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Chapter 1: Personal Finance Education Mandates and Student Loan Repayment

1.1 Introduction

In the United States, high school students are increasingly tasked with making conse-
quential human capital investment decisions with a rather limited information set. Some
of these decisions include whether to attend college, which college to attend, and how
to finance postsecondary education. Perhaps as a result of such decision-making under
uncertainty, 47% of Americans with student loan debt say they would have accepted fewer
tfederal aid dollars if they could make the choice again. Also, over half say they’ve had
difficulties making monthly payments (Consumer Reports, 2016). These difficulties can
be compounded for first generation students who often do not have access to mentors
with first-hand experience in postsecondary education. Several recent studies document
these frictions and find that these students are less likely to apply to selective universities,
are less likely to retake standardized tests, and are more likely to under-invest in postsec-
ondary education (Hoxby and Turner, 2015; Goodman, Gurantz, and Smith, 2018; Avery
and Turner, 2012).

In this paper, I study an intervention that might improve outcomes for high school stu-
dents making human capital investment decisions: mandated personal financial literacy
(PFL) coursework. Specifically, I investigate whether PFL education during high school
improves postsecondary finance outcomes by providing students with additional infor-
mation at the critical time financial aid decisions are made. Between 1993 and 2014, 23
states adjusted high school graduation requirements to include topics covering personal
financial literacy (Stoddard and Urban, 2019). The main objective for the focus on PFL
is to increase the overall financial literacy of the state population, but many of the state
standards are beginning to include topics discussing postsecondary education and career
research. Since enrollment in these courses often coincides with the timing of the fed-
eral financial aid application process, requiring personal finance education in high school
can operate as a just-in-time information intervention to improve postsecondary finance
outcomes.

I estimate how personal finance education mandates affect federal student loan re-
payment by exploiting plausibly exogenous variation in university-level exposure to state
mandates. When states adjust high school graduation requirements to include PFL top-
ics, universities become increasingly populated by students who were exposed to this
course content during high school. Universities are differently affected by changes to

state standards because their student bodies have different shares of incoming students



from adopting states. I use this exogenous variation in exposure to state graduation
requirements to identify the causal effect of required PFL education in high school.

I find that increased exposure to state adopted PFL standards improves university-
level student loan repayment. The effect is largest for students at public universities and
especially for first generation students and for students from households earning less than
$30,000 per year. The estimates suggest a 5% increase in the probability a low income or
tirst generation student is able to pay down some of their balance within a year of entering
repayment. I conduct a counter-factual exercise using these estimates which suggests
that mandating PFL standards for all high school students between the 2001 and 2008
graduating classes would have resulted in around 9,000 additional students successfully
repaying student loans each year.

I also present evidence in support of the identifying assumptions and I conduct a
number of robustness checks. Using a flexible event study specification, I show that
universities that were more exposed to PFL mandates were not trending differently than
universities less exposed to PFL mandates. I confirm results from the literature that
the adopted PFL mandates did not significantly shift students to select different colleges
(Stoddard and Urban, 2019). Additionally, I estimate an alternative specification which
holds fixed the share of students from each feeder state and relies only on the state
adoption of mandates over time. The results from this specification are similar to the
baseline specification. Taken together, I conclude that the findings are not driven by a
compositional change in university cohorts, but via micro-level improvements in student
loan repayment.

I explore several mechanisms by which mandated PFL education may improve federal
student loan repayment. First, I test whether improvements in student loan repayment are
due to decreases in average loan balances. I find that only high income students change
borrowing behavior resulting in roughly 8% lower balances upon entering repayment.
Point estimates suggest small declines (less than 3%) for first generation and middle
income students but the estimates are not precise. Next, I test whether students bound
by mandates are better able to correctly answer financial literacy questions. Across three
different surveys, I find no evidence of improvements in financial literacy at the time of
survey for those that were bound by the state mandates. I also find no evidence that
students bound by personal finance mandates were any more likely to attend college or
earn a degree. However, I do find that affected students were more likely to correctly
answer questions pertaining to federal student loan regulations. The results suggest that,
rather than reductions in borrowing or improvements in financial literacy, the personal

finance education mandates studied in this paper may act as a just-in-time information



intervention for students making postsecondary decisions.

The remainder of the paper is organized as follows: Section 2.3 reviews background
details of the federal financial aid system and summarizes the previous studies discussing
personal finance education. Section 1.3 discusses the potential mechanisms by which
personal finance education in high school can influence student loan repayment after
college. Section 2.4 details the data used in the analysis. Section 2.5 discusses the empirical
strategy and assumptions necessary for identification and inference. Section 2.6 presents
the empirical results, tests the identification assumptions, and presents evidence for the
tested mechanisms. Section 2.7 concludes the paper. I also present results from various

robustness checks and the estimation of alternative specifications in Section 1.8.

1.2 Background

In order to qualify for federal student loans, students must complete a Free Application
for Federal Student Aid (FAFSA) which collects details about students and their families
including income and asset information. While federal subsidized loans are means-tested
based on information from the FAFSA, unsubsidized loans are available to any student.!
Students also face limits on federal borrowing based on the loan type, year of schooling,
university Cost of Attendance (COA), and other financial aid received.

A wealth of evidence from the literature has largely concluded that access to financial
aid increases access to higher education for low income students (Dynarski, 2003) and
more recent evidence suggests increased student loan borrowing causes higher grades
and more completed credits for community college students (Marx and Turner, 2019b).
Despite the benefits, studies have been critical of the burdensome bureaucracy and com-
plicated process for applying for and receiving financial aid (Dynarski and Scott-Clayton,
2006; Novak and McKinney, 2011; Bettinger, Long, Oreopoulos, and Sanbonmatsu, 2012;
Dynarski and Scott-Clayton, 2013; Scott-Clayton, 2015).2 Critics often argue that the com-
plicated application process and the multitude of choice options tend to reduce the receipt
of aid for students that would otherwise be eligible and encourages students to opt into
the default option (Kofoed, 2017; Marx and Turner, 2019a). Even for students that suc-
cessfully navigate the application stage, complexities surrounding the number and type of
repayment plans can lead to issues during repayment (Cox, Kreisman, and Dynarski, 2018;
Abraham, Filiz-Ozbay, Ozbay, and Turner, 2018). The evidence presented in this paper is

1Subsidized loans are loans in which interest does not accrue while the student is in school while
unsubsidized loans begin accruing interest after dispersement.

2Castleman, Schwartz, and Baum (2015) summarizes several studies that test interventions designed to
improve the decision making process in investing in higher education.
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consistent with this literature that finds improvements in outcomes through reducing the
barriers to federal financial aid access.

A few recent studies find that interventions that provide students with more informa-
tion about college applications and federal financial aid improve outcomes for students
from disadvantaged backgrounds. Bettinger, Long, Oreopoulos, and Sanbonmatsu (2012)
show that providing low income families with assistance completing the FAFSA can dra-
matically increase the probability of applying for federal aid and increase college enroll-
ment and persistence. Barr, Bird, and Castleman (2016) find that providing information
to community college students about federal student loan options can shift borrowers
away from higher cost financing which is largely driven by students with lower levels of
financial literacy and higher debt balances. Gurantz, Pender, Mabel, Larson, and Bettinger
(2019) find that virtual college counseling that targets low and middle income students
increased the probability students chose to attend a college with a high graduation rate.
Additionally, Castleman and Goodman (2018) find that college counseling can increase
low income student enrollment and persistence in less expensive four-year public univer-
sities with higher graduation rates. Bettinger and Evans (2019) also find that peer advising
from recent college graduates to high school students can increase enrollment in two-year
colleges for low income and Hispanic students without reducing four-year enrollment.

One large scale intervention that might improve postsecondary outcomes for disad-
vantaged students is the addition of personal financial literacy (PFL) education during
high school. A few recent articles study the effect of PFL directly, the first being Brown,
Grigsby, van der Klaauw, Wen, and Zafar (2016). They investigate how changes in eco-
nomics, mathematics, and personal finance requirements affect financial outcomes for
young people. The results confirm findings in the previous literature that increasing
math requirements increases asset levels and incomes for young adults (Goodman, 2019).
Additionally, mandated PFL coursework is shown to reduce the amount of delinquent debt
held by young adults. They also find the effect of course mandates on credit health grows
as mandates mature. This suggests either implementation lags on the part of schools
or improvements in teaching efficiency over time. Harvey (2019) and Urban, Schmeiser,
Collins, and Brown (2018) also investigate how mandated PFL coursework affects financial
outcomes for young people. Harvey (2019) finds that young people bound by mandates
are less likely to use alternative financial services which typically carry very high interest
rates with high rates of delinquency. Urban, Schmeiser, Collins, and Brown (2018) com-
pare credit report data across mandated and non-mandated young people and find that
those who were bound by personal finance education mandates during high school have
fewer delinquent credit accounts and higher credit scores.



This paper is most closely related to Stoddard and Urban (2019) which studies how
PFL mandates affect the receipt of federal student aid for first year college students. Using
a difference-in-differences design with several waves of the National Postsecondary Study
of Student Aid (NPSAS), they find that mandated college freshmen are more likely to
complete the FAFSA, more likely to borrow from federal sources, more likely to receive
grants or scholarships, borrow fewer private loans, and are less likely to carry a credit card
balance. They also find that the impact on extensive borrowing of federal loan dollars and
the lower likelihood of credit card borrowing is larger for low income students and these
students are also less likely to work while enrolled in college.

This paper extends this literature in four distinct dimensions. First, to my knowledge,
this is the first paper to estimate the impact of PFL mandates on student loan repayment.
To this end, I employ two measures of federal student loan repayment progress that vary in
sensitivity. The first measure, loan default, is a more adverse and relatively rare outcome
that is difficult to affect. The second outcome, the repayment rate, measures whether
loan principals are declining and is thus a more sensitive measure of repayment progress.
Second, I test whether PFL mandates affect the level of student debt upon leaving college.?
Third, I investigate the source of these changes by estimating the effect of PFL mandates
on financial literacy and on knowledge of the federal student loan system. Lastly, I employ
a novel identification strategy to overcome the lack of quality micro-level data that instead
relies on university-level benchmarks to proxy borrower level changes in student loan
outcomes. I show that, under the necessary assumptions, this identification strategy

consistently estimates the micro-level effect of PFL mandates on borrower outcomes.

1.3 Potential Mechanisms

To better understand how mandated personal finance education can influence student
loan repayment after college, consider the case of two otherwise identical high school
students in which one student (the treated student) is required to be exposed to personal
finance education during high school as in Figure 1.1 and the second student (the untreated
student) is not. There are many avenues for the intervention to affect repayment outcomes
since exposure to personal finance education occurs during high school (t) and student
loan repayment does not begin until after college (t +5). The three categories of course
content most likely to directly or indirectly affect student loan repayment are topics on

financial literacy, financial aid, and career research.

3Brown, Grigsby, van der Klaauw, Wen, and Zafar (2016) finds larger student loan balances at age 27
which is a combination of original principal and pace of repayment rather than total loan debt upon entering
repayment.



Figure 1.1: Example Timeline for Personal Financial Literacy Education Intervention
through to Student Loan Repayment

+fersonal t t+1 t+2 t+3 t+4 t+5 t+6

«~—High School—— ——————College IFGrace'————Repayment——

First, since the goal of most PFL mandates is to improve financial literacy, the standards
typically focus on topics such as interest, inflation, risk tolerance, insurance, budgeting,
and investing.* As a result, students bound by PFL mandates may be better at manag-
ing money, be more likely to understand the risks of borrowing, and be more likely to
make on time loan payments. The state standards for many courses require students
to “examine ways to avoid and eliminate credit card debt” (Texas®), “design a financial
plan for earning, spending, saving, and investing” (Missouri®), and “evaluate the different
aspects of personal finance including careers, savings and investing tools, and different
forms of income generation” (Michigan”). However, most studies that evaluate small scale
tinancial literacy interventions find little to no improvement in financial literacy and most
improvements depreciate quickly (Huston, 2010; Fernandes, Lynch Jr, and Netemeyer,
2014). On the other hand, some evidence shows that financial literacy interventions dur-
ing high school can improve more objective measures of financial health such as credit
scores (Brown, Grigsby, van der Klaauw, Wen, and Zafar, 2016; Urban, Schmeiser, Collins,
and Brown, 2018).

Second, the required coursework may help students navigate the federal financial aid
system. In many states, the PFL standards require students to research various ways
of funding postsecondary education. For example, students in Oregon must research
the costs and benefits of using loans to finance higher education® and students in Texas
should “research and evaluate various scholarship opportunities.”® Some states take this
a step further and require students to practice applying for federal financial aid and re-
search the differences in various aid types. Tennessee’s state standards require students

*Figure 1.13 shows a word cloud of the text of all PFL state standards.

Shttps:/ /web.archive.org/web/20111107152521 /http:/ /ritter.tea.state.tx.us/rules/tac/chapter118
/ch118a.html

¢https:/ /dese.mo.gov/sites/default/files/personal_finance_competencies.pdf

"https:/ /www.michigan.gov/documents/mde/SS_COMBINED_August_2015_496557_7.pdf

8https:/ /www.ode.state.or.us/teachlearn/subjects/socialscience/standards/oregon-social-sciences-
academic-content-standards.pdf

°https:/ /web.archive.org/web/20111107152521 / http:/ /ritter.tea.state.tx.us/rules/tac/chapter118
/ch118a.html
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to research both positive and negative aspects of borrowing federal student loans!® while
Utah students must “utilize the FAFSA4caster to explore the FAFSA process.”!! Previous
research has shown that simplifications in the federal financial aid system often lead to
improvements in outcomes for vulnerable groups (Dynarski and Scott-Clayton, 2006; No-
vak and McKinney, 2011; Bettinger, Long, Oreopoulos, and Sanbonmatsu, 2012; Dynarski
and Scott-Clayton, 2013; Scott-Clayton, 2015). Therefore, requiring students to become
familiar with the aid process might improve outcomes for low income and first generation
students.

Third, many PFL course requirements direct students to research various careers, col-
leges, and majors. These exercises might alter the trajectory of the student in a number
of dimensions. Many of the state standards for the required personal finance education
directly address investments in human capital. Students bound by various state man-
dates are required to “explore potential careers and the steps needed to achieve them”
(Arkansas'?) or to “identify a career goal and develop a plan and timetable for achieving
it, including educational/ training requirements, costs, and possible debt” (New Jersey?).
These activities during the personal finance coursework might cause students to be more
aware of various career paths and education requirements which might better prepare
these students for success in college.

In this paper, I directly test a number of hypotheses that might provide supporting
evidence for these mechanisms. I first test whether student loan balances upon entering
repayment change as a result of PFL mandates. Next, I test whether PFL mandates
improve literacy. Specifically, I test whether students bound by PFL mandates are better
able to answer financial literacy questions and questions about federal student loans. As
a test for one identification assumption, I investigate whether the adoption of PFL state
standards alter students’ college choice. Lastly, I test whether students bound by PFL

mandates have a higher likelihood of attending college or earning a degree.

1.4 Data

Since micro-level data on repayment outcomes for sequential cohorts are not available
to researchers, I instead rely on university-level outcomes. The federal student loan

repayment outcomes used in this paper come from the College Scorecard database. The

Ohttps:/ /www.tn.gov/content/dam/tn/education/ccte/cte/cte_std_personal_finance.pdf

thttps:/ /www.schools.utah.gov/file /6348311c-77c7-4tbd-87e7-ba3484bddb6e

2http:/ /www.arkansased.gov /public /userfiles/ Learning_Services/Curriculum%?20and%20Instructi-
on/Frameworks/Personal_Finance/Economics-aligned-to-PF-Standards.pdf

Bhttps:/ /www.state.nj.us/education/cccs /2014 /career/91.pdf
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College Scorecard was developed during the Obama Administration and debuted in
2015 as a website tool to provide more information to potential college students. The
Department of Education provides the underlying university-level data dating back to
the 1996-1997 academic year and updates the data annually. The data are sourced via
self-reports by universities, from various federal data sources, and from administrative
data on students receiving financial aid. The data used in this paper are largely computed
using the administrative National Student Loan Data System (NSLDS) which contains
records on the universe of federal aid recipients.

I restrict the sample to four-year baccalaureate universities since four-year universities
are largely populated by first-time degree seeking recent high school graduates.* Iremove
universities that aggregate repayment outcomes across multiple branch campuses and
universities that do not receive federal financial aid.’> In order to construct a balanced
panel, I remove universities that either enter or exit the sample during the sample window.
This can occur due to a university opening or closing or a university opting into or losing
access to federal aid.’ The resulting sample contains 1,386 universities across 50 states
and the District of Columbia of which 450 are public universities and 936 are private
universities.!”

The two main outcomes from the College Scorecard are the two-year cohort default rate
and the one-year repayment rate. After leaving college, federal student loan borrowers
are granted a six month grace period before they must begin making monthly payments.
One year after entering repayment, borrowers fit into one of four mutually exclusive bins
as depicted in Figure 1.2.18 If the student is making payments on her loans and the balance
is declining, this student fits in bin A. If the student is making payments toward her loan

but the payment is not sufficient to cover accruing interest (i.e. negative amortization),

4In 2016, 45% of recent high school graduates enrolled in 4-year colleges while 23.7% enrolled in 2-year
schools. https:/ /nces.ed.gov/fastfacts/display.asp?id=372

15This restriction is necessary due to the nature of the identification strategy discussed in the next section.
When a university system aggregates outcome measures across multiple branches, the identifying variation
on the right-hand-side of the estimating equation is aggregated at a smaller granularity than the outcome
measure on the left-hand-side. The reasoning behind the varying level of aggregation is discussed in footnote
17 of Using Federal Data to Measure and Improve the Performance of U.S. Institutions of Higher Education found
at https:/ /collegescorecard.ed.gov/assets / UsingFederalDataToMeasure AndImprovePerformance.pdf

16This restriction helps to alleviate the concern of selection into or out of the sample. Universities may
lose access to federal aid as a result of poor student loan repayment or choose to begin accepting federal aid
as a result of unobservables that change over time. Looney, Yannelis et al. (2019) notes that the majority of
the variation in cohort defaults over time stem from entry into and out of the student loan market.

7Table 1.12 details the change in sample size as a result of each of the restrictions. Figure 1.12 plots the
locations of the universities in the sample.

18The College Scorecard database also includes the repayment rate for 3, 5, and 7 years, however the data
begins for all variables for FY 2006 and thus these variables have very small windows of data availability.

8


https://nces.ed.gov/fastfacts/display.asp?id=372
https://collegescorecard.ed.gov/assets/UsingFederalDataToMeasureAndImprovePerformance.pdf

the student fits in bin B." If the student has been granted forbearance or deferment of
payments (and thus no payments are required) and the balance is not declining, the
student fits in bin C. If the student has not made any payments for 270 days, the student

enters default and fits in bin D.20

Figure 1.2: Repayment Status Bins for Repayment Cohort

A B C D
Making payments & Making payments & not In forbearance or In default
paying down balance paying down balance deferment
Repayment Rate = Afﬁ Default Rate = m

The two-year cohort default rate is calculated by dividing the total number of students
in default (bin D) at the end of the two year window by the total number of students in
the repayment cohort (the sum of bins A, B, C, and D). The one-year repayment rate is
calculated by dividing the number of students who have paid down at least one dollar of
their original principal (bin A) one year after entering repayment by the total repayment
cohort excluding those in default (the sum of bins A, B, and C). Those students in bin B
(making payments but facing negative amortization) and in bin C (not required to make
payments and facing negative amortization) both count against the repayment rate but are
not in default. This makes the repayment rate a more sensitive measure of loan repayment
health that does not require default but factors in repayment progress.

The College Scorecard reports the default rate and the repayment rate for the full
repayment cohort, but the repayment rate is also reported for various subsamples of
the student body. Of particular interest in this paper, these subsamples include first
generation students (students whose parents did not have a college degree upon college
entry), low income students (students with household income less that $30,000 upon
college entry), middle income students (students with household income between $30,000
and $75,000 upon college entry), and high income students (students with household

income above $75,000 upon college entry).?! Table 1.1 reports summary statistics for the

YDue to income-driven repayment plans, it is possible that the monthly minimum payment is not enough
to cover the interest accruing each month. In this case, it is very unlikely the borrower will have a declining
balance without paying more than the monthly minimum payment.

2Default for students loans is atypical compared to other consumer debt. Upon default, there is no
repossession of assets since the loans are unsecured. Rather, the federal government levies fines and allows
loan services to garnish wages and tax refunds to collect outstanding debts.

2The College Scorecard uses nominal dollars to determine these bins. As a result, students with similar
household incomes in real terms might be shifted into higher income bins over time due to inflation.
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sample of universities for the main outcome variables. I present the means and standard
deviations weighted by the number of borrowers used in constructing each university
outcome. The weighted moments are presented to be representative of the population of
student loan borrowers.

Table 1.1: Descriptive Statistics

All Universities Public Universities Private Universities

(n=1,386) (n=450) (n=936)
Outcome Variable Mean SD Mean SD Mean SD
Default Rate 0.042 (0.032) 0.046 (0.031) 0.036  (0.034)
Repayment Rate
Overall 0594 (0.170) 0.593  (0.149) 0595 (0.199)
First Generation 0536 (0.165) 0.551 (0.147) 0512 (0.188)
Low Income (<$30k) 0458 (0.170) 0.478  (0.151) 0423  (0.194)
Middle Income ($30k to $75k)  0.631  (0.148) 0.630 (0.136) 0.632 (0.166)
High Income ($75k+) 0749 (0.114) 0.730  (0.107) 0.777  (0.117)

Means and standard deviations for the main outcome variables are presented above for the full sample
and separately by institution control. Moments are weighted by the number of borrowers used to compute
each outcome in order to be representative of the population of student borrowers. Default rate is the
two year cohort default rate from FY1995 to FY2013. The one year repayment rate is reported for the
full repayment cohort and separately for first generation students (students whose parents did not have a
college degree) and for students by household income bins.

The repayment rate is first reported in the College Scorecard beginning with the 2007-
2008 academic year which includes students entering repayment in the 2006 fiscal year.??
The most recent data in the Scorecard covers students that entered repayment in the
2013 fiscal year.?? Beginning in FY2009, the Department of Education began grading
universities on the three-year cohort default rate instead of the previous two-year cohort
default rate. This change was a concerted effort to hold universities accountable for
borrowers beyond two years after entering repayment. The College Scorecard continued
to include the two-year cohort default rate through FY2011 but deferred to only posting

the three year cohort default rate in subsequent years. Due to the change in the cohort

2The College Scorecard reports the one-year repayment rate as a two year rolling average in order to
reduce variability. Although this is not ideal for identification, I match the repayment rate outcome using
the first year a repayment cohort is reported in the data to match incoming college cohorts to repayment
cohorts. Any bias from this rolling average will work against detecting an effect of mandates on repayment
since it will include one untreated cohort and the first treated cohort.

BFor repayment cohort counts smaller than 30 students, the data is suppressed and thus these small
cells are omitted from the analysis.
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default metric, I use the two-year cohort default rate in the available years between FY1995
and FY2011.

Table 1.2: Implementation of Personal Financial Literacy (PFL) Mandates Since 1990

State Coursework First Graduating Cohort Bound
New Hampshire Incorporated (Economics) 1993
New York Incorporated (Economics) 1996
Michigan Incorporated (Career Skills) 1998
Wyoming Incorporated (Social Studies) 2002
Arkansas Incorporated (Economics) 2005
Arizona Incorporated (Economics) 2005
Louisiana Incorporated (Free Enterprise) 2005
South Dakota 0.5 Credit (Economics or Personal Finance) 2006
North Carolina  Incorporated (Economics) 2007
Georgia Incorporated (Economics) 2007
Idaho Incorporated (Economics) 2007
Texas Incorporated (Economics) 2007
Utah 0.5 Credit 2008
Colorado Incorporated (Economics, Math) 2009
South Carolina Incorporated (Math, ELA, Social Studies) 2009
Missouri 0.5 Credit 2010
Iowa Incorporated (21st Century Skills) 2011
Tennessee 0.5 Credit 2011
New Jersey 2.5 Credits (Economics or Personal Finance) 2011
Kansas Incorporated (Economics) 2012
Oregon Incorporated (Social Studies) 2013
Virginia 0.5 Credit 2014
Florida Incorporated (Economics) 2014

PFL mandate data are from Stoddard and Urban (2019). States marked Incorporated require
personal finance coursework in the required course denoted in parenthesis. States with listed
credit requirement require the denoted number of credits in a standalone required personal
finance course. States with a choice of Economics or Personal Finance have personal finance

course standards in both courses.

In addition to the College Scorecard, I use the national rollout of personal finance
education mandates since 1990 from Stoddard and Urban (2019) which is detailed in
Table 1.2. They define the effective year of PFL mandate by the first high school graduating
class thatis bound by a mandate. PFL standards are most often included in other required
courses such as Social Studies, Economics, and Math. However, several of the more
recently adopting states have started requiring students to complete a standalone course
in personal finance.

Lastly, I use data from the Integrated Postsecondary Education Data System (IPEDS)
which includes biannual counts of the incoming cohort of students by previous state of
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residence for each university. Between 1986 and 1994, these data were collected every
two years from each university and after 1994, universities could voluntarily provide
these data to IPEDS in odd years but were required to submit in even numbered years.
I use counts of first-time degree seeking students who graduated high school within 12
months of entering college. I replace missing student counts in odd years with linearly
interpolated values from neighboring even years.?

Additional information on these data sources along with supplemental data sources
are detailed in Section 1.8.2.

1.5 Empirical Strategy

1.5.1 Identification

To motivate the empirical strategy introduced in the next section suppose a researcher
is able to randomize across a population of N students whether student i will be required
to be exposed to PFL topics during high school where D; = 1 denotes those randomly
assigned to the mandate and D; = 0 otherwise. After high school, the researcher is able to
track an outcome, y;, for each student i. Due to the random allocation of D;, the researcher
can estimate the causal effect of personal finance education by comparing outcomes across
D; = 0and D; = 1 using the regression specification

yi=a+yRID; + ¢

where yRCT is the estimate of the Average Treatment Effect (ATE) of mandated personal
finance education on outcome y.?> Due to the infeasibility of an intervention of this type,
a second-best alternative to estimate the causal effect is to exploit a natural experiment
in which state policy changes divide the population into mandated students and non-
mandated students. Outcomes are then compared across the two populations. Under this
difference-in-differences framework, the estimating equation then becomes

DD D

Yist =a+7y st + Ost + Eist, (1.1)

where Dy; now denotes whether state s had a binding mandate for cohort ¢t and 6s; is
a state-by-year fixed effect. y;5; denotes an outcome variable for individual i belonging

to graduating cohort ¢ from state s.2 The outcome variable can be rewritten using the

2In Section 1.8.4, I instrument student counts using a combination of fixed effects, observable policy
changes, and linear and quadratic trends to replace missing values with estimated values.

2Since we have randomization across D;, we have E(¢;|D;) = 0.

2In this example, the data are repeated cross section and an individual i is unique to a cohort ¢ and y;s;

12



potential outcomes framework so that

Yist = Y1,ist * D + Yo,ist - (1 - Dst)

where y1 ;s denotes the outcome for an individual if they are bound by a state mandate
and yo,is; denotes the outcome if the same individual is not bound by a state mandate. In
reality, the researcher only observes either y1 ;5; or 1o is¢ for any given individual. However,
if the researcher assumes students in states not bound by a state mandate evolve similarly
to the unobserved non-mandated students in mandated states, ¥PP can be interpreted
as the Average Treatment Effect on the Treated (ATT). More formally, suppose there are
only two cohorts (f = 0,1) and the state adopting a mandate adopts for the second cohort
(t = 1). The requisite Parallel Trends Assumption states that

Elvo,is1 — Yo,is0 | Ds1 = 0] = E[yo0,is1 — Yo,is0 | Ds1 = 1].

Under this assumption, observed outcomes for students in the non-adopting states are
used as the unobserved counter-factual outcomes for students in the adopting states and
the parameter yPP captures the impact of the state adopted personal finance education
on the outcomes for the students who were treated.

However, since micro-level data of this type is not available, consider the case where
outcomes are only observed at the university-level for university j. Suppose there exists
a function G that maps each student i € I to a university j € J.” The outcome Yj; is
defined as

1
Yi; = —
PR

where [j; is the set students that attend school j, |Jj| is the number of students in the set
Jiv,and T = t + k; for some k; which defines the number of periods between graduating
high school and appearing in the university-level outcome for student i. Under the
enumerated assumptions below, I show in Section 1.8.1 that the parameter PP can be
consistently estimated using the aggregated estimating equation:

Y]-T = a4+ yDDpc’cBound].T +0;+0¢+ejr (1.2)

where the term attached to yPP, pctBound. , corresponds to the fraction of the cohort

v

is only observed once per individual.
ZFor example, the universities can be indexed such that J = {0,1,..,]} such that j = 0 denotes no
university attendance and j = 1, ..., ] denotes university attendance.
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7 for university j that were bound by state personal finance education mandates. The

necessary assumptions for identification are:

1. Parallel Trends Assumption: E[Ayo,ist | Dsgiye = 0] = E[Ayo,ist | Dsqiye = 1] Vt
2. Cohort Matching Assumption:  k; = k Vi
3. Stability of University Mapping: G( i, Dy = 1) = G( i, D) = 0)

As discussed above, we require the Parallel Trends Assumption in order to satisfy the
micro-level difference-in-differences identification strategy. Next, it should be the case
that for all i, k; = k. If students in the same high school cohort t enter into different
university repayment cohorts 7 then it is possible that PFL. mandates begin affecting Y;.
prior to the first mandated cohort as matched by k. This leakage of treated high school
cohorts into untreated repayment cohorts will bias the estimate of yPP. Lastly, it must be
the case that assignment of Ds; does not change the choice of university for students. If
students respond to personal finance education by altering the assignment to J;, then the
estimate from the aggregated specification captures yPP plus any potential compositional
change in [, that might affect Y.

Under these assumptions, we have that Equation (1.2) consistently estimates y°P which
is the causal ATE estimated from the micro-level difference-in-differences specification.
Section 1.6.2 presents evidence in support of these assumptions and tests the robustness
of the results to a loosening of assumptions.

