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Abstract

Major depression is a common and severe psychiatric disorder with a highly polygenic

genetic architecture. Genome-wide association studies have successfully identified multiple

independent genetic loci that harbour variants associated with major depression, but the

exact causal genes and biological mechanisms are largely unknown. Tissue-specific net-

work approaches may identify molecular mechanisms underlying major depression and

provide a biological substrate for integrative analyses. We provide a framework for the iden-

tification of individual risk genes and gene co-expression networks using genome-wide

association summary statistics and gene expression information across multiple human

brain tissues and whole blood. We developed a novel gene-based method called eMAGMA

that leverages tissue-specific eQTL information to identify 99 biologically plausible risk

genes associated with major depression, of which 58 are novel. Among these novel associ-

ations is Complement Factor 4A (C4A), recently implicated in schizophrenia through its

role in synaptic pruning during postnatal development. Major depression risk genes were

enriched in gene co-expression modules in multiple brain tissues and the implicated gene

modules contained genes involved in synaptic signalling, neuronal development, and cell

transport pathways. Modules enriched with major depression signals were strongly pre-

served across brain tissues, but were weakly preserved in whole blood, highlighting the

importance of using disease-relevant tissues in genetic studies of psychiatric traits. We

identified tissue-specific genes and gene co-expression networks associated with major

depression. Our novel analytical framework can be used to gain fundamental insights into

the functioning of the nervous system in major depression and other brain-related traits.
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Author summary

Although genome-wide association studies have identified genetic risk variants associated

with major depression, our understanding of the mechanisms through which they influ-

ence disease susceptibility remains largely unknown. Genetic risk variants are highly

enriched in non-coding regions of the genome and affect gene expression. Genes are co-

expressed and regulate the activity of one another to form highly organized networks.

In this study, we generate tissue-specific gene co-expression networks, each containing

groups of functionally related genes or “modules”, to delineate gene co-expression and

thereby facilitate the identification of gene processes in major depression. We developed

and applied a novel research methodology (called “eMAGMA”) which integrates genetic

and transcriptomic information in a tissue-specific analysis to identify risk genes and test

for their enrichment in gene co-expression modules. Using this novel approach, we iden-

tified gene modules in multiple tissues that are both enriched with major depression

genetic association signals and biologically meaningful pathways. We also show the dis-

ease implicated gene modules are strongly preserved across brain regions, but not in

whole blood, suggesting unique patterns of gene co-expression within the two tissue

types. Our novel analytical framework provides important insights into the functional

genetics major depression and can be applied to other neuropsychiatric disorders.

Introduction

Major Depression is a highly disabling mental health disorder that accounts for a sizable pro-

portion of the global burden of disease. The global lifetime prevalence of major depression is

around 12% (17% of women and 9% of men) [1], and ranks as the fourth most disabling disor-

der in Australia in terms of years lived with disability [2]. Major Depression has a complex

molecular background, driven in part by a highly polygenic mode of inheritance. A recent

genome-wide association study (GWAS) meta-analysis of 135,458 major depression cases and

344,901 controls identified 44 loci associated with the disorder [3]. A meta-analysis of this

study with two other GWAS [4,5] (246,363 cases and 561,190 controls) identified 102 indepen-

dent variants associated with major depression [6], 87 of which were replicated in an indepen-

dent sample of 1,509,153 individuals. Detailed functional studies showed these loci harboured

common (minor allele frequency, MAF > 0.01) single nucleotide polymorphisms (SNPs) that

regulate the expression of multiple genes in brain tissue with putative roles in central nervous

system development and synaptic plasticity. Furthermore, large scale gene expression studies

have identified altered immune pathways in whole blood [7,8]. These results suggest disease-

associated SNPs modify major depression susceptibility by altering the expression of their tar-

get genes in a tissue-specific manner. Genes regulate the activity of one-another in large co-

expression networks. Therefore, SNPs may not only affect the activity of a single target gene,

but the activity of multiple biologically related genes within the same co-expression network to

influence the manifestation of a phenotype. The integration of GWAS SNP genotype data with

gene co-expression networks across multiple tissues may be used to elucidate biological path-

ways and processes underlying highly polygenic complex disorders such as major depression.

