper unit area scales withρshU2/L,

whereρs is the density of the wing material,h is the membrane thickness (collectively,ρsh is

the surface density), andL is the characteristic length scale, the ratio between the inertial effect

and the aerodynamic effect is thus represented by the mass ratioρsh/(ρL), denoted bym∗ here.

In the current study, we choose the chord lengthc for the length scale. From the previously

available insect data,Yin & Luo (2010) estimated that the mass ratio is aroundm∗ = 1 for the

dragonfly used inChenet al. (2008) and aroundm∗ = 5 for the hawkmoth used inCombes

& Daniel (2003b). Using the mass distribution measured byEnnos(1988b), we estimate that

the mass ratio of the hoverfly in his experiment is aroundm∗ = 0.5 near the wing tip. These

estimates give us a sense of relative importance of the inertial force in the wing deformation of

these insects and will form the basis for the choice of the mass ratio in the current study.

In the study byYin & Luo (2010) a numerical simulation of the fluid–structure interaction

for a wing section was performed and the effect of the wing inertia in hovering flight was investi-

gated. By comparingm∗ = 1, 5, and 25, they found that the wing at low mass ratios can achieve

much higher lift per unit power and it does so by yielding itself to the aerodynamic forces and

reducing the drag force. In addition, significant phase difference in the deformation of the wing

was found between the high mass ratio and the low mass ratio cases. In the present work, we use
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a flexible rectangular plate at a low aspect ratio to model theeffect of chordwise deformation in

hovering flight. The plate revolves around a pivot point and meanwhile rotates around its rigid

leading edge to mimic stroke and global pitching (active pitching at the wing root) of a real in-

sect wing. The 3D fluid–structure interaction is solved by coupling an immersed-boundary flow

solver and a nonlinear finite-element method for the structural dynamics. By systematically

varying the wing stiffness, mass ratio, and phase of the global pitching, we hope togain insight

into the interplay among the inertial, aerodynamic, and elastic forces in the flapping flight. The

paper is organized as follows. The problem statement is described in §4.2; results are presented

in §4.3to §4.7 ; and finally conclusions are given in §4.8.

4.2 Problem formulation

We consider a thin rectangular plate of aspect ratio 2 which rotates around thez-axis while

pitching around its leading edge as shown in Figs.4.1(a,b). The plate has a chord lengthc and a

spanwise width ofL = 2c. The leading edge is rigid, but the bulk surface of the plate is flexible

and is both homogeneous and isotropic (Fig.4.1(c)). The wing is activated by the torques at the

pivot point so that the leading edge undergoes two degrees-of-freedom rotations described by

φ =
Aφ
2

sin(2π f t +
π

2
)

α =
Aα
2

sin(2π f t + ϕ), (4.1)

where f is the frequency,φ is the stroke angle defined as the angle between the leading edge and

they-axis,α is the active pitching angle specified at the wing root,ϕ is the phase angle between

wing stroke and the pitching motion withϕ = 0 corresponding to symmetric pitching.Aφ and

Aα are the amplitudes of stroke and pitching, respectively. The kinematics of the leading edge
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Figure 4.1: The wing model used in current study. (a) Configuration and mesh of
a rectangular wing. (b) Sketch of the specified kinematics. (c) Instantaneous wing
deformation during a stroke.

is shown in Figs.4.1(a,b). The origin of the coordinate system is located at the pivot point, and

the length of the wing arm (from the pivot point to the inner edge of the plate) is equal to 0.1c.

In current study, we chooseAφ = 2π/3 andAα = π/3, which are in the range of real insect

data (e.g.Wanget al., 2003; Hedricket al., 2009).

The plate is characterized by its surface densityρsh, whereρs is the density of the solid

andh is the thickness of the plate, Poisson’s ratioνp, and the flexural stiffnessEI, whereE is

Young’s modulus andI = h3/12 is the second moment of area of the cross section. Poisson’s

ratio is assumed to beνp = 0.25. In addition to the phase angleϕ, the other non-dimensional

groups of the problem include the Reynolds number, mass ratio, and frequency ratio of the plate,

which are given by

Re=
Uc
ν
, m∗ =

ρsh
ρc
, ω∗ =

2π f
ωn
, (4.2)

whereU is the characteristic velocity, chosen to be the mean tip-velocity of the leading edge,
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U = 2Aφ f (L + 0.1c) = 8.797c f , ρ andν are the fluid density and viscosity, respectively, and

ωn =
1.87512

c2

√

EI
ρsh

is the first natural frequency of the plate using the classical Euler-Bernoulli

beam theory. Note that when the other parameters are fixed,ω∗ = 0 corresponds to a rigid

plate, and asω∗ is increased, the plate becomes more flexible. An alternative of normalizing the

bending rigidity is to use the dynamic pressure,ρU2 (e.g.Prempraneerachet al., 2003). The

approach in Eq. (4.2) is chosen here since it gives a direct measure of how close the flapping

frequency is to the resonant frequency of the wing structure.

To evaluate the wing performance, we define the liftFL as thez-component of the resultant

fluid force, the dragFD as the force component in thexy-plane and perpendicular to the leading

edge. In each half-stroke, the drag is positive when it is against the translation of the leading

edge. The aerodynamic powerP is computed by integrating the dot product of the fluid force

and local velocity of the wing over the entire wing surface. The lift and drag coefficients,CL and

CD, are defined by normalizing the corresponding force with1
2ρU

2cL, and the power coefficient,

CP, is defined by normalizingP with 1
2ρU

3cL.

4.3 Wing deformation

The wing deformation is dominated by the typical chordwise bending illustrated in Fig.4.2.

Since the bending is greater at the wing-tip than at the root due to the non-uniform load along the

span, the entire wing surface is also warped. To quantify theamount of chordwise deformation,

we define the local passive pitching angle,αp, as the included angle between the deformed

wing and its equilibrium position, measured in a plane perpendicular to the leading edge (see

Fig. 4.2). The effective pitching angle,αe, is then given byαe = α + αp. The active pitching

angle, passive pitching angle, and effective pitching angle at mid-span form∗ = 5 andω∗ = 0.36

are shown in Fig.4.3(a) for an established cycle. Passive angleαp is overall in phase withα.
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Figure 4.2: Illustrations of (a) the deformed wing and chordand (b) definition of the
passive pitching angle,αp.
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Figure 4.3: (a) Active, passive, and effective pitching angles at mid-span in a cycle for
m∗ = 5. (b) Passive pitching angle at mid-span for different mass ratios. In these cases,
ω∗ = 0.36 andϕ = 0.

The magnitude ofαp exhibits two distinct peaks during each half cycle, one taking place during

the wing-acceleration stage and the other during the wing-deceleration stage. The temporal

characteristics of the passive pitching angle can be explained by the combination of the wing

inertia, the aerodynamic drag and lift, and the elastic force at different phases of a single stroke.

The passive pitching angle at mid-span is plotted in Fig.4.3(b) for different mass ratios. For

all the cases,αp has two peaks within each half cycle. The two peaks are more visible as

m∗ is increased, indicating the natural vibration of wing becomes more significant at higher
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mass ratios. The natural vibration is most obvious for them∗ = ∞ case, where the aerodynamic

forces are absent. In fact, since there is no external damping in this case, the wing deformation is

significantly aperiodic, with the phases of the two peaks relatively consistent but the magnitudes

varying randomly from cycle to cycle by approximately 30%. On the other hand, for the lowest

mass ratio,m∗ = 0.5, the two peaks are much less clear, indicating that the wingdeformation is

sustained by the aerodynamic forces during mid-stroke.

The instantaneous deformed wing shape is visualized in Fig.4.4for m∗ = 0.5, 5 for a mod-

erate rigidity (tip view). Surface warping(spanwise deformation) is characterized by showing

both base and tip edges. Form∗ = 5, large surface warping is observed during wing reversal

when the wing experiences the greatest acceleration, and only small spanwise deformation is

seen during mid-stroke. Form∗ = 0.5, large spanwise deformation is observed during both

wing reversal and mid-stroke, and its magnitude is much higher than that in the case ofm∗ = 5,

especially during wing reversal. Chordwise deformation will be discussed later.

The two-peak oscillations in the pitching angle are also observed in real insect wings (Walker

et al., 2010, see Fig.4 in). In the present case, the first peak is caused bythe inertia force and the

second one has significant contribution from the flow. As seenfrom the plot ofαe in Fig. 4.3(a),

the temporal behavior of the passive pitching causes the total pitching angle to deviate from the

active pitching significantly. Such deviation has an important effect on the lift and drag forces

and will be discussed later in § 4.4.

Pitching torques(the torque with respect to the leading edge) are checked to understand the

temporal behavior of the wing deformation. The results are shown in Fig.4.5 for the cases of

m∗ = 0.5, 1, and 5. These cases correspond to those in Fig.4.3(b). Form∗ = 5, the maximum

inertial torque takes place soon after the start of the stroke or somewhere before one-forth of

the half cycle. In comparison, the aerodynamic torque is much lower and is only comparable
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(a) m∗ = 5

(b) m∗ = 0.5

Figure 4.4: Wing deformation in one flapping cycle as viewed by following the leading
edge and from the wing tip to base, where the thick line is the tip edge and the thin line
is the base edge. The cases here are (a) m∗ = 5 and (b) m∗ = 0.5,ω∗ = 0.36, andϕ = 0.
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Figure 4.5: Instantaneous inertial and aerodynamic torques around the leading edge
reduced by1

2ρU
2c2L for (a) m∗ = 5, (b)m∗ = 1, and (c)m∗ = 0.5 whereω∗ = 0.36 and

ϕ = 0. Here the torques are normalized by1
2ρU

2c2L.

to the second peak of the inertial torque. As the mass ratio isreduced, the aerodynamic torque

becomes more important relative to the inertial torque. Theaerodynamic torque reaches its

maximum level well after the inertial torque and has a much longer duration. In the cases of
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Figure 4.6: Passive pitch angle at mid-span in one cycle for cases of various frequency
ratios for (a) m∗ = 5, (b) m∗ = 1 and (c) m∗ = 0.5.

m∗ = 1 and 0.5, the second peak of the inertial torque has disappeared due to the increased fluid

damping.

From the torque plots, it is straightforward to explain the behavior of the passive pitching

in Fig. 4.3(b). At mass ratiom∗ = 0.5, the total torque is relatively constant during much of

the half-stroke and has produced a similar pattern in the passive pitching angle. In addition, the

opposite aerodynamic torque before and during stroke reversal works against the inertial torque

for the low mass ratios, and thus the pitching rotation of thewing is delayed form∗ = 0.5 and 1.

The effect of wing rigidity on the passive pitching angle at mid-span is shown in Fig.4.6

for mass ratiosm∗ = 0.5, 1, and 5. For all the mass ratios, the maximum value of the passive

pitching angle is raised as the frequency ratioω∗ increases. This value varies between 11.5◦

and 38◦ for m∗ = 5 asω∗ goes from 0.25 to 0.51. The range of variation decreases for lower

mass ratios mainly due to raising of second peak. The figure also shows that in the most flexible

case,ω∗ = 0.51, the two-peak pattern ofαp disappears and is replaced by a much wider single

peak for all three mass ratios. For low mass ratios such asm∗ = 0.5, the single peak ofαp at

ω∗ = 0.51 has a nearly flat top and is apparently caused by the prolonged aerodynamic effect.