1.5.2 Dose Response Specification

To implement the proposed specification above, I begin by quantifying the share of
each incoming cohort bound by PFL mandates in each cohort. Variation at the university-
level is driven by two components. The first is through the state adoption of course
mandates. When a state changes course standards for high school graduation, all future
high school students within the state are affected by this change. When these students
graduate high school and proceed to college, universities that receive these students are
now populated by these affected students. This is most often universities within the
adopting state, however across-state migration of high school students to colleges allows
for spillovers from adopting states to non-adopting states. In addition, students from
non-adopting states drive down the exposure at colleges in adopting states.

I use the IPEDS previous state of residence data to track within and across-state mi-
gration of high school students to colleges. For each university i and incoming cohort ¢, I

construct pctBound,, by interacting the state-by-year mandate status of state j for cohort ¢
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(pfMandate;,) with the number of students attending university 7 in cohort  from state
(enrolli]-t). The total number of mandated students is then divided by the total incoming

cohort count from all 50 states and D.C. for cohort #:

51
'§1 pfMandate it X enroll;j;
pctBound,;, = ! = . (1.3)
Z enroll,-jt
j=1

Figure 1.3: Examples of Within State Variation in pctBound from Tennessee
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The figure above plots pctBound,, as constructed in Equation (1.3) for each university over time. Data on
previous state of residence come from IPEDS. State of residence data that are not submitted to IPEDS in

odd years are interpolated linearly from neighboring even years. The state of Tennessee adopted a personal
finance mandate that was first binding for the class of 2011 as shown by the shaded region in each plot.

Figure 1.3 shows an example of how pctBound,, evolves over time for a select group of
Tennessee universities. The first graduating class bound by Tennessee’s personal finance
mandate was the class of 2011. Typically public universities receive a large share of
their student body from within the state. However, public universities like University of
Tennessee Knoxville and Tennessee State University still differ in the share of students from

within-state which drives variation in pctBound after a state adopts a PFL mandate. This

heterogeneous impact is even more stark for private universities like Vanderbilt University
and Christian Brothers University. Despite the private status, the impact of Tennessee’s
mandate adoption is larger for Christian Brothers University than for Tennessee State

University while Vanderbilt University experiences a smaller shock to pctBound after
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2011.

Figure 1.4: Example of Across State Spillovers in pctBound
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The figure above plots the state level equivalent of pctBound,, where all universities within a state are
aggregated. Data on previous state of residence come from IPEDS. Georgia’s mandate was first binding
for the class of 2007. Alabama did not a adopt mandate during the sample period but is affected by
Georgia’s adoption through students from Georgia high schools attending Alabama universities and again
by Tennessee and Florida’s adoption.

In addition to the within-state variation, high school students attending college in other
states cause non-adopting states to be affected by mandates in adopting states. Figure 1.4
shows the state level equivalent of pctBound;, where the student bodies of all universities
within a state are aggregated. When Georgia adopted a mandate binding for the class
of 2007, Alabama universities experienced a corresponding increase in pctBound,, due to
Georgia’s adoption. Additionally, Alabama universities experienced subsequent increases
in pctBound when Tennessee and Florida adopted in 2011 and 2014, respectively.

I exploit this unique source of exogenous variation in personal finance education
exposure to estimate the effect of changes in pctBound,, on university-level student loan
repayment outcomes. The main specification for the dose response model as motivated
by Equation (1.2) is:

Vis,t+k = ypctBound,, + BXist + 0; + Ot + vjst, (1.4)

where y;s 11k is an outcome for university i located in state s for high school cohort t and k
is the number of periods between cohort t entering college and outcome y being observed.
The coefficient of interest is y which estimates the causal effect of increasing pctBound
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from zero to one.

A vector of control variables are also included in X;s; to control for other state level
changes that might also affect federal student loan repayment. First, I include controls
for the number of credit hours required for high school graduation for math, science,
English, and social studies along with the total number of credit hours required. Since
the introduction of PFL state standards might be introduced at the same time as changes
to other course standards, these controls insure y is not capturing the effect of changes to
other course requirements. Next, I include state level counts of high school staffing for
teachers, support staff, and guidance counselors. Changes to state standards might also
be accompanied by other state legislation that could increase students” access to college
counseling or change student-to-teacher ratios. Without these controls, y can be biased
upward as a result of omitted variable bias. I also include controls for whether cohorts
had access to state merit aid scholarships since these may affect where students choose
to attend college and how much students pay to attend college. Lastly, I include a vector
of unemployment rates between periods ¢ to t + k to control for the local labor market
students face during college and into loan repayment. The data sources and construction
of these variables are detailed more thoroughly in Section 1.8.2.

Following Assumption 2 above, I match high school graduating cohorts to university
repayment cohorts by assuming that students enter repayment after their fourth year of
college. Under this assumption, a student graduating high school in year t will enter
repayment in fiscal year t + 5 and first enter the College Scorecard database in year ¢ + 6.
As such, all specifications will assume that k = 6 for repayment outcomes and k = 4
for student loan debt upon entering repayment. I present evidence in support of this
assumption along with tests of the sensitivity to the assumptions in Section 1.6.2.

1.5.3 Inference

It is likely that universities within the same state experience common unobserved
shocks. Therefore, in the baseline specification, I cluster standard errors at the state level
to allow for correlation in the error term, ¢;5;, between universities in the same state s.
However, since treated students are migrating across states to attend college, it is likely that
universities in different states also experience common unobserved shocks. If this is the
case, errors might be correlated for universities across states and, consequently, clustering
at the state level may produce standard errors that are too small (Barrios, Diamond,
Imbens, and Kolesar, 2012). It is common practice in the treatment effects literature to
cluster standard errors at the level of treatment (Bertrand, Duflo, and Mullainathan, 2004;
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Cameron and Miller, 2015). In this setting, it is not straight-forward to define the “level
of treatment” because each college has a different level of exposure to treatment from
various states.

To address this concern, I conduct a randomization inference exercise in the spirit
of MacKinnon and Webb (forthcoming). I estimate several “placebo” replications of
Equation (1.4) where I randomly draw pfMandate;. In each replication, I construct
placebo pctBound,, using the randomly drawn pfMandate;, and the observed enroll;j;. I
then estimate Equation (1.4) using the placebo pctBound,, to generate placebo y estimates.
Since the states adopting mandates in the placebo replications are drawn randomly, it must
be the case that the y estimates from this exercise equal zero on average. If  estimated
using the observed pctBound measure is a sufficiently extreme value in the distribution
of placebo estimates, the null hypothesis of no treatment effect can be rejected.

The empirical p-values generated in this algorithm use the distribution of estimated y
coefficients without regard to the standard errors or any assumptions about the correlation
structure of the data generating process. Instead, the underlying data generating process of
students migrating to universities is captured in the empirical distribution of y estimates.
As a result, the empirical p-values are robust to both within- and across-state correlation
of universities driven by enroll;;. This algorithm is detailed in its entirety in Section 1.8.3.

1.6 Results

1.6.1 Dose Response Specification

The results from the estimation of Equation (1.4) are presented in Table 1.3. Column
1 reports the estimates for the two-year cohort default rate while Columns 2 through
6 report the estimates for the various subsamples of the repayment cohort for the one-
year repayment rate. The effect of personal finance mandates on defaults suggests a
reduction of 0.2 percentage points (a 5% reduction from the mean) associated with a full
dose treatment of the incoming cohort. The magnitude of this estimate is economically
meaningful but is not statistically different from zero at conventional levels.?

Columns 3 and 4 suggest that increased exposure to personal finance education man-
dates improves the one-year repayment rate for both first generation and low income
students. The point estimates translate to a 2.4 and 2.3 percentage point increase in the
repayment rate which corresponds to improvements of 4.5% and 5.1% for first generation
and low income students, respectively. Both results are significant at the 5% level regard-

2The results are similar for the default rate if the sample years are limited to match the data availability
years of the repayment rate analysis.
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Table 1.3: Dose Response Estimates: Cohort Default Rate and Repayment Rate

Default Rate Repayment Rate
(1) () 3) 4) ) (6)
Overall Overall First Gen Low Middle High
Income Income Income
pctBound -0.002 0.013 0.024 0.023 0.009 0.010
(0.447) (0.168) (0.029)** (0.034)** (0.344) (0.348)
[0.500] [0.219] [0.032]** [0.037]** [0.364] [0.456]
Universities 1,386 1,384 1,340 1,354 1,319 1,317
Cohorts 1993-2006 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 0.042 0.594 0.536 0.458 0.631 0.749
Percentage Effect -5.0% 2.2% 4.5% 5.1% 1.5% 1.3%

Regressions are weighted using the number of students used to compute each outcome metric. Each
column reports a coefficient from a separate regression where the independent variable is pctBound and
the outcome is denoted in the column header. The sample includes four-year universities. Default rate
analysis includes high school graduating classes 1993 through 2006 and repayment rate analysis includes
high school graduating classes 2001 through 2008 due to data availability. First Gen students are defined
as students whose parents did not have a college degree. Low Income, Middle Income, and High Income
students are defined as household income less than 30,000, between 30,000 and 75,000 and above 75,000,
respectively. Controls include cohort weighted credit requirements in math, English, social studies, and
science by high school graduation cohort and controls for state level high school staffing, and availability
of merit aid scholarships. Also included are university and high school graduation year fixed effects. P-
values using standard errors clustered at the state level are presented in parenthesis. Empirical p-values
using randomization inference are presented in brackets. *** p<0.01, ** p<0.05, * p<0.1

less of using clustered standard errors (presented in parentheses) or RI-f randomization
inference (presented in brackets) to generate p-values. Further, the p-values using both
methods are remarkably similar. The point estimates for the overall repayment cohort
and for middle and high income students are all positive, but are not statistically different
from zero using either p-values. This pattern suggests that personal finance education
mandates improve the one-year repayment rate for first generation and low income stu-
dents.

Table 1.4 repeats the estimation separately for public and private universities in Panel
A and Panel B, respectively. The qualitative results are largely unchanged when moving
from the full sample in Table 1.3 to the public university sample in Table 1.4. First
generation and low income students at public universities have higher repayment rates
as a result of PFL mandates. The point estimate and proportional impact for the cohort
default rate is again negative but the estimate remains imprecise. In contrast to the results

above, high income students at public universities experience a 2.8% improvement in the
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repayment rate as a result of PFL mandates which is significant at the 10% level using
CRVE and at the 5% using RI-f p-values. This result is contrary to several findings in the
literature which find little to no effect of course mandates for students from more affluent
backgrounds (Stoddard and Urban, 2019; Goodman, 2019). It is possible that one or more
of the mechanisms that cause the improvement in repayment rates operates in a different
manner for low income students than for high income students.

The results presented in Panel B suggest there is no significant impact of personal
finance education mandates for the sample of private universities. It is possible that the
smaller and more frequent shocks to pctBound experienced by many private schools cause
a loss of precision in the estimation of the treatment effect. Additionally, it may be the case
that some states do not require private high school students to adhere to PFL mandates
and these students also attend private universities. The estimated treatment effect on
repayment rates is smaller than a 2.1% improvement and many point estimates actually
suggest worsening outcomes. As a result, the remaining analysis will focus on the sample

of public universities.
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Table 1.4: Dose Response Estimates: Cohort Default Rate and Repayment Rate for Public
and Private Universities

Default Rate Repayment Rate
() ) 3) 4) 5) (6)
A. Public Overall Overall First Gen Low Middle High
Income Income Income
pctBound -0.003 0.017 0.025 0.022 0.011 0.020
(0.166) (0.098)* (0.025)** (0.031)** (0.295) (0.097)*
[0.429] [0.058]* [0.009]*** [0.035]** [0.223] [0.023]**
Universities 450 450 449 449 445 445
Cohorts 1993-2006 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 0.046 0.593 0.551 0.478 0.630 0.730
Percentage Effect -5.9% 2.8% 4.5% 4.7% 1.8% 2.8%
B. Private
pctBound 0.001 -0.009 0.007 0.009 -0.007 -0.014
(0.877) (0.682) (0.676) (0.716) (0.660) (0.250)
[0.820] [0.370] [0.981] [0.704] [0.242] [0.070]*
Universities 936 934 891 905 874 872
Cohorts 1993-2006 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 0.036 0.595 0.512 0.423 0.632 0.777
Percentage Effect 3.2% -1.5% 1.3% 2.1% -1.1% -1.8%

Regressions are weighted using the number of students used to compute each outcome metric. Each
column reports a coefficient from a separate regression where the independent variable is pctBound and
the outcome is denoted in the column header. The sample includes public and private four-year univer-
sities. Default rate analysis includes high school graduating classes 1993 through 2006 and repayment
rate analysis includes high school graduating classes 2001 through 2008 due to data availability. First
Gen students are defined as students whose parents did not have a college degree. Low Income, Middle
Income, and High Income students are defined as household income less than 30,000, between 30,000
and 75,000 and above 75,000, respectively. Controls include cohort weighted credit requirements in math,
English, social studies, and science by high school graduation cohort and controls for state level high
school staffing, and availability of merit aid scholarships. Also included are university and high school
graduation year fixed effects. P-values using standard errors clustered at the state level are presented in
parenthesis. Empirical p-values using randomization inference are presented in brackets. *** p<0.01, **
p<0.05, * p<0.1
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1.6.2 Tests of Identification Assumptions

As discussed in Section 1.5.1, the estimates presented above can only be interpreted
as the micro-level ATE if Assumptions 1 through 3 are satisfied. This section provides

evidence for each assumption.

Cohort Matching Assumption

In Figure 1.5, I show the distribution of the month students in the 2003 incoming
college cohort entered repayment to support the choice of k = 6 as the appropriate lag
between entering college and observing repayment outcomes. The model month students
entered repayment is 51 months after entering college. This timing is consistent with a
student entering college in August, graduating in May of their fourth year, and entering
repayment in November. From this data, 43% of the repayment cohort enter repayment
between 48 months and 72 months after entering college. However, the data show a
significant percentage of students entering repayment prior to 42 months since entering
college. If these are students bound by personal finance education mandates, it is possible
they contribute to a repayment cohort that is inconsistent with the assumption of k = 6.
The specification in the next section will test whether students separating from college

prior to four years impact the repayment rate for a university.

Parallel Trends Assumption

Identification of the causal effect of PFL education on student loan repayment outcomes
relies on the Parallel Trends Assumption. This assumption is not directly testable since
counter-factual outcomes for treated units are unobserved. Instead, I present evidence that
universities more exposed to PFL mandates were not trending differentially prior to the
adoption of mandates by estimating a flexible event study specification. The event study
specification includes a vector of binary variables in which each variable represents a time
period relative to the start of treatment for units experiencing an event. Each parameter
then estimates the difference in outcomes between units experiencing an event and units
not experiencing an event in the time period relative to treatment. In this context, the
treatment variable is not discrete and thus care must be taken to define the first period
of treatment. I define a university event as a year-over-year change in pctBound,, of 50

percentage points or larger:

event;s; = 1 - {pctBound,; — pctBound, ;, ; > 0.5}. (1.5)
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Figure 1.5: Month Entering Repayment for 2003 High School Cohort
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The figure above plots a histogram of the month a borrower enters repayment relative to the month they
enter college for four-year college students who did not attend graduate school. The sample includes federal
student loan borrowers from the cohort entering college in the 2003-2004 academic year. Students who at-
tended graduate school are removed since they would mechanically enter into repayment at a later month.
Total student counts are collapsed into six month bins and nationally representative weights are used to
create cohort shares.

Source: U.S Department of Education, National Center for Education Statistics, 2004/2009 Beginning Post-
secondary Students Longitudinal Study Restricted-Use Data File.

I choose the 50 percentage point threshold to ensure a university can only experience
one event. Table 1.13 details the number of universities experiencing an event by this
definition in each academic year along with the states adopting in each year. Between
1996 and 2014, 524 universities experience an academic year in which the adoption of at
least one mandate changes pctBound,, by at least 50 percentage points. Although there
are a few early adopting states, most of the events occur for the high school graduating
cohorts of 2005 and later. As a result, there is more outcome data available for the periods
prior to an event than for the periods after an event. The estimating equation for the event

study is identical to Equation (1.4) aside from the event study parameters:?

0 10
Vist = Z yjevent;s 14 + Z yjevents t1j + BXist + 0; + O¢ + Ejsr. (1.6)
j==2 =2

In this specification, the event occurs in period t and a separate parameter is estimated

for each period relative to an event with period t + 1 being omitted.*® This results in ten

PThe vector of control variables X;s 1+ uses the assumed matching high school cohort corresponding to
repayment outcome ¥;sz.
%0Since it takes at least one year for the repayment rate outcome to be observed, period ¢ + 1 is the last
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Figure 1.6: Contribution to Event Study Parameters by University Event Year
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The above graph shows how each university contributes to each event study parameter by the year of
university event. Universities experiencing an event in 2009 and later do not contribute to the post-event pa-
rameters while universities experiencing an event before 2007 do not contribute to the pre-event parameters.
States adopting between 2006 and 2008 contribute to both the pre-period and post-period parameters.

estimated parameters across the event space. Since the College Scorecard only contains
eight years of data for the repayment rate, the window for each university’s outcome will
not span the entirety of the range of event study parameters. Hence, the event study
coefficients represent a combination of the dynamic effect of each university’s change in
outcomes over time plus a heterogeneous effect of universities entering and exiting the
identification of the parameter space. This is more clearly shown in Figure 1.6 which plots
the identifying variation of each event across the event study parameters. Since the data
is both right and left censored, the universities that identify the pre-period (periods t — 2
through period t) are largely universities located in the states adopting after the 2008 high
school graduating class. On the other hand, the universities identifying the post-period
(periods t + 6 through t + 8) are the states adopting in 2008 and prior. The parameters
corresponding to periods ¢ + 2 through ¢ + 5 represent an intermediate range in which
it is possible that treated students enter the Scorecard data if they leave college prior to
the assumed four year spell. This intermediate range of parameters tests for changes to
repayment outcomes as a result of non-completing treated students.

Figure 1.7 reports the coefficients and 95% confidence intervals for the estimation of
Equation (1.6) for the repayment rate subgroups at public universities. In all four panels,

there is no differential trend between universities experiencing an event and those not

period before treated students can begin contributing to a university’s repayment rate for each university.
A treated student entering the repayment rate data in year ¢ + 1 would be a student who separated from
college prior to the end of the first year.
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experiencing an event. Further, there does not appear to be a significant effect on university
repayment rates during the intermediate periods for any of the subsamples. The estimated
coefficient for period t + 2 is negative for all groups and represents the smallest parameter
estimate but it rather small in magnitude. Although none of the intermediate estimates is
distinguishable from zero, the upward trend suggests non-completers exposed to personal
finance mandates may also be better at repaying student loans. The estimates for the post-
period parameters for first generation (low income) students range from 1.5 percentage
points (1.1 percentage points) in period ¢ + 6 to 4.6 percentage points (4.4 percentage
points) in period ¢ + 8 which is consistent with the point estimates presented in the main
specification. The results in Panels C and D for middle and high income students suggests
no significant effect until period t + 8 and is largely consistent with the muted estimates

presented in Table 1.4.

Figure 1.7: Event Study Coefficients for Sample of Public Universities

A. First Generation B. Low Income

0.101 0.101
// //
0.051 g 0.051 7
0.00 — — — 0.00 — — e
-0.051 pre-period intermediate post-period 0.05 pre-period intermediate post-period
t2  t1  t  t1 W2 #43  tH4 W5 t6 7 68 t2  t1 ot ] t2 3 4 t45  t6  t7 48
C. Middle Income D. High Income
0.101 0.101
A
¥ 7
0.05 0,051
// 1/
, |
0.00 — = — . —  0.00——— == <
_0.051 pre-period intermediate post-period 0.05 pre-period intermediate post-period

t2  t1  t  t1 W2 t43  t4 W5 t6 7 68 t2  t1 ot ] t2 3 4 t45  t6  t7 48

Each panel in the above figure presented the vector of event study parameters with period ¢ + 1 omitted as
the reference period. Since the repayment rate data takes at fewest one year to enter the College Scorecard,
it is not possible for a member of high school cohort ¢ to contribute to the repayment outcome in ¢ + 1.
However, early separators can contribute to the parameters ¢ + 2 through t + 5. Period t + 6 represents
students who spend four years in college and periods greater than t + 6 represent students from cohort ¢

who spent longer than four years in school or students in cohorts greater than f which were also bound by
PFL mandates.

In total, these results present evidence in support of the Parallel Trends Assumption
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and in support of the Cohort Matching Assumption. In each event study specification, the
coefficients corresponding to periods prior to event are both small and indistinguishable
from zero. The same is true for each of the parameters corresponding to periods in
which treated non-completers might contribute to the university repayment rate. Lastly,
the parameters corresponding to the post-periods suggest that first generation and low
income students have higher repayment rates. The point estimates suggest that when
the third cohort after the event has spent four years in college, repayment rates for first
generation and low income students are 4.6 and 4.4 percentage points higher, respectively.

Stability of University Mapping Assumption

In this section, I present evidence that PFL mandates do not cause students to alter
their college enrollment decisions. In order for university-level outcomes to appropriately
proxy aggregated micro-level outcomes, it must be the case that exposure to PFL education
does not alter the university a student chooses to attend. If exposure to required PFL
coursework shifts the mapping of students to universities, changes in federal student loan
repayment outcomes at the university-level might be due to compositional shifts in the
studentbody as a result of PFL. mandates. In this case, itis possible to detect improvements
in university-level repayment outcomes without any micro-level improvements.

To test this assumption, I use the IPEDS previous state of residence data to track the flow
of high school students from each state into the colleges they ultimately enroll.3! Recall the
IPEDS data includes the variable enroll;;; which is the number of students in the incoming
cohort for university i who previously resided in state j for incoming cohort ¢. Instead
of aggregating student counts at the university-level, I can instead aggregate student
counts at the previous state of residence level according to universities characteristics.
This procedure generates a measure of the percentage of high school students from each
state attending universities of a given type. Equation (1.7) illustrates an example of this
variable construction using the university characteristic Public4yr,, which equals one if a
university is a four-year public college and Seniorsj; is the total number of enrolled high
school seniors for the graduating cohort ¢.32

2. Publicdyr; X enroll;;;

iel

pctPublic4yr it = (1.7)

Seniorsj;

31Stoddard and Urban (2019) perform a similar test using the IPEDS enrollment data and counts of the
number of 18 year olds in a state in a given year.

%2The variable Seniors;; comes from enrollment counts from the Department of Education’s Common
Core of Data.
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The constructed variable, pctPublic4yr;, measures the percentage of high school seniors
from state j in cohort t who enrolled in a public four-year university. I create analogous
variables for any two-year and four-year college and for two-year and four-year public,
private non-profit, private for-profit, and in-state universities.

I use these constructed variables as outcome measures for a state-by-year difference-
in-differences design to test whether the state adoption of a personal finance education
mandate alters the share of students attending various types of colleges. The estimating
equation is similar to Equation (1.4):

Yjt = yprandate].t +BXjr +6j + 0 + €1, (1.8)

where yj; is a state-level variable, such as pctPublicdyr;,, and prandate].t is a binary

it
variable denoting whether state j had a binding personal finance mandate in effect for
cohort t. The vector X; is the same set of state-by-graduation year level controls as in

Equation (1.4) and 6; and 6, are state and year fixed effects, respectively.*

Figure 1.8: Difference-in-Differences Estimates for Changes to College Enrollment
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The figure above plots a separate difference-in-differences coefficient estimate and corresponding 95%
confidence interval where the independent variable is pfMandate and the outcome variable is denoted for
each column. Each outcome is reported for two-year universities with a square and four-year universities
with a triangle. Control variables include state level counts of high school staffing, other high school
graduation credit requirements for math, English, social studies, and science, and the availability of state
merit aid scholarships.

Figure 1.8 presents point estimates and 95% confidence intervals for this specifica-

3These controls include state level counts of school staffing, other course requirements for graduation,
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tion.3* All reported point estimates a smaller than a one percentage point change in either
direction and no estimate is statistically different from zero at any conventional signifi-
cance threshold. The results are consistent with the findings in the literature which find
no changes in college attendance or the choice of college as a result of a binding personal
finance education mandate (Stoddard and Urban, 2019).

Robustness to Changes in College Enrollment

In this section, I present evidence that the results presented above are robust even in
the case of changes to student enrollment decisions. I estimate a variation of Equation (1.4)
using an alternate construction of pctBound. This specification is motivated by a “shift-
share” framework in which exposure levels are held constant at their initial levels and
the variation in the identifying variable is driven by an interaction of the constant shares
and an aggregate trend (Bartik, 1987).%> Hence, the identifying variation in this model
does not rely on transitory changes in high school students’ college choice but rather each
university’s exposure to each state’s potential adoption of PFL mandates in the period
before PFL mandate adoption. Applying this framework to the construction of pctBound,
I construct mﬁ, s which is the mean enrollment of the students from state j at university

i for a set of academic years S. The construction of pctBound;, takes the form:

pctBound;, = x ptMandate;, . (1.9)

21 [enrollijls

j=1 enrOIL"S

For this analysis, the set S contains the IPEDS state of residence counts from 1986
through 1994 as this period largely contains state composition before the rollout of personal

finance mandates. Summing over all states and D.C. yields the mean total enrollment

enroll; s for university i during the set of years S. Hence, the fixed share of students from

university i from state j can be derived as the ratio of enroll;; s to enroll; s. When thereisno

change in PFL mandate adoption from year ¢ to year t +1, there is no change in pctBound,,

to pctBound, , ;. However, if state | adopts a mandate between graduating cohort ¢ and

graduating cohort f + 1, the difference in pctBound, ,,; and pctBound,; is exactly equal to

the ratio enroll;j s /enroll; s, or state |’s historical composition for university i.
Figure 1.9 plots the estimates from this alternative specification relative to the estimates

and the availability of state merit aid scholarships.

34The full table of results are available in Tables 1.14 and 1.15.

%Recall in Section 1.8.1 that identification of yPP requires that Dy; does not affect college choice and
that the reweighted state fixed effects by the state share but be included in the error term. However,
this specification holds state shares fixed which allows for yPP to be consistently estimated without this
assumption.
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from the baseline specification for the sample of public universities. For all outcome
variables, the point estimates are largely unchanged between the baseline specification and
the shift-share specification. In fact, the point estimates using the shift-share specification
represent larger impacts for both first generation and low income students. These results
confirm that the improvements in PFL mandates stem from a university’s exposure to
PFL mandates rather than from transitory changes in student enrollment induced by PFL

mandates.

Figure 1.9: Dose Response Shift-Share Estimates Relative to Baseline Specification for
Public Universities
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The figure above plots a separate coefficient estimate and corresponding 95% confidence interval where the
independent variable is pfMandate and the outcome variable is denoted for each column. The estimates from
the Shift-Share specification are reported with a square and the estimates from the baseline specification are
replicated with a triangle. Proportional impacts are also printed to the right of each marker. The vector of
control variables remains unchanged from the main specification. 95% confidence intervals are constructed
using standard errors clustered at the state level.

1.6.3 Application: Universal PFL Mandates

To illustrate the magnitude of these estimates, I construct a counter-factual using the
results from the baseline specification. Consider a hypothetical case in which all high
school students graduating between 2001 and 2008 were bound by state PFL mandates.
Table 1.5 shows the total pctBound across all public universities for the incoming cohort

matched to each cohort’s one-year repayment rate. I also present the total number of

%Since the repayment rate is calculated using two cohorts, I divide the repayment cohort in half.
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students in each repayment cohort that successfully repaid at least one dollar of their
loan balance one year after entering repayment.® The next panel shows how the one-
year repayment rate changes when I apply the estimated ATT for the overall cohort
from Table 1.4 scaled by the share of the student body not bound by mandates. I also
report the total number of students successfully repaying federal students loans under
this assumption along with the estimated increase in the number of students meeting this
metric. On average, around 9,000 additional students would have paid down at least one
dollar of original principal after one year for a total of over 72,000 additional borrowers
making progress on their loans.

One important consideration is whether one-year repayment outcomes are predictive
of long-term repayment success. Table 1.6 shows a summary of various long term repay-
ment outcomes for a nationally representative sample of college students entering college
in 2003. The sample is split by whether a student had paid down at least one dollar in
principal one year after entering repayment. Students in this cohort who were able to
pay down at least a dollar of their student loan debt one year after entering repayment
were significantly better at repaying their loans 12 years after entering repayment. These
students paid down nearly half of their loans while those not hitting the benchmark still
owed 81% of their original balance. They were also half as likely to have defaulted on
a student loan and were 19 percentage points more likely to have ever repair their stu-
dent loans. Although not causal estimates, these comparisons suggest that improvements
in the one-year repayment rate caused by PFL mandates could also lead to large future

student loan repayment success for mandated students.
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Table 1.5: Hypothetical Effect of Universal Personal Finance Mandate

Observed Hypothetical
Cohort  petBound Repayment Studer}ts Repayment Studer}ts A Students

Rate Repaying Rate Repaying  Repaying
2001 12.0% 71.7% 418,262 73.1% 426,868 + 8,606
2002 12.0% 65.1% 333,385 66.6% 341,076 + 7,691
2003 12.2% 60.9% 325,790 62.4% 333,815 + 8,025
2004 12.6% 58.5% 342,921 60.0% 351,702 + 8,781
2005 16.5% 56.5% 372,848 57.9% 382,312 +9,464
2006 17.0% 54.6% 413,066 56.0% 423,862 + 10,796
2007 32.2% 53.4% 442,683 54.5% 452,285 + 9,602
2008 33.7% 53.9% 460,313 55.0% 469,992 + 9,679

+ 72,644

The table above details a hypthetical exercise which assumes the estimated effect of PFL. man-
dates is applied to all unmandated students in each entering cohort. The estimated treatment
effect from Table 1.4 for the overall cohortis 0.017. The hypothetical repayment rate is computed
by adding (1 — pctBound,,) * 0.017 to the observed repayment rate.