Genome-wide gene expression data has been successfully integrated with SNP genotype

data to prioritise risk genes and reveal possible mechanisms underlying susceptibility to a

range of psychiatric disorders [9–11]. However, the collection of phenotype, SNP genotype,

and gene expression data measured from the same individuals is impeded by cost and tissue

availability, and identifying causal variants can be difficult due to linkage disequilibrium (LD)

Gene co-expression networks and major depression

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008245 July 15, 2019 2 / 16

https://doi.org/10.1371/journal.pgen.1008245


and confounding from environmental and technical factors. Recent approaches address these

limitations by integrating GWAS summary statistics with independent gene expression data

provided by large international consortia, such as the multi-tissue Genotype-Tissue Expression

(GTEx) project [12–14]. The most recent release of the GTEx project (version 7) contains SNP

genotype data linked to gene expression across 53 tissues from 714 donors, including 13 brain

tissues from 216 donors. This represents a valuable resource with which to study gene expres-

sion and its relationship with genetic variation, known as expression quantitative trait loci

(eQTL) mapping [15].

Recent genetic studies have leveraged GTEx data in gene-based analyses to prioritise indi-

vidual risk genes whose expression is associated with major depression [16,17]. While these

analyses identified individual risk genes for major depression, they provide little insight into

the molecular context within which the risk genes operate. We propose the use of GTEx data

to build co-expression networks consisting of highly correlated genes in multiple tissues. The

gene network modules provide a detailed map of gene co-expression in a given tissue, and

provide a biological substrate to test the enrichment of major depression GWAS signals.

Enriched gene modules can be characterised using gene pathway analysis, and provide a valu-

able resource for the integration of additional molecular data. This approach may characterise

the broader molecular context of risk genes in major depression and thereby facilitate the iden-

tification of gene pathways for diagnostic, prognostic, and therapeutic intervention.

Results

Genome-wide association studies have provided important insight into the genetic architec-

ture of major depression. The next critical step is to leverage these genetic data to identify

higher order biological processes underlying the disorder, and to ultimately identify molecular

targets for risk prediction, diagnosis, and therapeutic intervention. To this end, we integrated

multi-tissue gene expression data with major depression GWAS summary statistics using an

integrative network-based approach. We first applied a weighted gene co-expression network

analysis to gene expression data from multiple tissues in GTEx to measure the correlation

structure between protein-coding genes. The gene networks, which represent the “connected-

ness” of genes in a given tissue, were divided into modules (or groups) of highly correlated

genes, under the assumption that correlated genes are involved in the same or similar biologi-

cal processes. The gene modules formed the unit of analysis for a) tests of enrichment with

major depression GWAS summary statistics; b) gene pathway analyses using curated gene sets;

and c) modular preservation (or replication) of disease-associated modules across multiple tis-

sues. An overview of our analytical approach is shown in S1 Fig.

Genes form co-expression networks enriched in distinct biological

processes

We built gene co-expression networks using RNA-Seq data from 13 brain tissues and whole

blood in GTEx (v7). In total, 464 tissue samples (including 216 brain samples) and 17793 pro-

tein-coding genes were used to build the co-expression networks, although the number of

samples (range: 80–369) and genes (range: 14834–16892) differed by tissue (Table 1). The

number of gene co-expression modules within each gene network ranged from 11 modules in

brain cortex to 24 modules in amygdala, and the number of genes within a module ranged

from as few as 30 (0.18% of network genes, amygdala) to 9144 (55% of network genes, anterior

cingulate cortex). We used gene pathway analysis to characterise biological processes in each

co-expression module (S1 Table). Co-expression networks were largely enriched for a single
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type of biological process (e.g. transcriptional regulation or immune response). These data

suggest the network gene co-expression modules represent biologically homogeneous units.

Identification of risk genes for major depression

To assign major depression risk SNPs to genes, we applied two gene-based strategies: first,

proximity-based gene mapping with MAGMA, which assigns SNPs to the nearest gene within a

genomic window; and second, eQTL gene mapping using eMAGMA, which uses tissue-specific

SNP-gene associations from GTEx to assign SNPs to genes based on their association with gene

expression. To further prioritise gene-level results, we performed a transcriptome-wide associa-

tion study using S-PrediXcan. Both tissue-specific and P value thresholds for each gene-based

method, calculated using Bonferroni correction for the number of associations, are shown in

Table 1. We identified 137 unique mapped depression-associated genes with MAGMA (S2

Table), 217 significant tissue-specific gene associations with eMAGMA (representing 99 unique

mapped genes) (S3 Table), and 86 tissue-specific gene associations with S-PrediXcan (S4

Table). A total of 41 genes were implicated by both MAGMA and eMAGMA mapping strate-

gies in at least one tissue (Fig 1; S5 Table). Among significant eMAGMA associations, 35 (16%)

also had a significant S-PrediXcan association in the same tissue (S6 Table), and 16 associations

were significant across all three gene-based methods (Table 2). A biological pathway analysis of

gene lists produced by each method identified a single overlapping pathway—“Butyrophilin

(BTN) family interactions”—across all three methods (S7 Table). Taken together, these results

point to potential functional links for the GWAS-associated variants and give higher credibility

to genes with convergent evidence of association from multiple methods.