In the cases of low mass ratios and high frequency ratios (e.g., m∗ = 0.5 andω∗ = 0.51),αp has

an opposite sign in the beginning of a half-stroke compared to the rest of the half-stroke. That

is, αp is negative att/T = 0 and positive att/T = 0.5, which means that the wing rotation at
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stroke reversal is delayed. The situation is opposite for high mass ratios. In the case ofm∗ = 5,

the wing rotation at stroke reversal is advanced.

4.4 Lift, drag and aerodynamic power

The instantaneous lift and drag coefficients are shown in Figs.4.7(a-d), the corresponding

effective pitching angle,αe, is plotted in Fig.4.7(e,f). All lift graphs display a single peak

around or after the mid-stroke due to the sinusoidal kinematics. For low mass ratio, as the wing

becomes more flexible the peak lift is reduced. There are two possible reasons for this reduction.

First, the effective angle of attack, defined as the angle between straightline connecting leading

and trailing edges of a chord and the direction of the stroke,is lower as the wing deforms

more. According toDickinsonet al.(1999), the optimal angle of attack is around 45◦ for a rigid

uncambered wing. The lowest angle of attack in the present case is near 25◦ for the most flexible

case. Second, the deformed chord forms a reverse camber, as seen in Fig.4.4, and is thus not

beneficial for lift production.

For m∗ = 5, the value and timing of the peak lift do not appear to have a consistent trend.

Instead, the lift may peak either before, near, or after the mid-stroke. This can be explained

by looking at the characteristics of wing deformation. For the wing atω∗ = 0.36, the passive

pitching angle history in Fig.4.3(a) shows thatαp has a sharp drop after the first peak, which

suggests that the wing is recovering its shape due to elasticrebound. Such a quick recovery

counteracts the active pitching and leads a sudden drop in the effective pitching angle prior to

mid-stroke as seen in Fig.4.7(f). Thus, the trailing edge of the wing presses downward and

produces extra lift, causing the total lift to peak before mid-stroke. This effect is not obvious

for m∗ = 0.5 where the aerodynamic forces act as a strong damping sourcedelaying the wing

recovery.
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Figure 4.7: Lift (a,b), drag (c,d), and effective pitch (e,f) histories form∗ = 0.5(left
column) andm∗ = 5(right column). The phaseϕ = 0.

The drag histories plotted in Fig.4.7(d) show that the drag produced by the flexible wing

is comparable to that by the rigid wing. This result is in sharp contrast with that form∗ = 0.5.

Generally the drag by higher mass ratio wings is much larger due to the elastic recovery, which

does not only increase the frontal area of the wing but also cause the wing to move faster relative

to the fluid.

From the histories of the aerodynamic forces and wing deformation, we see that the lift and

drag of a flexible wing depends not only on the instantaneous pitching angle but also on the rate

of pitch and camber of the wing. To compare the overall performance of the wings, we compute

the mean force and power coefficients for all the cases. The averaged data are taken over several
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established cycles. The results are shown in Fig.4.8, from which we may see clearly the effect

of wing flexibility and inertia.

The mean lift coefficient is plotted against the frequency ratio in Fig.4.8(a) for the three

mass ratios,m∗ = 0.5, 1, and 5. Here the rigid wing is represented by the caseω∗ = 0, at

which the wing inertia has no effect on the aerodynamics since the wing kinematics has been

prescribed. For each mass ratio, we see that moderate wing flexibility increases the lift, but

exceeding flexibility may not help with lift production and even leads to lift loss. As discussed

earlier, the lift augmentation mechanisms for different mass ratios are not entirely the same. At

high mass ratios, the lift enhancement is due to the passive rotation of the wing during elastic

recovery, while at low mass ratios, the enhancement is more likely due to a combination of wing

recovery and the prolonged favorable angle of attack duringa stroke. Similar to the 2D study

by Yin & Luo (2010), there exists an optimalω∗ at which the highest lift is produced, and this

optimal point moves to a higher value as the mass ratio is raised. Figure.4.8(a) shows that the

optimalω∗ is around 0.2, 0.25, and 0.35 for the mass ratiom∗ = 0.5, 1, and 5, respectively.

Furthermore, the figure shows that the maximum lift is higherfor the wing with larger mass

ratios. This maximum value is̄CL = 0.55 for m∗ = 0.5 andC̄L = 0.65 for m∗ = 5.

Figure.4.8(b) shows the mean drag coefficient for the three mass ratios and a range of wing

flexibility. The overall trend is that the drag drops when thewing flexibility is increased. At the

highest mass ratio,m∗ = 5, the drag is only slightly lower than that of the rigid wing for most

of the cases except forω∗ = 0.51, where the drag is also significantly reduced. The lowest mass

ratio,m∗ = 0.5, has the lowest drag among the three mass ratios, which is understandable since

the wing yields to the aerodynamic torque during wing translation and on average it has the least

frontal area and the lowest rate of pitch. This result is consistent to the 2D study inYin & Luo

(2010).
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Figure 4.8: Mean lift (a), drag (b), power (c) coefficients and lift-to-power ratio (d) for
the three mass ratios andϕ = 0.

The elastic wing serves as an energy capacitor by temporarily storing energy in the forms

of elastic potential and later releasing it in the forms of kinetic energy and work output done on

the fluid. In Figs.4.8(c,d) we plot the mean power coefficient and the aerodynamic efficiency.

Unlike the 2D study ofYin & Luo (2010), here we exclude the inertial power and evaluate

the power efficiency by calculating the net aerodynamic power only. The power coefficient in

Fig. 4.8(c) displays a similar trend as the drag coefficient asω∗ and m∗ are varied. This is

because most of the energy has been consumed through the dragrather than through the lift.
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For m∗ = 5 the power coefficient does not change significantly asω∗ is varied. For the other

two mass ratios, the power coefficient drops quickly asω∗ is increased. The efficiency plotted

in Fig. 4.8(d) clearly shows the advantage of the wings with moderate flexibility. The optimal

flexibility for all three mass ratios is aroundω∗ = 0.3 to 0.35, where the peak efficiency is about

CL/CP = 0.62 form∗ = 5, 0.70 form∗ = 1, and 0.74 form∗ = 0.5. These values are significantly

higher than the efficiency in the rigid case, which hasCL/CP = 0.51. At all frequency ratios

exceptω∗ = 0, the lift efficiency is increased asm∗ is reduced. This result can be explained from

the considerably low drag generated by the wing with a low mass ratio.

4.5 Advanced and delayed pitching

We have seen that in the present simulation, the chordwise flexibility increases the effective

pitching angle of the wing. In addition, a high mass ratio leads to an advanced pitching motion

with respect to the wing stroke, while a low mass ratio leads to a delayed pitching. Furthermore,

we have shown that the timing of the passive pitching has an important effect on aerodynamic

forces and power efficiency of the wing. These observations motivate us to vary the phase of the

active pitching and then see if the wing deformation still has the similar effect, i.e., causing the

pitching motion to be further advanced or delayed. This study is done by setting the phase angle

in (4.1) to ϕ = π/4 for advanced pitching orϕ = −π/4 for delayed pitching, which are typical

values used in previous wing models (Wanget al., 2004; Eldredgeet al., 2010).

The time-averaged lift, drag, power, and lift-to-power coefficients for both advanced and

delayed pitching are plotted in Fig.4.9 for mass ratiosm∗ = 0.5 and 5 and for a sequence of

frequency ratios. Overall, advanced pitching leads to muchhigher lift, drag, and power than

delayed pitching, and the symmetric pitching cases fall roughly between those for advanced and

delayed pitching here. Moderate wing flexibility again significantly increase the lift regardless
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the mass ratio. In addition, the wing flexibility at the low mass ratio leads to a much lower

aerodynamic power than the rigid case, while the power consumption at the high mass ratio is

comparable with that of the rigid case. As a result, all the flexible cases have higher lift-to-

power efficiency than the corresponding rigid case, no matter the active pitching is delayed or

advanced.

There are several common features among symmetric, delayed, and advanced pitching.

First, the case ofm∗ = 5 has a little lower lift than the case ofm∗ = 0.5 at low frequency

ratios but has a much higher lift at large frequency ratios. Second, the high mass ratio also

corresponds to a higher drag and thus greater power requirement. Third, the net gain ofm∗ = 5

as measured by the lift-to-power ratio turns out to be lower than that ofm∗ = 0.5 for most of

the cases. One exception is in Fig.4.9(d), where for the case withm∗ = 5 and delayed pitching,

the power efficiency increases nearly monotonically asω∗ is raised and is even higher than that

of m∗ = 0.5 whenω∗ = 0.51. It can be found the passive pitching in this case has compensated

the delayed active pitching, rendering an almost symmetricwing motion to generate larger lift.

From our simulation results, symmetric pitching generallyleads to the highest lift efficiency at

constant mass and frequency ratios.
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Figure 4.9: Mean lift (a), drag (b), power (c), and lift-to-power (d) coefficients for ad-
vanced (thin-solid lines) and delayed pitching (dashed lines) wherem∗ = 0.5 (squares)
andm∗ = 5 ( triangles). The corresponding cases with symmetric pitching are re-plotted
here as thick-solid lines for comparison.
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4.6 Vortical structures

Vortex structures are visualized by plotting the isosurface of the maximal imaginary part

of complex eigenvalues of the velocity gradient tensor,Λmax. This quantity has been used

previously to capture the topological flow patterns in a 3D flow field (e.g.Dong et al., 2006).

Figure.4.10shows the vortex evolution during a half cycle for the case ofm∗ = 1, ω∗ = 0.36,

andϕ = 0. From the flow field we can identify a few major vortical structures. First, the leading

edge vortex(LEV) can be seen formed on the back side of the wing, and along the leading edge,

it becomes stronger from the wing base to a location near the tip. The LEV is captured by

the wing after the wing reversal and thus interacts with the wing. Second, a tip vortex (TV) is

seen in the figure at, e.g.,t/T = 0.75 and 0.85, which is formed at the tip edge of the wing

and stretches into the wake as a long vortex filament. Third, atrailing edge vortex (TEV) is

formed behind the wing and is connected to the trailing edge through a thin vortex sheet. In

addition to these three major vortical structures, a vortexfilament is formed around the base

edge of the wing and also stretches into the wake; a semi-ringlike vortex wraps around the tip

vortex filament and is formed during wing reversal near the corner between the wing tip and

the trailing edge. Termed BV and CV here, the last two vortical structures are largely affected

by the particular choice of the rectangular wing shape in thecurrent study. These vortices are

connected to each other and form a vortex loop during wing translation. During wing reversal,

these vortices would shed from the wing surface, except thata large portion of the LEV away

from the tip would remain connected to the leading edge. Overall, the vortices pinched off

from the wing travel in the negativez-direction along with the net downwash flow. The vortex

loop seen here is a typical flow feature observed previously for low-aspect-ratio rigid flapping

foils (e.g.Triantafyllouet al., 2004; Taira & Colonius, 2009) (also see figure2.14). One major

difference in the present study is that the wing flaps by rotating around a pivot point, while
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Figure 4.10: Vortical structures forRe= 176,m∗ = 1,ω∗ = 0.36, andϕ = 0 att/T = 0.5
(stroke reversal), 0.6, 0.75 (mid-stroke), and 0.85. The contour level is 10U/c.

in previous studies the wing motion is uniform along the span. As a result, the BV here is

much weaker than the TV. Furthermore, since the present wingis perform a hovering motion

and there is no freestream flow, the vortex loop is disrupted by the wing after reversal. For

a pitching/heaving foil in a freestream, the vortex loops would be convected away from the

foil, and those vortices from consecutive flapping cycles would be typically interconnected (e.g.