Table 1.6: Long-term Repayment Outcomes Conditional on One Year Repayment (Begin-
ning Postsecondary Students 2004)

Paid down principal after one year

Outcome 12 years after entering college Yes No
Percent owed on balance 0.51 0.82
Ever defaulted on loan 0.12 0.24
Ever paid off loan 0.58 0.37
Remaining balance $22,086 $36,814
Total Weighted Population 537,990 425,930

Source: U.S Department of Education, National Center for Education Statistics, 2004/2009 Beginning
Postsecondary Students Longitudinal Study Restricted-Use Data File with the 2015 FSA Supplement.
Estimates come from author’s calculations. One year repayment rate metric is constructed by calcu-
lating the outstanding student loan balance one year after entering repayment and comparing to the
outstanding balance upon entering repayment. Only borrowers who had entered repayment by the
end of 2009 are considered to maintain consistent end dates.
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1.6.4 Evidence of Mechanisms

Student Loan Debt

To test for changes in federal student loan borrowing, I estimate Equation (1.4) on
moments from the student loan debt distribution and the median debt for subsamples
of the student body from the College Scorecard. Table 1.7 reports the estimated effect
of personal finance mandates on student loan debt upon entering repayment for public
universities. The sample is restricted to the high school graduation years 2001 through
2008 to match the results presented above. The effect of increased exposure to personal
finance education on student loan debt is proportionally small for the 10th, 75th, and
90th percentiles of the debt distribution for public universities. However, the estimates at
the 25th percentile and the median represent imprecise reductions in student loan debt

around 3%.

Table 1.7: Dose Response Estimates: Moments from Student Loan Debt Distribution for
Public University Sample

(1) 2) ) (4) ()

10th 25th 50th 75th 90th
pctBound -2.8 -122.0 -305.2 -312.7 -144.3

(50.1) (127.3) (234.6) (269.9) (377.1)
Universities 449 450 450 450 449
Cohorts 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 2480.3 4181.4 9516.4 18172.4 25959.9
Percentage Effect -0.1% -2.9% -3.2% -1.7% -0.6%

Regressions are weighted using the number of students used to compute each outcome metric. Each
column reports a coefficient from a separate regression where the independent variable is pctBound and
the outcome is denoted in the column header. The sample includes public four-year universities. 10th,
25th, 50th, 75th and 90th each represent the correspondent moment in a unviersity’s student loan debt
levels for students entering repayment. Controls include cohort weighted credit requirements in math,
English, social studies, and science by high school graduation cohort and controls for state level high
school staffing, and availability of merit aid scholarships. Also included are university and high school
graduation year fixed effects. P-values using standard errors clustered at the state level are presented in
parenthesis. *** p<0.01, ** p<0.05, * p<0.1

This effect can be further explored by tracing the effect on the same subsamples of
the student body discussed above for the one-year repayment rate. The improvements in

repayment rates were largest for low income and first generation students with smaller
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Table 1.8: Dose Response Estimates: Median Student Loan Debt by Student Subsample
for Public University Sample

(1) (2) ®) (4)
First Gen Low Income Middle Income High Income

pctBound -272.3 68.2 -281.9 -783.4**

(247.9) (210.1) (232.6) (317.6)
Universities 449 450 446 446
Cohorts 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 9288.9 9289.7 9911.5 9602.7
Percentage Effect -2.9% 0.7% -2.8% -8.2%

Regressions are weighted using the number of students used to compute each outcome metric. Each
column reports a coefficient from a separate regression where the independent variable is pctBound and
the outcome is denoted in the column header. The sample includes public four-year universities. First
Gen students are defined as students whose parents did not have a college degree. Low Income, Middle
Income, and High Income students are defined as household income less than 30,000, between 30,000
and 75,000 and above 75,000, respectively. Controls include cohort weighted credit requirements in math,
English, social studies, and science by high school graduation cohort and controls for state level high
school staffing, and availability of merit aid scholarships. Also included are university and high school
graduation year fixed effects. P-values using standard errors clustered at the state level are presented in
parenthesis. *** p<0.01, ** p<0.05, * p<0.1

effects for high income students. Table 1.8 reports the effect of personal finance mandates
on the median loan debt for subgroups of the public university cohorts. The point
estimates are negative and imprecise for first generation and middle income students. On
the other hand, the estimate for high income students is sizable and statistically significant,
representing a decline in borrowing of around 8%. This heterogeneous response from
personal finance education may help to explain the improvements in repayment for high
income students. While there is little evidence of changes to borrowing patterns for first
generation and low income students who saw the largest effects on repayment rates, it
may be the case that high income students have better repayment rates as a result of lower
student loan balances upon entering repayment. This could be due to a decision to borrow
less or due to increases in grant or scholarship receipt as found in Stoddard and Urban
(2019).

Information Intervention

In this section, I test whether students who were bound by personal finance education
mandates in high school are better able to answer questions about financial literacy and
tederal student loans. I employ a difference-in-differences design with micro-level data
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from three nationally representative surveys. The estimating equation for each data source

is similar and takes the form

visjt = ypfMandate_, + BXsjt + 05 + O + O; + €isji, (1.10)

where y;sj; is a binary variable for whether respondent i from state s observed in survey
wave j graduating from high school in year t correctly answered a particular question. I
drop any respondent with a GED or no high school diploma since these students were not
bound by state graduation mandates. Xjs;; includes a vector of binary control variables
which includes race, gender, and education and the vector of state-by-graduation year
controls for merit aid, high school staffing, and credit requirements as in Equation (1.4).
y is the parameter of interest which estimates the impact of a binding personal finance
education mandate on the (linear) probability of correctly answering the question. Lastly,
I include state, survey wave, and high school graduation year fixed effects and I use
the included state-level survey weights so the analysis is representative of each state’s
population.?” Standard errors are clustered at the high school state level.

The first survey is the National Postsecondary Student Aid Study (NPSAS) which
includes a nationally representative sample of college students every two years. The
2016 wave of the NPSAS began asking college students three financial literacy questions
and three questions pertaining to knowledge of federal student loan repayment.® These
new data provide insights into the financial literacy of current college students that was
previously not available. However, since these questions are only included in one survey
wave, comparisons of mandated students to not mandated students from the same state
largely rely on students surveyed at different ages. Asaresult, the estimate for y potentially
includes the effect of personal finance education mandates plus a bias term. Additionally,
the 2016 wave of the NPSAS largely contains students that graduated high school after
the period between 2001 and 2008 studied above. Regardless, the novelty of the questions
asked in this survey necessitate its use.

In addition to the NPSAS, I also use data from the National Financial Capability Study
(NFCS) and the Survey of Household Economics and Decisionmaking (SHED). The NFCS
data contain waves from 2012, 2015, and 2018 while the SHED data contain waves from
2017 and 2018. Both surveys are nationally representative and each asks five financial
literacy questions that largely overlap in content.?® Since each survey contains multiple
waves, it is possible to compare respondents surveyed from the same state and at the

3’The weights included in the NPSAS:16 are nationally representative instead of state representative.
%The questions are detailed in Table 1.20.
¥Survey question text can be found in Table 1.20.
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same age but with different values for pfMandate. However, neither survey includes data
on state or year of high school graduation. Rather, I follow the convention in Urban,
Schmeiser, Collins, and Brown (2018) and Harvey (2019) and assign mandate status by
state of residence and year of 18th birthday. Additionally, for these two surveys, I restrict
the sample to only those students whose (inferred) high school graduation year is between
2001 and 2008 (inclusive) in order to match the data years for the improvements in the
one-year repayment rate discussed above.

Figure 1.10 plots the coefficient estimates and 95% confidence intervals from the esti-
mation of Equation (1.10) for the three surveys.# Panel A plots the coefficient estimates for
the three financial literacy and three loan literacy questions from the NPSAS:16. The point
estimates for each of the three financial literacy questions is less than a half a percentage
point and the null hypothesis cannot be rejected for any estimate. Further, there is no
significant change in the total number of correct answers as a result of a binding personal
finance mandate.#* On the other hand, each of the estimates for the three loan literacy
questions is positive ranging from 1.3 to 3.3 percentage point increases in the probability
of a correct answer. The largest effect is for the question asking borrowers whether the
tfederal government can garnish wages for non-payment of federal student loans. Ad-
ditionally, respondents answered 3% more questions correctly if they were bound by a
personal finance mandate.

Panel B plots the point estimates for the five financial literacy questions in both the
NFCS and the SHED surveys. Across all ten questions, no null hypothesis can be rejected
at any conventional level. In total, the evidence suggests no difference in the probability
of correctly answering financial literacy questions between mandated and not mandated
respondents at the time of survey. However, these results should not be taken as evidence
that personal finance education mandates do not improve financial literacy. The evidence
does not preclude the case where PFL mandates improve financial literacy during and
immediately after high school and either financial literacy depreciates quickly or non-
mandated peers catch up to mandated peers after high school. If this is the case, PFL
mandates may still improve downstream outcomes due to decisions made during high
school while financial literacy was higher than non-mandated peers.

On the other hand, the evidence does suggest that mandated students are more knowl-
edgeable about regulations governing federal student loans. If this is the case, student

loan borrowers may be better able to repay loans due to this increased familiarity with

“Tables 1.17 to 1.19 report the full results for the NPSAS, SHED, and NFCS, respectively.
#The full table of coefficients and standard errors along with the effect on the number of correct answers
can be found in Table 1.17.
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Figure 1.10: Difference-in-Difference Estimates for Financial Literacy and Loan Literacy
from NPSAS:16
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The above figures plot the point estimates and 95% confidence intervals for the difference-in-difference
coefficients using the NPSAS, NFCS, and SHED surveys. Panel A plots the effect of PFL mandates on the
linear probability for three financial literacy and three loan literacy questions. Panel B plots the effect of
PFL mandates on the linear probability of five financial literacy questions for each survey. Question text is
available in Table 1.20 and a full table of coefficient estimates and standard errors is available in Tables 1.18
to 1.19.

Sources: U.S Department of Education, National Center for Education Statistics, Restricted-use National
Postsecondary Student Aid Study 2016. Also National Financial Capability Study and Survey of Household
Economics and Decisionmaking

the rules and regulations for their loans. These students might be aware of income-driven
repayment plans or deferment or forbearance options. In addition, Stoddard and Urban
(2019) find that students bound by personal finance education mandates are more likely
to borrow from federal sources. It could also be the case that the increase in knowledge
about the federal student loan system is due to an increase in the probability of federal
borrowing. Anderson, Conzelmann, and Lacy (2018) find that federal borrowers have
higher student loan literacy which might be a result of more experience with the federal

loan system.

Completion

Lastly, I test whether personal finance education mandates have any impact on the
probability a student earns a degree. If personal finance education leads to better matching
of students to colleges or degree programs, students may be more successful in college.
As a result of graduation, students will likely have better labor market outcomes which
would lead to better repayment rates and a lower chance of default. I use the American
Community Survey (ACS) one-year samples from 2005-2017 to test whether students
bound by personal finance mandates were more likely to hold a college degree or have
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ever attended college. The estimating equation for these testsis identical to Equation (1.10).
However, I remove students younger than 22 as these students are unlikely to have earned
a bachelor’s degree yet. Since the ACS also does not ask respondents for the year of high
school graduation, I assume respondents graduate from high school in the year of their
18th birthday. I report results where either the state of birth or the state of residence is used
in place of state of high school since state of high school graduation is also unobserved.
Table 1.9 reports the results of this estimation on the (linear) probability of earning
a bachelor’s degree, the probability of earning an associate’s degree, and the probability
a respondent ever attended college. Odd numbered columns identify mandate status
by birth state while even numbered columns use state of residence. The estimate in
Column 1 suggests a potential negative relationship between personal finance mandates
and bachelor’s degree receipt although the point estimate is quite small. However, when
using the state of residence instead of birth state in Column 2, the estimate is not statistically
significant. The estimates in Columns 3 through 6 suggest there is also no effect of
personal finance education mandates on the probability of earning an associates degree
or having ever attended college. In total, I find little compelling evidence to suggest that

the improvement in student loan repayment is due to an increase in degree completion.

1.7 Conclusion

The findings in this paper extend the literature on personal finance education mandates
and federal financial aid in several key dimensions. Ifind that students who were bound by
PFL mandates in high school were better at repaying student loan balances. The impact
is largest and most precisely estimated for low income and first generation students at
public universities which is consistent with other findings in the literature (Stoddard and
Urban, 2019; Goodman, 2019). The results suggest that low income and first generation
students are 5% more likely to have paid down some of their original balance one year
after entering repayment. Despite some suggestive evidence of improvements, I cannot
conclude that mandates have any meaningful impact on the cohort default rate. However,
this result is likely not surprising since student loan default is a more rare and adverse
outcome while repayment progress is a more sensitive measure.

I conduct a counter-factual exercise to estimate how many additional students would
have been able to successfully pay down some of their student loan balance if PFL. mandate
were universal. If all students were bound by PFL mandates for the high school graduating
cohorts between 2001 and 2008, an additional 72,000 students would have paid down at
least a dollar of their balance on year after entering repayment. I show evidence that
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Table 1.9: Difference-in-Differences Estimates for Degree Completion from ACS

) (2) ®) (4) ©) (6)

Bachelor’'s  Bachelor’s Assoc Assoc Ever Ever
Earned Earned Earned Earned College College
PF Mandate -0.005* -0.004 0.001 -0.002 -0.007 -0.006
(0.003) (0.003) (0.001) (0.002) (0.004) (0.005)
Observations 2,236,990 2,236,990 2,236,990 2,236,990 2,236,990 2,236,990
Cohorts 2001-2008 ~ 2001-2008  2001-2008  2001-2008  2001-2008  2001-2008
High School State  Birthplace  Residence  Birthplace  Residence  Birthplace  Residence
Outcome Mean 0.240 0.240 0.097 0.097 0.692 0.692
Percentage Effect -1.9% -1.8% 0.9% -2.4% -1.0% -0.8%

Notes: Sample includes respondents from the 2005-2017 American Community Survey with a high school
diploma or higher that were born in the U.S. and 22 years of age or older. Controls include binary variables
for gender and race along with credit requirements in math, English, social studies, and science by high
school graduation year and state of residence, controls for state level high school staffing, and availability
of merit aid scholarships at the state level. Also included are state and high school graduation year fixed
effects. Standard errors are clustered at the state level. *** p<0.01, ** p<0.05, * p<0.1

repayment progress after one year is correlated with long term repayment outcomes.
Students who had made progress on their loans one year after entering repayment were
half as likely to default and were 36% more likely to have paid off their full balance.

I find that median student loan balances are not significantly declining as a result of
personal finance education mandates for first generation or low income students who are
better at repaying loans. However, improvements in repayment rates for high income
students might be a result of decreased borrowing. The results suggest the median high
income student loan debt is 8% lower as a result of PFL mandates.

I use correct answers on financial literacy questions as a proxy for general financial
literacy. I find no evidence that students bound by PFL mandates are more financial
literate when surveyed. Across 13 questions asked in three surveys, I find no evidence
that students bound by a personal finance mandate have a higher probability of correctly
answering these questions. This does not necessarily imply that PFL mandates are inef-
fective at improving financial literacy. Rather, it is possible that improvements in financial
literacy depreciate quickly after high school and/or non-mandated peers quickly catch
up. In this case, personal finance education in high school may still operate as a just-
in-time intervention in which financial literacy is temporarily improved at the same time
postsecondary financing decisions are made.

On the other hand, I present evidence that students bound by personal finance man-
dates are more knowledgeable about the federal financial aid system. Students bound

by mandates are more likely to correctly answer one of the three questions about federal
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student loans and answer more of these questions correctly. This suggests that students
bound by the mandates may be better able to repay student loans in part due to increased
familiarity with the federal student loan system. If this is the case, personal finance
mandates might not be necessary to improve student loan outcomes if the federal loan
system were to be simplified. The results from this paper lend further evidence to the
string of literature that shows potential benefits to a more streamlined federal financial aid
system with fewer complexities that borrowers must learn before making postsecondary
financing decisions (Dynarski and Scott-Clayton, 2006; Bettinger, Long, Oreopoulos, and
Sanbonmatsu, 2012; Novak and McKinney, 2011; Dynarski and Scott-Clayton, 2013; Castle-
man, Schwartz, and Baum, 2015; Kofoed, 2017). However, the benefits to personal finance
education mandates highlighted in this paper and in the related literature indeed suggest
that mandating personal finance education in high school can improve financial outcomes

for those students exposed to course material.

1.8 Appendix

1.8.1 Derivation of Motivating Specification

In this section, I show that when the three assumptions are satisfied, the aggregated
estimating equation, Equation (1.2), consistently estimates the difference-in-differences
parameter, PP, First, assume the following assumptions hold:

1. Parallel Trends Assumption: E[Ayo,ist | Dsgiyr = 0] = E[Ayo,ist | Dsiye = 1] Vt
2. Cohort Matching Assumption:  k; = k Vi
3. Stability of University Mapping: G( i, Dy = 1) = G( i, Ds(;; = 0)

where s(i) is the state of high school for student i. First, define the functionG : 7 XD — J
where I = {1,...,I}, D ={0,1},and J = {0,1, ..., J}. By Assumption 3, G(i, Dy = 1) =
G(i, Ds(iyr = 0) so we can simplify this function to G’ which maps 7 — J such that
G'(i) = j is independent of Dy;;. Recall the difference-in-differences specification using
micro-level data is:

Yist = a + VDDDs(i)t + Os(i)t + Eist, (1.11)

Using the assumption that k; = k for all i, we can define 7 := t + k. Define J;; equal to
{i: G'(i) = j,t = T — k} and define |];;| as the number of students in J;;. The aggregated
outcome, Yjz, is defined by
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1
Yis = —
T ] Z Jit

which constructs the average of y for all students in the set ;. Similarly, the same
transformation can be applied to the RHS of Equation (1.11):

Y]'T = Z a+ V Ds(z)t + 65(1)1’ + élst]
I .
@ )t 6 (i T Eist
uﬂé1 mag Dol 7 |1; KT |Z]
R 1
pD | e
=a+ Os(iyt + 75— &
y |]jT| |]]’c| Z:T 0 |]]”c| 162]]7 !

The first term in the specification trivially reduces to a. The second term reduces
to the share of students in J;; for which Dy;); = 1 which we will define as pctBound].T.
Additionally, since the error term is assumed mean-zero in the micro-level case conditional
on observables and the Parallel Trends Assumption, the aggregated university-level error
draws will also be conditionally mean-zero since the allocation of students to universities
is unchanged by D;(;;. As a result, the university error term can be rewritten as an
arbitrary mean-zero error term e;j.

Y]-T =qa+ yDDpctBound].T + Z 65(1)1‘ +ejr

i€]jz

ILTI

By the Parallel Trends Assumption, we can rewrite 0,(;y = 05(;) + 0. Further, 64(;) can

S
be rewritten as »; 6, - 1{s(i) = s} and the specification becomes
s=1

S . .
1-4s(i)=s,ic€
Y]T—a+)/DDpctBound +ZZ(‘5 {()”" ]]T ” Zét+€]’l
i€]jr s= T T

i€]jz

1- {s(i) =s,i € ]]-T}

e.
|]jT| It

Yjz —a+)/DDpctBound +6t+26 Z

s=1 l'€]]'7

Since T = t + k by assumption, the time fixed effect is unchanged and 0. is just a change
in notation. However, the last remaining term is more nuanced. Note that this term is a
reweighting of the feeder-state fixed effect in accordance with the share of the cohort from
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each feeder state. For ease of interpretation, define the following terms

1-{s(i)=s,i €] THke S
StateShare;;; = Z { @ J T} , 0= Z Z OsStateShares ¢

ilix el T=k s=1
Adding and subtracting 6; yields:
T+k S S
Yir =a+ 7/DDpctBound].T +0t+ 0 — Z Z OsStateShares; + Z OsStateShares;; + ej;
t=k s=1 s=1
S T+k
—a+ yDDpctBound].T +0p+ 0+ Z Os (StateShareS]-T - Z StateShareS]-T) +ejr
s=1 =k

The remaining term in brackets represents the sum of transitory deviations from the
university’s mean share of students from each state multiplied by the fixed effect for each
state. By the Stability of University Mapping assumption, this term is independent of the
components of pctBound,,. Collecting this transitory enrollment deviations term with
ejz, we can rewrite the estimating equation as:

YjT =a+ yDDpctBound].T + 5]' + 0 + Vjr. (1-12)

Hence, under the three aforementioned assumptions, the aggregate university-level spec-
ification consistently estimates the micro-level difference-in-differences specification. Ad-
ditionally, in Section 1.6.2, I estimate an alternative university-level specification that holds
StateShares;; fixed at initial levels. In this specification, the identification of yD D in the
university-level specification is consistent even in the case where students alter their college
choice as a result of Dy;.

1.8.2 Data Appendix

College Scorecard

All data used in the analysis was pulled from the College Scorecard website using the
October 30, 2018 update. The subsequent updates (as of September 27, 2019) did not affect
the measures from the NSLDS used in this paper .
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Integrated Postsecondary Education Data System

I collect previous state of residence data from the Integrated Postsecondary Education
Data System (IPEDS). This data comes from the Compare Institutions tool on the IPEDS
website. The data include years 1986 through 2016 for all universities in the Scorecard
sample. From the Fall Enrollment category, I use the “State of residence when student
was first admitted” and counts of “First-time degree/certificate-seeking undergraduate
students who graduated from high school in the past 12 months.” These data were
required to be submitted in: 2016, 2014, 2012, 2010, 2008, 2006, 2004, 2002, 2000, 1998, 1996,
1994, 1992, 1988, and 1986. Universities could voluntarily provide this data in: 2015, 2013,
2011, 2009, 2007, 2005, 2003, and 2001. I impute missing values by linearly interpolating
between the nearest non-missing years. In addition, Section 1.8.4 estimates Equation (1.4)

by using instrumented values of enrollment counts rather than linear interpolation.

High School Staffing Variables

I collect counts of state level high school staffing to use as controls in all specifications.
These data come from the Common Core of Data (CCD) and are accessed using the
educationdata Stata package from the Urban Institute. I pull these data for the years 1993
through 2015 at the school district level. Counts for each of the following are collected
and aggregated to the state level: total staff, full-time equivalent total teachers, full-time
equivalent total school support staff, total school guidance counselors, and total student
support staff.

High School Graduation Requirements

I create a panel dataset of credit requirements for high school graduation at the state-
by-graduation-year level. These data are primarily sourced from the National Center
for Education Statistics (NCES) Digest of Education Statistics Chapter 2. These tables
present snapshots in time of state credit requirements for each state along with the first
effective graduating cohort bound by the requirements. The first table is from 1995 and
I use these snapshots to track changes in graduation requirements in: Total Credits,
English/Language Arts, Social Studies, Math, and Science. The creation of this data
required some decisions in which I try to follow objective rules. First, not all states have
state requirements for high school graduation. States like Colorado deferred requirements
to the district level. For these states, I impute the state requirements by substituting the
national average for each graduating cohort for states with requirements and I include a

binary variable denoting local control. Second, many states have multiple tracts students
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can select with different credit requirements for each track. When possible, I select the
vector of graduating requirements that had the minimum standards. These are typically
obvious when the choice is between a “standard” diploma and an “honors” diploma,
however the definition can be more subjective when states allow students a technical career
path. In these cases, I choose the standard diploma requirements as the technical career
path students are less likely to attend a four-year college after high school graduation.

I supplement and cross reference the NCES data with data from the Education Com-
mission of the States 50-State Comparison: High School Graduation Requirements (Mac-
donald, Dounay-Zinth, and Pompelia, 2019). When conflicts between the sources arose,
I tracked the course standards using state Department of Education websites to resolve
discrepancies. This data is available upon request.

State Merit Aid

I use the definition of state merit aid availability at the state-graduation-year level as
defined by Sjoquist and Winters (2015). They define merit aid scholarships as “strong”
and “weak” merit aid programs and I follow their convention. I include a binary indicator
variable at the high school graduating cohort by year level for the presence of weak and

strong merit aid in each specification.

Constructing University Cohort Controls from State-by-Graduation-Year Data

A vector of incoming cohort level controls are included in X;;. In a similar manner to
Equation (1.3), I create a vector of control variables for each incoming university cohort that
is weighted by the state composition of the incoming cohort. I use high school graduation
state j by high school graduation year ¢ variables, x;;, combined with previous state of
residence data, enroll;j;, for university i from state j in year ¢ to construct an incoming

university cohort measure for each variable in Xj;:

51
2 Xji X enroll;j;

j=1
Xit = 51 ’ (113)
Z enrolli]-t

j=1

This vector includes the state level measures of high school staffing and high school

graduation requirements.# In addition to these state weighted controls, X;; also includes

“2Not all states have high school graduation standards set at the state level. For states with no state
standards, the mean value across all states is used and a binary variable is included denoting local control
of high school graduation standards.

43



binary variables for whether the state of university offered a merit aid scholarship along
with unemployment rates for periods ¢ through t + k.

1.8.3 Randomization Inference Algorithm

The randomization inference algorithm used to compute the empirical p-values is
based off the RI-f algorithm in MacKinnon and Webb (forthcoming). I conduct 3000
replications of Equation (1.4) for each outcome variable where the identifying variation
in the replication is randomly generated by supposing that the adopting states do not
adopt and the non-adopting states do adopt. In each of these replications, it should be
the case that the estimated treatment effect for the placebo replications is zero on average.
Further, the estimated treatment effect using the observed pctBound measure should be
a sufficiently extreme value in the distribution of placebo replications. The algorithm

proceeds as follows for each replication:
1. Split the sample of 50 states plus D.C. into two groups
Group A: States adopting a mandate binding for the class of 2008 and prior (13
states)
Group B: States adopting a mandate binding for the class of 2009 and later and

states that never adopt a mandate.

2. Choose 13 states at random from Group B to slot into the mandate adoption slots
observed in the true data*

3. Use this selection of states and adoption years to generate placebo pfMandate;,.

51
2. ptMandate;, xenroll;j;
4. Compute pctBound,, = = = using placebo prandate].t.

2. enroll;j;
=1

5. Estimate Equation (1.4) using the placebo pctBound,;.
6. Store 7.

Once all 7, for n =1, ...,3000 are collected, the empirical p-value is computed using:

1 3000
p= m ; 1- {|7n| 2 |Vtrue|} (1-14)

#0ne adopting state in 1993, 1996, 1998, 2002, 2006 and 2008. Three adopting states in 2005. Four
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Figure 1.11 presents the distributions of the 7, estimates for each outcome for the public
university sample with the  from the baseline specification marked in each distribution.

Figure 1.11: Distribution of Placebo Estimates for pctBound for Repayment Outcomes for
Public Universities

Default Rate (Overall) Repayment Rate (Overall)
Public Universities Public Universities
i i
i i
i i
i i
T T T T T T T T T T
-02 -01 0 01 .02 -04 -02 0 02 .04
Distribution of placebo y coefficients Distribution of placebo y coefficients
Empirical p-value (2 sided): 0.429 Empirical p-value (2 sided): 0.058
Baseline y=-0.003 Baseline y=0.017
Repayment Rate (First Generation) Repayment Rate (Low Income)

Public Universities Public Universities

04 -02 0 0 04 04 -02 0 02 04
Distribution of placebo y coefficients Distribution of placebo y coefficients
Empirical p-value (2 sided): 0.009 Empirical p-value (2 sided): 0.035
Baseline y=0.025 Baseline y=0.022
Repayment Rate (Middle Income) Repayment Rate (High Income)

Public Universities Public Universities

04 -02 0 0 04 04 -02 0

Distribution of placebo y coefficients Distribution of placebo y coefficients
Empirical p-value (2 sided): 0.223 Empirical p-value (2 sided): 0.023
Baseline y=0.011 Baseline y=0.020

1.8.4 Alternative Specifications

In this section, I explore whether the results presented above are sensitive to the choice

of specification and the use of the continuous treatment measure.

adopting states in 2007.
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State-Level Difference-in-Differences for High In-state Universities

First, I abandon the use of the continuous treatment measure to estimate a more
straight-forward difference-in-differences specification in which treatment status is as-
signed to each university at the state level. To isolate the sample to only those that are
most affected by the within-state adoption of a personal finance education mandate, I
restrict the sample to public and private universities with a historically high in-state per-
centage of students. For each university, I calculate the mean percentage of students who
resided in the state in the previous year over the sample years and only include a university
in this analysis if the mean percentage of in-state students is 70% or higher.# The result is
a sample of 656 universities of which 370 are public and 286 are private. This subsample
represents over 75% of the public universities in the sample but less than one-third of the
private universities. In this specification, each university is assumed to only be affected
by its own state’s mandate adoption (if any) and universities in states that do not adopt a
mandate act as controls. The specification is similar to Equation (1.4)

Vis,t+6 = ypfMandate,, + fXs; + 05 + 0t + €ist, (1.15)

where ;s 116 is the same student loan repayment outcome for university i located in
state s for the repayment cohort matched to high school graduating class t. Rather than
pctBound,, as in Equation (1.4), pfMandate, is equal to one if the university state s has
a binding mandate for high school graduating cohort t. Also included are the vector of
control variables X;; at the state level which include other course credit requirements,
high school staffing levels, availability of state merit aid scholarships, and a vector of the
state unemployment rates between periods t and ¢ + 6. Fixed effects for state (65) and high
school graduating cohorts (6;) are also included and standard errors are clustered at the
state level.

Table 1.10 reports the estimated ) coefficients for this specification for all universities
with 70% or higher historical in-state percentage for the main outcome variable split by
public and private universities. Columns 3 and 4 in Panel A show improvements in the
one-year repayment rate for first generation and low income students similar to those
found in Table 1.4. However, the estimates presented in Panel B suggest that private
universities who receive a large share of students from in-state high schools indeed see
improvements in studentloan repayment at least for low income students. In fact, the point

estimates for private universities are larger than for public universities. This divergence in

“For the sample of universities, the median historical in-state percentage is 64% so this is roughly half
the universities in the main analysis
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the sample of private universities across specifications may be due to the type of student
attending out-of-state private universities or the type of private universities that attract

largely in-state students.

Instrumenting for Enrollment Counts

As noted above, universities are required to send data on the previous state of resi-
dence for each incoming cohort only in even numbered years. Universities may elect to
also provide this information in odd years but are not required. As a result, the data
contain many missing values over the sample. Further, investigation of the data reveal
numerous transcription errors in which the cohort is coded as including only students
who graduated from high school longer than 12 months prior when this is highly unlikely
given previous years’ data. In the main analysis, I linearly interpolate missing values us-
ing the neighboring non-missing years. However, trends in attendance may not be linear
in years and idiosyncratic and transitory shocks to attendance numbers may occur which
deviate from linearly interpolated values.

