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CHAPTER I 

 

INTRODUCTION 

 
Ancient Origins of the Iron-Sulfur Clusters: Iron-Sulfur Chemistry of the First 

Biochemical Reactions 
 

 Consistent with the diverse phylogeny and essential presence of Fe-S proteins in 

central metabolic pathways, the inorganic constituents of cellular Fe-S clusters are likely 

to have possessed a fundamental role in the initiation and maintenance of the first 

biochemical reactions on earth (Wachtershauser 1992; Russell and Hall 1997). A growing 

body of evidence suggests that the formation of FeS2 (pyrite) from H2S (hydrogen 

sulfide) and FeS (iron sulfide), which is empirically reproducible under extant geological 

conditions that simulate a primordial geochemical environment (e.g. 100ºC, anaerobic, in 

a slightly acidic to neutral pH) represented in the earliest sediments and hydrothermal 

vents, provides the redox energy source that initiated and supported surface-localized 

autocatalytic, chemoautotrophic biochemical pathways prior to the emergence of an 

oxygen-driven cellular metabolism (Cody 2004). The standard free energy gain from 

pyrite formation is shown in the following equation: 

         

 Under similar in vitro reaction conditions, the reductive, anabolic capacity of this 

“FeS/H2S” energy-coupling system, which in some instances employed additional 

geochemically-relevant transition metal sulfide catalysts such as NiS, has been 

demonstrated through the synthesis of alkane thiols, acetate, and pyruvate from CO/CO2 

FeS + H2S  FeS2 + H2       Go = -38kJ/mol  
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as well as short peptides from amino acid precursors (Nakajima, Yabushita and Tabushi 

1975; Heinen and Lauwers 1996; Huber and Wachtershauser 1997; Huber and 

Wachtershauser 1998; Cody, Boctor, Filley, Hazen, Scott, Sharma and Yoder 2000; 

Huber, Eisenreich, Hecht and Wachtershauser 2003). Diverse reactions are catalyzed by 

Fe,Ni-S/H2S in these systems, including acid-base assisted addition, substitution, and 

elimination of thiol/hydroxyl groups, hydride transfer, reductive carboxylation, and 

carbonyl insertion. The developing transition metal sulfide reaction surface was also 

equipped to serve as a positively charged anchor for the selective attachment of anionic 

functional groups at acidic pH, including carboxylates, phosphates, and thiols 

(Wachtershauser 1988). Validation of the significance of the synthetic chemistry results 

for understanding biochemical evolutionary mechanisms is provided by analogous 

reactions in the reductive citrate cycle (RCC), an ancient, autocatalytic carbon fixation 

pathway. The RCC is utilized in phylogenetically diverse archaebacterial and eubacterial 

species, many of which are anaerobic/microaerophilic, chemoautotrophic, 

hyperthermophilic, and localize to deep sea, volcanic vent environments (e.g. of the 

orders Thermoproteales and Aquificales) (Beh, Strauss, Huber, Stetter and Fuchs 1993). 

A primordial, geochemically-feasible RCC based on Fe,Ni-S/H2S chemistry has been 

retrodicted from the extant RCC (Fig. 1), a pathway that provides the α-keto acid 

precursors for amino acid, sugar and pyrimidine biosynthesis, acetyl-coA for lipid 

biosynthesis, and succinate for the production of hemes and chlorophylls 

(Wachtershauser 1990). Critical biosythetic reactions associated with the exergonic pyrite 

formation reaction of Fe,Ni-S/H2S in the proposed, primordial RCC are assumed in the 

extant RCC by Fe-S cluster enzymes α-ketoglutarate:ferredoxin oxidoreductase (KGOR) 
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and pyruvate:ferredoxin oxidoreductase (PFOR) (Hugler, Wirsen, Fuchs, Taylor and 

Sievert 2005). 

 
 

PFORKGORFeS/H2S

[4Fe-4S] [4Fe-4S]

Proposed Primordial RCC
(Surface-Catalyzed)

Extant RCC (Archaebacteria)

Abbreviations: Su, Succinate; 2-KG, 2-Ketoglutarate; Pyr, pyruvate; OA, oxaloacetate;
Aco, Aconitate ; Fu, Fumarate; Ma, Malate; KGOR, 2-KG oxidoreductase; PFOR, pyruvate oxidoreductase

PFORKGORFeS/H2S

[4Fe-4S] [4Fe-4S]

Proposed Primordial RCC
(Surface-Catalyzed)

Extant RCC (Archaebacteria)

Abbreviations: Su, Succinate; 2-KG, 2-Ketoglutarate; Pyr, pyruvate; OA, oxaloacetate;
Aco, Aconitate ; Fu, Fumarate; Ma, Malate; KGOR, 2-KG oxidoreductase; PFOR, pyruvate oxidoreductase   

Fig.1 The earliest metabolic pathways were iron-sulfur based. The retrodicted (left) and 
extant (right) Reductive Citrate Cycle (RCC) pathway (adapted from Wachtershauser 
1990)  
 
 

PFOR and KGOR both require 4Fe-4S ferredoxins, members of the earliest known 

protein class, to perform 2 electron reductions of succinyl-CoA and acetyl-CoA in the 

synthesis of the central α-keto acids pyruvate and α-ketoglutarate (Kerscher and 

Oesterhelt 1981). 

 

An Early Role for Iron-Sulfur Clusters in Energy Metabolism; Iron-Sulfur Cluster 
Incorporation Into the First Protein Scaffolds 

 
In addition to pyrite, mineral films of diverse FeS-containing nanocrystals of 

mackinawite (Fe(Ni,Co)1+xS), greigite (Fe3S4]), and violarite (FeNi2S4) were likely to 
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have formed at the interface between hydrothermal, HS- seepage sites in the earth's crust 

and the acidic, Fe2+ rich Hadean ocean (Russell and Hall 1997; Martin and Russell 2003). 

By analogy to the function of the inner mitochondrial membrane, sieve-like caverns 

observed in the EM structure of the mackinawite phase were proposed to act as a 

semipermeable barrier that supported the establishment of an metabolic energy source in 

the form of an electrochemical gradient at the interface between the acidic, oxidized 

Hadean seawater and the reduced, basic hydrothermal vent exit sites (Martin and Russell 

2003). Electrons derived from H2 on the vent side are believed to have traversed Fe2+ 

centers in the FeS membrane to a photolytically-generated Fe3+ acceptor or a CO2 

acceptor on the ocean side. The presence of polyferrodoxins in thermophilic, anaerobic 

archaebacteria that reduce CO2 to methane through H2 oxidation (the methanogens) 

suggests that these 6 x [4Fe-4S] polypeptides may have ultimately assumed the electron 

transport function of the mackinawite membrane (Russell and Hall 1997; Johnson, Dean, 

Smith and Johnson 2005). In addition, many components of the respiratory and 

photosynthetic electron transport machinery (including ferredoxins), which arose 

ultimately from bacterial endosymbionts, require multiple [4Fe-4S] cofactors at variable 

redox potentials. The 4Fe-4S “thiocubane” cluster of proto-ferredoxin is a slightly 

distorted version of the “cubane” structure of the Fe4S4 subunit in the greigite lattice 

(Fig. 2) and possesses an redox potential near the H2 potential (~-450 mV) and between 

mackinawite (~-380 mV) and greigite (~-500mV) at pH7 (Russell and Hall 1997; Milner-

White and Russell 2005). Amino acid composition and sequence analysis of low-

potential, prokaryotic ferredoxins reveals that these proteins evolved at a pre-

cellularization stage well before the completion of the triplet code and enables the 
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4Fe-4S
Ferredoxin Greigite lattice4Fe-4S
Ferredoxin Greigite lattice

reconstruction of a symmetrical, homodimeric, 23 amino acid proto-ferredoxin capable of 

binding a positively charged transition metal sulfide surface through an acidic amino 

terminal tail (Eck and Dayhoff 1966; Davis 2002). Tandem duplication of the coding 

sequence of the proto-ferredoxin monomer, which contributes 3 invariant cysteines and 

swaps a 4th invariant cysteine between two identical consensus 4Fe-4S cluster binding 

sites in its dimeric form, generates all but 9 residues of the neutrally-charged, extant 

bacterial form in a single polypeptide (Davis 2002).   

 
 

 
 
 
 
 
 
 
 
Fig. 2 Similarity of 4Fe-4S ferredoxin to the FeS mineral greigite, a structural component 
of hydrothermal vents (adapted from Russell et. al 2001) 
 
 

One common and striking feature of FeS cluster binding proteins such as the 

ferredoxins is the high proportion of repetetive sequences of glycine and alanine, the 

earliest encoded amino acids, in loops that provide the cysteinyl iron ligands (Milner-

White and Russell 2005). The backbone conformation of these cluster-binding loop 

motifs, known as “nests”, is arranged such that the amide nitrogens form a positively 

charged cavity for the insertion of an anionic ligand (Watson and Milner-White 2002; 

Milner-White, Nissink, Allen and Duddy 2004). Since organic thiolate ligands were 

likely to have been major constituents of the vent seepage waters, they would have 
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organized around 4Fe-4S or 2Fe-2S units in the greigite lattice to produce ([Fe4S4]RS4)2- 

clusters, a species which is readily assembled in vitro (Beinert, Holm and Munck 1997; 

Milner-White and Russell 2005). Prior to the incorporation of cysteine into the coding 

sequence of surface-localized FeS proteins, short peptides with nest geometries would 

suffice to stabilize the overall negative charge of clusters derived from the transition 

metal sulfide catalyst beds. Violarite, generated through the replacement of an Fe center 

in greigite with Ni, resembles the Fe-Ni-S-containing “A” and “C” clusters of carbon 

monoxide dehydrogenase/acetyl-CoA synthtase (CODH/ACS), a bifunctional enzyme 

that drives the anaerobic, reductive acetyl-coA (RAC) pathway through the reduction of 

CO2 to CO using 2 electrons supplied by the hydrogens from water, condensation of Ni-

bound CO and Ni-bound CH3, and acetyl tranfer to CoA (Rees 2002; Martin and Russell 

2003). Although the RAC is linear (ie. not autocatalytic like the RCC), it's highly 

exergonic nature, widespread presence in archae/bacteria, and the empirical support 

gained through the success of Fe,Ni-S-mediated catalysis of carbonyl insertion reactions 

argues that this pathway may also have spawned a broad range of pre-cellular 

biosynthetic precursors (Cody 2004). The reaction catalyzed by CODH is analagous to 

the proposed mechanism of electron flow between H2 and CO2 across the semipermeable 

membrane of mackinawite which, upon oxidation, produces the greigite structure (Martin 

and Russell 2003).    
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General Biochemical Properties of Protein-Bound Iron-Sulfur Clusters; Protein 
Structure-Cluster Interactions 

 

The ranging physicochemical properties of iron-sulfur clusters, which are subject 

to fine tuning in their respective protein binding sites, underlie the chemical elasticity 

attributed to these cofactors (Beinert, Holm and Munck 1997).  All of the major protein-

bound iron-sulfur cluster types (Fig. 3), including mononuclear FeS4 (e.g. rubredoxin), 

dinuclear 2Fe-2S (e.g. adrenodoxin, Fe hydrogenases), trinuclear 3Fe-4S (e.g. aconitase, 

Ni-Fe hydrogenase), and tetranuclear 4Fe-4S (associated with numerous ferredoxins, 

hydrogenases, oxidoreductases), can be easily synthesized at room temperature and 

interconverted amongst these stable geometries by varying the stoichiometry of Fe2+ 

salts, organic thiols, organic disulfide reductants, and elemental sulfur or sulfide anion 

(Beinert, Holm and Munck 1997). 