Triantafyllouet al., 2004).

In Fig.4.11, we show the vortical structures in the flow for a rigid case and two flexible cases

with m∗ = 0.5, 5 andω∗ = 0.36. Symmetric pitching is used in these cases. Both mid-stroke and

wing reversal are shown. Overall, the major vortices in these three cases have a similar topology.

Differences in the evolution and shedding of these vortices can be observed by inspecting the

temporal series of the plots, and these differences are related to the dynamic deformation of the

wing.

Fig. 4.12shows the corresponding flow field in a horizontal plane and the spanwise velocity

during mid-stroke for the rigid case and the case withm∗ = 0.5 andω∗ = 0.36. Comparing

the two cases, we notice that for the rigid wing there is a consistent spanwise flow along much

of the wingspan, while the spanwise flow is concentrated nearthe wing tip for the flexible

wing. To explain the phenomenon, we point out that the warpedsurface of the flexible wing

has an impedance effect on the spanwise flow. In addition, the larger deformationof the wing
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Figure 4.11: Vortical structures for (a,d) the rigid case, (b,e)m∗ = 0.5 andω∗ = 0.36,
and (c,f)m∗ = 5 andω∗ = 0.36,ϕ = 0, andRe= 176 during (a-c) mid-stroke and (d-f)
wing reversal. The contour level is 10U/c.

tip reduces the difference in the actual velocity between the tip edge and the base edge. As a

result, these is less need for the fluid to move toward the tip to compensate an otherwise void

space created due to the wing displacement. To conclude, the3D wing deformation may have a

significant effect on the spanwise flow of a flapping wing.

4.7 Effect of the Reynolds number

To investigate the influence of the Reynolds number, we setRe= 500 and 1000 and run se-

lected cases on the high-resolution grid discussed in the grid convergence test. At each Reynolds

number, two simulations are run withm∗ = 1 or 5 andω∗ = 0.36. Figure.4.13shows the flow

field for the case withRe= 500 andm∗ = 1. In comparison with the low-Recases presented

earlier, this case contains a much more complex wake with randomly oriented vortices. Nev-

ertheless, some major vortical structures such as the leading edge vortex and the long vortex
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(a) (b)

Figure 4.12: Top view of the velocity field in the planec/3 below the leading edge
(thick line) for (a) the rigid case and (b)m∗ = 0.5 andω∗ = 0.36,ϕ = 0, andRe= 176
during mid-stroke. Vectors at every three points are shown,and the contours represent
they−velocity component.

Figure 4.13: Vortical structures forRe = 500, m∗ = 1, ω∗ = 0.36, andϕ = 0 at
t/T = 0.5 (stroke reversal), 0.6, 0.75 (mid-stroke), and 0.85. The contour level is
10U/c.

filaments stretched from the tip vortex and the base vortex can be still clearly identified. The

other major vortices develop finer-scale irregularities during their formation and once pinched

off from the wing, they soon break up into smaller vortices spread in the wake. The effect of the

Reynolds number on the wing deformation is found to be small.Especially for the high mass

ratio, m∗ = 5 the Reynolds number has only a slight effect on the dynamics of the wing due to

the relatively low influence of the fluid forces.

The effect of the Reynolds number on the aerodynamic performance ofthe wing is summa-

rized by the statistics in Table4.1. Comparing the lift coefficient at the three Reynolds numbers
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Re CL CD CP CL/CD CL/CP

176 0.54 0.83 0.78 0.64 0.69
m∗ = 1 500 0.60 0.81 0.76 0.74 0.78

1000 0.62 0.79 0.75 0.79 0.83
176 0.66 1.23 1.07 0.54 0.62

m∗ = 5 500 0.72 1.23 1.07 0.58 0.67
1000 0.74 1.22 1.08 0.61 0.69

Table 4.1: Comparison of the aerodynamic performance at different Reynolds numbers,
whereω∗ = 0.36 andϕ = 0.

from Re= 176 toRe= 1000, we see that there is a 16% increase inCL for m∗ = 1 and 12%

for m∗ = 5. For the drag and power coefficients, varying the Reynolds number has only a slight

effect on the data. As a result, both the lift-to-drag and the lift-to-power ratios have increased

asRe is raised. Specifically, form∗ = 1, CL/CD andCL/CP have grown by 22% and 19%,

respectively, asRegoes from 176 to 1000. while form∗ = 5, the increments are by 13% and

11%, respectively. Finally, we compare the two mass ratios at the same Reynolds number, and

we notice that them∗ = 5 case has consistently higher lift and drag than them∗ = 1 case but

meanwhile the former has lower aerodynamic efficiency.

4.8 Conclusion

Here we have performed a three-dimensional simulation of the fluid–structure interaction of

a low-aspect-ratio rectangular wing performing a hovering-type of flapping motion. The wing

surface is clamped to a rigid leading edge and is otherwise free to deform. The simulation shows

that the chordwise deformation of the wing causes a dynamic pitching in addition to the active

pitching applied at the wing root. The aerodynamic performance of the wing is affected not only

by the increased pitching amplitude due to the deformation but also by the phase and rate of the

passive pitch.

Other than the specified kinematics at the wing root and the stiffness of the wing, the dy-
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namic pitching also largely depends on the mass ratio, whichrepresents the relative importance

of the wing inertia and aerodynamic forces in the wing deformation. At high mass ratios where

the inertial torque is dominant, a phase advance is producedin the effective pitching angle dur-

ing stroke reversal by the wing deformation, while at low mass ratios where the aerodynamic

torque becomes equally important, a phase delay is producedduring stroke reversal. During

wing translation, the rate of passive pitch varies due to thecombined inertial acceleration, elas-

tic recovery, and in the case of low mass ratios, aerodynamicdamping.

Whenω/ωn ≤ 0.3, the wing deformation significantly enhances the lift production and also

improves the lift efficiency although a disadvantageous camber is formed during wing stroke.

In particular, when the inertial pitching torque near wing reversal is assisted by an aerodynamic

torque of comparable magnitude during wing translation, the lift efficiency can be markedly

improved. This result thus confirms the insightful hypothesis by Ennos(1988a). Furthermore,

the performance of the flexible wing is found to be consistentfor different phase angles of active

pitching and Reynolds numbers.

In the present study the wing-root kinematics is fixed. In thereal world, insects with dif-

ferent wing stiffness and mass ratios could achieve their best performance byoptimizing the

wing-root kinematics. The wing deformation in this study isalso largely limited to chordwise

bending since the leading edge is rigid.
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CHAPTER V

AN INTEGRATED STUDY OF THE AERODYNAMICS AND AEROELASTICITY OF

THE CICADA FOREWING

5.1 Background

The membranous wings of insects are very thin structures (typically less than 100µm in

thickness). Nevertheless, these wings have to endure the forces of large magnitude which are

generated during their high-frequency flapping motion. Forexample, blowflies are capable of

producing up to 2g of horizontal acceleration and 1g of vertical acceleration in flight (Schilstra

& Hateren, 1999), which means that the aerodynamic force on the wing can be twice as great as

the body weight of the insect. Reinforced by a vein network and other structural features such

as the surface corrugation and camber, the insect wings havean excellent design that provides

the necessary stiffness and is meanwhile mass efficient. However, the insect wings are not

meant to be as rigid as possible with given mass, as pointed out by Ennos(1988a). Allowing

certain amount of deformability could reduce the impact load from environmental disturbances

(e.g., running into a solid object or wing gust). In addition, the deformation could be beneficial

to the aerodynamics of the wing as well. This function has been suggested by several previous

studies (Walkeret al., 2010; Younget al., 2009; Yin & Luo, 2010) and our own studies presented

in previous chapters.

Identifying the structural mechanism and the physical effect that leads to the wing defor-

mation is important for guiding modeling of the aeroelasticity of insect wings. First, wing

deformation of an insect is passive, and it may be caused by either the inertial force of the wing,
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the aerodynamic force from the surrounding air, or a combination of both. Several studies have

addressed the cause to the deformation and its particular pattern. Ennos(1988b) measured the

mass distribution of the wings of two species of flies and showed that the wing inertia alone

could develop the angular velocity around the torsional axis of the wing that is observed at

stroke reversal (assuming the torsional axis to be compliant enough to allow such a rotation).

Ennos(1988a) then used a simple static analysis to study the mechanical behavior of a model

insect wing consisting of a few veins branching from the leading edge, and he also subjected

the wings of three species of flies to static point-force tests. Several important conclusions were

made from his study. First, torsion of the leading edge spar would result in spanwise twist of

the wing and also set up a camber automatically due to the corresponding rotational responses

of the obliquely arranged vein branches. As for the conventional airplane wings, the camber

formed by the wing deformation would be favorable for lift production. Second, he estimated

that the aerodynamic forces produced during the wing strokes (assumed to be at the same mag-

nitude as the body weight of the insect) will be sufficient to generate the observed torsion and

camber, and to maintain the changes in pitch caused by inertial effects at stroke reversal. In

another study,Combes & Daniel(2003b) compared vibrations of the excised hawkmoth wing

in air and in helium (15% of the air density) and noticed that the deformation patterns in the two

cases are close to each other. Their result suggests that thehawkmoth wing is mainly deformed

by the wing inertia during stroke. For some other insects, however, evidences suggest that aero-

dynamic forces can be at least comparable, if not dominant, to the wing inertia, as discussed in

our recent work (Yin & Luo, 2010; Dai. et al., 2012). If the aerodynamics forces are significant

in determining the wing dynamics, then a two-way fluid–structure interaction (FSI) has to be

solved to capture the deformation of the wing in a computational study.