In this section, I conduct a more thorough exercise to replace missing data values
that uses more information to predict missing values by instrumenting enroll;s;; with
linear and quadratic trends, a series of fixed effects, and the availability of state merit aid
scholarships. Equation (1.16) details the specification for this strategy:

enrollisjy =0; +t - 6; + 12 8; + 1 - 65 + 12+ 5
+t- 04+ t2. 0;j + meritAid;; + meritAid; - {s = j} (1.16)
+0jt + &isjt
In this specification, predicted values of enroll;s;; are estimated by regressing enroll; ;
on university fixed effects and state fixed effects both of which are interacted with linear
and quadratic time trends. In addition, linear and quadratic trends for each university-by-
feeder state are also included. I include an indicator for whether the feeder state offered
a state merit aid scholarship for cohort t. Since state merit aid scholarships provide an
added incentive to attend an in-state school, the addition of a scholarship might cause
students to be less likely to attend an out-of-state school (Fitzpatrick and Jones, 2016). For
this reason, I also include an interaction of meritAid;; with an indicator for whether the
feeder state is an in-state university since this effect would be opposite-signed. Lastly, I
include feeder-state-specific year fixed effects to capture transitory shocks to feeder state
level college enrollment.

I use the estimated coefficients and fixed effects to predict enroll;s;; (enroll;s;;) for both
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non-missing values included in the regression as well as missing observations not included

in the regression. I then use enroll;s jt to construct pctBound,, as in Equation (1.3) to re-
estimate Equation (1.4). Table 1.11 presents the results from this exercise. The estimates
in Panel A for public universities are largely consistent with the estimates presented in
Table 1.4. However, the results in Panel B potentially suggest better outcomes for private
university students as a result of changes in enrollys jt- This result suggests that private
universities may be more likely to choose not to report enrollment data in odd years
resulting in more missing data and thus less precise results during linear interpolation
in the main results. While the point estimates are larger and suggest improvements in
the repayment rate for first generation and low income students, these estimates are not
statistically significant at conventional levels. Further, this estimation does not take into
account the fact that e;;;ﬂis jt is a generated regressor and thus standard errors are likely
under-estimated as is.
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Table 1.10: Robustness: Difference-in-Differences for High In-state University Sample for
Public and Private Universities

Default Rate Repayment Rate
(1) ) ®) (4) ©) (6)
A. Public Overall Overall First Gen Low Middle High
Income Income Income
pfMandate -0.002 0.015 0.023** 0.021** 0.009 0.017
(0.002) (0.010) (0.011) (0.009) (0.011) (0.011)
Universities 370 370 370 370 366 366
Cohorts 1993-2006  2001-2008  2001-2008  2001-2008  2001-2008  2001-2008
Outcome Mean 0.046 0.589 0.552 0.479 0.628 0.723
Percentage Effect -3.9% 2.6% 4.2% 4.4% 1.5% 2.4%
B. Private
pfMandate -0.005 0.016 0.027 0.031* 0.014 0.002
(0.003) (0.017) (0.018) (0.018) (0.016) (0.016)
Universities 286 286 284 285 271 268
Cohorts 1993-2006  2001-2008  2001-2008  2001-2008  2001-2008  2001-2008
Outcome Mean 0.040 0.571 0.522 0.421 0.618 0.747
Percentage Effect ~ -11.5% 2.8% 51% 7.3% 2.2% 0.2%

Regressions are weighted using the number of students used to compute each outcome metric. Each
column reports a coefficient from a separate regression where the independent variable is pfMandate it
and the outcome is denoted in the column header. The sample includes public and private four-year
universities with 70% or higher in-state share of students during the sample period. Default rate analysis
includes high school graduating classes 1993 through 2006 and repayment rate analysis includes high
school graduating classes 2001 through 2008 due to data availability. First Gen students are defined as
students whose parents did not have a college degree. Low Income, Middle Income, and High Income
students are defined as household income less than 30,000, between 30,000 and 75,000 and above 75,000,
respectively. Controls include cohort weighted credit requirements in math, English, social studies, and
science by high school graduation cohort and controls for state level high school staffing, and availability
of merit aid scholarships. Also included are university and high school graduation year fixed effects.
Standard errors clustered at the state level are presented in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Table 1.11: Robustness: Dose Response Estimates with Instrumented Enrollment for
Public and Private Universities

Default Rate Repayment Rate
(1) @) ®) (4) ©) (6)
A. Public Overall Overall First Gen Low Middle High
Income Income Income
pctBound -0.003 0.016 0.025** 0.022** 0.010 0.018
(0.002) (0.009) (0.010) (0.010) (0.010) (0.011)
Universities 444 446 446 445 442 442
Cohorts 1993-2006  2001-2008  2001-2008  2001-2008  2001-2008  2001-2008
Outcome Mean 0.046 0.594 0.551 0.478 0.631 0.730
Percentage Effect -5.6% 2.6% 4.5% 4.6% 1.6% 2.5%
B. Private
pctBound 0.002 -0.000 0.012 0.017 -0.002 -0.009
(0.005) (0.014) (0.011) (0.017) (0.009) (0.010)
Universities 823 821 800 804 796 799
Cohorts 1993-2006  2001-2008  2001-2008  2001-2008  2001-2008  2001-2008
Outcome Mean 0.035 0.600 0.516 0.426 0.636 0.779
Percentage Effect 6.2% -0.1% 2.4% 4.1% -0.4% -1.2%

Regressions are weighted using the number of students used to compute each outcome metric. Each
column reports a coefficient from a separate regression where the independent variable is pctBound and
the outcome is denoted in the column header. The sample includes public and private four-year univer-
sities. Default rate analysis includes high school graduating classes 1993 through 2006 and repayment
rate analysis includes high school graduating classes 2001 through 2008 due to data availability. First
Gen students are defined as students whose parents did not have a college degree. Low Income, Middle
Income, and High Income students are defined as household income less than 30,000, between 30,000
and 75,000 and above 75,000, respectively. Controls include cohort weighted credit requirements in math,
English, social studies, and science by high school graduation cohort and controls for state level high
school staffing, and availability of merit aid scholarships. Also included are university and high school
graduation year fixed effects. Standard errors clustered at the state level are presented in parenthesis. ***
p<0.01, ** p<0.05, * p<0.1
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1.8.5 Additional Tables and Figures

Figure 1.12: Map of University Sample from College Scorecard
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The map above shows the locations and relative cohort sizes of the sample of public and private universities
from the college scorecard. Each marker is weighted by the mean cohort size over the sample period. Public
universities are denoted with a blue circle while private universities are denoted by a pink triangle. Some
universities in the sample have missing GPS coordinates and are not plotted despite inclusion in the sample.

Table 1.12: Sample Construction

Restriction All Universities Public Universities Private Universities
Full Sample 3,563 708 2,855

Balanced Sample 1,844 590 1,254

Single Branch 1,498 470 1,028

Non-missing Outcomes 1,386 450 936

The table above describes the number of universities that survive each iterative step of creating the sample. The first
row is the full sample of four-year universities from the College Scorecard database. The second row is the result
of removing universities that opened or closed during the sample period. The third row is the result of removing
universities with outcome data aggregated across multiple branches. The fourth row is the result of removing
universities with missing outcome data due to non-Title IV status or all cell sizes smaller than 30 students and thus
suppressed.
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Figure 1.13: Word Cloud of PFL State Standard Text
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The image above shows a word cloud of the text for the state PFL standards for the following states: Arizona,
Arkansas, Colorado, Florida, Georgia, Idaho, Iowa, Kansas, Louisana, Michigan, Missouri, New Hampshire,
New Jersey, New York, North Carolina, Oregon, South Carolina, South Dakota, Tennessee, Texas, Utah, and

Virginia.
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Table 1.13: Events per Academic Year

Academic Events Adopting States

Year

1996 89 New York

1997 0

1998 34 Michigan

1999 0

2000 0

2001 0

2002 1 Wyoming

2003 0

2004 0

2005 41 Arizona, Arkansas, Louisiana
2006 10 South Dakota

2007 130 Georgia, Idaho, North Carolina, Texas
2008 6 Utah

2009 38 Colorado, South Carolina
2010 29 Missouri

2011 68 Iowa, New Jersey, Tennessee
2012 12 Kansas

2013 13 Oregon

2014 53 Florida, Virginia

Total 524

The table above details the number of university events in each academic
year where an event is defined as a year-over-year change in pctBound,,
of 50 percentage points or larger. In addition, the last column summa-
rizes the states that adopt a personal finance mandate in each academic
year. Events induced by New Hampshire’s 1993 mandate occur before
the sample period for outcome data.
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Table 1.14: Difference-in-Differences Estimates for Changes to College-going for Two Year
Universities (2001-2008)

@ (2) ®) (4) )

pctAny pctPublic  pctNonProfit  pctForProfit pctlnstate
PF Mandate 0.005 0.006 -0.000 -0.000 0.004

(0.006) (0.006) (0.000) (0.001) (0.006)
Observations 408 408 408 408 408
Cohorts 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 0.161 0.152 0.002 0.007 0.146
Percentage Effect 3.3% 3.9% -5.0% -2.9% 2.9%

Each column above reports the Difference-in-Differences estimate for the outcome in each column header. Each outcome measures
the percentage of recent high school graduates from a state who chose to attend a two year university of the given charactistic. Each
observation is a state-year cell. The sample is restricted to high school graduation years 2001 through 2008 to match the results for the
one year repayment rates. pctPublic and pctPrivate sum to one and thus the results are inverses of each other. Controls include credit
requirements in math, English, social studies, and science by high school graduation year and state of university, controls for state
level high school staffing, and availability of merit aid scholarships at the state level. Also included are state and high school
graduation year fixed effects. *** p<0.01, ** p<0.05, * p<0.1

Table 1.15: Difference-in-Differences Estimates for Changes to College-going for Four Year
Universities (2001-2008)

@ (2) ®) (4) (5)
pctAny pctPublic  pctNonProfit  pctForProfit pctlnstate
PF Mandate -0.007 -0.003 -0.004 -0.000 -0.004
(0.007) (0.005) (0.003) (0.001) (0.007)
Observations 408 408 408 408 408
Cohorts 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 0.439 0.296 0.137 0.006 0.292
Percentage Effect -1.7% -1.1% -2.9% -2.3% -1.3%

Each column above reports the Difference-in-Differences estimate for the outcome in each column header. Each outcome measures
the percentage of recent high school graduates from a state who chose to attend a four year university of the given charactistic. Each
observation is a state-year cell. The sample is restricted to high school graduation years 2001 through 2008 to match the results for the
one year repayment rates. pctPublic and pctPrivate sum to one and thus the results are inverses of each other. Controls include credit
requirements in math, English, social studies, and science by high school graduation year and state of university, controls for state
level high school staffing, and availability of merit aid scholarships at the state level. Also included are state and high school
graduation year fixed effects. *** p<0.01, ** p<0.05, * p<0.1
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Table 1.16: Robustness: Stable State Composition Estimates for Public and Private Univer-

sities
Default Rate Repayment Rate
(1) @) ®) (4) ©) (6)
A. Public Overall Overall First Gen Low Middle High
Income Income Income
pctBound -0.003 0.018* 0.028** 0.026** 0.012 0.020*
(0.002) (0.010) (0.011) (0.010) (0.011) (0.012)
Universities 450 450 449 449 445 445
Cohorts 1993-2006  2001-2008  2001-2008  2001-2008  2001-2008  2001-2008
Outcome Mean 0.046 0.593 0.551 0.478 0.630 0.730
Percentage Effect -5.8% 3.0% 5.0% 5.3% 1.8% 2.7%
B. Private
pctBound -0.003 0.003 0.025** 0.024 0.002 -0.011
(0.004) (0.017) (0.012) (0.020) (0.012) (0.013)
Universities 936 934 891 905 875 873
Cohorts 1993-2006  2001-2008  2001-2008  2001-2008  2001-2008  2001-2008
Outcome Mean 0.036 0.595 0.512 0.423 0.632 0.777
Percentage Effect -9.3% 0.6% 5.0% 5.6% 0.3% -1.4%

Regressions are weighted using the number of students used to compute each outcome metric. Each
column reports a coefficient from a separate regression where the independent variable is pMd and
the outcome is denoted in the column header. The sample includes public and private four-year univer-
sities. Default rate analysis includes high school graduating classes 1993 through 2006 and repayment
rate analysis includes high school graduating classes 2001 through 2008 due to data availability. First
Gen students are defined as students whose parents did not have a college degree. Low Income, Middle
Income, and High Income students are defined as household income less than 30,000, between 30,000
and 75,000 and above 75,000, respectively. Controls include cohort weighted credit requirements in math,
English, social studies, and science by high school graduation cohort and controls for state level high
school staffing, and availability of merit aid scholarships. Also included are university and high school
graduation year fixed effects. Standard errors clustered at the state level are presented in parenthesis. ***
p<0.01, ** p<0.05, * p<0.1
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Table 1.17: Difference-in-Differences Estimates for Financial Literacy and Loan Literacy
from NPSAS

1) 2 3) 4) 5) (6) ) (8)
FL1: FL2: FL3: FL: LL1: LL2: LL3: LL:
Interest Inflation Risk Num Credit  Garnish Tax Num
Correct Wages  Returns  Correct
pfMandate 0.004 -0.002 0.002 0.004 0.013 0.033** 0.018 0.064**
(0.020) (0.011) (0.019) (0.040) (0.015) (0.015) (0.016) (0.030)
Observations 45,230 45,230 45,230 45,230 45,230 45,230 45,230 45,230
Cohorts 2009- 2009- 2009- 2009- 2009- 2009- 2009- 2009-

2016 2016 2016 2016 2016 2016 2016 2016

Outcome Mean 0.662 0.856 0.466 1.944 0.753 0.558 0.660 1.97
Percentage Effect  0.5% -0.4% 0.2% 0.1% 1.7% 6.0% 2.7% 3.2%

Source: U.S Department of Education, National Center for Education Statistics, Restricted-use National Postsecondary Student Aid
Study 2016. Each column reports the coefficient of the binary personal finance mandate variable from a separate linear regression.
Columns 1-3 and 5-7 report the impact of a personal finance mandate on an indicator variable for whether the respondent correctly
answered the question from a linear probability model. Columns 4 and 8 show the impact of the mandate on the total number of
correct questions answered. Each regression includes controls for race, gender, Expected Family Contribution, year of schooling,
and public or private high school attended. Also included are state of high school attendance and high school graduation year fixed
effects. Standard errors are clustered at the state level. *** p<0.01, ** p<0.05, * p<0.1

Table 1.18: Difference-in-Difference Estimates for Financial Literacy from NFCS

@) @) ®) ) ©) (6)
Q1. Q2: Q3: Q4. Q5: Number
Interest Inflation Risk Bonds Mortgage Correct
pfMandate 0.027 0.042 0.009 -0.038 0.020 0.060
(0.031) (0.030) (0.027) (0.024) (0.030) (0.110)
Observations 10,020 10,020 10,020 10,020 10,020 10,020
Cohorts 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 0.714 0.420 0.363 0.197 0.711 2.405
Percentage Effect 3.9% 10.0% 2.4% -19.3% 2.8% 2.5%

Notes: Sample includes respondents from the 2012, 2015, and 2018 waves of the restricted use National
Financial Capabilities Survey with a high school diploma or higher. Controls include binary variables for
gender, race, and education along with credit requirements in math, English, social studies, and science
by high school graduation year and state of residence, controls for state level high school staffing, and
availability of merit aid scholarships at the state level. Also included are state and high school graduation
year fixed effects and state-level survey weights. Standard errors are clustered at the state level. *** p<0.01,
** p<0.05, * p<0.1
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Table 1.19: Difference-in-Differences Estimates for Financial Literacy from the Survey of
Household Economic Decision-making

@ @) ®) 4) (5) (6)
Q1: Q2: Q3: Q4. Q5: Number
Interest Inflation Risk Returns Housing Correct
pfMandate 0.002 -0.051 -0.014 0.015 -0.094 -0.143
(0.050) (0.039) (0.051) (0.048) (0.058) (0.109)
Observations 2,604 2,604 2,604 2,604 2,604 2,604
Cohorts 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008 2001-2008
Outcome Mean 0.653 0.478 0.425 0.367 0.579 2.502
Percentage Effect 0.3% -10.7% -3.2% 4.0% -16.3% -5.7%

Notes: Sample includes respondents from the 2017 and 2018 waves of the Survey of Household Economic
Decision-making with a high school diploma or higher that graduated high school between 2001 and 2008.
Controls include binary variables for gender, race, and education along with credit requirements in math,
English, social studies, and science by high school graduation year and state of residence, controls for
state level high school staffing, and availability of merit aid scholarships at the state level. Also included
are state, survey wave, and high school graduation year fixed effects. Standard errors are clustered at the
state level. *** p<0.01, ** p<0.05, * p<0.1
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Table 1.20: Question Text for Financial Literacy Questions

A.NPSAS:16
Label Question Text Choices
FL1: Inter- Imagine that the interest rate on your savings account was 1% per year and inflation was More than today
est ’ 2% per year. After 1 year, how much would you be able to buy with the money in this Exactly the same
account? Less than today
FL2: Infla- Suppose youhad $100in a savings account and the interest was 2% per year. After 5 years, More than $102
. . - . Exactly $102
tion how much do you think you would have in the account if you left the money to grow?
Less than $102
FL3: Risk Buying a single company’s stock usually provides a safer return than a stock mutual fund. g;};i
LL1: Credit If a borrower is unable to repay his or her federal student loan, the government can report True
’ that the student debt is past due to the credit bureaus False
If a borrower is unable to repay his or her federal student loan, the government can have
LL2: Gar- P . . . . True
. the student’s employer withhold money from his or her pay (garnish wages) until the
nish Wages . : ) False
debt, plus any interest and fees, is repaid
If a borrower is unable to repay his or her federal student loan, the government can retain
LL3:  Tax . : - - : True
tax refunds and Social Security payments until the debt, plus any interest and fees, is
Returns . False
repaid
B. NFCS
Suppose you had $100 in a savings account and the interest rate was 2% per year. After More than $102
Q1: Interest 5 years, how much do you think you would have in the account if you left the money to Exactly $102
grow? Less than $102
Q2 Infla- Imagine that the interest rate on your savings account was 1% per year and inflation was More than today
tioﬁ 2% per year. After 1 year, how much would you be able to buy with the money in this Exactly the same
account? Less than today
Q3: Risk Buying a single company’s stock usually provides a safer return than a stock mutual fund. g;ll;i
They will rise
. . . . . . They will fall
Q4: Bonds If interest rates rise, what will typically happen to bond prices? )
They will stay the same
No relationship
Q5: Mort- A 15-year mortgage typically requires higher monthly payments than a 30-year mortgage, True
gage but the total interest paid over the life of the loan will be less. False
C.SHED
Suppose you had $100 in a savings account and the interest rate was 2% per year. After More than $102
Q1: Interest 5 years, how much do you think you would have in the account if you left the money to Exactly $102
grow? Less than $102
Q2 Infla- Imagine that the interest rate on your savings account was 1% per year and inflation was More than today
tiOI:1 2% per year. After 1 year, how much would you be able to buy with the money in this Exactly the same
account? Less than today
Q3: Risk Buying a single company’s stock usually provides a safer return than a stock mutual fund. g;liee
Stocks
Considering a long time period (for example 10 or 20 years), which asset described below Bonds
Q4: Returns ) . .
normally gives the highest returns? Savings accounts
Precious metals
-Q
- /o)
.Q -oHous Housing prices in the US can never go down. True
ing False




Chapter 2: You're Not You When You're Hungry: Measuring The Impact of a
Supplemental Nutrition Program on Childhood Test Scores

2.1 Introduction

Food insecurity in the United States remains a topic of public concern despite federal,
state, and local programs designed to alleviate hunger for low income households. In
2018, almost 14% of households with children in the United States experienced at least
one instance of food insecurity during the year. Incidence of food insecurity varies across
region with the lowest rates in the Midwest and the highest in the South. Mississippi has
had the highest rate of food insecurity since 2010 with one in eight households experi-
encing bouts of nutritional scarcity. Recent research finds that lack of nutrition can cause
children to lose focus and perform worse in school, however interventions that relieve
food insecurity are shown to improve test scores and reduce behavioral issues.(Frisvold,
2015; Schwartz and Rothbart, 2017; Figlio and Winicki, 2005; Maluccio et al., 2009).

In this paper, I explore the impact of a supplemental nutrition program targeting low
socioeconomic status children in the Mississippi Delta region on standardized test scores
and attendance patterns. The intervention was designed to replicate the Free and Reduced
Lunch Program (FRLP) students receive during the week to last over the course of the
weekend for children in grades three through five at two schools in the Mississippi Delta
region. A survey provided to teachers and parents suggests the intervention increased
attendance on Fridays and resulted in fewer behavioral issues. This paper more rigorously
studies the effect of the intervention by employing panel data on grade-by-school test
scores to estimate the effect of the supplemental nutrition program on mean test scores,
the percentage of students achieving at different thresholds, and daily attendance. I use
a difference-in-differences design to compare the schools selected for treatment to a set of
schools who were unaffected. I find that the one-time intervention improved students’
test scores, particularly for language arts. The improvements in mean scores are largely
driven by shifts away from students achieving the lowest achievement threshold and
toward achievement of a proficient standard.

I also use a triple-difference design where I incorporate administrative daily attendance
records and incorporate kindergarten through second grade students who were not in-
cluded in the intervention as another dimension for comparison. I find that attendance
was higher for students selected for treatment and the improvements were concentrated
on Fridays, Mondays, and Tuesdays. The improvement in Friday attendance is likely due

to the transfer effect of receiving the bundles of food. However, improvements in Monday
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and Tuesday attendance suggest that students had better nutrition over the course of the
weekend.

The remainder of the paperis organized as follows: Section 2.2 reviews the literature for
various nutrition interventions across the world to serve as benchmark treatment effects.
Section 2.3 discusses the institutional details of this intervention. Section 2.4 describes the
data used in this study. Section 2.5 discusses the empirical strategy employed to estimate
the casual impact of the intervention. Section 2.6 summarizes the results of the analysis
and Section 2.7 concludes the paper.

2.2 Literature

The link between nutrition and education has been explored extensively in both devel-
oped and developing countries. Many early studies were largely observational or relied on
targeting children exhibiting signs of malnutrition. A study of 3,055 third-grade students
in Vietnam examined the relationship between anthropometric status and educational
achievement and found low test scores in mathematics and Vietnamese were correlated
with both low height for age and low weight for age after controlling for age, sex, and
school (Hall et al., 2001). A study in Chile surveyed a random sample of children gradu-
ating elementary school and high school and the results suggested academic achievement
is positively correlated with consumption of dairy, meat, and eggs while consumption of
fruits and vegetables is negatively correlated with low academic achievement. Food habits
explained nearly 24% of variation in achievement for elementary school students (Ivanovic
et al.,, 1992). A study in the United States used data from the Third National Health and
Nutritional Examination Survey to test correlations between food insufficiency and aca-
demic achievement and other behavioral outcomes for respondents answering positively
to instances of food insufficiency. After controlling for various covariates, the study finds
students between 6 and 11 years old were more likely to report not getting along with other
students, more likely to repeat a grade, have poorer arithmetic scores, and more likely
to have seen a psychologist. Separately studying teenage respondents revealed similar
results for behavior responses but no significant results for arithmetic scores suggesting
food insecurity is more damaging to younger children than teenagers (Alaimo, Olson, and
Frongillo, 2001).

In the case of studies using observation data, omitted variables correlated with diet
and academic performance can bias the estimated effect of nutrition on achievement. As a
result, more recent studies use more rigorous identification strategies to estimate the casual
effect of nutrition on educational achievement. In 1995, the Minnesota state legislature
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approved a grant providing free breakfast to a set of six treatment schools to test the
effectiveness of extending a similar program statewide. In addition to the six treatment
schools, three control schools were chosen to provide a natural set of counter-factual
students. During the three years of treatment, each treated school reported an increase
in math and reading achievement while the control schools” scores were relatively flat. In
addition, teachers in treatment schools reported fewer students complained of headaches
and stomachaches, students were more energetic, and had an easier time concentrating.
Teachers also reported fewer disciplinary issues in the treated schools with morning
disciplinary referrals declining between 15 and 50% for all treated schools (Wahlstrom
and Begalle, 1999). The use of a set of control schools and the use of administrative data
allow for a more plausible argument for causality.

A randomized control trial (RCT) in Jamaica selected seventh grade students in the
lower-third of academic performance and randomized the students into a control group
and two treatment groups. In one treatment group, students were given a school lunch and
in the other treatment group, students were given a syrup drink. The study found that the
students who received the school lunch performed better than the control and alternate
treatment on an arithmetic test and had better attendance records. The results were
also robust to controlling for attendance (Powell, Grantham-McGregor, and Elston, 1983).
Another study in Jamaica randomized a breakfast treatment to rural students in grades 2
through 5. Treated students received a school breakfast while control students received
one-quarter of an orange and an equal amount of attention. While treated students were
shown to have improved in height and weight, significant arithmetic results were only
apparent in the youngest of treated children (Powell et al., 1998). An RCT conducted in
South Africa randomized 108 students into a treatment and control group and provided
breakfast every school day to the treatment group for six weeks. The school breakfast was
found to have a positive effect on cognitive performance for the treatment group (Richter,
Rose, and Griesel, 1997).

In contrast to randomized control trials, the use of longitudinal data to study diet and
academic achievement has become popular due to the ability to perform within-unit com-
parisons over time. While observational analysis is prone to omitted variable bias, panel
data on children can eliminate time invariant unobserved heterogeneity that could oth-
erwise bias observational studies. One particular study performed a randomized control
trial and followed Guatemalan children during early childhood and through adulthood.
Between 1969 and 1977, four villages in were randomly assigned a high protein drink
and a low protein drink meant to be given to children between birth and 36 months of
age. The children that were randomly chosen for treatment into the more nutritious drink
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were tracked and interviewed in 2002. The study found positive effects of the intervention
for the treated children. Treated women were found to have completed 1.2 more grades
while both treated men and women had increases in both reading comprehension and
non-verbal cognitive ability of one-quarter of a standard deviation (Maluccio et al., 2009).

In the case of the Guatemalan study, statistically and economically significant results
can be found long after the end of treatment. This suggests that investments made
to enhance nutrition in children at critical stages can have lasting effects on educational
outcomes. On the other hand, an analysis of standardized test scores in Virginia show that
interventions lasting as short as a week can have significant and immediate effects. This
study identified schools that were under the threat of accountability sanctions if mean
test scores were not improved. Researchers discovered that the school administrators
systematically altered school lunch menus in an attempt to increase caloric counts during
testing and finds that the schools who increased the caloric content of lunches the most
saw the highest test score gains with an increase of 100 calories corresponding to increases
of 7, 4, and 7 percentage points for mathematics, English, and social studies, respectively
(Figlio and Winicki, 2005).

A more recent wave of studies estimate the effect of the National School Lunch Program
and the rollout of School Breakfast programs across the U.S. Frisvold (2015) conducts a
rigorous analysis of the School Breakfast Program using two identification strategies and
multiple datasets and finds improvements in mathematics of 0.09 standard deviations and
improvements in reading of 0.05 standard deviations for schools that adopt the School
Breakfast Program. Similarly, Schwartz and Rothbart (2017) studies the impact of universal
free lunch in New York City middle schools and the resulting impact on achievement. The
study finds that an additional school lunch every two weeks improves math scores by
around 0.08 standard deviations and improves language arts test scores by around 0.07
standard deviations. On the contrary, one recent study finds evidence of lower test scores
when students are furthest away from the benefit receipt date. The study finds that
when the students’ family received SNAP benefits between 27 and 30 days prior to the
test, math scores decline on average between 0.024 and 0.046 standard deviations (Cotti,
Gordanier, and Ozturk, 2018). This suggests that families who receive federal food benefits
may exhibit food insecurity at the end of the benefits cycle and that food insecurity may
adversely impact academic performance.

While the literature covers a multitude of interventions spanning nutrition supple-
ments, food stamps, school lunches, and school breakfasts, there are no studies (to my
knowledge) covering interventions providing supplemental nutrition over the weekend

for students reliant on free and reduced school lunches during the week. Since the in-
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troduction of the School Lunch Program and Free or Reduced Lunch Program, families
have become increasingly reliant on school lunches to provide adequate nutrition to chil-
dren in low socioeconomic settings. In addition to school lunches, schools with a large
proportion of free or reduced lunch eligible students tend to also provide breakfast to stu-
dents. While these students receive a majority of their caloric intake from school during
the school-week, the students must rely on their own household for nutrition over the
weekend. The literature suggests that improving nutrition over the course of the weekend
should positively impact student health, attendance, academic achievement, and behavior.

2.3 Background

During the 2011-2012 school year, a local non-profit conducted an intervention in two
elementary schools in the Mississippi Delta. Third- and fourth-grade students at Brooks
Elementary School in Bolivar County and third-, fourth-, and fifth-grade students at Stam-
pley Elementary School in Coahoma County were selected for inclusion into the treatment.
Students at these schools were overwhelmingly eligible for the Free and Reduced Lunch
Program (FRLP) with 99% eligibility at Brooks Elementary and 94% eligibility at Stampley
Elementary. According to questionnaires administered by the non-profit, food insecurity
was prevalent at both schools with more than half of parents at the two schools reporting
some degree of food insecurity. In addition to the intervention at Brooks Elementary and
Stampley Elementary, the non-profit conducted another intervention at two more schools
during the 2015-2016 academic year, however public test score data for the most recent
intervention is not available at this time.

In order to be included in the intervention, students were required to return a per-
mission form signed by a parent or guardian. In total, 174 students were included in the
treatment (73 at Stampley and 101 at Brooks).! Each Friday between September 30, 2011
and May 18, 2012 recyclable bags filled with food were distributed to all students involved
in the treatment. Each bag contained food intended to last for weekend consumption
denoted in Table 2.1. In order for the student to receive the food, the student must have
attended school on Friday. Food was not distributed over weeks in which students were
on break including: Fall Break, Thanksgiving Break, Winter Break, and Spring Break.