 

 

FeS4

3Fe-4S

2Fe-2S

4Fe-4S

FeS4

3Fe-4S

2Fe-2S

4Fe-4S
  

Fig. 3  The major protein-bound iron-sulfur cluster types 
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Since these reactions proceed in the absence of protein, as they were predicted to have 

done on primordial transition metal sulfide surfaces, protein scaffolds for iron-sulfur 

clusters are regarded as cofactor modulators with respect to redox potential and 

geometry. Depending on the local protein-cluster environment, multiple oxidation states 

are accessible to each cluster type formed, the number of potential oxidation states 

increases with nuclearity and a broad range of redox potentials (between -700 mV and 

+400 mV) are observed over the full set of known biological iron-sulfur clusters (which 

include low potential ferredoxins containing two 4Fe-4S clusters or 1 4Fe-4S and 1 3Fe-

4S cluster as well as high-potential iron proteins, or HiPIPs) (Fig. 4) (Beinert 2000). An 

examination of the effects of hydrogen bonding, solvent accessibility, charge, and 

conformational flexibility imposed by the protein milieu on the redox potential of the 

cluster has been modeled (within an error of ± 50 mV for predicted potentials) using a 

combined electrostatics/molecular dynamics approach (Protein Dipoles Langevin 

Dipoles, or PLPD) on a subset of high resolution iron-sulfur cluster protein structures 

containing representatives from each of the major cluster types (Stephens, Jollie and 

Warshel 1996). 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Variability in the redox potential of protein-bound FeS clusters (Figure from 
Beinert et al. 2000) 
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The results suggest that the major determinant of cluster potential (resulting primarily 

from electrostatic interactions with amide groups) is the backbone configuration 

surrounding the cluster. Nearby side chains appear to be critical for the protein-cluster 

interaction only inasmuch as they guide the local main chain conformation or fold. The 

malleable geometry of iron-sulfur clusters, as exemplified by the iron-sensing 4Fe-4S 

center of cytosolic aconitase (CAC)/iron regulatory protein-1(IRP1), is often observed in 

the context of physiological regulation in response to oxidative stress or changes in 

intracellular iron concentrations (Cairo, Recalcati, Pietrangelo and Minotti 2002). Under 

conditions that provide a sufficient concentration of cytosolic iron, a distorted, oxidized 

cubane [4Fe-4S]2+ center exists in substrate-bound CAC: three irons are ligated to 

cysteines and the fourth iron is coordinated to two isocitrate oxygens and a water 

molecule (Lauble, Kennedy, Beinert and Stout 1992). Intracellular iron deficiency 

inactivates CAC enzymatic activity through release of the catalytic iron and formation of 

a reduced cuboidal [3Fe-4S]1+ cluster (Kent, Dreyer, Kennedy, Huynh, Emptage, Beinert 

and Munck 1982; Moura, Moura, Kent, Lipscomb, Huynh, LeGall, Xavier and Munck 

1982; Kent, Emptage, Merkle, Kennedy, Beinert and Munck 1985). Cluster release 

effectively shifts CAC into IRP1, a mRNA-binding factor that inhibits ferritin translation 

and stabilizes transferrin mRNA in a process that restores iron homeostasis by enhancing 

iron uptake and reducing iron storage, respectively (Zheng, Kennedy, Blondin, Beinert 

and Zalkin 1992; Beinert and Kiley 1996). Rearrangements in cluster geometry are also 

observed upon conversion of the cubane 4Fe-4S cluster into the 2Fe-2S rhomb in FNR 

(fumarate nitrate reductase regulator), an Escherichia coli transcription factor that 

coordinates a global changeover from anaerobic to aerobic metabolism upon exposure to 
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molecular oxygen (Khoroshilova, Popescu, Munck, Beinert and Kiley 1997). In both the 

case of both CAC/IRP1 and FNR, the associated cluster reorganizations occur in 

response to small changes in the concentration of the metabolic regulator and 

demonstrate full reversibility within minutes, a desirable property for an effective 

molecular switch. It often appears that the clusters themselves are also capable of driving 

significant structural rearrangements in the protein(s) to which they are bound. For 

example, cysteine ligand swapping during cluster transformation has also been observed 

for the aconitase 3Fe-4S center (Plank, Kennedy, Beinert and Howard 1989). In this 

instance, a pH-driven conformational change delivers two cysteines from a distant helix 

to a linear 3Fe-4S cluster in exchange for a cysteinyl ligand coordinated to the original, 

cubane 3Fe-4S site.      

 

   Biological Iron-Sulfur Cluster Assembly  

 
 Although the physicochemical constitution of biological Fe-S clusters has been 

extensively characterized through synthesis of model structures, spectroscopy, and x-ray 

crystallography, the mechanisms underlying their biosynthesis are currently in an early 

phase of exploration. Recent genetic studies have demonstrated an essential nature for 

gene products both within the bacterial iron-sulfur cluster (isc) operon and a 

corresponding set of predominantly-mitochondrial eukaryotic homologues (Strain, 

Lorenz, Bode, Garland, Smolen, Ta, Vickery and Culotta 1998; Schilke, Voisine, Beinert 

and Craig 1999; Lange, Kaut, Kispal and Lill 2000; Schwartz, Djaman, Imlay and Kiley 

2000; Tokumoto and Takahashi 2001). Complementary biochemical analyses of these 

proteins suggest that they function to coordinate binding and assembly of Fe-S clusters 
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which are ultimately transferred to critical Fe-S containing target proteins (Agar, Krebs, 

Frazzon, Huynh, Dean and Johnson 2000; Kato, Mihara, Kurihara, Takahashi, Tokumoto, 

Yoshimura and Esaki 2002; Mansy, Wu, Surerus and Cowan 2002; Muhlenhoff, 

Richhardt, Gerber and Lill 2002; Tokumoto, Nomura, Minami, Mihara, Kato, Kurihara, 

Esaki, Kanazawa, Matsubara and Takahashi 2002; Wu, Wu, Surerus and Cowan 2002; 

Yoon and Cowan 2003). Disruption of both isc genes and their eukaryotic orthologues 

substantially reduces the activity of the Fe-S cluster containing enzymes and oxygen/iron 

sensor proteins with central roles in the regulation of the citric acid cycle or the electron 

transport machinery (Strain, Lorenz, Bode, Garland, Smolen, Ta, Vickery and Culotta 

1998; Schilke, Voisine, Beinert and Craig 1999; Schwartz, Djaman, Imlay and Kiley 

2000; Tokumoto and Takahashi 2001). In current models (Fig. 5), Fe-S cluster 

biosynthesis in the bacterial cytosol is initiated by IscS, a cysteine desulfurase which 

generates sulfane sulfur on the surface of IscU or IscA, homodimeric scaffold proteins 

which mediate sequential assembly of transiently-bound [2Fe-2S] and [4Fe-4S] clusters 

(Agar, Zheng, Cash, Dean and Johnson 2000; Agar, Krebs, Frazzon, Huynh, Dean and 

Johnson 2000; Krebs, Agar, Smith, Frazzon, Dean, Huynh and Johnson 2001; Kato, 

Mihara, Kurihara, Takahashi, Tokumoto, Yoshimura and Esaki 2002; Wollenberg, 

Berndt, Bill, Schwenn and Seidler 2003). Holo-IscA and eukaryotic homologues of 

IscA/IscU (IsA/IsU) have been shown to complex and transfer [2Fe-2S] clusters to the 

apo-form of a conserved [2Fe-2S] ferredoxin (Fdx in E. coli), also synthesized from the 

isc operon (Ollagnier-de-Choudens, Mattioli, Takahashi and Fontecave 2001; Wu, 

Mansy, Wu Sp, Surerus, Foster and Cowan 2002; Wu, Wu, Surerus and Cowan 2002; 

Wollenberg, Berndt, Bill, Schwenn and Seidler 2003). IscA/IsA may also serve as a 
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direct iron donor for the iron-sulfur cluster assembly process, as discussed in further 

detail later. Fdx appears to play a role similar to its yeast homologue, Yah1p, an essential 

mitochondrial ferredoxin which is required for the assembly of Fe-S prosthetic groups in 

both intra- and extra-mitochontrial enzymes (Takahashi and Nakamura 1999; Lange, 

Kaut, Kispal and Lill 2000). A recent NMR study of bacterial (Thermotoga maratima) 

IscU describes a unique metallochaperone structure which, as a result of inherent 

conformational flexibility, lacks stable tertiary structure in both the unbound and Fe-S 

cluster-bound states (Bertini, Cowan, Del Bianco, Luchinat and Mansy 2003). Deuterium 

exchange measurements coupled with 1H-15N HSQC spectra positioned two of three 

conserved cysteine ligands (C38,C63) in a proximal arrangement within the Fe-S cluster 

binding pocket, an area of defined, albeit dynamic, loop regions immediately flanking 

ordered secondary structural elements.    
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Fig. 5 A current model for iron-sulfur cluster assembly (in the bacterial cytosol and  
eukaryotic mitochondrion). Members of the E. coli isc operon are listed first, followed 
by their mitochondrial counterparts. 

 

Iron-Sulfur Cluster Scaffold Proteins and the Role of Iron-Sulfur Cluster Protein A 

 
Although in vitro kinetic and steady state spectroscopic data suggest that IscU/IsU 

and IscA/IsA assemble solvent-accessible, labile Fe-S clusters and transfer these clusters 

to apo-ferredoxin at similar rates, there are noteworthy differences which imply that these 

proteins are not functionally redundant. IscA/IsA and IscU/IsU, although highly 

conserved, lack sequence homology. IsA binds Fe-S clusters with a higher affinity than 

IsU, and IsA recognizes a binding site on the target ferredoxin distinct from IsU (Krebs, 

Agar, Smith, Frazzon, Dean, Huynh and Johnson 2001; Wu, Wu, Surerus and Cowan 

CYTOSOLIC/MITOCHONDRIAL IRON-SULFUR CLUSTER PROTEINS 

Fe2+    

Cysteine 

S2-

 Cysteine 
Desufurase   
 IscS/NFS1 

Fe-S Scaffold IscU/IsU

IscA-  Alternate FeS 
Cluster Scaffold ?        

IscA/IsA- Fe donor ?

[4Fe-4S]    

[2Fe-2S]  
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2002; Wollenberg, Berndt, Bill, Schwenn and Seidler 2003; Wu and Cowan 2003). 