Major depression risk genes are enriched in brain gene co-expression

network modules

We tested for the enrichment of MAGMA (S2 Table; N = 137) and eMAGMA associations (S3

Table; N unique = 99) in gene co-expression modules from the brain and whole blood. Gene

Table 1. Summary of GTEx gene expression information used to build the gene-expression networks with descriptive statistics and P value thresholds for gene-

based analyses.

Tissue Gene Network Modules Gene Module Size eMAGMA S-PrediXcan

Samples Genes N Min Median Max Genes Threshold Genes Threshold

Amygdala 88 16547 24 30 362 4125 1214 4.12E-05 2338 2.14E-05

Anterior cingulate cortex 109 16568 16 55 391 9144 2356 2.12E-05 3269 1.53E-05

Caudate basal ganglia 144 16612 16 75 483 6971 3272 1.53E-05 4142 1.21E-05

Cerebellar Hemisphere 125 16505 13 163 741 8662 4075 1.23E-05 4726 1.06E-05

Cerebellum 154 16607 15 86 613 8133 5386 9.28E-06 6044 8.27E-06

Cortex 136 16665 11 126 582 6188 3625 1.38E-05 4299 1.16E-05

Frontal Cortex 118 16642 22 51 345 4965 2952 1.69E-05 3565 1.40E-05

Hippocampus 111 16634 17 84 388 4168 1830 2.73E-05 2788 1.79E-05

Hypothalamus 108 16892 17 60 613 5322 1605 3.12E-05 2819 1.77E-05

Nucleus accumbens 130 16652 20 68 471 5346 2842 1.76E-05 3593 1.39E-05

Putamen 111 16399 15 53 695 7371 2401 2.08E-05 3153 1.59E-05

Spinal cord cervical c-1 83 16809 20 56 577 3017 1470 3.40E-05 2501 2.00E-05

Substantia nigra 80 16612 19 73 475 5266 989 5.06E-05 2015 2.48E-05

Whole Blood 369 14834 14 57 293 6939 5946 8.41E-06 6249 8.00E-06

Proximity MAGMA used a P value threshold of P<2.77 × 10–6.

https://doi.org/10.1371/journal.pgen.1008245.t001
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modules in four brain tissues (amygdala, cerebellar hemisphere, frontal cortex, and nucleus

accumbens) were enriched with MAGMA association signals, while one module in hypothala-

mus and one module in putamen were enriched with eMAGMA associations (Table 3). Gene

modules enriched with MAGMA remained significant after removal of genes in the MHC

region (S8 Table), however modules enriched with eMAGMA associations were no longer sig-

nificant after empirical multiple testing correction (S9 Table). No enrichment of gene-based

Fig 1. Overlap in the number of significant gene-level associations between MAGMA, eMAGMA, and S-PrediXcan. Significant MAGMA genes

(N = 137) were selected using Bonferroni correction for the entire list of gene-based P values (i.e. 0.05/18042 = 2.77×10−6). Significant eMAGMA

(N = 99) and S-PrediXcan (N = 57) results were adjusted using Bonferroni correction for the number of associations in each tissue (see Table 1 for

tissue-specific thresholds). The overlap between gene-level results after correcting for all tissues and genes (N = 51,501, P = 9.71×10−7) is presented in

S2 Fig. Refer to Table 3 for the top (N = 10) overlapping significant gene-based associations for MAGMA, eMAGMA, and S-PrediXcan, and S5 Table

for the entire list of gene-based results (N = 41).

https://doi.org/10.1371/journal.pgen.1008245.g001
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association signals was observed for modules identified in whole blood, despite the larger sam-

ple size (and hence increase power) compared to brain tissues. We plotted the overlap in gene

modules enriched with gene-based major depression associations (S2 Fig). A total of 217 genes

overlapped across four modules enriched with MAGMA associations, suggesting similar bio-

logical processes may underlie the modular enrichments. Indeed, Pathway analysis of 217

genes overlapping four modules enriched with MAGMA gene-based associations revealed

chemical synaptic transmission (GO:0007268; P = 1.24 × 10−14) and the neuronal system

(R-HSA-112316; P = 6.62 × 10−10) pathways (S10 Table).

In gene pathway analyses of the major depression enriched modules, we found enrichment

of neuronal and synaptic signalling pathways in amygdala, frontal cortex, nucleus accumbens,

putamen (e.g. trans-synaptic signalling in frontal cortex, P = 2.81 × 10−24), as well as mem-

brane trafficking related pathways in cerebellar hemisphere (e.g. Membrane Trafficking,

Table 2. Significant major depression candidate risk genes for three gene-based methods (MAGMA, eMAGMA, S-PrediXcan).

