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CHAPTER 1

INTRODUCTION

As the largest organ of the human body, the skin acts as a crucial barrier between

the internal and external environments of the body. This barrier function is of

vital importance for life on land, as it prevents rapid dehydration and keeps foreign,

potentially hazardous particles outside the body. Owing to its critical location at

the body–environment interface, a thorough understanding of how the skin barrier

manifests itself is important for both restoring and selectively reducing it.1 Consider,

for example, that many skin diseases can result in an impaired skin barrier, coincidental

with abnormalities in lipid composition, organization, and structure.2–11 While such

diseases themselves are not often viewed as particularly life-threatening, they often

lead to systemic health problems beyond the original disease. Atopic dermatitis (AD,

an inflammatory, itchy skin disorder that affects an estimated 30% of the United

States population12) often coincides with other, more serious diseases. Up to 75%

of children with AD will develop asthma,12 and up to 67% of children with AD

will develop rhinitis.2,13,14 Ichthyosis vulgaris, a scaly skin disorder, also commonly

co-occurs with AD.15,16 Thus, to prevent such skin diseases from progressing to more

serious health issues, treatment needs to focus on restoring the skin barrier rather

than simply treating the symptoms, and hence requires a thorough, molecular-level

understanding of structures that make up that barrier.

Understanding the skin barrier on a molecular level is not only important for

restoring a defective barrier, but also for selectively reducing the barrier, e.g., for

transdermal drug delivery. Transdermal drug delivery is an attractive alternative to

oral and hypodermic drug delivery for a myriad of reasons, including the avoidance of

first-pass metabolism, the lack of pain associated with the transdermal route compared
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to a needle, the reduction of dangerous medical waste (e.g., contaminated needles), the

ability for self-administration, and the potential for a slow-release mechanism.17 Despite

these advantages, candidate drugs for transdermal delivery must be small, have a low

effective dose, and be highly lipophilic. The use of penetration enhancers to temporarily

reduce the skin’s barrier properties could have a major impact on transdermal drug

delivery, but is still relatively underutilized to date. A clear understanding of the

molecular-level details of the skin barrier would allow penetration enhancers to be

tailored to have specific properties, making the transdermal route possible for a wider

variety of drugs.

While much has been learned about the molecular origins of the skin barrier,

experimental difficulties make a full molecular-level understanding elusive. One of

the major limitations to experimental studies on the skin barrier is the resolution

available to scattering and diffraction methods, making it difficult to fully resolve

the structures involved. In this regard, molecular simulation becomes a useful tool

for studying these types of systems, as molecular-level resolution is readily available.

However, the full potential of molecular simulation for studying skin barrier systems

has yet to be realized, owing to a number of challenges related to the proper sampling

of these systems.

This thesis describes work done on two fronts. First, the challenges hindering

progress in skin barrier research are addressed. Next, the methods developed are

applied to simulate systems resembling the skin barrier to glean molecular-level details

of its structure.

In Chapter 2, background information related to the skin barrier, including results

from experimental studies, is presented. In Chapter 3, background information

related to simulation studies of SC lipids is given, including the basics of simulation

methodology and a brief review of the SC simulation literature. In Chapter 4, a

novel equilibration methodology for equilibrating skin barrier systems is presented and
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applied to such systems. In Chapter 5, a novel method for developing coarse-grained

(CG) force fields, multistate iterative Boltzmann inversion (MS IBI), is presented, and

its utility illustrated. In Chapter 6, MS IBI is applied to develop a CG model of water;

this model is shown to be more accurate than previously-used CG water models. In

Chapters 7 to 9, MS IBI is applied to develop CG models for key components of the

human skin barrier. These models are validated against atomistic simulation data, and

their self-assembly is explored. Finally, in Chapter 10, the findings presented in this

thesis are summarized, and future directions for extending this work are suggested.

3



1.1 Bibliography

[1] Wertz, P. W. Lipids and barrier function of the skin. Acta Dermato-
Venereologica Supp 208, 2000, pp. 7–11.

[2] Segre, J. A. Epidermal barrier formation and recovery in skin disorders. Journal
of Clinical Investigation 116, 2006, p. 1150.

[3] Elias, P. M., Hatano, Y., and Williams, M. L. Basis for the barrier
abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms.
Journal of Allergy and Clinical Immunology 121, 2008, pp. 1337–1343.

[4] Elias, P. M., Williams, M. L., Holleran, W. M., Jiang, Y. J., and
Schmuth, M. Thematic review series: skin lipids. Pathogenesis of permeability
barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism.
Journal of Lipid Research 49, 2008, pp. 697–714.

[5] Choi, M. J. and Maibach, H. I. Role of ceramides in barrier function of
healthy and diseased skin. American Journal of Clinical Dermatology 6, 2005,
pp. 215–223.

[6] Yamamoto, A., Serizawa, S., Ito, M., and Sato, Y. Stratum corneum
lipid abnormalities in atopic dermatitis. Archives of Dermatological Research
283, 1991, pp. 219–223.

[7] Di Nardo, A., Wertz, P. W., Gianneti, A., and Seidenari, S. Ceramide
and cholesterol composition of the skin of patients with atopic dermatitis. Acta
Derm Venereol (Stockh) 78, 1998, pp. 27–30.

[8] Matsumoto, M., Umemoto, N., Sugiura, H., and Uehara, M. Difference
in ceramide composition between“ dry” and “normal” skin in patients with atopic
dermatitis. Acta Dermato-Venereologica 79, 1999, pp. 246–247.

[9] Imokawa, G., Abe, A., Jin, K., Higaki, Y., Kawashima, M., and Hidano,
A. Decreased level of ceramides in stratum corneum of atopic dermatitis: an
etiologic factor in atopic dry skin? Journal of Investigative Dermatology 96,
1991, pp. 523–526.

[10] Pilgram, G. S. K., Vissers, D. C. J., van der Meulen, H., Koerten,
H. K., Pavel, S., Lavrijsen, S. P. M., and Bouwstra, J. A. Aberrant
lipid organization in stratum corneum of patients with atopic dermatitis and
lamellar ichthyosis. Journal of Investigative Dermatology 117, 2001, pp. 710–717.

[11] Motta, S., Monti, M., Sesana, S., Caputo, R., Carelli, S., and Ghi-
doni, R. Ceramide composition of the psoriatic scale. Biochimica et Biophysica
Acta - Molecular Basis of Disease 1182, 1993, pp. 147–151.

[12] NIAMS. Handout on health: Atopic dermatitis (2003).

4



[13] Boguniewicz, M., Leung, D. Y. N., Orange, J., Pinzone, K., Harbeck,
R., Leung, S. B., and Spergel, J. Total and pecific IgE are elevated in
Atopic March (AM). Journal of Allergy and Clinical Immunology 121, 2008, p.
S31.

[14] Spergel, J. M. Atopic march: link to upper airways. Current Opinion in
Allergy and Clinical Immunology 5, 2005, pp. 17–21.

[15] McGrath, J. A. Filaggrin and the great epidermal barrier grief. Australasian
Journal of Dermatology 49, 2008, pp. 67–74.

[16] McGrath, J. A. and Uitto, J. The filaggrin story: novel insights into
skin-barrier function and disease. Trends in Molecular Medicine 14, 2008, pp.
20–27.

[17] Prausnitz, M. R. and Langer, R. Transdermal drug delivery. Nature
Biotechnology 26, 2008, pp. 1261–1268.

5



CHAPTER 2

SKIN BACKGROUND

In human physiology, skin plays the vital role of separating the inside of the body

from its environment, protecting the body from pathogen invasion and dehydration.

The skin broadly comprises two layers, the dermis and the epidermis. The dermis is

the innermost of the two layers, and contains the connective tissues—collagen and

elastin—that give the skin its strength and elasticity. The dermis also contains nerve

endings, hair follicles, sweat glands, sebaceous glands, and blood vessels, and is hence

very much connected with the rest of the body. The blood vessels provide nourishment

and waste removal for the dermal and epidermal cells. Therefore, once a substance

passes into the dermis, it may enter systemic circulation; this mechanism forms the

basis of transdermal drug delivery.

The epidermis is the outermost, visible layer of skin, and itself consists of several

layers, or strata, as shown in Figure 2.1. The innermost layer at the interface of

the dermis and epidermis is the stratum basale, which is a 1–3 cell-thick layer of

basal keratinocytes. On top of the stratum basale is the stratum spinosum, where

the keratinocytes start to connect to one another through desmosomes. Also in this

layer, the keratinocytes begin to produce lamellar bodies containing glycosphingolipids,

sterols, and phospholipids, as well as catabolic enzymes. In the stratum granulosum,

the keratinocytes lose their nuclei and contain protein-enriched granules, which serve

to bind keratin filaments to form a keratin network. In the upper stratum granulosum,

the lamellar bodies are secreted by the keratinocytes. After secretion, the catabolic

enzymes convert the glycosphingolipids into ceramides and the phospholipids into free

fatty acids. The lipids are then arranged into lamellae parallel to the cell surface,

forming a lipid envelope around the keratinocytes. In the stratum corneum (SC), the
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keratinocytes become terminally differentiated into corneocytes, and are full of keratin

filaments. The corneocytes are flat, polyhedral, nonviable cells that contain a protein

envelope on the surface, to which the lipid envelope is attached. The corneocytes are

stacked, usually between 10–40 layers thick, and the intercellular space of ∼100 nm is

composed of a highly organized lipid matrix, as shown in Figure 2.2. This arrangement

of lipids surrounding the corneocytes is often referred to as a brick and mortar-like

arrangement, where the corneocytes serve as the bricks and the lipid matrix serves

as the mortar. Because of its unique organization, the barrier properties of skin are

mainly localized to the SC.1 It remains unclear whether or not transcellular diffusion

plays a role in trans-SC diffusion,2,3 but the lipid phase presents the only continuous

path through the SC. Therefore, it is widely thought that a functioning skin barrier

relies on a properly organized SC lipid matrix.4–6

The composition of the SC lipid matrix has been well characterized , and consists of

three main classes of lipids: the ceramides (CERs), cholesterol (CHOL), and free fatty

acids (FFAs).1 These lipids are present in 1:1:1 to 2:2:1 molar ratios, although this

composition varies, even within a given specimen. Ceramides are a class of two-tailed

sphingolipids consisting of a sphingoid base linked to a fatty acid chain through an

amide bond. Physiologically, CERs have been implicated in a number of biological

processes, including cellular apoptosis and trafficking.8 In the SC, CERs originate in

the stratum granulosum, where the large, polar glucosyl headgroup of glucosylceramide

is enzymatically cleaved to form CER. To date, 15 classes of CERs have been identified

in skin, differing in headgroup chemistry and fatty acid composition.9 Motta et al.

proposed a nomenclature based on the composition of the fatty acid and sphingoid

base,10 and this nomenclature is explained graphically in Figure 2.3. The fatty acid

is mostly either nonhydroxy (N) or α-hydroxy (A). A small subset of the CERs, the

acylceramides, contain a linoleic acid esterified to the ω-carbon of the fatty acid

chain (EO). The sphingoid base is either sphingosine (S), dihydrosphingosine (dS),
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Figure 2.1: Layers of the epidermis. Reproduced from Reference 7 with permission
from Wolters Kluwer.

phytosphingosine (P), or 6-hydroxysphingosine (H). Using this nomenclature, CER NS

C24 denotes a CER consisting of a sphingosine base linked to a nonhydroxy fatty acid

that is 24 carbons in length (i.e., lignoceric acid). While the fatty acid tails generally

show a polydisperse tail length distribution, with 22 to 26 being the most prevalent, the

sphingoid base is usually 18 carbons in length. CHOL, the most abundant individual

lipid in the SC,11 originates in the lower epidermis, which is an active site of CHOL

synthesis.12 CHOL is a steroid, and thus contains a rigid ring structure. CHOL also

contains a hydrophilic hydroxyl group on the A ring, a hydrocarbon tail attached to
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Figure 2.2: Electron micrograph showing the highly organized lipid matrix within the
intercellular space (ICS) of two corneocytes (K). Reproduced from Reference 1 with
permission from Elsevier.

the D ring, and two methyl groups sticking out of the alpha-face. While CHOL often

rigidifies liquid-crystalline lipid bilayers,13 it is thought to provide some fluidity to the

SC lipid matrix, which would otherwise be rigid and perhaps brittle.14 FFAs in the

SC are long and mostly saturated.11 In the SC, FFAs originate as phospholipids in

the lamellar bodies of the stratum spinosum, which are enzymatically converted to

FFAs in the intercellular space after secretion in the stratum granulosum. Like the

CER fatty acid tail, the FFAs show a polydisperse tail length distribution, with 22 to

26 being the most common.11 pKa values of 10 have been reported for long, saturated

FFAs,15 and hence the FFAs are mostly protonated in the SC, which has a pH∼5.16

Other minor components, such as CHOL sulfate, make up a small portion of the SC

lipid matrix, but are not thought to play a major role in the barrier properties of the

SC.1

Experimental studies have revealed much information regarding the organization

of lipids within the SC, which are arranged in highly ordered lamellar structures. The

lipids are attached to the surface of the corneocytes at the cornified lipid envelope,

creating a template for lamellae oriented parallel to the cell’s surface.11 The lipid

organization is characterized by the lamellar organization, which describes how the

lamellae are arranged, and the lateral organization, which describes how the lipids are

arranged within individual lamellae. Two coexisting lamellar phases are present in
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Figure 2.3: The molecular structure of 12 of the ceramide classes present in human
stratum corneum, including an explanation of the nomenclature. The newly discovered
1-O-acylceramides9 are not shown in this figure. Reproduced from Reference 17 with
permission from Elsevier.

the SC, the long periodicity phase (LPP) and the short periodicity phase (SPP), with

lamellar repeat distances of 13 nm and 6 nm, respectively.18,19 The lateral organization

of lipids consists of dense, crystalline and/or gel-like phases, which differs from

the liquid-crystalline behavior seen in other biological membranes. The phases are

described as either hexagonal—also called gel—with characteristic lattice spacings of

4.1�A, or orthorhombic—also called crystalline—with characteristic lattice spacings of

3.7�A and 4.2�A.20,21

Based on the details of the composition and organization of the SC, several models

describing the molecular organization of the SC have been proposed. Swartzendruber

et al. first proposed the stacked monolayer model to describe the lamellar organization
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of the lipids in the SC.22 In this model, the CERs all adopt an extended conformation,

where the two tails point in opposite directions. This arrangement results in a trilayer

molecular arrangement, which is consistent with the SPP and LPP. Later, Forslind

proposed the domain mosaic model, where the SC lipid matrix consists of gel-phase

regions surrounded by liquid-crystalline boundaries.23 This arrangement was used

to explain the low permeability yet high malleability of skin.23 Several versions of

a sandwich model have been independently proposed by Wertz and colleagues and

Bouwstra and colleagues. These models describe a trilayer arrangement, in which a

liquid-like lamellar unit that contains the CER EOS linoleate chains is sandwiched

between two crystalline lamellar units containing only saturated chains and CHOL, as

shown in Figure 2.4. The sandwich model of Bouwstra et al. exhibits a 3 nm fluid region

surrounded by two 5 nm crystalline regions,24 whereas the sandwich model of Wertz et

al. exhibits a 4.3 nm fluid region sandwiched by two 4.3 nm crystalline lamellar units.25

Norlén proposed the single gel phase model, which describes a single, coherent gel phase

of the lipids with no phase separation.26 The model of McIntosh shows a stacked bilayer

arrangement of the lipids, with an unequal distribution of CHOL and the linoleate

chains of the acylceramides.27 A similar model proposed by Schröter et al. exhibits a

homogeneous distribution of CHOL and the linoleate chains of the acylceramides.28

Neither the single gel phase model, the sandwich models, nor the models of McIntosh

or Schröter make any predictions on conformations of the CERs.24,25,27,28 Finally, in

2012, Iwai et al. proposed a model, based on cryoelectron microscopy data, in which

all CERs adopt extended conformations and CHOL associates with the sphingoid

chains and FFA associates with the fatty acid chains.29 However, this model does not

account for the acylceramides, and only relies on matching a 1-dimensional electron

density profile. While many models of the molecular organization of the SC lipids

have been proposed, experimental validation of any of these models remains extremely

difficult.
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Figure 2.4: A schematic of the proposed sandwich of Bouwstra et al., showing the
fluid-like region in the middle of the unit cell surrounded by two, more crystalline
regions at the boundaries of the unit cell. Ceramides correspond to Figure 2.3 as
follows: ceramide 1 is CER EOS; ceramides 2, 3, 4, and 6 correspond to CER NS,
CER NP, CER AS, and CER AP, respectively, each with a fatty acid tail length of 24
carbons; and ceramide 5 corresponds to CER AS C16.

Owing to the varied nature of the CERs and the polydispersity in tail lengths, the

SC lipid mixture is very complex, with over 300 individual components identified,30

making it difficult to isolate the effects of a given lipid on the structural and barrier

properties of SC; it therefore becomes difficult to draw relationships between the SC

lipid composition, structure, and function. To address this challenge, researchers

have begun designing simple mixtures of synthetic SC lipids that exhibit the same

phase behavior as the native SC lipid matrix. These mixture make it so that the

lipid composition can be precisely controlled, enabling composition-driven structural

changes can be measured. This approach has been successful, as several lipid mixtures

have been identified that show the desired properties, and a lot of information has been

gleaned from studies using these models. For example, Bouwstra et al. showed that

formation of the LPP requires an appropriate lipid composition, including the presence

of CER EOS and CHOL.31 Several studies have shown that CHOL tends to be situated
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away from the unit cell boundaries.32,33 Jan̊ušová et al. showed that an SPP can be

formed with just 3 individual lipids: CER NS C24, CHOL, and FFA C24:0.34 Recently,

Uchiyama et al. showed that in model SC membranes, the FFA tail length distribution

plays a much larger role in the lateral phase behavior and permeability than the CER

composition.35 While model SC membranes have provided a wealth of information

on the relationships between lipid composition, structure, and function in the SC,

experiments are still expensive and tedious, often requiring selective deuteration of

specific components and creative interpretation of scattering and diffraction data.

Interpretation of the data ultimately relies on some assumptions about the molecular

organization in the systems. Molecular simulation offers molecular-level resolution of

these systems, and hence can be a useful complement to experimental methods.
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CHAPTER 3

SKIN SIMULATION BACKGROUND

Despite recent advances in experimental techniques for studying SC lipid systems,

a clear understanding of the molecular-level structure of the SC lipid matrix is lacking.

Several models have been proposed,1–8 but difficulties in performing and interpreting

experiments makes identifying which is the “correct” model a challenge. In this

regard, molecular simulation can be a valuable tool for studying SC lipid systems.

Simulation offers advantages over experiment in several aspects. First, and perhaps

most obvious, is the molecular-level resolution that simulation offers. This resolution

makes it possible, for example, to directly measure hydrogen bonding based on atomic

positions instead of relying on the interpretation of FTIR data. Simulation also

allows the energetics of particular processes to be probed. For example, one can use

simulation to study the permeation of small molecules through SC model membranes,

allowing mechanisms to be identified based on calculated thermodynamic and kinetic

properties. Finally, simulation allows infinitely precise control over the composition of

a system, making it possible to clearly identify composition-dependent trends.

As a result of these benefits, molecular simulation is becoming a popular tool for

studying SC lipid systems. This trend is illustrated in Figure 3.1, which shows the

number of original research articles published focusing on SC lipid systems per year

since the first one was published in 2001.9 In this Chapter, the body of literature

focusing on SC simulations is reviewed. First, the molecular simulation methodology

is briefly described, with comments on specific aspects related to SC lipid simulations.

Next, I describe measurements that are possible with simulation, with results presented

from representative studies. I then review coarse-grained modeling and its application

to SC lipid systems.
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Figure 3.1: Number of SC simulation papers published per year as a function of time.
These include original research articles that study SC lipids in the context of skin.
Note the different scale on the right axis for the cumulative number of papers.

3.1 Simulation Methodology

The main goal of molecular simulation is to examine how molecular interactions

give rise to the properties of physical systems. This is achieved by generating a set—or

ensemble—of molecular configurations for a given system, and calculating properties

from these configurations. These properties can then be connected to macroscopic

observables through statistical mechanics. The ensemble can be constructed such

that it samples from a given thermodynamic ensemble. For example, since molecular

simulations of SC lipid systems aim to compare properties with experimental systems

at laboratory conditions, simulations are generally designed to sample from the

isothermal–isobaric (or NPT) ensemble.

There are two general types of molecular simulation algorithms to generate con-

figurations. Monte Carlo (MC) methods generate configurations by stochastic dis-

placements of atoms, which are either accepted or rejected based on criteria designed

to ensure that the desired ensemble is sampled. As configurations are generated
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stochastically, MC simulations have no straightforward connection to time, and hence

dynamic properties cannot be calculated. In contrast, molecular dynamics (MD) em-

ploys classical mechanics to numerically calculate the trajectory of a system through

time based on the forces between the atoms. As MD naturally contains an associated

time scale, dynamic properties can be calculated. Additionally, parallelization of MD

calculations is more straightforward than MC calculations, allowing very large systems

to be simulated more efficiently with MD. Therefore, MD is the predominate method

for studying SC lipid systems computationally.

In MD, a system is initialized with a given configuration, and the forces on the

atoms are calculated based on the interactions between them; these interactions are

encoded in a “force field.” Based on these forces, the positions of the atoms are

updated by numerically integrating the equations of motion. Timesteps are generally

on the order of 1 to 2 ns, and are limited by the fastest motions in the system (e.g.,

bond vibrations involving a hydrogen atom). From the initial configuration, the first

part of integration is usually regarded as “equilibration,” where the system is allowed

to relax from its initial configuration, such that the calculated properties do not

depend too heavily on the initial configuration. After equilibration, the “production”

portion of the simulation is performed, generally for 1× 106 to 100× 106 timesteps

(i.e., 1s–100s of ns of simulation time), and the configurations and thermodynamic

properties are saved at specified time intervals. These configurations, when written to

disk, are referred to as the “simulation trajectory.” The simulation trajectory is then

post-processed to calculate the properties of interest.

3.2 Force Fields

As described above, MD simulations rely on force fields to calculate the forces

on each atom at each timestep. Thus, the force field (combined with the initial

configuration) determines the trajectory of the simulation, and hence also determines
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the calculated properties.

Force fields contain terms to account for physical interactions stemming from

the chemical nature of the molecules; these terms can broadly be categorized into

bonded and nonbonded interactions. The bonded forces represent covalent interactions

between atoms. These interactions include bond-stretching and angle-bending to

account for the vibrational modes of molecules. Dihedral terms are included to

account for the torsional rotations around bonds. Bonds and angles are generally

modeled as harmonic springs, and hence these forces vary linearly as a function

of displacement from equilibrium. Dihedrals are generally modeled with periodic

functions to account for local minima on the torsional potential energy surface.

The nonbonded forces are assumed to act pairwise between atoms, and represent

noncovalent interactions. van der Waals interactions are usually modeled with a

Lennard-Jones potential, which contains a 12th order short-range repulsive term to

account for the unfavorable overlap of electron clouds and a 6th order long-range

attractive term to account for the long-range attractions between atoms. Coulomb’s

law is used to calculate the electrostatic forces between (partially) charged atoms, e.g.,

resulting from electronegativity differences between bonded atoms. The total potential

energy of the system is the sum of all of these interactions, as shown in Figure 3.2.

Note that the terms described above and shown in Figure 3.2 give expressions for the

potential energy, whereas MD relies on forces to update the particle positions; the

force is simply the gradient of the potential energy function, F = −∇U .

Several force fields have been developed specifically for lipid molecules, and SC lipid

simulations are generally based on two common force fields. Notman et al.11 first used

the GROMOS8712-based Berger force field,13 which has since been widely used for

simulating CERs.14–27 Guo et al.18 later derived parameters for the headgroups of CER

NS and CER NP to fit within the CHARMM36 force field.28 These parameters were

shown to give good agreement with experiment on the thermotropic phase behavior of
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Figure 3.2: The total potential energy is the sum over the various bonded and
nonbonded interactions. The first two terms represent the nonbonded interactions
between atoms i and j as a function of their separation rij. The Lennard-Jones
parameters σij and εij are determined by the force field. qi represents the partial
charge on atom i. The last three terms are the bonded interactions. The force
constants kb, ka, and kφ are specific to a given bond (or angle or dihedral) type for a
given force field. Reprinted from Ref. 10 with permission from Elsevier.

pure CER bilayers.18 Papadimitriou et al. compared the structural properties of pure

CER NS C24 bilayers simulated with various force fields at skin conditions, finding

acceptable agreement with experimental data for all force fields.21 It should be noted,

however, that the CHARMM-compatible CER force field developed by Guo et al.

showed better agreement in the thermotropic behavior of pure CER bilayers,18 and

hence one take this into consideration if the thermotropic behavior is to be studied.

Up to this point, the discussion has assumed that the models represent each atom

explicitly; these are termed “atomistic” force fields. However, the time and length

scales that are accessible with atomistic models is limited because of the large number

of interactions that are present. To address this issue, simplified, or “coarse-grained”

(CG) force fields are often used in simulation to lower the computational expense
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and increase the amount of sampling that can be achieved for a given amount of

computational resources. CG models thus allow phenomena that occur on large time

and length scales, e.g., self-assembly, to be studied computationally. The reduction in

computational cost is achieved by lumping groups of atoms into single interactions

sites, or “CG beads.” The level of coarse-graining, i.e., how many atoms are grouped

into single beads, determines the level of specificity of the CG model and the potential

computational speedup. CG models are often parameterized based on atomistic

simulation data; for a review on methods for parameterizing CG models, see the

excellent review by Brini et al.29 CG modeling in the context of SC lipid simulation is

discussed in a separate section below.

3.3 SC Lipid Simulation Specifics

While simulations of fluids of small molecules and their mixtures are routine,

simulations of SC lipids are more challenging for a number of reasons. First, the SC

lipid matrix is a complex mixture containing hundreds of individual lipid species, so a

truly representative system would necessarily require on the order of 1× 105 to 1× 106

atoms. While modern computer power allows simulations of millions of atoms, such

simulations are computationally very expensive, so studying a series of systems (e.g.,

to study the effect of a single species on the structure) is still impractical. To avoid

this issue, simulations of SC lipid mixtures generally contain a limited number of lipid

species, ranging from a single CER to mixtures of several CERs plus CHOL and FFA,

greatly reducing the required number of molecules (and hence computational power)

needed for a representative system. The dense, gel-like packing of the lipids also

presents a problem; the molecular diffusion in these systems is very low,30 so systems

may be stuck in their initial configurations, increasing the likelihood that systems are

trapped in metastable configurations. Simulations are often performed at elevated

temperatures (relative to skin conditions)15 to increase the molecular mobility, but
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recent work has shown that this approach may be flawed.31 Therefore, care must be

taken to ensure that system configurations represent low-energy structures. Another

challenge in simulating SC lipids is related to the lamellar organization of lipids in the

SC; the SC lipid matrix is organized as stacked lamellar repeat units. This reality

presents two problems; first, the lack of a detailed picture of the molecular-level

organization means it is unknown how to initialize lamellar systems. This problem is

compounded by the fact that these systems exist in dense, gel-like phases, so observing

a lamellar transition is unlikely in any realistic simulation timescale. Next, simulating

multiple lipid lamellae would again require very large systems, making it difficult to

study a series of related systems. To address these issues, a vast majority of studies

examine the SC lipids in preassembled bilayer configurations, and only a handful of

simulations have been performed on multilayer systems.19,26 A different approach is to

simulate the self-assembly of SC lipids into multilayer structures, which removes the

influence of the initial configuration on the system properties. However, the system

sizes and timescales required for self-assembly are computationally prohibitive for

atomistic models, so CG models are needed for this approach.

3.4 Atomistic Molecular Dynamics Simulations of SC Lipid Systems

The majority of SC lipid simulations have been performed with atomistic models.

Hölte et al. first studied SC lipids computationally in 2001, examining mixtures

of CHOL and FFA with experiment and simulations. The authors observed that

the addition of CHOL leads to more chain disorder in the FFAs, especially towards

the center of the bilayer, suggesting that CHOL may act as a fluidizing agent in

the SC.9 Pandit and Scott first reported on simulation of a CER bilayer 5 years

later in 2006, comparing the lipid–water interface between pure CER NS C16 and

sphingomyelin bilayers. They found that the CER structure factor shows significantly

less structure than sphingomyelin, and that despite the polar headgroups of CER,
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the water near it behaves as though it is near a hydrophobic surface, which may

contribute to the good barrier properties of the SC lipids.32 The authors also observed

an increase in lipid–lipid hydrogen bonding in CER compared to sphingomyelin, which

was rationalized by the fact that the CER carbonyl oxygen has more conformational

freedom than in sphingomyelin. The first simulations of a more realistic CER with

an asymmetric tail length were reported by Notman et al. in 2007, who simulated a

bilayer composed of CER NS C24, and observed a slightly tilted gel-phase bilayer at

283 K and 323 K, and a liquid-crystalline bilayer at 363 K, in good agreement with

experimental observations. The same work revealed that the permeation enhancer

dimethyl sulfoxide induces a gel-to-fluid transition at skin conditions by interrupting

the hydrogen bonds form between the CER headgroups, which suggests a mechanism

for its barrier-lowering effects on the skin.11 Das et al. were the first to simulate a

realistic SC lipid mixture in bilayer configurations.15 Systems were composed of CER

NS C24, CHOL, and FFA C24:0 at 16 different compositions, ranging from the pure

components, to binary mixtures, and ternary mixtures. They found that the addition

of CHOL, which is shorter and bulkier than the CER and FFA, tends to “squash” the

bilayers, leading to increased interdigitation between the two leaflets and a decreased

bilayer thickness. Additionally, it was observed that the 2:2:1 CER:CHOL:FFA system,

which most closely resembles the composition of the SC lipid matrix, has the lowest

stress and compressibility, and post that these properties may be responsible for the

low permeability yet high pliability of the SC. Imai et al. reported on the residence time

of water on CER and sphingomyelin bilayers, finding that water tends to have a shorter

residence time on CER bilayers compared to sphingomyelin, and that incorporation

of an unsaturated tail seems to further shorten the residence time.33 Engelbrecht et

al. reported on simulations of 4 bilayers composed of CER EOS, CER AP, CHOL,

and FFA C22:0 stacked on top of one another with very little interbilayer water to

test the stability of a model they propose to describe the molecular organization of
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the SC lipid matrix.34 In the simulation, all CERs were initially placed in hairpin

conformations, where the long tail of CER EOS extended into adjacent bilayers, and

only 2.5% of the CER EOS tails underwent a flipping transition where the molecule

only spanned a single bilayer. In 2011, Hoopes et al. reported on simulations of SC

lipid mixtures and the effect of adding an unsaturated fatty acid (oleic acid, OA),

finding that the addition of OA did not affect the hydrogen bonding in the lipid

headgroups.30 Interestingly, the authors observed that the faster diffusing groups had

a higher local density of CHOL, illustrating that CHOL increases the mobility of the

lipids. Furthermore, the authors observed that OA increases the CHOL diffusion,

which in turn increases the diffusion of the other species, likely a result of the increased

free area with the addition of OA.30 In 2013, Das et al. reported on simulations of the

self-assembly of very large mixtures of CER NS, CER NP, CER EOS, CHOL, and FFA

with realistic tail length polydispersities, finding that inverse lamellar structures tend

to form in the bulk, whereas lamellar structures form in the presence of a corneocyte-

mimicking template.17 However, the self-assembly protocol used in this paper may

favor the formation of inverse micelles in the bulk, and thus does not represent similar

experimental systems, which have been shown to form lamellar structures in the

bulk.35,36 Guo et al. in 2013 derived parameters for the CER headgroups within the

CHARMM force field, which had been lacking. The newly derived parameters, along

with the Berger force field, were used to compare the structural properties of pure CER

NS C16 bilayers, as well as the thermotropic phase behavior of the bilayers. Both force

fields accurately predicted the structural properties of the bilayers at skin conditions,

but the CHARMM-CER force field more accurately reproduced the thermotropic

phase behavior.18 Additionally, bilayers composed of CER NP, which has an extra

hydroxyl group compared to CER NS, were found to have a higher order-disorder

transition temperature, which was attributed to the increased lipid–lipid hydrogen

bonding compared to CER NS. In 2014, Das et al. examined the flip-flop motion of
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CHOL in stacked bilayers of CER NS, CHOL, and FFA C24:0, providing the first

detailed analysis of a stacked multilayer system composed of SC lipids. The authors

observed that 42% of the hydrogen bonds formed between headgroups in the middle

leaflets were with lipids in the adjacent leaflet, showing that the leaflets are coupled to

one another through hydrogen bonds.19 The calculated CHOL flip-flop rate was found

to be faster than in phospholipid systems, which was attributed to a low density region

at the center of the bilayers that results from tail length asymmetry between the lipids

in the system, allowing a faster reorientation of the CHOL molecules. Paloncyová

et al. compared the permeability of a small molecule through gel and fluid phase

bilayers, where pure CER NS was used to model the gel phase membrane, finding a

larger energetic penalty for disrupting the packing in the CER bilayer compared to the

fluid phospholipid bilayer.20 Papadimitriou et al. compared force fields for simulating

pure CER NS C24:0 bilayers in 2015, and found that of the force fields tested, all

yield structural properties that are within acceptable agreement with experiment.21

Paloncyová et al studied the effect of the CER NS fatty acid tail length on the

permeability of bilayers composed of CER NS, CHOL, and FFA, finding that the

permeability of water peaks when the CER fatty acid tails are in the range of 4 to 8

carbons long.22 This trend was rationalized by the fact that these tail lengths induce

a less dense bilayer, allowing the formation of small water pores. In 2016, Gupta and

Rai found that bilayers composed of mixtures of CER NS, CHOL, and FFA are more

thermally stable than pure CER systems, suggesting that the lipid composition may

have evolved for stability purposes.23 Gupta et al. further studied the permeation

of small molecules through SC lipid bilayers, finding that diffusion plays a larger

role for hydrophobic permeants compared to hydrophilic ones, where the free energy

barrier mainly determines the permeability.25 Das et al. found that the shape of CER

molecule, which is cylindrical because of the relatively small headgroup, prevents a

percolating hydrogen bond network from forming, and instead, isolated hydrogen
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bonding clusters tend to form between the CER headgroups.26 Akinshina et al. studied

the insertion of monoglycerides (oils) and free fatty acids into CER bilayers, and found

that while low concentrations of oils can lead to a more dense lipid packing, higher

concentrations of oils with a kinked chain can eventually lead to bilayer instability.27

Gupta et al. examined the effect of the CER fatty acid tail length on the permeability

of water through CER bilayers, finding that the longer CERs result in a larger free

energy barrier for penetration, and hence a larger permeability.24 In 2017, Moore et

al. reported on the simulations of a series of CER NS, CER NS/CHOL, and CER

NS/CHOL/FFA C24:0 bilayers with varying fractions of shorter CERs to examine the

effect of the CER fatty acid tail length on the structural properties of the bilayers. In

that work, a simulated-tempering inspired equilibration methodology was introduced

and validated to show the importance of thorough equilibration for SC lipid systems.