1In 2011-2012, there were 56 third graders and 51 fourth graders who took the standardized tests at
Brooks Elementary. At Stampley, there were 28 third graders, 34 fourth graders, and 38 fifth graders who
took the tests.
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Table 2.1: Contents of Weekend Supplemental Nutrition

2 bowls of cereal

2 small containers of fat-free milk
2 pieces fresh fruit

3 canned meats

1 cup applesauce

1 cup mixed fruit in syrup

2.4 Data

I use data from the Mississippi Department of Education that include performance
metrics on the Mississippi Curriculum Test, 2nd Edition (MCT2). The MCT?2 is the stan-
dardized test administered every spring to public school students in the state of Mississippi
during the sample period. MCT?2 tests students in Language Arts and Mathematics be-
ginning in the third grade. The data for this analysis spans the academic years 2007-2008
through the 2011-2012 school years. MCT2 scores are reported for each public school in
the state of Mississippi for each grade level. In addition to average scores, the data also
include information about the distribution of test scores. This data include the percentage
of students in each school-grade cell achieving between three thresholds creating four
bins of test scores: Minimal, Basic, Proficient, and Advanced. These metrics allow for
analysis on both the average and the distributional change in test scores as a result of the
intervention.

I also obtained attendance records for all Mississippi public schools for kindergarten
through fifth grade students for the sample years. These records contain the number of
students absent from each school-grade cell on a daily basis throughout each school year.
To create an outcome measure that is consistent across various school sizes, I compute
the number of absences by day-of-week per enrolled student at the school-grade cell.
Enrollment data comes from the Common Core of Data (CCD).

Lastly, I include control variables for changes in other programs that might also affect
food insecurity. I merge data on Free and Reduced Lunch Program (FRLP) eligibility for
each school-grade-year cell from the Common Core of Data and I include county level
Supplemental Nutrition Assistance Program (SNAP) enrollment for each school. Table 2.2
reports summary statistics for outcome measures and demographics between the 2007-
2008 and 2010-2011 school years.? Column 1 includes the full sample of Mississippi public

schools that contain at least one of grades three, four, or five. Column 2 contains only

25chools with missing information on the percent of students receiving Free and Reduced School lunches
are omitted from the analysis.
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the two treated schools, ].W. Stampley Elementary and Brooks Elementary. Comparing
these columns reveals that the schools selected for the intervention score worse than the
average Mississippi elementary school in both Language Arts and Mathematics test scores.
The distributions for both tests follow a similar pattern with the treated schools having a
larger percentage of students achieving Minimal and Basic standards and fewer students
achieving Proficient and Advanced. Students at the schools selected for treatment also
missed more days of school per student with those increases largely occurring on Mondays
and Fridays. Lastly, the treated schools are populated by a larger share of Black students,
have smaller average grade sizes, and have higher FRLP eligibility.
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Table 2.2: Descriptive Statistics: Test Scores and Demographic Variables

1 2
Variable All MSE S)chools Treate(g %chools
LA Score -0.048 -0.317
% Minimal 154 20.1
% Basic 36.2 45.5
% Proficient 37.7 27.9
% Advanced 10.7 6.4
Test Takers 87.6 42.7
Math Score -0.046 -0.245
% Minimal 16.2 16.3
% Basic 28.5 37.9
% Proficient 45.1 41.6
% Advanced 10.2 4.3
Test Takers 87.6 42.7
Absences per student 6.00 6.35
Monday 1.31 1.37
Tuesday 117 1.21
Wednesday 1.11 1.19
Thursday 1.08 1.13
Friday 1.33 1.44
% White 41.4 0.0
% Black 54.5 98.4
% Hispanic 1.9 0.3
% Asian 0.5 0.0
% Free Lunch 77.5 98.3
Schools 532 2

The table above reports means for outcome variables (test scores) and demographic variables for the full sample
of MS schools separately from the two treated schools. Outcome variables include normalized mean test scores in
Langauage Arts and Mathematics on the MCT2 state test along with the number of test takers for each school-grade
level. Demographic variables include the proportion of each school-grade that is white, black, Hispanic, or Asian
as well as the percent of each school-grade cell that is eligible for Free and Reduced School Lunch. Demographic
and FRLP data come from IPEDS while test score data come from Mississippi Department of Education.
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2.5 Empirical Strategy

2.5.1 Identification

Previous qualitative surveys administered to teachers and parents of the treated stu-
dents suggest that students were better behaved, more attentive in class, and more likely
to attend school on Friday during the year of the intervention.®> However, these impacts
cannot be interpreted as casual effects of the intervention without considering how other
students performed during the 2011-2012 school year. It is possible students that were not
exposed to the intervention also performed better in school and had better attendance in
the 2011-2012 school year for reasons unrelated to the intervention. Further, it could be
the case that parents and teachers were more likely to answer positively on these surveys
as a result of knowledge of the treatment in hopes of continued aid.

To help mitigate the concerns, I employ a difference-in-differences identification strat-
egy to estimate the effect of the supplemental nutrition program on test scores and atten-
dance for the students in the schools selected for the intervention. This design compares
changes in outcomes of treated school-grade units to changes in outcomes for otherwise
similar untreated school-grade units to control for any factors that might influence stu-
dents in the same manner in the same years. If the necessary assumption, discussed below,
is satisfied the estimated effect is the Intent to Treat (ITT) estimate of the intervention.*

The baseline specification for the test score outcomes follows a basic difference-in-
differences framework:

Ygst = ytreatsy + 0g + 05 + 0p + 05 Xt + €ggt, (2.1)

where ¢ is a test score outcome measure for grade g at school s during academic
year t. treatg is a binary variable which equals one for grades three through five at the
two treated schools in the 2011-2012 academic year where y is the estimated ITT. Also
included are fixed effects for schools (6s), grades (6), and academic years (6;). I also
include a school specific linear time trend to capture differences in test score trends for
each school. Standard errors are clustered at the school level to allow for correlation
between grade levels within a school.

For the attendance outcomes, I can include one additional level of differences in the

analysis. While standardized tests are only administered for students grade three and

SFrom summary report from the administering non-profit organization. Available upon request.
4Since not all students returned permission slips to enroll in the intervention, the effect estimated is not
the Average Treatment Effect on the Treated.
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above, the attendance data contains records for all students in kindergarten through fifth
grade. I use this additional data to compare the absence rate within treatment schools
across the treated grades (3-5) and the untreated grades (K-2). The DDD specification is

similar to Equation (2.1):

except the DDD coefficient, treatqs;, also varies by grade level since the sample also
includes absence data for the untreated grades K-2.

2.5.2 Selection of Comparison Group

Asmentioned above, the estimated coefficient y can only be interpreted as the ITT if the
treated units would have evolved similarity to the control units in the absence of treatment.
If the untreated units used as controls in the sample are systematically different from the
treated units, the observed outcomes in the year of treatment cannot be reasonably used
as a counter-factual outcome for the treated units. Thus, it must be the case that changes
in test scores in the academic years prior to 2011-2012 are similar across the treated and
untreated units. As described in Section 2.4, the schools selected for treatment had, on
average, lower test scores, higher participation in FRLP, and had a larger share of Black
students than the overall sample of schools in Mississippi. Figure 2.1 shows the trend in
Language Arts and Mathematics test scores for the schools selected for treatment versus
the sample of all other Mississippi Schools. Since the test scores for the full sample are
normalized, the full sample of schools will be (near) mean zero for all years.> However, for
the treated schools, the scores report where in the distribution of the sample the treated
schools fall. Language Arts and Math scores for the treated schools are around 0.3 and
0.2 standard deviations lower than the mean, respectively. Additionally, both scores are
slightly decreasing in the years leading up to the intervention. This trend could be the
result of falling raw scores in the schools selected for treatment, gains in other schools, or
both. Regardless, the trend in scores between the schools selected for treatment and the
full sample of schools suggests that the full sample of schools might make for a suitable
control group for the treated schools despite the level differences.

Ialso selecta subsample of schools from the sample of all Mississippi public schools that
is more similar to the two treated schools on the observables in which the treated schools
most differ from the full sample: FRLP eligibility, size of grade level, and proportion of
the student body who is Black. In addition, I also consider distance from the two treated

5Some schools are removed from the sample for missing data.
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Figure 2.1: Mean Test Score Trends for Full Sample versus Treated Schools
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Each figure above plots the mean test scores for the full sample of MS schools against the mean test scores
for the treated schools in each year of the data. In addition, the red dashed line shows the trend in test
scores for the treated schools in the three years before treatment. The shaded area, the 2011-2012 school
year, denotes the year of treatment.

schools as-the-crow-flies. In many cases, matching (or inverse probability weighting)
methods use a nonlinear model such as a probit or a logit model to find comparison units
that are similar to the units selected for treatment. However, in this setting, a nonlinear
model is not feasible since there are few schools selected for treatment and because the
treated schools are largely boundary values for the selection criterion. Instead, I use
Mahalanobis multivariate distance (MD) to rank the schools on similarity metrics which
allocates more weight to schools that are more similar to the two treatment schools (Rubin,
1980). This algorithm takes selection variables and corresponding values on which to the
match observations and calculates the distance between each observation in the sample
from the mean values of the treated schools. The distance for each matching variable is
weighted by the inverse of the variance-covariance matrix of the selection variables. The
result is a weighted distance measure, measured in standard deviations, ranking how
similar units are to the variable values on which the matching is constructed.

Table 2.3 lists the top 15 Mississippi schools with the highest Mahalanobis distance
scores including the two treated school, Brooks Elementary and J.W. Stampley Elementary,
in bold. The schools measured as most similar to the treated schools are all largely similar
in the measured demographics by construction. In fact, there are many schools which are
have smaller distance measures than the schools chosen for treatment since these schools
better match the mean values of the variables than each individual school does alone. To
create the matched sample of comparison schools, I select the subsample of comparison
schools in top quartile in Mahalanobis distance so that the 25% of the sample most similar
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to the treatment schools are chosen. Table 2.3 also details the bottom 15 schools selected
in this subsample in terms of similarity to the treatment schools.

Table 2.4 repeats Table 2.2 adding the summary statistics for the schools in the compar-
ison group determined by the constructed Mahalanobis multivariate distance measure.
Selection on the three demographic characteristics and the average distance creates a com-
parison group that is much more similar to the treated units than the overall sample.
The 133 schools in the comparison group only differ in FRLP eligibility by 4.2 percent-
age points and differ in the proportion of Black students by only 10.3 percentage points
compared to the overall sample difference of 20.8 and 43.9 percentage points, respectively.
The number of test takers for each grade differs by 14.6 students compared to the overall
sample difference of 44.9. The more suitable control group generates average test scores
that are also far more similar than the overall sample: average test scores in Language Arts
are within 0.035 standard deviations and test scores in Math are within 0.021 standard

deviations.
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Table 2.3: Comparison Group by Mahalanobis Multivariate Distance

Rank School District % FRLP % Black Test Takers Avg. Dist Mahalanobis Distance
1 Shelby School North Bolivar 98.6 98.4 48.2 12.8 0.065
2 I'T Montgomery Elementary Mound Bayou 99.0 99.3 443 17.2 0.075
3 Myrtle Hall IV Elementary Clarksdale 98.5 99.8 47.7 8.1 0.166
4 Lyon Elementary Coahoma County 98.9 98.0 41.8 11.7 0.174
5 J W Stamply Elementary Clarksdale 97.9 98.8 37.2 0.0 0.195
6 Brooks Elementary North Bolivar 98.9 97.9 52.3 0.0 0.195
7 Booker T Washington Clarksdale 96.8 99.0 45.3 7.7 0.224
8 Nailor Elementary Cleveland 98.7 97.0 33.3 26.6 0.248
9 Hunter Middle Drew 96.4 96.3 41.3 23.7 0.252
10 A W James Elementary Drew 95.8 90.7 51.2 23.5 0.261
11 Geo H Oliver Elementary Clarksdale 96.8 99.5 58.8 8.5 0.288
12 Jonestown Elementary Coahoma County 98.9 99.5 45.5 18.3 0.299
13 McEvans School Shaw 96.8 97.0 471 33.8 0.335
14 Friars Point Elementary Coahoma County 97.9 98.0 30.9 17.5 0.335
15 West Bolivar Elementary West Bolivar 95.9 92.8 65.4 27.9 0.346
121  Galloway Elementary Jackson Public 96.1 99.0 41.8 126.6 1.844
122 Lake Elementary Jackson Public 96.7 98.3 75.1 126.4 1.846
123 Philadelphia Elementary Philadelphia 84.3 73.0 89.4 129.0 1.847
124 Sykes Elementary Jackson Public 89.0 86.3 72.7 131.2 1.847
125  Hopkins Elementary Jackson Public 96.0 98.3 81.9 124.8 1.854
126 Johnson Elementary Jackson Public 94.7 98.8 56.6 125.6 1.858
127 Poindexter Elementary Jackson Public 96.9 99.3 31.4 127.8 1.862
128  Lester Elementary Jackson Public 94.4 96.5 48.2 129.6 1.874
129  George Elementary Jackson Public 96.2 97.8 26.6 129.0 1.878
130  Noxapater Attendance Center Louisville 80.6 50.3 30.0 120.6 1.880
131  Smith Elementary Jackson Public 94.6 99.8 64.3 125.0 1.881
132 H W Byers Elementary Marshall County 90.7 51.3 63.4 89.3 1.890
133 Key Elementary Jackson Public 96.2 98.5 66.7 130.0 1.892
134 Green Elementary Jackson Public 93.3 99.5 60.4 123.8 1.895
135  Houlka Attendance Center Chickasaw County 78.7 39.5 431 94.9 1.907

The table above ranks the top 15 and bottom 15 schools selected in the subsample as determined by the Mahalanobis multivariate distance using the mean values of the two treated
schools for %FRLP, % Black, number of Test Takers and average distance from Brooks and Stampley Elementary. Data on FRLP eligibility and % Black come from IPEDS while the

number of test takers comes from the Mississippi Department of Education. Avg. Dist. is the average distance between the school and Brooks Elementary and Stampley Elementary and
are computed using the Stata program geodist which calculates distance as-the-crow-flies. Treated schools in bold.



Figure 2.2 repeats Figure 2.1 with the comparison group selected using the Maha-
lanobis similarity score. This subsample better matches the level of test scores for both
Language Arts and Math than the full sample but a worse job matching the trend in scores.
In this figure, the potential treatment impact is more apparent with 2012 Language Arts
and Math scores for the treated units outpacing the same year scores for the comparison
group. This trend break suggests that the intervention had a positive impact on the treated
schools in both subject areas. If the 2012 scores for the comparison group are used as a
counter-factual for the treated units, this would suggest improvements in test scores larger
than 0.1 standard deviations.

Figure 2.2: Mean Test Score Trends for Matched Schools versus Treated Schools
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Each figure above plots the mean test scores for the subsample of MS schools most similar to the treated
group as described in 2.5 against the mean test scores for the treated schools in each year of the data. In
addition, the red dashed line shows the trend in test scores for the treated schools in the three years before
treatment. The shaded area, the 2011-2012 school year, denotes the year of treatment.

In the next section, I present results from the estimation of Equation (2.1) for the
full sample and the selected comparison group in order to estimate the causal impact
of the supplemental nutrition intervention on test scores. In addition, I also estimate
Equation (2.1) for the full sample and the subsample using the Mahalanobis distance
measure to weigh the observations. This specification allows for the schools most similar
to the treated schools to take on more weight in the analysis than the schools that are less
similar. Figure 2.3 shows the selection of the comparison groups in a map of Mississippi
for each specification. In addition, the specifications that use similarly weights are shown
in the varying shades of blue with the most similar schools in darker blue and the least
similar schools in lighter blue.
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Table 2.4: Descriptive Statistics: Test Scores and Demographic Variables

1) 2) 3)
Variable All MS Schools MD Matched Treated Schools
Schools
LA Score -0.048 -0.282 -0.317
% Minimal 154 20.7 20.1
% Basic 36.2 41.7 45.5
% Proficient 37.7 31.2 27.9
% Advanced 10.7 6.5 6.4
Test Takers 87.6 57.3 42.7
Math Score -0.046 -0.266 -0.245
% Minimal 16.2 21.5 16.3
% Basic 28.5 32.6 37.9
% Proficient 45.1 40.1 41.6
% Advanced 10.2 5.7 4.3
Test Takers 87.6 57.3 42.7
Absences per student 6.00 5.61 6.35
Monday 1.31 1.25 1.37
Tuesday 1.17 1.09 1.21
Wednesday 1.11 1.03 1.19
Thursday 1.08 1.01 1.13
Friday 1.33 1.24 1.44
% White 414 9.2 0.0
% Black 54.5 88.1 98.4
% Hispanic 1.9 1.2 0.3
% Asian 0.5 0.1 0.0
% Free Lunch 77.5 94.1 98.3
Schools 532 133 2

The table above reports means for outcome variables (test scores) and demographic variables for the full sample

of MS schools, the upper quartile of MS schools most similar to the treated schools by Mahalanobis multivariate

distance, and the two treated schools. Outcome variables include normalized mean test scores in Langauage

Arts and Mathematics on the MCT2 state test along with the number of test takers for each school-grade level.

Demographic variables include the proportion of each school-grade that is white, black, Hispanic, or Asian as well

as the percent of each school-grade cell that is eligible for Free and Reduced School Lunch. Demographic and

FRLP data come from IPEDS while test score data come from Mississippi Department of Education.
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Figure 2.3: Geographical Depiction of the Four Variations of the Selection of Comparison
Group
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Each map above shows the selection of schools used for the comparison group in each corresponding
specification in blue and the two treated school in pink. For the weighted specifications, the shaded blue
fill is proportional to the school weights.

2.5.3 Inference

In the baseline specification, I cluster standard errors at the school level to allow for
error correlations within the same school. However, recent research suggests that cluster
robust standard errors perform remarkably poorly when there are few treated clusters
(MacKinnon and Webb, forthcoming). As a result of the few number of treated units,
the finite sample standard errors tend to be underestimated causing over-rejection of the
null hypotheses. In this setting, there are only two treated schools and since schools
are the unit of clustering, it is likely that the typical cluster robust standard errors are
too small. To correct for this, I follow the RI-f algorithm prescribed by MacKinnon and
Webb (forthcoming) by conducting a randomization inference exercise. I perform 3,500
placebo replications in which, instead of the observed treated schools, I suppose that two
other random schools were chosen for treatment and I estimate Equation (2.1) under this
supposition. This exercise compares the difference-in-difference coefficient estimated in
Equation (2.1) with the distribution of placebo estimates. For each placebo replication, I
draw two schools at random from the set of all schools in Mississippi with FRLP greater
than 75%. This restriction of potential treatment schools is chosen so that only schools
that might have been reasonably chosen for the intervention are included. I collect all
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estimated placebo y and generate two empirical p-values for each outcome variable. First,
I use the two-sided test where I estimate the share of y that are larger in absolute value
than the 7 estimated using the actual treated schools:

ﬁ = 3500 1 {l?n' 2 |7’)true|} (23)

In addition to the two-sided test, I construct a one-sided test that tests where there is
an improvement in the outcome. For mean test scores and percent achieving Proficient

and Advanced, the empirical p-value is

] 3500
p= ﬁ ; 1- {)/n > )/true}/ (2.4)
and for percent achieving Minimal and Basic and for absences, the empirical p-value
is

p= 3500 1- {7’/\71 < ?true}- (2.5)

Since MacKinnon and Webb (forthcoming) note that this algorithm has a tendency
to under-reject, the one-sided test will provide a lower threshold for rejecting the null
hypothesis of no improvement in outcomes. For each outcome, I present the clustered
standard errors which are likely under-estimated along with the one- and two-sided tests

using the empirical p-values.

2.6 Results

2.6.1 Standardized Test Scores

Table 2.5 reports the results from the estimation of Equation (2.1). Columns 1 through
4 report the results for Language Arts scores while columns 5 through 8 report the results
for Math scores. The first two columns for each subject score include the full sample while
the last two columns include only the subsample of the most similar quartile of schools
based on the multivariate distance measure described above. Odd numbered columns
report unweighted regressions while the even numbered columns report regressions that
are weighted by the Mahalanobis distance measure. For each outcome, I report p-values
using clustered standard errors in parenthesis along with one- and two-sided empirical
p-values using RI-f from MacKinnon and Webb (forthcoming) in brackets. Columns 1
through 4 suggest improvements in Language Arts test scores regardless of specification.

75



The estimates using the full sample range from 0.24 to 0.28 from a pre-treatment mean
of -0.317. Hence, the results suggest the intervention closed 75% to 88% of the gap in
test scores between the treated school and the state average. The effect on math scores is
slightly smaller at between 0.16 to 0.18 standard deviation improvement from a mean of -
0.245 representing a closing of the test score gap of 65% to 73%. In total, the point estimates
suggest significant test score improvements as a results of the nutrition intervention for

the school-grade cells selected for treatment.

Table 2.5: Difference-in-Differences Estimates: Language Arts and Math Scores

Language Arts Score Math Score
(1) 2) 3) (4) ) (6) ) (8)
Treatment 0.240 0.241 0.284 0.276 0.166 0.161 0.177 0.174

CRVE p-value  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

RI-f 2-sidedp  [0.184] [0.203] [0.157] [0.158] [0.378] [0.388] [0.235] [0.237]
RI- I-sidedp  [0.097] [0.109] [0.083] [0.083] [0.207] [0.208] [0.139] [0.139]

Outcome Mean -0.317 -0.317 -0.317 -0.317 -0.245 -0.245 -0.245 -0.245

Sample Full Full ~ Matched Matched Full Full ~ Matched Matched
Weights No Yes No Yes No Yes No Yes
Schools 523 523 132 132 523 523 132 132
Grades 3 3 3 3 3 3 3 3

Each column contains the estimated difference-in-differences coefficient where the outcome variable is either the standardized
language arts or mathematics test score as denoted in the column title for a school-grade cell. Odd numbered columns are
unweighted and even numbered columns use the normalized Mahalanobis distance measure as a regression weight. Columns One,
Two, Five, and Six use the full sample of schools. Columns Three, Four, Seven, and Eight use the matched subsample of schools using
the Mahalanobis distance measure. The Outcome Mean reports the mean value for the given outcome across the treated schools in
the years prior to treatment. P-values using standard errors clustered at the school level are presented in parenthesis. One- and
two-sided empirical p-values using RI-B are presented in brackets.

Across all eight specification, the p-values corresponding to each coefficient suggest
the null hypothesis can be rejected at the 1% level. This is likely evidence that indeed
the standard errors are under-estimated due to the low number of treated clusters in the
sample. As such, these p-values should not be trusted and the RI-f empirical p-values
are likely to be better estimates for inference. Using the 2-sided empirical p-values, we
cannot reject the null hypothesis that the language arts treatment effect is not equal to
zero. The p-values from the one-sided test lie just outside of the rejection region for a test
of improving test scores. Additionally, the p-values for the mathematics scores are almost
twice those of the languages arts scores and, as such, the null hypothesis also cannot be

rejected. In total, the evidence suggests large improvements in test scores for the treated
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units but the small number of treated clusters produces errors that make this conclusion
difficult.

2.6.2 Distributional Treatment Effects

The discussion in the previous section presents evidence that average standardized
test scores for the schools selected for treatment improved in the year of the intervention.
The magnitude of these estimates are quite large and suggest that the treated students
performed almost as well as the average Mississippi student despite having average test
scores three-tenths of a standard deviation in previous years. However, due to the few
number of treated units, inference on the average is difficult and the null hypothesis cannot
be rejected by traditional methods.

On the other hand, the Mississippi Department of Education provides information on
the distribution of students in each school-grade cell. Table 2.6 presents the difference-
in-difference estimates for the percentage of students in each performance bin from worst
(Minimal) in Panel A to best (Advanced) in Panel D for both language arts and math-
ematics. For both language arts and mathematics, there are declines in the percentage
of students achieving at the lower threshold. The effect is larger again for language arts
and the point estimate suggests a 42% improvement.® The reduction for mathematics is
similar in proportional terms but smaller in magnitude. Again, the empirical p-values for
the two-sided test are about twice as large for mathematics than for language arts. We are
able to reject the null hypothesis of no improvement for language arts at the 10% level but
the empirical p-value for mathematics is larger than 0.100 at 0.136.

The results for the second bin of achievement are mixed across language arts and
mathematics. Forlanguage arts, the point estimates suggest declines around 11 percentage
points while math achievement in this bin is around 3.5 percentage points larger. The
point estimate for the percentage of students in the Basic bin is quite imprecise, however
the reduction in students achieving Basic for language arts is significant at the 10% level
for a two-sided test and at the 5% level for a one-sided test.

Since students move from one bin to another by construction, the decline in both
Minimal and Basic for language arts suggest students are shifting into higher achievement.
This result is reflected in the point estimates in Panel C for the percentage of students
achieving Proficient standards. The point estimate is quite large at between 17 and 19
percentage points and the estimate is significant at the 5% level for the two sided test

and the 1% level for the one-sided test using the empirical p-values. This suggests that

¢8.5 percentage point reduction off of a base of 20.1 percentage points
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Table 2.6: Difference-in-Differences Estimates: Distributional Effects for Language Arts
and Mathematics Test Scores

Language Arts Score Math Score
A. Percent Minimal 1) 2) 3) 4) (5) (6) (7) (8)
Treatment -8.488 -8.441 -8.798 -8.720 -6.615 -6.482 -6.473 -6.440
CRVE p-value (0.000)  (0.000) (0.000) (0.000) (0.003) (0.004) (0.010) (0.011)
RI-B 2-sided p [0.112] [0.138] [0.108] [0.108] [0.256] [0.287] [0.193] [0.195]
RI-B 1-sided p [0.066] [0.075] [0.051] [0.051] [0.133] [0.142] [0.096] [0.097]
Outcome Mean 20.147  20.147 20.147 20.147 16.284 16.284 16.284 16.284
B. Percent Basic
Treatment -11.661 -11.347 -11.237 -10.892 3.767 3.914 3.297 3.442
CRVE p-value (0.000)  (0.000) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001)
RI-B 2-sided p [0.075] [0.085] [0.072] [0.078] [0.475] [0.488] [0.273] [0.268]
RI-B 1-sided p [0.031] [0.032] [0.033] [0.030] [0.792] [0.782] [0.896]  [0.895]
Outcome Mean 45511 45511 45511 45,511 37.858 37.858 37.858 37.858
C. Percent Proficient
Treatment 19.222 18.848 17.804 17.624 -2.817 -3.059 -2.981 -3.087
CRVE p-value (0.000)  (0.001) (0.002) (0.002) (0.270) (0.237) (0.274)  (0.262)
RI-B 2-sided p [0.013] [0.016] [0.029] [0.029] [0.641] [0.660] [0.337] [0.337]
RI-B 1-sided p [0.003] [0.003] [0.004] [0.004] [0.692] [0.681] [0.861] [0.861]
Outcome Mean 27.884 27.884 27.884 27.884 41.595 41.595 41.595 41.595
D. Percent Advanced
Treatment 0.925 0.935 2.220 1.977 5.699 5.662 6.189 6.117
CRVE p-value (0.405) (0.395) (0.097) (0.125) (0.000)  (0.000)  (0.000)  (0.000)
RI-B 2-sided p [0.803] [0.808] [0.347] [0.353] [0.193] [0.196] [0.107] [0.107]
RI-B 1-sided p [0.424] [0.419] [0.186] [0.186] [0.102] [0.101] [0.052] [0.053]
Outcome Mean 6.447 6.447 6.447 6.447 4.268 4.268 4.268 4.268
Sample Full Full Matched Matched  Full Full Matched Matched
Weights No Yes No Yes No Yes No Yes
Schools 523 523 132 132 523 523 132 132
Grades 3 3 3 3 3 3 3 3

Each column contains the estimated difference-in-differences coefficient. Each panel contains a different outcome variable where the
outcome is the percentage of students in the school-grade cell achieving at a certain achievement threshold. The thresholds increase
in achievement level from Minimal (lowest), Basic, Proficient, and Advanced (highest). Odd numbered columns are unweighted and
even numbered columns use the normalized Mahalanobis distance measure as a regression weight. Columns One, Two, Five, and Six
use the full sample of schools. Columns Three, Four, Seven, and Eight use the matched subsample of schools using the Mahalanobis
distance measure. The Outcome Mean reports the mean value for the given outcome across the treated schools in the years prior to
treatment. P-values using standard errors clustered at the school level are presented in parenthesis. One- and two-sided empirical
p-values using RI-g are presented in brackets.

treated students are shifting from lower achievement bins to higher achievement bins for

language arts scores. On the contrary, the point estimates suggest a reduction in students
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achieving Proficient in math. This could be due to students leaving the Proficient bin and
moving into either Basic or Advanced. However, this point estimate is very imprecise:
even the under-estimated clustered standard errors are unable to reject the null hypothesis
for these estimates.

Lastly, the effect of the intervention on the percentage of students achieving Advanced
is presented in Panel D. For language arts, the estimates are economically small and are
imprecisely estimated. However, the effect on mathematics is quite large relative to the
baseline average for the treated schools in previous years. This large improvement in
mathematics might explain the negative point estimates for the Proficient bin in Panel
C: it may be the case that students previously achieving at Minimal are able to move
to Basic and some students who previously achieved at Proficient are able to move into
Advanced. Further, the point estimate is significant at the 10% level for the one-sided
empirical p-value.

In total, analysis on the distribution of test scores suggest reductions in students
achieving at lower thresholds with shifts towards higher achievement bins. For language
arts, these improvements largely stem from students exiting the Minimal and Basic bins
and entering the Proficient bins. For mathematics, there is some evidence students leave
the Minimal bin and other students enter the Advanced bin but without micro-level data,

it is not possible to track which students move across which bins.