MAGMA eMAGMA S-PrediXcan

NAME P NAME TISSUE P GENE TISSUE P

CACNA1E 2.18E-14 VARS2 Whole Blood 3.40E-13 NEGR1 Whole Blood 2.05E-17

OLFM4 6.21E-14 NEGR1 Whole Blood 7.75E-13 RPL31P12 Brain Cerebellar Hemisphere 4.01E-15

NEGR1 3.57E-13 PRSS16 Brain Cerebellum 2.78E-12 RPL31P12 Brain Cerebellum 4.30E-15

TMEM161B 1.28E-12 HLA-G Whole Blood 5.20E-12 NEGR1 Brain Putamen basal ganglia 1.67E-12

SORCS3 5.14E-12 MICB Brain Cerebellar Hemisphere 5.37E-12 CTC-467M3.3 Brain Frontal Cortex BA9 3.45E-10

HIST1H2BN 1.25E-11 FLOT1 Whole Blood 5.83E-12 RP5-874C20.3 Whole Blood 5.06E-09

DENND1A 1.39E-11 CCHCR1 Whole Blood 9.42E-12 CTC-467M3.3 Brain Cerebellar Hemisphere 5.31E-09

BTN2A1 1.47E-11 MICB Brain Cerebellum 1.18E-11 PGBD1 Brain Cerebellum 6.76E-09

PRRC2A 1.51E-11 FLOT1 Brain Cerebellum 1.30E-11 TMEM106B Whole Blood 1.21E-08

TCF4 2.39E-11 BTN3A2 Whole Blood 1.53E-11 PGBD1 Brain Cerebellar Hemisphere 1.29E-08

DCC 3.27E-11 C4B Whole Blood 1.12E-10 ZSCAN23 Brain Spinal cord cervical c-1 1.48E-08

PXDNL 3.84E-11 NEGR1 Brain Putamen basal ganglia 1.15E-10 ZSCAN31 Brain Spinal cord cervical c-1 2.31E-08

SHISA9 7.38E-11 NEGR1 Brain Spinal cord cervical c-1 1.16E-10 OR2B8P Brain Cerebellum 3.78E-08

BAG6 1.59E-10 CCHCR1 Brain Cerebellum 1.23E-10 SLC30A9 Brain Hypothalamus 4.80E-08

RSRC1 1.74E-10 C4A Whole Blood 2.03E-10 ESR2 Whole Blood 6.75E-08

The full list of results for MAGMA, eMAGMA, and S-PrediXcan are listed in S2, S3 and S4 Tables, respectively.

https://doi.org/10.1371/journal.pgen.1008245.t002

Table 3. Major depression association signals are enriched in gene co-expression network modules.

Module Tissue Genes (N) Beta SE P P corr

MAGMA

M1 Amygdala 3681 0.0599 0.0172 0.0002 0.0055

M2 Frontal Cortex 4507 0.0532 0.0162 0.0005 0.0127

M3 Nucleus accumbens 4817 0.0468 0.0158 0.0015 0.0285

M4 Cerebellar Hemisphere 994 0.0822 0.0304 0.0035 0.0433

eMAGMA

M5 Hypothalamus 20 0.7480 0.2510 0.0015 0.0267

M6 Putamen 1062 0.1230 0.0434 0.0023 0.0392

Module enrichment analyses was performed using MAGMA. Beta: regression coefficient of the gene set; SE, the standard error of the regression coefficient; P the

competitive gene-set P value; P corr: P value empirically corrected for multiple testing for all the gene set.

https://doi.org/10.1371/journal.pgen.1008245.t003
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P = 2.19 × 10−13) and vascular-related pathways in hypothalamus (e.g. blood vessel morpho-

genesis, P = 5.67 × 10−15) (Fig 2, S11 Table).

Gene co-expression modules enriched with major depression risk genes are

preserved across brain tissues

Our network-based approach allows the discovery of major depression associated gene mod-

ules as well as the preservation (or reproducibility) of those associated modules across tissues.

We assessed the preservation of gene co-expression modules across brain tissues and whole

blood using the WGCNA modulePreservation algorithm, highlighting the preservation of

modules enriched with major depression GWAS signals. Strong modular preservation (Z

score > 10) was observed across all brain regions, while weak to moderate preservation was

observed in whole blood (Z score< 10). Major depression modules enriched with synaptic sig-

nalling pathways (Modules M1 [Amygdala], M3 [Frontal cortex], M4 [Nucleus accumbens],

and M6 [Putamen]) showed particularly strong preservation across brain tissues, while module

M2 (cerebellar hemisphere), enriched with cellular localisation and transport pathways, and

module M5 (Hypothalamus), enriched with vascular related pathways, showed relatively weak

preservation (Fig 3).