It was further shown that the main effect of the CER tail length is on the middle

region of the bilayers, where shorter tails lead to a smaller interdigitation region, and

hence a thinner bilayer.31

3.5 Coarse-Grained Molecular Dynamics Simulations of SC Lipid Systems

While atomistic models have been heavily used since the turn of the millennium

to study SC lipid systems, the use of CG models has been relatively more sparse. A

major cause of this trend is that unlike atomistic models, generic CG models have not

been as widely developed, so researchers must first develop the CG models to be used

to simulate a specific system. Therefore, a lot of the work in CG modeling of SC lipid

systems has involved the development of the required force fields.

Hadley and McCabe were the first to apply CG modeling to specifically study SC

lipid systems. They used iterative Boltzmann inversion (IBI)37 to develop structurally

accurate force fields from atomistic simulations. They also used a clever k -means-based

scheme to dynamically map four water molecules to a single site, enabling the use of
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IBI to optimize the pair potentials in a CG water model.38 Using the CG models they

developed,38–40 the authors studied the self-assembly of mixtures of CHOL and FFA,

and elucidated the mechanisms for the hydrophobicity length-matching requirement

for their assembly into stable bilayer structures.41

The first CG model of CER was developed in the framework of the popular

MARTINI force field,42 and has since been used in several studies. It was first used to

clarify the structure of the melted chain phase above the phase transition temperature

of the bilayer phase, and described an irregular bicontinuous phase mixed with water

droplets.43 Since then, Gupta and coworkers have used it in several studies to examine

the permeability of realistic mixtures of CER, CHOL, and FFA.44–47

Concurrently, McCabe and colleagues have been developing CG models of the

SC lipids using the multistate IBI method48 to derive structurally accurate, state-

transferable force fields. Emphasis was placed on the multistate nature of the force

field development, since self-assembly is inherently a multistate process. The authors

have published force fields for water,49 CER NS,50 FFA,50 and mixtures of CER NS

and FFA.51 Using these force fields, the authors observed that CER NS self-assembles

into both bilayer and multilayer structures. The CER conformations in the multilayer

structures revealed that a small but significant fraction of the CERs adopt extended

conformations,50 and that this fraction of extended CERs increases in mixtures with

FFA.51 Current work, as described in Chapter 9 of this Dissertation, is focused on

developing the necessary interactions involving CHOL to examine realistic mixtures

composed of CER, CHOL, and FFA.
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[13] Berger, O., Edholm, O., and Jähnig, F. Molecular dynamics simulations
of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant
pressure, and constant temperature. Biophysical Journal 72, 1997, pp. 2002–2013.

[14] Notman, R., Anwar, J., Briels, W. J., Noro, M. G., and den Otter,
W. K. Simulations of skin barrier function: free energies of hydrophobic and
hydrophilic transmembrane pores in ceramide bilayers. Biophysical Journal 95,
2008, pp. 4763–4771.

[15] Das, C., Noro, M. G., and Olmsted, P. D. Simulation studies of stratum
corneum lipid mixtures. Biophysical Journal 97, 2009, pp. 1941–1951.

[16] Das, C., Olmsted, P. D., and Noro, M. G. Water permeation through
stratum corneum lipid bilayers from atomistic simulations. Soft Matter 5, 2009,
pp. 4549–4555.

[17] Das, C., Noro, M. G., and Olmsted, P. D. Lamellar and inverse micellar
structures of skin lipids: Effect of templating. Physical Review Letters 111, 2013,
p. 148101.

[18] Guo, S., Moore, T. C., Iacovella, C. R., Strickland, L. A., and
McCabe, C. Simulation study of the structure and phase behavior of ceramide
bilayers and the role of lipid headgroup chemistry. Journal of Chemical Theory
and Computation 9, 2013, pp. 5116–5126.

[19] Das, C., Noro, M. G., and Olmsted, P. D. Fast cholesterol flip-flop and
lack of swelling in skin lipid multilayers. Soft Matter 10, 2014, pp. 7346–7352.
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CHAPTER 4

THE EFFECT OF CERAMIDE TAIL LENGTH ON MODEL MEMBRANE

PROPERTIES

This chapter is reproduced in part from Moore et al. 2017.1

4.1 Introduction

The stratum corneum (SC) layer of the skin acts as the main barrier against chem-

ical penetrants and water loss and is composed of a brick-and-mortar-like arrangement

of corneocytes surrounded by a dense, lamellar-structured lipid matrix. The matrix is

a complex mixture primarily composed of an equimolar ratio of ceramides (CERs),

which are composed of a sphingoid base linked to a saturated fatty acid chain (in most

cases), cholesterol (CHOL), and free fatty acids (FFAs).2,3 Since the extracellular

matrix is widely thought to be the only continuous path path for permeation through

the SC, proper lipid organization and composition of the lamellar membrane is gener-

ally considered crucial for a fully functioning skin barrier. This is supported by the

fact that many skin diseases that are characterized by a reduced barrier function also

exhibit an altered lipid composition and organization compared to healthy skin.4–7

For example, a decrease has been observed in the average number of CER carbon

atoms in the SC of patients who suffer from atopic eczema4,8 and, compared with

controls, less dense lipid packing and changes in X-ray scattering patterns.4 Of the

two CER tails, reduced CER carbon numbers appear to correspond with a shorter

fatty acid (FA) tail rather than the sphingoid base tail.9

The complex nature of the human SC lipid matrix, in that it features 15 unique

subclasses of CER lipids and a distribution of CER and FFA chain lengths, has made it

challenging to establish the influence of individual lipid species on barrier properties.10
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As a result, many experiments have focused on model systems that are composed

of simpler mixtures of synthetic lipids, whose composition and chain lengths can be

precisely controlled.11–22 For example, considering studies of mixtures containing non-

hydroxy sphingosine CER (CER NS), CHOL, and FFA, similar to those considered in

this work, Mojumdar et al.15 showed that CHOL is essential to the characteristic phase

behavior, and hence barrier properties, of such mixtures, and Školová et al.20 found

that CER NS-based membranes with short acyl chains had increased permeability

compared to long acyl chain CERs. However, while global structural properties of SC

lipid lamellae can be inferred from experiment (e.g., from spectroscopic, scattering,

and diffraction data), including information about the localization of molecules across

the lamellae, the underlying molecular-level details and in-plane morphology often

remain elusive. Furthermore, structural examination using neutron scattering is quite

laborious, as many independent systems, each with different deuterated lipids and/or

concentrations of deuterated lipids, must be considered to provide a single picture of

the structure, and the availability of deuterated lipids may limit the study of specific

systems.16,23–25

Molecular simulation, which offers atomic-level resolution of the entire 3-dimensional

structure of the lipids at picosecond timescales, has been used to provide a more

direct understanding of the molecular interactions in CER-based membranes,26–39

with several studies focusing on the dependence of membrane structure on lipid com-

position. For example, Das et al. found that CHOL compresses a CER NS bilayer

membrane and increases the interdigitation of CER tails in opposing bilayer leaflets.27

Gupta and Rai simulated a series of lipid bilayers composed of CER NS, CHOL, and

FFA with varying compositions and found that CHOL tends to sit away from the

lipid–water interface and increases the thermal stability of the bilayers.32 The effect of

the CER FA tail length on bilayer properties has received considerably less attention.

Paloncyová et al. showed that extremely short CER NS FA tails (e.g., 4–6 carbons)
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cause a disruption in the headgroup packing of CER NS bilayers, which gives rise to

an increased permeability;38 however, the CER NS FA tail lengths considered were

much shorter than those found in the SC. More recently, Gupta et al. showed that the

permeability of water across pure CER NS bilayers with more biologically relevant tail

lengths decreases monotonically with the CER FA tail length,31 although a structural

explanation for this trend was not presented.

While these computational studies have provided important insight, they also

highlight a significant challenge in studying SC lipids with molecular simulation.

Specifically, due to the dense packing of the lipid tails, the CER-rich bilayer systems

demonstrate negligible molecular diffusion at physiologically relevant temperatures

(i.e., 305 K). Even in simulations conducted at elevated temperatures, e.g., 340 K,

studies have demonstrated minimal in-plane diffusion of the lipids, despite considering

simulations in excess of 200 ns.33 Additionally, lipids in the gel phase have low rates of

rotational relaxations.40 As such, on typical simulation timescales, systems likely exist

in metastable configurations that are highly dependent on the initially bilayer structure.

While this may be of little consequence for single component lipid bilayers, many

properties of multicomponent lipid mixtures depend on the in-plane morphology of the

individual lipid components, e.g., aggregation versus dispersion of lipid species in the

bilayer leaflets; furthermore, the morphology on this size scale is typically not known

from experiment.41 While self-assembled bilayers would, in principle, avoid these

problems, it is not currently practical to study the self-assembly of multicomponent

bilayers with atomistically detailed molecular models due to the high computational

cost and a rough free energy landscape that could hinder the formation of equilibrium

structures; for example, Das et al. found inverted micelle structures formed in mixtures

of three different CERs with CHOL and FFA unless constrained by a wall,28 in contrast

to experiments, where lamellar structures form in bulk. Therefore, since preassembled

structures remain more practical for simulating atomistic models, care must be taken
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that system properties are not biased by the initial configuration, so that reliable

conclusions can be made.

In this Chapter, molecular dynamics (MD) simulations are used to examine the

structural behavior of model SC membranes, similar to those studied experimen-

tally,20,42 to examine the role of the CER FA tail length and overall lipid composition

on structural properties. This chapter specifically focuses on CER NS, as this is the

most abundant CER species in SC and is typically used in model systems. Three

sets of systems are studied: pure CER NS, binary mixtures of CER NS and CHOL

in 2:1 and 1:1 molar ratios, and equimolar mixtures of CER NS, CHOL, and FFA

C24:0. The structure of each of the lipids used in this work in shown in Figure 4.1.

Mixtures of different length CERs are used in each set to examine the impact of

the CER FA tail length on the systems, which, to date, has not been the focus of

any computational studies. To ensure robust results, a random walk MD (RWMD)

algorithm is validated and employed to reduce the dependence of the final bilayer

configuration on the assumed, initial morphology.

4.2 Material and Methods

4.2.1 Model

CER NS consists of a sphingosine base, 18 carbons in length, linked to a saturated

fatty acid (FA) chain of variable length. Two different FA tail lengths were considered:

CER NS C16:0 (Figure 4.1a), in which the FA tail is 16 carbons long and approximately

equal in length to the sphingosine chain (this is denoted as equal-length CER NS, or

eCER); and CER NS C24:0 (Figure 4.1b), in which the FA tail is 24 carbons long, a

typical length in the SC (this is denoted as unequal-length CER NS, or uCER).12 FFA,

when present in this Chapter, is always 24 carbons in length (Figure 4.1d), which has

been shown to be a useful model for the FFAs in healthy human SC.12,43 The fully

atomistic CHARMM36 force field44 supplemented by the CHARMM-compatible CER
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Figure 4.1: Chemical structure of the lipids simulated in this Chapter. a) CER NS
C16 (eCER); b) CER NS C24 (uCER); c) cholesterol (CHOL); d) FFA C24:0 (FFA);
and e) a snapshot of a typical configuration for the equimolar uCER–CHOL–FFA
bilayer. CER is shown in gray, CHOL is shown in yellow, FFA is shown in purple,
and water is shown in transparent red (oxygen) and white (hydrogen).

headgroup parameters from Guo et al.30 were used to describe the CER NS, CHOL,

and FFA. The CER headgroup parameters have been shown to accurately reproduce

the thermotropic phase behavior of bilayers composed of pure CER NS,30 and have

been used to study the hydration of CER NS headgroups in solution.45,46 Water was

modeled using TIP3P.47

4.2.2 Methods

Lipid monolayers were first constructed by placing 64 lipids on a rectangular

lattice in the xy plane with 50�A per lipid. Four initial later distributions of a binary

mixture of eCER and CHOL (i.e., different arrangements of lipid species on the lattice)

were considered for validating the ST-based approach: completely phase-separated,
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consisting of one 8× 4 block of either lipid species (Figure 4.3a); a coarse-grained

checkerboard, consisting of alternating 4× 4 blocks of each lipid species (Figure 4.3b);

randomly mixed, where both lipid species are randomly dispersed throughout the

lattice (Figure 4.3c), and a fine-grained checkerboard, consisting of alternating lipid

species on the lattice sites (Figure 4.3d). To examine the impact of the CER NS

FA chain length on the structural properties, each of the four lipid compositions

studied (pure CER NS, 2:1 CER NS–CHOL, 1:1 CER NS–CHOL, and equimolar

CER NS–CHOL–FFA) was subdivided into five subcompositions, where the CER NS

fraction consists of 0, 25, 50, 75, and 100 mol % eCER. Thus, in total, 20 such systems

were considered. For these simulations, the effect of the initial lateral distributions

of the lipids was not explored, and the different lipid species were initially randomly

dispersed throughout the lattice, with the number of each specific lipid dictated by

the system composition.

In all cases, each lipid was rotated about its long axis by a random integer multiple

of 60°, since a high degree of alignment between lipid backbones has been shown

to cause unphysically large tilt angles in the lipid tails of gel-phase bilayers.40 The

monolayer was then rotated about the x-axis, and translated in z such that the ends of

the tails in opposing leaflets were in contact, forming a bilayer; note, in this procedure

each leaflet starts with the same in-plane configuration. Twenty water molecules

per lipid were then added to hydrate the outside of the bilayers (2560 total water

molecules for 128 total lipids). System sizes ranged from 19 136 to 24 192 atoms.

The systems were relaxed through a series of energy minimization, NVT simulations,

and NPT simulations. First, a steepest decent energy minimization was performed

on each initial configuration to reduce the large nonbonded repulsions caused by

(inadvertently) overlapping atoms. Next, the systems were simulated for 10 ps in the

NVT ensemble at 305 K (i.e., skin temperature), followed by a 10 ns simulation in

the NPT ensemble at 305 K and 1 atm. Unless otherwise noted, the systems were
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further simulated using the RWMD algorithm. In the RWMD algorithm, the system

temperature is adjusted at small time intervals, such that the system takes a random

walk through temperature space. Specifically, the sequence is defined within an interval

between Tmin and Tmax, with discrete temperatures defined every ∆T . In this Chapter,

RWMD was performed for 50 ns, with temperature changes of ∆T = 5j, (j ∈ −1, 0, 1)K

every 5 ps, Tmin = 305 K, and Tmax set to 355 K for the first 25 ns, and the upper bound

linearly reduced to 305 K over the final 25 ns. A representative plot of temperature

versus time during the RWMD equilibration is shown in Figure 4.2, where it is worth

noting that the sequence is defined such that it samples all temperatures equally.

Systems were further simulated at 305 K for at least 150 K after RWMD equilibration.

Note that 200 ns of simulation at a fixed temperature range are used for the comparison

to the results obtained from simulations with RWMD in Section 4.3.1 (i.e., for the

RWMD validation, the 305 K systems were simulated for 200 ns at 305 K, and the

RWMD systems were simulated for 200 ns with Tmin = 305 K and Tmax = 355 K). To

avoid modification of the simulation code itself, the random walk was determined

separately and the sequence of temperatures provided to the thermostat.

0 10 20 30 40 50
t, ns

300

320
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360
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Figure 4.2: A representative plot of temperature versus time during the RWMD
simulation.
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The RWMD approach is designed to mimic key aspects of the Monte Carlo simulated

tempering (ST) algorithm, used to find minima on a rough free energy surface by

dynamically adjusting the temperature throughout the course of a simulation.48 The

general idea of the ST algorithm is that increasing the system temperature lowers free

energy barriers, allowing different local minima to be explored each time the system

returns from an elevated temperature to the (lower) temperature of interest, all while

keeping the system at equilibrium because the acceptance criterion used to accept or

reject temperature swaps ensures that the configurations sample the correct equilibrium

ensemble.48 The latter distinguishes this approach from the widely-used simulated

annealing method, in which a system is driven out of equilibrium by increasing its

temperature and simulating for a long time at the elevated temperature, followed by a

slow cooling to the temperature of interest. Note that here, the random temperature

walk is defined prior to the simulation, in contrast to the original ST algorithm, which

involves attempting a temperature swap after each sweep in a Monte Carlo simulation

using the standard Metropolis acceptance/rejection criteria, ultimately yielding a

random walk through temperature space.

All simulations were performed in GROMACS 5.1,49 employing the Nosé–Hoover

thermostat50 with a coupling constant of 1 ps and, for the NPT simulations, a Parrinello–

Rahman barostat51 with a coupling constant of 10 ps. The pressure was controlled

semi-isotropically for all NPT simulations, where the box lengths of the bilayer lateral

directions were coupled. van der Waals interactions were smoothly switched off from

10�A to 12�A, beyond which they were neglected. Long-range electrostatic interactions

were treated via the PME algorithm52 with a real-space cutoff of 12�A. A timestep of

1 fs was used for all simulations. Separate thermostats were used for the lipids and the

water, although both groups follow the same temperature walk to avoid introducing

temperature gradients into the system.
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4.2.3 Analysis

System properties were calculated over the final 100 ns of simulation at 305 K.

Several properties were calculated to quantify the structure of the bilayers, including

the area per lipid (APL), the tilt angle of the lipid tails with respect to the bilayer

normal, the area per lipid tail (APT), the nematic order parameter of the lipid tails,

the density profiles of various groups across the bilayer normal, the bilayer thickness,

the width of the lipid–water interface, the width of the low density tail region, and

the hydrogen bonding. The coordination numbers (CNs) of different lipid tail pairs in

the bilayer plane are used to describe the lateral distributions of lipids; the center of

mass of each tail is projected onto the z = 0 plane for these calculations. Note that

the tails were chosen for the CN calculations, as the lipid tails generally pack on a

hexagonal lattice, in contrast to the relatively more disordered packing of the lipid

headgroups. The lipid backbone orientation is used to describe the rotational motion

of the lipids about their long axes. A detailed description of each of these calculations

is given in Appendix A.

4.3 Results

4.3.1 Random Walk Molecular Dynamics

Before using the RWMD scheme in the rest of this Chapter, the efficacy of

the approach is first evaluated for equimolar mixtures of eCER and CHOL. This

composition was chosen as eCER and CHOL have similar hydrophobic lengths, which

should yield bilayers without a considerable interdigitation region in the middle; prior

work has shown that CHOL can reside in this interdigitation region in lipid mixtures

with uCER.29 Thus, the lipids (especially CHOL) in this mixture should stay in their

canonical bilayer conformation, i.e., with their headgroups at the lipid–water interface

and their tails creating a hydrophobic core, therefore allowing evaluation of the ability

of RWMD to enhance the in-plane lateral and rotational rearrangements of the lipids.
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Figure 4.3 shows the initial configuration of each system studied, the final configura-

tions from 200 ns simulations at 305 K, the final configurations after 200 ns of RWMD,

and the evolution of the CHOL–CHOL CNs for each equilibration scheme. Note that

the CHOL–CHOL CN was chosen because it is the least biased CN (e.g., the FA–SPH

CN is skewed because the FA and SPH tails are part of the same molecule, and hence

will show a high level of association). Since lipids of the equimolar eCER–CHOL

mixture are expected to mix, the fully separated and coarse-grained checkerboard

morphologies (Figure 4.3a,b) serve as “bad” initial configurations, and the randomly

mixed and fine-grained checkerboard systems (Figure 4.3c,d) serve as näıve, but

reasonable, guesses of how to initialize mixed-lipid bilayers. Each initial morphology

was equilibrated for 200 ns with two different schemes: standard MD at 305 K, and

RWMD with 305 K < T < 355 K. Both visual inspection and the evolution of the

CHOL–CHOL CN can be used to compare the in-plane morphologies; and hence

equilibration, of the different systems and equilibration procedures. At 305 K, the final

morphologies visually resemble the corresponding initial morphologies; this is reflected

in the steady-state nature of the CNs at 305 K, which are listed in Table 4.1. This

trend is especially notable for the fully-separated and coarse-grained checkerboard

systems, where the large CHOL aggregates make it easy to visually establish that

there are only slight changes in the shape of the initial aggregates. These results

highlight the frozen nature of these systems at 305 K; only small rearrangements occur

in 200 ns if RWMD is not applied. Note that in the fine-grained (FG) checkerboard

system, small linear aggregates of CHOL form relatively quickly, indicated by the

increase in CN during the first 25 ns, although the system does not evolve much after

this initial change.

With RWMD, the final lateral distributions of the lipids are visually distinct from

the initial configuration, showing that the lipids were able to reorganize within the bi-

layer leaflets. For the two most separated systems, the larger CHOL aggregates mostly
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Figure 4.3: System configurations and CHOL–CHOL coordination number (CN) as a
function of initial configuration and equilibration procedure for the equimolar mixture
of eCER and CHOL. The first column shows the different initial configurations: a)
maximum phase separation; b) coarse-grained checkerboard; c) randomly mixed; and
d) fine-grained checkerboard. The second column shows the systems after 200 ns of MD
at 305 K, the third column shows the systems after 200 ns of RWMD, and the fourth
column shows the evolution of the CHOL–CHOL DN for each initial configuration.
Snapshots are taken along the z-axis, i.e., along the bilayer normal direction. eCER
is represented as blue spheres, CHOL is represented as yellow spheres, and water is
now drawn for clarity.

break up into smaller aggregates (Figure 4.3a,i and Figure 4.3b,j), while small CHOL

aggregates form in the fine-grained checkerboard system (Figure 4.3d,l). Importantly,

all of the final configurations after RWMD visually resemble each other and have

nearly identical CN values, as listed in Table 4.1, and systems that start close to the
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Table 4.1: CHOL–CHOL coordination number over the final 50 ns of MD simulation.
Separated refers to the initial configuration shown in Figure 4.3a, CG Checker refers
to that in Figure 4.3b, Random Mix refers to that in Figure 4.3c, and FG Checker
refers to Figure 4.3d. The uncertainties here, and in all subsequent tables and figures,
are given as the standard error of the measured property.

Initial Configuration

Equilibration Separated CG Checker Random Mix FG Checker

305 K 4.46± 0.03 3.72± 0.04 2.53± 0.08 1.75± 0.07

RWMD 2.3± 0.1 2.4± 0.1 2.4± 0.2 2.5± 0.1

final morphology (i.e., the random and fine-grained checkerboard) rapidly converge to

their final CN. Since each of these systems started from qualitatively different initial

configurations, this result shows that the final configurations are decorrelated from the

initial configurations and RWMD can reproducibly form the structures with matching

properties without a strong bias from the starting configuration. It is worth noting

that this does not necessarily indicate that RWMD has found the true free energy

minimum of the system, but this does strongly suggest that it is a stable, low energy

configuration, given that multiple independent trajectories converge to the same state.

Analysis of the rotational motion of the eCER molecules also suggests that the

systems equilibrated with RWMD are more decorrelated from their initial configura-

tions than those equilibrated at 305 K. Figure 4.4 shows the autocorrelation function

of the lipid backbone angle in the bilayer plane for the different initial configurations

and equilibration methods. The lipid backbone orientations become completely un-

correlated from the initial orientations by 25 ns of RWMD, while slower relaxation

is observed for the systems simulated at 305 K. Interestingly, the phase-separated

system shows the slowest relaxation of the eCER backbone orientations, likely because

the large, dense eCER domain has a larger energy barrier for lipid rotation due to

lipid–lipid hydrogen bonding. Since the systems that were equilibrated at 305 K all

converge to different morphologies and the lipid backbone orientations are correlated
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Table 4.2: Area per lipid (in �A2
) of systems as a function of initial configuration and

equilibration methodology. The systems equilibrated with RWMD were simulated at
305 K for 50 ns for a more direct comparison with the other systems. Separated refers
to Figure 4.3a, CG Checker refers to Figure 4.3b, Random Mix refers to Figure 4.3c,
and FG Checker refers to Figure 4.3d.

Initial Configuration

Equilibration Separated CG Checker Random Mix FG Checker

305 K 38.8± 0.4 38.4± 0.4 39.4± 0.2 39.6± 0.2

RWMD 39.6± 0.5 39.7± 0.4 39.5± 0.4 39.4± 0.3

to the initial orientations, at least three of the four systems must be metastable

configurations. Often in bilayer simulations, a specific property, such as the area per

lipid (APL), is monitored over time, and equilibrium is assumed when that property

reaches a steady state. This practice, however, may lead to spurious assumptions of

equilibrium since other features of the bilayer structure may not exist in the preferred

state, but this cannot be easily verified since the preferred state is not always know

a priori. For example, the APLs of the systems equilibrated at 305 K are compared

to the APLs of the systems equilibrated with RWMD (after running at 305 K for a

more direct comparison) in Table 4.2, from which is is apparent that the systems

equilibrated at 305 K show a larger spread in the APLs than the systems equilibrated

with RWMD. The two systems with the highest level of CHOL aggregation have

similar APLs, while the other two systems have lower APLs that are similar to each

other. Due to the different morphologies and packing densities of the lipids in these

systems, they likely have different properties, e.g., permeability, which is related to

the in-plane density of the lipids.53 In contrast, all of the systems equilibrated with

RWMD have APLs consistent within error, further illustrating the reproducibility,

and hence confidence gained, when equilibrating with RWMD.

This lack of mobility and difficulty in proper equilibration is a recognized problem

when simulating CER-based bilayers, with many studies running the systems at
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Figure 4.4: Autocorrelation function C(t) of the eCER backbone orientations during
simulations at 305 K and with RWMD from different initial configurations. Separated
refers to Figure 4.3a, CG Checker refers to Figure 4.3b, Random Mix refers to
Figure 4.3c, and FG Checker refers to Figure 4.3d. The shaded area shown is the
standard deviation over the rotational autocorrelation function of all eCER molecules
in the bilayer.

elevated temperatures in an attempt to overcome mobility issues.26–29,31,32,35,36 Here, I

also compare to equilibration and production runs at 340 K, as several MD studies of

SC lipids have used this temperature.26–29 Figure 4.5 shows the evolution of the CN

for the fully separated system (Figure 4.3a) simulated for 600 ns at 305 K, 340 K, and

with RWMD. As expected, the system at 305 K is still frozen is simulations in excess of

0.5 µs, while the system simulated with RWMD reaches its steady state SN at ∼110 ns.

Perhaps unsurprisingly, the system simulated at 340 K shows behavior somewhere
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in between that of the other systems; while lateral reorganization does occur, the

CN reaches a steady state value after ∼520 ns, which is significantly longer than the

simulation times typically studied. Note that this system also reaches a pseudosteady

state CN between 80 ns to 150 ns; with many studies performed on simulations run for

100 ns or less, this metastable state could be erroneously mistaken for equilibrium, if

one were relying on CN to determine convergence. At 600 ns, the rotational relaxation

of the lipids for this system at 340 K is higher than 305 K, but still lower than RWMD

(Figure 4.4a). While the fully phase-separated system is likely a poorly chosen starting

configuration given some level of prior knowledge about this particular system, the

actual morphology is typically not known a priori. Thus, these results indicate that

RWMD is more efficient than simply running at a high temperature to equilibrate

multicomponent, gel-phase lipid bilayers and can provide increased confidence in the

reproducibility of the results, particularly for systems in which the lateral organization

is unknown and expected to play an important role in the properties of interest.
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Figure 4.5: Evolution of the CHOL–CHOL coordination number (CN) for the fully
phase-separated systems equilibrated with three different methodologies as a function
of time (t).
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4.3.2 Dependence of Structural Properties on Bilayer Composition

The effect of the composition of CER-based lipid bilayers on structural properties

is now examined. Note, all systems start from a randomly dispersed morphology,

given that, in Section 4.3.1, this arrangement relaxed the fastest and appears to be

reasonably representative of the morphology for this family of systems; these systems

were also relaxed using RWMD as described in Section 4.2.

General Structural Properties. All systems exist in dense, highly ordered, gel

phases, as indicated by the high nematic order parameters ranging from 0.95 to 0.99,

as shown in Figure B.1. The addition of CHOL decreases the nematic order, consistent

with Das et al.,27 but the magnitude of this decrease is quite small, (e.g., ranging

from 0.988 for pure uCER to 0.954 for 1:1 CER:CHOL with 3:1 eCER:uCER) and

the lipids are still highly ordered from visual inspection (Figure 4.1e), indicating no

phase change upon addition of CHOL for these compositions.

The tilt angle shows a weak dependence on composition, as shown in Figure 4.6a.

The tilt angle depends significantly on the CER FA tail length for the pure CER

systems, where a strong increase is seen with increasing eCER for systems with 50%

or more eCER. This trend is a result of the balance between headgroup and tail

interactions: steric repulsions between lipid headgroups dictate the APL, while van der

Waals attractions between the lipid tails cause them to tilt to optimize their spacing.54

For the CER bilayers that are predominantly uCER, the tail length asymmetry gives

rise to a wide low density tail region in the center of the bilayer (discussed below),

which increases the effective optimal tail packing, leading to a lower tilt angle. The

addition of CHOL and FFA causes the tails to tilt less and show almost no change as

a function of increasing eCER, likely because CHOL has a bulky ring structure with

a small headgroup, and therefore acts as a spacer between the lipid tails, buffering

the head–tail effects seen in the pure systems. Hence, there is a similar mismatch

between the packing densities of the headgroups and tails, leading to a smaller tilt.
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Notably, the 1:1 CER:CHOL and ternary mixtures have very similar tilt angles, which

is attributed to the fact that these systems have a similar fraction of alkyl tails.
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Figure 4.6: (a) Average tilt angle (θ) of the lipid tails with respect to the bilayer
normal; (b) area per lipid (APL) and (c) area per tail (APT) as a function of eCER
composition. Note that the abscissa is the fraction of CER NS that is eCER, not the
total eCER fraction in the system.

The APL and APT trends as a function of the fraction of eCER are shown in

Figure 4.6b,c. While the APL describes the density of lipids in the bilayer plane,

irrespective of the number of tails that each lipid has, the APT describes the tail

packing density in the plane of the lipid tails (i.e., APT accounts for both the number of

tails and the tilt angle). All CER NS and CER NS–CHOL systems have similar APLs,

from 38�A to 40�A, as expected since CER and CHOL have similar cross-sectional

areas.55 There is only a slight, nonmonotonic dependence of the APL on the CER

FA tail length. This trend is expected since the headgroups dictate the APL and

these systems have the same headgroups for a given composition. Systems containing
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FFA have smaller APLs, since FFA contains a single alkyl chain. The APT increases

with the CHOL content, as CHOL and CER NS have similar cross-sectional areas,

but CHOL is treated as a single tail. The ternary systems have APTs more similar

to the 2:1 CER NS:CHOL systems, which is reasonable considering they have the

same ratio of CHOL to alkyl chains. The mixed lipid systems all show a slightly

increasing APT with increasing eCER fraction. Interestingly, there appears to be

some level of APT non-additivity in these systems. For example, consider the APL

and APTs of the 1:1 CER NS:CHOL systems. Since they have similar APLs as the

pure CER NS systems, but 3/4 the number of tails, ideal mixing would yield APL

values that are 4/3 that of pure CER NS values. However, the actual values are lower,

suggesting a relative attraction between CHOL and the saturated tails of CER NS,

similar to what was observed for dimyristoylphosphocholine (DMPC, a phospholipid

with saturated tails), but not dioleoylphosphocholine (DOPC, a phospholipid with

unsaturated tails).56 Although perhaps expected based on chain saturation, this

behavior is nontrivial for CER systems, since the CER NS headgroups are much

smaller than PC headgroups and CHOL presumably has less empty space to occupy

(compared to bilayers containing unsaturated lipids).

Density Profiles. The bilayer thickness, calculated from the water density profiles,

is a function of both overall lipid composition and CER FA tail length, as shown in

Figure B.2. The bilayer thickness decreases with increasing eCER and CHOL content,

as one would expect since these lipids have shorter tail lengths than uCER or FFA.

However, the tail length asymmetry leads to a richer behavior, which can be observed

via examination of the lipid density profiles, as shown for each system in Figure 4.7.