2.6.3 Attendance

In addition to test score outcomes, I also explore how daily attendance is affected by the
supplemental nutrition intervention. As mentioned above, attendance data is available
for students in kindergarten through fifth grade. As a result, this data allow for a third
dimension of comparison in which untreated students (K-2) in treated schools can be
compared to treated students (3-5) in treated schools. The results from this section can help
to explain the mechanisms by which the nutrition intervention improves test scores. If the
supplemental nutrition program indeed improves nutrition over the weekend, students
should feel healthier on Mondays and should be less likely to miss school on Mondays.
On the other hand, the intervention could also act as an in-kind transfer in which students
must attend school on Fridays to receive the transfer. If this is the case, attendance on
Fridays should improve.

Table 2.7 reports the results of this strategy where each panel separately reports the
estimated impact of the intervention on the number of absences per enrolled student for
each day of the week in the year of the intervention. Panel A reports these estimates for
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Mondays. On average, students in the treated schools missed around 1.53 Mondays per
year making Monday the most frequently missed school day of the week. The estimates
suggest a reduction in Mondays missed in the year of treatment by 0.18 to 0.21 days per
enrolled student representing a 11-14% decline in Monday absenteeism. These estimates
are also precisely estimated with the one-side p-value significant at the 10% level. The
results in Panel B are similar to those in Panel A with declines in attendance around 15-
16% These estimates are somewhat less precise with the one-side empirical p-value near
the cutoff of the rejection region at 0.109.

On the other hand, the results in Panels C and D suggest no change in attendance
for Wednesday or Thursdays. Both estimates are economically small and not precisely
estimated across all specifications.

Lastly, the effect on Friday attendance seems to be the largest across the week. The
reduction in absenteeism on Fridays is between 20-23% and is significant at the 5% level for
both one- and two-sided tests. These results lend evidence to the mechanisms presented
above. The largest effect of the intervention on attendance is due to the transfer effect on
Fridays. However, Monday is the most frequently missed day of school for the treated
units and the nutritional intervention reduces absenteeism on Mondays and Tuesdays by
around 15%.
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Table 2.7: Triple Difference Estimates: Absences per Enrolled Student by Day-of-Week

A. Monday 1 (2) (3) 4)
Treatment -0.214 -0.208 -0.177 -0.175
CRVE p-value (0.033) (0.037) (0.073) (0.076)
RI-B 2-sided p [0.134] [0.158] [0.111] [0.110]
RI-B 1-sided p [0.052] [0.063] [0.040] [0.040]
Outcome Mean 1.533 1.533 1.533 1.533
B. Tuesday

Treatment -0.202 -0.206 -0.207 -0.202
CRVE p-value (0.004) (0.003) (0.004) (0.005)
RI-B 2-sided p [0.253] [0.273] [0.162] [0.172]
RI-B 1-sided p [0.118] [0.134] [0.071] [0.068]
Outcome Mean 1.318 1.318 1.318 1.318
C. Wednesday

Treatment -0.042 -0.044 -0.046 -0.042
CRVE p-value (0.008) (0.006) (0.037) (0.057)
RI-B 2-sided p [0.839] [0.827] [0.358] [0.347]
RI-B 1-sided p [0.516] [0.503] [0.751] [0.749]
Outcome Mean 1.333 1.333 1.333 1.333
D. Thursday

Treatment 0.000 -0.003 0.000 -0.001
CRVE p-value (0.999) (0.964) (0.994) (0.991)
RI-B 2-sided p [0.808] [0.814] [0.333] [0.338]
RI-B 1-sided p [0.353] [0.352] [0.122] [0.123]
Outcome Mean 1.187 1.187 1.187 1.187
E. Friday

Treatment -0.351 -0.342 -0.311 -0.304
CRVE p-value (0.000) (0.000) (0.000) (0.000)
RI-B 2-sided p [0.039] [0.051] [0.036] [0.035]
RI-B 1-sided p [0.017] [0.023] [0.028] [0.028]
Outcome Mean 1.504 1.504 1.504 1.504
Sample Full Full Matched Matched
Weights No Yes No Yes
Schools 523 523 132 132
Grades 6 6 6 6

Each column contains the estimated difference-in-differences coefficient where the outcome variable is the number of absences on
each day of the week per enrolled student. The third difference in this specification uses the untreated kindergarten through second
grade students. Odd numbered columns are unweighted and even numbered columns use the normalized Mahalanobis distance
measure as a regression weight. Columns One and Two use the full sample of schools. Columns Three and Four use the matched
subsample of schools using the Mahalanobis distance measure. The Outcome Mean reports the mean value for the given outcome
across the treated schools in the years prior to treatment. P-values using standard errors clustered at the school level are presented in

parenthesis. One- and two-sided empirical p-values using RI-f are presented in brackets.
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2.7 Conclusion

In this paper, I estimate how improved nutrition affects elementary school students
living in the most food insecure region in the United States. Although the total expenditure
per student is relatively small, the estimated improvements in test scores and attendance
are quite large. I find that students attending the school selected for treatment had
larger, albeit imprecise, average test scores in both language arts and mathematics. The
improvements in average scores is higher for language arts than for mathematics, but the
intervention was able to close the gap in test score by around 70% from the state average.

I also decompose the effect of the intervention on the distribution of test scores by
using the percentage of students achieving at various levels as outcomes. For language
arts, I find large reductions in the percentage of students achieving at the lowest two bins
and large increases in the percentage of students achieving at the Proficient bin. I find no
effect of the intervention on moving students in the Advanced bin for language arts.

The results for mathematics are smaller but perhaps more divergent. While I find small
reductions in those achieving at the lowest bin, I am unable to trace movements into the
middle two bins. The estimates are smaller and less precise and do not represent traceable
shifts from the lower tail. On the other hand, I do find large improvements relative to the
baseline in the percentage of students achieving Advanced in mathematics that might be
driven by a reduction in the students achieving at Proficient. These improvements in the
highest achievement threshold are the most precisely estimated effects for mathematics
scores.

Lastly, I also find improvements in attendance for students at the schools selected for
treatment, but only for those in the treated grades. I use daily administrative attendance
records to track changes in attendance by day of the week. The results provide evidence
for the mechanisms by which test scores are improved. First, I find the largest effect of
the intervention on attendance on Fridays with reductions in absenteeism by 20%. This
evidence is consistent with the transfer program mechanism by which students must be
present at school on Friday to receive the nutrition bundle. However, I also find significant
improvements in attendance on both Monday and Tuesday. For the set of selected schools,
Monday was the most commonly missed day of school prior to the intervention and
attendance increased by over 10% on Mondays and almost 15% on Tuesdays. This is
evidence that indeed the students selected for treatment had better nutritional intake
over the course of the weekend subsequently improving general physical condition at the
beginning of the week.

The results from this paper add to the literature of the role nutrition plays in human
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capital accumulation. The effect sizes from this one-shot intervention are on the higher
end of the distribution from the education treatment effects literature. Further, these gains
were achieved at a rather low cost. Kraft (2018) categorizes an intervention as “Large Effect
Size/Low Cost” if the effect size is greater than 0.2 standard deviations and the cost is
less that $500 per pupil. Using the estimated improvement in language arts test scores,
this intervention meets the benchmark for a large effect size. Further, the cost of the
intervention must be below $16.67 per week per student to be categorized as low cost.
At an estimated $3.63 per food bundle” plus administrative costs, it is very likely this
intervention remains beneath the $500 per student cost over the course of the 30-week
school year. Lastly, this intervention is likely quite easy to scale. Since schools already
have sufficient infrastructure to provide breakfast and lunch during school days, these
items can be bought in bulk with the existing meal orders and distributed to students
through the existing school infrastructure. As a result, this intervention is very likely
to achieve the definition on Easy to Scale from Kraft (2018). However, the setting of this
intervention is important when considering the external validity of these treatment effects.
Since the Mississippi Delta region is the most food insecure region in the United States, it
might be unreasonable to expect similar effect sizes if the intervention were to be repeated
in another setting. Students that face a lower degree of food insecurity are unlikely to
respond in a similar manner as the students in this setting. However, increasing the scale
of this intervention across the Mississippi Delta is likely to achieve similar results for
elementary school students in the area.

"This estimate is arrived at by assuming the following unit costs: cereal $0.33, milk $0.25, fruit $0.25,
canned meat $0.50, applesauce $0.23, and mixed fruit $0.50.
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Chapter 3: The Marginal Congestion of a Taxi in New York City

3.1 Introduction

The congestion of transportation infrastructure has both macro and microeconomic
costs. Transportation affects the organization and scale of economic activity in cities (Red-
ding and Turner (2015); Ahlfeldt et al. (2015)): while agglomeration saves transportation
costs, these savings diminish as density congests infrastructure. When transportation
infrastructure becomes congested, residents both bear and impose external costs. In the
context of road congestion, costs include the value of time (Anderson (2014)), pollution and
health (Currie and Walker (2011); Knittel, Miller, and Sanders (2016)), carbon emissions
(Barth and Boriboonsomsin (2008)) and subjective well-being (Kahneman and Krueger
(2006); Anderson et al. (2016)).

We document that traffic in New York City, one of the most productive cities in the
United States (Hsieh and Moretti (2017)), has slowed down substantially since 2013 (see
Figure 3.1). Taxi trips within midtown Manhattan have slowed down on the order of 15%,
but the slowdown is widespread: it shows up in taxi trip records throughout the day and
over the entire city, on highways — as measured though a novel dataset that we assemble
from EZ-pass sensors — and in responses to the American Community Survey.

Cities such as New York are undergoing technological and policy changes with un-
certain costs and benefits: roads may be under increasing demand from transportation
network companies (also known as ridehail) and parcel delivery services, while space in
the city is increasingly allocated to bikeshare, bike lanes and pedestrians (Sadik-Khan and
Solomonow (2016)).

We evaluate a policy change that is unique to New York City: starting in August 2013,
the city partially deregulated its medallion taxi industry by authorizing a new class of
taxi. “Boro” taxis are almost identical to the city’s 13,237 traditional yellow medallion
taxis, but are painted green and are restricted from picking up passengers at airports or in
Manhattan south of East 96th street and West 110th Street. We exploit the unique natural
experiment provided by the roll-out of up to 6,539 new taxis searching for passengers
under a well-defined spatial constraint to causally estimate the impact of taxi supply on
traffic congestion in New York City.

We employ a dataset with 1.3 billion taxi trip records from 2009 to June 2016, which
contain precise times and geographic coordinates of pickups and dropoffs, to construct a
dataset of street-level speed that spans both sides of the exclusion boundary in northern

Manhattan and the period prior to and after the roll-out of boro taxis. Our measures of
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Figure 3.1: Daily Trips in New York City by Selected Transportation Modes, and Yellow
Taxi Median Minutes per Mile. Monthly Statistics 2009-2016
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Note: Trips from ridehail providers such as Uber and Lyft are available only for Q2 and Q3 in 2014, and
from 2015 onwards. Dashed gray line plotted on second axis is the median minutes per mile among all
yellow taxi trips in a given month. Vertical dashed line represents the Nov 7, 2014 date on which speed
limits were lowered to 25 mph on most city streets under the “Vision Zero” traffic safety initiative.

speed are constructed at a high spatial resolution by selecting the trips that involved a
pickup and a dropoff along the same avenue (about 69,300 trips per month in our area
of interest) and either averaging or projecting travel times onto street segments or flexible
functions.

Avenues flow faster toward the north of Manhattan, as density and traffic decline,
and all avenues have slowed down over time. Following the introduction of boro taxis,
however, a stark speed gap opened up north of the boro taxi exclusion boundary (see
Figures 3.2 and 3.3). In our baseline estimates we find that the boro program’s roll-out
caused an overall 8-9% slowdown in the speed of traffic in northern Manhattan.

Our estimates are robust to controlling for observable changes in road use (such as
the deployment of bike lanes and bikeshare, among others), as well as a large set of
specifications to address unobservable confounders. Unobservables that could be a cause
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for concern include differential trends over the city’s geography (for instance, due to
economic recovery or gentrification) or a differential impact from the arrival and growth
of ridehail as a transportation alternative. Estimates of the boro program’s impact track
the timing of the roll-out of taxi supply, which ramped up over the last quarter of 2013,
and are identified under narrow time windows around the roll-out. Our estimates are
also robust to trends by avenue and treatment status that are linear in time but are also
allowed to kink and track the rapid growth in ridehail. We also find that our results are
not sensitive to differential time trends over space in the measurement error of geographic
coordinates, a potential confounder in research that employs data from GPS units within
dense urban settings. We address spatial spillovers, which could arise naturally as boro
taxis transport passengers south of the pickup exclusion boundary, and congestion could
be transmitted across the boundary through gridlock: alternative estimation strategies
(which include a triple-difference interaction that exploits the direction of traffic, as well
as spatial econometric models allowing for links between street segments) are consistent
with the upper range (9%) of our impact estimates.

We next quantify the impact of boro taxis not in terms of the deregulation episode as
a whole, but in terms of taxi supply. As a benchmark, we employ the taxi trip data to
measure taxi activity in pickups and instrument for pickups with the boro taxi roll-out;
we then rescale a congestion elasticity estimated in terms of pickup units to supply using
a back-of-the-envelope proportionality assumption. Recent research on the taxi industry,
however, has emphasized that pickups are the observed equilibrium outcome of search
between unobserved demand and supply (Buchholz (2017); Frechette, Lizzeri, and Salz
(2016)).! In our context, this implies that taxi pickups and supply may not be in proportion
to each other.

We address the observability of taxi supply by collecting a sample of 29 aerial orthoim-
agery scenes going back to 2010. We digitize the location of 132 thousand yellow taxis,
boro taxis and other vehicles in the imagery. Our data allows us to measure changes
to the patterns of vehicle density over space, comparing the period before and after the

roll-out of boro taxis.?2 Our data can be used to estimate the relationship between supply

1See also Lagos (2003) for an earlier analysis using a survey of taxi trip sheets (an earlier generation of
taxi trip record data, hand-recorded by drivers with coarse location identifiers). The taxi record data we
employ has been used to study labor supply (Farber (2015)), moral hazard in contracting (Schneider (2010);
Jackson and Schneider (2011)), behavioral cues (Haggag and Paci (2014)) and learning (Haggag, McManus,
and Paci (2017)), but not to estimate congestion externalities in transportation.

2To our knowledge, ours is the first application of vehicle counts from aerial imagery in economics,
or to the study of the long-run impact of regulation on vehicle density and congestion in any discipline.
See Donaldson and Storeygard (2016) for a discussion of satellite imagery in economics. Traffic engineers
have employed aerial imagery for decades (e.g. Johnson (1928); Greenshields (1948)) for infrastructure
design studies and more recently to calibrate agent-based models of traffic flow. A recent literature in
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and taxi matches. We use it to directly measure changes in taxi supply at a high degree
of spatial resolution, which we relate to a set of heterogeneous speed impacts estimated
over the boro taxi zone. Heterogeneity in impacts is related to baseline traffic density.
We obtain a distribution for the ratios of changes in travel time to changes in supply,
i.e. congestion elasticities. We plot our measured elasticities against baseline taxi density
to non-parametrically estimate a marginal congestion curve that is identified from the
supply shock produced in northern Manhattan by the boro taxi program. We find that
congestion elasticity from taxi supply rises and is slightly convex in density, reaching 0.30
at the higher range that best extrapolates to denser areas in midtown Manhattan.

Lastly, we apply our estimated congestion elasticity curve with a study of New York
City’s slowdown since 2013. We document the slowdown using taxi meter data and
by contributing two new sets of time series to the state of knowledge on traffic speed
and volumes in New York City: i) archived highway speeds reported from a network of
EZ-pass sensors, and ii) vehicle miles traveled by vehicle class, estimated from odometer
inspections. New York City policy makers have failed to find a link between growth in
the supply of ridehail and the city’s slowdown. As we discuss below, the city’s congestion
studies do not employ the available data exhaustively and fail to meet the standards of
modern empirical research.

We digitize aerial imagery samples in an area of midtown Manhattan and find a 14.1%
increase in vehicle density since the summer of 2013 over the prior three years. We also
detect a substantial change in the observed color composition of (non-taxi, non-truck)
cars in midtown Manhattan: whereas 29.3% of cars counted in overhead imagery prior
to the summer of 2013 were black, that share has since increased to 45.7%. VIN-level
records from the New York state Department of Motor Vehicles indicate that while 20.9%
of privately owned cars in New York City are black, 73.0% of For-hire vehicles (FHVs, a
category that includes ridehail) are black. Employing color-share data, we estimate that
the density of for-hire vehicles in midtown Manhattan has increased by 222.9% since the
summer of 2013. We also estimate a 6.8% decline in the number of private cars on the
road.® Taking a 15.2% median slowdown in midtown Manhattan and a 0.30 estimated

congestion elasticity as reference values, we find that the 30.5% increase in the joint supply

machine learning addresses the detection of vehicles from aerial images (e.g., Reilly, Idrees, and Shah (2010),
Mundhenk et al. (2016); Razakarivony and Jurie (2016)) but its output has yet to be applied in empirical
research.

3Aerial images combined with color-share data allow us to separately estimate the density of vehicles
other than taxis, such as private cars and ridehail. An advantage of our approach is that we can measure
vehicle density in dense, downtown city streets. Previous studies using counts from loop detectors, sta-
tionary traffic cameras or gantries (e.g. Xie and Olszewski (2011); Li, Purevjav, and Yang (2017)) are usually
limited to highways or arterial roads.
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of taxis and FHVs in midtown Manhattan over the past three years (taxis down 11.8%,
FHVs up 222.9%) can account for 61.8% of the slowdown in traffic. Overall, evidence from
aerial counts and the spatial and time series patterns of New York City’s slowdown do
not appear to be consistent with rival explanations such as bike lanes, construction or use
by cyclists, pedestrians or trucks.

Section 3.2 below describes the boro taxi program. In Section 3.3 we use taxi trip
records to build historical street speed data. In Section 3.4 we estimate the impact of the
boro program on traffic speed. In Section 3.5 we derive a congestion elasticity curve for
New York City in terms of taxi supply. In Section 3.6 we apply our estimated congestion
curve to the issue of increased vehicle density due to supply growth from ridehail. Section

3.7 concludes.

3.2 Background

Taxi service in New York City is regulated by the Taxi and Limousine Commission
(TLC). Among other regulations, the TLC sets fares, licenses drivers and cars and issues
medallions, which are a fixed number of permits that must be attached to a licensed car
for it to operate as a taxi (i.e. accept street hails) in the five boroughs of New York City.
The number of medallions was fixed at 11,787 for decades, with a few small increases
after 1996, and remained at 13,237 between May 2008 and August 2013. The only type
of medallion taxi available up to August 2013 was the traditional yellow taxi. Although
yellow taxis are statutorily allowed to pick up passengers in all five boroughs of New York
City, most taxi pickups occurred in Manhattan, particularly midtown, and at the city’s
two airports. The spatial distribution of yellow taxi pickups is illustrated in Figure 3.12
using data for June 2013. Areas outside of northern Manhattan and the remaining four
boroughs had limited taxi coverage, and throughout most of New York City residents
could not dependably hail a yellow taxi from the curb. Prior to ridehail apps the most
common method for residents in the outer boroughs to hire car transportation was to call
radio-dispatch bases for pre-arranged transportation from “for-hire vehicles,” as well as
unlicensed street-hails offered by some for-hire vehicles and other informal providers.*

In August 2013 a new class of taxi was allowed on the road: painted green and referred
to in regulation as “street-hail livery” (SHL) taxis, or alternatively as “boro” or green
taxis, these taxis and their drivers are regulated like yellow taxis with a major distinction:
passenger pickups (Whether pre-arranged or street-hails) are not allowed at the two city
airports or south of East 96th Street and West 110th Street in Manhattan, an area referred to

4See Gao Hodges (2012) for the history of the city’s taxi cab industry, including unlicensed activity.
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as the “hail-exclusion zone.” The objective of the boro taxi program was to increase street-
hail availability in the outer boroughs and provide a regulated alternative to unlicensed
street-hails.> Following a multi-year political and regulatory process, the roll-out of the
boro program involved an initial sale of 6,000 medallion permits, as well as a fleet roll-out
and driver recruitment process carried out by medallion owners. Additional permits were
put on sale in August 2014. Figure 3.4 contains a timeline of the number of unique boro

taxis that recorded at least one trip during each month.

3.3 Data

There is no publicly available dataset that contains information on street speed at a
high level of spatial resolution in New York City and over a historical period going back
prior to the roll-out of the boro taxi program.¢ In this section we describe how we employ
historical records of taxi trips from the Taxi and Limousine Commission (collected from
GPS-enabled taxi meters since 2009 under the “Taxicab Passenger Enhancement Program”)
to construct measures of historical street speeds, using three alternative methodologies.
In the next section we employ these measures as outcome variables to quantify the impact

of the roll-out of the boro program over space and time.

3.3.1 Average Travel Times at a 10 Meter Resolution

The simplest approach to measuring the speed of traffic, and the approach we favor
throughout the paper, is to average the rate of travel across all taxi trips for which we
are confident that the taxi traversed a certain interval over a certain period. To estimate
average travel times at a specific time and place, for each month in the data we select the
taxi trips that were entirely contained within a rectangular strip running along one of the
north-to-south avenues of Manhattan, and in which the pickup and drop-off locations are
oriented in the direction of traffic. On avenues with two directions of traffic, such as Park
Avenue, we classify trips according to direction. We refer to each avenue and direction of

traffic as a “run.”

5See wwwl.nyc.gov / office-of-the-mayor /news/362-13 /mayor-bloomberg-more-1-000-boro-taxis-now-
new-york-city-street for a NYC government press release on the roll-out of the program and its intended
goals. Other differences with yellow taxis are that 20% of boro medallions require the taxi to be wheelchair-
accessible, and the taxis are required to undergo vehicle inspections at half the regularity of yellow taxis.

®Recent studies of traffic congestion have employed probe data from cell-phones, obtained from the
Google maps API (e.g. Hanna, Kreindler, and Olken (2017); Akbar and Duranton (2017)), but historical data
was not available to us over our period of study. Additionally, travel time APIs are developed with the aim of
prediction and their methodologies may changed in ways that render them not comparable over long periods
or over space. Another alternative, the INRIX dataset, is constructed from probes on fleets of commercial
vehicles and is not as attractive as our methodology for dense urban settings such as New York City.
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Every trip record contains the time as well as the latitude and longitude for each pickup
and drop-off, as provided by a GPS-enabled taxi meter. We project the coordinate of each
endpoint perpendicularly onto a straight line down the center of each avenue, allowing
us to locate each trip endpoint on this line. We then calculate for each trip the ratio of
the travel time to the line distance, to obtain each trip’s average seconds per meter (i.e.
the inverse of speed). To calculate average seconds per meter at a 10 meter resolution, we
subdivide each run into 10 meter intervals (or “bins”), and for each of these average the
travel time per meter of all the taxi trips that fully traversed the interval. Variation in the
average travel time between bin i and bin i + 1 therefore comes from the variation in the
average travel times of taxi trips that fully traverse bin i but not bin i + 1, or vice-versa.”

Since our objects of interest are (averages of) speed over a particular segments, the
averages obtained by the method described above could be subject to biases due to ag-
gregation as well as changes in trip selection over space and time. As an example of
this potential concern, consider two 10 meter bins in a relatively uncongested area in the
north of the city, and assume traffic moves at the same speed along both bins. Suppose
the northernmost of these bins contains a hotel driveway, whereas its neighbor to the
south does not. The bin containing the hotel originates many long trips to a congested
downtown area, whereas the neighboring bin originates short trips within a relatively
uncongested interval. In this example, the average taken over the travel time of the trips
crossing each bin will be upwardly biased as an estimator of the true marginal travel time
of crossing each bin due to congestion that affects the taxis traveling downtown from the
hotel (an aggregation bias) and, further, the bias will be larger for the bin containing the
hotel since its average does not contain the short, local trips originating in the southern
neighbor (a selection bias). Aggregation bias can also interact with time, as the bin may be
located next to a nightclub or park, and trips may originate at times when traffic is lower,
such as nights or weekends.

A third type of potential bias could arise from the type and behavior of the “probe”
that provides a taxi trip record, e.g. whether a car is a yellow or boro taxi. We employ
data on both types of taxis, since boro taxis increase the sample in the north of the city,
but for this reason and because boro taxi trips are by definition only possible after the
launch of the boro program, variation across taxi type in driving speed would bias our
travel time estimates in a manner that could violate parallel-trend assumptions required

for difference-in-differences evaluation. To investigate this possibility, we exploit the

"The within-avenue sample is presented in Table 3.1. The outcome of the data construction step is plotted
in Figures 3.2 and 3.3. For ease of presentation, it is averaged again at the annual level, and expressed in miles
per hour, rather than seconds per meter. Observable changes in speed are discussed in Section 3.4 below.
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Table 3.1: Seconds-Per-Meter for Within-Avenue Taxi Trips, Northern Manhattan, Jan 2009

to Jun 2016

N Mean Median Std Devn Min Max
West End Northbound 262,340 0.223 0.199 0.127 0.024 6.37
West End Southbound 379,378 0.200 0.181 0.112 0.027 8.21
Broadway Northbound 1,068,259 0.205 0.181 0.130 0.026 10.90
Broadway Southbound 1,027,907 0.212 0.187 0.134 0.025 11.18
Amsterdam Northbound 514,332 0.148 0.125 0.119 0.029 12.55
Amsterdam Southbound 93,688 0.238 0.204 0.166 0.040 13.40
Columbus Northbound 1,308 0.338 0.230 0.370 0.080 4.48
Columbus Southbound 317,496 0.186 0.146 0.174 0.033 10.97
Manhattan Northbound 4,680 0.315 0.231 0.339 0.076 5.48
Manhattan Southbound 9,878 0.245 0.196 0.231 0.073 5.88
CPW Northbound 132,153 0.224 0.181 0.204 0.052 8.24
CPW Southbound 132,674 0.230 0.189 0.203 0.039 8.85
5th (S) 199,727 0.242 0.191 0.209 0.035 11.26
Madison (N) 347,121 0.209 0.163 0.190 0.035 7.74
Park Northbound 188,904 0.238 0.196 0.193 0.026 10.16
Park Southbound 157,976  0.281 0.224 0.243 0.030 8.39
Lexington (S) 272,852 0.219 0.172 0.201 0.033 13.22
3rd (N) 440,152 0.155 0.121 0.153 0.031 14.69
2nd (S) 427,408 0.194 0.153 0.174 0.026 10.07
1st (N) 260,863 0.157 0.119 0.160 0.031 10.29
Upper East Side 2,295,003 0.201 0.157 0.189 0.026 14.69
Upper West Side 3,944,093 0.201 0.177 0.142 0.024 13.40
All 6,239,096 0.201 0.171 0.161 0.024 14.69

Excluded: Riverside Drive, FDR Drive, Adam Clayton Powell Jr. Boulevard, Malcolm X
Boulevard. Statistics are for the seconds per meter, calculated as travel time over the distance
along an avenue centerline. The following are statistics in miles per hour for all within-trip
observations: the average of 0.201 seconds per meter is the inverse of a speed of 11.13 miles
per hour. The maximum is 93.2 miles per hour, the minimum is 0.15 miles per hour, and two
standard deviations above the mean is 4.27 miles per hour. Not described in the table above,
the 1st and 99th percentile seconds per meter are 0.0789 and 0.762, which are the inverses of
28.4 and 2.93 miles per hour, respectively.
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Table 3.2: Descriptive statistics

Mean Median SD  Min Max
Seconds per meter (Avg.) 0.182 0.182 0.039 0.104 0.554
Seconds per meter (B-spline) 0.102  0.0986 0.051 0.0100 0.692
Taxi pickups 245.666 124 352.868 0 7198
311 complaints 0.038 0 0.256 0 13
311 complaint: blocked driveway (no access) 0.005 0 0.089 0 13
311 complaint: blocked driveway (partial access) 0.001 0 0.038 0 7
311 complaint: blocked roadway (construction) 0.002 0 0.044 0 4
311 complaint: failed roadway repair 0.004 0 0.074 0 6
311 complaint: pothole 0.024 0 0.194 0 12
311 complaint: rough roadway 0.002 0 0.048 0 4
Bikelane (any) 0.089 0 0.286 0 2
Bikelane: wide parking 0.020 0 0.139 0 1
Bikelane: protected 0.064 0 0245 0 1
Bikelane: standard 0.001 0 0.024 0 1
Bikelane: signed route 0.005 0 0.068 0 1
Citibike station 0.000 0 0.008 0 1
Pothole outstanding 0.047 0 0.242 0 6
Zoning: EC-2/EC-3 districts 0.073 0 0.261 0 1

Note: Taxi pickups includes all pickups along an avenue, not only within-avenue trips. Bikelane (any)

takes a value of 2 at three bikelane intersections.
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fact that the data contains approximately half a million trips per day to isolate quasi-
experimental “taxi race” conditions in which both a yellow and a boro taxi both picked up
and dropped off a passenger within 10 meters of each other, as well as within a minute of
each other. We find 234 such natural experiments in our area of northern Manhattan. We
then regress travel time outcomes on a fixed effect per “taxi race” and a binary indicator
for the boro taxi in the pair. Results are reported in Table 3.3. We find positive but
non-significant coefficients in travel time levels, logs or ratios (i.e. seconds-per-meter).
Since the magnitude of the estimated coefficient is a non-trivial 2.5% speed difference, we
explore relaxing the threshold on pickup time difference from one minute apart to two,
and up to 12, and find results that are statistically significant at the 5% level in a couple
specifications in logs, as well as in levels, although not in seconds-per-meter. Alternative
specifications intended to control for within-experiment variation in observables (such as
a “pole position” effect, number of passengers or the residual variation in trip distance on
the taxi meter) do not affect the results. We take this collectively as evidence that there
may be a small difference in driving speeds for boro and yellow taxis.®

8A reason for this speed difference could be that a higher proportion of boro taxis are wheelchair-
accessible vans, and these vehicles may accelerate more slowly than the average taxi. Alternatively, since
daily rental rates (for medallion and car) are lower for boro than yellow taxis, it may be the case that drivers
respond to the different opportunity costs of time, or that the activity of driving a boro taxi selects drivers
with a lower subjective opportunity cost of time, i.e. slower drivers.
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Table 3.3: “Taxi race” Quasi-Experiments: Speed Comparison between Yellow and Boro Taxis

(12) (11) (10) ©) ®) ) (6) ©) 4) ®) (2) 1)

Seconds 7763 7980 6656 6260 6857 6613 8512 1088  14.09  16.19 12.22 10.86
(3.633)  (3.655) (3.580) (3.737)  (3.982) (4.284) (4.611) (4.674) (5258) (6.154)  (7.094)  (6.812)

log(Seconds) 0.0220  0.0237 00148 00133 00129 00106 00140 0.0256 0.0373  0.0446  0.0351  0.0252
0.0171)  (0.0171) (0.0161) (0.0169) (0.0177) (0.0193) (0.0216) (0.0168) (0.0187) (0.0218) (0.0265)  (0.0245)

Seconds-per-meter -0.0805 -0.0808  -0.319 -0.340 -0.372 -0.416 -0.508  0.00379 0.00542 0.00621 0.000126  0.00289
(0.396) (0.399) (0.342) (0.365) (0.398)  (0.444) (0.511) (0.0221) (0.0260) (0.0315) (0.0428) (0.00686)

Race FE Y Y Y Y Y Y Y Y Y Y Y Y
Observations 1,280 1,270 1,220 1,146 1,050 940 816 704 598 494 362 234

Note: All specifications are “taxi race” regressions in which the only regressor is a binary indicator for the boro taxi in a taxi pair, and all
between-variation is absorbed by a fixed effect per taxi race, as in a standard “twins” specification. Rows indicate the outcome variable.
Columns indicate the number of minutes difference in the pickup time that are allowed for a pair of taxi trip records to be classified as a
“taxi race,” so sample size increases as this threshold is relaxed. Standard errors clustered at the “race” level. Results are unchanged if
controlling for remaining within-experiment variation in observables, such as a “pole position” effect, number of passengers or the residual
variation in trip distance on the taxi meter, in the two specifications where the outcome is in units of time rather than a rate of change.