Interestingly, IscA but not IscU can be overexpressed and purified with an 

accompanying, high affinity binding site for mononuclear iron with tetrahedral ligation 

(Ding and Clark 2004). Since incubation of iron-loaded IscA with apo-IscU, cysteine and 

IscS was sufficient for the assembly of a [2Fe-2S] cluster on IscU, this data suggests that 

IscA may constitute the as-yet unidentified iron donor for the Fe-S cluster assembly 

process. The requirement for such an iron-binding protein results from the need to 

simultaneously maintain free cellular iron concentration at low, non-toxic levels and to 

achieve high effective concentrations of Fe for Fe-S cluster assembly and incorporation 

into essential enzymes with Fe-S prosthetic groups. This hypothesis is supported by the 

observation that deletion of the gene encoding the yeast mitochondrial IscA homologue, 

Isa1p, which bears 50% similarity to IscA, produced high levels of mitochondrial iron 

and corresponding oxidative damage to the mitochondrial genome in addition to 

complete inactivation of the Fe-S enzymes acitonase and succinate dehydrogenase 

(Jensen and Culotta 2000). Likewise, removal of Isa1p from mitochondrial extracts 

supplied in an radioassay which fully reconstitutes the Fe-S protein maturation pathway 

markedly inhibited [55-Fe] incorporation into an internal biotin synthase standard 

(Muhlenhoff, Richhardt, Gerber and Lill 2002). Mutagenesis in Isa1p of any of the three 

invariant cysteine residues (present in IscA/IsA proteins as C1-X(n)-C2-X(1)-C3) 

produced similar mitochondrial defects and inhibited growth on non-fermentable carbon 

sources, suggesting a function for these residues in both both mononuclear iron and Fe-S 

cluster ligation (Kaut, Lange, Diekert, Kispal and Lill 2000). Mutagenesis of C2 and C3 

to serine in E. coli IscA (C99S and C101S, respectively) abolishes the iron center and 
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addition of cysteine to the wild type protein releases ferrous iron into solution (Ding, 

Clark and Ding 2004). As the iron:monomer ratio was demonstrated to be 2:1 in the iron-

saturated protein, E. coli IscA appears to contribute C99 and C101 as ligands for an iron 

atom situated between monomers. In addition, two of the three invariant cysteines 

(C2,C3) in a cyanobacterial IscA (the Synechocystis PCC 6803 slr1417 gene product), a 

protein that purifies from this organism as an iron-bound species, were shown to be 

essential for the coordination of a [2Fe-2S] cluster whereas alanine substitution of C1 

weakened cluster formation by 40% (Wollenberg, Berndt, Bill, Schwenn and Seidler 

2003). The absorption and Mossbauer spectra which supported these findings were 

consistent with tetrahedral thiolate ligation of one [2Fe-2S] cluster per dimer by C2 and 

C3, or one Fe-S cluster bound between monomers (Wollenberg, Berndt, Bill, Schwenn 

and Seidler 2003). Similarly, serine substitution of C1,C2, or C3 in IsA significantly 

weakened, but did not abrogate, [2Fe-2S] cluster binding and accelerated cluster transfer 

to apo-ferredoxin (Wu and Cowan 2003). In contrast to cyanobacterial IscA, Mossbauer 

spectroscopic data left open the possibility that one or more oxygen or nitrogen ligands 

were coordinated to the [2Fe-2S] cluster of IsA (Wu, Mansy, Hemann, Hille, Surerus and 

Cowan 2002). 

 

Purpose 

 
Although significant progress has been made towards understanding the 

mechanisms of biological iron sulfur cluster assembly by members of the isc operon, a 

detailed understanding of its structural basis is only beginning to emerge. Despite the 

availability of high resolution x-ray structures of several E. coli isc proteins, including 
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cysteine desulfurase and the [2Fe-2S] ferredoxin, at the time this study was conceived 

there was no structural information pertaining to either of the key iron-sulfur cluster 

scaffold proteins, IscU or IscA. Since preliminary results since published (Ding and Clark 

2004; Ding, Clark, and Ding 2004) suggested that IscA was potentially bifunctional (ie. 

as an iron donor for iron-sulfur cluster assembly and/or an alternative scaffold to IscU for 

iron-sulfur cluster transfer), essential and fundamental to the biological cluster assembly 

process, the prospect of an X-ray structure for IscA was both intriguing and promised to 

lend new insights into the mechanism of iron-sulfur cluster assembly.  
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Fig. 6 Representative  
native IscA crystals 

CHAPTER II 

 

MATERIALS AND METHODS 

 

      Crystallization and Data Collection 

E. coli IscA was over-expressed from a C-terminal, 6-His-tagged construct and purified 

to homogeneity as described by Ding and coworkers (Ding and Clark 2004). IscA was 

subsequently desalted using a PD10 column, concentrated to 17 mg/ml, and incubated at 

4 ºC overnight with 1.1 mM ferrous ammonium sulfate and 2 mM DTT. Under a glove 

bag enclosing a helium atmosphere, crystals were grown at 

room temperature by the vapor diffusion method in drops 

containing 0.8-1.0 M dibasic ammonium phosphate buffered 

with 0.1 M imidazole, pH 8.0. Hexagonal, rod-shaped crystals 

(Fig. 6) of the dimensions ~0.2 x 0.2 x 0.7 mm appeared in the 

presence of 10 mM Mercury (II) chloride (HgCl2) supplemented in 

the mother liquor (derivative conditions) or its absence (native conditions) and grew to 

near maximal size within 2-4 weeks. IscA crystals belong to the space group P62 with 

unit cell lengths a=55.5, c=159.0 Å. The estimated solvent content is 55% with a dimer in 

the asymmetric unit.   

 Diffraction data for a single native and derivative crystal (Fig. 7) were collected at 

100K on a Mar345 image plate detector mounted on a Nonius FR591 rotating CuKα 

anode fitted with Osmic mirrors. Crystals were transferred to a cryoprotectant solution 

containing 20% ethylene glycol/80% mother liquor immediately prior to freezing. The 
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crystal-to-detector distance was 160mm for 1º oscillation images, each exposed for 30 

minutes.  

 

 

 

Each of these datasets were indexed and processed with Denzo, a software package that 

enables automated integration of observed intensities across diffraction maxima (with 

associated background) and the precise location of these reflections in reciprocal space (a 

geometric assignment based on the wavelength of the radiation, the crystal-to-detector 

distance, and the crystal lattice planes from which the radiation was scattered) 

(Otwinowski and Minor 1997).  Denzo also provides penalties associated with distortion 

to a lattice type with higher symmetry than triclinic, which lacks symmetry (except for an 

inversion center). The dataset outputs from Denzo were individually scaled with 

Scalepack, a program that merges reflections and background from all individual 

diffraction images (collected by incrementally oscillating the crystal about a fixed axis), 

aThe values in parentheses are for the highest resolution shell.bRsym=∑(I-<I>)/ ∑(I) where I is the 
intensity measurement for a given reflection and <I> is the average intensity for multiple 
measurements of this reflection.cPhasing power=heavy atom structure factor/root-mean-square 
lack of closure error (statistics from CNS).dRcullis=lack of closure error/iso-ano difference 
(generalized Rcullis in CNS).eFOM is the  figure of merit.

HgCl2    3     0.89/0.88/0.11        27-2.8         1.54         1.27            0.66        0.67       0.36       0.63

Deriv| Sites | Occ (sites 1/2/3) | Res (Å)       P hasing powerc Rcullisd FOMe

acentric centric     acentric centric   acentric centric         

Native     ∞-2.65 99.8(100.0)           77,724/8,034               58(5.5)    9.7(9.9)      6.6(47.9)
HgCl2 ∞-2.30 99.4 (99.1)            67,990/12,243             38(3.7)    5.6(5.3)      6.3(45.7)

Phasing Statistics- SIR

dataset     resolution    completeness    total/unique reflections    I/σ redundancy    Rsymb

(Å)                 (%)                                           (%)

Diffraction Data Statisticsa

aThe values in parentheses are for the highest resolution shell.bRsym=∑(I-<I>)/ ∑(I) where I is the 
intensity measurement for a given reflection and <I> is the average intensity for multiple 
measurements of this reflection.cPhasing power=heavy atom structure factor/root-mean-square 
lack of closure error (statistics from CNS).dRcullis=lack of closure error/iso-ano difference 
(generalized Rcullis in CNS).eFOM is the  figure of merit.

HgCl2    3     0.89/0.88/0.11        27-2.8         1.54         1.27            0.66        0.67       0.36       0.63

Deriv| Sites | Occ (sites 1/2/3) | Res (Å)       P hasing powerc Rcullisd FOMe

acentric centric     acentric centric   acentric centric         

Native     ∞-2.65 99.8(100.0)           77,724/8,034               58(5.5)    9.7(9.9)      6.6(47.9)
HgCl2 ∞-2.30 99.4 (99.1)            67,990/12,243             38(3.7)    5.6(5.3)      6.3(45.7)

Phasing Statistics- SIR

dataset     resolution    completeness    total/unique reflections    I/σ redundancy    Rsymb

(Å)                 (%)                                           (%)

Diffraction Data Statisticsa

Table 1  
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corrects measured intensities and their associated errors for scattering effects related to 

beam polarization and detector geometry, and places the intensities an absolute scale that 

additionally depends on a user defined error model and the assigned space group 

symmetry (Otwinowski and Minor 1997). In addition to reporting the refined unit cell 

geometry and the mosaicity associated with lattice imperfections, Scalepack tabulates 

Rsym, the overall goodness of fit between symmetry-related reflections, Redundancy, the 

average number of times a unique reflection is observed by symmetry, and <I>/σ, the 

average signal to noise ratio, by resolution shell. It also reports the indices assocated with 

systematic absences in the diffraction pattern, an indicator of point group symmetry. Both 

datasets yielded good statistics in terms of Rsym, <I>/σ, and redundancy through 2.65Å 

and 2.35 Å for the primitive hexagonal lattice assigned to the native and derivative IscA 

datasets, respectively.   

 

 Fig. 7 Representative native IscA diffraction 
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The unit cell axes (of the primitive hexagonal lattice) differ only insignificantly 

(native: a=55.527, c=159.037, derivative: a=55.337, c=159.834) and therefore satisfy the 

phasing criteria that the unit cell dimensions are isomorphous. Although the point group 

symmetry was still uncertain at this stage, the list of systematic absences implied that P62, 

P64, and the related space groups P6222and P6422 were likely. Non-hexagonal lattice 

types were excluded because of their high penalties from the indexing routine. For both 

datasets, each I and its associated error σI for all indices (the Scalepack output) were 

converted to observed structure factor amplitudes (Fo=sqrt I) and associated errors 

(σFo=Fo-sqrt (I-σI) if I>σI or σFo=Fo if I≥σI) in CNS (Brunger, Adams, Clore, DeLano, 

Gros, Grosse-Kunstleve, Jiang, Kuszewski, Nilges, Pannu, Read, Rice, Simonson and 

Warren 1998). Final statistics from intensity data processed with Denzo and scaled in 

aRfree was calculated from 5% of the diffraction data and monitored throughout refinement. 
*Corresponds to residue cysteine 35 from both monomers in the asymmetric unit.

resolution (Å)                             27-2.65     27-2.3
number of reflections                7,371        11,110
sigma cutoff                                none         none
Rfactor (%)                      23.2          22.9
Rfree(%)a 25.6          26.3
number of refined atoms: 

protein                                     1,470        1,470
water                                        61             85 

average B factors (Å2):
protein                                     42.0          43.7
water                                        40.2          43.6
Hg2+ NA           72.2     
Overall                                     42.0          43.8

B from Wilson plot                    56.6          44.2
rms deviations:

bonds (Å):                                0.010        0.014 
angles (º):                                 1.4             1.5 

Ramachandran plot
most favored regions (%)       93.8          94.4
additional allowed (%)           4.9            5.6
disallowed (%)                         1.2*          0.0

Native     HgCl2

aRfree was calculated from 5% of the diffraction data and monitored throughout refinement. 
*Corresponds to residue cysteine 35 from both monomers in the asymmetric unit.

resolution (Å)                             27-2.65     27-2.3
number of reflections                7,371        11,110
sigma cutoff                                none         none
Rfactor (%)                      23.2          22.9
Rfree(%)a 25.6          26.3
number of refined atoms: 

protein                                     1,470        1,470
water                                        61             85 

average B factors (Å2):
protein                                     42.0          43.7
water                                        40.2          43.6
Hg2+ NA           72.2     
Overall                                     42.0          43.8

B from Wilson plot                    56.6          44.2
rms deviations:

bonds (Å):                                0.010        0.014 
angles (º):                                 1.4             1.5 

Ramachandran plot
most favored regions (%)       93.8          94.4
additional allowed (%)           4.9            5.6
disallowed (%)                         1.2*          0.0

Native     HgCl2

Table 2      
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Scalepack are listed in Table 1. The high redundancy and signal to noise ratio of the 

diffraction data allowed us to include reflections to resolutions of 2.65Å (native) and 

2.3Å (derivative) in the final refinements (Table 2).      