The pure CER bilayers exhibit mass density profiles that contain the expected

features of a lipid bilayer. Near the lipid–water interface, the profiles contain a peak

(Figure 4.7a), which represents the heavy atoms in the CER headgroups. Just inside

the headgroup region, there is a high density tail region where the tails are densely
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Figure 4.7: Total lipid mass density profiles across the bilayer for all systems considered:
a) pure CER NS, b) 2:1 CER NS:CHOL, c) 1:1 CER NS:CHOL, d) equimolar CER
NS:CHOL:FFA. The profiles for the 5 subcompositions are shown for all compositions
and are labelled as follows: solid black line, 100 mol % eCER; dashed red line, 75 mol %
eCER; dot-dashed blue line, 50 mol % eCER; solid orange line, 25 mol % eCER; dotted
purple line, 0 mol % eCER. Note that these percentages denote the fraction of CER
NS that is eCER, not the total amount of eCER in the system.

packed and highly ordered (see discussion of nematic order above), consistent with

prior work.38 In the center of the bilayer is a low density tail region, where the lipid

tails are less densely packed and less ordered. This region exists primarily due to the

asymmetry in the lengths of the tails in the systems and is composed of the terminal

part of the uCER tail and FFA tails, as shown in Figure B.3. In the systems with less

asymmetry (i.e., high eCER and CHOL concentrations), the profile is more V-shaped
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in the middle since there is little interdigitation between tails in opposing leaflets.

Comparing the high and low density tail regions for the different bilayers, the width

of the high density tail region is found to be nearly constant across all compositions,

whereas the width of the low density tail region varies with eCER and CHOL content.

Figure 4.8 shows the total bilayer thickness as a function of the thickness of this

low density tail region in the center of the bilayer. Clearly, the thickness of the low

density tail region dictates the total bilayer thickness for a given composition. The

width of the high density tail region is determined by the smallest hydrophobic length

in the system, where the tails must pack densely to fit in the area dictated by the

headgroups. For the lipids in this study, this is roughly 15 carbons, or the length of

the sphingosine chain that is not part of the CER NS headgroup, which is also similar

to the length of a CHOL molecule.57
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Figure 4.8: Total bilayer thickness as a function of the thickness of the low density tail
region, with the different points on each line denoting the different eCER fractions;
the smallest values indicate 100 mol % eCER, and the largest 0 mol % eCER.

The presence of CHOL and FFA has two main effects on the density profiles. First,

the smaller headgroups of CHOL and FFA lead to smaller peaks in the headgroup

region, compared to a pure CER NS bilayer; these peaks are dramatically reduced
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going from pure CER NS to 2:1 CER NS:CHOL and are mostly absent in the 1:1

CER NS:CHOL and ternary systems. Second, the width of the low density tail region

increases with the addition of CHOL and FFA, as shown in Figures 4.7 and 4.8.

Additionally, the low density tail regions tend to have more features in the mixed

lipid systems, e.g., shoulders representing intermediate densities due to the different

tail lengths, Peaks also appear in the middle of the density profiles for the mixed

systems, due to both the long FA chain of uCER (and FFA for the 3 component

systems) and the presence of CHOL that has migrated from the ordered bilayer

region into the low density tail region.29 In the eCER–CHOL systems, the lack of

significant interdigitation means this peak is absent; however, all systems containing

FFA demonstrate a peak in the middle of the density profile because of the long tail

of FFA.

Figure 4.9 shows the density profiles for the ternary system with 1:1 eCER:uCER,

along the bilayer normal direction, broken down by the contribution of specific lipid

components. The CHOL headgroup sits ∼3�A deeper into the bilayer with respect

to the CER headgroups, which is consistent with prior simulation and experimental

studies.24,27,32 There is also a small subpopulation of CHOL lying flat in the middle of

the bilayer, illustrated by the peak in the middle of the CHOL ring density profile,

which is consistent with the work of Das et al.29 Additionally, the FFA headgroups

tend to sit slightly further into the water than the CER headgroups.

The interfacial width, which can indicate the hydrophobicity of the surface (e.g., a

larger interfacial width would indicate a more hydrophilic surface), is defined as the

width of the region over which the water density drops from the bulk value to 1/e

of the bulk value. The bilayers in this work appear hydrophobic, having interfacial

thicknesses ranging from 3.5�A to 6�A, compared to phospholipid bilayers, which are

generally greater than 10�A.58 There is little dependence on the bilayer composition or

CER FA tail length, as shown in Figure B.4. Thus, one can conclude that while the
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lamellar organization near the middle of the bilayer depends on the lipid composition,

the apparent hydrophobicity of the lipid–water interface does not.

Hydrogen Bonding. The total number of lipid–lipid hydrogen bonds in each system

is listed in Table 4.3. The lipid–lipid hydrogen bonding is a function of the total

CER content, with a reduction in CERs resulting in fewer lipid–lipid hydrogen bonds

because CHOL and FFA molecules have fewer hydrogen bonding sites. The lipid–lipid

hydrogen bonding is also independent of the eCER fraction, which may be expected

since eCER and uCER have identical headgroups and their relative position at the

interface is essentially unchanged as a function of the eCER fraction.

The hydrogen bonding between specific pairs of lipids for the ternary mixture with

1:1 eCER:uCER is listed in Table B.1. Negligible CHOL–CHOL hydrogen bonding

is observed, which can be rationalized by the fact that CHOL only has a single

hydrogen bond donor and acceptor, and two neighboring CHOL molecules would have

to adopt a strained configuration to form a hydrogen bond. There are also very few

CHOL–FFA hydrogen bonds, likely a result of CHOL sitting deeper into the bilayer.
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Table 4.3: Total number of lipid–lipid and lipid–water hydrogen bonds for each system
studied.

Fraction eCER

Composition 0 0.25 0.50 0.75 1.0

L
ip

id
–l

ip
id Pure CER NS 63 62 61 63 63

2:1 CER NS:CHOL 40 37 38 39 38

1:1 CER NS:CHOL 28 26 28 28 27

Ternary 19 19 19 19 19

L
ip

id
–w

at
er Pure CER NS 173 168 173 176 171

2:1 CER NS:CHOL 173 169 173 175 176

1:1 CER NS:CHOL 168 170 164 167 173

Ternary 154 152 158 158 155

An appreciable number of CER–CHOL hydrogen bonds are seen, with slightly more

eCER–CHOL (4.3) than uCER–CHOL (3.7) hydrogen bonds. Interestingly, the level

of CER–CHOL hydrogen bonding is similar in the 2:1 and 1:1 CER:CHOL systems

with, for example, 11.4 and 11.1 total CER–CHOL hydrogen bonds for the 2:1 and 1:1

CER–CHOL systems with 50 mol % eCER (see Tables B.2 and B.3); this trend may

suggest that the CER–CHOL hydrogen bonding is saturated at or below 33 mol %

CHOL. Additionally, when CER is replaced by CHOL (i.e., comparing the pure CER

NS and the 2:1 CER NS:CHOL or 1:1 CER NS:CHOL systems), there are fewer

hydrogen bonds relative to the total number of hydrogen bonding sites in the system,

indicating that CER–CER hydrogen bonds are preferred over CER–CHOL hydrogen

bonds. There are comparatively fewer CER–CHOL hydrogen bonds in the ternary

systems, since FFA is present and is competing with CHOL to form hydrogen bonds

with CER. There is a surprisingly low amount of FFA–FFA hydrogen bonding, given

that FFA prefers to be near other FFA molecules (discussed below); however, FFA

sits deeper into the water and thus forms more hydrogen bonds with water.

The amount of lipid–water hydrogen bonding in each system is also listed in
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Table 4.3. Despite the relatively hydrophobic lipid–water interface (based on the low

interfacial thickness), there are significantly more lipid–water hydrogen bonds than

lipid–lipid hydrogen bonds. As with the lipid–lipid hydrogen bonds, the lipid–water

hydrogen bonding is independent of the CER FA tail length. Interestingly, the pure

CER and 2:1 CER:CHOL systems have similar amounts of lipid–water hydrogen

bonds, despite the fact that CHOL has significantly fewer hydrogen bonding sites than

CER, while the 1:1 CER:CHOL and ternary systems have comparably less lipid–water

hydrogen bonds, as expected since these systems have less CER (and hence fewer

hydrogen bonding sites) than the pure CER and 2:1 CER:CHOL systems. This trend

is lipid–water hydrogen bonding is perhaps explained by the “spacer” effect of CHOL,

as discussed above with respect to the tilt angles. Although less CER results in fewer

available hydrogen bonding sites, the spacing effect of CHOL allows the water to

more thoroughly hydrate the CER headgroups and hence results in more lipid–water

hydrogen bonds per hydrogen bonding site.

In-plane Morphology. For a general view of the in-plane morphology of each system,

the coordination numbers (CNs) between specific lipid tails in the bilayer plane are

examined. The CHOL–CHOL CNs depend on the amount of CHOL and available

neighbors in a given system, and not on the CER FA tail length, as detailed in

Figure B.5. This result suggests a random distribution of CHOL throughout the

bilayer leaflets. For example, there are equal numbers of three different types of tails

in the 1:1 CER:CHOL systems (i.e., CER–FA, CER–SPH, and CHOL). Random

mixing would give the observed CHOL–CHOL CN of 2. Applying this logic to the 2:1

CER:CHOL and ternary systems, random mixing would imply CHOL–CHOL CNs of

1.2 and 1.5 for each composition, respectively, which is observed. In contrast to CHOL,

FFA shows a preference for specific neighbors, and thus has a less random distribution

throughout the bilayer leaflets. In the uCER:CHOL:FFA system, the FFA–CERFA

and FFA–CERSPH CNs are 1.39± 0.08 and 1.20± 0.07, respectively (where CERFA
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and CER SPH represent the fatty acid and sphingosine tails of CER, respectively).

This result suggests that FFA has a preference for the FA chain of CER compared to

the SPH chain. Additionally, a significant preference for FFA to be near other FFA

molecules is observed, with a FFA–FFA CN of 2.3± 0.1, compared to 1.39± 0.08 for

FFA–CERFA, the next highest. This trend has also been observed experimentally,

with FFA-enriched domains forming with the tails tightly packed on an orthorhombic

lattice.20 However, unlike experimental results on similar systems,42 we do not see

any chain length-dependent behavior in regards to the mixing of CER and FFA.

We note that comparable experimental systems consider multilamellar structures,

whereas we consider a single hydrated bilayer, which could account for the differences

observed. We also note that the systems studied in the current work are several orders

of magnitude smaller than comparable experimental systems (nm versus µm), and

that an in-depth study of lateral distributions of lipids is beyond the scope of this

work.

4.4 Discussion

Relevance to Experimental Models of the Short Periodicity Phase. The localization

of different groups within an experimental model of the short periodicity phase (SPP)

of the SC has been studied with neutron diffraction.23,24 These experimental systems

resemble the systems studied in this Chapter, with a few differences. First, this

Chapter only considers CER NS, whereas experimental systems tend to include a

mixture of CERs with different headgroups, although uCER typically accounts for the

majority (∼60%) of the CERs.12,23,24 Secondly, we also only consider FFA C24, whereas

experimental systems often include FFAs with a distribution of tail lengths. We note,

however, recent work has shown that CER headgroup chemistry does not play a strong

role in the lamellar organization of SPP models, and that systems with a distribution of

FFA tail lengths had the same lamellar organization as a similar system with only FFA
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C24:0.12 Perhaps the biggest different between experimental systems and the systems

studied here is that this Chapter only considers single bilayers, which is the typical

approach to studying these systems with molecular simulations. Experimental systems

usually contain membranes with numerous diffraction orders detected, indicating

multilayer structures. Nonetheless, the neutron scattering length density (NSLD)

profiles from experiment and calculated via simulation can be compared. Additionally,

the localization of specific groups in the experimental and simulation systems can be

compared.

In Figure 4.10, the total NSLD profiles from experiment23,24 and simulation are

compared. The most obvious features of each are the large peaks at ±27�A (experiment)

and ±25�A (simulation). Given the experimental resolution of ∼5.4�A, the locations of

these peaks are in good agreement. It is worth noting that the NSLD profiles calculated

from simulation were averaged over multiple subtrajectories from the simulation, and

the calculated uncertainty was smaller than the line thickness; this small error is likely

due to the fact that the simulation samples 10s of �A over 10s of ns, so small variability

in density profiles should be expected. Both simulation and experiment show valleys

in the NSLD at ∼7�A, which notably align with the dips in the low tail density region

from Figure 4.7d. Additionally, subtle shoulders in the NSLDs are present at ±15�A

in both simulation and experiment, which aligns with the edges of the low tail density

region in Figure 4.7d.

Focusing next on the localization of specific groups within the bilayer, the mass

density profiles from simulation and the difference profiles between the protonated

and deuterated NSLD from experiment are compared, and shown in Figure B.6. In

this manner, the localization of specific groups in the simulations and experiments

can be compared. Comparing the location of the FA tail of uCER that was measured

in Groen et al.,23 good agreement is found with the simulation result, with a single

broad peak spanning ±7.5�A (Figure B.6), which corresponds to the region where the
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Figure 4.10: Neutron scattering length density (NSLD) profiles, reconstructed from
experiment23 and calculated from simulation. Note that the profiles were shifted such
that the minimum lies at 0, and the simulation curve was scaled to have the same
height as the experimental curve.

uCER FA tails from opposing leaflets interdigitate. The CHOL tails are localized at

±2�A in both simulation and experiment (Figure B.6).24 The CHOL headgroups show

some deviation between experiment and simulation, localized at ±23�A and ±21�A,

respectively (Figure B.6). This discrepancy, however, is again within the experimental

resolution of 5.4�A.24 Despite the fact that this work studies single bilayers, the

locations of specific groups within the bilayer agree very well with experimental

data on systems with similar compositions. Therefore, it can be concluded that the

model systems accurately approximate the model SPP systems from experiment, and

conclusions from this work also likely apply to model SPP systems, and also the SPP

in the SC.

Effects on Barrier Properties of SC. In this study, the lipid composition and CER

FA tail length were found to have the largest impact on lamellar organization, with

the bilayer thickness and shape of the density profile in the low density tail region

most affected. If we consider how these changes would affect the barrier properties

(i.e., the permeability) of these bilayers, we can provide some insight into the observed
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experimental behavior. The permeability of a membrane is a product of the solute

diffusion and partitioning, where the partitioning has an exponential dependence of

the free energy of solvation. Due to this exponential dependence, small changes in

the local packing (i.e., depth-dependent density) can have a dominant impact on the

bilayer permeability. Since the lipid mass density profiles are not constant across

the bilayers, the resistance experienced by a permeant molecule would vary with the

bilayer depth. Moreover, since the low density tail regions are qualitatively different for

the bilayers with different compositions, these depth-dependent partition coefficients

would also change, albeit nontrivially. Thus, if one was interest in comparing the

permeability of these different systems, a simple homogeneous solubility–diffusion

model would not suffice. This is indeed not unrecognized in the field, as the few

simulation studies of SC lipid permeability in the literature to date have used an

inhomogeneous solubility–diffusion model.31,53

While the structure of the lipids at the lipid–water interface changes with com-

position, it does not change with CER FA tail length. This is illustrated by the

fact that the thickness of the interfacial region and the lipid density profiles near

the headgroups are unchanged with the CER FA tail length for a given composition

(Figure 4.9 and Figure B.4). Additionally, both the total number of lipid–water and

lipid–lipid hydrogen bonds is constant for a given composition. Thus, one should

expect any changes in the barrier properties of model SC membranes with CER FA

tail length to be a result of changes in the structure of the bilayers in the hydrophobic

core, and that changes in the headgroup region would play only a small role. This

observation is consistent with the permeability measurements reported by Uchiyama et

al., which show that the permeability of ethyl-p-aminobenzoic acid through membranes

composed of synthetic mixtures of CER, CHOL, and FFA is independent of the CER

composition, but strongly dependent on the FFA tail length dispersity.12
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4.5 Conclusions

This Chapter used molecular dynamics simulations to examine the structure of

lipid bilayers relevant to the stratum corneum of the layer of the skin, and a protocol

to thoroughly relax such systems is proposed and validated. I first illustrated several

difficulties in simulating SC lipid mixtures and multicomponent gel-phase bilayers

in general, e.g., systems tend to be frozen at physiological temperatures with only

small lateral rearrangements possible. Since the most realistic morphologies are not

generally know a priori, systems must be allowed to find the most realistic morphology.

This task is shown to be computationally impractical at physiological temperatures

and inefficient at commonly used elevated temperatures, as well as likely to lead to

metastable states being confused to equilibrium states. The proposed random walk

MD methodology, based on simulated tempering, was shown to be an efficient and

reproducible method for minimizing the influence of an assumed, initial membrane

configuration for multicomponent, gel-phase bilayers. One should therefore expect

this method to be especially useful as simulations incorporate more complex lipid

mixtures. Using the random walk MD protocol, a series of SC lipid bilayers with

varying lipid compositions and CER FA tail lengths was examined. It was shown that

the lamellar organization is most affected by the lipid composition und CER FA tail

length. Subtle changes to the lateral organization of the lipid tails as a function of

the CER FA tail length were also seen. Additionally, since it was observed that the

behavior at the lipid–water interface does not change with the CER FA tail length, it

is reasonable to speculate that any tail length-dependent changes in barrier function

are a result of changes in the lipid tail region and not the headgroup region.
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CHAPTER 5

DEVELOPMENT OF COARSE-GRAINED FORCE FIELDS VIA MULTISTATE

ITERATIVE BOLTZMANN INVERSION

This chapter is reproduced in part from Moore et al. 2014.1

5.1 Introduction

The utility of coarse-grained (CG) force fields for use in simulations of soft matter

and biological systems has been well-established in the literature, enabling simulation

to explore greater length- and timescales than is feasible with fully atomistic models.

This is of particular importance when studying the self-assembly of soft matter sys-

tems, where the assembly is typically driven by weak forces (e.g., hydrophobicity and

entropy)2–7 and structures often demonstrate hierarchical ordering (e.g., molecules

organized into micelles, micelles organized into local/global patterns).6,8–12 While

generic, non-specific CG models have been widely applied,13–17 providing important

information regarding trends and design rules, it is often necessary to use CG models

specifically mapped to the system of interest to provide a direct one-to-one corre-

spondence with experiment. While several “transferable” CG force fields, such as

TraPPE-CG18 and MARTINI,19 haven been developed, akin to force field develop-

ment at the atomistic level,20–24 the development of new CG force fields is still often

necessary. This is often required since the available force fields may be lacking the

necessary molecular species/groupings or may not have been optimized for the proper-

ties of interest. This second point is of particular consequence, since, for example, a

force field optimized to match phase behavior may not appropriately capture subtle

structural features.18 Generally speaking, direct structural correspondence is needed

to accurately transition between different simulation levels (e.g., atomistic to CG), in
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order to perform multiscale25–27 and hybrid-multiscale simulations,28–34 as well as to

recover atomistic details from CG simulations.35–39

Several approaches have been developed to derive and optimize CG force fields.40–45

Among these, the iterative Boltzmann inversion (IBI) method40 has become a popular

choice due to its straightforward nature, general applicability to a wide range of

systems, and basis in structural properties. The IBI method relies on self-consistently

adjusting a given potential to achieve convergence with target structural data; for

nonbonded interactions this target takes the form of the radial distribution function

(RDF) between interaction sites and the potential is iteratively updated according to

V
(i+1)

CG (r) = V
(i)

CG(r)− αkBT ln

[
g(target)(r)

g(i)(r)

]
, (5.1)

where V
(i)

CG(r) is a numerical pair potential; i represents the current iteration; α is

a damping factor to suppress large changes to the potential, typically varying from

0.2 to unity, where smaller values tend to be necessary to capture dense and/or

crystalline states;46 kB is the Boltzmann constant; T is the absolute temperature; r is

the separation between particles; g(i)(r) is the pair RDF from the simulation of V
(i)

CG(r);

and g(target)(r) is the RDF of the target system mapped to the CG level. Although

the CG force fields derived via IBI are typically able to accurately reproduce the

target RDFs, they are, in general, only applicable at the state point for which they

were derived, due to the structural nature of their derivation (e.g., note the explicit

temperature dependence of Equation 5.1, as well as the implicit temperature and

density dependence through the g(r) terms).47,48 For example, separate potentials

were required to capture both the solid and fluid structures of a pure simple lipid.46

Additionally, several works have shown that CG polymer potentials derived via the IBI

method can depend on the chemical environment for which they were derived.40,49,50

Qian et al. found that the potentials derived using IBI for ethylbenzene scale in a
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nonlinear fashion with the temperature, however, in the same work, it was found that

CG potentials derived for polystyrene were independent of the temperature.51 Other

recent work has shown that some of the CG potentials in a benzene–urea–water system

derived via IBI possess a degree of state point transferability, but not all.52 It is thus

unclear why IBI provides transferability for some but not all potentials; this may

ultimately depend on a number of factors, including the effective size of the CG beads

and the “shape” of the RDFs being fit, but may also be a limitation of the single state

methodology. Furthermore, for complex systems, it may not be possible to optimize

potentials at the state points of interest, due to time- or length-scale limitations of the

atomistic simulations, thus making it difficult to apply the IBI method appropriately

given that potentials are not necessarily transferable. Perhaps of most concern is

the fact that the IBI method does not guarantee a unique solution, as a multitude

of vastly differing potentials may give rise to otherwise matching RDFs. The form

of the final derived potential may also vary based on runtime parameters, such as

the initial potential guess, potential cutoff, magnitude of the damping factor, etc. . .

Additionally, the derived potential may include artifacts associated with intermediate

and long-range structural correlations in the system, e.g., oscillatory behavior in

the potential that follows the peaks and valleys in the RDF, which may alter other

properties of the system, even if the RDFs match.

In this Chapter, I present the extension of IBI method to perform multistate

optimization, i.e., the potential is self-consistently adjusted to achieve simultaneous

convergence of target data from multiple states. The general idea, illustrated in

Figure 5.1, is that the inclusion of target data from multiple states adds constraints

to the optimization problem, such that the derived force field tends toward a single

set of pair potentials that can adequately represent all states. For example, potentials

in region i of Figure 5.1a are able to match the target structure at a single state i,

potentials in region ii are able to reproduce target data at state ii, etc. . . , with a
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single representative potential lying at the overlap of these regions, shown as region iv.

To illustrate the efficacy of the proposed multistate method, I first present potential

optimizations for the idealized system of a Lennard-Jones (LJ) fluid for which the

potential is known, in order to determine if the method resolves the correct potential.

Next, to test the method in a system where only nonbonded interactions are present

in the CG model, a 3:1 mapped CG force field is optimized for propane using target

data generated from united-atom (UA) propane simulations, and compared with a

single-site LJ model mapped to the experimental critical point of propane. Next,

I apply the approach to n-dodecane, a system more representative of the typical

application of a CG force field. Finally, a monolayer system of n-dodecane is examined,

where it is demonstrated that adjustment of the relative weights given to each target

in the MS IBI method can be used to tune the potentials to match other measurable

system properties beyond the RDF.

Figure 5.1: Regions of good potential phase space for states with optimal overlap (left)
and too much overlap (right).

5.2 Method and Simulation Details

5.2.1 Single State Iterative Boltzmann Inversion

In the IBI method (which for clarity is referred to as single state, or SS IBI), a

numerical pair potential, V (r), is iteratively updated according to Eq. 5.1. In this
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manner, V (r) is updated at each separation r based on whether the RDF overpredicts

or underpredicts the target RDF at the given r, and is repeated until the trial RDF

matches the target RDF within some tolerance.40 The initial guess of the numerical

potential is often taken to be the Boltzmann inversion of the target RDF:

V
(0)

CG(r) = −kBT ln g(target)(r). (5.2)

While not exact for site–site interactions in molecules,53 this methodology is motivated

by the statistical mechanical relationship between the potential of mean force and the

RDF, and provides a reasonable starting potential over which to iterate.

Typically, force fields derived with this method are capable of reproducing the

target RDFs with high accuracy, with slight deviations resulting from information lost

during coarse-graining. The ease of use of the IBI method and its general applicability

make it a powerful tool; given a CG mapping and a target RDF, site–site pair potentials

can be readily derived with little user input.

5.2.2 Multistate Extension of IBI

Although force fields derived with SS IBI will typically reproduce their target

RDFs with high accuracy, caution must be taken when using them. Upon successful

convergence of the pair potentials, it is only guaranteed that the CG and target

RDFs match, not that the pair potentials are necessarily representative of the “true”

underlying potentials (i.e., not necessarily state-independent). It is important to

note, especially since information is lost due to coarse-graining, that a multitude

of CG potentials may give rise to similar CG RDFs. Only a small portion of the

pair potentials that produce matching RDFs may accurately fall within the region

of potentials that match the true potential and, since the true potential is typically

unknown, it is difficult to assess the accuracy of the derived potentials. If the derived

potential falls far outside the true potential region, this may give rise to potentials
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that, despite providing a good match for the target RDF, lack transferability and

contain artifacts making them incapable of resolving system properties other than the

RDF.

The proposed MS IBI method aims to minimize the state dependence of the

derived potentials by adding additional constraints to the optimization process such

that the derived potentials fall within the region of phase space where potentials are

representative of the “true” potential. This approach relies of two key assumptions: (1)

different thermodynamic states have different regions of the potential phase space that

adequately reproduce their respective target RDFs, and (2) that the true, underlying

potential lies within the common overlap between these regions of phase space. As the

name suggests, this is accomplished by updating the derived potential to simultaneously

match target RDFs at different thermodynamic states, producing a single potential

that provides sufficient matching for all target RDFs considered. As shown graphically

in Figure 5.1a, the converged potential lies at the intersection of each of the regions

representing the target RDFs, as this is the only region where a sufficient match will

be found for all states.

The implementation of MS IBI is similar to that of SS IBI, the only additional

requirement is more target data. As in SS IBI, the initial potential is assumed to be

the Boltzmann inversions of the target RDFs, averaged over the Nstates states used,

V
(0)

CG(r) = − 1

Nstates

∑
states,s

kBT ln g(target)
s (r), (5.3)

where the subscript s represents the property at state s. After a trial CG simulation

is run at each state using the potential from Equation (5.3), the potential is updated

according to

V
(i+1)

CG (r) = V
(i)

CG(r)− 1

Nstates

∑
states,s

αs(r)kBTs ln

[
g

(target)
s (r)

g
(i)
s (r)

]
. (5.4)
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While in SS IBI, α represents a damping factor useful for suppressing fluctuations in

the potential update, here αs(r) also serves as a weighting factor, allowing more or less

emphasis to be put on each state. For example, if fitting a potential with three states,

where state 1 will ultimately be of most interest, it may make sense to give state 1 a

higher α value; this will be discussed later in Chapter 5.3.4. Additionally, here αs(r)

is defined as a linear function of the separation r, with the points αs(0) = αmax, and

αs(rcut) = 0. When V (rcut) = 0 is used for the initial potential guess, this ensures

that the derived potential smoothly decays to zero at the interaction cutoff rcut. Since

α decreases as r increases, increased emphasis is placed on shorter-range interactions

compared to long-range interactions, similar to the radial dependence of the pressure

correction formula often used with IBI.40 This helps to suppress the influence of

long-range structural correlations (e.g., the formation of bulk crystals from particles

interacting through a short-ranged, truncated potential). For direct comparability

in this work, both SS and MS IBI treat the damping factor as a linear function of

separation, with a fixed value of 0 at rcut. Note that, although bonded interactions

may be optimized in a similar manner (i.e., adjusting the potential to match a target

distribution), in this work, the assumption is made that bonded and nonbonded

interactions are sufficiently independent such that we use analytical bonded potentials,

as has been done in previous work.46,54,55

The choice of states used in the fitting procedure is naturally important to deriving

an accurate potential. To derive a potential most representative of the underlying

one, it would not be beneficial to choose states with RDFs that are too similar, as the

overlap region would be large, essentially providing minimal additional constraints;

this situation is shown in Figure 5.1b. In such a case, there would be no advantage

to the multistate fitting. At the other end of the spectrum, there may in fact be no

overlap between states, or more specifically, no overlap for a given level of matching

(i.e., no overlap without relaxing the tolerance of a RDF similarity test). For some
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systems, it may not be possible to define a single potential that accurately reproduces

the target structure at all states. This is not a problem unique to coarse-graining, as

it applies at all levels of modeling, e.g., classical atomistic potentials may also lack

full state-independence given that they do not allow variation in electron density.

5.2.3 Simulation Model

In this work, simulations were performed using 3 distinct models: a generic LJ

fluid, TraPPE-UA, and CG models derived via IBI. First, simulations of particles

interacting through a LJ potential were performed in the canonical ensemble (i.e.,

fixed number of particles, volume, and temperature), with temperature controlled via

the Nosé-Hoover thermostat. These monatomic LJ systems contained 1468 particles

initially randomly distributed throughout the box, and were run for 1× 106 steps

before target data were collected over 1× 105 steps. A timestep of 1× 10−3 in reduced

time units was used. The interaction parameters used in all LJ simulations were

σ = 1.0 and ε = 1.0, with a potential cutoff of rcut = 3σ. Here, no coarse-graining

was applied to the target systems, as these simulations were used simply to test the

efficacy of the potential derivation in the ideal case where the true potential is known.

The second model used relies on the united atom (UA) TraPPE-UA force field

for simulation.20 Here, alkanes were simulated in the canonical ensemble. Bulk fluid

systems of both propane (1024 molecules) and n-dodecane (400 molecules) were

simulated at 3 different states, as listed in Chapters 5.3.2 and 5.3.3, and used to

generate target RDF data. Although not an all-atom model (as hydrogens are not

explicitly modeled), the TraPPE force field was chosen for computational convenience,

since, in principle, the target data can come from any source. In all cases, a timestep

of 1 fs was used. After an initial equilibration period of 5 ns, data were collected

over a 10 ns production run. In addition to the bulk fluid n-dodecane simulations,

UA simulations were performed of n-dodecane gel and fluid monolayers, composed
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of 100 n-dodecane chains each. These were performed in the same manner as the

bulk simulations at 298 K, but with the first head bead of each chain held stationary

such that a 2D hexagonally arranged periodic array with a density of 4.10 chains/nm2

(gel-like) and 3.79 chains/nm2 (fluid-like) was achieved; these were chosen to match

state points commonly used in alkylsilane monolayer simulations and experiments.56

The third model used is a CG representation of alkanes. In all cases, a 3-to-1 CG

model (i.e., each CG bead represents 3 UA carbon groups) was used to simulate bulk

fluid and monolayer systems of alkanes. Pair potentials were derived using the SS and

MS IBI methods, using the results of the UA simulations as target data, as discussed

in detail in Chapter 5.3.

The bond stretching and angle bending potentials used in the study of dodecane

were derived by a Boltzmann inversion of the bonded distributions sampled in the

atomistic trajectory mapped to the CG level.54 Specifically, from a normalized bond

length distribution p(r), the bond stretching potential is written as

Vbond(r) = −kBT ln p(r),

which, assuming a Gaussian bond length distribution, results in a harmonic potential

about the most probable bond length, req; note a similar formalism was used for

angles, where θ is substituted for r, and the normalization includes a factor of sin(θ).

Since minimal state dependence was found between systems, a single set of bonded

parameters was used in all simulations, with k/kB = 15.60 K/�A and req = 3.56�A for

bonds and k/kB = 0.17 K/deg and θeq = 174.53° for angles.

In all cases, the GPU-enabled HOOMD-Blue57,58 simulation engine was used to

perform the simulations. The high performance of the GPU allows for rapid derivation

of potentials. A standard potential optimization using MS IBI required approximately

50 iterations to be well-converged. For the pure LJ systems with 1468 particles, this
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convergence took less than 1 h using three Nvidia GTX580 GPUs concurrently. The

following fitness function was used to measure how well a trial RDF matched with its

target:

ffit(i) = 1−
∑rcut

r=0|g(i)(r)− g(target)(r)|∑rcut
r=0[g(i)(r) + g(target)(r)]

. (5.5)

An ffit value of unity represents a perfect match between the CG and target RDFs.

Additionally, in all figures, the following two-point central moving average smoothing

function was applied to the derived potential to reduce the noise:

V ′n(r) =
1

3
[Vn−1(r) + Vn(r) + Vn+1(r)] , (5.6)

where Vn(r) is the nth element of the numerical potential, and the prime denotes

the smoothed value. The application of the smoothing function was not found to

significantly influence the behavior or degree of matching.

5.3 Results

5.3.1 Monatomic Lennard-Jones Fluid

To test the efficacy of the MS IBI method, potentials were derived using RDFs

from monatomic LJ spheres as target data, and the results compared to single state

potential derivations (i.e., SS IBI). Target data were acquired from the following states:

state A, reduced density ρ∗ = Nσ3/V = 0.85, reduced temperature T ∗ = kBT/ε = 0.5;

state B, ρ∗ = 0.67, T ∗ = 1.5; and state C, ρ∗ = 0.18, T ∗ = 2.0. No coarse-graining

was performed since the goal was to test whether the MS IBI method could recover

a known potential. In contrast to mapping an atomistic system to the CG level, no

information about the system is lost through coarse-graining, ensuring that a single

potential is truly applicable to all states and that this potential is known.

While the RDFs match well, as illustrated in Figure 5.2a-c, the potentials derived

via SS IBI demonstrate significant state dependence, as shown in Figure 5.2d. For the
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more dense states A and B (Figures 5.2a and 5.2b), the SS IBI method was not able to

converge to the true potential to the extent that in the most dense system (state A),

the converged potential is almost purely repulsive. This result is due to the elevated

density of this state, where the structure can be reproduced with a purely repulsive

potential.59 In this case, even though the RDF matches the target well, the overall

behavior of the system would be dramatically altered as compared to the target. A

similar situation arises in state B where only a weak attraction is required to match

the target structure. In state C, however, the low density causes attractive forces to

become important, and as such, the attractive portion of the LJ potential is needed

to fully reproduce the target data. Thus, the true LJ potential is recovered only for

state C. The application of SS IBI to the monatomic LJ system illustrates two points:

(1) that potentials derived via SS IBI are state-dependent, and (2) these potentials are

not unique, in that both the LJ potential and the vastly differing derived potentials

produce matching RDFs.