Discussion

Our network-based approach identified novel gene candidates and gene co-expression net-

works enriched with both major depression GWAS signals and biological pathways related to

synaptic signalling and neuronal development. The implicated modules were strongly pre-

served across brain tissues, with weaker preservation observed in whole blood. Our results sug-

gest the study of gene co-expression networks may improve our understanding of the complex

molecular systems governing the susceptibility to major depression and other neuropsychiatric

disorders. More specifically, by describing the correlation structure of major depression risk

Fig 2. Pathway analysis of major depression enriched modules. A competitive gene pathway analysis was performed on tissue-specific significant gene co-

expression modules using g:Profiler (https://biit.cs.ut.ee/gprofiler/index.cgi). The figure shows the (A) gene ontology and (B) biological pathways of tissue-specific

modules enriched with major depression gene-based signals.

https://doi.org/10.1371/journal.pgen.1008245.g002
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genes with their nearest neighbours, we provide a large molecular substrate for detailed func-

tional analyses than offered by traditional gene list-based approaches.

The study of gene networks reduced the dimensionality of genome-wide gene expression

data across multiple brain tissues and whole blood without the loss of important biological

information, and thereby alleviated the multiple testing burden associated with traditional sin-

gle gene-based methods. A similar network-based approach has been applied to gene expres-

sion data for other brain-related disorders, including post-traumatic stress syndrome [18],

Fig 3. Preservation of major depression enriched network modules across brain tissues and whole blood. (A)

Preservation Z score for tissue-specific modules (labelled M1 to M6 on the y axis) across brain tissues and whole blood.

A higher Z score indicates greater preservation (i.e. replication) of a “reference” network in a “test” network (and vice

versa). (B) Categorical classification of preservation Z scores across brain tissues and whole blood. A Z score less than 2

indicates no modular preservation; a Z score between 2 and 10 indicates weak to moderate preservation; and a Z score

greater than 10 indicates strong preservation. Tissues: M1: Amygdala; M2: Cerebellar hemisphere; M3: Frontal cortex;

M4: Nucleus accumbens; M5: Hypothalamus; M6: Putamen.

https://doi.org/10.1371/journal.pgen.1008245.g003
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schizophrenia [19], and psychosis [20]. However, these studies typically included a small num-

ber of individuals (fewer than 100) from a single brain region and are therefore limited in their

statistical power and generalisability across different tissues. Our approach used a total of 216

individuals with a tissue sample from at least one of 13 brain regions, and 464 individuals with

the inclusion of whole blood, thereby improving the resolution and robustness of gene net-

works. Our network approach identified between 11 (Cortex) and 24 (Amygdala) mutually

exclusive modules within tissues, and ranged in size from 30 to 9144 genes. Each module was

enriched with distinct and highly significant biological pathways (e.g. immune signalling), sug-

gesting our approach generated robust modules of functionally related genes.

To identify genes and gene-sets associated with major depression, we assigned disease-asso-

ciated SNPs to their nearest gene using both proximity and tissue-specific eQTL information.

We first used MAGMA, a proximity-based approach that assigns SNPs to their nearest gene.

This approach appropriately corrects for correlated SNPs (i.e. linkage disequilibrium [LD]),

and also adjusts for correlated gene expression in gene-set analysis and multiple-testing correc-

tion. However, SNPs are simply assigned to their nearest gene based on an arbitrary genomic

window. It is well known that such proximity-based approaches often miss the functional

SNP-gene association [21]. Therefore, we created eMAGMA, which modifies the annotation

stage of the MAGMA pipeline by mapping SNPs to genes based on tissue-specific eQTL infor-

mation in GTEx. We found some overlap (N = 16) in risk genes between these two methods

and those identified by S-PrediXcan, despite each method using different strategies for map-

ping SNPs to genes (i.e. proximity versus eQTL information). This should not be surprising

given the eQTL-based approaches (eMAGMA and S-PrediXcan) use cis-eQTLs which have

been precomputed in a +/- 1 MB cis window around the transcription start site of a given

gene. As such, in some instances, the most proximal gene (identified by MAGMA) will also be

an eGene—that is, a gene whose expression is significantly associated with one or more SNPs

in cis—identified by eMAGMA and S-PrediXcan.