We develop two alternative estimates of travel time to address the issues discussed in
this section, but before developing these we discuss a brief pre-existing literature: to our
knowledge, no previous paper has recovered street speeds from taxi GPS “probe” datain a
manner that resolves the aggregation issues described above, or employed such estimates
for the evaluation of urban transportation policy. Three prior papers in the computer
science literature, however, have developed methods to reconstruct street speeds for the
purposes of exploratory and descriptive analysis within a large urban area. Zhan et al.
(2013), Santi et al. (2014) and Poco et al. (2015) are concerned with recovering speeds
on street segments from the TLC trip data given that trip origins and destinations are
located on the NYC road network and the path taken by the driver is unknown. The
approach taken in these papers is to employ a routing algorithm to determine a set of
latent, unobserved paths, and then allocate total trip travel times to weighted segments
from the latent paths. Since our focus is precision within a specific area of interest, rather
than exploratory analysis, we circumvent the path attribution problem by employing only
the subset of trips whose origin and destination are located along the same avenue and
in the direction of traffic. Conditional on a given latent path, Santi et al. (2014) and Poco
et al. (2015) average travel times over trips crossing a segment and are therefore identical
to our approach in this section, whereas Zhan et al. (2013) project trip times onto segment
dummies and are therefore identical to the approach we describe in the next section,
although their approach does not contain controls for observable trip characteristics, (e.g.
driver type, or distance from GPS coordinates to grid network), or allow for non-linearity
arising from fixed and variable components of travel time cost (e.g. due to acceleration).

3.3.2 Projection on Dummies to Recover a Travel Time Function

Our first approach to estimating marginal travel times at the street level while con-
trolling for spatial and temporal aggregation bias consists of projecting travel times onto
dummy variables for the intervals that are traversed by each individual trip, as well as
observables such as taxi type. This approach is intended as an intermediate illustration
for our next approach, so we present it in a summary manner.

We predefine a set of interval bins b = {b,...,b} of varying width over several city
blocks, and construct a set of indicators variables my; that are turned off at a value of zero
if a taxi trip does not intersect the interval and are turned on at a value equivalent to the
width of an interval if the trip intersects it (this is equivalent to regressing travel time on
dummies and appropriately rescaling coefficients after estimation). We also define sets of
binary indicators that turn on if trip i starts (sy;) or ends (ep;) in a given interval. For each
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month and uptown or downtown “run” along an avenue, we project the travel time T; of

trip i onto these indicators:

b b-1 b
T = Z,membi + Z BsbSpi + Z,Bebebi + Bxi+ On + & (3.1)
b=b b=bt1 b=b

where additional controls include hour fixed effects, two alternative controls for boro taxi
status (a dummy, consistent for a fixed cost, and a trip distance measure interacted with
boro taxi status, consistent for a boro variable cost) and a control for “surplus distance”
on the taxi meter after the coordinates of each trip endpoint undergo a perpendicular
projection onto the straight north-south line along each avenue. Each trip will also turn
on an indicator dummy both for both endpoints, as well as a number of middle indicators.
Because we observe trips that fully traverse the intervals b = {b + 1, ... b - 1}, and have
saturated the specification with terms that can absorb contributions to travel time from
trip events other than the crossing of these intervals, the estimated coefficients me for
b={b+1,...,b—1} are consistent for (an average over) the interval marginal second per
meter function specific to bin b, whereas the coefficients on ﬁ mp forb = {b, b} are consistent
for an average of the marginal second per meter function over the fractional measures of
the interval that are intersected in the data, which are not a quantity of interest and are
discarded. All of the coefficients on 5, and f play a similar role, as they are consistent for
average marginal costs on fractionally traversed intervals, and are also discarded. Given
that trip data is only observed in the interior of the interval defined by the lower limit of b
and the upper limit of b, the average speed parameters 8, for b = {b, b} are not identified.
The estimated coefficients ﬁmb forb=1{b+1,... b — 1} constitute our second measure
of an underlying “seconds-per-meter” travel time function. These estimates control for
spatial aggregation bias, since travel times are projected linearly onto the event of crossing
specific intervals, and so estimates are computed from differences in the overlaps between
intervals traversed. Continuing with the hotel example from above, if variation elsewhere
in the data identifies downtown segments as being particularly slow, this high time cost
will be subtracted from the southbound trips originating at the hotel, allowing travel time
in the hotel’s interval to be identified from that interval’s actual contribution to travel time
(lower, in our example). This method also allows us to include hour fixed effects to control
for the time aggregation bias that would arise from correlation between trip endpoints
and time of day, as well as controls for trip observables.

The projection on dummies method does have some costs, however, as it involves
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substituting variance for bias. Discretizing the “second per meter” travel time function
into a set of intervals leads to loss of information, as the method discards average travel
time data on the portion of each trip that does not fully traverse an interval. Discretization
cannot be made arbitrarily low in a finite sample: it will eventually lead to intervals that do
not originate or end trips, causing identification failure as the projection matrix loses full
rank. Since estimates in the projection method are obtained from differencing time costs
across intervals, errors in one interval can propagate to others, leading to high variance
of estimates. The discontinuity in the seconds-per-meter function that is imposed as an
assumption on the data generating process is one source of variance, as it leads to abrupt
changes in the travel times that are attributed to otherwise similar trips if only one of these
crosses the junction point used in discretization.” To address these concerns, our next
method also controls for potential aggregation bias while delivering a better trade-off in

terms of reduced variance.

3.3.3 Projection on B-splines to Recover a Travel Time Function

Our second projection method controls for aggregation bias and observable trip char-
acteristics in the same way as the projection dummy method above, but explicitly models
a continuous “seconds per meter” function with basis splines: the advantages of this
method are that it eliminates discontinuities at junction points between interval dum-
mies, and that it eliminates data loss on trip segments that do not fully traverse a discrete
interval, both of which reduce the variance of estimates. Additionally, this method pro-
duces a flexible estimate for the “seconds per meter” function that can be evaluated at
every point of its support.

Let s be the true “seconds per meter” function, which is defined over an interval of
road during a given month. A taxi trip i that begins at point a; and ends at point b; on the

interval will take a total time:
bi
Ti = Bixui +/ [s (1) + ﬁzXZi] at + ¢&; (3.2a)
aj
Ti = B1x1i + S (bi) = S(a;) + P2 (bi — a;) x2i + ¢ (3.2b)

where x1; are trip characteristics that do not depend on location or trip distance (i.e.
fixed time costs), x2; are trip characteristics that depend on trip distance but not location

(variable time costs) and S (b;) — S (a;) is the area under the seconds-per-meter function.

°In our application, we employ as few at seven intervals and obtain estimated travel times that are
negative in 1.7% of all run-bin-month cells.
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We can estimate (Eq. 3.2b) by regressing T; on the spline differences [S (b;) — S (a;)], x1:
and (b; — a;) x2;, which we can implement using basis splines for the location of trip origins
and destinations, provided we impose the constraint that the spline function is the same
at both endpoints.1°

To implement B-splines, if we let:

K
S(1) = yit (7)
k=1

where ¢ are the bases of the spline, then the regression above can be written as:

K
T; = p1x1i + Z Vi [0k (07) = Yr (@) + B2 (bi — ai) x2i + & (3.3)
k=1

which can be estimated by OLS. Since the bases yx(7) are differentiable, after estimation
we can recover

K
3 =58(1)= ) Py} (@)

k=1

where 7 are coefficients estimated by OLS.

3.4 Impact of the Boro Program on Traffic Congestion

3.4.1 Empirical Strategy

Historical data on street speed at a high level of spatial resolution allows us to evaluate
the impact of policies that impact road use in a well-defined spatial manner. In this

0Qur specification for the error term assumes that it is additive to integrated travel time. Alternatively,
we could assume an instantaneous mean zero error that arises over the interval. In this case we would have
thatT; = x1,'+/u'1 s (1)+px2i+¢; (T) dt and so we could write T; = x1;+S5 (b;)—S (a;)+p (b; — a;) x2i+(b; — a;) &

where & = (b; — ai)_1 fa b_i ¢i (1) d7 is a heteroskedastic error term. We could estimate this equation by GLS,
or divide both sides by (b; — a;):

5 Ti x  5(bi)—S(a)

T i-a) A (b —a;) Gi—a) Paxai + &

where 5; = % is a trip’s average seconds per meter. We can then implement a regression of 5i on rescaled
1 1

splines differences [%] and x;, which imposes the GLS correction for heteroskedasticity under the

assumption of integrated errors.
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section we describe how we exploit the roll-out of the Street-Hail Livery program to
evaluate the impact of boro taxis on congestion in northern Manhattan. Our area of
study spans 1 kilometer of the Upper East Side and 2 km of East Harlem on the East
Side, and 2 km of Upper West Side and 1 km of Morningside Heights and Harlem on the
West Side. Urban density and socioeconomic status decline towards the north, although
not in a monotone or smooth manner. Prior to the launch of the boro program, the
declining gradient in urban density was associated with lower yellow taxi pickup activity,
with spikes around major intersections, which include subway stations.!! The boro taxi
program was intended to increase supply in areas undeserved by traditional yellow taxis,
but its implementation through a “hail-exclusion” zone south of East 96th and West 110th
streets creates an incentive for boro taxi drivers to cruise for hails in the area just north of
the boundary: whereas this area was of marginal cruising value for yellow taxi drivers, it
is a corner-solution for boro taxi drivers, leading to a localized shock to supply.*?

Our empirical strategy in this section consists of exploiting this localized shock, and
its roll-out over time, to evaluate the impact of boro taxis. Figures 3.2 and 3.3 show the
average travel time measures (estimated as described in Section 3.3.1) for all the avenues
that contain useful variation to identify the main results in the paper.’* For ease of
presentation the data has been averaged at the annual level, and expressed in miles per
hour, rather than seconds per meter. Inspection of these figures reveals the identifying
variation in the data and that drives our main difference-in-differences estimates: historical
speeds increase in the northern direction along most avenues, along with declining urban
density and traffic,’* and as time goes on all streets become slower, but particularly so
north of the hail-exclusion boundary, an area we refer to as “boro-zone.” Particularly
stark examples include 5th Ave (Fig. 3.3a) and Lexington Ave (Fig. 3.3e), but the result
can be observed on most avenues.

We employ a difference-in-differences specification to estimate an average reduced-

form impact from the boro taxi program on street speed in northern Manhattan. Let s,

11As shown in Fig. 3.12 most yellow taxi activity is concentrated at airports as well as midtown and
downtown Manhattan.

12This notion holds under a spatial search equilibrium as in Buchholz (2017): areas with high baseline
demand support higher search in equilibrium, although the endogenous continuation value for above-
boundary pickups may be shaded down by a higher transition probability into the hail-exclusion zone.

BSome avenues, such as West End, Amsterdam downtown or Columbus uptown do not cross the hail-
exclusion boundary and therefore do not contain identifying variation after we include fixed effects at the
avenue level. We also drop Manhattan Ave since it does not contain sufficient trips north of the boundary
to reliably estimate speed.

14This is always the case on the East side, but not on the West side where some avenues both narrow
and become two-way north of the hail exclusion boundary. The time-invariant attributes of streets, such
as changes in width, the direction of traffic, or bends in the roadway will be absorbed in specifications
described below by fixed effects at the level of the avenue run and 10 meter bin.
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Figure 3.2: Average Travel Time at the Avenue Level, Over 10 Meter Intervals. West Side

(a) Broadway Northbound (b) Broadway Southbound
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Notes: Average travel time is computed as the average seconds per meter at the 10 meter interval over all
trips that cross the interval. Averages shown here are annual and have been converted to miles per hour.
Year is indicated by color and shade, according to the following scheme: years prior to the boro taxi program
are indicated in orange, from 2009 (darkest) to 2012 (lightest). 2013 is shown in gray, as program roll-out
begins on Aug 8, 2013. 2014 is shown in light green, and 2015 in dark green. 2016 not shown to control
for seasonality, since data is only available for the first half of the year. Not plotted: both directions of
West End Ave, which are included in regressions but do not identify the coefficient of interest because, like
Columbus Ave, they do not cross the hail-exclusion boundary. Manhattan Ave is excluded from plots and
regressions because in its short length it does not generate sufficient within-avenue trips to allow for speed
measurement.
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Figure 3.3: Average Travel Time at the Avenue Level (continued). East Side
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be a travel time outcome, which in most specifications is the log seconds per meter at the
level of an avenue run (r), 10 meter bin (b) and month () from January 2009 to June 2016.
In a standard difference-in-differences specification we would define the post dummy as
August 2013 and all months thereafter:

Srom = PDIDPOSE,,, X boro zoneyy, + Bxrpy + fixed effects + &,pm (34)

However, the supply of boro taxis was rolled-out gradually: only 114 boro taxis carried
out at least one trip during the program’s first month of August 2013, and this number
rose to 445 taxis in September, 1,128 in October, 1,754 in November and 2,736 in December.
Although this ramp-up was relatively fast, it took until June 2015 for the program to reach
the highest number of boro taxis ever observed to be active in a given month, which was
6,539. The time series for the number of unique boro taxis is plotted as the solid green line
in Figure 3.4. We define the bororoll-out,, treatment intensity measure as the ratio of boro
taxis active each month (zero prior to August 2013) to the maximum value of 6,539, and
our preferred specification is to employ this intensity measure in difference-in-differences

specifications of the form:
Sybm = Ppipboro roll-out,, X boro zone,, + fx,p, + fixed effects + &, (3.5)

Our baseline specifications include fixed effects 6,; at the level of each run and bin,
absorbing time invariant features of the road, as well as a set of monthly time-effects
Orm at the level of each run, which absorb the variation in speed along each avenue over
time that is common across bins. The main difference-in-differences coefficient under this
fixed effect specification is estimated from the differences within each avenue between
the travel time north vs. south of the hail-exclusion boundary as the boro program was
rolled out. For regressions based on egs. (3.4) or (3.5) to provide an estimate of the causal
impact of the boro program we require the parallel trend assumption that street speed in
the hail-exclusion “control” zone and boro “treatment” zone are not trending apart from
each other for reasons other than the impact of the program. We will discuss below the
robustness of our estimates to trends in unobservables, along with alternative fixed-effect
structures and specifications, but first we consider a number of observable features of the
urban environment that vary at the level of road segments over time and could act as
confounders for our estimate of the boro program’s impact on traffic speed.

A first source of potential, observable confounders consists of changes in the use

15See Sadik-Khan and Solomonow (2016) for the former NYC Department of Transportation commis-
sioner’s account of the substantial expansions in bike lanes and pedestrian plazas over this period.
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of road space, for example for transportation alternatives. Bike lanes were expanded
substantially throughout NYC during the period of our study, so we use time-stamped
maps of the bike lane network to control for bike lane expansion in our area of study.'®
A second change in transportation infrastructure with a potential impact on road use
and traffic speed was the deployment and northward expansion of the Citibike bikeshare
system. Citibike launched south of Central Park - outside our area of interest - in May 2013,
but expanded into the upper east and west sides over the summer of 2015. We map the
deployment of Citibike stations over time as well as, in an alternative specification, all areas
along an avenue south of any newly opened Citibike station, to control for both stations
and cyclists.’® Additional potential confounders include changes to road conditions.
We construct count measures at the road-segment level for complaints reported to the
city’s “311” municipal services hotline, for conditions that could impinge traffic. We
also construct count measures for outstanding potholes. Additionally, two re-zoning
events took place during our period of study, the establishment in June 2012 of Special
Enhanced Commercial Districts 2 and 3 along a number of avenues on the Upper West
Side. Although this re-zoning was entirely commercial in character, intended to regulate
“ground floor frontages” to preserve commercial activity and “multi-store character,”
in some specifications we include a control for these zoning changes. Details on the

construction of these controls are in 3.8.1.

3.4.2 Results

We report the results for our baseline specifications on Table 3.4. The table is organized
to report results for our three alternative measures of travel time: average speeds as in
Section 3.3.1 in Cols. 1 and 2, B-spline projected speeds as in Section 3.3.3 in Cols. 3 and
4, and dummy projected speeds as in Section 3.3.2 in Cols. 5 and 6. Within each of these,
we report the results for Egs. (3.4) and (3.5).

16See Molnar and Ratsimbazafy (2016) for a study of the Citibike bikeshare program and its impact on
the medallion taxi industry. Hamilton and Wichman (2017) find the bikeshare infrastructure reduced traffic
in Washington D.C.
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Table 3.4: Reduced Form Impact of Boro Program on Congestion.
Comparison Across Travel Time Estimation Methodologies

D 2 3) (4) () (6)
Logavg. s/m Logavg.s/m LogBsp.s/m LogBsp.s/m Logest. s/m Logest. s/m
(Treat dummy) (Baseline) (Treat dummy) (Baseline) (Treat dummy) (Baseline)
BZ x Post 0.063 0.069 0.062
(0.004) (0.017) (0.037)
BZ x Roll-out 0.081 0.101 0.083
(0.004) (0.020) (0.045)
Bikelane 0.026 0.025 -0.091 -0.094 0.084 0.084
(0.004) (0.004) (0.053) (0.053) (0.036) (0.036)
Citibike station -0.018 -0.009 0.089 0.103 -0.085 -0.071
(0.007) (0.007) (0.036) (0.037) (0.012) (0.015)
311 complaints -0.000 -0.000 0.003 0.003 -0.003 -0.003
(0.000) (0.000) (0.003) (0.003) (0.003) (0.003)
Potholes -0.001 -0.001 -0.006 -0.006 -0.008 -0.008
(0.001) (0.001) (0.009) (0.009) (0.008) (0.008)
Run-bin X Run-my FE Y Y Y Y Y Y
Observations 406260 406260 406260 406260 6849 6849
R? 0.97 0.97 0.64 0.64 0.53 0.53
R?-within 0.13 0.15 0.0015 0.0022 0.0052 0.0058

Note: Unless otherwise specified, robust standard errors are two-way clustered at the level of runx bin and runx
month. The difference in difference coefficient in the baseline regression (Col. 2, row 2) remains significant at 0.1%
with coarser clustering schemes, such as two-way clustering at the level of runs and months (s.e. 0.0151), along any
single dimension, or under alternative schemes (and bandwidths) with clustering on the time or time-run dimensions
with Newey-West robustness to autocorrelation along the spatial dimension by bin or run-bin. Further evaluation of
inference is provided in Table 3.5, Cols 5 & 6.



Comparing either Cols. 1, 3 and 5 or 2, 4 and 6 we can see that results for a given spec-
ification are similar across alternative estimation methods for the travel time outcome.?”
In all specifications it is also the case that the DID coefficient estimate on the boro X post
dummy is lower than on the boro X roll-out intensity measure, which is what we would
expect if a partially-rolled out boro program has a less than full impact on traffic speed.
Once the full roll-out of the program is allowed for, we find travel time increases of 8-10%
in the boro zone relative to the hail-exclusion zone.*® To further evaluate the role of timing
and pre-trends in our specification, we re-run a version of Eq. (3.5) in Col. 2 in which the
pre-treatment period is defined to start 24 months prior to the actual introduction of the
boro program (i.e in August 2011) and we estimate a month-specific fpp » coefficient for
every month thereafter. Figure 3.4 plots (in blue) the point estimates and 95% confidence
intervals for these coefficients: we can see that there are no pre-trends, as monthly coef-
ficients are flat at zero prior to the actual roll-out of the program. The speed difference
between the hail-exclusion and boro zones starts to develop shortly after August 2013,
quickly trending upward over the first six months, and then more slowly over the next
year. The trend in ﬁA pIiD,m coefficients tracks the trend in the roll-out of boro taxis: the
measure of this roll-out is not used in the estimates plotted in Figure 3.4, but it is overlaid
on the figure for comparison.

In Table 3.5 we evaluate some alternative specifications to assess our claim that we
have estimated an 8-10% causal impact of the boro program on traffic speed (estimates of
Bpip can be read equivalently as log increases in travel time or log decreases in speed).
Col. 1 presents an estimate in levels, rather than logs, which is statistically significant and
consistent with our baseline results: at the sample average of 0.182 seconds per meter (i.e.
12.32 miles per hour) this estimate represents a 7.2% decrease in speed (to 11.44 miles
per hour). Col. 2 presents estimates with common time effects (i.e. fully saturated at the
run-bin and at the monthly level, but not interacted with runs). Relative to our baseline,

7We employ an exhaustive set of fixed effects: this results in an R? well above 0.9 for specifications
(1) and (2), but declines to around 0.5-0.6 for projection-based travel times due to higher variance in that
outcome variable.

18]f we had defined “full roll-out” as a ratio relative to a lower denominator (e.g. the average number
of boro taxis on the road after a certain period, rather than the maximum of 6,539 taxis) then the estimated
impact from the program on traffic speed would be slightly higher, but there would be no effect on the
congestion estimates reported in Section 3.5 below.

YClose attention to Figure 3.4 reveals that the “dynamic DID” coefficient estimate spikes in August of
each year. These spikes are explained by a seasonal violation of the parallel trends assumption in our DID
specification: every August (and to a lesser extent, September) there is a vacation-driven decline in both
the population of taxi users and drivers in NYC (see Figure 3.1 for a monthly time-series of taxi trips that
displays negative seasonality in August). The vacation-induced reduction in traffic and increase in speed is
stronger south of the hail-exclusion boundary, resulting in the seasonal variation in travel time differences
displayed in Figure 3.4.
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Figure 3.4: Difference-in-Differences Estimates of the Impact of the Boro Program, by

month
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Table 3.5: Reduced Form Impact of Boro Program on Congestion.
Alternative Specifications

M 2 (©) (4) () (6)
Avg.s/m Logavg. s/m Logavg. s/m Log avg. s/m Logavg. s/m Logavg. s/m
(Levels) (Rect. FE) (Linear trend) (Lin. & rideshare trend) (Aggr. T) (Aggr. TRun)
BZ x Roll-out 0.014 0.064 0.067 0.062
(0.001) (0.005) (0.007) (0.007)
Bikelane 0.003 0.023 0.025 0.024 0.016
(0.001) (0.005) (0.004) (0.056) (0.025)
Citibike station -0.001 -0.029 -0.016 -0.008 -0.104
(0.001) (0.020) (0.007) (0.084) (0.106)
311 complaints -0.000 0.001 -0.000 -0.000 0.012
(0.000) (0.001) (0.000) (0.038) (0.014)
Potholes -0.000 0.001 -0.000 -0.000 0.030
(0.000) (0.002) (0.001) (0.107) (0.065)
BZ x Post 0.050 0.044
(0.017) (0.016)
Post 0.057 0.058
(0.012) (0.012)
BZ dummy -0.100
(0.046)
Run-bin X Run-my FE Y Y Y
Run-bin X my FE Y
Run x BZ linear trend Y
Run X BZ rideshare trend Y Y
Observations 406260 406260 406260 406260 9028 60
R? 0.96 0.93 0.97 0.98 0.98 0.85
R2-within 0.099 0.055 0.20 0.22 0.73 0.34

Note: Unless otherwise stated, robust standard errors are two-way clustered at the level of runx bin and runx
month. Estimates with linear and “aggregate ridehail” trends are interacted with the treatment zone and run, but
results barely change if interacted at the treatment level only. Estimates in Col. 5 include fixed effects and are
clustered at the level of runX bin and runX post, likewise by runx boro-zone and runx post for estimates in Col. 6.



The major threat to a causal interpretation of the estimates from our research design
is that unobservable components of traffic speed could have different trends in the hail-
exclusion “control” and boro “treatment” zones, for reasons other than the program’s
impact. We check against any such linear trends in Col. 3, and find that the estimated
impact decreases by only 17% after the inclusion of a linear trend interacted by run and
treatment status. Robustness to a difference in unobserved linear trends is a strong test for
the validity of a difference-in-differences design (since identification is provided by the
timing of the boro program’s launch in August 2013 and its subsequent roll-out relative
to any linear trend), although this is less the case in a setting such as ours in which all
treated units change status at the same time.

We cannot check for robustness against arbitrary, non-linear differences in trends
between the treatment and control zones, since the set of these trends contains the roll-
out of the boro program that we rely on for identification. We can, however, check
the robustness of our estimates against an alternative, well-defined trend that may be
a cause for concern. The major recent change to NYC transportation that we have not
yet addressed in detail was the growth in ridehail (plotted in Fig. 3.1), starting with
Uber’s entry as a black-car service in May 2011. If growth in ridehail played a role in the
substantial slowdown of NYC'’s streets since 2013 (as documented in 3.8.3, and for our
area of interest by the downward, parallel translation over time of the speed curves shown
in Figures 3.2 and 3.3) then it could bias our estimates: although our research design
controls for ridehail’s potential effect on traffic speed to the extent that this effect was
proportional both north and south of the hail-exclusion boundary, differential impacts
across zones remain a potential confounder. To address this concern we construct an
“aggregate ridehail trend” from monthly ridehail trips, and interact this trend with runs
and the treatment zone.?’ In Col. 4 we jointly include the ridehail trend along with a
linear trend: we find that our reduced-form estimate of the impact of the boro program
is robust to a trending differential unobservable that is not only linear, but is allowed to
accelerate after May 2011 at any rate proportional to the growth of ridehail in New York
City.

We present Cols 5 and 6 as checks on statistical inference.?! In Col 5 we present the

results from averaging, for each spatial unit, all time periods into a before and an after

2Trip-level reporting by ridehail providers to the TLC started with the second and third quarters of
2014. There is a gap in reporting during the fourth quarter of 2014, and reporting has resumed from 2015
onwards. We interpolate the monthly growth rate for the fourth quarter of 2014, and extrapolate backwards
to Uber’s launch in May 2011 using the 10.1% monthly growth rate that has been observed for all ridehail
providers since the second quarter of 2014.

ZAStandard errors in all other specifications are two-way clustered at the level of runx bin and runx
month. Statistical significance holds at coarser clusters such as runs.
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period. Thisis clearly not a preferred specification, as it eliminates variation in observables
over time (from controls, such as bike lanes, or the identification provided by the gradual
roll-out of boro-taxis that was documented in Fig. 3.4), but it is useful as a check that
statistical significance is not an artifact of time series dependence. We then collapse
all variation between road intervals into a single segment average for the treatment or
control zone, as a further check that inference does not depend on unmodeled spatial
dependence along each avenue. Col 6 presents the difference-in-differences estimate from
this further step, which averages each avenue into four cells: both time periods vs. the
avenue’s treatment and control segments. Under this specification, which contains only
62 observations (and a fixed effect for each of 17 avenue runs, of which 16 are included in
the control zone and 15 in the treatment zone) we still find a statistically significant 3.8%
additional slowdown of the boro zone relative to the hail-exclusion zone control, which
in turn slowed down by 5.8%.2?

In Table 3.6 we present results under alternative data samples. Cols 1 and 2 break
out results into the east and west sides of northern Manhattan: we find a heterogeneous
impact of the boro program, with double the travel time increases on the east than on
the west side. As we will describe below, this result is associated to a larger increase
in taxi activity on the east side. Cols 3 and 4 look at narrow event windows around
the introduction of boro taxis (6 and 12 months before and after, respectively). These
results confirm that the boro program’s impact is identified from variation in traffic speed
around the roll-out period (as shown previously by the month-level “dynamic difference-
in-differences” results plotted in Fig. 3.4), rather than long-run trends or events outside
the period in which the program was introduced. In particular, results for both windows
exclude a city wide-reduction in the speed limit from 30 mph to 25 mph, which took place
on November 7, 2014.2 Speed limits were changed along the entire length of the avenues
in our study, so our baseline specifications already control for avenue-level effects through
the monthly time-effects 6,,, at the level of each run. Results from Cols. 3 and 4 further
confirm that the speed limit change does not introduce a violation of the parallel-trends

assumption.

2We omit averaged controls, since at this level of aggregation they become an arbitrary set of free
parameters. Our estimate of the fp;p coefficient is still significant and higher in magnitude if we include
averages of our controls, or if we restrict our sample to the balanced panel of 14 runs that span both the
treatment and control zones. Results employing the B-spline projection travel time outcome are consistent
in sign and magnitude, but not significant at this level of aggregation.