MS IBI aims to address the aforementioned issues by forcing the potential to

sample portions of potential phase space that satisfy all of the constraints, i.e., find a

single potential that matches the target structure at multiple states. The results of

applying MS IBI to the monatomic LJ fluid are shown in Figures 5.2e-h. The inclusion

of target data from multiple states results in closely matching RDFs and a derived

potential that accurately reproduces the true LJ potential, as shown in Figure 5.2h.

Although this example is simple, as no coarse-graining was performed, it illustrates

the ability of MS IBI to recover a known potential and reduce state-dependence of

the derived potential.

5.3.2 Propane

To further test the MS IBI algorithm, potential optimizations were performed for

the pair interactions in a CG model of propane. The chosen 3-to-1 mapping results
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Figure 5.2: RDFs and potentials derived for the LJ system. (a-d) SS IBI results. (e-h)
MS IBI results. The α value used for the MS IBI optimization was 0.7 for each state.
The solid black line represents the target RDF (a–c, e–g) or the known potential
(d) and (h). Symbols represent the derived RDFs calculated from simulations of the
derived potential (a–c, e–g), or the derived potential (d, h).

in a single-site model that can be directly compared to single-site 12-6 LJ models

established in the literature.60 Note, the 12-6 LJ potential should not be considered to

be the “true” potential, but rather a good approximation. Target data were acquired
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from UA simulations at the following states: state A, 298 K, 0.818 g/mL; state B,

298 K, 0.439 g/mL; and state C, 298 K and 0.14 g/mL. The damping values used in

the subsequent MS IBI optimizations were αA(0) = 0.5, αB(0) = 0.7, and αC(0) = 0.5.

The resulting RDFs and (single) pair potential are presented in Figure 5.3. At each

state, ffit indicates excellent agreement between the target RDFs and those calculated

from simulations using the derived potential. Moreover, we find that the derived

potential agrees well with a single-sit 12-6 LJ model using parameters mapped to

the critical point of propane,60 providing confidence in the MS IBI method. While

the match between the two potentials is good, the derived potential does show two

small bumps at ∼7�A and ∼9.5�A, which are likely related to orientational effects;

that is, likely related to treating the three UA carbon groups as a single, spherically

symmetric interaction site.
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Figure 5.3: RDFs (a-c) and potential (d) derived for the single-site CG model of
propane using MS IBI. (a-c) correspond to states A, B, and C in the text, respectively.
The α values were 0.5, 0.7, and 0.5 for states A, B, and C, respectively. The black
reference potential in (d) is from fitting a Lennard-Jones potential to have the same
critical point as propane.60

To illustrate the consistency of the potentials derived via MS IBI (i.e., that the
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final potential is insensitive to the initial guess), optimizations were performed using

a number of different initial potentials. In addition to the PMF-like quantity of

Equation 5.3, three additional initial guesses were used, each a 12-6 LJ potential with

vastly differing parameters: (1) ε1 = 0.46 kcal/mol, σ1 = 4.51�A; (2) ε2 = 0.001ε1,

σ2 = σ1; and (3) ε3 = 2ε1, σ3 = σ1. The final derived potentials are, in each case, very

similar to each other and to the derived potential in Figure 5.3d, as shown Figure 5.4.

Particularly, the ffit values between each potential and the derived potential shown in

Figure 5.3d are 0.986, 0.980, and 0.986, respectively.
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Figure 5.4: Different initial guesses (top) and the resulting derived potentials (bottom)
for propane optimizations. As in Figure 5.3d, the solid black reference potential is a
Lennard-Jones potential with parameters chosen to have the same critical point as
propane.60
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5.3.3 n-dodecane

To examine a more complex system and test the state-independence of the derived

force field, n-dodecane was examined in the bulk state. Intermolecular pair potentials

were derived for the beads of a CG model of n-dodecane, again using a 3-to-1 mapping.

The resulting 4-site model contains two middle beads and two terminal beads, where

middle and terminal beads were treated uniquely, resulting in the need to derive three

pair potentials; harmonic bonds and angles were used, as detailed in Chapter 5.2. The

target data were collected from UA simulations of n-dodecane at the following states:

state A, 298 K, 1.04 g/mL; state B, 298 K, 0.74 g/mL; and state C, 370 K, 0.55 g/mL.

The damping values used were αA(0) = 0.5, αB(0) = 0.7, and αC(0) = 0.5. Note that

state B corresponds to the experimental density at standard ambient temperature and

pressure, and, as such, was given higher weight than the other states in this example.

Close agreement with the target RDFs was found, with an ffit value greater than 0.98

for each of the nine RDFs calculated (3 unique pair interactions at 3 different states).

As a further test of the quality of the derived force field, the average squared radius

of gyration normalized by the average end-to-end distance, denoted by Rchain, was

calculated, providing a measure of the chain conformations at different thermodynamic

states. Using the MS IBI-derived force field, good agreement was seen between the

UA target data and the CG model for the ration Rchain, as shown in Figure 5.5. The

MS IBI force field deviates slightly from the target data for larger values of Rchain,

which is likely related for the fact that, for simplicity, only a single Gaussian was

used to fit the bond and angle distributions. The bond and angle distributions are

well-approximated by a single Gaussian at states A and B, however, at the higher

temperature state C, the bond and angle distributions may be better approximated

by multiple superimposed Gaussians, as proposed by Milano et al.54 While deviations

for the MS IBI force field become more apparent for larger values of Rchain, the SS IBI

force fields shows a larger, systematic deviation over all values of Rchain. Since both the
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MS IBI and SS IBI force fields use the same bond and angle parameters, it would be

expected that SS IBI would also show the same increased deviations for larger Rchain.

However, the ability of MS IBI to more accurately capture the chain conformations

of n-dodecane appears to be directly attributable to the increased accuracy of the

derived pair potentials. Note, in both cases, additional simulations were performed

at state points not used in the fitting (state points used in the optimizations are

highlighted with open squares in Figure 5.5), showing good transferability of the MS

IBI-derived force field.
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Figure 5.5: Comparison of a structural metric between the CG and UA models of
n-dodecane. The intermolecular pair potentials were derived with MS IBI (top) and
SS IBI (bottom). Squares represent data points from simulations at state points used
for target data; circles are data points from other state points used for testing the
state dependence of the chain conformations.
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5.3.4 Tuning CG Force Fields

While it is not uncommon to tune pair potentials to reproduce desired behaviors,

such tuning is often accomplished by manually adjusting the potentials or mixing

potentials derived at different state points, e.g., modifying cross-interactions to ensure

stability of CG bilayers.61 MS IBI provides a more systematic way to optimize the CG

force fields by adjusting the relative weights applied to each state in the optimization

process, providing a similar effect to manually mixing parameters from optimizations

performed independently at different state points. As mentioned in Chapter 5.2,

here the damping coefficient αs(r) is a function of both separation r and state s.

Adjusting the αs(0) value given to each state s alters the weight given to the state

in the optimization, i.e., more or less emphasis can be placed on matching a given

state. While adjusting the relative weights may have only a small effect on the

derived RDFs, it may alter subtle features of the derived pair potentials, which can

significantly alter other properties. To demonstrate this, as well as to further test the

transferability of the derived force field, alkane monolayers were simulated using the

3-to-1 CG model, with pair potentials optimized in the bulk states discussed above,

using various values of αs(0). The average tilt angle θ (with respect to the surface

normal) and nematic order parameter62 S2 of the chains were calculated and compared

with those values calculated from the corresponding UA simulations. S2 is defined as

S2 = 〈3
2

cos2 θ − 1
2
〉, where θ is the angle between an individual chain in the system

and the average direction of all the chains in the system; this yields a value of unity

for perfect orientational ordering, decaying to zero as order is lost. Note that the UA

monolayer simulations were not used as target data in the force field derivation; they

were used only to validate the properties predicted by the derived CG force field.

Unique sets of CG pair potentials were derived over a range of αs(0) values, as

summarized in Table 5.1. Here, the states A, B, and C are the same states described

for n-dodecane in Section 5.3.3. Initially, MS IBI was performed with equal weight
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given to each state. As shown in Table 5.1, this α set yields potentials that significantly

overpredict the fluid phase order parameter, while underpredicting the chain tilt in

the gel-phase monolayer. Since the monolayers are inherently ordered, it would be

expected that increasing the relative weight given to the most dense state—state A—

would yield a potential that better captures the system behavior. By systematically

reducing the weight given to the less dense states, first state C, then state B, a force

field that very closely reproduces the monolayer behavior is obtained for αs(0) of 0.7,

0.1, and 0.1 for states A, B, and C, respectively. Given the small weights assigned to

states B and C, it may be expected that this force field would give results similar to

the potentials derived via SS IBI at state A. However, it can be seen in Table 5.1 that

this is clearly not the case; the force field derived with target data from only state A

shows large deviations from the UA behavior, underpredicting both the average tilt

and nematic order in the gel phase monolayer, in stark contrast to the nearly perfect

behavior predicted by the MS IBI force field. This result is a direct consequence of

using the MS IBI method; even though low weights are given to the other states, the

derived potentials will only be considered converged if all states demonstrate good

agreement with the target data. That is, state points with lower weights are still able

to make changes to the pair potentials, albeit of smaller magnitude; if those changes

negatively impact the fitting of higher weighted states, a strong correction will be

applied, producing subtle changes to the potentials as compared to systems with equal

weight.

While in this case, tilt angle and nematic order demonstrate a strong sensitivity to

the weighting factors, not all systems demonstrate such clear dependence. The ability

of the CG force field to reproduce the properties of the target model may certainly

be linked to the level of coarse-graining applied and therefore deviations of desired

properties may be inherent to the CG model, not the choice of weighting functions.

Similarly, as previously discussed in Chapter 5.3.3, the fitting of the topological
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Table 5.1: Average chain tilt with respect to the surface normal, θ, and nematic order
parameter, S2 , for the monolayers in the fluid state (subscript F) and in the gel state
(subscript G). The states A, B, and C are the same ones described in Chapter 5.3.3.
Values are given as ensemble averages ± standard deviation.

αA/αB/αC θF S2,F θG S2,G

0.7/0.7/0.7 19± 6° 0.97± 0.01 18± 7° 0.98± 0.02

0.7/0.7/0.6 20± 6° 0.97± 0.01 20± 4° 0.992± 0.002

0.7/0.7/0.5 18± 7° 0.96± 0.02 20± 4° 0.991± 0.002

0.7/0.7/0.4 15± 7° 0.95± 0.02 20± 4° 0.990± 0.003

0.7/0.7/0.3 13± 7° 0.94± 0.02 19± 4° 0.990± 0.004

0.7/0.7/0.2 12± 6° 0.93± 0.01 12± 6° 0.96± 0.01

0.7/0.7/0.1 10± 6° 0.95± 0.01 8± 5° 0.958± 0.008

0.7/0.4/0.1 18± 9° 0.83± 0.02 29± 4° 0.988± 0.003

0.7/0.1/0.1 20± 10° 0.81± 0.02 32± 4° 0.989± 0.002

0.7/–/– 17± 9° 0.85± 0.02 15± 7° 0.89± 0.01

–/0.7/– 23± 5° 0.983± 0.005 21± 3° 0.993± 0.001

–/–/0.7 23± 4° 0.988± 0.002 20± 5° 0.987± 0.002

United atom 20± 15° 0.82± 0.03 30± 10° 0.97± 0.05

parameters (e.g. bonds, angles, and/or dihedrals) can also influence the measured

properties, and thus deficiencies caused by these topological parameters are not likely

to be fixed via a simple adjustment of weights. However, adjustment of the weights

should provide a means to tune force fields that might otherwise be adjusted manually

or would need to be derived by mixing potentials from different state points. The use

of MS IBI simply provides a clearer, more systematic framework for this process, even

if the weights are modified via trial and error.

5.4 Conclusions

A multistate extension of the popular IBI method has been proposed, developed,

and validated in this Chapter. In the proposed MS IBI method, multiple thermody-

namic states are used in the derivation of single, generally applicable pair potentials. It
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was shown that MS IBI is able to recover a known potential where no coarse-graining

was performed, in contrast to SS IBI, which was unable to consistently derive the

known potential. Through the coarse-graining of propane, it was shown that MS IBI

was able to recover a potential very similar to a previously published single-site model,

with excellent reproducibility. Furthermore, force fields derived via MS IBI were shown

to better reproduce structural conformations of n-dodecane than force fields derived

via SS IBI. It was also demonstrated that adjusting the relative weights given to each

target in the optimizations can be used to tune system properties beyond the RDF; in

this case, tuning the weights enabled pair potentials to be derived that provided near

perfect agreement between CG and atomistic models when considering the nematic

order parameter and tilt angle of an n-dodecane monolayer. While pressure, and

thermodynamics in general, were not investigated in this work, the standard pressure

correction scheme of SS IBI40 could be trivially applied to MS IBI by calculating the

average pressure deviations between all states. As such, the MS IBI stands as an

improvement of the typical IBI method, producing more generally applicable force

fields that can be tuned to match target properties from experiment of finer-grained

simulations.

The improved methodology should be very useful for a host of molecular systems, in-

cluding, for example, lipid systems, where, not only do systems demonstrate structural

heterogeneity within a given state point (i.e., different molecular structures in a single

system), but properties such as tilt angle, nematic order, area per lipid etc. . . need to be

tuned in order to match atomistic simulation and experiment.63–67 Given that the MS

IBI approach is also capable of deriving force fields which demonstrate increased levels

of transferability than SS IBI, force fields can be derived for complex systems with

many unique interactions by examining the individual components separately, reducing

the number of simultaneous optimizations that need to be performed. Furthermore,

this work presents a method to develop potentials that may allow the examination of
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phase transitions; in many prior works utilizing SS IBI, different potentials are needed

to appropriately model different states, making it difficult to accurately examine

the transitions between those states.19,46,68,69 Additionally, given that multi-GPU

machines and GPU-enabled simulation packages are becoming more common,57,70–72

the potential derivation process can be performed quite efficiently, even if a large

number of targets are needed or a large number of iterations must be undertaken to

find appropriate weighting functions.
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CHAPTER 6

DEVELOPMENT OF A COARSE-GRAINED WATER FORCE FIELD VIA

MULTISTATE ITERATIVE BOLTZMANN INVERSION

This Chapter is reproduced in part from Moore et al. 2016.1

6.1 Introduction

Coarse-grained (CG) models of have proven useful in many fields of chemical

research,2–11 allowing molecular simulations to be performed on larger system sizes

and longer timescales than is possible with atomistic-level models, enabling complex

phenomena such as hierarchical self-assembly to be described.12,13 In CG simulations

of aqueous systems, especially ones with significant amounts of hydrophobic and/or

hydrophilic interactions, the water model is important and can have a major impact

on the resulting properties of the system.14

While the assignment of atoms to CG beads (i.e., defining the CG mapping) is

relatively straightforward for most chemical systems, (e.g., aggregating four methyl

groups bonded in sequence into a single CG bead), mapping an atomistic water

trajectory to the CG level (i.e., grouping several water molecules into a single CG

bead) is not as well-defined given the lack of permanent bonds between water molecules.

Even if a mapping were chosen, water molecules will diffuse away their initial clusters

over time, such that the initial mapping is no longer representative of the local clustering

of water. This ambiguity presents a problem for structure-based methods that require

an atomistic configuration to be mapped to the corresponding CG configuration, e.g.,

to generate a target radial distribution function (RDF) against which the force field is

optimized. As such, the majority of many-to-one CG models of water (i.e., where one

CG bead represents multiple water molecules) have instead been derived by assuming
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a functional form of the force field and optimizing the associated parameters to match

selected physical properties of water, such as density, vaporization enthalpy, and

surface tension.14–20 For example, Chiu et al. developed a 4:1 CG water force field by

optimizing the parameters of a Morse potential to accurately reproduce the surface

tension and density of liquid water.19 Despite capturing the interfacial properties and

density, this potential overestimates structural correlations, as one might expect given

that structural data was not used in its optimization.

Recently, Hadley and McCabe21 proposed a method for mapping configurations of

atomistic water to their CG representations using the k-means clustering algorithm.

Subsequently, in related work, van Hoof et al. developed the CUMULUS method for

mapping atoms to CG beads.22 Both methods enable dynamic mapping of multiple

water molecules to a single CG bead, allowing structure-based schemes to be used.

Here, dynamic refers to a CG mapping that changes over the course of the atomistic

trajectory, i.e., different water molecules are assigned to different CG beads in each

frame of the atomistic trajectory. Both works employed the iterative Boltzmann

inversion (IBI)23 method to derive the intermolecular interaction by optimizing a

numerical, rather than analytical, potential to reproduce RDFs calculated from the

atomistic-to-CG mapped configurations.21,22 The force fields derived are similar and

show good agreement with the structural properties and density of the atomistic water

models studied. However, neither model is able to accurately reproduce interfacial

properties, since they were derived solely from bulk fluid data. This failure to capture

interfacial properties is a consequence of the single-state nature of the IBI approach

and may alter the balance of hydrophobic and hydrophilic interactions when using

these water models in multicomponent systems.

Recently, the multistate IBI (MS IBI) method24 was developed as an extension of

the original IBI approach, with the goal of reducing state dependence and structural

artifacts often found in IBI-based force fields.14,25,26 While IBI-based force fields have

98



been derived that show some degree of transferability,26–28 a significant issue related

to the IBI method is that a multitude of potentials can give rise to similar RDFs,

and the method cannot necessarily differentiate which of the many potentials is most

accurate, as only RDF matching is considered. MS IBI operates based on the idea

that different thermodynamic states will occupy different regions of potential “phase

space” (i.e., regions where potentials give rise to similar RDFs), and that the most

transferable, and thus most accurate, potential lies in the overlap of phase space for

the different states. That is, by optimizing a potential simultaneously against target

data from multiple thermodynamic state points, MS IBI provides constraints to the

optimization, forcing the method to derive potentials that exist in this overlap region,

and thus are transferable among the states considered. The MS IBI approach has

been shown to reduce the state dependence and improve the quality of the derived

potentials, as compared to the original IBI method.24

In this Chapter, MS IBI is used to derive an intermolecular potential that captures

both bulk and interfacial properties of water, improving upon the CG water model of

Hadley and McCabe.21 Again, optimizations are carried out using the MS IBI method,

where both bulk and interfacial systems are used simultaneously as target conditions

for the optimization. MS IBI is also used, for the first time, in a multi-ensemble context,

enabling optimizations in both the canonical (NVT) and isothermal-isobaric (NPT)

ensembles to be performed simultaneously to derive the density-pressure relationship

of the system. To further constrain the optimization, a slightly modified version of

the Chiu et al. CG water force field, originally optimized for surface tension, is used

as a starting condition, allowing the MS IBI method to make specific modifications to

the potential to improve the structural properties. The remainder of this chapter is

organized as follows: in Section 6.2, a brief overview of the k-means clustering and MS

IBI algorithms is given and the models used are described. The potential derivation is

then presented, validated, and compared to existing CG water models in Section 6.3
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and finally, conclusions are drawn about the applicability of the derived CG model

and the broader applicability of the MS IBI method discussed in Section 6.4.

6.2 Methods

6.2.1 k -means Clustering Algorithm

Mapping a water trajectory to a many-to-one CG level is inherently different than

mapping a larger molecule’s trajectory, since for water, atoms mapped to a single

CG bead necessarily exist on different molecules. Furthermore, the water molecules

mapped to a common bead are not likely to remain associated throughout the full

simulation because of thermal diffusion. A dynamic mapping scheme is therefore

required to generate CG structures from atomistic configurations for water. Following

the work of Hadley and McCabe,21 the k-means algorithm has been used to map

atomistic water trajectories to the CG level. k-means is a clustering algorithm that

is used to find clusters of data points in a large data set. The algorithm, depicted

schematically in Figure 6.1 is as follows: first, k cluster locations are chosen within

the data space (in this case, the simulation box from the atomistic simulation). Here,

the initial cluster locations were chosen as randomly selected oxygen molecules in the

atomistic configuration. Next, each data point (i.e., water molecule) is assigned to its

nearest cluster location. The cluster locations are then shifted to the center of mass of

the water molecules assigned to each one. This process of assigning water molecules

and shifting the cluster locations is repeated until some criterion is met, which in

this work was when the largest cluster displacement was less than 0.1�A. While the

k-means algorithm can be used to group together any number of water molecules, a

4:1 mapping is chosen, as this was found in prior work to provide the best balance

between accuracy and computational efficiency,21 and 4:1 models are common in the

literature.18,19,21 The final cluster locations are used as the location of the CG water

beads for calculating the target RDFs, and this process is repeated for each frame in
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the atomistic trajectory.

Move cluster 
locations,
reassign points to 
clusters

Move cluster 
locations,
reassign points to 
clusters

Figure 6.1: A schematic of the k -means algorithm. The water molecules are shown
as red (oxygen) and white (hydrogen) spheres. The cluster locations are shown as
solid dots, and the water molecules assigned to each cluster are contained within the
colored regions.

6.2.2 Multistate Iterative Boltzmann Inversion Method

MS IBI, as detailed in Chapter 5, was used to derived the pair potential between

the beads of the CG water model. As in Chapter 5, the weighting factor αs(r) was

chosen to be a linear function of the form

αs(r) = α0,s

(
1− r

rcut

)
,

such that αs(rcut) = 0 and the pair potential remains 0 for r ≥ rcut. This form of

αs(r) also places more emphasis on the short-range part of the potential to suppress

long-range structural artifacts.

An initial potential was assumed for the pair interaction. In theory, there are no

restrictions on the initial pair potential, so it may take any form; in practice, however,

the initial potential is often taken to be the approximate potential of mean force

(PMF) between two beads, calculated from a Boltzmann inversion of the RDF. In

this Chapter, rather than taking an average of the PMFs over the states used, the

initial potential used was chosen to be a slightly modified version of Chiu et al.’s water
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model,19 as discussed below. That is, rather than starting from an initial potential

that is likely to do a poor job of predicting the behavior, we start from a robust

starting point as the Chiu et al. model is known to accurately reproduce several

properties of water.19

As in Chapter 5, the fitness function given in Equation 5.5 was used to define the

stopping criteria for the optimization. The specific stopping criteria are given below

in Chapter 6.2.3.

6.2.3 Models

Atomistic simulations of pure water were performed with the TIP3P model.29 All

atomistic systems contained 5,832 water molecules and were simulated in LAMMPS30

using a 1 fs timestep. A cutoff distance of 12�A was used for the van der Waals

interactions; long-range electrostatics were handled with the PPPM method with a

12�A real space cutoff. Three distinct states were simulated: bulk, NVT at 1.0 g/mL

and 305 K; bulk, NPT at 305 K and 1.0 atm; and an NVT droplet state at 305 K,

where the box from the bulk NVT state was expanded by a factor of 3 in one direction.

Each atomistic simulation was run for 7 ns. The atomistic trajectories were mapped

to the CG level using the k-means algorithm as discussed above. Target RDFs were

calculated from the final 5 ns of the mapped trajectory from each state (bulk NVT,

bulk NPT, and droplet NVT). MS IBI was performed using the target data from each

of the three states. The initial guess of the potential was a Morse potential of the form

V (r) = De

[
e−2β(r−req) − 2e−β(r−req)

]
, (6.1)

where req is the location of the potential minimum, −De is the value of the potential

minimum, and β determines the width of the potential well. Parameters are taken

from Chiu et al.: De = 0.813 kcal/mol, β = 0.556/�A, and req = 6.29�A. However, we

note that the potential was adjusted so that β = 0.5/�A for r < req. This change
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was made to increase sampling as small separations, because numerical issues arise

in the potential update when the CG RDF is zero but the target RDF is nonzero.

This modification of the potential will slightly alter the properties as compared to the

original model, as discussed below. The potential update scaling factor α0,s was set

to 0.7 to avoid large updates to the potential. The optimizations were stopped when

ffit ≥ 0.98 and ffit(i)− ffit(i− 1) < 0.001 for each state.

All optimizations were performed with the open-source MS IBI Python package

we developed,31 which calls HOOMD-Blue32,33 to run the CG simulations and uses

MDTraj34 for RDF calculations and file-handling. CG simulations were run at the

same states as the atomistic systems. Initial CG configurations were generated from

the CG-mapped atomistic trajectories at each state. As a result of the 4:1 mapping,

CG water simulations contained 1,458 water beads. All CG simulations were run with

a 10 fs timestep. The derived CG potential was set to 0 beyond the cutoff of 12�A.

The surface tension γ of the droplet state was calculated as

γ =
1

2
Lz

〈
Pzz −

Pxx + Pyy
2

〉
, (6.2)

where Lz is the length of the box in the expanded direction, Pzz is the pressure

component in the direction normal to the liquid-vapor interfaces, Pxx and Pyy are the

pressure components in the directions lateral to the interfaces, and the angle brackets

denote a time average. The factor of 1⁄2 is included to account for the two interfaces

that are present in the droplet simulation setup.

6.3 Results and Discussion

6.3.1 Modified Chiu Potential

Since the MS IBI optimization of water uses a modified version of the Chiu, et al.

potential as an initial guess, we first consider the impact of modifying the potential
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to create a softer repulsion. Figure 6.2 shows the RDFs of the three target states for

the original and modified potentials and the RDF of the 4:1 mapped state (i.e., the

target data used later for the MS IBI optimization). The peak location of the NVT

state is relatively unchanged; however, upon modification, there is a slight shift in

the first peak for the NPT and interfacial states, allowing the model to access smaller

separations, as was intended and required for the potential update scheme. The softer

potential allows closer contact and thus allows the MS IBI algorithm to modify this

region of the potential where the 4:1 mapped atomistic water has non-zero values of the

RDF. The density predicted with both potentials is the same (0.991± 0.003 g/mL);

however, due to the softening of the potential, the calculated surface tension of the

droplet changes from 70.3 mN/m to 45 mN/m after the modification, although this

value is still sufficient for the droplet to maintain a stable interface. These surface

tension values agree favorably with that of TIP3P water, which is reported to have a

surface tension of 52.3 mN/m at 300 K.35

6.3.2 Potential Derivation and Validation

Starting from the modified Morse potential of Chiu et al., the new water force

field is optimized using the bulk NVT and NPT states and the interfacial state. This

potential is chosen as the initial starting guess, rather than an arbitrary starting point,

as the unmodified version has been shown to accurately reproduce many properties

of water (e.g., the density and surface tension), but overestimates the structural

correlations. The use of MS IBI should allow for modification of this potential, such

that it is able to reproduce structural quantities. The results of the potential derivation

are summarized in Figure 6.3, where it is clear that the modified Chiu et al. potential

(i.e., step 0) overestimates the structural correlations, as was also seen in Figure 6.2 for

both the modified and original potentials. After only a few iterations the RDFs match

the targets with a high degree of accuracy. This trend is shown in Figure 6.4, which
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Figure 6.2: RDFs from simulations using the original and modified Chiu potentials.
Top: NVT; top-middle: NPT; bottom-middle: interface; bottom: comparison of the
two potentials.

plots the fitness value from Eq. 5.5 as a function of iteration. The value of ffit changes

most rapidly in the first 3 steps of the optimization. After 10 iterations, the stopping

criterion is met and the optimization stopped. While changes to the potential are

small, there is a noticeable shift in the location of the minimum to a slightly larger r

values and the potential becomes slightly more attractive. Although the shape of the

attractive well is mostly unchanged, the potential more rapidly decays to 0 than the
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original Morse potential at larger r values, while the shape of the repulsive regime

at small r is changed slightly. These subtle changes to the potential are sufficient

to create significant changes in the RDF and provide excellent convergence of the

structural correlations. These changes are made possible by modifying a numerical

rather than adjusting parameters for an analytical potential. Note that in Figures 6.2

and 6.3 the RDFs from the interfacial state do not decay to 1 at large r. This is

due to the fact that 2/3 of the box is essentially devoid of particles, but the RDF is

normalized based on the volume of the whole simulation box. This has no effect on

the potential update scheme, as both the target and CG RDFs are normalized by the

same factor, which cancels out in Equation 5.4.

In addition to accurately capturing the RDFs, the multi-ensemble approach provides

an accurate estimate of the density at 305 K and 1 atm. NPT simulations performed

using the optimized CG force field find a density of 1.027± 0.006 g/mL, compared

to 1.037± 0.004 g/mL for TIP3P water, which was used to generate the target data.

This approach is successful because the RDFs will not match if the pressure-density

relationship is not satisfied, as the density is implicitly represented in Equation 5.4

through the RDF terms (i.e., the RDFs at the NPT state will not match the target

RDFs if the density is significantly different than the density of the target state). In

contrast, the original IBI method proposed the use of a pressure correction term of the

form ∆V (r) = A(1− r/rcut) to account for the pressure.23 This approach has been

successful, but requires a somewhat arbitrary estimate of the parameter A. While

a method exists for estimating A based on the virial expression,36 some degree of

trial-and-error is still necessary. Furthermore, the multi-ensemble approach within

MS IBI does not require direct calculation of the pressure, which often demonstrates

considerable fluctuations, providing a simpler route to account for pressure in the CG

model.

Calculation of the surface tension of the derived MS IBI potential yields a value
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Figure 6.3: RDFs and potentials from the MS IBI potential derivation. Top: NVT;
middle-top: NPT; middle-bottom: interface; bottom: potentials. The initial potential
shows significant structural correlations missing from the target data. The derived
potential at ten iterations shows excellent structural agreement with the target.

of 42 mN/m, lower than the original Chiu et al. potential (70.3 mN/m) which was

optimized to match experiment, but only slightly perturbed from the modified potential

(45 mN/m). This reduction in surface tension appears directly related to the softening

of the potential, although, we note that this softening is required to provide an accurate

match of the structure and that this value reasonably approximates the surface tension
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Figure 6.4: ffit from Equation 5.5 as a function of iteration in the pair potential
optimization. Convergence with the criterion is found after 10 iterations.

of the atomistic TIP3P model used as target data (52.3 mN/m) at 300 K.35

6.3.3 Validation and Comparison to Other Models

To further explore the efficacy of the MS IBI-derived model, the comparisons are

made to other CG water models in the literature, namely, the k-means based potential

of Hadley and McCabe21 derived via the single state (SS) IBI procedure (here referred

to as the SS IBI potential) and the MARTINI potential.18 These models were chosen

because they are short-ranged, non-polarizable, and 4:1 models. For reference, these

potentials are plotted in Figure 6.5. Note that the MS IBI and SS IBI potentials are

numerical (as they were derived via IBI), while the MARTINI potential is represented

by a 12-6 Lennard-Jones potential with a well depth of 1.195 kcal/mol located at a

separation of 5.276�A. Note that all of the potentials considered in this paper provide

a close estimate of the density of water at 1 atm and 305 K, as reported in Table 6.1.

Table 6.1: Density of water at 305 K, 1 atm calculated with different models.

Model Density (g/mL)

TIP3P 1.037 ± 0.004

MS IBI 1.027 ± 0.006

SS IBI 1.083 ± 0.008

MARTINI 1.015 ± 0.003

Chiu 0.991 ± 0.003
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Figure 6.5: Interaction potentials from the CG water models compared in this work.
The MS IBI and SS IBI potentials are numerical, derived with structure-based methods.
MARTINI is a Lennard-Jones 12-6 potential.

First considering the SS IBI potential, it can be seen that the well depth is

approximately 0.5 kcal/mol weaker than the MS IBI potential and shifted to larger

separations. While this has little impact on the density or the structural correlations

of the bulk states, simulations of droplets show that the interfacial properties are not

sufficiently captured. Specifically, as shown in Figure 6.6, simulations of atomistic

TIP3P, SS IBI, and MS IBI water were performed with interfaces. From these

simulations it can be seen that the SS IBI potential model fills the box, rather than

maintaining the interface. In contrast, the MS IBI model maintains a stable interface in

agreement with the atomistic model. Thus, while an exact match to the experimental

surface tension is not found for the MS IBI potential, as discussed above, it is still

sufficiently strong to maintain a clear interface, providing a significant improvement

over the SS IBI potential. We note that the difference between the SS IBI and MS

IBI potentials is likely related to the aforementioned issue whereby many potentials

can give rise to matching RDFs, and SS IBI provides no means to determine which

ones are most physical. This limitation is overcome by the use of the interfacial state

during during the MS IBI optimization.

It is also important that the potential is not so strong that the system can solidify
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Figure 6.6: Simulation snapshots of droplets using the various models discussed. Top:
all-atom TIP3P; middle: SS IBI; bottom: MS IBI. Atomistic and MS IBI models
agree, producing a system with a stable interface, whereas SS IBI does not form a
stable interface.

at physiological conditions. For example, the MARTINI water model is known to

spontaneously crystallize at physiologically relevant temperatures.18 This phenomenon

is enhanced by the presence of interfaces (e.g., a lipid bilayer surface), and requires

the addition of unphysical “antifreeze” particles to avoid crystallization. While we

note that modifications to the MARTINI water model exist (e.g., adding charge

polarization37,38), only the original MARTINI model was tested, since it more closely

resembles the model derived via MS IBI (i.e., both represent 4 water molecules as a

single, spherically symmetric interaction site). To test the crystallization tendency, a

nucleation site is generated with the following protocol. A crystalline state is generated

by running a simulation with the MS IBI potential in the NVT ensemble. During this

simulation, the temperature is decreased from 305 K to 1 K over 10 ns. A subsequent

CG simulation is run at 1000 K, where the middle-most 1/8th of the beads are kept

fixed, resulting in a configuration that contains a crystal seed surrounded by a fluid of

CG water beads. The beads in the crystal seed are kept fixed in the nucleation site
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simulations, with interactions identical to the fluid interactions. While neither model

shows a tendency to freeze at 305 K in the absence of a nucleation site over a 100 ns

simulation, the MARTINI model rapidly crystallizes in the presence of a nucleation

site, while the MS IBI potential remains fluid (see Figure 6.7). Note, for a direct

comparison with the MS IBI model derived here, antifreeze particles were not used

with the MARTINI model. To ensure that the MS IBI system is not an amorphous

solid structure, the ratio of the diffusion coefficients with and without a nucleation

site were calculated for each model from the slope of the mean-squared displacement.