Our eMAGMA approach identified novel and biologically meaningful candidate risk gene

associations for major depression across multiple tissues. Of 99 significant eMAGMA genes

(representing 217 unique gene-tissue associations), 58 were not identified by (proximity-

based) MAGMA. Noteworthy among these associations is Complement Factor 4A (C4A),

recently implicated in the development of schizophrenia through its role as a mediator of syn-

aptic pruning during postnatal development [22]. C4A was significant in 12 of 14 investigated

tissues, including whole blood, and was one of 24 significant eMAGMA genes located on chro-

mosome 6p21—a region with complex LD structure that flanks the centromeric end of the

major histocompatibility complex. Future work using simulated GWAS data will be required

to compare the performance (e.g. true positive rate for the association with disease) of our

eMAGMA approach against other gene-based approaches. Further work to test whether C4A
is involved in a shared mechanism between major depression and schizophrenia may also be

performed using (for example) a joint GWAS—or phenome-wide association study—to iden-

tify loci that harbour one or more SNPs with pleiotropic effects on the two disorders.

We tested for the enrichment of candidate risk genes in tissue-specific network co-expres-

sion modules, while adjusting for correlated gene expression, gene size, and gene density. We

identified six co-expression modules across six individual brain tissues, four of which were

involved in synaptic signalling and neuronal development pathways (Amygdala, Putamen,

Frontal cortex, and hypothalamus). These results align with recent pathway analyses of genetic

associations in major depression, which identified genes and gene-sets involved in synaptic

transmission and neuronal mechanisms, among other pathway groupings [3,5]. Furthermore,

structural changes in frontal cortex have been identified in a recent meta-analysis of brain

magnetic resonance imagining findings in adult major depression cases [23], highlighting the
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central role of frontal cortex in major depression aetiology. It is important to note that co-

expression networks across all (N = 13) brain tissues contained a gene co-expression module

associated with synaptic and neuronal pathways, but only four were enriched with major

depression association risk genes. This suggests risk genes underlying major depression sus-

ceptibility manifest their effect in specific brain regions, consistent with tissue-specific gene

expression [24] and highlighting the importance of studying multiple tissues in integrated

studies of complex traits such as major depression.

We assessed the preservation (or reproducibility) of connectivity patterns (i.e. correlations)

between genes across multiple brain tissues and whole blood. This approach may determine

whether the connectivity between genes within a network module associated with major

depression differs both across brain tissues and between brain and whole blood, and may

therefore identify (peripheral) surrogate tissues for molecular studies of major depression.

We observed strong preservation of network modules across all brain regions, but not whole

blood, suggesting blood-based molecular studies of major depression may fail to capture

important disease-related processes in brain. Our findings therefore support the use of brain

tissues from large international consortia, such as the GTEx study or the CommonMind con-

sortium, for the characterisation of genetic association signals, despite reduced sample sizes

compared to blood-based datasets and the potential for technical biases associated with the use

of post-mortem samples.

The results of this study should be interpreted in view of the following limitations. Our

analyses rely on the stability of gene networks both within and between tissues. The relatively

small sample sizes of brain tissues, which ranged from 80 in substantia nigra to 154 in cerebel-

lum, may render the gene networks susceptible to spurious gene modules. A number of meth-

ods to assess the stability of clustered data are available [25], but are too computationally

intensive for high dimensional gene expression data. We therefore applied a permutation pro-

cedure, where each gene was randomised across individuals for the tissue with the smallest

sample size, and clustered the data for the presence of modules (methods). The permuted data

did not yield a single co-expression module, suggesting our observed major depression module

enrichments were not built upon spurious gene correlations. Nevertheless, our approach

requires validation using independent expression data (for example, from the CommonMind

Consortium; www.synapse.org/cmc) and the latest GWAS data for major depression, which

was recently made available on some 800,000 individuals [6]. These analyses may further char-

acterise co-expression modules in major depression, and identify molecular targets for follow-

up functional studies.

Current results support a common variant genetic architecture of major depression, where

variants with relatively high frequency (e.g. minor allele frequency > 0.01) in the general pop-

ulation, but low penetrance, are the major contributors to genetic susceptibility to the disorder.