As the computing power and experimental techniques have advanced in recent years, further
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studies are carried to investigate the effect of the wing deformation on the aerodynamic perfor-

mance. These computational (Zhu, 2007; Michelin & Llewellyn Smith, 2009; Vanellaet al.,

2009; Eldredgeet al., 2010; Yin & Luo, 2010; Dai. et al., 2012) and experimental (Prempra-

neerachet al., 2003; Heathcoteet al., 2004, 2008) studies typically use heaving and pitching

foils as simplified wing models, and they have shown that thatwing flexibility may lead to sig-

nificant benefit to the aerodynamic force production and power efficiency. A study that uses a

more realistic insect model is byYounget al.(2009), who performed a full-body numerical sim-

ulation of the forward flight of locusts by incorporating thewing kinematics reconstructed from

high-speed imaging. For comparison, they also performed flight simulations based the modified

wing kinematics by removing the camber and spanwise twist from the full-fidelity wing mo-

tion. One major limitation of this study is that the fluid–structure interaction is excluded from

the study. Furthermore, the effect of the wing deformation is limited to static features such as

camber and spanwise twist. For flapping wings, since the wingshape is time-varying, it is ex-

pected that the dynamic deformation may also play a role in the aerodynamics. In our previous

work, Dai. et al. (2012) used a rectangular wing in hovering motion and showed that not only

the amount of wing deformation, but also the rate and phase ofthe deformation, lead to marked

differences in the aerodynamics of the wing.

Having discussed the causes of the wing deformation and the multiple manners in which the

wing deformation affects the aerodynamics, we note that there have been very limited attempts

to simulate the fluid–structure interaction using a realistic insect wing model that incorporates

the inhomogeneous and anisotropic behavior of the wing. There are possibly two major reasons

for this shortage of study. First, such a study would be very challenging due to the high cost

associated with the moving boundary, large displacement, and iteration for solving the fluid and

structure. Second, it remains an open question what kind of balance is appropriate between the
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model complexity and the computational cost that one could afford. Note that the insect vein

itself has a complex microstructure which strongly affects its macro properties (Ren & Wang,

2012). Furthermore the wing is not an ideal 2D planar surface but have complex corrugations.

Including all these details into the wing structure obviously would not only require strenuous

effort and but also render a model that is very difficult to compute. It is therefore our goal in the

current work to address both these two issues.

As discussed in previous chapters, we have developed a three-dimensional numerical ap-

proach to simulate the interaction between a viscous unsteady flow and deformable thin struc-

tures. The in-house code features a flow solver based on the Cartesian grid immersed-boundary

method and a finite-element solver that incorporates a variety of structural types such as frame,

membrane, and plate elements. The program is particular suitable for modeling insect wings.

In the current work, this numerical method will be integrated with an experimental approach to

model the aerodynamic function of a full wing. More specifically, we use the cicada forewing

as a case study. A nonlinear finite-element model is developed based on the experimental mea-

surements of the mass and elastic properties of the structural elements, i.e., the membrane and

veins. In addition, a high-speed camera is used to film the wing motion for the tethered insect.

The wing-root kinematics is reconstructed from the video, and the deformation pattern observed

from the video is used to validate the simulated wing dynamics from the FSI model. The work

described here is the first attempt, at our best knowledge, that utilize such an integrated approach

to develop a high-fidelity model for the aerodynamics and aeroelasticity of flapping wings in na-

ture. We envision such a computational tool and the modelingmethodology will become very

useful for the future studies of insect flight and for the development of man-made biomimetic

aerial vehicles.
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5.2 Some discussions of the scaling parameters of the insectwing

Leaving out the details of the surface corrugation and the distribution and orientation of the

veins, the bulk wing surface can be approximated as a homogeneous and isotropic plate. The

basic dimensional parameters involved in the FSI problem include the density of the wing mate-

rial, ρs, wing thickness,h, Young’s modulus,E, a characteristic length such as the chord length,

c, wing lengthL, fluid density,ρ f , viscosityµ, and flapping frequencyf or ω = 2π f . Note

that if the wing is approximated by an infinitely thin plate with equivalent mass and stiffness,

the thickness ratio,h/c, does not have to show up in the dimensionless groups, as the surface

density can be normalized asm∗ = ρsh/(ρ f c), as in the previous chapters. The mass ratio is

defined to roughly represent the relative importance of the inertial force of the wing per unit

surface area with respect to the dynamic pressure. For flexible wings,m∗ >> 1 corresponds to

the situation where the wing deformation is dominated by thewing’s own inertia. On the other

hand,m∗ << 1 corresponds to the situation where the deformation is caused mainly by the fluid

force. Experiments done in air (e.g.Ramananarivoet al., 2011) typically falls in the former

situation, while those in water (e.g,Heathcoteet al., 2008) is the later situation due to the much

higher density of water.

In the context of insect flight, we can define the mass ratio as follows. A wing with a

length ofL flapping in an angular magnitude ofΦ and frequency off has a mean tip velocity

U = 2LΦ f , and a mean tip accelerationa = 4πΦ f 2L, then the ratio of the inertial force to the

fluid force on a unit area at the wing tip, or the mass ratio, is expressed as

ρsha
1
2ρ f U2

=
ρsh4πΦ f 2L
1
2ρ f (2LΦ f )2

=
2πρsh
ρ f LΦ

(5.1)

To scale the flexural stiffness of the wing, either the dynamic pressure or the inertialforce of

the wing can be used, since the elastic force would balance these two external forces. In previous
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chapter, we showed that form∗ = 0.5 such as fruitfly wings (Ennos, 1988b; Dai. et al., 2012), the

aerodynamic pitching torque is comparable in magnitude to the inertial torque of the wing, and

for largerm∗ like dragonflies (Chenet al., 2008; Dai. et al., 2012) and hawkmoths (Combes &

Daniel, 2003b; Dai. et al., 2012), the inertial torque is greater. Thus, it is appropriate toscale the

bending stiffness,EI, I = h3/12, using the inertial force,ρshU2/c, and a dimensionless group,

EI/(ρshU2c2), would be formed. IfU = c f is used and we take the inverse of the square root of

this dimensionless parameter and then multiply it by a constant, we get the frequency ratio,ω∗ =

f / fn, where fn ∝ 1/c2
√

EI/(ρsh) is the natural frequency of the first mode of the chordwise

bending. In the context of insect wings,ω∗ is between 0 and 1, whereω∗ = 0 corresponds to a

rigid wing andω∗ = 1 corresponds to the case in which the wing flaps at its resonant frequency

to cause large deformation. It should be noted that several recent studies (Vanellaet al., 2009;

Yin & Luo, 2010; Ramananarivoet al., 2011) have suggested that insect wings should operate at

significantly lower frequencies than the resonant frequency since the overly large deformation

is not beneficial for force production.

The mechanics of the vein branches could be analyzed using simplified cylindric beam

model. A beam element is characterized by the length,l, linear density,ρsA, where A is

the area of the cross section, the bending stiffness,EIyy, whereIyy is the second moment of

area about the symmetry plane, and the torsional stiffness,GJ, whereG is the shear mod-

ulus andJ is the torsional constant. The frequency ratioω∗ = f / fn can again be used to

represent the normalized flexibility of the beam structure.The natural frequency of bending

deformation isfn ∝ 1/l2
√

EIyy/(ρsA), and the natural frequency of torsional deformation is

fn ∝ 1/l
√

GJ/(ρsIzz), whereIzz is the polar moment of inertia of area of the cross section.
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Figure 5.1: (a) The magicicada used in this study. (b) Forewings and hind wings re-
moved from the cicada, where the markers are labeled for the imaging experiment. (c)
The forewing is sliced into three parts for mass measurement.

Wing length (L) Chord width (c) Flapping frequency (f ) Stoke amplitude (Φ)
3 cm 0.76 cm 25 Hz 120◦

Table 5.1: The characteristic geometric and kinematic dataof the cicada forewing.

5.3 Measurement of the elastic properties of the cicada wing

The subjects used in this study are the periodic 13-year species ofMagicicada tredecassini

(Brood XIX) captured in the summer of 2011 when a large population of thespecies emerged

in the middle Tennessee (Fig.5.1(a)). The average body weight of Magicicada tredecassini

is 185 mg based on a sample of around 50 individuals by a reportfrom Ginger Rowell and
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Wing portion A B C C (base) C (tip)
Mass (mg) 1.28±0.11 2.60±0.33 3.04±0.68 1.7 0.35

Area/linear density 0.9 2.6 – 1.7 0.35

Table 5.2: Mass of each part from the cicada forewing. The unit of the area density is
mg/cm2, and the unit for the linear density is mg/cm.

Robert Grammer in Belmont College. The characteristic dataof the insect’s forewing are listed

in Table5.1. To obtain the mass distribution, each of the forewing samples is sliced into three

parts: the distal half (A), the proximal half (B), and the leading-edge spar (C), as shown in

Fig. 5.1(b). Each part is measure separately. The leading-edge sparis further split into two

segments: a distal segment and a proximal segment, each segment being 1 cm long. The mass

of each part is measured by an electronic balance with an accuracy of 0.1 mg. For the two

leading-edge segments, 10 samples of each segment are measured together. Images of the two

wing surface parts are taken and imported into Matlab, and their areas are calculated by tracing

the boundary. The average mass of each part, the area densityof parts A and B, and the linear

density of the leading-edge segments are then calculated. The data are listed in Table5.2. The

mean chord length,c = S/L, whereS is the total surface area, of a typical wing is 0.76 cm.

Using Eq. (5.1), the mass ratio of the distal area is around 0.85. For the calcualtion, we have

usedΦ = 120◦, L=3 cm, andρ f=1.2 mg/cm3. This mass ratio implies both the inertial and fluid

forces are important in causing the wing deformation. Therefore, two-way coupling is necessary

in the study of the fluid–structure interaction in this case.

The flexural stiffness of veins and membrane surface is measured on the samplesexcised

from the wings. The samples are selected from various sites on the wing according the distribu-

tion and orientation of the veins. These samples are shown inFig. 5.2(a), where 6 pieces from

each forewing are taken and labeled as F1 to F6. All of them aresliced into roughly rectangular

pieces with a length of approximately 5 mm. For each piece, a total of 5 samples are used for
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measuring the bending stiffness, which is done through a sequence of static load tests. Note

that specimen F6 is used for measuring the bending stiffness of the membrane, so the bending

is applied in the perpendicular direction to the veins in thespecimen. The samples are glued to

a glass cover slip, as shown in5.2(b). Then the cover slip is secured using a magnet on a hor-

izontal beam attached to a micrometer stage that can translate vertically. The load is measured

from the same electronic balance as used in the mass measurement. The experimental setup is

shown in Fig.5.3. The specimen on the cover slip is translated down by the micrometer stage so

that it touches the support on the balance. Then the micrometer stage is further translated, each

time by 0.2 mm, and the force reading on the balance is recorded. Each sample is measured

from both ventral and dorsal sides to average out the directional difference. The beam equation

is used to calculate the stiffness of each vein and the membrane. The data from the experimental

tests are listed later in Table5.3along with the values chosen in the FEM model.