As shown in Table 6.2, the diffusion coefficient of the MS IBI potential model remains

relatively unchanged when a nucleation site is added, whereas a significant drop is seen

for the MARTINI model resulting from the crystallization. Additionally, Figure 6.8

shows the RDF of the MARTINI model for the bulk NVT state as compared to

the 4:1 mapped target data. Clearly, the MARTINI potential does not accurately

capture the structural correlations of bulk water, further demonstrating the significant

improvement of the MS IBI model in reproducing key properties of water.

Figure 6.7: Configurations from simulations in the presence of a nucleation site with
the MARTINI (left) and MS IBI (right) models. CG water beads colored silver were
kept fixed during the simulations, but were treated as the same type as the blue
particles (i.e., the color is different to show the nucleation site).

We note that the self-diffusion coefficient of MS IBI water is calculated to be

16.07× 10−9 m2/s at 305 K and 1 atm, as compared to 3.05× 10−9 m2/s for the atom-

istic TIP3P water at the same conditions, both run for 5 ns. This factor of ∼ 5

difference is not entirely unexpected, given the softening of the free energy landscape
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Table 6.2: Ratio of diffusion coefficients from simulations with (Dnuc) and without
(Dbulk) a nucleation site with different potentials.

Model Dnuc/Dbulk

MS IBI 0.88

MARTINI 0.02

Figure 6.8: RDFs of the MARTINI model and the atomistic TIP3P model mapped to
the CG level for the bulk NVT state.

that often comes with CG models and the fact that kinetic data was not used in the

optimization. However, we also note that the dynamics of the CG model does not

bear a strong connection with the atomistic level behavior, given that each CG bead

represents 4 water molecules, but not necessarily the same water molecules through

time, due to the lack of permanent bonds between the waters being grouped together.

6.4 Conclusions

In this Chapter, the MS IBI method was used to derive the interactions for a 4:1

mapped CG water model, using a modified version of the Chiu et al., potential as

an initial guess. An improvement over previous models is made by simultaneously

matching the fluid structure to target data from bulk and interfacial states. It was

shown that a model that reproduces the structure and density of water does not

necessarily reproduce the interfacial properties and that the addition of a droplet
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target state constrains the potential to also capture the interfacial properties. The

resulting potential is able to accurately predict the density of water at 305 K and

1 atm, interfacial properties, and structural correlations. Additionally, the model

shows no tendency to spontaneously crystallize at physiological conditions. This is

important, since inaccuracies in a water model can propagate as more potentials are

derived against it when simulating mixed systems.

This work highlights a key advantage of deriving potentials via the MS IBI approach.

For simulations that cover multiple states, it is important to have a force field that is

accurate across the states of interest. MS IBI allows this to be achieved by including

target data from states that represent structures present in the states of interest.

This is realized here by including a multi-ensemble state to accurately model the

pressure-density relationship, and a droplet state to capture the interfacial properties

of water. Another case where this would be beneficial is studying systems over multiple

phases, e.g., phase transitions in liquid crystals. While clever approaches are taken

to capture behavior across multiple states,39 a more systematic approach would be

useful. Based on the results presented here, we foresee this method being useful for

deriving CG potentials for a wide range of applications.
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CHAPTER 7

DEVELOPMENT OF A COARSE-GRAINED MODEL OF CERAMIDE NS AND

FFA

This Chapter is reproduced in part from Moore et al. 2016.1

7.1 Introduction

The stratum corneum (SC) is the outermost layer of the skin, and serves as the

barrier between the internal and external environments of the body, preventing, among

other things, rapid dehydration and pathogen invasion.2 In addition to cholesterol

and free fatty acids (FFAs), several different ceramides (CERs) comprise the lipid

matrix of the SC.3 To date, 15 subclasses of CER have been identified in human skin

that differ in headgroup and acyl tail structure.4 Of these, nonhydroxy-sphingosine

ceramide (CER NS, Figure 7.1) is the most abundant in healthy human skin.5

Despite knowledge of the lipid composition in human SC, the connection between

lipid composition, structure, and barrier function remains unclear.6,7 Understanding

these connections is essential for developing effective models of skin for use in toxicology

assessment and transdermal drug delivery development, as well as for developing

effective treatments for skin diseases.7,8 Molecular simulation studies of SC lipid

systems could allow the connections between lipid composition, structure, and barrier

function to be probed, as simulation enables direct visualization of and explicit control

over the molecular species in the system. For example, molecular simulations have been

used extensively to better understand the structure, phase behavior, thermodynamics,

and transmembrane permeability of phospholipid-based bilayer systems.9–14 However,

CER-based bilayers have not been as widely studied as phospholipid-based systems,

primarily because of the more complex nature of the lipid organization15–17 and a
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lack of accurate atomistic force fields, which was recently addressed.18 The limited

atomistic (i.e., all-atom and united-atom) simulations that have been performed of

CER bilayer structures have provided some insight into the lipid interactions,18–22 e.g.,

demonstrating strong connections between the phase transition temperature, CER

headgroup structure, and lipid–lipid hydrogen bonding.18 However, the dense gel and

crystalline packings found in CER-rich phases23–27 significantly reduce lipid mobility

as compared to the liquid-crystalline phases typical of biological phospholipid-based

bilayers under physiological conditions, resulting in the need for careful equilibration

protocols and long equilibration times.20,28,29 As such, the time and length scales on

which certain phenomena occur (e.g., phase-separation, self-assembly) are limiting

for all-atom models. Furthermore, bilayer structures consisting of a small number

of components are highly simplified models of SC lipid lamellae; to study mixtures

relevant to the multicomponent SC that form multilamellar structures, large system

sizes must be employed, further increasing the computational cost.

Coarse-grained (CG) molecular models, where groups of atoms are treated as single

interaction sites (CG beads), provide an attractive alternative to atomistic models.

CG models typically require several orders of magnitude less computational cost to

access the same time scale as the corresponding atomistic model, due to the simplified

representation of the system. This simplification results in fewer pair interactions,

allows implicit treatment of long-ranged electrostatics, and generally softens the energy

landscape, allowing a larger time step of integration. Combined, these properties

allow CG models to access the long time scales needed to form equilibrium phases

via self-assembly and probe the large system sizes needed to represent the SC lipid

mixture. CG models have proven effective for the study of various lipid systems,30–32

including studies that examine the self-assembly of other lipids important to the

skin barrier.33 Recently, Sovová et al. proposed a CG model of CER NS, which has

been the most studied CER via all-atom molecular simulation.18–21,34 This model
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predicts stable lamellar structures as expected of CER conformations in the SC,35

and is advantageous in that it is compatible with the popular MARTINI force field;

however since it was not derived to match CER structure, the model fails to accurately

capture key structural properties of pure CER NS bilayers, overestimating the area

per lipid by ∼20% and substantially underestimating the tilt angle as compared

to experimental and all-atom simulation results (i.e., no tilt is observed with this

model).18,21,35 Furthermore, the CG mapping used in this model (i.e., how the atoms

are grouped into CG beads) lacks directional headgroup interactions that have been

shown to influence the properties of CER systems,18,36,37 overall making the CG model

more representative of a generic lipid rather than CER NS, and thus of limited utility

for accurately probing the behavior of systems representative of the SC.

In this chapter, a CG mapping and a force field for CER NS are derived to

match structural properties calculated from all-atom simulations. The CER NS model

proposed herein provides a more explicit treatment of hydroxyl groups than in the

MARTINI-compatible CG CER model of Sovová et al.,35 allowing the model to

capture directional headgroup interactions that exist between lipids due to hydrogen

bonding.18,38–40 As CERs and FFAs contain identical tails (i.e., long alkyl chains),

a CG FFA model is developed in parallel, using the same tail beads for CER and

FFA. The recently developed multistate iterative Boltzmann inversion (MS IBI)41

scheme is used to optimize these CG force fields. While potentials derived with the

original IBI scheme generally reproduce target RDFs with a high degree of accuracy,

they often show limited transferability to other states,42,43 due to the single state

nature of the scheme. They may also demonstrate significant artifacts associated with

structural correlations between beads (e.g., potential wells and barriers associated

with RDF peaks and valleys), and hence can be unrepresentative of the underlying

potential landscape.41 The MS IBI algorithm was developed to address these issues;

specifically, the multistate nature of the method provides additional constraints to the
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optimization, reducing structural artifacts, and yields potentials that are more generally

applicable than those derived from the original (i.e., single state) IBI method,41,44

as is required for simulations that span multiple state points, such as simulations

of lipid self-assembly. The structural properties and self-assembly of CER systems

are studied using the derived CG model and compared to all-atom and experimental

measurements, demonstrating close agreement and providing validation of the model.

7.2 Models and Methods

Deriving CG potentials via MS IBI involves several general steps. First, all-atom

simulations are performed at various state points that are chosen to emphasize the

different behaviors the CG model should reproduce. For example, for CERs, isotropic

fluid and ordered lamellar states are included, which are both relevant for self-assembly.

The all-atom trajectories are then used to create corresponding CG trajectories by

mapping the all-atom trajectories to the CG level using a CG mapping operator that

defines how the atoms are grouped into CG beads. Next, the CG trajectories mapped

from the all-atom simulations are used to generate target data in the form of pair

radial distribution functions (RDFs) for each pair type at each state. The MS IBI

algorithm is then employed to iteratively derive the CG force field, such that the

RDFs from the CG simulations match the target RDFs mapped from the all-atom

simulations. As a last step, individual pair interactions in the force fields are refined

to reproduce the correct balance between hydrophobic and hydrophilic interactions

via simulated wetting experiments. The methodologies used in each of these steps are

discussed in detail below.

7.2.1 Atomistic Simulations

All-atom simulations were performed with the fully atomistic CHARMM36 force

field,45 employing the TIP3P water model46 and CHARMM-compatible headgroup
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parameters for CERs, which were derived and validated in previous work.18 All

atomistic simulations were performed using the LAMMPS simulation engine,47,48 with

a van der Waals interaction cutoff of 12�A; the PPPM solver with a real space cutoff of

12�A was used for the calculation of the long-ranged electrostatic interactions.49 A time

step of 1.0 fs was used with the Nosé-Hoover thermostat in the canonical ensemble

(i.e., NVT, constant number of molecules, volume and temperature) and an additional

barostat for simulations in the isothermal isobaric ensemble.50 For NPT simulations,

isotropic pressure control was used for bulk fluid states, while anisotropic pressure

control was used for bilayer states, allowing the aspect ratio of the box to change.

All-atom simulations used for gathering target data were run for 10 ns after sufficient

equilibration with the trajectory written every 100 ps. A list of all the states used is

given in Table 7.1, and the weights given to each state are listed in the Table 7.2; the

rationale for the choice of the specific states is discussed in Section 7.3. Note that FFA

C24:0 corresponds to a fully saturated FFA with a length of 24 carbons. CER NS

C16 corresponds to CER NS with an acyl tail containing 16 carbons and is therefore

of roughly equal length to the sphingosine tail. Similarly, CER NS C24 corresponds

to a CER NS molecule with a longer acyl tail of 24 carbons (as in Figure 7.1a).

Bulk fluid simulations (both FFA and CER were initialized by placing lipids on a

6× 6× 6 cubic lattice in a large simulation box to create a gas of 216 molecules. To

randomize the lipids and distribute them evenly throughout the box, NVT simulations

were performed for 5 ns at 1300 K. the box volume was then isotropically reduced to

achieve the target density over 5 ns, which was found to be sufficient for the potential

energy to converge, followed by 10 ns of simulation over which target data was collected;

this was performed in either the NVT or NPT ensemble, depending on the state point

of interest. The mixed FFA-water systems were initialized in the same manner; these

systems contained 6480 water molecules and the appropriate number of lipids for the

given concentration. The same approach was also used for the CER headgroups in
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Table 7.1: Target states used for MS IBI optimizations. The states used to optimize
each interaction are described in the text and given in Table 7.2. State condition
specifies the ensemble—states with a pressure listed were simulated in the NPT
ensemble; states with a density listed were simulated in the NVT ensemble. The
dehydrated bilayer values are the area per lipid and the thickness (i.e., the length of
the simulation box normal to the bilayer plane since water is absent in this simulation).

Name State condition Temperature, K Label for Table 7.2

Pure FFA C24:0

Bulk fluid 1.0 atm 500 FFA1

Bulk fluid 0.811 g/mL 800 FFA2

Monolayer 30.0�A2
/chain 305 MONO

FFA–water

0.4 mol % FFA 1.0 atm 305 W–FFA1

0.5 mol % FFA 1.0 atm 305 W–FFA2

0.85 mol % FFA 1.0 atm 305 W–FFA3

Pure CER NS

Bulk fluid 1.0 atm 500 CER1

Bulk fluid 0.721 g/mL 500 CER2

Dehydrated bilayer 1.0 atm 305 DEH-BIL-NPT

Dehydrated bilayer 39.96�A2
, 57.18�A 305 DEH-BIL-NVT

CER NS–water

Bilayer 1.0 atm 305 BIL-NPT

Bilayer 40.0�A2
305 BIL-NVT

CER headgroups 1.0 atm 400 W–CERHEADs
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Table 7.2: States used to optimize each pair potential and the weight αs,0 given to
each state. Pairs are denoted by bold text, with the states used to optimize a given
(set of) interaction(s) listed below the interaction name. The state condition names
correspond to the label given in Table 7.1. To illustrate the dependence of the chosen
weights on the force field, an additional optimization of the lipid–lipid self-interaction
potentials was performed, where relatively higher weights were given to the bulk fluid
states, given as αs,0(high bulk). Note that lipid–water interactions were not optimized
with αs,0(high bulk).

States used αs,0 αs,0(high bulk)

TER2–TER2, TER2–TAIL, TER2–FHEAD,

TAIL–FHEAD, FHEAD–FHEAD

FFA1 + FFA2 0.1 0.8

TAIL–TAIL

FFA1 + FFA2 0.1 0.8

MONO 0.4 0.1

DEH-BILs 0.8 0.1

CERHEADs–CERHEADs

CER1 + CER2 0.1 0.8

DEH-BILs 0.8 0.1

CERHEADs–TAILs

CER1 + CER2 0.1 0.8

FHEAD–WATER + TAILs–WATER

W–FFA[1–3] 0.3 —

CERHEADs–WATER

BILs + W–CERHEADs 0.3 —
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Figure 7.1: CER NS structure and CG mappings used in this work: (a) molecular
structure of CER NS C24, where C24 gives the length of the CER acyl chain; (b)
FFA mapping showing head (FHEAD), 3:1 tail beads (TAIL), and 2:1 terminal bead
(TER2) as applied to C12:0; (c) four-site CER headgroup mapping proposed in this
work; (d) three-site CER headgroup mapping. All beads interact through spherically
symmetric pair potentials, even if drawn as irregular shapes. Note that beads are not
drawn to scale but rather to emphasize the mapping and connectivity.

water, which contained 4000 water molecules and 728 CER headgroups.

Atomistic gel-phase CER NS bilayers were initialized and equilibrated in the same

manner as in previous work.18 Specifically, initial configurations were generated by

placing lipids on a 10× 10 square lattice to create a leaflet. the leaflet was then

replicated an inverted to create a bilayer and the bilayer solvated with 50 water

molecules per lipid. A short energy minimization was performed to remove any

high-energy atomic overlaps, followed by 30 ps simulation in the NVT ensemble at

305 K and 1.0 atm in the anisotropic NPT ensemble and the final 10 ns used to collect

target data; we note that, since large oscillations in potential energy and area per

lipid were not observed over the 100 ns of simulation, 10 ns is sufficient for collecting

data on a property such as the RDF. Furthermore, previous work18 has shown that
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the structural properties of CER NS bilayer systems simulated for 100 ns at 305 K

agree well with those from systems slowly cooled from just below the order–disorder

transition, providing confidence that our systems are adequately equilibrated with this

procedure. Dehydrated bilayer systems were initialized from the final configuration

of the hydrated bilayer simulation, and simulated for an additional 40 ns to ensure

convergence of the potential energy and area per lipid, with target data collected from

the final 10 ns.

7.2.2 CG Simulations

All CG simulations utilized the HOOMD-Blue simulation engine.51,52 Integration

of the equations of motion follows Martyna–Tobias–Klein50 for both NPT and NVT

simulations. All CG simulations employed a nonbonded potential cutoff of 12�A. Since

CG beads are treated as electroneutral, no treatment of long-ranged electrostatics

was needed. In all cases, a time step of 10 fs was used. Unless otherwise noted, the

initial configuration of the CG simulation was the final configuration from the all-atom

simulation, mapped to the CG level. For bulk fluid systems, this configuration was

replicated twice in each direction so that the CG bulk fluid systems contained 8 times

more molecules than the corresponding atomistic systems. For lamellar states, this

configuration was replicated twice in each direction in the lamellar plane so that CG

lamellar systems contained 4 times more molecules than the corresponding atomistic

systems.

7.2.3 CG Mappings

The CG mappings used for the lipids studied in this work are shown in Figure 7.1.

The position of each CG bead is taken to be the center of mass of the atoms represented

by the bead, with the mass of the CG bead defined to be the mass of the atoms

it represents. The mapping for FFA is shown in Figure 7.1b. The carboxylic acid

headgroup atoms are naturally mapped to a single CG bead (FHEAD), with the lipid
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tail described by “TAIL” beads that represent three methyl groups and a TER2 bead

to describe the terminal two methyl groups when necessary, e.g., in FFA C12:0, as

shown in Figure 7.1b. Henceforth, the TAIL and TER2 beads in the FFA chain are

collectively referred to as TAILs. Note that this mapping closely resembles that of

Hadley and McCabe,53 with the exception of using a 3:1 rather than a 4:1 mapping

for the tail beads.

A four-site mapping for the CER headgroups is used, as shown in Figure 7.1c. An

“AMIDE” bead maps the amide group; and “MHEAD2” bead maps the C1, C2, and C3

carbons (and their associated hydrogens) of the sphingosine tail (note that the name

“MHEAD” is reserved for the middle headgroup bead in the three-site model, discussed

below); an “OH1” bead maps the hydroxyl group on C1 of the sphingosine chain; and

an “OH2” bead maps the hydroxyl group on C3 of the sphingosine chain. This CG

mapping treats the hydroxyl groups explicitly to account for the strong directional

interactions between the CER headgroups (i.e., hydrogen bonding). Additionally, this

mapping scheme provides a simple route for extension to CER species with different

headgroups, since the AMIDE and MHEAD2 beads are common to all CER subclasses.

We refer to the beads in the CER headgroup collectively as CERHEADs. This mapping

uses the same tail mappings as the FFAs, and as such, TAIL beads in CER and FFA

are described by the same interaction potentials. Note, while optimizations use CER

NS C24 (see Figure 7.1a), the validation studies performed also include CER NS C16.

A three-site CER headgroup mapping was also investigated, as shown in Figure 7.1d

to demonstrate the importance of the explicit treatment of hydroxyl groups. Here,

the effect of the hydroxyl groups is treated implicitly within the backbone structure,

rather than being explicitly modeled as separate groups, and as such is similar to

the MARTINI CER mapping of Sovová et al.35 The tails are treated the same as in

the four-site CER headgroup model, using the same mappings and force field for the

TAILs as in the FFA.
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In CG simulations where water is present, a 4:1 k -means mapped CG water model44

was used that was developed by following the work of Hadley and McCabe in which

waters are dynamically assigned to CG beads.54 A dynamic mapping is necessary for

water because a 4:1 mapping means atoms mapped to a common bead are necessarily

parts of different molecules, and these molecules will not remain associated throughout

the course of a simulation due to molecular diffusion. Thus, to map atomistic water

to the CG level, a new mapping is effectively defined for each frame of the atomistic

trajectory, with clusters of four molecules mapped to a single bead. The location

of the center of mass of these beads is then used when calculating RDFs involving

CG water. Since the original version of the water model was only optimized for bulk

properties, it was recently reparameterized to also capture interfacial behavior.44 As

detailed in Chapter 6, the CG water model was optimized against TIP3P all-atom

simulations (that is, the same water model used in the all-atom lipid simulations)

using both bulk and interfacial properties of water as target states, with the resulting

force field accurately capturing structure, density, and droplet stability at 305 K and

1 atm.44

7.2.4 CG Force Field Derivation

The force field developed here consists of CG beads interacting through bonded and

nonbonded potentials. These interactions are treated independently of one another,

and are therefore derived separately.

The bonded interactions were derived from bond/angle distributions calculated

from all-atom simulations. CG beads in a given molecule are considered bonded

if they occur sequentially (i.e., if they each contain an atom that shares a bond

in the all-atom model). Additionally, any three consecutively bonded CG beads

interact through an angle-bending potential. No torsional or dihedral interactions

were included in the models. Instead, beads separated by three or more bonds interact
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only through nonbonded pair potentials, whereas the nonbonded pair potential is

excluded from beads separated by two or fewer bonds. As in previous work,53,55 bonded

interactions are determined from probability distributions following the approach of

Milano et al.56 Bond and angle interactions were modeled as harmonic springs, with

equilibrium values and spring constants derived from the distributions sampled in the

fluid-state atomistic simulations mapped to the CG level. After mapping the atomistic

trajectories to the CG level, a normalized Gaussian distribution p(r) was fitted to the

sampled distribution for each bond/angle type. A Boltzmann inversion of a Gaussian

distribution yields a harmonic potential of the form

V (r) = −kBT ln (p) = Kr(r − r0)2,

where kB is the Boltzmann constant, T is the absolute temperature, Kr is the spring

constant determining the stiffness of the harmonic spring, r is the separation, and r0

is the equilibrium separation. This procedure was performed for each bond/angle type

at each state, and average Kr and r0 for each bond/angle type are given in Table 7.3.

Nonbonded interactions were iteratively optimized via MS IBI to match target

RDFs. In MS IBI, the nonbonded CG pair potential Vi(r) is iteratively updated on the

basis of deviations between RDFs from the CG-mapped all-atom (AA) simulations,

gAA
s (r), and the RDFs from a CG simulation, g

(i)
s (r), using Vi(r) at state s. The pair

potential is updated according to the sum of the differences between the Boltzmann-

inverted target and CG RDFs at different state points according to

V
(i+1)

CG (r) = V
(i)

CG(r)−N−1
states

∑
s

αs(r)kBTs ln

[
g

(target)
s (r)

g
(i)
s (r)

]
,

where αs(r) is a scaling factor to prevent large updates, and to place emphasis on

certain parts of the potential; kB is the Boltzmann constant; and Ts is the temperature

of state s; Nstates is the number of target states used in the optimization. Note that
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Table 7.3: Bond and angle parameters for the 4-site CG model. For bonds, x0 is
the equilibrium bond length in �A and kx is the harmonic bond stretching constant

in kcal/(mol�A2
). For angles, x0 is the equilibrium bond angle in deg and kx is the

harmonic angle bending constant in kcal/(mol rad2). *Angles treated the same as
TAIL–TAIL–TAIL because the sampled distributions from the AA simulations were
very similar to the TAIL–TAIL–TAIL distribution.

Name x0 kx

Bonds

TER2–TAIL 3.41 35.576

TAIL–TAIL 3.92 20.928

TAIL–FHEAD 3.28 24.296

TAIL–AMIDE 3.01 103.857

AMIDE–MHEAD2 2.92 190.045

MHEAD2–TAIL 3.62 27.575

MHEAD2–OH1 2.33 45.307

MHEAD2–OH2 2.07 151.987

Angles

TER2–TAIL–TAIL 155.0 7.93

TAIL–TAIL–TAIL 158.0 6.33

TAIL–TAIL–FHEAD 148.0 6.33

TAIL–TAIL–AMIDE* 158.0 6.33

MHEAD2–AMIDE–TAIL 106.0 29.00

AMIDE–MHEAD2–TAIL 107.0 5.29

TAIL–TAIL–MHEAD2* 150.0 6.33

AMIDE–MHEAD2–OH1 109.0 8.39

AMIDE–MHEAD2–OH2 105.0 10.76

TAIL–MHEAD2–OH1 128.0 5.67

TAIL–MHEAD2–OH2 69.0 361.77

OH1–MHEAD2–OH2 115.0 12.22
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this expression reduces to the original IBI algorithm for a single state point. Following

previous work,41 αs(r) was chosen to be a linear function of the form

αs(r) = αs,0

(
1− r

rrcut

)
,

where αs,0 is the value at r = 0 and determines the maximum weight given to a

particular state. This form places more emphasis at smaller separations, and ensures

that the potential remains 0 at the cutoff. This allows short-range interactions to

be optimized first and to see their effect on long-range behavior, before longer range

updates to the potentials are made, which helps to suppress structural artifacts in

the force field that may arise due to intermediate and long-range ordering in the

system. We also note that, while it could be argued that making smaller updates

to the potential at larger separations may lead to thermodynamic inconsistencies in

the model, the potentials developed through the MS IBI approach are not only able

to match the target RDFs but also satisfy the thermodynamic relationship between

density and pressure (including related properties such as area per lipid). Rather than

applying a pressure correction as in the original IBI method, CG models derived via

MS IBI use a combination of NVT and NPT state points during the optimization.

The RDFs are not likely to match if the pair potential predicts the wrong density,

since the RDF is normalized by the density; thus, NPT states can be used to account

for the pressure, as was shown in the derivation of the CG water force field.44

The pair potential is iteratively updated until some stopping criteria is met. Here,

the value of the fitness function

ffit(i) = 1−
∑rcut

r=0|g(i)(r)− g(target)(r)|∑rcut
r=0[g(i)(r) + g(target)(r)]

.

was used to determine the stopping criteria. The optimizations were terminated when

|ffit(i)−ffit(i−1)| < 0.01 for each pair being optimized (i.e., when the fitness function
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became stable for each pair in the optimization). It is worth noting that MS IBI, like

the original IBI method, yields numerical force fields that are not constrained to a

functional form, thus allowing increased flexibility that is not available when fitting to

an analytical form.

Optimizations for particular pairs of interactions were performed successively.

This was done for two reasons: (1) to reduce the number of interactions being

simultaneously optimized during any single MS IBI optimization and (2) to simplify

the force field development by allowing pairs to be optimized from simulations of pure

systems (e.g., pure CER) or single component hydrated systems where necessary (e.g.,

CER–WATER). The general order of the optimizations was to first optimize the lipid–

lipid self-interactions and then, using those self-interactions, derive the lipid–water

interactions for each lipid species. The lipid–lipid cross-interactions (e.g., FFA-CER)

were not derived in this work, since the focus is on the study of self-assembled CER

structures; the cross-interactions are presented in Chapter 8. Validation for each set of

potentials was performed before using those potentials top optimize other interactions.

For example, the TAIL–TAIL validation was performed before the TAIL–WATER

potential was derived.

Seven distinct targets were used to optimize the FFA and CER nonbonded lipid

self-interactions to capture a range of behaviors, including bulk fluid states (both

FFA and CER), as well as an FFA monolayer and dehydrated CER bilayers. Target

data from three different concentrations of FFA in water were used to optimize

the TAILs–WATER interactions, and two distinct states were used to optimize the

CERHEADs–WATER interactions, including hydrated CER NS C24 bilayers and CER

NS headgroups solvated in water. Optimizations in both the NVT and NPT ensembles

were carried out for select targets to ensure that the force field can reproduce the

correct density in constant pressure simulations at 1 atm, as previously discussed.

Note that not all pair potentials were optimized at all states. Instead, pair potentials
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were optimized at select states to capture specific behaviors. A complete list of the

states used to optimize each pair potential is given in Table 7.1. Additionally, the

weight given to each state is listed in Table 7.2. The weights were chosen to place

more emphasis on the lamellar states; that is, relatively higher weights were given to

the monolayer and dehydrated bilayer states, since the ultimate goal of the force field

is accurate modeling of lamellar structures present in stratum corneum. The relative

values were chosen on the basis of heuristics developed in this Chapter and Chapter 5.

MS IBI calculations were carried out using the open source msibi Python library,57

which also makes use of the MDTraj Python library.58,59 The optimized nonbonded

interaction potentials are available via http://github.com/iModels/sc-ff.

7.2.5 Analysis

Several structural properties were used to characterize the ordered bilayer and

multilamellar systems, including the area per lipid (APL), bilayer thickness, nematic

order parameter (S2), and tilt angle (θ) of the lipid tails. The hydrophobicity of

a surface was characterized by calculating the contact angle (ϕ) of a droplet that

forms on the surface. A more detailed explanation of these calculations is provided in

Appendix A.

7.3 Results

As mentioned above, the lipid–lipid self-interactions were derived first, followed

by the lipid–water interactions. Even though the primary goal here is to derive a

CG force field for CER NS, we note that the force field for FFA, also relevant to

the SC, is simultaneously derived. Both CER and FFA contain the same tails beads;

however, the headgroups of FFA molecules interact less strongly than the headgroups

of the CER molecules. As such, inclusion of FFA target states alongside CERs helps

to lessen the influence of the strong CER headgroup interactions when optimizing
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potentials involving the TAILs beads.

7.3.1 Pure CER

TAIL–TAIL Dehydrated CER bilayers (305 K, NPT and NVT) and FFA monolayer

(305 K) were used in the TAIL bead optimizations to ensure the force field is able to

capture the behavior of ordered lamellar structures. While an ordered structure is

clearly an important target for capturing the SC bilayer structure, bulk FFA fluid

states in both the NVT (800 K, 0.811 g/mL) and NPT (500 K, 1 atm) ensembles are

also used to capture the behavior of disordered states expected prior to self-assembly.

The inclusion of fluid states is also found to help decrease the level of structural

artifacts in the force field that arise from the intermediate and long-ranged structural

correlations found in the ordered phases, and thus ensures a better quality force field.41

Note that elevated temperatures were required to induce fluid phases at the density

or pressure of interest. Also, due to periodic boundary conditions, the dehydrated

bilayer is effectively an infinitely periodic multilamellar system.

Figure 7.2 shows the TAIL–TAIL RDFs for the FFA monolayer state and bulk

FFA NPT state, comparing the target and optimized RDFs for each; the optimized

pair potential is also shown. Considering the monolayer state, the CG model captures

the main RDF peak locations and heights, although some of the smaller-scale features

are missed, likely due to the spherical symmetry of the CG potential. The in-plane

density of this monolayer system closely compares with the density of the chains

commonly found for CERs in a bilayer arrangement. Thus, this system provides a

close approximation to the tail ordering found in the CER NS system. Note that this

RDF does not decay to unity as the monolayer only fills a small region of the box,

resulting in a system density that is lower than the local monolayer density, scaling

the value of the RDF; however, this does not impact the optimization as the CG

RDFs are normalized by the same factor. Satisfactory agreement is found for the
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bulk NPT state, where the CG model correctly predicts the presence of a fluid phase

and accurately predicts the density at 1 atm, with ρCG = 0.68± 0.05 g/mL, which

compares well with ρAA = 0.69± 0.01 g/mL. However, we note that the peaks in the

CG RDF appear to be shifted to smaller separations by ∼0.5�A. As the main focus of

the force field development is to develop a model that accurately represents lamellar

structures of the lipids in the SC, we consider such small deviations in the fluid state

acceptable. We emphasize that, via MS IBI, a single CG pair potential is optimized

that is capable of modeling both ordered and fluid-like states; prior efforts to use the

standard IBI methodology to generate CG models of FFA required different force

fields to capture different structural configurations, even though the CG mappings

not change here.53
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Figure 7.2: RDFs and pair potential from the potential optimization for the interactions
between TAIL beads. Top, target (black) and CG (red) RDFs from the FFA monolayer
state; middle, target (black) and CG (red) RDFs from the FFA bulk fluid NPT state
(500 K, 1 atm); bottom, the final potential used to calculate the CG RDFs above.

As further evaluation of the TAIL–TAIL interaction, structural properties of
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the CG FFA monolayer were also compared to results form atomistic simulations,

since a matching TAIL–TAIL RDF does not guarantee that characteristic monolayer

properties will also match. Well-ordered monolayers were observed in simulations of

each model, with nematic order parameters S2,CG = 0.97 and S2,AA = 0.90 and tilt

angles θCG = 40± 5° and θAA = 30± 10°. We note that the CG force field predicts

a slightly increased level of ordering and increased tilt, although the differences in

tilt angle are fully captured by the standard error of the two measurements, thus

providing further validation of the pair potentials between TAILs beads.

CER Headgroups The CG pair potentials between the four beads of the CER

headgroup (collectively referred to as CERHEADs) are derived from both NVT and

NPT ensemble simulations of dehydrated bilayers (305 K) and isotropic fluids of

CER NS (500 K, 1.0 atm; 500 K, 0.721 g/mL), where, similar to the fluid FFA states,

elevated temperatures were required to induce a fluid state. We note that, while many

prior simulations of CERs have focused on hydrated bilayers, the use of dehydrated

lamellae removes the influence of the strong interactions with water and is more

representative of the SC lamellae in vivo. Interactions with water are considered

separately.