 

Structure Determination and Refinement   

 
Co-crystallization of IscA with HgCl2 noticeably enhanced the size, morphology 

and diffraction quality of the crystals. An overall Rmerge of 18.0% for native and HgCl2-

IscA structure factor amplitudes to 2.7Å was indicative of a heavily substituted 

derivative. Three heavy atom binding sites in the asymmetric unit, two of which appeared 

definitively on the Harker sections (Fig. 8) and refined to high occupancy values, were 

identified through an automated Patterson search in CNS and used to calculate initial SIR 

phases to 2.8Å (Table 1). An electron density map calculated from solvent-flattened SIR 

phases (using the program DM in CCP4 (1994), overall Figure of Merit=0.47) revealed, 

after skeletonization in MAPMAN (Kleywegt and Jones 1996) and visualization in O 

(Jones, Zou, Cowan and Kjeldgaard 1991), salient secondary structural features (Fig. 9).  

One pair of overlapping, albeit disjointed, β sheets was sufficient to elucidate a 2-

fold non-crystallographic symmetry  (NCS) axis and to generate an initial matrix for the 

production of an improved, averaged map in DM. This map served as a starting point for 

the construction of a poly-alanine backbone. After iterative cycles of model building in 

O, SigmaA weighting, phase combination, solvent flattening and phase extension in 

CCP4, and rigid body refinement and energy minimization in CNS, a majority of the side 

chains were identified. 
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Fig. 8  Harker peaks for P62 (top)  and 
schematic of corresponding molecular 
vectors in the unit cell (bottom)
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In the early stages of refinement and interpretation of 2Fo-Fc maps, the structure 

factor amplitude array from the higher resolution, derivative dataset was employed. As R 

factors dropped below 0.30, it became clear that independent monomers were nearly 

identical, and the model improved as high NCS restraint weights (400 in CNS) were 

imposed. Further refinement cycles that included energy minimization, B-group 

refinement, and simulated annealing were conducted using maximum likelihood 

refinement in CNS. Concluding stages of refinement were carried out in REFMAC5 

(CCP4) (Murshudov, Vagin and Dodson 1997). Monomers in the final models lack the 

last 10 residues present in the native protein, including Cys99 and Cys101. A 

Ramachandran plot in PROCHECK (Laskowski, MacArthur, Moss and Thornton 1993) 

demonstrates favorable main chain geometry for both the native and Hg-IscA structures 

with the exception of a single non-glycine outlier, Cys35, in the native model. In a 2Fo-

Fc omit map produced from the derivative dataset, density corresponding to each Cys35 

thiol is enveloped in a 17 sigma Hg peak, consistent with covalent binding of the metal at 

 
Fig. 9 Mapman bones model. magnification of bones model created in mapman (purple) 
Highlights starting point for early backbone tracing after density modification. The  
final Cα trace is in yellow. 
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this position.. The final R/Rfree for the native and derivatized structures are 23.2/25.6 and 

22.9/26.3%.   
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CHAPTER III 

 

RESULTS AND DISCUSSION 

 

         Overall Fold 

 
The absence of proteins in the Dali 

database that bear significant structural 

homology to IscA suggests that IscA 

adopts a novel protein fold. This fold is 

characterized by a striking, internal two-

fold symmetry such that the unique 

portion of the structure covers roughly 

50% of the primary sequence (Fig. 10). 

A complete IscA monomer includes 

tandem pseudo-symmetric motifs (PSM) 

1 (β1-α1-β2-β3) and 2 (β5-α2-β6-β7) 

separated by a unique, near-palindromic, 14 amino acid stretch (E43FVDEPTPEDIVFE56) 

encompassing the 3 C-terminal residues of  β3, a short, 6-residue loop region, and 5 of 

the 6 residues which constitute β4 (Fig. 11).  Identifiers for residues related on the virtual 

two-fold are colored identically (F44/55-violet, E43/56-brown, V45/54-green, D46/52-

turquoise, E47/51-brick red, P48/50-blue). T49, at the palindrome center, is black and 

I53, labeled red and in parentheses, is not shown.  

 

 
Fig. 10 A ribbon diagram showing the 
secondary structural elements in the IscA 
monomer 
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Fig. 12 A schematic representation 
of the IscA monomer fold as a 
pair of interlocked fish hooks   

 

 
 
 
PSM1 and PSM2 each resemble a fish hook twisted at the bend so as to create a 45 

degree angle between the barb and the shank (Fig. 12). Each hook represents a single 

pseudo-symmetric motif (PSM).  Elements related by pseudo-two-fold symmetry are 

colored identically  (β1,β5 or barbs-red, α1,α2 or bend-green,  β2,β6-blue, β3,β7-cyan or 

shank-light blue). The β-4 strand, which is cut by the pseudo-two fold axis, is depicted in 

brown in Fig. 11. In PSM 1/2, β1/β5 lies along the barb, α1/α2 traverses the bend, and 

β2-β3/β6-β7 extend the shank as a twisted, antiparallel β sheet. If the IscA monomer 

constitutes the fundamental building block of a ladder that represents an oligomeric state 

(Fig. 13), the hooks are interlocked such that the barb of PSM1 (β1) points inward at a 

45° angle, the bend of PSM1 (α1) rests on the style and its shank (β2,β3) stretches the 

length of the upper rung. The barb of PSM2 (β5) lies atop the shank of PAM1 (β2) from 

its midpoint to the style, its bend (α2) becomes the lower right helix of a circular cavity, 

 

Fig. 11.Structure of the 14-residue pseudo- 
palindromic amino acid sequence in IscA
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and its shank (β6,β7) juts downward to fill the distance between joints at an angle 

perpendicular to the shank of PSM1.   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

The resulting architecture is a β sandwich domain composed  of two mixed β sheets: a 4-

stranded, twisted β4-β5-β2-β3 sheet and a 3-stranded, twisted  β1-β6-β7 sheet, offset by 

50° to achieve tight, extensive hydrophobic packing at the core.   

 Examination of the crystal packing of IscA monomers reveals a super-helical 

assembly with a radius of 25Å and a pitch delimited by three arbitrarily-designated, 

tetrameric assemblies, each translated 50Å along the helical axis (Fig. 13). Upon this 

axis, the IscA monomer follows a spiraling, ladder-like pathway stabilized by 

dimer/tetramer interfaces which occur in regions resembling either joints or the midpoints 

 
 
Fig.13 Cartoon representation (left) of the IscA super-helix (right) as a ladder
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of adjacent rungs or interceding styles (i.e. vertical segments between the rungs) of the 

ladder. Two distinct tetrameric arrangements are possible: one in which four monomers 

surround a central ellipsoidal cavity ~45Å wide and 7Å tall (for the sake of discussion, 

tetramer A) and one in which the monomers surround a cylindrical cavity with a 5Å 

radius (tetramer B). Both orientations are dimers of dimers.  

 

 

 

In tetramer A, the monomers are positioned at the four corners of a picture frame and 

each contributes the shanks of the fish hooks to its neighbors (Fig. 14). PSM 1 forms a 

semicircular, 8-stranded β-sheet and PSM 2, a 4-stranded β-sheet with the dimer mates. 

In tetramer B, 4-stranded  β3-β2-β5-β4  sheets of neighboring monomers are joined 

through β4-β4 and β3-β3 hydrogen bonds to form 90° arcs over a topologically circular 

palindrome that spirals into a 16-stranded β barrel enclosing the circular cavity (Fig. 14 ).  

 Both the purified bacterial protein and its eukaryotic homologues have been 

Fig. 14 The possible IscA tetramers. Tetramer A (left) and tetramer B (right) 
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shown to exist in dimeric, tetrameric, or higher order aggregation states (Kaut, Lange, 

Diekert, Kispal and Lill 2000; Ollagnier-de-Choudens, Mattioli, Takahashi and 

Fontecave 2001; Wu, Mansy, Hemann, Hille, Surerus and Cowan 2002), and tetramers A 

or B represent two possible models for the oligomeric states observed in solution. Each of 

two tetrameric configurations buries ~25% (5600-6100 Å2) of solvent-accessible surface 

area in dimer/tetramer interfaces between adjacent IscA subunits, suggesting that either 

tetramer A or tetramer B can exist as a physiologically-stable entity. The unique areas of 

contact for the independent assemblies (2000 Å2 at the midpoints of styles composing 

tetramer A or 1500 Å2 at the mid-rung region that joins dimers from tetramer B) are each 

sufficient for a functional oligomeric interface. The β4-β4 dimerization interface unique 

to tetramer B is predominantly stabilized by main chain hydrogen bonds from I53, V54, 

and F55 and van der Waals interactions between I53 side chains on opposing strands. The 

additional surface area that selectively stabilizes tetramer A is characterized by favorable 

ionic interactions involving the guanidinium group of R12, which extends from the α-1 

helices of one dimer partner to the mid-style E86 carboxylate on β7, an edge on face 

stacking arrangement of F79 and F88 which restrains the linear conformation of the β6-

β7 shanks as they exit the protein core, and the insertion of L84, situated at the eye of the 

β6-β7 shanks, into a dense hydrophobic pocket of F16, L42, and F44 on the opposite 

monomer. This constellation of residues, and particularly those that are both hydrophobic 

and highly conserved or invariant (L42, F44, F79, F88-see Fig. 15), maintains the 

backbones of the β7 strands at the borders of a channel enclosing six ordered water 

molecules. Due to the favorable packing at this interface, a feature which relies upon the 

specific R12-E86 ionic interaction, the conserved hydrophobic network, and the presence 
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      Fig. 15 Sequence alignment of IscA orthologues

of an extensively hydrogen-bonded water channel, we propose that tetramer A and the 

dimeric substructure maintaining these contacts represent the most likely oligomeric 

states in the aqueous milieu of the cell.    

 

Conservation in Sequence and Structure  

 
 IscA orthologues maintain a high degree of evolutionary conservation as 

highlighted by a sequence alignment for representative species from each kingdom (Fig. 

15).  
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In figure 15, residues from IscA/IsA from E. coli (Ec), Synechocystis PCC 6803 slr1417 

(slr1417), Azotobacter vinelandii (Av), Saccharomyces cerevisiae (Sc), Saccharomyces 

pombe (Sp), Arabidopsis thaliana (At), Caenorhabditis elegans (Ce), Drosophila 

melanogaster (Dm), Mus musculus (Mm), and Homo sapiens (Hs) are shown. Amino 

acids that are conserved in all sequences are highlighted in yellow and highly conserved 

residues are highlighted in gray. Invariant cysteines 35, 99, and 101 of E. coli are marked 

by brown triangles. Secondary structure elements are indicated above the sequence for E. 

coli IscA and shaded using the same color scheme as in the ribbon model (Fig. 15). Over 

the 107 amino acid stretch present in the bacterial forms, 47% (50) of residues are highly 

conserved and 18% (19) are identities. Most of the highly conserved residues (60%) are 

located within secondary structural elements and a majority of these (67%) contribute to 

the hydrophobic core that seals the twisted β sandwich domain of IscA. When viewed 

from a perspective down the intra-molecular two-fold, the hydrophobic side chains fill a 

rectangular slab bounded by the α-helices on the short edges, the β sheets on the long 

edges, and the β4 strand at its base. Hydrophobic packing of conserved residues 

F55,I3,L5,A9/10,V60/62/64,L77,L26,L28,V13,L72,F79,L17,F16,F88,F90,F71,F44,L42,

Y40,M38, and V30 occurs progressively upwards in a "knobs in holes" type fashion 

similar to that described for α-helices. Accompanying side chains stack tightly near the 

α-β corners or between 3-4 hydrophobic functional groups protruding from two opposite 

strands above and below the plane of the "knob". Other conserved residues which 

maintain the integrity of  the IscA structure include conserved residues E56(β4) and 

S6(β1)(consensus S/T), invariant residues D52(β4) and D78(β6), and R27(β2)/K61(β5) 

(consensus R/K). Intra-molecular salt bridges consisting of D52-R27 and E56-K61 tether 



 

 32

the conformation of the β4-β5-β2-β3 sheet and a D78-S6 hydrogen bonding interaction 

secures β1-β6 contacts at the turn into the α1 helix. Three invariant glycine residues- 

G37, G59, and G74- are ostensibly required for transitions into β3, β5, and β6 as they are 

located in turns immediately before the initiation of these strands. The placement of 

conserved residues at critical positions in the tertiary structure suggests that the overall 

fold of IscA has been strictly preserved throughout evolution.  