Therefore, as sample sizes grow larger, thousands of lead SNPs associated with major depres-

sion are likely to be identified, as shown in the latest GWAS meta-analysis of major depression

[6]. With these impending data, new methods for the interpretation of genetic signals for

major depression and other common complex disorders will be required. Our network-based

approach provides a gene expression substrate across multiple human tissues for the integra-

tion and characterisation of GWAS signals. By exploiting the connectivity between genes, this

approach will allow the identification of perturbations in the activity of a system rather than

individual genes. Furthermore, network-based methods may identify regulatory hubs whose

perturbation may have wider consequences for major depression and other (co-morbid) psy-

chiatric and/or neurological disorders by virtue of their interaction with other genes. Finally,

gene our co-expression networks can be integrated with epigenetic DNA methylation and

chromatin interaction data from (for example) psychENCODE [26] and the impending release
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enhanced GTEx [27] to annotate and further prioritise risk SNPs and genes associated with

major depression. These “multi-omic” analyses may identify regulatory elements involved in

brain development and disease risk, and will be critical for understanding the properties of

biological systems underlying complex disorders such as major depression.

Methods

The Genotype-Tissue Expression (GTEx) project

An overview of our analytical pipeline is shown in S1 Fig. Fully processed, filtered and normal-

ised gene expression data for 13 brain tissues and whole blood (Table 1) were downloaded

from the Genotype-Tissue Expression project portal (version 7) (http://www.gtexportal.org)

(Table 1). Only genes with ten or more donors with expression estimates > 0.1 Reads Per Kilo-

base of transcript (RPKM) and an aligned read count of six or more within each tissue were

considered significantly expressed. Within each tissue, the distribution of RPKMs in each sam-

ple was quantile-transformed using the average empirical distribution observed across all sam-

ples. Expression measurements for each gene in each tissue were subsequently transformed to

the quantiles of the standard normal distribution.

Genome-wide association study of major depressive disorder

Detailed methods, including a description of population cohorts, quality control of raw SNP

genotype data, and association analyses for the major depression GWAS is described elsewhere

[3]. The major depression GWAS included a mega-analysis of 29 samples (PGC29) (16,823

major depression cases and 25,632 controls) of European ancestry and additional analyses of

six independent European ancestry cohorts (118,635 cases and 319,269 controls). Cases in the

PGC29 cohort satisfied diagnostic criteria (DSM-IV, ICD-9, or ICD-10) for lifetime major

depression. Cases in the expanded cohort were collated using a variety of methods: Generation

Scotland employed direct interviews; iPSYCH (Denmark) used national treatment registers;

deCODE (Iceland) used national treatment registers and direct interviews; GERA used Kaiser-

Permanente (health insurance) treatment records (CA, US); UK Biobank combined self-

reported major depression symptoms and/or treatment for major depression by a medical

professional; and 23andMe used self-report of treatment for major depression by a medical

professional. Controls in PGC29 were screened for the absence of major depression. A combi-

nation of polygenic scoring and linkage disequilibrium score regression showed strong genetic

homogeneity between the PGC29 and additional cohorts and between samples within each

cohort. SNPs and insertion-deletion polymorphisms were imputed using the 1000 Genomes

Project multi-ancestry reference panel [28]. Logistic regression association tests were con-

ducted for imputed marker dosages with principal components covariates to control for popu-

lation stratification. Ancestry was evaluated using principal components analysis applied to

directly genotyped SNPs. Summary statistics for 10,468,942 autosomal SNPs were made avail-

able by the PGC and were utilized in our study.

Identification of gene expression modules

Gene co-expression modules were individually constructed for 13 brain tissues and whole

blood using the weighted gene co-expression network analysis (WGCNA) package in R [29].

An unsigned pairwise correlation matrix—using Pearson’s product moment correlation coeffi-

cient—was calculated. An appropriate “soft-thresholding” value, which emphasizes strong

gene-gene correlations at the expense of weak correlations, was selected for each tissue by plot-

ting the strength of correlation against a series (range 2 to 20) of soft threshold powers. The
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correlation matrix was subsequently transformed into an adjacency matrix, where nodes cor-

respond to genes and edges to the connection strength between genes. Each adjacency matrix

was normalised using a topological overlap function. Hierarchical clustering was performed

using average linkage, with one minus the topological overlap matrix as the distance measure.

The hierarchical cluster tree was cut into gene modules using the dynamic tree cut algorithm

[30], with a minimum module size of 30 genes. We amalgamated modules if the correlation

between their eigengenes—defined as the first principal component of their genes’ expression

values—was greater or equal to 0.8.

The stability of gene co-expression modules was assessed using a permutation procedure,

where the expression values for each gene in substantia nigra—the brain tissue with the small-

est sample size (n = 88)—were randomly permuted, in a step-wise manner, 1000 times across

individuals. This ensured each gene retained the same expression values, but the inherent cor-

relations across individuals was removed. A WGCNA analysis was performed on the 1000 per-

muted gene expression datasets to identify gene modules, which were subsequently compared

to the observed modules.