In the atomistic dehydrated CER NS bilayer, in-plane hydrogen bonding is most

prevalent between atoms in the groups AMIDE–OH1, OH1–OH2, and AMIDE–OH2,

as reported in Table 7.4. The RDFs for these pairs are shown in Figure 7.3. The

target AMIDE–OH1 RDF from the dehydrated bilayer state, shown in Figure 7.3,

shows a high, sharp peak at ∼3.5�A as a result of the significant hydrogen bonding

capacity between atoms in these groups. The CG potential captures this peak and the

weaker second peak in height and separation, indicating that the headgroup packing

is correctly captured with the CG model. The fluid-phase CG AMIDE–OH1 RDF

also agrees well with the target RDF, capturing the location of the first peak and

th longer-ranged portion of the RDF (r > 7.5�A) but missing some features in the
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range 4.5�A < r < 7.5�A. Since the primary goal of this CG force field is an accurate

structural representation of lamellar structures relevant to the SC lipid matrix, a

higher weight was given to the dehydrated bilayer state, and thus again, this small

deviation in the fluid-phase behavior is considered acceptable.
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Figure 7.3: RDFs and final derived pair potential between various CERHEAD–
CERHEAD beads. Each column corresponds to a particular pair interaction, given at
the top of the column. Top row: target (black) and CG (red) RDFs for each pair in
the dehydrated NPT bilayer state; middle row, target (black) and CG (red) RDFs for
each pair in the bulk NPT fluid pure CER NS state (500 K, 1 atm); bottom row, final
derived potential used to calculate the CG RDFs in that column.

As shown in Figure 7.3, the atomistic and CG OH1–OH2 dehydrated bilayer RDFs

agree very well, with the three peaks captured in both height and location in the CG

simulation. This result indicates that the CG model correctly reproduces the in-plane

ordering of the CER headgroups in the dehydrated bilayer. The sharp first peak in the

dehydrated bilayer target RDF is a result of the large number of hydrogen bonds that

form between atoms in these groups, which we note is reproduced by the CG model.

The CG force field also accurately reproduces the fluid RDF, which is expected given
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Table 7.4: Summary of the in-plane hydrogen bonding in the atomistic dehydrated
CER NS C24 bilayer mapped to the CG level. Note that the acceptor-donor pairs are
the CG beads and that a hydrogen bond is considered to exist between CG beads if
there is a hydrogen bond between atoms represented by the CG beads. Uncertainties
are estimated based on the standard deviation.

Pair Hydrogen bonds per lipid

OH1–AMIDE 0.20± 0.04

OH1–OH2 0.15± 0.05

OH2–AMIDE 0.10± 0.02

OH1–OH1 0.03± 0.01

OH2–OH2 0.020± 0.001

AMIDE–AMIDE 0.017± 0.006

the similarity between the fluid and dehydrated bilayer OH1–OH2 RDFs. Similarly,

the target and CG dehydrated bilayer AMIDE–OH2 RDFs agree with a high level of

accuracy, as shown in Figure 7.3. Several hydrogen bonds are also formed between

atoms in these groups, which is manifested in the high peak in the dehydrated bilayer

RDF at 3.5�A. This peak is accurately captured in the CG simulation, again further

indicating the in-plane packing of the CER headgroups in the dehydrated bilayer

RDF is captured in the CG model. The CG model captures the general features of

the bulk fluid phase, although quantitative agreement is not seen of the peak height;

again, since the primary focus is on the ordered phase, this deviation is considered

acceptable.

In general, a good fit is found for all remaining RDFs at all states (see Appendix C),

although it is worth noting that interactions involving the AMIDE bead tend to

not reproduce the first peak in the fluid phase RDFs as accurately as seen in the

other interactions. Whereas the other CERHEADs beads contain one or fewer polar

groups, the AMIDE bead contains two polar groups, resulting in a high degree of

shape anisotropy in the underlying interactions that is not easily accounted for by a

spherically symmetric potential. Although this problem is not unique to MS IBI,43,60 it
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becomes more evident when using a multistate coarse-graining methodology, in which

the derived potential must find the best compromise between the fluid structure at the

different target states, as dictated by the weight given to each target state. Although

the weights clearly have an influence on the fit, when an additional optimization

was performed in which higher weights were given to the bulk fluid states (listed as

αs,0(high bulk) in Table 7.2), as expected the fluid phase CG RDFs containing an

AMIDE bead showed good agreement with the atomistic RDFs, at the expense of

accurate fits in the bilayer states (e.g., see Figure 7.4). Again, since the primary focus

is quantitative agreement in the ordered phases, higher weight was given to those state

points as compared to the bulk fluids, and thus, the small quantitative deviations in

the bulk fluid properties are considered acceptable. Additionally, we note that the

density of the pure CER NS bulk fluid NPT state calculated with the CG model,

0.69± 0.03 g/mL, only deviates from the atomistic value of 0.71± 0.01 g/mL by 4%.

Compared to the four-site model, relatively poor fits are observed for the ordered

lamellar phases, as the CG models do not appear to capture the long-range in-plane

structure, although we note bulk fluid properties are captured with similar accuracy

to the four-site model. RDFs and potentials for the three-bead headgroup CER NS

model are provided in Figures C.12 to C.17 of Appendix C.

Pure CER Validation As validation of the CG CER interactions beyond RDFs,

the structural properties of dehydrated CER NS C24 bilayers simulated using the

CG model are compared to those calculated from simulations of the all-atom (AA)

model. Table 7.5 summarizes the properties of the dry bilayer calculated with

each model in the anisotropic NPT ensemble. The use of this ensemble allows

the lengths of the orthogonal simulation box to change independently, allowing for a

less biased comparison of the different models, as systems start from preassembled

bilayer configurations.

Overall, the CG force field provides accurate predictions of the key structural
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Figure 7.4: AMIDE–AMIDE RDFs and pair potentials from different optimizations
to illustrate the effect of the relative weighting factors given to each state. Left:
weights listed as αs,0(high bulk) in Table 7.2; right: weights listed as αs,0 in Table 7.2.
From top to bottom: dehydrated NPT bilayer RDFs; dehydrated NVT bilayer RDFs;
isotropic NVT fluid RDFs; isotropic NPT fluid RDFs; final derived pair potential.

features of the dehydrated CER bilayer. Only minor variations in APL and S2 are

found between the CG and atomistic simulations, with the CG simulations producing

a slightly more compact bilayer (i.e., smaller thickness) than the atomistic simulations.

The tilt angle is slightly underpredicted in the CG simulations but is within the error

of the atomistic system measurement. When comparing the volume per lipid (VPL)

of the bilayers, only minor variations of the ratio of the CG to atomistic results is
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Table 7.5: Structural properties of dehydrated CER NS C24 bilayers simulated with
CHARMM36-CER all-atom (AA) and the CG models derived here. The four-site
model corresponds to Figure 7.1c, while the three-site model corresponds to Figure 7.1d.
Uncertainties are estimated based on the standard deviation.

Model APL (�A2
) S2 Thickness (�A) θ (deg)

AA 40.0± 0.1 0.983 57.1± 0.1 12± 5

Four-site CG 41.90± 0.07 0.976 55.44± 0.07 7± 1

Three-site CG 48.99± 0.07 0.956 58.31± 0.08 9.5± 0.5

observed, with VPLCG/VPLAA = 1.02. As such, we can conclude that the CG CER

force field accurately captures the structure and density of the dehydrated bilayer

phase of CER NS. Table 7.5 also shows the properties of the dehydrated bilayer

simulations of the three-site headgroup model depicted in Figure 7.1d. Note that

the TAIL and TER2 beads are the same for both mappings and identical targets

were used for optimizing both the three- and four-site mappings. Thus, differences in

properties are a direct result of the chosen mapping. The simulation of the three-site

model shows a significant overprediction of the APL as compared to the atomistic

simulation. This inaccuracy is likely related to the lack of in-plane ordering in the

three-site model, which is apparent in the dry bilayer RDFs, as shown in Figures C.12

to C.17 of Appendix C. The VPL of this model is also overpredicted compared to the

atomistic simulations, with VPLCG/VPLAA = 1.25. It is worth noting that the APL

for the three-site CG CER model is comparable to that obtained from the three-site

MARTINI-compatible model of Sovová et al.,35 although the lipids in the three-site

CG model show appreciable tilt, which is not captured by the MARTINI model. As

such, it is clear that the three-site CER headgroup model is an improvement over the

MARTINI model, and that the four-site CER headgroup mapping better captures the

in-plane packing of the CER headgroups, enabled by the more explicit description

of the hydroxyl groups; thus, this treatment is essential to accurately capture the

properties of CER NS. This is also observed for the hydrated bilayer systems, as
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discussed below. Furthermore, when a higher weight is given to the bulk fluid states in

the potential optimization, we find that the APL of the dehydrated bilayer increases

significantly to a value of 49.8± 0.2�A2
. This deviation is a result of capturing more

of the bulk fluid behavior than the lamellar behavior in the potentials during the

optimization. Thus, the choice of weights (i.e., higher weights given to the lamellar

states) appears to provide a good balance between accurately capturing the structure

of the ordered lamellar phases and accurate prediction and accurate prediction of the

bulk density, even though some of the fluid phase RDFs are slightly shifted compared

to the atomistic target data.

7.3.2 Optimization of Lipid–Water Interactions

Here, the results of the lipid–water potential derivations are presented, focusing on

beads within the CER molecule. Interactions are first derived using MSIBI. However, it

is worth noting that system density alone can drive lipid–water structural correlations,

even in systems that are hydrophobic; the MS IBI routine (and IBI in general) cannot

necessarily differentiate between a correlation that is induced by density and one

induced by underlying attraction. Thus, even though MS IBI produces a potential

that captures the structural features of the target RDFs, the resulting potential may

not provide adequate hydrophobic behavior. To address this issue, MS IBI is coupled

with surface wetting simulations, which are used to validate, and, if necessary, tune

specific interactions such that the atomistic wetting behavior is observed in the CG

model. In this approach, targeted modifications are made to the CG interactions

that were derived via MS IBI and that reproduce the correct excluded volume and

RDFs, such that the appropriate hydrophobic/hydrophilic character is captured in

the surface wetting simulations.

TAILs–WATER The TAILs–WATER interaction potentials were first derived

using target data from simulations of FFA in water. As before, FFA was used instead
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of CER to remove the effect of the strong interactions between the CER headgroups

and water; CERHEADs–WATER interactions were optimized separately. The FFA–

WATER optimization uses three distinct states, each with a different concentration

of FFA in water, such that the different sized FFA aggregates are represented in the

target RDFs. The CG simulations start from the final configuration of the atomistic

simulations, in which the FFA is phase-separated from the water. To ensure that the

CG potential can allow FFA to phase-separate, rather than just stabilize a phase-

separated configuration, an additional state with the same concentration and target

RDF as the most concentrated system is considered, except that the CG simulation

starts with FFA dispersed in water; if FFA and water cannot phase-separate with

the given CG potential, the CG RDF will not match the phase-separated target and

the CG potential will be further refined by the MS IBI algorithm. Thus, inclusion

of this state helps ensure that TAILs are sufficiently hydrophobic to drive phase-

separation. While this only determines a minimum level of hydrophobicity needed for

phase-separation, as a more hydrophobic system would also phase-separate, inclusion

of this state greatly contributes to the realistic behavior of the CG model.

Figure 7.5 shows the RDFs for the most dilute and concentrated FFA–water

targets, along with the optimized CG potential. Note that the highest concentration

state corresponds to the system that starts from a dispersed state at each stage in

the force field optimization. From the figure, we can see that both target RDFs

are accurately reproduced by the CG pair potential. It is also apparent that the

hydrophobic interactions are sufficient to drive phase-separation, given that the system

starts dispersed and visually, the FFA phase-separates from the water, as shown in

Figure 7.6a.

To ensure the interactions are sufficiently hydrophobic, a wetting simulation was

performed in which a FFA monolayer was initialized with a water droplet on the tail

side of the leaflet (as opposed to the headgroup side). The droplet forms a spherical
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Figure 7.5: TAIL–WATER RDFs, target (black) and CG (red), from the most dilute
(top) and most concentrated (middle) states. Bottom: final derived pair potential,
before tuning to match the wetting behavior.

cap on the surface with a characteristic contact angle. Snapshots of the droplet from

atomistic and CG simulations are shown in Figure 7.7a and b, respectively. From the

figure, we can see that the atomistic model shows formation of a droplet with little

surface wetting and thus a large contact angle ϕAA = 133°, while the contact angle

calculated using the MS IBI-derived TAILs–WATER potentials is ϕCG = 40°. Note

that the WATER–WATER CG potential was derived to capture the stability of a

water droplet and provides a close approximation of the atomistic surface tension of a

water droplet in a (near) vacuum.44 As such, the deviation from atomistic behavior

lies in the TAILs–WATER interactions, indicating the derived CG force field contains

insufficient hydrophobic character, despite the ability to phase-separate, as discussed

above. To adjust the hydrophobic character of the TAILs beads, the MS IBI-derived

potentials were systematically scaled to be less attractive, with a factor of 0.25 found

to provide good agreement with a contact angle of ϕCG′ = 135° (where the prime

144



a) b) c)

Figure 7.6: Snapshots of the FFA–water simulations using different force fields. (a) CG
simulation using the derived force field before tuning the interactions. (b) CG system
with potentials after scaling the FHEAD–WATER and TAILs–WATER interactions.
(c) Atomistic system mapped to the CG level. CG beads colored as follows: FFA
chains, silver with yellow FHEAD beads; water, blue spheres.

indicates use of the scaled potentials), as shown in Figure 7.7c. Examining the

behavior of the hydrated monolayer, the atomistic simulations demonstrate a high

level of nematic ordering with S2,AA = 0.950 at the droplet contact (where a lipid is

considered in contact with the droplet if the terminal bead is within 7�A of a water

bead in the droplet). The unscaled CG potential optimized via MS IBI, which does

not capture the contact angle, appears to show a disruption in ordering near the

droplet with S2,CG = 0.622, as compared to S2,CG′ = 0.921 with the scaled potential.

This result suggests that the lipid hydrophobicity not only affects the lipid–water

interface but also plays a role in the structure of the lipid phase, which is relevant to

hydrated lipid systems. Simulating the bulk FFA–WATER system with the scaled

potentials results in behavior that also better matches that atomistic model, as shown

in Figure 7.6b and c, where the simulation using the scaled CG potentials produces

a cylindrical FFA aggregate in better agreement with the atomistic model, rather

than an elliptical aggregate produced with the unscaled CG potential. By scaling the

TAILs–WATER potentials, the CG force field is able to phase-separate, reproduce the

atomistic wetting behavior, and maintain the lipid ordering upon wetting. Therefore,

the derived TAIL–WATER and TER2–WATER potentials scaled by a factor of 0.25
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are transferred to the CER–water optimizations and used henceforth.

a)

b)

c)

Figure 7.7: Snapshots from the droplet simulations of (a) the atomistic model, (b) the
CG model before tuning TAILs–WATER potentials, and (c) the CG model with the
TAIL–WATER potentials scaled by 0.25. Atoms are colored as follows: C, silver; O,
red; H, white; methyl hydrogens are not shown for clarity. CG beads are colored as
follows: TAILs, silver; FHEAD, yellow; WATER, blue.

CERHEADs–WATER While hydrophobicity-driven phase-separation is the first

step in lipid self-assembly, hydrophilic interactions help drive the formation of organized

structures.33,61 Therefore, it is important that the lipid headgroups possess the correct

hydrophilic character to drive self-assembly. The CER–WATER MS IBI optimization

used three states to optimize the interactions between water and the CER headgroup

beads: hydrated CER NS C24 bilayer (305 K, NVT and NPT) to capture the interfacial

behavior and CER NS headgroups dispersed in water (1.0 atm, 400 K) to capture the

solvation of the lipid headgroups necessary for bilayer self-assembly. We note that

the headgroups in water were simulated at 400 K to ensure that the headgroups were

well dispersed throughout the water. Close matches to the target RDFs are found,
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as shown (along with the pair potentials) in Figures C.8 to C.11 of Appendix C. To

determine if the CERHEADs beads have sufficient hydrophilic character, the wetting

properties of a CER–WATER interface was examined. Atomistic wetting simulations

of CER headgroups show complete wetting of the headgroups by water, that is,

ϕAA → 0°, indicating a hydrophilic surface. This is expected, given the available

hydrogen bonding sites in the CER headgroups. Wetting simulations using the derived

CG force field show the same behavior, complete wetting of the surface, indicating

the MS IBI optimizations captured the hydrophilic nature of the CER headgroups.

As such, the CERHEADs–WATER potentials were not modified from their derived

form. It is worth noting that the same procedure was performed for the three-site

CER headgroup mapping model; sufficient hydrophilicity of these headgroups beads

was observed and hence no scaling was performed.

7.3.3 Validation

As validation of the fully derived CG model (i.e., where all interactions are repre-

sented), hydrated preassembled single-component bilayers composed of CER NS C16

and CER NS C24 were simulated, and the structural properties compared to corre-

sponding atomistic simulations. Table 7.6 summarized the comparison between the

CG and atomistic CHARMM-CER simulation results, where overall good agreement

is seen, with the APL, nematic order, and bilayer thickness accurately reproduced.

While neither model shows a strong correlation between CER length and tilt angle,

appreciably more tilt is observed in the atomistic system than the CG systems. While

this and other differences between the atomistic and CG simulations in Table 7.6 can

be attributed, at least in part, to the loss of details in the CG model, the softened free

energy landscape associated with the CG models should allow the systems to relax

more efficiently than atomistic models, even over the same time scale. Furthermore,

as discussed in the context of self-assembly below, small deviations in lipid packing
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Table 7.6: Structural properties of CER NS C16/CER NS C24 bilayers at 305 K
and 1.0 atm simulated using the CG models derived here and the CHARMM36-CER
all-atom model (AA). Uncertainties are estimated based on the standard deviation.

System Model APL
(
�A2
)

S2 d (�A) θ (deg)

CER NS C16 AA 42.4± 0.2 0.998 42.5± 0.5 24.3± 0.9

CG 42.0± 0.1 0.982 44.51± 0.09 6.3± 0.7

CER NS C24 AA 39.9± 0.2 0.979 56.2± 0.4 22± 4

CG 41.99± 0.09 0.981 56.6± 0.1 7± 1

Three-site CG 46.2± 0.1 0.914 61.5± 0.2 9± 2

in the CG simulations result in measurable differences in the tilt angle, which may

also account for the perceived underprediction of tilt angles in the CG simulations.

Note that only CER NS C24 was used in the force field derivation; therefore, these

results also illustrate the predictive power of the CG model in the ability to accurately

capture CER NS C16 behavior. Additionally, comparisons are made for CER NS C24

simulated with the three-site CG model derived here (see Table 7.6), where, again,

the APL is overpredicted as compared to the atomistic simulation and is similar to

the APL calculated with the MARTINI CER model (46�A2
).35

As an additional validation, the properties calculated from simulations of the CG

and atomistic models for pure systems in Table 7.6 compare favorably with the limited

experimental data on CER-based systems. APL values calculated from experimental

studies of CER monolayers range from 37.8�A2
to 45�A2

for CER NS C1662,63 and

39.0�A2
for CER NS C18.39 Monolayers displaying tilt angles ranging from 0° to 14°

for pure CER NS C16 and CER NS C18 have been reported from experimental

measurements,39,63 which are notably closer to the values predicted by the CG models

than the atomistic model. Other simulation studies using different atomistic force

fields also fall within similar ranges; e.g., using the united atom GROMOS-based force

field of Berger,64 Notman et al. calculated an APL of 37.4�A2
for CER NS C24 at

323 K,21 while a value of 39.8�A2
was reported for pure CER NS C16 at 305 K with the
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same model in other work.18 Additionally, Metcalf and Pandit calculated the APL of a

pure CER NS C16 bilayer to be ∼44�A2
at 323 K using a different united atom model.65

Tilt angles ranging from 17° for pure CER NS C24 at 323 K21 to 26° for pure CER NS

C16 at 323 K65 have been reported from simulation studies. It is worth noting that

the tilt angle in CG simulations significantly deviates from the atomistic simulations;

this may be related to the loss of detail in the CG model, in which the local packing of

the tails is altered compared to the atomistic model, resulting in different tilt behavior.

However, as noted above, the tilt angles calculated in the CG simulations are actually

closer to experimental values than the tilt angles from the atomistic simulations. Thus,

overall, the four-site CER headgroup CG model developed here produces results for

preassembled bilayers consistent with both experiment and various atomistic-level

models.

In addition to the aforementioned structural metrics, the orientation of the OH

groups between the CG and atomistic models for CER NS C24 systems were compared

because of the importance of hydrogen bonding network formation in CER-based

systems.38–40 The orientation of the MHEAD2–OH1 vector relative to the outward

bilayer normal (i.e., pointing toward the water) in the pure CER NS C24 bilayer,

shown in Figure 7.8, is preferentially aligned ∼60° off the bilayer normal in the

atomistic simulation, suggesting the OH1 group interacts with the water phase. This

behavior is captured with the CG model, where the MHEAD2–OH1 vector prefers an

approximately 50° angle with respect to the bilayer normal. In contrast, the MHEAD2–

OH2 vector prefers an orientation with the OH2 bead below the MHEAD2 bead (i.e.,

not between the MHEAD2 and WATER beads), indicating it is more involved in

the hydrogen bonding network formed between the CER headgroups compared to

the OH1 bead. This behavior is qualitatively captured by the CG model, where the

MHEAD2–OH2 vector tends to point away from the lipid–water interface, indicated by

the MHEAD2–OH2 angle that is <90° in Figure 7.8. However, there is a quantitative
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discrepancy between this property in the CG and atomistic simulations, where the CG

system prefers an angle of ∼95°, compared to ∼135° in the atomistic system. This

discrepancy does not appear to have any significant impact on the APL or in-plane

structure of the lipids, and is likely a consequence of the loss of detail inherent to CG

models. This comparison further suggests that the CG model, at least on a qualitative

level, captures the hydrogen bond network formation between the CER headgroups.

0 60 120 180
, deg

0.000

0.015

0.030
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)

Figure 7.8: Orientation of the MHEAD2–OH vectors with respect to the bilayer
normal in the CER NS C24 bilayer. A value of 0° indicates the OH bead lies directly
between the MHEAD2 bead and the lipid–water interface; a value of 90° means the
OH group is lying flat in the bilayer plane. Black lines, OH1; red lines, OH2; solid
lines, CG; dashed lines, atomistic mapped to the CG level.

7.4 CER NS C24 Self-Assembly

It is unlikely that preassembled atomistic systems would be able to transition

from metastable states to lower energy states because of the time scales on which

major morphological transitions occur compared to the time scales that are accessible

with atomistic models. Thus, pre- and self-assembled structures studied via atomistic

simulations are likely to be “stuck” in metastable configurations. For example, Das et

al. studied SC lipid self-assembly using a united-atom force field, finding that the lipids

self-assemble into a lamellar phase under confinement, but they form micellar phases
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in bulk systems,29 in contrast to experimental studies that suggest the formation of

lamellar phases in the bulk,66,67 this discrepancy is likely due to the need for much

longer simulation times to form equilibrium phases, currently inaccessible to atomistic

models. Given the reduced computational cost of CG models, they can be used to

access the time scales required to examine the self-assembly of SC lipids.

Here, the self-assembly of CER NS C24 in water is examined, motivated by its

abundance in the SC. Systems composed of 800 lipids and 10 000 water beads are

studied, which represents a water to lipid ratio well above that of a fully hydrated

bilayer. To remove dependence on the initial configuration, the CG-mapped atomistic

bilayer (replicated twice in the x and y directions to 4 times the original size) system

was heated to 1500 K for 20 ns, during which time the lipids and water became

completely mixed and disordered, as shown in Figure 7.9a. Upon cooling to 305 K,

a bilayer containing structural defects formed, as shown in Figure 7.9b. To increase

the relaxation rate of the defects, the system was then expanded in the bilayer plane

to double the original area over 10 ns while preserving the box volume, as shown in

Figure 7.9c. Upon deforming the box to the original aspect ratio over 10 ns, a defect-

free bilayer formed, as shown in Figure 7.9d. After switching to the anisotropic NPT

ensemble, the self-assembled bilayer was found to be stable for >200 ns. This process

was repeated three times with different expansion and compression rates to examine

the influence of the relaxation rate on the final structure. The APLs of the bilayers

over the final 50 ns of the NPT simulations are compared in Table 7.7, with little

variation between the different systems observed. Interestingly, the self-assembled CG

systems are found to pack more densely than the comparable preassembled bilayers,

resulting in APLs that are closer to the value from the atomistic simulation (see

Table 7.6, CER NS C24). The time scale associated with this relaxation influences

the distribution of lipids between the leaflets in the bilayer structure, with shorter

time scales associated with larger deviations from an ideal (i.e., equal) distribution,
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Table 7.7: Properties of self-assembled bilayers as a function of expansion and compres-
sion time (relaxation time). ftop/fbottom represents the fraction of lipids in the top and
bottom leaflets of the self-assembled bilayers; θtop/θbottom represents the average tilt
angle of the lipids in the top and bottom leaflets. For the stacked systems, ftop/fbottom

represents the fraction of lipids in each of the four layers, and θtop/θbottom represents
the average tilt angle of the lipid tails in each of the four layers. The APL of the
stacked systems was calculated using the average number of lipids in each layer. The
standard error in the tilt angle was less than 3° for each measurement.

Final Structure τR, ns APL, �A2
ftop/fbottom θtop/θbottom

Bilayer 20 40.00± 0.02 0.513/0.487 5.2/9.2

40 40.10± 0.02 0.511/0.489 5.0/7.2

60 39.69± 0.03 0.509/0.491 5.2/9.0

Stacked Bilayer 200 42.76± 0.02 0.243/0.250/0.244/0.264 9.6/6.6/8.1/4.9

400 43.09± 0.03 0.240/0.255/0.253/0.253 9.5/5.5/6.3/6.1

600 42.83± 0.02 0.258/0.246/0.253/0.244 5.6/7.1/5.9/11.1

although all deviations are within 20% of ideal. These small variations, however, do

create noticeable changes to the average tilt angle of the leaflets (although the average

APL is relatively unaffected), with a larger tilt observed in the leaflets with fewer

lipids, as shown in Table 7.7. This trend is expected—with a fewer number of lipids

in a leaflet, the lipid tails tilt relative to the bilayer normal to decrease their spacing

to an optimal level.

Figure 7.9: Self-assembly of CER NS C24 into an ordered bilayer: (a) initial heating
above the mixing temperature; (b) cooling from high temperature; (c) full compression;
(d) final configuration after compression and expansion. CG beads are colored as
follows: TAILs, silver cylinders; AMIDE and MHEAD2, yellow spheres; OH1 and
OH2, read spheres; WATER, blue sphere.

Since the simulated bilayer is a periodic structure (as periodic boundary conditions

152



are used), it is reasonable to assume that the self-assembled structure is dependent on

the size and shape of the box. For example, one would expect two bilayers to form in

the previously described CER NS C24 system if the box area parallel to the bilayer

plane were reduced by a factor of 2. To explore this concept, the previous self-assembly

protocol was repeated, with the exception that the aspect ratio of the simulation

box at the end of the initial compression phase was set to half that of the initial

self-assembly simulation (i.e., half the cross-sectional area of the bilayer and twice the

thickness). As with the bilayer self-assembly, a defected lamellar structure initially

formed, where the lipids were well-ordered at the lipid–water interface and less ordered

in the interior of the membrane, as shown in Figure 7.10a. After subsequent expansion

and compression cycles, well-ordered, multilamellar structures (i.e., stacked bilayers)

formed, with a small amount of water between the middle leaflets (0.35 to 0.5 water

molecules per interior lipid, compared to 50 in the bulk), as shown in Figure 7.10b. The

relaxation rates of the stacked bilayer defects were much slower than that of the single

bilayer systems, with 200 ns of both expansion and compression required to remove

the defects, compared to 20 ns for the single bilayer assembly. Subsequent replication

of this self-assembly protocol yielded similar structures, illustrating reproducibility.

Without the expansion and compression to increase the relaxation rate of the defects,

a defect-free stacked bilayer structure formed over the course of 1.3 µs at 305 K. Thus,

the expansion and compression protocol is used as a means to increase the rate of

exploration of phase space of the CER–water system, rather than to influence the

final state of the system.

Examining the multilayer systems, it is interesting to note that similar structural

trends are observed in comparison to the self-assembled single bilayer systems. For

example, the self-assembled multilayer systems also show deviations from an ideal

distribution of lipids per leaflet, although the deviations are larger in the multilamellar

systems (see Table 7.7), which may be expected given the differences between a
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a) b)

Figure 7.10: Self-assembly of CER NS C24 into a stacked bilayer: (a) after changing
the aspect ratio of the simulation cell; (b) after subsequent area expansion and
compression. Beads colored as follows: TAILs, silver cylinders; AMIDE and MHEAD2,
yellow spheres, OH1 and OH2, red spheres; WATER, blue spheres.

lipid–water and a lipid–lipid interface. A similar relationship between the tilt angle of

the tails in a leaflet and the number of lipids in the leaflet is also observed for the

single bilayer in multilayer systems, where a higher tilt angle is observed for leaflets

with fewer lipids. Compared to the self-assembled single bilayers, the APL of the

self-assembled multilayer systems is slightly larger and closer to the preassembled CG

bilayers, which again may be related to differences manifesting from the multilamellar

organization.

The lipid–lipid interface in multilayer structures makes it possible for lipids to adopt

different configurations, which may alter the properties of the system. For example,

several models of SC lipid organization have been proposed, with a key difference

between the models being whether the CER tails adopt an extended conformation

(with the two tails on opposite sides of the headgroup), a hairpin conformation (with

both tails on the same side of the headgroup), or some combination of the two. For

example, the stacked monolayer model assumes an extended conformation for the

CERs,68 while the sandwich model assumes a hairpin conformation of the CERs.6,69
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In contrast, the single gel phase model proposes a mixture of extended and hairpin

CER conformations,70 and the armature reinforcement model proposes a transition

from extended to hairpin CER conformations upon hydration.67,71

To explore the CER conformations in the stacked bilayer configurations, the angle

θtails between the two tails of each CER molecule was examined. θtails was defined as

the angle between the two vectors from the MHEAD2 bead to the terminal bead of

each tail and thus distinguishes between the lipid being in an extended (θtails > 90°)

or hairpin (θtails < 90°) conformation. From the simulations, we find that the vast

majority of the lipids in the multilamellar system exist in a hairpin conformation, with

no correlation between conformation and expansion/compression time (for all systems,

91% to 94% of the lipids exist in a hairpin conformation). As might be expected,

the hairpin configuration is strongly preferred at the lipid–water interface due to the

hydrophobic nature of the lipid tails; however, when considering the lipids in the inner

leaflets, the number of lipids adopting a hairpin conformation decreases to 82% to 87%.

Thus, while the hairpin conformation appears to be the preferred CER conformation

in the pure, multilayer CER NS C24 system, roughly 15% of the lipids in the inner

leaflets adopt an extended conformation. Thus, the pure CER NS system is most

consistent with the hairpin conformation assumed in the sandwich model. However, it

should be noted that the CER conformation in the complex lipid mixtures of human

SC, which include both cholesterol and FFAs, could be different than those observed

for pure CER NS. It is reasonable to assume that the intramolecular bonded forces

dictate the CER conformation to an extend. Therefore, to validate the intramolecular

potentials and ensure they are not biasing the extended versus hairpin conformations

in the stacked bilayer system, a single CER molecule in a vacuum was simulated

with the CG and atomistic force fields, and the distributions of the angle between

the two tails (θtails) and end-to-end distance of the tails calculated with each model.

Good agreement between the distributions calculated with the two models was found,
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with each predicting, on average, a hairpin conformation of the two tails, as shown in

Figure 7.11. Therefore, the observed hairpin versus extended distribution is physically

relevant and not an artifact of the intramolecular bonded forces in the CG force field.

Figure 7.11: CER NS conformations from simulations of a single molecule in vacuum.
(a) end-to-end distance between the two tails; (b) angle between each of the two
ceramide tails.

7.5 Conclusion

This chapter shows that MS IBI is an appropriate method for deriving CG models

of SC lipids, specifically CER NS, which is the most abundant CER in human SC.

The transferable nature of the MS IBI-derived force field is illustrated by the fact that

the TAIL beads of CER NS and FFA are treated as the same type, and accurately

model the tail behavior of the two different types of molecule. This transferability

is promising for the development of models for other SC lipids, as the TAILs beads

can confidently be transferred to describe the acyl tails, leaving only the headgroup

interactions to be derived. Further, the inclusion of explicit hydroxyl groups on the

CER headgroups allows the model to accurately capture the in-plane packing of the

molecules. This property is important for any CER model, especially, for example,

when studying permeability, where the primary barrier is at the lipid–water interface.72

In contrast, an implicit treatment of the hydroxyl groups does not allow the model to
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capture this behavior, which results in less accurate structural properties of lamellar

phases with the CG model. This CG mapping also allows for easy extension to other

CER species, since the AMIDE and MHEAD2 beads are common to all CERs.

The derived CG model was first validated through simulations of preassembled

CER NS bilayers. Good agreement on several important bilayer properties was

found between the CG and fully atomistic simulations and experimental data where

available. Through preassembled bilayer simulations, we further showed that the CG

mapping involving explicit hydroxyl groups more accurately reproduces the bilayer

properties, and that this increased integrity of the model incurs a minimal increase in

computational expense. After validation on preassembled structures, self-assembly of

CER NS into bi- and multilayer structures was studied with the CG model, with the

self-assembled structures exhibiting similar properties to the preassembled systems.

Simulations of the CG model show a predominance of CERs adopting a hairpin

configuration in the multilayer systems.