 

The Cysteine Pocket 
 
 

 Only the first of the three invariant cysteines (C35, C99, C101) implicated in 

ligation of iron-sulfur cluster complexes is visible in the electron density.  C35 is located 

within two bulging pockets (10Å tall) found on each side of the centrally compressed (7Å 

tall) ellipsoidal cavity of tetramer A (Fig. 14) On both faces of the cavity, C35 projects 

from monomers on diagonally opposite corners of the frame (related by the dimer two-

fold) into opposite bulges from a flexible, conserved GCXG loop between β6 and β7. At 

one face, C35 residues are separated by 20Å and located at equivalent positions, each at 

the eye of a PSM2 shank protruding from the cavity roof and floor. In the native structure 

the B-factor for the GC35XG region deviates substantially from the mean protein B (+1.6 

fold) and C35 is a unique Ramachandran outlier. In contrast, this same region is well 

ordered in the Hg-derivatized structure (the B-factor is only 1.2 times greater than the 

mean protein B-factor). Apparently, the covalent binding of Hg to the labile cysteine 

imparts rigidity to this flexible loop. In addition, the side chain of E82, located on the β6 

strand of an adjacent dimer partner, is positioned in the mercury binding pocket of the 

derivative and rotated 180º away from a solvent-exposed orientation observed in the 
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native structure. This motion adjusts the side chain carboxyl from 9Å (native) to 4Å and 

3.7Å from the C35 thiol and mercury, respectively (Fig. 16).  If Hg is instead modeled as 

an Fe sphere within or near the Hg binding site, it would be positioned to accept an 

oxygenic ligand from E82 (or the shorter S/D side chains in some IscA homologues). In 

the native, unligated structure, the Hg-binding pocket of tetramer A likewise contains 

sufficient volume to accommodate [2Fe-2S] or [4Fe-4S] clusters. 

 

 

 

Despite the presence of a protein-bound, mononuclear iron center in solution prior 

to crystallization, electron density for iron is conspicuously absent from the oligomeric, 

crystalline native state. In addition, a consensus C-terminal stretch CGCGESF containing 

the other putative iron-binding cysteine residues, C99 and C101, is completely 

disordered, as judged from the fact that it is not visible in the electron density map. This 

sequence is located at the end of a coil which begins at the end of β7, turns sharply at an 

invariant proline (P93) and extends superficially down the center of the upper dimer to 

the last visible residue, D97, at the brink of the central cavity. Fig. 17 shows electron 

density (violet) from final, native 2.65Å 2Fo-Fc maps contoured at 1σ in the region 

 
Fig. 16  Conformational adjustments in the C35 pocket induced by Hg binding  
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encompassing the last visible C-terminal residues (T91-D97). Residues G74-D76 and 

their hydrogen-bonded partners, T91-N92, of the β6-β7 shank lie in a region of well 

defined density. Beyond the sharp turn at P93 (N94-D97), side chain density becomes 

significantly more diffuse or non-existant. Due to the absence of side chain density for 

K96, alanine was substituted at this position in this final model. 

 

 

 

   The lack of electron density attributable to Fe might simply be a result of the 

fact that this area of the structure, which presumably supplies the Fe ligands, is 

disordered. Moreover, we were unable to detect Fe in the crystal by X-ray fluorescence 

(data not shown). However, we cannot entirely exclude the possibility that the 

crystallization conditions were incompatible with iron binding. An alternate explanation, 

and the one we favor, is that formation of the elliptical cavity in the oligomeric form of 

Fig. 17 Electron density adjacent to the disordered C-terminus  of IscA      
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IscA  precludes access by two of the four iron ligands (C99,C101) into the pocket that 

houses both C35 and E82.  

 At solution concentrations which produce dissociation of the IscA oligomer into 

either the IscA dimer or tetramer B, C35 would be exposed on the external scaffold and 

the CGCGESF stretch would be able to wrap around the edge of the former, tetrameric 

cavity and arrange C99 and C101 into a conformation necessary for Fe ligation. 

Consistent with the idea that the tetrameric arrangement in the crystal precludes Fe 

binding to IscA is recent data which demonstrate that the affinity of IscA for Fe decreases 

at protein concentrations which produce higher-order oligomers (Ding et al., unpublished 

observations). In contrast, our inability to locate Fe in the native crystal structure is 

inconsistent with the model proposed for cyanobacterial IscA1: Fe or 2Fe-2S cluster 

binding sites are maintained at an interface between dimers by two protein ligands (C99, 

C101) contributed from each monomer (Wollenberg, Berndt, Bill, Schwenn and Seidler 

2003). In this scenario, which does not require participation of C35 and E82, monomers 

present at opposite corners in the elliptical cavity of a tetramer A solution species would 

provide C99/101 residues from CGCGESF stretches which, according to the direction of 

the last visible C-terminal residues in opposite chains, are in line to meet and coordinate 

Fe at a solvent exposed site just outside the cavity center. If this latter represents the true 

mode of iron binding, however, we would expect to observe bound Fe in the crystal 

structure as neither crystal packing nor IscA oligomerization is anticipated to interfere 

with this proposed mechanism.  
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Comparison of Iron-Sulfur Scaffolds IscA and IscU  

 
Although in vitro kinetic and steady state spectroscopic data suggest that IscU/IsU and 

IscA/IsA assemble solvent-accessible, labile Fe-S clusters and transfer these clusters to 

apo-ferredoxin at similar rates, there are noteworthy differences in primary sequence, 

function, and fold. For example, IscA/IsA and IscU/IsU are each highly conserved yet 

share no significant sequence homology, IsA binds Fe-S clusters with a higher affinity 

than IsU, and IsA recognizes a binding site on the target ferredoxin distinct from that 

recognized by IsU (Wu and Cowan 2003). Whereas the high degree of conformational 

flexibility observed for apo/holo-IscU has been attributed to a series of highly mobile 

hydrophobic side chains (Bertini, Cowan, Del Bianco, Luchinat and Mansy 2003), a rigid 

and extensive hydrophobic network imparts stability to the core of monomeric IscA. In 

contrast to the global fluidity of IscU, only a few residues within the cysteine pocket or 

the C-terminal tail were significantly disordered in native IscA. Beyond the dynamic 

features which distinguish these structures, IscA and IscU diverge in both secondary 

structural content and, insofar as a three-dimensional representation of IscU could be 

obtained, the organization of these secondary structural elements. However, the disorder 

present in the structures of both IscA and IscU are consistent with a role for these 

proteins in the assembly and transfer of transient Fe-S clusters to various Fe-S target 

proteins. This hypothesis is supported by the observation that all of the three conserved 

cysteines are located in mobile loop regions of IscA and IscU, at least one of the 

predicted Fe-S cysteine ligands could not be visualized in either structure, and the 

remaining cysteines were impossible to position precisely within the putative Fe-S 

binding regions of native IscA or apo/holo IscU.  In addition, neither IscA nor IscU 
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possess the degree of rigidity characteristic of Fe-S cluster or metal binding sites 

observed for the majority of known metallochaperone or metalloenzyme structures, many 

of which bear the common ferredoxin-like or Rossman-type folds (Rees 2002). These Fe-

S complexes, which function primarily as redox-labile cofactor centers for catalysts or 

oxygen sensors, are structurally versatile and, with few exceptions, capable of 

rearrangement with minimal, highly localized conformational changes in the protein 

ligands that maintain the Fe-S cluster.  
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CHAPTER IV 

 

INTRODUCTION 

 

Perspectives on an Escalating Public Health Crisis: the Emergence of Antimicrobial 
Resistant Strains of Major Nosocomial Pathogens S.  aureus  and E.  coli 

 
 

     A survey of Centers for Disease Control and Prevention reports over the last quarter 

century indicate that the prevalence rates of severe, multi-drug resistant (MDR) bacterial 

infections, including those caused by pathogens previously confined to the hospital 

setting, have undergone alarming increases in both intensive care units and community 

populations (2004; Menichetti 2005). Chief infective organisms, comprising 

representatives from gram-positive (S. aureus, Streptococcus pneumoniae) and gram-

negative (E. coli), Pseudomonas aeruginosa) bacterial subdivisions, have ultimately 

developed resistance to successive generations of clinically-useful antibiotics. The 

severity of this microbial threat is underscored by the recent emergence of vancomycin-

intermediate and resistant clinical isolates of methicillin-resistant S. aureus (MRSA), 

strains responsible for a preponderance of severe nosocomial illnesses including 

ventilator-associated pneumonia, surgical site infections, and osteomyelitis (Menichetti 

2005). Notwithstanding concerns regarding the narrow therapeutic window associated 

associated with vancomycin treatment, the potential for high-level resistance in MRSA 

threatens to remove a last-resort therapy for diseases associated with this pathogen.  

   Similarity in both chemical structure and mechanism of action characterizes 

contemporary antimicrobial classes since many of these classes stem from multiple 
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derivatizations of preexisting parent compounds (Powers 2004; Spellberg, Powers, Brass, 

Miller and Edwards 2004). These derivatives were designed to preserve the core 

pharmacological properties of natural antibiotics and to simultaneously elude rapidly 

evolving resistance mechanisms (Powers 2004; Spellberg, Powers, Brass, Miller and 

Edwards 2004).  An unfortunate outcome has arisen from this strategy: a limited number 

of cellular targets and accompanying mechanisms of action characterize frontline 

antimicrobial therapies, most of which are currently inefficacious towards a significant 

proportion of hospital-acquired pathogens. In addition, the MDR phenotype in common 

nosocomial microbes (such as MRSA) is significantly exacerbated in response to 

selection pressure elicited by antimicrobial overadministration (Dzidic and Bedekovic 

2003; Lowy 2003). The development of pharmaceuticals against novel bacterial targets 

therefore presents a  compelling medical need (Shah 2005). 