5.4 Creation of the finite-element model

In this study, only one forewing of the cicada is modeled, andthe insect body is not included

in the simulation. The finite-element model of the forewing is constructed with a thin membrane

structure reinforced by a network of frame elements with which it shares mesh nodes. A similar

modeling approach is seen inWoottonet al. (2003) who created finite-element models for the

desert locust and sphingid moth wings. In the current model,the membrane is assumed to be

homogeneous and isotropic. The veins are traced in Matlab from a stationary image of the

wing, and they are grouped into seven levels, each with a different diameter, linear density, and

bending stiffness. The cross section of the veins is assumed to be circular. Generally, the veins

close to the wing root and the leading edge are larger in size,and the veins distributed around the

trailing edge and near the tip are weaker structures and are thus subject to larger deformations.
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Figure 5.2: Measurement of the bending stiffness of the representative components from
the cicada forewing. (a) Representative components chosenfor measurement. Note that
F6 will be used for measuring the bending stiffness of the membrane without the vein
effect. (b) Attachment of the samples on a cover slip for the static load test. In (a) some
points are marked with white circles, which include point A on the leading edge, point
B at the trailing edge and closer to the root, point C on the trailing edge and closer to
the tip, and point D at the wing tip. The pivot point is labeledas O. As discussed later,
these points are used in description of the wing kinematics.

Fig. 5.4(a) illustrates the grouping of the veins for the current wing model.

Like many other insect wings, a pre-existing camber is clearly observed on the cicada

forewing at rest. In the present model, we measured the maximum camber by placing the

wing on a flat surface and probing the surface using the micrometer stage. Then distribution of

the camber is prescribed according the characteristic feature of the wing. The contours of the

camber is shown in Fig.5.4(b), where the contours are assumed to be elliptical. The greatest

camber occurs at the wing center with a height of around 10% ofthe chord length. The camber

is concave on the ventral side.
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Figure 5.3: The experimental setup for stiffness measurement.

(a) (b)
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4

Figure 5.4: The FEM model of the cicada forewing. (a) The veingroups on the wing
surface. (b) The contours of the pre-existing camber.

Table5.3 lists the measured stiffness and the values chosen in the wing model for the vein

groups and the wing membrane. Also listed are the assignmentof the linear density of the vein

groups and the surface density of the membrane. Assuming that the cross section of the veins is

circular, the torsional stiffness can be simply calculated based on the bending stiffness.
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Component groups Experimental data Value in the model
EI EI GJ linear/surface density

Vein 1 - 5500 11000 1.33
Vein 2 275±104 275 550 0.46
Vein 3 21.7±12.1 22 44 0.29
Vein 4 10.5±5.5 10.5 21 0.29
Vein 5 4.3±2.8 4.3 8.6 0.17
Vein 6 - 0.5 1.0 0.11
Vein 7 0.37±0.15 0.37 0.74 0.023

Membrane 0.47±0.14 0.47 - 0.40
Total mass 6.4 mg

Table 5.3: Bending stiffness of the veins and membrane stiffness. (Unit: 104 mg·cm3/s2

for the vein stiffness, 104 mg·cm2/s2 for the membrane stiffness, mg/cm for the linear
density of the vein and mg/cm2 for the surface density of the membrane.)

Figure 5.5: The experimental setup for high-speed imaging of the wing motion.

5.5 High-speed imaging and reconstruction of the wing kinematics

For the high-speed imaging experiment, a cicada with the hindwings removed is glued on

a vertical pole and is stimulated to flap, and a high-speed camera from Dr. Jon Edd’s Lab at
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Figure 5.6: High-speed recording of the wing deformation pattern of a cicada tethered
to a pole. The interval on the background scale represents 1 cm length. Significant
spanwise twist can be observed during first half of upstroke.

Vanderbilt University is used to film the insect at 1000 frames per second from a side view. The

experimental setup is shown in Fig.5.5. The wing being filmed is pre-labeled with markers.

Fig. 5.6shows a typical sequence of the deformation pattern as the cicada flaps its wings.

Ideally, it is sufficient to use only one camera to reconstruct the motion of a rigid wing rotat-

ing in 3D space based on a 2D view and the known distance between any two points. However,
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one camera is not enough to achieve full reconstruction of a deformable surface. The attempt

of using only one camera to film from different views at different times for 3D reconstruction

is unfruitful due to the cycle-to-cycle variations of the wing motion. The common technique

to film and reconstruct a real insect wing is to set up multiplecameras to simultaneously take

images, by which the 3D position of any visible point could beextracted accurately (Koehler

et al., 2012).

In the present work, we only need to reconstruct the actuation kinematics at the wing root,

where the wing is much stiffer than the rest part of the wing and experiences little deformation.

Therefore, one camera is sufficient. Once the high-speed videos are taken, the markers on the

wing surface can be traced conveniently using the Matlab software developed by Dr. Tyson

Hedrick at the University of North Carolina at Chapel Hill (Hedrick, 2008).

We track three points near the wing root (one at the root, one on the leading edge, and

one on the trailing edge) as shown in Fig.5.2. Assume this portion of the wing is rigid, and

the distances among these three points are measured after the imaging experiment. The 3D

positions of these points can be reconstructed from the 2D images as discussed later. The other

points on the deformable portion of the wing surface cannot be reconstructed in 3D, but their 2D

positions will be used to validate the fluid–structure simulations. Around 40 frames are obtained

for each flapping cycle, which corresponds to a flapping frequency around 25 Hz (from 23 Hz

to 28 Hz according to our measurements).

Fig. 5.7shows the measured and reconstructed trajectories of the two points on the wing in

a selected cycle from which the periodic motion is constructed for numerical simulations. In the

reconstruction the wing is assumed to rotate around a pivot point, and the three Euler angles are

calculated from the measured data. In Fig.5.7, the reconstructed points match the experimental

data very well.
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Figure 5.7: (a) Trajectory of point A as labeled in Fig.5.2(a); (b) trajectory of point
B as labeled in Fig.5.2(a). The circles are the measured data. The blue curves are
reconstructed trajectories.

The stroke plane is defined as the plane spanned by the highestand the lowest positions of

the wing axis. As in the experiment, the insect body is fixed horizontally in the model. So the

stroke plane is a slightly inclined backward. Once the 2D positions of point A or point B is

obtained from the video, we use the actual distance of the point to the pivot point to calculate

the corresponding 3D positions. As illustrated in Fig.5.8(a), given two coordinatesx and z

(extracted from the 2D video), the third coordinatey of point A can be found if the actual

distance to the rootAO= l is measured,

y =
√

l2 − x2 − z2. (5.2)

As long as the coordinates of point A and point B are known, thethree angles, the stroke
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angle, the deviation angle, and the pitch angle, can be calculated. As shown in Fig.5.8(b) the

stroke plane is defined by the two extreme positions of the leading edge,OH andOL. The po-

sition of the leading edge,OA, is first projected toOB in the stroke plane, whereB is calculated

by

−−→
OB=

−−→
OA− (

−−→
OA · n)n, (5.3)

wheren is the surface normal of the stroke plane. Then the angleα betweenOB and OH,

defined as the stroke angle, is calculated by

cosα =
−−→
OB · −−→OH/(|OB||OH|), (5.4)

and the angleθ betweenOBandOA, defined as the deviation angle, is found by

cosθ =
−−→
OA · −−→OB/(|OA||OB|). (5.5)

Finally, the pitch angle is introduced to specify the self-rotation of the wing around its

leading edge using the convention that the wing surface perpendicular to the stroke plane gives

a zero pitch angle. The histories of these angle reconstructed as discussed above are shown in

Fig. 5.9for a few flapping cycles. The average stroke amplitude is roughly 120◦. There is a 50◦

maximum deviation angle indicating the wing moves behind the stroke plane during upstroke.

The pitch angle can reach 100◦. One typical cycle of these angle histories is selected as the

periodic input for the numerical simulation.
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Figure 5.8: (a) Calculation of the 3D coordinates from 2D images used for the recon-
struction of the wing-root actuation. (b) Definition of the angles used to describe the
wing actuation kinematics.
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Figure 5.9: The stroke angle, the deviation angle, and the pitch angles as reconstructed
from the high-speed imaging data for five flapping cycles.

5.6 Simulation results and discussions

5.6.1 Eigenmodes of the cicada forewing

The single wing simulations are run in a flow domain of 21c × 18c × 22c wherec is the

average chord length of wing, using a grid of 136×128×158 (2.8M) points. The finite-element

wing model is first analyzed numerically by computing its natural modes. The first mode takes
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(a) (b) (c)

Figure 5.10: The first three eigenmodes calculated from the cicada forewing model.
The rest configuration is drawn in black together with the eigenmode shown in red. The
eigenfrequencies are 192, 306 and 466 Hz, respectively.

place at 192 Hz, and as shown in Fig.5.10(a), the mode displays a spanwise twist that mainly

happens at the distal half of the wing. This mode is qualitatively similar to the deformation

mode seen in the high-speed video. The second mode shows chordwise bending deformation

and takes place at 306 Hz. The third mode has a higher-order warping pattern and takes place at

466 Hz. Note all of these modes have much higher frequencies than the flapping frequency of

the wing (25 Hz). Therefore, we can conclude the structural resonance is not dictating the wing

deformation.

5.6.2 Validation of the FSI simulation

A few cycles of the FSI simulation are performed. We first discuss the validation of the

present computational model. For the validation, we compare the simulated trajectory of a point

on the wing with that obtained quantitatively from the high-speed imaging data. Fig.5.11(a,b)

shows the trajectories of point C and point D labeled on the wing. As indicated in Fig.5.2(a),

point C is located on the trailing edge, while point D is located at the wing tip. The trajec-

tories in Fig.5.11(a,b) are in a 2D view (since only 2D images were taken from theimaging

experiment). In Fig.5.11(a,b), we see that the simulated trajectories match the measured trajec-
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Figure 5.11: Comparison of the simulated and the measured wing trajectories. The 2D
trajectory is plotted for (a) point C and (b) point D, which are labeled in Fig.5.2(a).
Red lines are the data points from the imaging experiment, and the blue lines are the
simulation data.
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Figure 5.12: A comparison between the simulated and the filmed wing shapes. The
time stamps aret/T =1/38, 13/38, 22/38, 26/38, 34/38, and 37/38 from left to right.
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tories well during downstroke. However, significant discrepancy can be seen during the early

upstroke, where the simulated trajectories deviate somewhat from the measured data. Next, we

will compare the deformation pattern at different phases.

The wing shapes at a few time moments are compared qualitatively in Fig. 5.12. These

images from the imaging experiment show that during downstroke (a-c), the wing deformation

is not very clear. However, during upstroke (d-e), the wing experiences significant bending and

twisting deformations. These essential features have beencaptured by the numerical simulation.

There are still some notable differences between the simulation and the images. For example,in

Fig.5.12(d) the real wing exhibits some chordwise bending so that thedorsal surface is concave.

This feature is not present in the simulated deformation. Another place is in Fig.5.12(f), the

wing-tip area in the simulation has nearly recovered from its deformation, but the the trailing

edge of the real wing near the tip still shows some twisting. Several factors could have con-

tributed to these differences. First, the distal half of the wing is assumed to be rigid during the

wing-root reconstruction. However, point B in Fig.5.2 is seen to experience some deformation

during upstroke in the video, and thus the area is not completely rigid. Second, only a few veins

are measured in the experiment to obtain the stiffness, and the results are averaged over several

insect samples. Therefore, the exact elastic properties ofthe particular subject used in the video

are not necessarily accurately represented in the model. Despite these differences, the simulated

wing deformation pattern still overall exhibits the significant spanwise twisting during upstroke,

which resembles what is happening for the real insect.