While this chapter presents the derivation of a model specific to CER NS, it also

provides the necessary framework for developing force fields to accurately model a

realistic SC lipid mixture. Recent experimental work has focused on developing lipid

mixtures that adequately reproduce the barrier properties of human skin.37,67,73–75

CG SC lipid models can offer molecular-level insight into phenomena that cannot be

observed through experiment and atomistic molecular simulation e.g., the self-assembly

into and transitions between well-ordered lamellar phases. CG models are thus a

practical tool for complementing experimental work in this field, e.g., aiding in the

discovery of promising lipid mixtures that reproduce the properties of human SC. CG

models for the other lipid classes of SC (FFA and cholesterol) are presented in the

following chapters, allowing simulation studies of representative SC lipid mixtures.
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CHAPTER 8

DEVELOPMENT OF THE CROSS-INTERACTIONS FOR COARSE-GRAINED

MODELS OF CER NS AND FFA

This chapter is reproduced in part from Moore et al. 2017.1

8.1 Introduction

Skin plays the essential role in human physiology of preventing water loss and

protecting the body from external physical, chemical, and biological attack. This

barrier function is known the be localized to the stratum corneum (SC), the outer

most layer of skin.2 The SC is composed of dead skin cells surrounded by a dense

lamellar-structured lipid matrix containing an approximately equimolar mixtures

of ceramides (CERs), free fatty acids (FFAs), and cholesterol.3 This lipid mixture

notably lacks phospholipids, which are present in most biological membranes. Since

the lipid matrix is the only continuous path through the SC, it is generally recognized

that the lipids play an integral role in the barrier properties of skin. Anomalies in

lipid composition are known to be associated with impaired barrier function, (see, for

example, Refs. 4–7); however, while many global properties of SC lipid systems can be

gleaned from experimental measurements, molecular-level details often remain elusive.

Hence, atomistic molecular dynamics simulations have begun to play an important

role in examining the molecular-level structure and composition-related changes to

membrane structure and properties8–16 typically focusing on systems based on CER

NS (C18 sphingosine base linked to a non-alpha hydroxy acyl chain). Simulation

studies have thus far provided considerable insight into the role of CER acyl chain

length,13,17 CER headgroup chemistry,12 and the addition of other lipids on bilayer

properties,10,14,16–18 as well as examining the permeation of small molecules through
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CER-based bilayers.13,19,20 However, most studies have relied on preassembled bilayer

configurations, which may unduly influence the resulting structure and observed

properties; the dense, gel phase structures formed by the SC lipids result in very

low lipid mobility,15 making them effectively stuck in their initial configurations

over the typical simulation timescales considered. The use of bilayer, rather than

multilayer structures, may also limit the insight that can be gained, as they restrict

the conformations that can be adopted for the two-tailed CERs, e.g., hairpin versus

extended, which is a controversial topic in the experimental literature.21 Self-assembled

structures, where lipids form the desired structure with minimal external input, would

be preferable, but the timescales required to reach equilibrium on what is likely a

rough free energy landscape make this approach impractical for atomistic models.

To address these issues, computationally efficient coarse-grained (CG) models

can be used. CG models allow the long times and large system sizes required to

observe significant lipid rearrangements, including self-assembly, to be studied.22

While numerous methods are available for deriving CG force fields,23–26 the structure-

based iterative Boltzmann inversion (IBI)27 method is commonly used. The IBI

method iteratively updates pair potentials between successive CG simulations to

match target data in the form of site-site radial distribution functions (RDFs), and

has been successfully applied to systems ranging from small molecules28 to lipids29,30

and polymers.31–33 While IBI yields force fields that generally reproduce the target

fluid structure with high accuracy, these force fields often fail to reproduce behavior at

other state points,28,32–34 as IBI only provides a means to match the target RDFs and

cannot determine if the derived pair potentials accurately represent the underlying

energy landscape. This problem is further intensified by the fact that there may

be any number of pair potentials that sufficiently reproduce the target RDF,34 and

determination of which one is most representative is nontrivial. Hence, the utility of

IBI-based force fields may be limited for studying processes that span multiple states,
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e.g., self-assembly.

In Chapter 5, I presented the development of a multistate extension to IBI (MS IBI)

that helps to address the transferability problem of IBI-derived force fields, whereby

pair potentials are optimized to match target RDFs at multiple state points simulta-

neously.34 This extension effectively adds additional constraints to the optimization

process, with the goal of finding a pair potential that simultaneously matches each

target RDF, and thus adequately represents the underlying energy landscape. In this

Chapter, I use MS IBI to expand the force field presented in Chapter 7 to include

the cross-interactions between CER NS and FFA headgroups, and use the extended

force field to investigate the self-assembly of large membranes composed of mixtures

of CER and FFA.

8.2 Methods and Model

8.3 Simulations

Atomistic simulations used to gather target data were run with the CHARMM36

all-atom force fields.35 Parameters for the CER NS headgroups were taken from

previous work;12 these have been shown to accurately reproduce the phase behavior

of a pure CER NS bilayer. Water, when present, was modeled with the TIP3P water

model.36 For the atomistic simulations, van der Waals interactions were neglected

beyond 12�A, and were set to smoothly decay to zero between 10�A to 12�A. Long-

ranged electrostatic interactions were treated with the particle mesh Ewald method37

with a real-space cutoff of 12�A. All atomistic simulations were run with GROMACS

5.138 with a 1 fs timestep. Constant pressure simulations of bulk fluid states employed

an isotropic barostat, while bilayer states employed a semi-isotropic barostat with the

pressure controlled independently in the bilayer normal and lateral directions. In both

cases, the barostat used a pressure coupling constant of 10 ps and a compressibility of
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4.5× 10−5 bar−1.

Three distinct atomistic simulations were performed. First, a bulk fluid equimolar

mixture of CER NS C24 and FFA C24:0, with 100 molecules of each, at 1 atm and

500 K. 500 K was used to induce a fluid phase, as the lipids were found to be frozen

at the skin temperature of 305 K. This system was initialized by placing the lipids

on a lattice in a very large simulation box and simulating for 5 ns at 800 K, followed

by slowly reducing the temperature to 500 K while compressing the system down to

a realistic density over 5 ns. The barostat was then turned on and the system was

allowed to equilibrate for 5 ns, followed by 10 ns of data collection. A corresponding

system was run at constant volume, with the density set to the average density from

the constant pressure simulation. The remaining atomistic simulation was a bilayer

containing an equimolar mixture of CER NS C24 and FFA C24:0. The initialization

and equilibration of this system follows the protocol described in Chapter 4.

Two classes of CG simulations were performed: those during the MS IBI optimiza-

tions and those using the optimized force field. Initial configurations for the MS IBI

optimization simulations were the final configurations from the corresponding atomistic

simulations, mapped to the CG level. To increase sampling, bulk fluid CG systems

were replicated 2× in each direction, and the bilayers were replicated 3× in each

lateral direction. The bulk systems were run for 5 ns of equilibration, followed by 5 ns

of data collection; the barostat was turned on in the final 1 ns of equilibration for the

NPT state. The bilayer systems were equilibrated for 10 ns (with the barostat turned

on for the final 5 ns for the NPT system), followed by 30 ns of data collection. The

pressure coupling scheme for the CG simulations was identical to the corresponding

atomistic simulations, i.e., isotropic for the bulk systems and semi-isotropic for the

bilayer systems. For force field validation, the initial configuration of the preassembled

bilayer was the same as for the MS IBI CG simulations. The self-assembly simulations

used several unique protocols, which are described in the corresponding sections below.
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All CG simulations were run using the GPU-accelerated HOOMD-Blue toolkit39,40

with a 10 fs timestep.

8.3.1 Model Description and Force Field Optimization

The coarse-grained mappings for the lipids used in this Chapter are shown in

Figure 8.1 and were defined and used Chapter 7. Briefly, a 3-to-1 mapping is used,

where each CG bead generally represents 3 heavy atoms. A notable exception is the

hydroxyl groups in the CER headgroup, which are each mapped to a single bead; this

was found to be necessary to capture the in-plane packing of the CER headgroups

in a bilayer configuration, as discussed in Chapter 7. Both molecules share identical

TAIL beads, which represent 3 successive carbons and their associated hydrogens in

the lipid tails.

TAIL
R

R

R

a) b)

HEAD

TAIL AMIDE

MHEAD2
OH1

OH2

TAIL

Figure 8.1: CG mappings for the lipid headgroups considered in this Chapter; a) FFA
and b) CER NS. “R” denotes a set of TAIL beads bonded in series, with the number
of tail beads determined by the length of the lipid tails. Note that the CG beads
interact through spherically symmetric potentials despite being drawn as ellipses.

The specific terms in the force field were described in Chapter 7, but are also

provided here for reference. Two CG beads are considered bonded if any two atoms

represented by the two CG beads share a bond in the atomistic model. CG beads

that are bonded interact through a harmonic bond-stretching potential, and any

consecutively bonded triplet of CG beads interact through a harmonic angle-bending

potential; the derivation of the parameters for these interactions follows the method of
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Milano et al.,41 where the (assumed Gaussian) distributions sampled in the atomistic

simulations are Boltzmann-inverted to produce a harmonic potential. In addition to

the bonded interactions, CG beads also interact through nonbonded pair potentials,

which are optimized with MS IBI. The nonbonded pair interactions are neglected

for beads that interact through bond-stretching or angle-bending potentials. The

nonbonded interactions derived in this (and other) Chapters are made available at

https://github.com/iModels/sc-ff.

The bonded interactions and nonbonded pair potentials for beads on the same

type of molecule, along with the lipid–water pair potentials, were optimized with MS

IBI and presented in Chapter 7. In this chapter, the lipid–lipid cross-interactions

for CER NS and FFA, i.e., the AMIDE–HEAD, MHEAD2–HEAD, OH1–HEAD,

and OH2–HEAD interactions, are optimized using MS IBI. Bilayer and bulk fluid

states, as described above, were to gather target RDFs. A higher weight was given

to the bilayer states as compared to the bulk fluid states, with α0,bilayer = 0.5 and

α0,bulk = 0.1, where α0 corresponds to α value at r = 0 for the linear as(r) function in

Equation (5.4). The initial pair potentials, V 0(r), were the Boltzmann-inverted RDFs

from the bilayer state, i.e.,

V 0
γβ(r) = −kBT ln g

(AA)
γβ,bilayer(r).

The optimizations were terminated when the fitness function, defined as

ffit = 1−
∑rcut

r=0|g(i)(r)− g(target)(r)|∑rcut
r=0[g(i)(r) + g(target)(r)]

,

increased by less than 0.01 for each pair being optimized at each state.
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8.3.2 Analysis

To quantify the structure of the bilayers, the area per lipid (APL), nematic order

(S2), tilt angle of the lipid tails (θ), and the bilayer thickness were calculated. These

calculations were performed in the same manner as in Chapter 7, and are outlined

in Appendix A. Important to note, however, is that the atomistic systems were first

mapped to the CG level for analysis for a more direct comparison with the CG systems.

For the self-assembled systems, the asymmetry of the number of lipids in each leaflet

was quantified. A lipid was considered in the top leaflet if the z component of its

center of mass was greater than the z component of the total lipid center of mass, and

in the bottom leaflet otherwise. This quantity was found to not fluctuate once the

bilayers had formed.

8.4 Results and Discussion

8.4.1 Force Field Derivation and Validation

The results of the CER NS–FFA headgroup optimizations are shown in Figures 8.2

and 8.3 for the NPT and NVT states, respectively. The target RDFs are reproduced

with a high degree of accuracy at the bilayer states, as indicated by the ffit values

>0.95. The first peak and the general shape of the RDFs are accurately reproduced

for each pair, which indicates that the CG model accurately captures the structural

ordering of the headgroups within the bilayer plane. The RDFs at the bulk states

are also accurately captured, with 0.891 ≤ ffit ≤ 0.915 for all pairs. The CG model

generally underpredicts the height of the first RDF peak and slightly overpredicts the

RDF beyond the first peak, which indicates a higher degree of headgroup clustering

but a lower degree of headgroup ordering in the first solvation shell in the CG model

compared to the atomistic one. Note that the AMIDE–HEAD interactions for the

bulk show the largest deviation, due to the anisotropic interactions, as was observed

in Chapter 7. The CG model has slightly longer-ranged ordering than the atomistic,
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which is a necessary compromise in order to capture the ordering in the bilayer states.

The lower degree of RDF matching in the bulk phases is expected, as the bilayer

states were given higher weight (via αs(r)), since they are ultimately of more interest.

Despite the lower fitness in the bulk states, the bulk densities calculated from NPT

simulations with the CG (0.713± 0.003 g/mL) and atomistic (0.703± 0.006 g/mL)

models compare favorably.
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Figure 8.2: Representative RDFs and final optimized pair potentials for the pair
interactions considered in this Chapter. Each column corresponds to a single pair,
given at the top of the column. The first row shows the target and CG RDFs at the
NPT bilayer state, the middle row shows the target and CG RDFs at the NPT bulk
fluid state, and the bottom row shows the optimized pair potentials.

The pair potentials were further validated with a 200 ns simulation of the equimolar

CER NS C24–FFA C24:0 bilayer to examine structural properties beyond the RDF,

which are listed in Table 8.1. The high nematic order parameter (S2) shows that

both models form bilayers with a high degree of orientational order in the lipid tails.
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Figure 8.3: Representative RDFs and final optimized pair potentials for the pair
interactions considered in this Chapter. Each column corresponds to a single pair,
given at the top of the column. The first row shows the target and CG RDFs at the
NVT bilayer state, the middle row shows the target and CG RDFs at the NVT bulk
fluid state, and the bottom row shows the optimized pair potentials.

The CG model overpredicts the area per lipid (APL) by ∼5%, which is on the same

order as the deviation for a pure CER NS C24 bilayer as observed in Chapter 7. The

atomistic model predicts a higher tilt angle of the lipid tails with respect to the bilayer

normal, although the difference is quite small (∼7% when considering the relevant

scale of 0° to 90°). The bilayer thickness agrees very well with the atomistic model,

differing by 1�A, illustrating the structural accuracy of the model with regard to both

the lipid tails and the lipid–water interface. Overall, there is excellent agreement in

the structural properties of multicomponent bilayers simulated with the atomistic and

CG models.

173



Table 8.1: Comparison of structural properties of equimolar CER NS C24–FFA C24:0
preassembled (PA) and self-assembled (SA) bilayers simulated with the atomistic
and CG models. The two numbers listed for the self-assembled systems (CG, SA-X)
are for each of the two leaflets, as the asymmetric distribution of lipids between the
leaflets, which is listed in the rightmost column, gives rise to different properties of the
individual leaflets. Uncertainties represent the standard error in the calculations; for
the self-assembled system, the uncertainties are on the same order as the preassembled
CG system.

System S2 APL, �A2
Tilt, deg Thickness, �A ntop:nbottom

Atomistic, PA 0.991± 0.001 29.2± 0.4 13± 2 59.7± 0.1 -

CG, PA 0.9787± 0.0008 30.87± 0.07 6.3± 0.5 60.72± 0.02 -

CG, SA-1 0.964/0.975 31.18/30.68 9.6/6.1 60.22± 0.01 0.964

CG, SA-2 0.976/0.976 31.36/30.70 6.4/6.2 60.790± 0.002 0.978

CG, SA-3 0.975/0.957 30.43/32.37 6.0/11.7 60.04± 0.02 1.064

8.4.2 Self-assembly Into Lamellar Structures

After validating the model on preassembled bilayers, the self-assembly of the CG

model into lamellar structures was examined. In general, bilayer self-assembly occurs

in two major steps.42 First, the lipid aggregate in the water to form separate lipid

and aqueous domains; next, the lipids organize themselves such that the hydrophilic

headgroups shield the hydrophobic tails from the aqueous phase, thus forming a bilayer

structure. In this Chapter, the lipids were initialized in a high temperature, disordered,

but phase-separated, configuration, shown in Figure 8.4a; the systems were set up such

that the lipid phase spans the box in the x and y directions, but not along z, to ensure

that the lipids can form a 2D periodic structure. From the high temperature state, the

system temperature was first reduced to 305 K over 100 ns, followed by an isochoric

expansion in the xy plane to 1.7× the APL of the preassembled, equilibrated bilayer.

The system was then isochorically compressed in the xy plane to the equilibrium

bilayer APL, after which the semi-isotropic barostat was activated, and the simulation

continued for another 200 ns at 305 K and 1 atm. This approach of starting from a

phase-separated state, followed by expansion and compression, was found in Chapter 7
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to not affect the self-assembled structures, but rather makes the self-assembly more

efficient and reliable, as major structural defects are more rapidly worked out compared

to simply simulating the system at constant temperature and pressure. Three different

bilayer self-assembly simulations were performed and analyzed to show reproducibility,

with total compression/expansion times of 200 ns, 400 ns, and 600 ns (see Table 8.1).

a) b)

c) d)

Figure 8.4: System snapshots during the bilayer self-assembly process of an equimolar
mixture of CER NS C24 and FFA C24:0: a) initial, disordered configuration, b) at
maximum expansion, c) at the end of the compression phase, and d) after 200 ns of
simulation at 305 K and 1 atm. CG beads are colored as follows: blue = water, silver
= lipid tails, yellow = AMIDE and MHEAD2, red = OH1 and OH2, and magenta =
FFA headgroups.

Stable, well-ordered bilayers formed in each of the three self-assembly simulations.

Snapshots of one of the systems during the self-assembly process are shown in Figure 8.4.

Due to the stochastic nature of lipid organization during the cooling phase, the bilayers

demonstrate an asymmetric distribution of lipids between the two leaflets and this

asymmetry leads to different leaflets having different structural properties. This

information is summarized in Table 8.1 and shows that when a particular leaflet has a

lower APL (i.e., more lipids, since the area is taken as the area of the simulation box),

the lipid tails in that leaflet are more ordered and demonstrate a smaller tilt angle.

In general, the structural properties of the self-assembled bilayers tend to agree well

with those of the preassembled bilayer.
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In the SC, the lipids are organized into repeating lamellar structures (i.e., multilay-

ers), and thus understanding the lipid structure in multilayers is of considerable interest.

Here, using the validated CG force fields, simulations of multilayer self-assembly were

performed in a similar manner to the bilayer self-assembly simulations, with two

changes. First, instead of initially cooling to 305 K from the initial configuration, the

system is isochorically compressed in the xy plane to 1/2 the equilibrium APL, so

that, in principle, two bilayers can fit within the simulation box. This compression

was followed by the expansion/compression process used for the bilayer self-assembly,

except that the temperature was held at 550 K during the expansion, and then lowered

to 305 K during the compression. The temperature was kept elevated to give the

lipids more energy to reorganize during the expansion. To show reproducibility, three

different total expansion/compression times were used: 200 ns, 400 ns and 600 ns.

Stable multilayer structures formed in each simulation. A representative self-assembly

process is shown in Figure 8.5. Of particular interest in these systems are the fractions

of CER molecules that are in hairpin versus extended conformations, as this may have

implications for the lamellar arrangements of CERs in the SC.21 Here, an extended

conformation was defined as the angle between the two tails of CER having an angle

>90°, and a hairpin conformation otherwise. In each of the self-assembled structures,

between 23% to 28% of the CERs in the middle layers adopt a hairpin conformation,

compared to ∼15% for pure CER systems, as reported in Chapter 7. This result

suggests a mixture of hairpin and extended conformations is favorable. All systems

obtain a thin layer of water mixed with the headgroups in the middle of the lipid

phase, ranging from 0.127 to 0.221 water beads per lipid, or 0.508 to 0.884 water

molecules per lipid, which is consistent with experimental observations of low lipid

headgroup hydration in model SC membranes.43,44
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a) b) c) d)

Figure 8.5: Multilayer self-assembly process of an equimolar mixture of CER NS C24
and FFA C24:0: a) disordered configuration after resizing to fit two bilayers, b) at
maximum expansion, c) the final configuration of the compression phase, and d) final
configuration after 200 ns of simulation at 305 K and 1 atm. CG beads colored the
same as in Figure 8.4.

8.5 Conclusion

The work described in this Chapter highlights the use of multiscale modeling in

studying the SC layer of skin. While atomistic simulations can be used to study

properties at the atomistic level, e.g., hydrogen bonding,12 CG models are needed to

study systems on a larger scale. Building on prior work, the work presented in this

Chapter uses MS IBI to derive transferable CG models for skin lipids from atomistic

simulations. These CG models can be used to study native lipid structures in the

skin through self-assembly, which removes the influence of the initial configurations

and hence the structures represent preferred lipid morphologies. As such, skin lipid

systems can be computationally studied at multiple levels of resolution to provide a

complete picture of how atomic-level features of lipids give rise to mesoscale properties.

Information gleaned from these studies will prove useful for a wide range of applications,

from strategies for restoring an impaired skin barrier to selectively penetrating the

skin barrier, e.g., for transdermal drug delivery.45,46
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CHAPTER 9

DEVELOPMENT OF COARSE-GRAINED MODELS FOR A MINIMAL

STRATUM CORNEUM LIPID MIXTURE

The work described in this chapter is based on a manuscript in preparation.

9.1 Introduction

In previous Chapters, I laid out the need for CG models of SC lipids. In Chapters 6

to 8, I presented the development of CG force fields for water, CER NS, and FFA.

However, this force field lacks the necessary interactions with CHOL to simulate a

realistic mixture of SC lipids. In this Chapter, the missing interactions involving CHOL

are optimized, such that the updated CG force field contains all of the interactions

necessary to simulate a mixture of CER NS, CHOL, and FFA.

Previous work in the McCabe group focused on developing a CG model of CHOL

using IBI.1 This model was unique in that it was the first structurally-derived CG

model of CHOL. The model was accurate in the sense that the fluid structure, density,

and crystal structure were accurately reproduced. However, as a result of the single-

state nature of the force field optimization, two separate force fields were required

to capture the structure in ordered and disordered phases.1 As a result, each of the

different force fields were used in separate portions of a self-assembly simulation,

the “fluid” one during the initial stages, and the “crystal” one once a self-assembled

structure had formed. Here, a single, transferable force field for CHOL is developed

to be used in self-assembly simulations of SC lipid mixtures. Therefore, the work

described herein can be viewed as a refinement of the previous CHOL model of Hadley

and McCabe.
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9.2 Models and Methods

Three distinct sets of simulations were performed. Atomistic simulations were

performed to gather target data that was used to derive the CG force field. CG

simulations were performed to optimize the CG force field, including the simulations

performed during MS IBI and surface wetting simulations. Finally, simulations using

the optimized CG force fields were used to first validate the force field and then to

study the self-assembly of lipid mixtures containing CER NS, CHOL, and FFA.

9.2.1 Atomistic Simulations

All atomistic simulations were performed with the GROMACS simulation engine2

with a 1 fs timestep. van der Waals interactions were cut off at 12�A, and set to smoothly

decay to zero between 10�A to 12�A. The particle-mesh Ewald summation method3

was used to handle long-ranged electrostatic interactions, with a real-space cutoff of

12�A. The Nosé–Hoover thermostat4 with a time coupling constant of 1 ps was used

to control the temperature. The Parinello–Rahman barostat5 was used for pressure

control, with a coupling constant of 10 ps and a compressibility of 4.5× 10−5 bar−1.

For constant-pressure bulk fluid simulations, pressure was controlled isotropically. For

constant-pressure bilayer simulations, pressure was controlled separately in the bilayer

normal and lateral directions. All lipids were modeled with the atomistic CHARMM36

force field,6 supplemented by parameters for the CER NS headgroup where necessary.7

Water was modeled with the TIP3P water model.8

A large number of different atomistic simulations were performed to gather target

data. Pure, bulk fluid CHOL simulations contained 64 CHOL molecules, and were run

at four different statepoints, as listed in Table 9.1. CHOL–water systems contained

1250 water molecules, and the corresponding number of CHOL molecules to give the

concentrations listed in Table 9.1. Bulk fluid lipid mixtures contained 64 copies of

each lipid. These systems were initialized with lipids randomly distributed throughout
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a large simulation box, and simulating for 5 ns at 800 K to randomize the positions of

the molecules. The system temperature was reduced to the target temperature while

condensing down to a realistic liquid density over 5 ns. For constant-pressure, bulk fluid

systems, the barostat was turned on, and the systems were equilibrated for 5 ns, before

collecting data over 10 ns. For constant-volume, bulk fluid systems, the systems were

equilibrated at the target density for 5 ns before collecting target data over the final

10 ns. Mixed-lipid bilayers were taken from simulations described in Chapter 4. The

dehydrated bilayers were constructed by removing the water from the corresponding

bilayer structures, replicating the bilayer in the z direction, and equilibrating with

the RWMD protocol described in Chapter 4. The CHOL–FFA C16:0 monolayer was

constructed by placing an equal number of CHOL and FFA molecules on a hexagonal

lattice with an area per lipid (APL) of 33.1�A2
. The atoms corresponding to the

headgroups of each lipid were fixed, and the system was equilibrated for 10 ns at

405 K. The system temperature was then lowered to 305 K over the course of 20 ns,

and allowed to equilibrate for 10 ns. Target data was then collected for 50 ns.

Simulations of droplets on surfaces were performed for tuning various interactions

in the CG force field. These include a water droplet on the tail side of a CHOL

monolayer surface, and CER headgroups on the headgroup side of a CHOL monolayer.

These systems were initialized by carving a sphere out of a bulk fluid of the droplet

species (i.e., either water or CER headgroups), and placing it on the specified surface.

The droplet was allowed to relax, and the simulation was run for 5 ns after the contact

angle had reached a steady-state value.

9.2.2 CG Simulations

All CG simulations were performed using the GPU-accelerated HOOMD-Blue

simulation engine with a 10 fs timestep.9,10 Constant-pressure CG simulations used

the same pressure coupling schemes as the corresponding atomistic simulations. Three
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Table 9.1: Target states used for MS IBI optimizations. The states used to optimize
each interaction are described in the text. State condition specifies the ensemble—
states with a pressure listed were simulated in the NPT ensemble; states with a density
listed were simulated in the NVT ensemble.

Name State condition Temperature, K Label for Table 7.2

Pure CHOL

Bulk fluid 1.0 atm 550 CHOL1

Bulk fluid 0.85 g/mL 400 CHOL2

Bulk fluid 0.74 g/mL 550 CHOL3

Bulk fluid 0.65 g/mL 700 CHOL4

CHOL–water

1.0 mol % CHOL 1.0 atm 305 W–CHOL1

2.0 mol % CHOL 1.0 atm 305 W–CHOL2

CER NS–CHOL

Bulk fluid 1 atm 500 CRCHL-NPT

Bulk fluid 0.74 g/mL 500 CRCHL-NVT

Bilayer 1 atm 305 CRCHL-BIL-NPT

Bilayer 38.8�A2
305 CRCHL-BIL-NVT

Dehydrated multilayer 1 atm 305 CRCHL-MULT-NPT

Dehydrated multilayer 38.8�A2
305 CRCHL-MULT-NVT

CHOL–FFA C24:0

Bulk fluid 1 atm 400 CHLFFA-NPT

Bulk fluid 0.79 g/mL 400 CHLFFA-NVT

CHOL–FFA C16:0

Monolayer 33.1�A2
/chain 305 CHLFFA-MONO

Bilayer 1 atm 305 CHLFFA-BIL-NPT

Bilayer 29.9�A2
305 CHLFFA-BIL-NVT

Dehydrated multilayer 1 atm 305 CHLFFA-MULT-NPT

Dehydrated multilayer 29.9�A2
305 CHLFFA-MULT-NVT
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Table 9.2: States used to optimize each pair potential and the weight αs,0 given to
each state. Pairs are denoted by bold text, with the states used to optimize a given
(set of) interaction(s) listed below the interaction name. The state condition names
correspond to the label given in Table 9.1.

States used αs,0

CHOL–CHOL

CHOL1 + CHOL2 + CHOL3 + CHOL4 0.7

CHOL–WATER

W-CHOL1 + W-CHOL2 0.4

CERHEADS–CHEAD

CRCHL-(NPT + NVT) 0.05

CRCHL-BIL-(NPT+NVT) 0.5

CRCHL-MULT-(NPT+NVT) 0.5

CERHEADS–CBODY

CRCHL-(NPT + NVT) 0.05

FHEAD–CHEAD

CHLFFA-(NPT+NVT) 0.05

CHLFFA-BIL-(NPT+NVT) 0.5

CHLFFA-MULT-(NPT+NVT) 0.5

FHEAD–CBODY

CHLFFA-(NPT+NVT) 0.05

TAILs–CHEAD

CHLFFA-(NPT+NVT) 0.05

TAILs–CBODY

CHLFFA-(NPT+NVT) 0.05

CHLFFA-MONO 0.5

CHLFFA-BIL-(NPT+NVT) 0.5

CHLFFA-MULT-(NPT+NVT) 0.5
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distinct sets of CG simulations were performed. The first set was run during the

MS IBI optimizations to generate the RDF for each iteration. These use the final

configuration from the corresponding atomistic simulation for the initial configuration,

except that configurations were replicated 2× in each direction for bulk systems and

3× in each lamellar lateral direction for the lamellar systems. These simulations use

the force field derived in Chapter 8, except for interactions involving CHOL beads,

which were optimized during this stage. The next set of simulations used the newly

derived CHOL interactions to validate the force field and tune, where necessary,

specific interactions. These include the surface wetting simulations used to tune

specific interactions. These simulations were performed analogously to their atomistic

counterparts, except that systems were simulated for longer times to ensure stability

of the structures. If it was found that the force field needed to be tuned based on

the surface wetting behavior, these simulations were repeated with the modified force

field. This cycle was repeated until no further modifications were required (i.e., the

CG wetting behavior matched the atomistic wetting behavior). Finally, after the CG

force field was modified and validated, the self-assembly of mixtures of the various

lipids was simulated. Systems used for self-assembly were initialized in disordered

configurations, with the lipids and water in separate domains, and the lipid phase

spanning the box in the x and y directions, but not in z; this setup was used to ensure

that the lipid phase only forms a 2D periodic structure. The size and shape of the

simulation box was initialized with a target density and aspect ratio amenable to the

formation of a periodic structure. In all systems, the density of the water phase was

set to 1.0 g/mL, and the lipid density was set to 0.8 g/mL. Given the lipid density

and composition, the lipid volume is specified, and the cross-sectional area of the

box was set based on the estimated APL and number of leaflets. For example, for

the equimolar CER NS–CHOL–FFA bilayer, the APL was estimated at 35�A2
, so the
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cross-sectional area Ac was set to

Ac = 35�A2 ∗ nlipids

2
,

where the denominator would be 4 for a stacked bilayer. To remove high-energy over-

laps, very brief NVE simulations were first performed, with a limit on the displacement

of each bead at each timestep. Next, a brief simulation at 305 K and 1 atm with an

isotropic barostat was performed to allow the total density of the system to equilibrate

while keeping the aspect ratio of the box constant. After density equilibration, the

barostat was turned off, and the systems underwent an expansion/compression process,

as described in Chapter 8. Following the expansion/compression, the semi-isotropic

barostat was turned on, and the system was annealed from 450 K to 305 K over 100 ns

to remove any defects formed during the expansion/compression phase. After anneal-

ing, the simulation was continued for at least another 200 ns, and data for analysis

was collected for at least 100 ns.

9.2.3 CG Mappings

The CG mapping for CHOL is the same as in the work of Hadley and McCabe,1

and is shown in Figure 9.1. In this mapping, the CHOL molecule is modeled as

9 separate interaction sites, of which there are 5 unique types for the nonbonded

interactions. The CHEAD (i.e., CHOL head) bead represents the hydroxyl group and

two of the carbon atoms in the A ring. The remaining carbon atoms that make up

the 4-ring structure are divided into 4 separate RING beads, as shown in Figure 9.1.

The CHOL tail attached to the D ring is divided into two distinct beads, CTAIL and

CTERM (i.e., CHOL tail and CHOL terminal). The methyl groups attached to C10

and C13 are each mapped to a CHME bead (i.e., chiral methyl), as this was shown to

help capture the molecular roughness of CHOL.1 For the remainder of this Chapter,

the RING, CTAIL, CTERM, and CHME beads are collectively referred to as CBODY.
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a)

b)

CHEAD CTAIL CTERM
RING1

RING2 RING3

RING4

CHMECHME

Figure 9.1: a) CG mapping used for CHOL. b) stick representation of the CG CHOL
model. The four interconnected RING beads are treated as the same type (RING) for
nonbonded interactions, but are distinguished here since they are treated as separate
types for bonded interactions; the two CHME beads are treated as the same type for
both bonded and nonbonded interactions. Despite being drawn as irregular shapes in
(a), the CG beads interact through spherically symmetric nonbonded potentials. Note
that the CG beads are not drawn to scale, but are drawn to emphasize connectivity.

9.2.4 CG Force Field Description and Optimization

The CG force field consists of 3 unique types of interactions: 2-body bond-stretching

interactions between bonded CG beads, 3-body angle-bending interactions between 3

consecutively bonded CG beads, and pairwise nonbonded interactions between CG

beads separated by 3 or more bonds (or on different molecules). The bond-stretching

and angle-bending interactions take the form of harmonic potentials, whereas the

nonbonded interactions take the form of numerical pair potentials (i.e., they are not

constrained to a functional form). The bonded interactions for CER NS and FFA

were derived and reported in Chapter 7. The nonbonded interactions for CER NS,

FFA, and water were reported in Chapters 7 and 8.

In this Chapter, as in Chapter 7, bonded interactions for CHOL were derived

using the distributions sampled in the atomistic simulations, following the method of
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Table 9.3: Bond parameters for the CG CHOL model.