 

The Potential for Novel Antimicrobial Targets in the Fatty Acid Biosynthetic 
Pathway 

 

A subset of enzymes which catalyze bacterial type II fatty acid biosynthesis 

(fasII), a pathway set apart from the mammalian type I system by virtue of its 

requirement for de novo fatty acid production and the structural divergence of its key 

constituents, represent strong candidates for antimicrobial drug design (Heath, Yu, 

Shapiro, Olson and Rock 1998; Campbell and Cronan 2001; Marrakchi, Zhang and Rock 

2002). Validation of the bacterial fasII system as a potentially fruitful pathway for the 

selection of novel targets is provided by the recent discovery that clinical anti-tubercular 

agents isoniazid and ethionamide and the broad-spectrum antibacterial triclosan 
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selectively inhibit the enoyl-ACP reductase-mediated reduction step of the fasII 

elongation cycle (Banerjee, Dubnau, Quemard, Balasubramanian, Um, Wilson, Collins, 

de Lisle and Jacobs 1994; Heath, Yu, Shapiro, Olson and Rock 1998). Additional fasII-

pathway antimicrobials cerulenin and thiolactomycin block beta ketoacyl-ACP synthase 

(KAS) enzymes responsible for fatty acid chain condensation (D'Agnolo, Rosenfeld, 

Awaya, Omura and Vagelos 1973; Hayashi, Yamamoto, Sasaki, Kawaguchi and Okazaki 

1983). However, the design of enoyl-coA reductase and KAS inhibitors across bacterial 

species is complicated by the presence of orthologous enzymes with multiple isoforms 

and/or variable substrate specificities (Marrakchi, Zhang et al. 2002). In this regard, the 

widespread conservation of bacterial acetyl-coA carboxylase (ACC), an essential enzyme 

which generates the malonyl-CoA precursor required for the subsequent condensation 

steps of de novo fatty acid synthesis, accents ACC as a more attractive fas-II pathway 

target. The potential for development of potent ACC inhibitors is demonstrated by the 

broad-spectrum activity of the antibiotic Moiramide B and its derivatives, the 

pyrrolidinediones (Freiberg, Brunner, Schiffer, Lampe, Pohlmann, Brands, Raabe, 

Habich and Ziegelbauer 2004; Pohlmann, Lampe, Shimada, Nell, Pernerstorfer, 

Svenstrup, Brunner, Schiffer and Freiberg 2005). Other compounds, including several 

classes of well-established herbicides, the aryloxyphenoxypropionates (AOPPs) and 

cyclohexanediones (CODs), and a synthetic bisubstrate analog represent additional ACC-

selective inhibitors (Burton, Gronwald, Somers, Connelly, Gengenbach and Wyse 1987; 

Levert and Waldrop 2002).  
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The Development of Bacterial Acetyl-CoA Carboxylase Inhibitors Holds Promise 
for Antimicrobial Drug Design 

 

Recent evidence attests that the ACC reaction, or biotin-dependent carboxylation 

of acetyl-coA, is the rate-controlling step of the fas-II pathway from eubacteria through 

metazoa (Ha and Kim 1994; Page, Okada and Harwood 1994; Davis, Solbiati and Cronan 

2000). In bacteria engineered to secrete excess fatty acyl chains, ACC overexpression 

markedly increases the overall rate of lipid biosynthesis (Ha and Kim 1994). Similar 

results, in the form of significant flux control coefficients, are obtained through selective 

herbicide inhibition of orthologous ACC from leaf chloroplast (Page, Okada et al. 1994). 

Likewise, the degree of specific, ribozyme-mediated disruption of ACC function 

correlates directly with the extent of fatty acid synthesis inhibition in mammalian 

preadipocyte cultures(Davis, Solbiati et al. 2000).   

 In vivo ACC activity requires the following protein constituents: biotinoyl 

carboxyl carrier protein (BCCP), biotin carboxylase (BC), and carboxyltransferase (CT).  

These components participate in the following partial reactions: 

 

Along the ACC reaction pathway, the biotinoylated mobile arm of BCCP shuttles the 

biotin cofactor from the site of BC-mediated, ATP-dependent carboxybiotin production 

(1) into the site of CT-mediated CO2 transfer from carboxybiotin to acetyl-CoA (2). In 

eubacteria, protozoa, and plant chloroplasts, ACC activity arises from a multi-subunit 

assembly (prokaryotic ACC) of monomeric biotin-BCCP, dimeric BC, and 
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heterotetrameric (α2β2) CT or, as expressed in fungi, animals, and plant cytosol, each of 

these subunits function as distinct domains within a single polypeptide (eukaryotic ACC) 

(Cronan and Waldrop 2002; Barber, Price and Travers 2005). The two-step carboxylase 

reaction mechanism and the structural organization of the ACC multienzyme into distinct 

BC, BCCP, and CT components is shared among members of the biotin-dependent 

enzyme family, including propionyl-CoA carboxylase (PCC), transcarboxylase (TC), 

glutaconyl-CoA decarboxylase (GCD), and methylcrotonyl-CoA carboxylase (MC) 

(Jitrapakdee and Wallace 2003). In conjunction with the lack of primary sequence 

conservation observed between the prokaryotic and eukaryotic forms of ACC, the major 

differences in multi-enzyme subunit composition are features which can be exploited to 

inhibit specific partial reactions of bacterial ACC without disrupting function of the 

mammalian homologue.  

 

Evidence of a Gene Regulatory Role for the Carboxyltransferase Subunit of 
Bacterial Acetyl-coA Carboxylase 

 

Although short and long-term regulatory processes which modulate ACC 

expression and activity are well characterized for the mammalian enzyme, elucidation of 

the corresponding mechanisms for its prokaryotic counterpart are still poorly understood 

(Cronan and Waldrop 2002). In contrast to the traditional genomic organization of central 

metabolic pathway genes into a discrete bacterial operon, ACC subunit genes exist in 

three physically segregated transcriptional units (Li and Cronan 1992; Li and Cronan 

1992; Li, Rock and Cronan 1992). Two of these units produce dicistronic mRNAs which 

encode either BCCP/BC or the CT-β subunit in conjunction with dihydrofolate 
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synthetase-folylpolyglutamate synthetase (folC). The third generates a monocistronic 

transcript encoding CT-α. Since ACC subunits do not undergo cotranslation from a 

polycistronic mRNA, a major unresolved question concerns the control mechanisms 

which allow individual subunits to achieve proper stoichiometry in the ACC complex. 

Transcriptional analysis demonstrates cellular growth-rate dependent mRNA synthesis 

rates for all E. coli ACC subunit genes and reveals independent transcriptional 

modulation of the BCCP-BC (AccBC) operon and the CT-α (AccA) or CT-β (AccD) 

gene promoters(Li and Cronan 1993). Relative to wild-type E. coli, AccA/AccD 

transcripts accumulate significantly in transformants containing high-copy number 

plasmids expressing AccA or AccD, but only weak induction of AccB/AccC mRNA 

synthesis is observed in bacteria harboring AccBC on the same vector (James and Cronan 

2004). This latter observation led to the discovery that BCCP mediates transcriptional 

repression of the AccBC operon. However, since BCCP was reported to be incapable of 

binding to the AccBC promoter, the DNA-binding factors and cis regulatory elements 

which operate downstream of BCCP to control AccBC mRNA expression remain to be 

established.  

     Studies of prokaryotic ACC gene expression and activity in chloroplasts, the site 

of lipid biosynthesis in plants, reveal striking parallels with the E. coli enzyme. 

Phylogenetic evidence indicates that plastidic ACC subunit genes are derived from a 

cyanobacterial endosymbiont and, excepting chloroplast-encoded AccD, have since 

undergone transfer to the nuclear genome (Martin, Stoebe, Goremykin, Hapsmann, 

Hasegawa and Kowallik 1998). All plastidic ACC subunits align with high sequence 

homology (44-54% identity in Arabidopsis thalania) and conserved secondary structure 



 

      45

(based on topological prediction against Glycine max) over each of the full length E. coli 

sequences. Despite genomic compartmentalization, plastidic ACC mRNA levels are 

controlled according to the demand for seed oil production and maintain a precise molar 

ratio throughout Arabidopsis embryogenesis (Ke, Wen, Nikolau and Wurtele 2000). 

Analogous to the bacterial system, the gene regulatory mechanisms which allow 

balanced, prokaryotic ACC mRNA expression in plants are largely unexplored. 

     To date, several lines of evidence suggest that the CT-β subunit directly 

modulates transcription. The plastidic orthologue of bacterial AccD, whose protein 

coding sequence contains the invariant N-terminal, zinc binding consensus C-x2-C-x15-

C-x2-C in eubacteria, photosynthetic protozoa, and plants, was first classified as the zinc-

finger protein A (zfpA) (Sasaki, Nagano, Morioka, Ishikawa and Matsuno 1989). zfpA 

(AccD) was proposed to act as an immediate response, gene regulatory factor in 

chloroplasts since light stimulates production of plastidic AccD mRNA in the absence of 

de novo protein synthesis. The observation that deletions within either the E. coli AccD 

gene or its upstream promoter markedly truncate FolC expression from a plasmid-borne 

AccD-FolC operon suggests that CT-β might modulate E. coli gene expression in 

analogous fashion (Bognar, Osborne and Shane 1987).          

         The conserved zinc finger motif of CT-β, in addition to a proposed gene regulatory 

role, is required for the CT half-reaction of plastidic ACC (Kozaki, Mayumi and Sasaki 

2001). Reconstitution of pea CT after removal of the CT-α and CT-β sequences lacking 

conservation with the E. coli orthologue, which comprises a large N-terminal segment 

upstream of the Zn finger consensus in plastidic CT-β, exhibits wild-type activity. 

Further N-terminal truncation through the Zn finger motif, however, completely 
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abrogates CT activity and mutagenesis of the four individual cysteines to alanine 

produces an enzyme which exhibits <20% wild-type activity (Kozaki, Mayumi and 

Sasaki 2001). 

 

Purpose 
 
 

 The purpose of this study was to determine the three dimensional structure of the 

CT subunit of bacterial ACC, a potential antimicrobial drug target. Since CT was 

crystallized in the presence of a bisubstrate analog inhibitor, the structure was anticipated 

to reveal the mode of inhibitor binding and to provide insight into the catalytic 

mechanism. It was additionally anticipated that the active site structure would help to 

elucidate the inhibitory mechanism of the pyrollidine diones, a new class of 

antimicrobials specific for the CT subunit of ACC.   
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CHAPTER V 

 

MATERIALS AND METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

            Fig. 18 Simulated precession image of Sa CT diffraction   

 

Structure Determination and Refinement  
 

Sa CT purification, crystallization, and data collection were performed at Pfizer Global 

Research and Development, Ann Arbor, Michigan. Diffraction images were processed 
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and scaled using the Denzo/HKL suite (25). A precession image on the 0,k,l zone of  

reciprocal space was simulated from the scaled intensity data and presented in Fig. 18. 

Reflections on l and k are respectively aligned on the short and long axes of the page. 

Odd reflections on k are absent due to the presence of a screw axis along the direct axis y 

of the C2 lattice. Data collection statistics are shown in Table. 3. 

 
 
   Table 3 :    X-ray Data Collection Statistics 

                                                   Sa CT                          Ec CT         
   
 resolution ( Å )                         50.0-1.98                      30.0-3.2 
 total/unique reflections           273,345/90,018             183,454/23,565 
 completeness (%)                    98 (82)                           100 (100) 
 redundancy                              3.0 (2.7)                        7.8 (8.0)  
 I/σ                                             17.5 (3.4)                       26.6(4.1) 
 Rsym(%)                                  6.0 (29.3)                      6.8 (41.2)                                                                        
                                                                                                                   
 
 
 
The structure of Staphylococcus aureus carboxyltransferase (Sa CT) was solved by 

molecular replacement in CNS with a dimeric poly-alanine search model derived from 

the Propionibacterium shermanii 12S transcarboxylase (Ps 12S) hexamer (PDB id 

1ON3, chains A, D). A monomer of the search model corresponds to a tandem domain 

repeat  and each of the structurally homologous domains shares <15% sequence identity 

with the α and β subunits of Sa CT. The search model (corresponding to an α2β2 tetramer) 

was positioned in the asymmetric unit to give a correlation coefficient two standard 

deviations above the mean.  Placement of a single dimeric model is consistent with the 

non-crystallographic symmetry of the Patterson and a Matthews coefficient (Vm= 2.4 

Ǻ3/Da) in the generally observed range. After rigid body, energy minimization, and 

simulated annealing refinement in CNS (Rfree=53, R=52) of the poly-alanine model, a 
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sigmaA-weighted, 2fo-fc electron density map calculated over the full resolution range 

(50-1.98Ǻ) revealed interpretable side chain density for a few conserved residues in the 

central core of the model.   