5.6.3 Analysis of the wing deformation pattern

The rigid wing and the simulated flexible wing are plotted together for a few time instances

in Fig. 5.13(a) for both downstroke and upstroke. The comparison allowsus to examine the
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Figure 5.13: Comparison of the simulated flexible wing against the rigid wing. (a) The
flexible wing from the FSI simulation (green) along with the rigid wing (grey) at evenly
distributed time intervals within one cycle. (b) The 2D wingchord at 1/2 wingspan and
3/4 wingspan from the root, where the blue dashed lines represent the rigid wing.
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deformation pattern in 3D. It can be seen that during downstroke, the flexible wing is somewhat

twisted with the trailing edge lagging behind the leading edge. During early upstroke, a substan-

tial first-mode type deformation occurs at a large distal portion of the wing. During remaining

upstroke, the wing recovers most of its shape and the deformation appears to be small. The

2D view of the wing chord at the 1/2 and 3/4 wingspan are drawn in Fig.5.13(b) to show the

chordwise deformation. From this figure, it can be clearly seen that the deformation causes the

change of the angle of attack (AoA), which is defined as the angle between the chord and the

stroke plane. The change of the AoA is more pronounced at the 3/4 wingspan than at the 1/2

wingspan, which is a result due to the spanwise twist of the wing.

The simulated displacement of the wing tip measured at pointD (see Fig.5.2(a)) in the 3D

space is plotted in Fig.5.14(a), where a peak value over 0.4 cm occurs during early upstroke.

This peak displacement is almost twice of the maximum displacement during the entire down-

stroke, which is consistent to the asymmetric deformation pattern as observed in the high-speed

video. As shown earlier, the passive deformation causes an additional pitching motion to a wing

chord. In Fig.5.14(b), we plot the effective pitch angle of the wing chord at the 1/2 and 3/4

wingspan. Note that the pitch angle is the complementary angle of the AoA. The figure shows

that the pitch angle is increased due to the wing deformation. Substracting the active pitch angle

of the wing chord from the effective pitch angle, we obtain the passive pitch angle, whichis

plotted in Fig.5.14(c). At the 3/4 wingspan, the passive pitch angle reaches a peak value of 25◦

after the suppination due to the large wing deformation at the moment. For the 1/2 wingspan,

the peak value is around 15◦. During downstroke, the passive pitch angle is only less than 10◦.

All of these figures have shown significant asymmetry in the wing deformation between

downstroke and upstroke. In particular, the greatest deformation takes place shortly after the

suppination. Overall, the deformation characteristics can be explained from the wing kinemat-
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Figure 5.14: Dynamic pitching motion due to the wing deformation. (a) The history
of the total displacement at the wing tip (measured at point Dmarked in Fig.5.2(a)).
The total displacement is calculated with respect to the rigid wing in 3D from the FSI
simulation. (b) The history of the effective pitch angle at the 3/4 wingspan for the
flexible wing and the rigid wing. (c) The passive pitch angle at the 1/2 and 3/4 wingspan.
In all the figures of this chapter, the first half period represents downstroke and the
second half represents upstroke, unless otherwise noted.

ics, the wing inertial force, and the aerodynamic force fromthe flow. Qualitatively speaking,

the inertial force becomes greatest during suppination andpronation, when the wing experi-

ences largest acceleration and deceleration, and the aerodynamic force becomes greatest during
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the mid stroke when the wing has fastest translational velocity. However, the situation is compli-

cated by the details of the wing kinematics. For example, thewing has a greater angle of attack

during downstroke than during upstroke. Therefore, the aerodynamic force is greater during

downstroke as well. During pronation, the inertial force causes the wing to pitch and perform

some level of passive pronation. Then during downstroke, this passive deformation is sustained

by the great aerodynamic force during this period. Correspondingly, the passive pitch angle is

relatively flat during downstroke, as shown in Fig.5.14(c).

During suppination, the wing again experiences a great inertial force. What makes the sup-

pination different from the pronation is that during suppination, the wing also moves backward

while moving upward. Therefore, the inertial torque on the wing becomes even greater during

suppination. Furthermore, the wing is undergoing elastic recovery from the deformation sus-

tained during the downstroke. As a result, the combined inertial force and elastic overshoot

causes the wing to have large deformation shortly after the suppination. Finally, the pre-existing

camber makes the wing to be structurally asymmetric and alsocontributes to the asymmetric

deformation pattern. This effect will be discussed later.

5.6.4 Lift, thrust, and power of the flexible wing

The averaged lift, thrust, and aerodynamic power for the flexible wing (one single wing)

and the rigid wing are listed in Table5.4. Also listed are the data for the flexible wing with the

pre-exisitng camber removed, which will be discussed later. To compare the wing performance,

we also compute the total aerodynamic force as the resultantforce of the lift and thrust. Since it

is tethered in the experiment, the cicada may want to producelargest force to escape. Therefore,

the force vector may be directed more in the horizontal direction so that it does not have to

counteract the gravity. As seen in the table, the thrust is higher than the lift for both the flexible
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FT FL F P F/P FT/P
(10 mg) (10 mg) (10 mg) (10−4 W) (N/W) (N/W)

Flexible wing 7.2 5.4 9.0 29.1 0.31 0.25
Rigid wing 6.6 6.0 8.9 33.4 0.27 0.20

Uncambered wing 7.9 3.7 8.7 25.0 0.35 0.32

Table 5.4: Thrust (FT), lift ( FL), lift-trust-combined (F), and power (P) of the cicada
forewing from the numerical simulation, which are averagedover a few flapping cycles.
The power economy is calculated by dividing the power by either F or FT . Note that
the force data are shown for one single wing only.

wing and the rigid wing. In addition, since the hindwings areremoved from the insect, the total

force produced by two forewings is only close to the body weight of the insect.

Comparing the flexible and the rigid wings, we find that the flexible wing produces 9.1%

higher thrust, but the lift is approximately 10% lower. The total force of the flexible wing is

about the same as the rigid wing. Looking at the power consumption, we see that the flexible

wing consumes 29.1×10−4 W on average, which is 13% lowered than the 33.4×10−4 W by

the rigid wing. As a result, the power economy, defined by the total forceF per unit power,

is F/P = 0.31 N/W for the flexible wing, which is 15% higher compared to 0.27 N/W by the

rigid wing. Consider that the cicada is tethered in the experiment and the horizontal thrust may

be mainly the useful force for the insect as discussed earlier, we alternatively useFT/P as the

efficiency measure. According to this criterion, the power economy of the flexible wing is 0.25

N/W and is 25% higher than the rigid wing.

The instantaneous lift, thrust, and power are shown in Fig.5.15for the flexible wing and the

rigid wing. Note that lift and thrust are defined here in the global coordinate system. That is, the

lift is in the opposite direction of the gravity, and the thrust is in the horizontal direction. Since

the wing stroke is along the stroke plane, aerodynamic lift and drag can be defined using the

convention of airfoil theory. That is, the aerodynamic liftis perpendicular to the stroke plane,

while the aerodynamic drag is parallel to the stroke plane and opposite to the wing stroke. For
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the cicada tethered in the experiment, the stroke plane angle is about 85◦. Therefore, the aerody-

namic lift contributes to the physiological lift and thrust; the aerodynamic drag contributes to the

physioloigcal lift only during downstroke and to the physiological thrust only during upstroke.

During other times, the aerodynamic drag has negative contributions to the physioloigcal lift or

thrust. With this understanding in mind, we may make connection between the instantaneous

wing posture and the force production.

Fig. 5.15(a) shows that the flexible wing produces somewhat less lift during downstroke

than the rigid wing but also generates less negative lift during upstroke. The reduced lift during

downstroke has to do with the passive wing twist that leads toless projected wing area in the

horizontal plane. Fig.5.15(b) shows that the flexible wing produces slightly greater thrust than

the rigid wing during downstroke and significantly higher thrust during upstroke. The thrust

increase during upstroke has to do with the large wing deformation during early upstroke, where

the wing is moving upward and backward and it has more projected area in the vertical plane

due to the twisting deformation. Fig.5.15(c) shows that the flexible wing requires significantly

lower power during downstroke than the rigid wing and but a similar amount of power during

upstroke. For both the flexible and the rigid wings, more power is required during downstroke.

5.6.5 Wing deformation in vacuum

Have quantified the passive deformation of the flexible wing in air, we now examine the

wing deformation in vacuum, which is done by simply runing the solid-dynamics solver only.

This study will allows us to compare the deformation patternwith that in air and to better

undertand the cause of the wing deformation. Fig.5.16(a,b) shows the wing chord at the 1/2 and

3/4 wingspan locations for both the in-vacuum and the in-flow wing patterns that are obtained

from the numerical simulations. The corresponding instantaneous passive pitch angle for both
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Figure 5.15: Lift, thrust, power comparison between the flexible wing and the rigid
wing, where the history of the lift (a), thrust (b) and aerodynamic power (c) are shown
for two flapping cycles. Note that the data are shown for one single wing.

wings is shown in Fig.5.16(c,d) at the same spanwise locations.

First of all, we see that during wing reversals, the wing in flow has the same amount of

deformation as the wing in vacuum, but the deformation is somwhat delayed in flow. Second,

during downstroke the deformation of the wing in vacuum is much less than that of the wing

in flow. This is because the wing in vacuum does not have the aerodynamic force to sustain

its deformation. Third, during early upstroke, the wing in flow shows greater deformation than
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the wing in vacuum, especially at the 3/4 wingspan where the aerodynamic force is large. At

the 1/2 wingspan, the wing in flow has greater deformation in general during early upstroke,

but the peak deformation is similar to that of the wing in vacuum. From these observations, we

can conclude that the aerodynamic force indeed has significant contributions to the deformation

pattern of the wing, especially at the distal area where the mass ratio is low as discussed before.

Finally, Fig.5.16(c,d) shows that there are more oscillations seen in the histories of the wing

chords for the wing in vacuum. These oscillations are causedby the free vibration of the wing

in the absence of the surrounding fluid.

Since the first natural mode has a frequency more than seven times higher than the flapping

frequency, the oscillations of the wing in vacuum is due to the natural vibration of the wing

structure. In the presence of the fluid, these oscillations are largely dampened out by the fluid

forces.

5.6.6 Effect of the pre-existing camber

A particular question we would like to address in this work isthe effect of the pre-existing

camber on the wing deformation and on the aerodynamic performance of the flexible wing. As

seen in Fig.5.1(a) for the cicada, many insect wings have a pre-existing camber that is convex

on the dorsal side but concave on the ventral side. It is expected such a curvature would enhance

the spanwise stiffness of the wing. Such spanwise stiffness is much needed as the wings bear

most of their load in the form of the moment about the longitudinal axis of the body. However,

the camber also introduce dorsal-ventral asymmetry to the wing structure, and its effect on the

aerodynamics and on the wing deformation is not yet clear.