Name r0, �A Kr, kcal/(mol�A2
)

CHEAD–RING1 4.27 125.5

CHEAD–RING2 2.58 245.9

RING1–RING2 3.57 324.1

RING2–RING3 4.20 132.2

RING3–RING4 3.21 362.6

RING1–RING4 4.48 152.1

RING1–RING3 3.60 352.3

RING4–CTAIL 3.69 50.3

CTAIL–CTERM 4.22 13.2

RING2–CHME 2.37 65.4

RING3–CHME 2.66 116.2

Milano et al.11 11 bond and 23 angle types are present in the CG model, and each

have unique stiffnesses and equilibrium separations. The parameters used for each

bond/angle type are listed in Tables 9.3 and 9.4.

MS IBI was used to optimize a number of sets of nonbonded pair interactions.

This was done because sets of pair potentials were derived sequentially, in that the

CHOL–CHOL interactions were first optimized, and then used in the optimization of

the CHOL–WATER interactions. Finally, with the CHOL–CHOL and CHOL–WATER

interactions optimized and validated, they were used during the CG simulations in

MS IBI for optimizing the CER–CHOL and CHOL–FFA cross-interactions.

The optimization of the pure CHOL interactions involved 4 target states, each a bulk

fluid of CHOL molecules, as listed in Table 9.2. The CHOL–WATER interactions were

optimized with target data from just two states, as listed in Table 9.2. The optimization

CER–CHOL and CHOL–FFA cross-interactions were carried out simultaneously using

target data from the states listed in Table 9.2. Following the work in Chapters 7

and 8, interactions were optimized against target data from representative states, that

is, states where the interactions are thought to play a role in the structure. Following
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Table 9.4: Angle parameters for the CG CHOL model.

Name θ0, deg Kθ, kcal/(mol rad2)

RING1–CHEAD–RING2 56.3 1132.6

RING2–RING1–RING4 115.1 663.1

RING3–RING1–RING4 44.8 3617.7

RING2–RING1–RING3 71.0 1323.0

CHEAD–RING1–RING4 151.2 351.3

CHEAD–RING1–RING3 144.3 180.2

CHEAD–RING1–RING2 36.7 2941.4

RING1–RING2–RING3 54.0 2678.8

CHEAD–RING2–RING3 139.4 597.5

CHEAD–RING2–RING1 85.4 1011.1

CHEAD–RING2–CHME 92.8 75.5

RING3–RING2–CHME 60.9 436.6

RING1–RING2–CHME 49.7 643.4

RING2–RING3–CHME 133.2 77.5

RING1–RING3–RING4 81.1 1329.5

RING1–RING3–RING2 53.4 2787.1

RING4–RING3–CHME 53.6 671.7

RING2–RING3–RING4 133.4 446.5

RING1–RING3–CHME 95.5 354.5

RING1–RING4–RING3 52.5 2675.5

RING3–RING4–CTAIL 94.4 276.1

RING1–RING4–CTAIL 144.3 180.2

RING4–CTAIL–CTERM 125.0 7.6
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this line of reasoning, the specific pair interactions were optimized at the states listed

in Table 9.2. In this manner, the lipid–lipid headgroup (i.e., hydrophilic–hydrophilic)

interactions were all optimized at bulk states to capture the interactions in disordered

configurations, and bilayer and stacked bilayer states to capture the headgroup

packing in the lamellar phases. The hydrophobic–hydrophobic (i.e., TAILs–CBODY)

interactions were optimized at bulk states to capture the behavior in disordered

phases, and also at the bilayer, stacked bilayer, and monolayer states to capture the

in-plane packing relevant to the lamellar phases. The mixed hydrophobic–hydrophilic

interactions were only optimized at the bulk states, as there are much fewer of those

interactions in the lamellar phases and hence are not expected to drive any structural

behavior at those states.

Optimizations were carried out using the open-source MS IBI Python library.12

The optimizations were terminated when the value of the fitness function defined in

Equation (5.5) changed by less than 0.01 for all pairs at all states between successive

iterations.

Analysis of the CG systems was performed the same as described in Chapters 7

and 8 and outlined in Appendix A.

9.3 Results

9.3.1 Forcefield Derivation

Pure CHOL and CHOL–WATER Overall, excellent agreement was found between

the target and CG RDFs. In any given CHOL system, there will be far more RING-

RING interactions, so this pair is used as a representative pair for the force field;

the optimized pair potential, along with the target and CG RDFs at two of the

states used in the optimization, are shown in Figure 9.2. As expected based on the

excellent agreement in the RDFs, the CG and atomistic models show good agreement

in the density of the NPT target state, with values of 0.732± 0.005 g/mL (CG) and
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0.73± 0.01 g/mL (atomistic).
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Figure 9.2: RDFs and pair potential from the pure CHOL force field optimization.
Top: target(black) and CG (ref) RDFs from the 400 K NVT state; middle: target and
CG RDFs at the 550 K NPT state; bottom: pair potential that yields the CG RDFs
above.

Overall, good agreement was found between the CG and target RDFs for interac-

tions between CHOL and water. However, as discussed in Chapter 7, RDF matching

does not ensure that the partitioning behavior will be replicated. Therefore, to test

the hydrophobicity of the CHOL beads, the wetting behavior of water on a CHOL

monolayer was investigated. Using the optimized force field, the water tended to

spread on the CBODY surface, forming a contact angle of 82°. This result indicates

that the CBODY surface is more hydrophilic than the corresponding atomistic surface,

which gave a contact angle of 127°. The CBODY–WATER interactions were scaled to

be less attractive, and a scaling value of 0.4 was found to give good agreement with

the atomistic contact angle. In contrast, water was found to readily wet the CHEAD

surface, and therefore the CHEAD–WATER interaction was not modified from its
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optimized form.

After the CHOL–CHOL and CHOL–WATER pair potentials were optimized and

modified, they were used in the optimization of the mixed-lipid interactions. Two sets

of pair potentials were optimized: CHOL–FFA and CER–CHOL. Although CER and

FFA tails both consist of TAIL beads, the interactions between the TAIL and CHOL

beads were only optimized with data from CHOL–FFA mixtures for simplicity. As in

Chapter 7, interactions were optimized using target data from states where specific

interactions are thought to play an important structural role, e.g., target data from

lamellar states is not used in the interactions between lipid headgroups and tails. In all

cases, more weight (through the α term of the MS IBI pair potential update formula)

was given to the lamellar states (α = 0.5) than the bulk fluid states (α = 0.05). The

results of these sets of optimizations are discussed separately below.

CHOL–FFA The TAIL–CBODY RDFs are generally reproduced with a fairly high

degree of accuracy, which is important since there will be more of these interactions in

any given system containing CHOL. The TAIL–RING interactions are likely dominant

in these system because of the number of each of these beads, therefore, this pair is a

good representation of the TAIL–CBODY interactions. The TAIL–RING RDFs are

shown in Figure 9.3, where it can be seen that the target RDFs are well-reproduced

with the CG model. The CHEAD–FHEAD RDFs are decently captured at the lamellar

states, as shown in Figure 9.4. Interestingly, the best fit is found at the stacked bilayer

state, even compared to the bilayer state. This is likely a result of the relative locations

of the first peaks: at the bilayer state, the first peak in the RDF is at a larger separation

compared to the stacked bilayer and bulk states. To compensate, the pair potential

shifts the first RDF peak to smaller separation values. Like in previous optimizations,

the fits at the lamellar states are better than at the bulk states as a result of the

lamellar states being given a larger weight in the optimization process. The RDFs

between the mixed hydrophilic–hydrophobic beads, e.g., TAIL–CHEAD (shown in

194



Figure 9.5), are captured with less accuracy than in previous Chapters. This may be

a result of the shape of CHOL, which is more complex than the simpler chain-like

CER and FFA molecules. Despite the discrepancies, the density of the bulk fluid

NPT state was found to be 0.81± 0.03 g/mL, which is in good agreement with the

atomistic value of 0.79± 0.01 g/mL. Additionally, in a lamellar configuration, there

are likely to be very few of these types of interactions. Therefore, these deviations in

the RDF are deemed acceptable considering the target objective of this force field.

CER NS–CHOL Only the CERHEADs–CHEAD and CERHEADs–CBODY in-

teractions are considered here, since the TAILs–CHOL interactions were optimized

using target data from CHOL–FFA systems. In general, as shown in Figure 9.6, the

CERHEADs–CHEAD interactions are accurately reproduced at the lamellar states.

As seen previously, the fit is much better at these states compared to the bulk fluid

states, as a result of the higher weight given to the lamellar states in the optimiza-

tion process. Despite the accurate RDFs and stable lamellar phases, preliminary

self-assembly simulations found that CER–CHOL mixtures did not form bilayer or

multilayer structures, in contrast to the stable bilayers simulated with the atomistic

model. To investigate, the wetting behavior of CER headgroups on a CHOL headgroup

surface was examined. Here, the surface was a CHOL monolayer where the CTERM

beads were fixed, and the droplet was composed of CER headgroups (i.e., no tails) and

interacted with the CHEAD side of the monolayer. The CER headgroups fully wetted

the CHEAD surface with the atomistic model. However, with the CG model, the CER

headgroups tended to form a droplet on the surface, indicating an imbalance in the

CERHEADs–CERHEADs and CERHEADs–CHEAD interactions. This imbalance

was corrected by systematically making the CERHEADs–CHEAD interactions more

attractive until the CER headgroups wetted the surface with the atomistic model. It

was found that a scaling factor of 1.5 was required to give the correct wetting behavior;

therefore, the derived interactions scaled by 1.5 were used for the rest of this work.
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Figure 9.3: TAIL–RING RDFs and pair potential. From top to bottom: RDFs from
the monolayer state; RDFs at the NPT bilayer state; RDFs at the stacked bilayer
state; RDFs at the bulk fluid NPT state; and the pair potential that yields the CG
RDFs above.

The CERHEADs–CBODY interactions, which were optimized using target data from

only the bulk fluid states, generally show a good match with the target RDFs.

9.3.2 Force Field Validation

After optimizing and modifying (e.g., based on wetting simulations) all of the

lipid–lipid cross-interactions, a set of validation simulations using the final force field
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Figure 9.4: CHEAD–FHEAD RDFs and pair potential. From top to bottom: RDFs
from the bilayer state; RDFs from the stacked bilayer state; RDFs from the bulk fluid
NPT state; and the pair potential that yields the CG RDFs above.

was performed. The aim of these simulations was to validate the force field beyond the

individual pair interactions by isolating binary lipid–lipid cross-interactions (i.e., CER

NS–CHOL and CHOL–FFA). To this end, two-component bilayers were simulated and

compared to the corresponding atomistic simulations. Note that only CER NS–CHOL

and CHOL–FFA bilayers are considered here, as the CER NS–FFA interactions were

validated in Chapter 8.

As shown in Table 9.5, the CG force field accurately reproduces the structural

properties of the bilayers simulated with the atomistic model. For both bilayers, the

CG APL is within 2.5% of the atomistic APL, showing that the in-plane packing of

the lipids is accurately described with the CG model. The thickness of the CG CER
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Figure 9.5: TAIL–CHEAD RDFs and pair potential. From top to bottom: RDFs
from the bulk fluid NPT state; RDFs from the bulk fluid NVT state; and the pair
potential that yields the CG RDFs above.

NS–CHOL bilayer shows almost perfect agreement with the atomistic bilayer, while

the CG model underpredicts the thickness by ∼7.5%. In both cases, the nematic

order of the lipid tails is underpredicted with the CG model; however, the relatively

high values calculated for each bilayer with each model indicates that both models

predict highly ordered bilayers. In both cases, the CG model overpredicts the tilt

angle, although only slightly. These results illustrate the structural accuracy of the

CG model derived in this work.

9.3.3 Self-Assembly Into Lamellar Structures

Using the validated force fields, the self-assembly of SC lipid mixtures into multilayer

structures was investigated. The purpose of these studies was twofold: first, we ensure

that an equimolar mixture or CER NS C24, CHOL, and FFA C24:0 will form a
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shown by solid black lines, and CG RDFs are shown as the dashed red lines. Each
column corresponds to a given pair, listed at the top of that column.

multilayer structure, as similar systems have been shown to form lamellar structures

experimentally.14 Next, we examine the effect of the CHOL composition on the self-

assembled structures. To this end, following the self-assembly protocol described

in Section 9.2.2, the self-assembly of these mixtures with varying compositions was

investigated. First, an equimolar mixture was simulated. Next, systems with decreasing

amounts of CHOL were simulated, with 20%, 14%, and 9% CHOL. Finally, mixtures

with increasing amounts of CHOL were simulated, with 50%, 62.5%, and 75% CHOL.

Focusing first on the equimolar CER NS C24, CHOL, FFA C24:0 system, we find
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Table 9.5: Properties of the atomistic (AA) and CG bilayers used for the validation
of the CG force field. Note that the CHOL–FFA bilayer is composed of FFA C16:0,
as this system contains the required hydrophobic mismatch to form a stable bilayer
structure.13

System APL, �A2
d, �A S2, Tilt, deg

CER NS C24–CHOL

AA 38.8± 0.3 47.8± 0.1 0.958± 0.007 8.7± 0.8

CG 39.74± 0.06 48.0± 0.1 0.931± 0.003 10.8± 0.2

CHOL–FFA C16:0

AA 29.92± 0.09 35.9± 0.2 0.951± 0.004 10.8± 0.5

CG 30.58± 0.08 33.22± 0.05 0.908± 0.004 13.0± 0.3

that this mixture reproducibly forms multilayer structures. A representative multilayer

structure is shown in Figure 9.7. Analysis of the CER conformations of the lipids in

the middle leaflets reveals that 33± 3% are in extended conformations, compared to

∼15% for pure CER NS C24 systems and ∼25% for equimolar CER NS–FFA C24:0

mixtures. Therefore, it appears that the presence of CHOL increases the tendency of

the lipids to form extended configurations. As summarized in Table 9.6, when the

amount of CHOL in the system is reduced, the fraction of CERs adopting extended

conformations remains mostly constant initially, but drops to 28% with 9 mol % CHOL,

providing more evidence that the presence of CHOL increases the fraction of extended

CERs.

When the fraction of CHOL was increased to 50% and higher, multilayer structures

did not form. Like the other systems, the lipids remain phase-separated from the

water, and the hydrophobicity of the lipid tails allow well-ordered monolayer structures

to form at the lipid–water interface. However, the lipids away from the lipid–water

interface did not form lamellar structures, but rather more inverse-micellar structures

with the lipid headgroups forming cylindrical tubes, as shown in Figure 9.8. This

structure may be a result of the shape of CHOL, which is bulkier and more cone-shaped

than the more cylindrical CER and FFA. This cone shape of CHOL leads to more
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Figure 9.7: A self-assembled multilayer composed of equimolar amounds of CER NS
C24, CHOL, and FFA C24:0. Lipids colored as follows: blue, water; silver, TAILs
beads; yellow, AMIDE and MHEAD2 beads; purple, FHEAD beads; black, CHEAD
beads; tan, CBODY beads; and the simulation cell is drawn in black.

empty space around the lipid headgroups, disrupting the planar packing needed to

form a lamellar structure. When there is less CHOL in the system, this effect is not as

pronounced. However, when the fraction of CHOL increases above a certain amount

(50 mol % in this case), it may lead to lamellar instability. Further investigation into

this effect is required to explain this phenomenon.
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Table 9.6: Percentage of CER NS molecules within the middle leaflets that adopt
extended conformations as a function of system composition. †Taken from Chapter 7.
‡Taken from Chapter 8.

CER:CHOL:FFA % extended

1:0:0† 15

1:0:1‡ 25

5:1:5 28± 2

3:1:3 33± 3

2:1:2 34± 2

1:1:1 33± 3

Figure 9.8: A snapshot of the inverse-micellar structures that formed within the lipid
phase of the system with 62.5 mol % CHOL. Lipids colored as follows: blue, water;
silver, TAILs beads; yellow, AMIDE and MHEAD2 beads; purple, FHEAD beads;
black, CHEAD beads; tan, CBODY beads; and the simulation cell is drawn in black.
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CHAPTER 10

CONCLUSIONS AND OUTLOOK

The prevalence of using simulation for studying SC lipid systems is growing, and

future advances in computing power will only make this trend continue. However,

there are certain challenges that must be overcome if SC lipid simulations are to

continue aiding researchers. The work described in this Thesis is an important step

forward in addressing these challenges.

In Chapter 4, a common challenge in simulating SC lipid systems, namely, difficult

equilibration, is addressed by proposing and validating a simulated tempering-inspired

equilibration methodology for gel-phase bilayers. We show that this method efficiently

equilibrates initial bilayer structures, allowing systems starting from different config-

urations to relax to the same structure. We also show that running at an elevated

temperature, as is often done to avoid equilibration issues,1–3 is less efficient than

the proposed method for equilibrating systems. Therefore, the proposed method, or

similar methods, should be used to equilibrate dense, gel-phase bilayer systems to

ensure that the results are not overly influenced by the initial configuration. Also in

Chapter 4, we investigated a series of SC lipid bilayers, showing that the main effect

of a shorter CER fatty acid tail length is on the interior of the bilayer, where less tail

length asymmetry leads to a smaller interdigitation region, yielding a thinner bilayer.

The equimolar CER NS, CHOL, FFA C24:0 system was shown to accurately reproduce

the lamellar structure of the SPP from a similar experimental system,4,5 and therefore

conclusions drawn from studies on this system also likely apply to the SPP of the SC

lipid matrix. While preassembled bilayer structures are useful to study, they are not

likely to undergo any significant lamellar transitions in practical simulation timescales;

therefore, self-assembled structures are needed to probe the molecular organization of
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lipids in the SC, requiring CG models.

In Chapter 5, a multistate extension to iterative Boltzmann inversion, MS IBI, is

developed, showing that state-transferable CG force fields can be developed. Specifi-

cally, we show that a CG force field optimized with MS IBI more accurately reproduces

the structural properties of both gel and fluid phase alkane monolayers than a CG

force field optimized with the single-state method. As many chemical processes studied

with CG molecular models are inherently multistate, it is important that the chosen

force field is accurate across different states. MS IBI presents a suitable method to

address this transferability issue of CG models.

In Chapters 6 to 9, MS IBI was used to develop a CG force field that includes

the interactions between water, CER NS, FFA, and CHOL. Chapter 6 describes the

development of the CG water model, where MS IBI allowed a model to be developed

that captures the fluid structure, density, and surface tension of water. This result

suggests that MS IBI-derived force fields can, at least to some degree, reproduce

both structural and thermodynamic properties. In Chapter 7, a structurally-accurate

CG model of CER NS was developed. This work in particular highlights a specific

issue related to structurally-derived CG force fields, that is, that pair RDFs may not

contain enough information to account for partitioning behavior. To address this

issue, a simulated wetting procedure to tune specific interactions was proposed and

used to fix the apparent hydrophobicity of the lipid tails. This wetting procedure is

not specific to CG models, and hence could be used when developing new atomistic

force fields. The self-assembly of SC lipid mixtures is investigated in Chapters 7

to 9, where it is observed that mixtures with specific compositions can form stable

multilayer structures. The CERs are found to mainly adopt hairpin configurations,

but a significant fraction adopt extended conformations. These results lend support

to the proposed “sandwich” models of lipid organization in the SC,6,7 but no definite

claims can be made from simple mixtures that lack the acylceramides. However, this
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work is a solid foundation upon which to build future work.

10.1 Recommended Future Work

To elucidate how the CER tail length influences the permeability of membranes

composed of SC lipid mixtures, permeability calculations on these systems should be

performed to allow relationships between the lipid structure and barrier properties

to be uncovered. While some effort has been made on this front,8 mixtures of CERs

with different tail lengths have not been investigated, despite their connection to the

SC lipid matrix, especially in diseased skin.

MS IBI should be tested for its range of validity. For example, IBI was shown to

be inadequate to yield force fields that describe polymers in both bulk and confined

environments.9,10 A general set of principles that describes the range of transferability

of MS IBI-derived force fields can yield would be useful. This information would

aid researchers in choosing a force field development method, and ultimately save

resources for more valuable endeavours.

To study the molecular organization of the SC lipid matrix with simulation,

CG models of other ceramides need to be developed, especially the acylceramides.

Preliminary tests of transferring the OH to make CER NP and CER AP have been

promising thus far, but the validity of this approach should be confirmed. It has

been shown that a LPP can form in a simple mixture of CERs (including EOS),

CHOL, and FFA,11 and thus this system is amenable to simulation. Examining the

self-assembly of the LPP could provide a wealth of information into the molecular

organization of native SC, so effort should be focused on developing a CG model of

CER EOS. However, this task requires atomistic simulations of CER EOS, but it

is currently unknown how to initialize simulations of CER EOS because a detailed

description of its structure in lamellar systems is lacking. Therefore, collaboration with

experimentalists should be pursued so that physically relevant atomistic simulations
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can be performed to gather meaningful atomistic data with which to optimize a CG

force field.

Finally, self-assembled structures of CG models should not be the end goal, but

rather a means to an end. Since we are ultimately interested in connecting simulation

results to experimental results, atomistic structures are necessary to compare properties

on the atomistic level, e.g., hydrogen bonding. Therefore, reverse-mapping back to the

atomistic level from self-assembled CG structures should be pursued, allowing a more

direct comparison to experimental systems (e.g., through simulated neutron scattering

length density profiles, as in Chapter 4). This would also allow the stability of the CG

structures to be probed with more detailed models, providing more confidence that

the self-assembled structures accurately represent reality. Reverse-mapped structures

should also be used for permeability studies, since the multilayer structures more

accurately represent the native SC lipid matrix. This would allow comparisons

with existing permeability studies,8,12 and could be used to validate the bilayer

approximation currently used in simulation studies of SC lipids.
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Mechelen, J. B., Demé, B., and Bouwstra, J. A. Disposition of ceramide
in model lipid membranes determined by neutron diffraction. Biophysical Journal
100, 2011, pp. 1481–1489.

[5] Mojumdar, E. H., Groen, D., Gooris, G. S., Barlow, D. J., Lawrence,
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APPENDIX A

Analysis

A.1 General Structural Properties

Unless otherwise stated, the area per lipid (APL) is always taken to be the cross-

sectional area of the simulation box divided by the number of lipids in each leaflet.

Note that for self-assembly simulations, this method means the different monolayers

(i.e., bilayer/multilayer leaflets) will have different APL values.

Several quantities depend on the “direction” of the lipid tails, which is defined

as the long axis of the lipid tail. The long axis of a lipid tail is taken to be the

eigenvector corresponding to the minimum eigenvalue of the inertia tensor, which is

calculated from the positions and masses of the atoms in the lipid tail. Two tails are

defined for CER NS, one for each of the fatty acid (FA) and sphingosine (SPH) tails.

For atomistic simulations, the FA tail is defined as the alpha carbon of the CER FA

plus the next 15 carbons and their associated hydrogens. Note that this definition

corresponds to the entire CER NS C16 tail, but neglects the terminal 8 methyl groups

of the CER NS C24 tail so as to remove the influence of the low tail density region

on the inertia tensor. The SPH tail is defined as the terminal 13 methyl groups of

the SPH base. CHOL is treated as a single tail, and as such all atoms are included

in the inertia tensor calculation. For FFAs, only the first 16 carbons (counting from

the headgroup) are included in the calculation, again to remove the influence of the

low density tail region on the inertia tensor. For CG simulations, the same definitions

are used, in that the terminal 3 CG beads of the CER NS C24 FA and FFA tails are

neglected in the inertia calculation and all CG beads are used to calculate the inertia

tensor of CHOL.

The tilt angle of the lipid tails is defined as the average angle between the long
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axis of each lipid tail and the bilayer/multilayer normal, i.e., the z-axis. The area per

tail (APT) is defined as the cross-sectional area of the simulation box divided by the

number of tails in each leaflet (i.e., 2 for CER, 1 each for CHOL and FFA), multiplied

by the cosine of the tilt angle to map the area into a plane perpendicular to the lipid

tails.

The nematic order parameter S2, which provides a measure of the global order

of the lipid tails, was calculated as follows.1 The long axes of the lipid tails in each

leaflet are used to construct a nematic tensor Qαβ of the system, defined as

Qαβ = N−1
T

NT∑
i=1

3

2
uiαuiβ −

1

2
δαβ,

where NT is the number of tails, u is the long vector of the lipid tail, α and β are

looping variable that correspond the coordinate axes (i.e., x, y, and z) and δ is the

Kronecker delta. The largest eigenvalue of Q gives the nematic order parameter S2 of

the components, and the corresponding eigenvector is the “director” of the system.

Note, for systems that have a small population of lipids lying flat in between the

individual leaflets, the lipids that are lying flat are not included in the APL, APT, tilt

angle, or S2 calculations such that these metrics quantify the structure of the leaflets

and not defects in the system. Also note that for bilayer and multilayer systems, the

tilt angle and nematic order parameter of the lipid tails was calculated for each leaflet

individually, and reported values are the average of the values for each leaflet.

Density profiles were constructed by histogramming the positions of particles

(atoms in atomistic simulations or CG beads in CG simulations) in specific groups,

weighted by the particle mass, along the relevant axis. The histogram was then

normalized by the number of frames and the bin width to get average density profile

per frame. Unless otherwise noted, a bin width of 1�A was always used.

Bilayer thicknesses were calculated from the water density profiles. The water
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density profiles were used to calculate the lipid–water interfaces, defined as the z value

where the water density drops from the bulk value to 1/e of the bulk value. The

bilayer thickness was calcuated as the distance between the lipid–water interface on

either side of the bilayer. A schematic of this calculation is shown in Figure A.1.
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0.25

0.50

0.75

1.00
(z

), 
g/

m
L

bulk density

bulk density / e

bilayer thickness

interfacial width

Figure A.1: Schematic of the bilayer thickness calculation. The gray line is the
water density profile across the bilayer, from which the bulk value is calculated. The
intersection of the water density profile and the ρ = ρbulk/e line defines the edges of
the bilayer. The width of the lipid-water interface is shown as the width of the purple
rectangles.

A.2 Contact Angle

To tune the hydrophobic/hydrophilic interactions in the CG force fields, simulations

were performed of droplets on lipid surfaces. The hydrophobicity/hydrophilicity of

particular beads was tuned by scaling the CG pair interaction of interest (e.g., TAIL-

WATER) until the CG contact angle agreed with the contact angle from atomistic

simulations. To calculate the contact angle, the density profile of an ideal spherical

cap was fit to the density profile of the droplet fluid (e.g., water) on the surface (e.g.,

FFA TAILs), with the assumption that the fluid forms a spherical cap on the surface.

The density profile fit gives the height h of the spherical cap, along with the radius of
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the sphere R, from which the contact angle ϕ can be calculated as

ϕ = 90°− sin−1

(
R− h
R

)
.

A.3 Hydrogen Bonding

Hydrogen bonding analysis was performed in the same manner in all Chapters.

Hydrogen bond donors were identified as nitrogen or oxygen atoms bonded to a

hydrogen, and hydrogen bond acceptors were defined as any nitrogen or oxygen atom.

Thus, a hydrogen bond is represented as D—H· · ·A, where D denotes the donor atom,

H is the hydrogen involved in the hydrogen bond (and is covalently bonded to the

donor atom), and A denotes the acceptor atom. A set of geometric criteria was used

to determine if a hydrogen bond exists between a donor/acceptor pair, following the

definition used by Ferrario et al.:2 a hydrogen bond is considered to exist if 1) the

donor–acceptor distance rAD ≤ 3.5�A, 2) the hydrogen–acceptor distance rAH ≤ 2.6�A,

and 3) the hydrogen–donor–acceptor angle θHDA ≤ 30°.
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APPENDIX B

Appendix to Chapter 4

B.1 Structural Properties
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Figure B.1: Nematic order parameter S2 of the systems considered in this Chapter.
Note that the abscissa gives the fraction of CER NS that is eCER, not the total
fraction of eCER in the system.

Table B.1: Hydrogen bonds between lipid components for the ternary system with a
1:1 eCER:uCER ratio.

eCER uCER CHOL FFA

eCER 2.2 2.9 4.3 1.4

uCER 2.9 1.5 3.7 1.1

CHOL 4.3 3.7 0.0 0.7

FFA 1.4 1.1 0.7 1.0
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Figure B.2: Bilayer thickness, as calculated from the water density profile, as a function
of system composition. Note that the abscissa gives the fraction of CER NS that is
eCER, not the total fraction of eCER in the system.

Table B.2: Hydrogen bonds between lipid components for the 2:1 CER NS:CHOL
system with a 1:1 eCER:uCER ratio.

eCER uCER CHOL

eCER 7.3 12.1 6.4

uCER 12.1 6.9 5.0

CHOL 6.4 5.0 0.0
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Figure B.3: Total lipid density profile (black line), and density profiles of the terminal
part of the CER NS C24 fatty acid (red line) and FFA C24:0 tails (blue line).
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Figure B.4: Thickness of the lipid–water interface for each system considered. Note
that the abscissa gives the fraction of CER NS that is eCER, not the total fraction of
eCER in the system.

Table B.3: Hydrogen bonds between lipid components for the 1:1 CER NS:CHOL
system with a 1:1 eCER:uCER ratio.

eCER uCER CHOL

eCER 5.2 5.8 6.0

uCER 5.8 5.7 5.1

CHOL 6.0 5.1 0.1
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Figure B.5: CHOL–CHOL coordination number (CN) as a function of system compo-
sition. The light gray lines represent the CN value for random mixing in the bilayer
plane. Note that the abscissa gives the fraction of CER NS that is eCER, not the
total fraction of eCER in the system.
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Figure B.6: Localization of different components calculated via neutron diffraction on
selectively deuterated lipid samples (experiment) and from this work (simulation). a)
uCER FA tail; b) CHOL tail; c) CHOL headgroup. Note that the curves were shifted
such that the minima lie at ρ = 0 and scaled to have the same height.
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APPENDIX C

Appendix to Chapter 7

C.1 4-Site CER NS Headgroup RDFs and Pair Potentials
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Figure C.1: AMIDE–AMIDE RDFs and pair potential. From top to bottom: dehy-
drated NPT bilayer RDFs; dehydrated NVT bilayer RDFs; isotropic NVT fluid RDFs;
isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.2: AMIDE–MHEAD2 RDFs and pair potential. From top to bottom:
dehydrated NPT bilayer RDFs; dehydrated NVT bilayer RDFs; isotropic NVT fluid
RDFs; isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.3: MHEAD2–MHEAD2 RDFs and pair potential. From top to bottom:
dehydrated NPT bilayer RDFs; dehydrated NVT bilayer RDFs; isotropic NVT fluid
RDFs; isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.4: MHEAD2–OH1 RDFs and pair potential. From top to bottom: dehydrated
NPT bilayer RDFs; dehydrated NVT bilayer RDFs; isotropic NVT fluid RDFs;
isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.5: MHEAD2–OH2 RDFs and pair potential. From top to bottom: dehydrated
NPT bilayer RDFs; dehydrated NVT bilayer RDFs; isotropic NVT fluid RDFs;
isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.6: OH1–OH1 RDFs and pair potential. From top to bottom: dehydrated
NPT bilayer RDFs; dehydrated NVT bilayer RDFs; isotropic NVT fluid RDFs;
isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.7: OH2–OH2 RDFs and pair potential. From top to bottom: dehydrated
NPT bilayer RDFs; dehydrated NVT bilayer RDFs; isotropic NVT fluid RDFs;
isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.8: AMIDE–WATER RDFs and pair potential. From top to bottom: CER
headgroups in water RDFs; hydrated NPT bilayer RDFs; final derived pair potential.

 0.00
 0.20
 0.40
 0.60
 0.80
 1.00

g(
r)

Target
CG

 0.00
 0.25
 0.50
 0.75
 1.00

g(
r)

Target
CG

4 8 12
r, Å

-0.60

-0.40

-0.20

 0.00

V(
r),

 kc
al/

m
ol

Figure C.9: MHEAD2–WATER RDFs and pair potential. From top to bottom: CER
headgroups in water RDFs; hydrated NPT bilayer RDFs; final derived pair potential.
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Figure C.10: OH1–WATER RDFs and pair potential. From top to bottom: CER
headgroups in water RDFs; hydrated NPT bilayer RDFs; final derived pair potential.
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Figure C.11: OH2–WATER RDFs and pair potential. From top to bottom: CER
headgroups in water RDFs; hydrated NPT bilayer RDFs; final derived pair potential.
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C.2 3-Site CER NS Headgroup RDFs and Pair Potentials
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Figure C.12: NHEAD–NHEAD RDFs and pair potential. From top to bottom:
dehydrated NPT bilayer RDFs; isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.13: NHEAD–MHEAD RDFs and pair potential. From top to bottom:
dehydrated NPT bilayer RDFs; isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.14: NHEAD–SHEAD RDFs and pair potential. From top to bottom:
dehydrated NPT bilayer RDFs; isotropic NPT fluid RDFs; final derived pair potential.

230



 0.00
 1.50
 3.00
 4.50
 6.00

g(
r)

Target
CG

 0.00
 0.40
 0.80
 1.20
 1.60

g(
r)

Target
CG

4 8 12
r, Å

-0.16

-0.08

 0.00

 0.08
V(

r),
 kc

al/
m

ol

Figure C.15: MHEAD–MHEAD RDFs and pair potential. From top to bottom:
dehydrated NPT bilayer RDFs; isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.16: MHEAD–SHEAD RDFs and pair potential. From top to bottom:
dehydrated NPT bilayer RDFs; isotropic NPT fluid RDFs; final derived pair potential.
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Figure C.17: SHEAD–SHEAD RDFs and pair potential. From top to bottom:
dehydrated NPT bilayer RDFs; isotropic NPT fluid RDFs; final derived pair potential.
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