 A non crystallographic symmetry matrix, assigned with the assumption that the 

monomer pseudo two-fold of the 12S search model corresponds to an αβ dimer pseudo 

two-fold in the Sa CT tetramer, was used to calculate an averaged, solvent flattened 

electron density map with DM in CCP4. The map revealed clear side chain electron 

density at or near the dimer interface. Automated chain tracing and refinement with  

ARP-wARP (Perrakis, Harkiolaki, Wilson and Lamzin 2001) (CCP4) increased the 

extent of an initial model (from 11% to 80% of the protein) and resulted in an and 

Rwork/R(free) of 20/26. Following further cycles of model building in O and refinement in 

Refmac 5 (CCP4) over the entire resolution range, the final model of Sa CT has an 

Rwork/R(free) of 18.9/21.0 and contains 92% (1120/1224) of the full length sequence, 2 

Zn2+, and 583 waters (Table 3). The remaining 8% of Sa CT localizes to a 22-residue 

disordered stretch at the far N-terminus of the β subunit and to a 10 residue gap between 

solvent-exposed helices at the N-terminus of α. A simulated annealing composite omit 

map calculated in CNS and contoured at 1σ reveals electron density in the active site that 

has been modeled as the biotin heterocycle.  

 A molecular replacement strategy for Ec CT was subsequently initiated with a 

polyalanine search model derived from the refined Sa CT structure. Dimeric and 

tetrameric search models were tested in each of several possible hexagonal space groups. 

A solution (using Molrep (CCP4)) was obtained in P6522 (Vm= 5.0 Ǻ3/Da, 75% solvent) 

with the αβ dimer as a search model. In this space group, crystallographic symmetry 
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resolution range (Å)               50-1.98       30-3.2
number of reflections             80,987        22,030
sigma cutoff                              none          none
R factor (%)                             18.9           24.6  
R free (%)                                 21.0           29.3
number of refined atoms: 

protein                                   8,689        4,275 
water                                       583              7
Zn2+                                         2               1             

average B factors (Å2):
protein                                     38.4          79.9     
water                                       42.8           44.6
Zn 2+                                       40.1           78.6          
Overall                                    38.7           79.8 

B from Wilson plot                   31.7           N/A
rms deviations:

bonds (Å):                               0.02           0.01
angles (º):                                1.4             1.4

ramachandran plot
disallowed (%)                         0.1             0.0

Sa CT           Ec CT
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operators generate the biological heterotetramer from a single αβ dimer in the 

asymmetric unit. One cycle of rigid body, energy minimization, and simulated annealing 

refinement in CNS produced a map with interpretable side chain density for 

approximately 80% of the Ec CT primary sequence (Rfree=46, R=42). In conjunction 

with model building in O and overall isotropic B-factor refinement in CNS, further cycles 

of energy minimization and simulated annealing refinement were conducted until Rfree 

decreased below 30%. At this stage, seven water molecules were added and a final round 

of B-group and simulated annealing refinement was performed (Table 4).  The backbone 

trace of the final Ec CT model (Rfree=29, R=25) superposes well (rmsd=1Ǻ) with the Sa 

CT model and lacks density in similar regions of the structure. There are additional 

poorly defined stretches encompassing residues 88-98 and 234-238 of the β monomer. 
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CHAPTER VI 
 
 
 

RESULTS 
 
 
 

Overall Fold 

 
The crystal structures of the carboxyltransferase components of acetyl-CoA carboxylase 

from S. aureus and E. coli were solved to resolutions of 2.0 and 3.2Å, respectively. Both 

structures confirm the α2β2 heterotetrameric assembly determined by gel-filtration and 

sedimentation equilibrium analysis of the purified E. coli enzyme (Guchhait, Polakis, 

Dimroth, Stoll, Moss and Lane 1974). The bacterial CT’s share 52% sequence identity, 

and the tetramers superimpose with a rmsd of 1Å over 93% of the backbone trace (unless 

otherwise noted, the E. coli residue numbering employed throughout the text refers to 

residues conserved between both species). The overall structure of the tetramer is a 

truncated rectangular pyramid with its base 72Å x 88Å, apex 23Å x 34Å, and height 52Å 

(Fig.1a,b,d). The oligomer is a dimer of dimers related by a two-fold axis that runs 

through a central cavity that gradually narrows from a 13Å diameter opening to a solvent 

inaccessible surface at a depth of 23Å. Two distinct interfaces are generated by 

structurally-homologous, wedge-shaped α and β monomers that occupy roughly 

equivalent volumes at the four corners of the pyramid (Fig. 19 a,b). The first consists of a 

"weak" αβ interface (~4000Å2 of buried surface) situated on the vertical plane bisecting 

the short axes of the pyramid (Fig. 19 c,d). The second entails a "strong" αβ interface 

(~9000Å2 of buried surface) in which the triangular faces of the monomers are 

juxtaposed on a 60° incline (Fig. 19 e,f). 
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Fig. 19 The overall fold of Sa CT 
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The structurally-similar α and β monomers (A and B) possess an α/β spiral core 

composed of a long, twisted and tapered 7-stranded mixed β sheet (Aβ1-5/Bβ5-9, 

Aβ6/Bβ11, Aβ8/Bβ13) orthogonal to a short, 2-stranded parallel β platform (Aβ5/Bβ10, 

Aβ7/Bβ12) (Fig. 20). 

 

 
 
           Fig. 20 The α (green) and β (purple) monomers of bacterial CT (in stereo) 
 

The 7-stranded β sheet is flanked by helical regions (Aα12/Bα9 and Aα4/Bα2) and a 3-

helix bundle of Aα6/Bα4, Aα7/Bα5, Aα8/Bα6. These helical elements constitute 
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pseudo-symmetrical edges of the triangular face of the wedge. Both sets of helices 

converge toward the apex of this triangle and the 3-helix bundle provides the primary 

scaffold for the 2-stranded platform at its base. The structure-based sequence alignment 

in figure 21 highlights the extensive structural homology of 1) the spiral α/β monomer 

fold to enoyl-CoA hydratase (crotonase) and 2) the presence of an oxyanion hole (G204-

G205) for CoA-thioenolate stabilization as described for other members of the crotonase 

superfamily. Both of these elements, which are maintained through divergent evolution, 

place the bacterial CT subunits into this enzyme subcategory (Gerlt and Babbitt 2001). 

This classification was originally predicted by Murzin on the basis of sequence 

alignments (Murzin 1998).  Figure 21 is color coded as follows: E. coli / S. aureus α 

(light green), Streptomyces coelicolor (Sco) domain 1 (dark green), Ec/Sa β (light 

purple), Sco domain 2 (dark purple), and crotonase (blue).  Sequences are numbered 

according to the E. coli  α/β monomers and secondary structural elements corresponding 

to the S. aureus α/β monomers (above the alignment) or crotonase (below the alignment) 

are color coded according to the scheme employed for the E. coli / S. aureus monomer or 

crotonase sequences. Secondary structural elements within the structurally-homologous 

spiral core domains of E. coli / S. aureus monomers and crotonase is outlined. Within the 

outlined region, residues that constitute the conserved oxyanion holes that recognize the 

biotin ureido enolate or CoA thioenolate intermediates are boxed in black. The invariant 

cysteinyl zinc ligands in CT β are boxed in red. Residues in E. coli  α (22-38,41,46,52-

53) and  E. coli  β (93-98,285-204) that are not visible or lack clear side chain density are 

absent or modeled as alanine, respectively. 
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Fig. 21 Structure-based alignment of Ec and Sa CT α/β  with Sco CT and crotonase 

 

   The Active Site 

A "ridges in grooves"-type stacking of conserved hydrophobic residues between the 

Aα7-8 (I181,L185,L209) and Bα5-6 (L174,M177,A208) helices generates a 6-helix 



 

      56

bundle at the "strong" αβ interface. This packing arrangement orients the triangular faces 

of dimer partners on a 60º tilt with respect to one another and effectively doubles the 

length of the β-strand platform by positioning the hairpins from individual monomers on 

opposite sides of a pseudo two-fold axis (Fig. 22). Since conserved residues found on and 

surrounding this platform are located in the liganded active sites of other biotin 

dependent carboxylases, including the substrate-binding clefts of Streptomyces coelicolor 

(Sco)/Saccharomyces cerevisiae (Sc) CT (Zhang, Yang, Shen and Tong 2003; Diacovich, 

Mitchell, Pham, Gago, Melgar, Khosla, Gramajo and Tsai 2004) and Propionibacterium  

 

    Fig. 22 Structure of the Sa CT αβ catalytic dimer 

 

shermanii 12S transcarboxylase (Ps 12S)(Hall, Wang, Rivera-Hainaj, Zheng, Pustai-

Carey, Carey and Yee 2003), we will henceforth refer to this site as the "catalytic 

platform" (Fig. 22). The structurally equivalent overall folds of the α and β subunits 

suggest duplication and divergence of a single ancestral CT subunit gene.  However, an 
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inherent asymmetry in the structural homology of the α and β subunits allows for the 

creation of distinct biotin and acetyl-CoA-specific subsites.  When viewed from a 

perspective above the αβ interface, the α and β subunits possess structurally disparate 

motifs that project toward the viewer.  As shown in figure 23, four subdomains (2 helical 

domains from the α-subunit (designated Helical Subdomain (HS) 1α & 2α (ΗS1α & 

HS2α), and a Zn binding domain and helical domain from the β-monomer (HS1β)) 

coalesce to provide a canopy over the catalytic platform where three portals (labeled gaps 

A B and C in Fig. 23) in the canopy appear to provide active site access. 

 

    Fig. 23 The pseudo 2-fold, Sa CT active site platform in the αβ catalytic dimer 
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 The regions that flank these portals break the symmetry of the active site that 

would result if the structural homology of the α or β subunits extended over the entire 

protein. The portals may serve as “traffic control” elements that coordinate active site 

access for substrates constrained by bulky carrier groups: biotinoyl carboxyl carrier 

protein and coenzyme A.  

Two key conserved residues in the active site, G206 and G207, are located in the 

consensus sequence 206-GGXXHHH-212 (where X=small residue, H=hydrophobic), 

which is at the N-terminus of Aα8 (Fig. 21).  The peptidic hydrogens of G206 and G207 

form a conserved oxyanion hole at the base of this helix that is proposed to stabilize a 

ureido enolate that forms during decarboxylation of carboxybiotin N1 in the homologous 

CT subunit of propionyl-CoA carboxylase (PCC) from Streptomyces coelicolor (Sco) 

(Zhang, Yang, Shen and Tong 2003; Diacovich, Mitchell, Pham, Gago, Melgar, Khosla, 

Gramajo and Tsai 2004).  Similarly, a conserved oxyanion hole in the β subunit is formed 

by G204 and G205 at the N-terminus of Bα6 (Fig. 21). The peptidic hydrogens of this 

glycine pair in the Sco PCC structure, which correspond to the conserved oxyanion hole 

in crotonase, were found to act as hydrogen bond donors to the carbonyl of the methyl-

malonyl-CoA ligand (MMCoA) and proposed to stabilize the developing negative charge 

on the enolate intermediate (Zhang, Yang, Shen and Tong 2003; Diacovich, Mitchell, 

Pham, Gago, Melgar, Khosla, Gramajo and Tsai 2004).  

It is important to note that Sa CT was crystallized in the presence of a bi-substrate 

analog (BiSA) inhibitor that combines features of both substrates: coenzyme A is 

covalently linked to carboxybiocytin (Fig. 24) (Levert and Waldrop 2002). However, 

continuous electron density consistent with the intact inhibitor is not apparent (Fig. 25).    
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Fig. 24 The Bi-Substrate Analog inhibitor of carboxyltransferase (BiSA) 

 

This absence of density could be a consequence of hydrolysis of the analog in the 

course of the crystallization, or could simply reflect a lack of specific contacts over the 

length of the inhibitor in our crystallization conditions.  