We first perform a static-load test to examine the effect of camber on the stiffness symmetry

of the wing. Using the finite-element model, we apply a constant force on a chosen point on the
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Figure 5.16: Wing deformation in vacuum v.s. in flow. The 2D wing chord is shown
at (a) the 1/2 wingspan and (b) the 3/4 wingspan for both in-vacuum (black color) and
in-flow (green) deformations. The instantaneous passive pitch angle is plotted in (c) for
the 1/2 wingspan and in (d) for the 3/4 wingspan.

wing surface from either ventral or dorsal side. The force is60 mg, about one-third of the total

mass of the insect. Two positions are chosen as the loading point, as indicated in Fig.5.17by F1

and F2. The displacement of point C, a point on the trailing edge obtained from the simulation

is used for measurement. Both the cambered wing and the flat (uncambered) wing are tested.

Results are given in Table5.5. It is found that for the cambered wing, the deformation caused

by a ventral force is significantly lower than that by a dorsalforce. For the uncambered wing,

symmetric deformation is seen from the table, as expected. Furthermore, the uncambered wing

has greater deformation than the cambered wing when the loadis on the ventral side. When the
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Figure 5.17: The static-load test for the effect of the pre-existing camber, where the load
is applied normal to the wing surface.

Cambered wing Uncambered wing
Load applied ventral load dorsal load ventral load dorsal load
F1= 60 mg 0.28 -0.35 0.36 -0.36
F2= 60 mg 0.29 -0.47 0.51 -0.51

Table 5.5: The static-load test for the effect of the pre-existing camber, where the dis-
placement is measured at point C in the static-load tests. The unit of the displacement
is cm.

load is on the dorsal side, the uncambered wing has only slightly larger deformation than the

cambered wing. Therefore, the pre-existing camber strengthens the flexural stiffness of the wing

mainly for the ventral load. The camber thus introduces an asymmetric stiffness to the wing,

which is important for the dynamic deformation of the wing.

Next, we run the FSI simulation for the uncambered wing and compare the wing defor-

mation with that from the cambered wing simulation. The deformation pattern is analyzed in

Fig. 5.18where the tip displacement, the instantaneous wing chord, and the passive pitch an-

gle at the 1/2 and 3/4 wingspans are shown. Together shown are the result from thecambered

wing. Consistent with the static-load test, the uncamberedwing shows much greater deforma-

tion during downstroke than the cambered wing, while duringupstroke, the uncambered wing

has similar amount of deformation with the cambered wing. During the early upstroke, both
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wings have a similar peak value in the passive pitch angle. More quantitatively, the tip displace-

ment during downstroke is nearly doubled for the uncamberedwing compared to that of the

cambered wing.

From these results, we see that the pre-existing camber has contributed to the stiffness asym-

metry of the wing structure. Partially becauase of this stiffness asymmetry, the wing deformation

becomes asymmetric between upstroke and downstroke. A similar effect was discussed previ-

ously for other insects like butterflies (Wootton, 1993). However, it is important to point out that

in the present study, even if this camber is absent, we still observe a significant asymmetry in

the wing deformation. This feature can be seen from Fig.5.18(d,e) where the uncambered wing

still shows a greater peak deformation during early upstroke. As discussed earlier, this peak

deformation is caused due to the combined the aerodynamic force and wing inertia. Therefore,

this particular asymmetric pattern can be caused not only bythe structural design of the wing,

but also by the inertial and aerodynamic loads on the wing.

The wing model after removing the pre-exisiting camber alsohas different aerodynamic

performance. Fig.5.19(a-c) shows the instantaneous lift, thrust, and power for both the cam-

bered and uncambered wings. As discussed earlier, the camber is important to maintain the

rigidity and reduce wing deformation during downstroke. Furthermore, a camber is beneficial

for the production of the aerodynamic lift as in the case of the traditional airfoil. Therefore,

in Fig. 5.19(a), we see that the lift force is significantly reduced during downstroke after the

camber is removed.

Shown in Fig.5.19(b), the thrust of the uncambered wing is also reduced duringdownstroke.

However it is increased during upstroke, especially duringthe early stage. Overall, Table5.4

shows that the average lift of the uncambered wing is reducedby 30% and the average thrust

is increased by 10%. The power cost is also lower for the uncambered wing, which is reduced
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Figure 5.18: Effect of the pre-exising camber on the wing deformation in air.(a) The
tip displacement in 3D; (b,c) the instantaneous wing chord at the 1/2 wingspan (b) and
the 3/4 wingspan (c); (d,e) the passive pitch angle at the 1/2 wingspan (d) and the 3/4
wingspan (e).

from 29.1×10−4 W to 25.0×10−4 W, and the overall power economy reaches 0.35 N/W in terms

of F/P and 0.32 N/W in terms ofFT/P. Both of these two measures are slightly higher than the

corresponding data of the cambered wing. Therefore, in the present case, the camber does not

seem to introduce significant benefit in the efficiency of the wing. However, since the contours

of the camber is somewhat arbitrary in this study, the exact camber effect on the aerodynamics
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Figure 5.19: Instantaneous lift (a), thrust (b), and power (c) of the uncambered wing
along the data for the cambered wing.

will be studied in future with more realistic camber specification.

5.6.7 Unsteady flow field

The flow field is visualized by plotting the vortex structuresin the flow. The isosurface is

defined as the maximal imaginary part of complex eigenvaluesof the velocity gradient tensor,

Λmax. Fig. 5.20shows the vortex fields at timet/T =2, 2.25, 2.5, 2.75, which correspond to

pronation, mid-downstroke, suppination and mid-upstroke, respectively. Under the tethering
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condition, there is no incoming flow to convect the vortices generated by the wing to the far

field. Therefore, the flight in this case may be viewed as hovering flight where the fore-aft

axis is treated as the vertical axis in hovering flight and thegravity is acting in the negative

x-direction. In the absence of freestream, the vortices in the flow are more likely to interact

with each other. From these figures, we can identify various vortex structures that are distinct

features of flapping wings in general, such as the leading-edge vortex, the trailing-edge vortex,

and the tip vortex.

5.7 Conclusion

In this study, we have described an integrated approach to model the aerodynamics and

aeroelasticity of the flexible wings of insects. The forewing of the periodical magicicada is used

as the subject. The study integrates high-speed imaging forthe wing kinematics, experimental

measurement of the elastic properties of the wing, three-dimensional simulation of the fluid–

structure interaction of the wing with the surrounding fuid, and validation of the computational

model against the experimental data. To the best of our knowledge, this is the first time for such

a methodology to be used in modeling flexible wings of insects. Thus, it represents a significant

advancement in the study of insect flight.

In the model, the complex structure of the cicada wing is reconstructed from images of the

wing and the material properties are parametrized by only a few variables for the vein groups.

Yet the essential features of the dynamic deformation pattern has been captured in the numerical

simulation. Therefore, the modeling approach may provide useful guideline for the future study

of the insect wings.

Our scaling and simulation results show that the wing deformation of the cicada forewing

is caused by both the wing inertia and the aerodynamic force produced by the wing itself. Fur-
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(a) (b)

(c) (d)

Figure 5.20: Instantaneous flow field of the flexible wing, where the vortex structures
are shown for (a) pronation, (b) middle downstroke, (c) suppination, and (d) middle
upstroke. The isosurface of the vortex structures is shown and it is colored with the
pressure level. Note that the insect body is added to indicate the relative wing position
but it is not actually included in the simulation.

thermore, the deformation is significantly asymmetric as seen for many other insects. That is,

the deformation is greater during upstroke than during downstroke. According to our analysis,

such an pattern has to do with both the wing design, i.e., the pre-existing camber on the wing

surface, and asymmetric wing kinematics, and also the fluid–structure interaction. For the last

factor, the aerodynamic force modulates the phase of the elastic deformation and recovery, and

along with the wing inertia, they lead to a peak displacementof the wing during early upstroke.
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Our simulation suggests that the effect of the wing flexibility is beneficial for the aerody-

namic performance in terms of power efficiency. This result is consistent to the studies we

presented in previous chapters using idealized flapping-wing models. By running the simula-

tion with the pre-existing camber removed, we found that thewing stiffness is reduced during

downstroke but is not affected significantly during upstroke. Therefore, the cambercontributes

to the asymmetrical stiffness of the wing. However, even if the camber is removed, the asym-

metric deformation as discussed earlier still persists, which confirms the contributions from the

aerodynamic and wing inertial factors.

Finally, although the insect is tethered in the present study and therefore the wing motion

may be different from that in the real flight, the results described herenevertheless shed some

light into the role of the wing flexibility in the aerodynamics of the insect and also the mecha-

nism of the wing deformation.
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CHAPTER VI

SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

6.1 Summary of this thesis

In this thesis, we focus on the computational modeling of thefluid–structure interaction

involved in flexible insect wings and fish fins. Given that an efficient method for this type

of problem is still lacking, we first developed a general-purpose 3D numerical approach that

is suitable for flows interacting with thin-walled structures. Based on a fixed Cartesian grid

and an improved immersed-boundary solver, the method can treat large displacements of the

boundary without the need for mesh regeneration. The finite-element method used to solve

the solid-body dynamics employs the classical formulations of thin-walled structures such as

frames, membranes, and plates and is thus suitable for modeling the vein or ray network of

the biological propulsors. The fluid–structure coupling isachieved by iterating the two solvers

alternatingly until convergence is reached. Therefore, each full time step is implicit, and strong

coupling is achieved. Although more computationally expensive than an explicit approach, the

current strong-coupling approach greatly improves the numerical stability and leads to much

more robust simulations. We have provided several case studies to validate the current numerical

method.

Three model configurations have been developed to study various aspects of the fluid–

structure interaction of the flapping wings/fins. In the first model, a rectangular low-aspect-ratio

elastic panel pitching in a freestream to model propulsion of an elastic fish fin. By varying

the magnitude of the pitching angle and the fin rigidity, we found that when the fin has the
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first-mode deformation pattern, the thrust coefficient is primarily a function of Strouhal number,

which is defined on using the swimming speed, pitching frequency, and the tail excursion of

the deformable fin. In another word, compared to the rigid panel with the same pitching angle

and frequency, the flexible panel has an increased excursionamplitude due to deformation and

thus produces more thrust. In terms of power consumption, the efficiency of the fin is signif-

icantly enhanced due to the elasticity of the fin. Compared tothe rigid panel flapping at an

equivalent amplitude, the flexible panel produces the same amount of thrust but requires less

power input. Therefore, the result suggests that the passive deformation of fins is beneficial to

the hydrodynamic performance of fish.