Gene-level analysis of major depression GWAS signals

We identified and prioritised risk genes for major depression using three approaches. First, we

performed gene-level analyses using MAGMA v1.06 [31]. This approach assigns SNPs to their

nearest gene using a pre-defined genomic window (here a 35 kb upstream or 10 kb down-

stream of a gene body) and computes a gene-based statistic based on the sum of the assigned

SNP–log(10) P values while accounting for the correlation (i.e. linkage disequilibrium)

between nearby SNPs. Second, we modified the MAGMA approach by integrating eQTL infor-

mation from the GTEx project. That is, for a given interrogated tissue, we assigned SNPs to tar-

get genes based on significant (FDR<0.05) SNP-gene associations in GTEx. This approach,

which we will refer to as “eMAGMA”, is a tissue-specific, eQTL-informed method for assign-

ing SNPs to genes. Gene-based statistics were subsequently computed using the sum of the

assigned SNP–log(10) P values, in a similar manner to proximity-based MAGMA. Third, we

used S-PrediXcan to integrate eQTL information from GTEx with major depression GWAS

summary statistics to identify genes whose genetically predicted expression levels are associ-

ated with major depression. For S-PrediXcan, we used expression weights for 13 brain tissues

and whole blood generated from GTEx (v7) [32], and LD information from the 1000 Genomes

Project Phase 3 [33]. These data were processed with beta values and standard errors from the

GWAS of major depression [3] to estimate the expression-GWAS association statistic. For

each gene-level approach, we corrected for multiple testing using Bonferroni correction. For

MAGMA, we corrected for the total number of genes tested (i.e. 0.05/18,041 = 2.77×10−6). For

the multi-tissue eMAGMA and S-PrediXcan, we applied two correction thresholds (Table 1): a

“liberal” threshold, which corrected for the number of tests within each tissue (i.e. ignoring the

number of tissues tested), and a “conservative” threshold, which corrected for the total number

of tests performed (i.e. all tests across all tissues).

Gene-set analysis of gene co-expression modules

To identify gene co-expression modules enriched with major depression risk genes, we per-

formed gene-set analysis of both (proximity) MAGMA and eMAGMA gene-level results in tis-

sue-specific gene co-expression modules using the gene-sets analysis function in MAGMA

v1.06. The competitive analysis tests whether the genes in a gene-set (i.e. gene co-expression

module) are more highly associated with major depression risk genes than other genes while

accounting for gene size and gene density. We applied an adaptive permutation procedure
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[31] (N = 10,000 permutations) to obtain P values corrected for multiple testing. The 1000

Genomes European reference panel (Phase 3) was used to account for Linkage Disequilibrium

(LD) between SNPs. For each tissue and gene-based enrichment method, a quantile-quantile

plot of observed versus expected P values was generated to assess inflation in the test statistic.

Gene-set enrichment analyses were re-performed after excluding genes in the MHC region.

Characterisation of gene expression modules

Gene expression modules enriched with major depression GWAS association signals were

assessed for biological pathways and processes using g:Profiler (https://biit.cs.ut.ee/gprofiler/)

[34]. Ensembl gene identifiers within major depression gene modules were used as input; we

tested for the over-representation of module genes in Gene Ontology (GO) biological pro-

cesses, as well as KEGG[35] and Reactome[36] gene pathways. The g:Profiler algorithm uses a

Fisher’s one-tailed test for gene pathway enrichment; the smaller the P value, the lower the

probability a gene belongs to both a co-expression module and a biological term or pathway

purely by chance. Multiple testing correction was done using g:SCS; this approach accounts

for the correlated structure of GO terms and biological pathways, and corresponds for an

experiment-wide threshold of α = 0.05.

Preservation of gene co-expression networks across tissues

To examine the tissue-specificity of biological pathways, we assessed the preservation (i.e. rep-

lication) of network modules across GTEx tissues using the “modulePreservation” R function

implemented in WGCNA [37]. Briefly, the module preservation approach takes as input “ref-

erence” and “test” network modules and calculates statistics for three preservation classes: i)

density-based statistics, which assess the similarity of gene-gene connectivity patterns between

a reference network module and a test network module; ii) separability-based statistics, which

examine whether test network modules remain distinct in reference network modules; and

iii) connectivity-based statistics, which are based on the similarity of connectivity patterns

between genes in the reference and test networks. For simplicity, we report two density and

connectivity composite statistics: “Zsummary” and “medianRank”. A Zsummary value greater

than 10 suggests there is strong evidence a module is preserved between the reference and test

network modules, while a value between 2 and 10 indicates weak to moderate preservation

and a value less than 2 indicates no preservation. The median rank statistic ranks the observed

preservation statistics; modules with lower median rank tend to exhibit strong preservation

than modules with higher median rank.
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