Inspection of a 2Fo-Fc composite omit map reveals non-protein density that likely 

corresponds to a portion of the inhibitor in a hydrophobic region of the active site at the 

central pseudo-two-fold of the catalytic platform (Fig. 25).  

Attempts were made to model the inhibitor, however, since density with striking 

resemblance to the bicyclic ring structure of biotin was evident. BiSA is hydrolyzed and 

visible in only one active site; in addition to reasonable biotin density, a portion of the 

phenylated valeric acid and the acyl-CoA moieties were apparent (Fig. 26). Liganded and 

unliganded active sites superpose with a rmsd of 0.24A and show only minor structural 

differences. The biotin heterocycle is twisted about the C3-C4 bond into a constrained, 

puckered conformation which places N3 and C5 above and N1 and C2 below the 

respective ring planes which would exist in a model of ideal bicyclic mirror symmetry.  

“Coenzyme A” “Biocytin”“Coenzyme A” “Biocytin”
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Fig. 25 The Sa CT active site (lacking modeled BiSA) 

 
Fig. 26  The Sa CT active site (with modeled BiSA) 

 

The C3-C4 bond rests parallel to a hydrophobic cavity which lies along the dimer pseudo 

two-fold and the vertex described by C3-C4 points directly through the cavity center. The 

n-termini of the Aα8 and Bα6 dimerization helices are positioned as symmetry 

equivalent entities with respect to this axis and contribute dipole moments which border 

biotin at O2' and S1, respectively. The structurally equivalent positions at the n-termini of 

these helices are conserved in biotin dependent carboxyltransferases such that the 

consensus for Aα8 is GGXXHHH (where X=small residue, H=hydrophobic) and Ba6 is 

XXGGXXX. BiSA is surrounded by hydrophobic surfaces emanating from short coils at 

the base of HS1β and its pseudo-symmetry equivalent in α, a highly conserved bulge 

(between Bβ8 and Bα5) with the prokaryotic ACC CT β consensus 163-GGARMQE-169 
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that runs parallel to strand Bβ11 of the catalytic platform, and a short coil between Aβ4 

and Aα7 with the prokaryotic ACC CT α consensus GAYPG. The GAYPG consensus 

represents the pseudo-symmetry equivalent of the GGARMQE loop in β. The sequence 

and structure (based on Sc CT) of eukaryotic ACC also aligns remarkably well in the 

Bβ8-Bα5 and Aβ4-Aα7 loop regions and suggests that these elements play an essential 

role in biotin recognition. This hypothesis is supported by the observation that 

mutagenesis of E169 of Ec CT β, a residue conserved in the primary sequence of 

prokaryotic and most eukaryotic ACCs, results in a catalytically inactive enzyme (Benson 

and Waldrop, unpublished results).  

In the structure of MMCoA/biocytin-bound Sco PCC, a biotin-dependent 

carboxyltransferase whose acyl-CoA substrate differs from acetyl-CoA by the addition of 

a methyl group, the position of the acyl thioester of MMCoA is in close proximity to the 

density we tentatively attribute to the bi-substrate analog inhibitor. This density 

predominantly covers the hydrophobic cavity that presents the helical dipole and 

oxyanion hole (G207-G208 of Bα6 in Sa CT) to the acyl thioester of MMCoA.  

 

The Zinc Domain: Potential for ACC Inhibitor Design 

 
While the overall fold of bacterial CT confirms that it is indeed a member of the 

crotonase superfamily, a surprising and novel feature of the enzyme is the Zn domain 

(Fig. 27). 
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Fig. 27 Sa CT binds zinc with an atypical zinc ribbon motif 

 

The discovery that this domain exists in prokaryotic CT alone has potential ramifications 

for designing pharmaceutical agents that are selective for the bacterial enzyme. Early Fo-

Fc maps calculated for the Sa CT structure revealed a 20σ peak encapsulated by a 

tetrahedral arrangement of sulfurs contributed by the cysteine residues that terminate 

Bβ1(C27)/Bβ3(C46) and those immediately preceding Bβ2(C30)/Bβ4(C49) (Fig. ). X-

ray fluorescence spectra collected on solution-state and crystalline preparations of Sa CT 

in its apo form demonstrate that the peak corresponds to Zn2+ (Fig. 27). Sequence 

alignment of the CT β primary sequence with orthologous enzymes from eubacteria, 
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algae, plants, and animals reveals that the cysteine ligands are invariant residues within 

an independent N-terminal domain that exists in prokaryotic, but not eukaryotic CT.  The 

Zn motif in CT β is an atypical Cys4 "zinc ribbon" that most closely resembles the Zn 

binding structures observed in ribosomal proteins (Fig.7c; PDB code 1jj2), RNA 

polymerase II subunits (1i5b) and the basal transcription factors TFIIS(1tfi) and 

TFIIB(1pft). Unlike the classical motif in which the second sheet is three-stranded and 

significantly longer than the first (Krishna, Majumdar and Grishin 2003), the fold in CT β 

bears an intervening helix between two short β hairpins (Fig. 27).  

The inner face of the CT β Zn binding domain forms roughly half of an 

electropositive, hemicircular surface that encompasses residues from both subunits (Fig. 

28). Comparison of the electrostatic properties of Ec/Sa CT with the structurally 

homologous carboxyltransferases Sc CT and Sco PCCB reveals that Ec/Sa CT possess a 

greater overall net positive charge at pH 7 (Ec CT=+4, Sa CT=-16, Sc CT=-26, Sco CT=-

42).  Zn-domains are commonly associated with DNA binding proteins and preliminary 

studies using electrophoretic mobility shift assays indicate that Ec CT does indeed bind 

DNA (data not shown).  Studies to determine the DNA binding specificity of Ec CT are 

underway.    

In addition to nucleic acid binding functions, Zn ribbon structures have also been 

found to constitute catalytically-essential, active site "lids" in isoleucyl-tRNA synthetase,  
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Fig. 28 The Sa/Ec CT active site presents a markedly electropositive surface by 
comparison to other CT structures 
 
 
 
methionyl-tRNA synthetase, and the histone deacetylase silent information regulator 2 

(Glasfeld and Schimmel 1997; Sherman, Stone, Freeman-Cook, Brachmann, Boeke and 

Pillus 1999; Serre, Verdon, Choinowski, Hervouet, Risler and Zelwer 2001; Crepin, 

Schmitt, Blanquet and Mechulam 2004). In fact, several lines of evidence suggest that the 

Zn motif in CT β is required for catalytic activity and may also act as an active site “lid”.  

First, the prokaryotic α2β2 CT heterotetramer isolated from plant chloroplast, which 

aligns over the primary sequence of both bacterial CT subunits (39%/47% identity 

between pea and Ec CT-β/α), bears the zinc finger consensus C-X2-C-X15-C-X2-C (35).  
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Second, deletion of the Zn finger motif in plastidic CT completely abrogates enzymatic 

activity, while mutagenesis of the four individual cysteines to alanine produces an 

enzyme which exhibits <20% wild-type activity (Kozaki, Mayumi and Sasaki 2001). 

Third, Ec CT is inactivated by N-ethylmaleimide (NEM), a compound that covalently 

modifies sulfhydryls (Blanchard and Waldrop 1998). Since the majority of cysteines in 

the Ec CT structure are buried and no cysteines are present in the active site, these results 

are consistent with NEM-mediated disruption of the solvent-exposed cysteines in the Zn 

ribbon domain of CT β.  Moreover, malonyl-CoA confers protection against inactivation 

by NEM, a result which suggests that the Zn domain plays a role in substrate recognition 

(Blanchard and Waldrop 1998). However, superposition of the Sa/Ec CT-β monomer 

with crotonase family members, as well as other biotin dependent carboxylases, including 

Sc ACC and Sco PCC, reveals that the acyl-CoA binding site is situated roughly 17Å 

from the Zn ribbon motif. Although this observed distance alone does not immediately 

favor a direct contribution of the Zn domain in the catalytic mechanism, we must note 

that crystal contacts on the outer surface of the Zn domain might maintain the “lid” in an 

artificially open state in both the Ec and Sa CT structures. Moreover, a disordered 20+ 

residue N-terminal stretch in both enzymes immediately precedes the zinc domain and 

this mobility extends, in the form of higher than average B-factors, through the β1-β4 

strands. Since the Zn site is part of a small, independent domain that rests on a short 

hinge, it is plausible that these disordered and/or mobile residues, many of which are 

electropositive, order and shift the inner surface of the zinc motif into contact with the 

electronegative phosphates of the acetyl-CoA substrate. This scenario would mimic the 

significant mobility observed for the catalytic zinc lid domain of methionyl tRNA 



 

      66

synthetase: although crystal structures of methionyl tRNA synthetase demonstrate a large 

domain shift, only in the solution state were residues from this domain conclusively 

shown to interact with substrate (Crepin, Schmitt, Blanquet and Mechulam 2004). Taken 

together, these observations suggest that the Zn domain may act as a potentially mobile 

and catalytically-important active site lid for the bacterial enzyme. Moreover, significant 

variability is observed in the constellation of side chains that project from the inner 

surface of the zinc domain when the active site structure from the Gram-positive 

bacterium (Staphylococcus aureus) is superposed with Escherichia coli (Gram-negative).  

Since this unique structural feature is both present and variable in Gram-positive vs. 

Gram-negative bacteria, it may aid in the design and development of pharmaceutical 

agents that mediate selective, specific inhibition of bacterial enzyme classes. 
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    CONCLUDING REMARKS 

   

              Iron-Sulfur Cluster Protein A 

 
The crystal structure of IscA reveals a compact globular domain that tethers a 

highly mobile C-terminal tail containing residues shown to be involved in Fe-S cluster 

assembly. It appears that the functional form of IscA is at least dimeric, and that the 

tethered, flexible C-termini permit the interaction of two IscA monomers with Fe in 

multiple geometries. In the region of C35, the Hg-binding pocket of tetramer A or the 

solvent-exposed surface of tetramer B provides adequate space for the insertion of 

mononuclear iron and/or Fe-S clusters. The crystal packing suggests a model for the 

polymerization of IscA into the higher order solution states described previously 

(Ollagnier-de-Choudens, Mattioli, Takahashi and Fontecave 2001;Wu, Mansy, Hemann, 

Hille, Surerus and Cowan 2002). In conjunction with current models for Fe binding to 

IscA, our structure suggests that alternate dimeric or tetrameric forms may serve to either 

enhance or preclude access of the three invariant cysteine residues to Fe or Fe-S ligands. 

 

 Acetyl-coA carboxylase; carboxyltransferase subunit 

 
The structures of the bacterial carboxyltransferase subunit of Escherichia coli and 

Staphylococcus aureus acetyl-CoA carboxylase reveal α2β2 heterotetramers whose 

individual subunits are novel members of the crotonase superfamily. The active site 

pocket, which is formed by contributions from α and β subunits across a pseudo two-fold 

dimer interface, is partially sheltered by a zinc-binding domain that is poised to play a 
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role in shielding the acetyl-CoA substrate during catalysis. The invariant positions of the 

zinc-binding cysteines within an independent domain in prokaryotic (but not eukaryotic) 

CT and the inter-specific variation in bacteria that exists within the primary sequence 

surrounding the zinc site are key features of the enzyme. It follows from these 

observations that the availability of structures for the CT component of ACC from the 

two major classes (gram-positive and gram-negative) of pathogenic bacteria has potential 

to facilitate structure-based design of antimicrobials that possess selective bacterial 

toxicity and circumvent inhibition of the mammalian enzyme. 
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