In the second configuration, we investigate different roles of the wing inertia and the aero-

dynamic pressure in the deformation of insect wings and in the wing performance. The relative

importance of the inertia with respect to the pressure is characterized by a dimensionless pa-

rameter, the mass ratio, and the flexibility is characterized by the ratio between the flapping

frequency and the natural frequency of the wing, i.e., the ratio between the inertial force and the

elastic force in the wing. Using a rectangular plate in hovering condition and varying its mass

ratio and flexibility, we found that the chordwise deformation of the wing causes a dynamic

pitching, and the aerodynamic performance of the wing is affected not only by the increased

pitching amplitude due to the deformation but also by the phase and rate of the passive pitching.

At high mass ratios, the wing exhibits an advanced pitching;while at low mass ratios, the wing

exhibits a delayed pitching. Regardless the mass ratio, wing deformations of proper magnitude

enhance the lift production and improve the power efficiency. Furthermore, at low mass ratios,

the aerodynamic force sustains the chordwise deformation initiated by the inertial force at the

wing reversals, and the power efficiency can be further improved. The results suggests that the

low mass ratio of many insect wings in the distal area has significant aerodynamic advantages.
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In the third configuration we, for the first time, have developed a high-fidelity computational

model of the real insect wing and have studied the aerodynamics and aeroelasticity simultane-

ously for a real insect. The overall methodology integrateshigh-speed imaging of the insect

wing kinematics, experimental measurements of the mechanical properties of the wing, compu-

tational modeling of the 3D flow and wing deformation, and validation of the simulation results

against the experimental data. In this study, the cicada forewing is used as the subject. A so-

phisticated finite-element model is built to resolve the wing’s vein network, so that the inhomo-

geneous and anisotropic properties of the entire wing are incorporated by these frame elements.

The mass distribution and bending stiffness of the veins are measured, and the data are inserted

into the structural model. The wing actuation kinematics isreconstructed from one camera

view. Finally, the FSI model is validated by comparing the simulated wing displacement with

that obtained from the high-speed imaging measurement. Theresult shows that the complex

wing structure of the insect can be parametrized efficiently using a few variables. Comparing to

the rigid wing, the flexible wing has led to significant power efficiency. Furthermore, the wing

deformation depends on both the wing inertia and the aerodynamic force. The inertial and aero-

dynamic forces work in different phases of a wing stroke, and together they cause a deformation

pattern that assists with the wing reversal and improves theforce production during the wing

stroke. The simulated deformation pattern is asymmetric. That is, the wing has greater deforma-

tion during upstroke than during downstroke. This pattern is consistent with the experimental

observation of the cicada wing, and it is also common in many other insects. This asymmetry

has to do with both the pre-existing camber and the wing actuation kinematics. Therefore, the

result suggests that the asymmetric wing deformation in insects is dependent not only on the

asymmetric design in the wing structure, i.e., the camber orthe “one-way hinges”, but also on

the asymmetric wing kinematics and consequently the asymmetric aerodynamic/inertial forces
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on the wing.

6.2 Contributions of this thesis

Given that the three-dimensional fluid–structure interaction in insect flight and fish swim-

ming has been rarely studied previously, and there is still alack of the proper numerical method

for this type of problem, this thesis has made the following significant contributions:

• We have developed a three-dimensional numerical method forsimulating the fluid–structure

interaction between a viscous incompressible flow and thin-walled structures with large-

displacement and large-rotation deformations, since there is a lack of proper methods of

such in literature. Based on the immersed-boundary method for the flow and the finite-

element method for the structure, the method can handle moving boundaries without the

need for mesh regeneration, and it is particularly suitablefor modeling biological struc-

tures such as insect wings and fish fins that consist of membranes and vein/ray networks.

We envision this method will be useful for in-depth understanding of the fluid dynamics

involved in the flying and swimming in nature and also for the future development of

biomimetic aerial/underwater vehicles.

• We have utilized the computational approach to study a low-aspect-ratio flexible pitching

foil in free stream, an idealized model for the caudal fin of fish, and have obtained a

scaling law for its thrust production. In addition, its power efficiency and the three-

dimensional wake are characterized.

• We have utilized a 3D hovering wing model to study the effect of wing flexibility on the

aerodynamic performance of flapping wings. The new finding suggests that the effect

of the wing deformation should not only be viewed from a quasi-static point of view,
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e.g., change of the angle of attack or creation of a camber by the deformation; instead,

the phase and rate of pitching due to the dynamic deformationchange the instantaneous

lift, drag, and power and thus have significant effect on the performance of the wing.

Furthermore, the study has clarified the cause of the wing deformation in terms of the

inertia-induced or inertia-and-pressure-induced deformation and has found the aerody-

namic consequences associated with each of the deformationsituations.

• For the first time, we have utilized an integrated approach tomodel the aerodynamics

and aeroelasticity of real insect wings with high fidelity. The results have significant

implication on the accurate and efficient parametrization of insect wings. Furthermore,

the results confirms the role of the wing flexibility found using the idealized models in

improving the aerodynamic performance of the wing, and theyhave led to new findings

in the exact cause of the particular wing deformation pattern as observed in real insects.

The work described in this thesis has been presented in the form of the following peer-

reviewed journal publications or conference abstracts:

1. Tian, F.-B.,Dai, H., Luo, H., Doyle, J.F., Rousseau, B. (2013) Fluid-structureinteraction

involving large deformations: 3D simulations and applications to biological systems.

Submitted to Journal of Computational Physics.

2. Dai, H., Luo, H., Ferreira de Sousa, P., Doyle, J. F. (2012) Thrust performance of a

flexible low-aspect-ratio pitching plate. Physics of Fluids. 24, 101903.

3. Dai, H., Luo, H., Doyle, J. F. (2012) Dynamic pitching of an elastic rectangular wing in

hovering motion. Journal of Fluid Mechanics. 693, 473-499.

4. Luo, H.,Dai, H., Ferreira de Sousa, P., Yin, B. (2012) On numerical oscillation of the

direct-forcing immersed-boundary method for moving boundaries. Computers & Fluids.
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56, 61-76

5. Dai, H., Luo, H., Song, J., Doyle, J.F., (2013) Effect of the pre-existing camber on fluid–

structure interaction of cicada wings. AIAA Paper 2013-952.

6. Luo, H., Dai, H., Mohd Adam Das, Shahrizan Syawal, Song J., Doyle, J. F. (2012)

Toward high-fidelity modeling of the fluid-structure interaction for insect wings. AIAA

Paper 2012-1212.

7. Luo, H., Dai, H., & Doyle, J. (2010) Three-dimensional flow-structure interaction in

dragonfly wings. AIAA Paper 2010-556.

8. Luo, H.,Dai, H., Doyle, D.F. Three-dimensional simulations of fluid and elasticity for

flapping wings and fins.Fluids& Elasticity 2012, November 14-16, 2012, La Jolla, CA.

9. Luo, H., Dai, H., Mohd Adam Das, Shahrizan Syawal, Song J., Doyle, J. F. (2012)

Toward high-fidelity modeling of the fluid-structure interaction for insect wings.The

50th AIAA Aerospace Sciences Meeting. Jan. 9-12, 2012. Nashville, TN.

10. Dai, H., Mohd Adam Das, Shahrizan Syawal, Luo, H. Observation of thewing deforma-

tion and CFD study of cicadas.The 64th Annual Meeting of APS/DFD, November 20-22,

2011. Baltimore, Maryland.

11. Ferreira de Sousa, P.,Dai, H., Luo, H., Doyle, J. Thrust performance and wake structure

of a pitching flexible plate at low aspect ratios.The 63rd APS/DFD Annual Meeting, Nov.

21-23, 2010. Long Beach, California.

12. Luo, H.,Dai, H., Doyle, J. Three-dimensional flow-structure interaction in dragonfly

wings.The 48th AIAA ASM Meeting, Jan 4-7, 2010. Orlando, FL.
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13. Luo, H.,Dai, H., Ferreira de Sousa, P. A hybrid formulation to suppress the numerical os-

cillations caused by immersed moving boundaries.The 62nd APS/DFD Annual Meeting,

Nov. 22-24, 2009. Minneapolis, MN.

14. Dai, H., Luo, H., Deng, X. Flapping counter force - a unique flight stabilizing mechanism

enabled by flapping wings.The 62nd APS/DFD Annual Meeting, Nov. 22-24, 2009.

Minneapolis, MN.

15. Luo, H.,Dai, H. Unsteady flow motions in the supraglottal region during phonation. The

61st APS/DFD Annual Meeting, Nov. 23-25, 2008. San Antonio, TX.

6.3 Directions of the future work

Based on the work described in this thesis, we make the following suggestions for the di-

rections of the future research:

• More advanced CFD methods:In terms of the numerical method, higher-order approaches

capable of handling large-displacement moving boundariescan be developed for model-

ing flapping wings. As other common CFD methods, the current numerical method is

second-order accurate. However, the relatively low Reynolds number flows of the flap-

ping wings/fins can be still be turbulent, e.g., large-size birds and fish, which may lead to

prohibitive computational cost for direct numerical simulations. Without resorting to the

less accurate turbulent modeling approaches, one way is to develop a higher-order (e.g.,

6th- or 10th-order) approach to simulate the turbulent flow with moderate resolution.

Such a method could be very useful for modeling bird/fish and small-size biomimetic

unmanned aerial/underwater vehicles.

• Further in-depth understanding of the aerodynamics and aeroelasticy: The complex flow
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behavior of the flapping wings and fins require more in-depth studies, especially in three

dimensions and when fluid–structure interaction is involved. For example, what is the

role of the spanwise flow in a 3D situation? Is there a quantitive relationship between the

vortical structures in the wake and the force production of the propulsor for general situ-

ations? Does the role of the wing flexibility still remain thesame for various species of

insects when their wing structures, morphology, and kinematics are drastically different?

And if so, how can the different deformation patterns provide the same function? We

expect computational modeling can be used as a powerful toolto answer these questions.

• Fluid dynamics in unsteady maneuvers:So far there has been very limited study on the

fluid dynamics involved in the unsteady flight modes, e.g., take-off, perching, fast yaw/roll/pitch

turning. Unlike conventional aircrafts, in these flight modes the aerodynamics of the flap-

ping wings is closely coupled with the flight dynamics. Full 3D simulations would be

needed along with the experiments to understand the flow and force/torque production

during execution of unsteady maneuvers. In addition, the nonlinear stability problems

involved in these flight modes need to be thoroughly investigated to better understand the

flight control of these animals.

• Engineering development of the biomimetic robots:Current designs of the flying/swimming

robots that emulate the animals are still largely based on intuitive and qualitative under-

standing of the fluid dynamics. It requires further study to see how the understanding

of the biological propulsors can be translated into the engineering designs that do not

necessarily fully replicate the actuation mechanism or thewing/fin structure in nature.

Another important topic is about the development of low-order flow models (e.g., 1D or

lumped-parameter models) that require only minimal calculations but still have a satisfac-

tory level of fidelity. Such models will be extremely useful for the design optimization
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and the implementation of the feedback control algorithm. Currently, such models do

not yet exist for flapping wings/fins in general. We envision that the high-order models

that we are developing will be useful in identifying/creating/calibrating those low-order

models in the future.
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