BThe speed limit change was part of the broader “Vision Zero” traffic safety program, announced in
January 2014 by NYC mayor Bill de Blasio and rolled-out in stages thereafter. The program consists of
a broad set of initiatives intended to eradicate traffic fatalities, including public service announcements,
a focus on enforcement of traffic laws, street intersection redesign and the change in speed limits. See
wwwl.nyc.gov/site/visionzero/initiatives/initiatives_archive.page for further details.
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Table 3.6: Reduced Form Impact of Boro Program on Congestion.
Alternative Samples

1) () 3) 4) ®) (6) @) 8
Log avg. s/m Logavg. s/m Logavg. s/m Logavg. s/m Logavg.s/m Logavg. s/m Logavg. s/m Logavg. s/m

(East) (West) (6m pre/post) (12m pre/post) (cutout 250m) (cutout 500m) (cutout 750m)  (DiDiD)
BZ x Roll-out 0.100 0.049 0.042 0.077 0.086 0.090 0.086

(0.006) (0.005) (0.013) (0.008) (0.005) (0.005) (0.005)
BZ x Roll-out x Uptown -0.030

(0.006)

Bikelane 0.017 0.027 0.018 0.043 0.026 0.026 0.025 -0.014

(0.006) (0.007) (0.013) (0.009) (0.004) (0.004) (0.004) (0.007)
Citibike station -0.002 -0.012 -0.005 -0.001 -0.001 -0.019

(0.010) (0.003) (0.007) (0.007) (0.008) (0.007)
311 complaints -0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000

(0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Potholes -0.002 0.002 -0.001 -0.001 -0.000 -0.000 0.000 -0.001

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Run-bin X Run-my FE Y Y Y Y Y Y Y Y
BZ-my FE Y
Observations 216000 190260 58682 112850 374760 339840 303840 200430
R2 0.97 0.97 0.98 0.98 0.97 0.97 0.98 0.98
R2-within 0.21 0.072 0.028 0.15 0.16 0.16 0.13 0.0098

Note: Unless otherwise specified, robust standard errors are two-way clustered at the level of runx bin and runx month. Standard
errors for the triple-difference estimation in Col. 8 are additionally clustered at the level of boro-zone X month.



The specifications in Cols. 5-7 are presented as a check for spatial spillovers over the
treatment boundaries. Some spatial trends are in fact present in the speed data: inspection
of Figures 3.2 and 3.3 (see, in particular, the northbound direction of Broadway in Fig.
3.2a, as well as 3.3a and 3.3g) shows that following the program’s roll-out, the speed on
some avenues starts to decline in areas neighboring the hail-exclusion to the south. Unlike
pre-trends in time, which we would not expect the program to produce, it is reasonable to
expect the boro program to produce some form of spatial trend due to spatial spillovers.
The channels though which the boro program could produce endogenous spillovers in-
clude: i) the direct effect of boro taxis on traffic as they drive south of the boundary to
drop off passengers; and the incidence of such travel should diminish with distance to the
boundary, ii) the direct effect of yellow taxis (or ridehail providers), which may retrench
south of the boundary in response to the increased, localized competition from boro taxis
to the north, and iii) an indirect effect transmitted through traffic congestion: a taxi may
not only have a direct effect that slows down traffic at its immediate location, but also
down the road through the effect of queuing cars, or on adjacent roads through gridlock
(Schwartz (2015)).

Spatial trends of this form need not constitute a threat to the detection of an effect
from the program, but rather to whether our difference-in-difference strategy identifies
the program’s average effect. In each of the cases outlined above, a spatial spillover from
the program slows down traffic in the area we use as a control, biasing our coefficient
estimate downward from the program’s average effect. To evaluate the sensitivity of our
results to spillovers, in Cols. 5-7 of Table 3.6 we drop the intervals in the control zone that
are 250, 500 or 750 meters immediately south of the boundary. The estimated effect rises
as we drop adjacent intervals, and we estimate an effect of 0.089 (i.e. 11% higher) if we
exclude the 500m adjacent to the treatment boundary, but the sensitivity to this exclusion
does not change after this point.

In Col. 8 we employ an alternative specification to directly estimate the third channel
for spillovers, i.e. knock-on effects through queuing and road congestion. The degree
to which the shock to activity in the boro zone can transmit traffic congestion across the
treatment boundary will depend on the direction of traffic: avenues in the downtown
direction (i.e. southbound) cannot, by definition, transmit a knock-on effect from queuing
traffic across the boundary and can serve as a control group for northbound avenues,
in which congestion north of the boundary could spill over into the control zone. We
interact our previous difference-in-difference coefficient with an additional difference for
the uptown vs. downtown direction of traffic along each avenue and include fixed effects

at the level of treatment-zone and month, which absorb the variation that previously
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identified the difference-in-difference coefficient. Southbound avenues do flow in the
direction toward a denser city with slower road speed (as illustrated in the slopes of
within-year spatial trends in Figs. 3.3 and 3.2), and baseline speed differences could
reflect differences in a baseline level of traffic spillovers across the boundary. However,
the knock-on effects from this baseline difference are controlled for by run — bin fixed
effects, while the addition of boro-zone interacted with time effects in the triple difference
specification absorb the average differential trend in speed between north and south of
the boundary that is constant across both directions of traffic. We introduce a triple
difference coefficient on the interaction of the boro-zone and roll-out intensity measure
and an indicator for avenues running in the uptown direction. The coefficient on this
interaction is identified, as the boro program rolls-out, from the variation between traffic
directions in the within-avenue speed differences across the hail-exclusion boundary:
since any knock-on effect would travel backward in the direction of traffic from treatment
into control area for uptown runs only, knock-on effects will cause the speed difference
across the boundary to be lower for avenues running uptown relative to those running
downtown.

The coefficient for the triple difference in Col. 8 is not significant (p-value = 0.145) but
its magnitude is consistent with the scale of spillovers that were found in specifications 5-7
by varying the location of the control zone: we estimate a 1.1 percentage point attenuation
in the uptown direction, for which road segments in the control zone are subject to
spillovers, relative to the downtown direction in which they are not.?

Lastly, we evaluate spillovers through spatial autoregressive models in which we allow
for dependence in speed between neighboring road segments. Our aim in estimating a
spatial model is to decompose the impact of increased taxi activity due to the boro program

into the direct effect on an affected road segment vs. an indirect effect, and in turn use

2]f we isolate the sample to a narrower spatial window around the boundary we estimate a knock-on
effect in the range of 1.6 to 2.1 percentage points (for 250 and 500 meter window around the boundary,
respectively), both significant at the 1% level. We could ask whether the coefficients estimated from these
specifications identify purely the queuing (or knock-on) channel for road congestion. This will depend
on whether the other channels we outlined above have a balanced effect over avenues in both directions
of traffic. On (ii), we see no reason why competitive retrenchment of yellow taxis or ridehail should be
differentially localized to a direction of traffic. On (i), boro taxis do transport passengers southbound across
the boundary, but these trips are usually matched by a “dead-head” trip back north to search for the next
hail. We cannot use TLC data to quantify the fraction of southbound trips that generate dead-head returns,
since boro taxi IDs are not available from the TLC, but our sample of aerial imagery shows that use was
balanced in both directions of traffic (we describe this data in Section 3.5.2). Across 18 images, mostly taken
outside peak commute hours, from 10 am to 2 pm, we observe 258 cases of boro taxis south of the East 96th
street boundary in our area of interest in the Upper East Side of Manhattan (a density of 9.9 boro taxis per
km?), of which 184 were traveling in a north- or south-bound orientation (the remainder were parked or
traveling cross-town). Of these, 96 taxis (52.2%) were bearing south and 88 (47.8%) were bearing north.
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this decomposition to quantify the extent to which spillovers may bias the difference-in-
difference estimation of the program’s impact. Spatial models have been subject to the
criticism (Pinkse and Slade (2010); Gibbons, Overman, and Patacchini (2015)) that a single
reduced form (i.e. the regression of a dependent variable on lagged values of regressors)
can be mapped to different sets of structural parameters depending on assumptions on the
nature of spatial interactions that are hard to verify (for example, an exclusion restriction
on direct effects of lagged regressors distinguishes a pure spatial autoregressive model
from one with spatial lags). We do not take a stand in this debate since we are not
interested in estimating spatial interaction parameters in their own right. However, there
are a couple reasons why a road network is arguably an ideal application for a pure spatial
autoregressive model. First, adjacency links are well defined and directed. We consider
up to three possible interactions: i) cars can slow down cars that are behind them, so s, j
depends on s, 1 if b — 1 is ahead of b in the direction of traffic, ii) s,;, depends on s, if
r and v’ are different directions of traffic on the same avenue (note that this interaction
is subject to the reflection problem if estimated in isolation) and iii) s,;, depends on s,
if r and r’ are neighboring avenues with the same direction of traffic. Second, exclusion
restrictions on the structure of spatial lags are reasonable: if a car is slowed down by
a double-parked vehicle or a bike lane that is 100 meters up the road, this happens by
creating a bottleneck and a slowdown 100 meters ahead that is transmitted down the road
through traffic speed, and not through the direct action of double-parking on a car that is
100 meters away.

Following Gibbons, Overman, and Patacchini (2015) we estimate a structural equation
of the form Y = pWY + X + ¢ by directly instrumenting the endogenous, spatial autore-
gressive term with its reduced form in terms of series of distributed lags for the exogenous
variables, i.e. WY = ;WX + moW2X + m3W3X + mgWAX + - - - + v, where 71; = p'~! and
v = (W + pW?2 + p?W3 + ... )e. In Table 3.7 we report model estimates using four spatial
lags in the first stage and under two alternative spatial weighting matrices: Col. 1 employs
a matrix W, that includes all the interactions listed above, while the matrix W}, used for
Col. 2 includes only backward effects along a direction of traffic. The estimated coefficient

for spatial dependence varies between both models, which affects the precision and the

B]f we let b indicate here an individual run and 10 meter bin, the vector of estimated total (direct plus
indirect) structural effects for every run-bin is given by t = fp;pSe, where § = (I — fW)~! and e is an
indicator vector for the bins in the boro zone. The average direct structural effect is fpip |;7| 2 pes Sbb Where

spb are the diagonal elements of § and B is the set of bins in the boro zone. The average direct plus indirect

effect on the boro zone is et and the indirect effect on the boro zone is the difference between the previous
two. Indirect effects on the control zone (in its entirety, or average spillovers over specified segments) are

defined analogously by selecting and averaging from the vector t.
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decomposition of program impact. Estimates of the program’s total effect on the boro zone
(in Col. 1) are precisely estimated and exceed the difference-in-difference estimates by
about 2 percentage points.? Spatial dependence decays rapidly in this model and spillover
effects are small, standing at about 1 percentage point 50 meters across the boundary and
quickly vanishing thereafter. Estimates in Col 2 are less precise: although s.e. on the
spatial dependence term are smaller in magnitude, the estimated coefficient p, = 0.956 is
closer to unity which results in higher variance for average structural effects, as reflected
in the larger bootstrapped confidence intervals for estimated total and spillover effects.
The bootstrapped 95% confidence interval for the overall effect is estimated in the range
of 5.6% to 6.5%, whereas spatial spillovers are estimated as a 2.68 percentage point slow-
down (with a 95% confidence interval of 0.026 to 0.027) at the first 50 meters, vanishing at
a slower rate to remain at 0.5 percentage points 750 meters south of the boundary (0.003
to 0.008 confidence interval). The confidence intervals for the average spillover effect from
the boro zone into the hail-exclusion zone span a range from 0.1 to 1.0 percentage points
across models, and we will employ these magnitudes below to evaluate the robustness of
our baseline results to spatial spillovers.

We review the addition of further controls to our baseline specification in Table 3.8,
including types of bike lane and “311” hotline complaints, as well as commercial zoning.?
The bottom line from the table is that the inclusion of a large set of road level controls
has a negligible effect on our estimate of the boro program’s reduced-form impact: in Col
1 we present results for our baseline DID specification, but with no controls, and find
ﬁ pip = 0.082. Column 2 includes a large set of road controls, Col 3 includes a commercial
zoning change which came into effect in June 2012, restricting ground floor commercial
frontages with the goal of “(maintaining), over time, the general multi-store character
(and) promoting a varied and active retail environment” along several avenues in the
Upper West Side. The addition of both jointly (presented in Col. 4) reduces the DID
estimate to 0.077.%7

The specification in Col. 2 includes a set of additional, more disaggregated controls
of the alternative road uses included in our baseline (Table 3.4, Col 2), such as four types

of bike lane, six categories for “311” complaints and a control both for Citibike stations

%New York City provides a wealth of urban data to the public, its online portal is
opendata.cityofnewyork.us. See Glaeser et al. (2015) for a discussion of urban data and empirical research.
A common roadblock to the use of urban data in causal research designs is that cities do not always store
or maintain timestamped versions of the data that they produce, whether from administrative records or
urban sensors.

The commercial zoning control is a step function that changes in June 2012 over a large area in the
Upper West Side. We include zoning only as a robustness check, rather than in our baseline estimates, since
it has a small incidence that may be an artifact of overfitting.
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Table 3.7: Reduced Form Impact of Boro Program on Congestion.
Spatial Autoregressive Models for Spillovers Across the Hail-Exclusion Boundary

1) @)
Log avg. s/m Log avg. s/m
(W,: three adjacencies) (Wy: backward adjacency)

Pa 0.671 (0.025)

Ob 0.956 (0.009)

BZ x Roll-out 0.034 (0.002) 0.003 (0.001)
Bikelane 0.007 (0.001) 0.001 (0.000)
Citibike 0.000 (0.003) —0.000 (0.001)

311 complaints —0.000 (0.000) —0.000 (0.000)
Pothole 0.000 (0.000) 0.000 (0.000)
Run-bin X Run-my FE Y Y

Avg. direct plus indirect effect within BZ 0.1016 [0.0998,0.1039] 0.0613 [0.0555,0.0649]
Avg. direct effect within BZ 0.0366 [0.0353,0.0377] 0.0031 [0.0022,0.0038]
Avg. indirect effect within BZ 0.0650 [0.0624,0.0681] 0.0582 [0.0532,0.0611]
Avg. indirect effect (spillover) on HEZ 0.0007 [0.0006,0.0008] 0.0085 [0.0071,0.0104]
Avg. indirect effect (spillover) on HEZ, first 50m 0.0102 [0.0096,0.0110] 0.0268 [0.0260,0.0274]
Avg. indirect effect (spillover) on HEZ, first 100m 0.0008 [0.0007,0.0011] 0.0215 [0.0202,0.0229]
Avg. indirect effect (spillover) on HEZ, first 250m 0.0000 [0.0000,0.0001] 0.0143 [0.0122,0.0169]
Avg. indirect effect (spillover) on HEZ, first 500m 0.0000 [0.0000,0.0000] 0.0065 [0.0046,0.0095]
Avg. indirect effect (spillover) on HEZ, first 750m 0.0000 [0.0000,0.0000] 0.0050 [0.0033,0.0078]
Observations 395820 395820

R? 0.991 0.999

RZ%-within 0.72 0.98

Note: Standard errors in parentheses on the reduced-form 2SLS coefficients of the spatial
models are robust, two-way clustered at the level of runx bin and runx month, and are
displayed on the right of the estimated coefficient. F-statistics from the first stage are 278.3
and 47.4, respectively. For average structural effects (direct and indirect) we display 95%
confidence intervals from bootstrapping the structural parameters over 1000 simulations,
re-estimating the model and the impact matrix (I — pW)~L.
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Table 3.8: Reduced Form Impact of Boro Program on Congestion.

Alternative Controls

) 2 ©) (4)

Logavg. s/m Logavg. s/m Logavg. s/m Logavg. s/m

(No controls) (Road controls) (Comm. zoning) (All)
BZ x Roll-out 0.082 0.080 0.079 0.077
(0.004) (0.004) (0.004) (0.004)
Bikelane:
Signed route -0.016 -0.016
(0.009) (0.009)
Wide parking 0.012 0.014
(0.009) (0.009)
Standard 0.016 0.016
(0.006) (0.006)
Protected 0.034 0.034
(0.006) (0.006)
Citibike station -0.006 -0.006
(0.002) (0.002)
Citibike (south of station) -0.004 -0.005
(0.008) (0.008)
311 complaint:
Blocked driveway 0.002 0.002
(no access) (0.001) (0.001)
Blocked driveway -0.001 -0.001
(partial access) (0.002) (0.002)
Blocked roadway 0.001 0.001
(construction) (0.001) (0.001)
Failed roadway 0.000 0.000
repair (0.001) (0.001)
Pothole complaint -0.001 -0.001
(0.000) (0.000)
Rough roadway 0.001 0.001
(0.001) (0.001)
Pothole outstanding -0.001 -0.001
(0.001) (0.001)
Zoning: EC-2/EC-3 districts -0.020 -0.021
(0.005) (0.005)
Run-bin X Run-my FE Y Y Y Y
Observations 406260 406260 406260 406260
R? 0.97 0.97 0.97 0.97
R?-within 0.15 0.15 0.15 0.16

Note: Unless otherwise specified, robust standard errors are two-way clustered at the
level of runx bin and runx month.
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and the road segment to the south of these. This disaggregation has no effect on the
DID estimate, and neither does a full set of interactions (not reported) for the two count
variables of potholes and complaints. It is not surprising that some of these controls have
no incidence on our estimates: Citibike, in particular, only expanded into our area of
study after the launch of the boro program, and by June 2016 had not expanded north of
W 110 St or E 96 St. The table also reports on a secondary empirical finding on the effect
of bike lanes on speed: although our study is not intended to evaluate the effect of bike
lanes on street speeds in New York, and our area of study does not exploit all available
variation in the deployment of bike lanes, we find that the introduction of bike lanes in
northern Manhattan was correlated with slower street speeds, contradicting a previous
report by the NYC Department of Transportation (NYC-DOT (2014)). In our baseline
specification we find that avenues become 2.4% slower following the introduction of any
bike lane, whereas the breakout across bike lane types in Table 3.8, Col 2 finds that the
effect is monotone in the lane type’s utilization of road space: signed routes (which do
not employ road space, and consist of signage indicating how cyclists should navigate an
intersection) are associated to a marginally significant 1.6% speed increase. We find no
effect on wide parking lanes (designed to provide additional space for cyclists), whereas
standard bike lanes (which cars can invade, in a traffic violation) are associated with a
1.6% speed decrease, and protected bike lanes (in which, usually, a parking lane is moved
inward to separate cars from cyclists) are associated to a 3.4% speed decrease. It might be
expected that bike lanes should reduce traffic speed by reducing the maximum throughput
capacity available to cars. Speed reductions may be small, however, if the flow of cars
decreases due to substitution to other roads or transportation modes such as bicycles or
transit.?® Further, bikelanes may improve traffic if they isolate pre-existing cycling from
other vehicles.

3.5 The Elasticity of Congestion to Taxi Supply

In the previous section we quantified the boro taxi program’s impact on traffic speed
in northern Manhattan. The program’s effect on congestion is a first-order cost, to be
evaluated by New York transportation regulators along with the program’s transportation

benefits such as increased taxi hail availability throughout the five boroughs.? In this

2Reduced flows following lane reductions would be consistent with the finding by Duranton and Turner
(2011) that vehicle-miles traveled are proportional to highway lanes, although this finding is at the level of
metropolitan statistical areas and in the long run.

PThe TLC has issued two reports on the boro program, containing information on changes in the
availability of taxi service outside the “Manhattan Core” as well as some assessment of the program’s impact
on traffic speed. On congestion, the first report (NYC-TLC (2013)) employs data through October 2013 and
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section we estimate the change in congestion in terms of changes in taxi supply. Our goal
is to provide a congestion elasticity that can be applied outside of northern Manhattan
to regulation issues in the city more broadly, such as medallion deregulation® and the
expansion in car-based transportation from “disruption” by ridehail.

TLC trip record data allows for the measurement of taxi activity at a high resolution
in space and time, but only data on trip endpoints (pickups and dropoffs) is available
throughout the roll-out of boro taxis.®® Taxi pickups are the closest measure to local
supply that is available in the TLC data, as they occur at the locations at which taxis
cruise for street-hails. Pickups, however, are an imperfect measure of supply because they
arise endogenously from matches between vacant taxis searching for hails and potential
passengers attempting to hail taxis from the street curb (and who, on the margin, may
choose alternative transportation modes or not to begin travel from a given location). Our
interest lies in the effect on congestion from the long term increase in supply, as might
result from medallion deregulation or the unregulated entry of a close taxi substitute. We
contrast two approaches to estimating a curve for the congestion-supply elasticity.

3.5.1 “Back-of-the-Envelope” Approach

The elasticity of congestion to supply can be decomposed into an elasticity of congestion
to pickups times an elasticity of pickups to supply:

Ne,s = MNep X Mp,s (3.6)

and these elasticities may vary by location or location attribute. In this section we estimate
the elasticity of congestion to supply in two steps, as suggested by Eq. (3.6). First, we

estimate 1., by exploiting the roll-out of the boro program. We then rescale 7, using

provides a table with year-on-year changes in average taxi trip speed for trips between 28 broad subdivisions
of the city, using data from both yellow and boro taxis. The results are heterogeneous and inconclusive, and
as of October 2013 only 1,128 boro taxis (17.3% of the full roll-out) had provided a trip. The assessment in
the second report (NYC-TLC (2015)) consists of the following statement: “As to congestion throughout all five
boroughs outside of the Manhattan Core, average Boro Taxi trip speeds have remained steady over the last year, even as
more Boro Taxis have entered into service. Comparing trips completed in January through June across the five boroughs,
the average trip speed was 11.2 mph in 2014, compared to 11.3 mph in 2015.” This assessment is i) restricted to
trips from Boro taxis only, ii) an average for most of the city, rather than between areas where the program’s
incidence may be expected to vary, and iii) uses January to June 2014 as a baseline for comparison, although
5,069 boro taxis were already on the road by June 2014 (3,818 as of January 2014), which is 77.5% (58.4%
respectively) of the program’s peak roll-out of 6,539 boro taxis in June 2015.

%Buchholz (2017) and Frechette, Lizzeri, and Salz (2016) evaluate deregulation counter-factuals that do
not account for endogenous changes to traffic congestion and related costs.

$1Medallion and driver identifiers, which allow a researcher to study taxi movements between trips, are
only available for yellow taxis and through 2013.
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a common, “back-of-the-envelope” factor obtained from a proportionality assumption
between pickups in our area of study and effective supply throughout the city. We estimate
both an average and a curve; the latter is identified from heterogeneous decreases in speed
and increases in taxi pickups, driven by variation within the boro zone in proximity to the
treatment boundary, as well as proximity to subway stations and major intersections. In
Section 3.5.2 below we address the fact that pickups and supply need not be in proportion

to each other.

Elasticity of Congestion to Pickups

We begin by estimating an average of the elasticity of congestion to pickups over the
entire treatment zone (7 ), i.e. we employ the boro roll-out as an instrument for the effect
of pickups on travel times. The first stage of our empirical specification is:

log pickups,,.. = mpip roll-out, X boro zone,, + TxXrpm + Orb + Orm + Vrbm (3.7)

rbm

and the equation for the second stage is:

Srbm = Tc,p log pickups,, + VXrpm + Orp + Orm + Erpm (3.8)

where 7). , is the congestion elasticity of pickups, and we require the exclusion restriction
that, conditional on covariates, any effect from the boro taxi program’s roll-out on traffic
speed occurred through the activity of both yellow and green taxis (as measured by
pickups) rather than any other channel.> The first three columns of Table 3.9 present the
OLS estimate of pickups on travel time (Col 1), as well as the first and second stages (Cols.
2-3), for the entire sample. Columns 4-6 provide estimates for the east side, and Columns
7-9 the west side. OLS estimates of the elasticity are small, in the range of 0.013-0.016.
First stage estimates show that the boro program’s full roll-out had a substantial impact
on taxi pickups north of the hail-exclusion boundary: on the order of a 76% increase for
the entire sample, although 45% higher on the east side of Manhattan than the west. The
instrumental variable estimate of the congestion elasticity of pickups is 10.6%, or 11.7%
on the east and 8.3% on the west side of Manhattan.3® Since our instrument is a (roll-out

intensity-weighted) binary variable, the 2SLS estimator is an (intensity-weighted) Wald

%20n avenues with two directions of traffic we use a trip’s bearing (i.e. angle to the destination) relative
to the avenue centerline to classify each pickup as occurring in the avenue’s uptown or downtown direction.

3Table 3.14 presents OLS and 2SLS results using the B-spline projection travel time measures: the
estimated congestion elasticity of pickups is higher in the overall results and for the east side, but not the
west side. Estimates are less precise and are not significant on the west side.
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estimator and we could read the coefficient for each 2SLS estimate from the ratio of the
reduced-form (presented above, in Table 3.4.2 for the entire sample, and Tables 3.6.1 and
3.6.2 for the east and west sides) to the first stage estimates. Although the reduced-form
impact of the program on traffic speed was double on the east than the west side, we can
see that this was partly due to a differential impact on taxi activity, so the gap between
congestion elasticity estimates for the east and west sides is narrower than the gap in the
reduced-form impact of the program. Figure 3.13 illustrates how the boro program roll-
out instrument identifies the effect of pickups on travel time.3* Pickup levels are correlated
with travel times, with both higher on average in the hail-exclusion zone. This correlation
is reflected in the low magnitude of OLS estimates, which are driven by small changes
over time in location-specific attributes, e.g. urban density and economic activity. The
shading on the scatter plot into four cells by treatment status and period allows us to see
that following the boro program’s introduction there was a substantial increase in taxi
activity in the boro zone, and that this occurred along with a substantial increase in travel
times (in the control zone, taxi pickups barely changed, and there was a more moderate

increase in travel times).

#The figure is a scatter plot of the log travel times over log pickups in our estimation sample, but we
have averaged blocks of 10 contiguous 10 meter blocks on a run and within a given month so as to plot a
tenth the number of points that are in the estimation sample. Road segments in the hail-exclusion zone are
in light orange for the pre- period and dark orange for the post- period, and likewise road segments in the
boro zone are in light or dark green. Axes are in log travel time and log pickups, but absolute values for
speed and pickups are included for convenience.
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Table 3.9: Wald Estimates of the Congestion Elasticity of Taxi Pickups

1) @) ®) 4) ©) (6) @) (®) ©)
Log avg. s/m Log pickups Log avg. s/m Log avg. s/m Log pickups Log avg. s/m Log avg. s/m Log pickups Log avg. s/m
(OLS) (1st stage) (2SLS) (OLS) (1st stage) (2SLS) (OLS) (1st stage) (2SLS)
Log pickups 0.015 0.106 0.015 0.117 0.016 0.083
(0.001) (0.007) (0.001) (0.009) (0.002) (0.011)
BZ x Roll-out 0.764 0.860 0.594
(0.029) (0.038) (0.043)
Bikelane 0.039 0.090 0.016 0.044 0.168 -0.002 0.029 -0.098 0.035
(0.005) (0.037) (0.006) (0.006) (0.052) (0.009) (0.007) (0.037) (0.007)
Citibike -0.035 -0.087 -0.000 -0.043 0.008 -0.003 -0.017 -0.228 0.006
(0.008) (0.101) (0.013) (0.010) (0.135) (0.019) (0.004) (0.102) (0.011)
311 complaints -0.000 0.004 -0.001 -0.000 0.004 -0.001 -0.000 0.006 -0.001
(0.000) (0.003) (0.000) (0.000) (0.004) (0.001) (0.000) (0.003) (0.000)
Potholes -0.000 0.006 -0.001 -0.003 0.024 -0.005 0.002 -0.009 0.002
(0.001) (0.007) (0.001) (0.001) (0.011) (0.002) (0.001) (0.007) (0.001)
Run-bin and Run-m-y FE Y Y Y Y Y Y Y Y Y
Sample All All All East side East side East side West side ~ Westside  West side
Observations 406260 406260 406260 216000 216000 216000 190260 190260 190260
R? 0.97 0.95 0.94 0.97 0.95 0.93 0.97 0.95 0.96

Note: Unless otherwise specified, robust standard errors are two-way clustered at the level of runx bin and runx month. Weak
instrument tests are not reported, but the lowest F-stat in the table (for column 9, the West side, Bspline specification) is 35,315.
About 1.16% of the 10-meter avenue segments had no taxi pickups within a particular month, so we set the dependent variable at
log(pickups + 0.1). Shifting the dependent variable by 0.01 instead changes the main coefficient in Col (2) from 0.1040 to 0.1012.



We are interested in estimating heterogeneous effects in terms of location attributes
(such as an initial level of supply) so that we can derive a congestion elasticity curve and
apply it outside of northern Manhattan. Although it is feasible to condition on alternative
location attributes (e.g. population density, proximity to transit) we estimate an elasticity
coefficient for each 10 meter bin north of the hail exclusion boundary, and we will describe
the heterogeneity in these elasticity estimates below in terms of the baseline levels of taxi
pickups. We estimate a bin-level congestion-pickup elasticity n. ,(b) by estimating Egs.
3.4 and 3.7 with an interaction for 10 meter bin north of the hail-exclusion boundary, and
then computing Wald estimates as a ratio of the coefficients for each bin. This procedure
yields a distribution of heterogeneous estimates ). ,(b) for the elasticity of congestion to
pickups.3

Elasticity of Pickups to Supply: Back-of-the-Envelope

The simplest approach to computing supply elasticities from pickup elasticities is to as-
sume that pickups and supply vary in proportion to each other. Asabenchmark, we rescale
the estimates of 7). , (b) by constant values for 1), s obtained by assuming proportionality be-
tween levels of pickups and an effective taxi supply. In particular, we assume that the den-
sity of vehicles of type v = {yellow, boro} in zone z = {hail-exclusion, boro} and in period t =
{Before Aug. 2013, After Aug. 2013}is given by (1/Area in km2)x(Avg. medallions per day,,)x
(Avg. hours per medallion per day,,, /18) X (Pickups,,,,/Total pickups_,). Vehicle densities ob-
tained from this back-of-the-envelope formula are displayed in Table 3.10, Panel A.3¢
We then rescale 7., (b) by ﬁg/"f (i.e., the ratio of the average change in our “back-of-the-
envelope” measure taxi supply for both yellow and boro taxis over the average growth
in pickups) to obtain 7j2%€(b). By construction, all heterogeneous pickup elasticities are
rescaled by the same factor. Figure 3.6 plots the set of impact estimates in blue, against
baseline levels of taxi pickups prior to August 2013, along with a local polynomial regres-

sion and a bootstrapped 95% confidence interval. We discuss this curve below.

3.5.2 Measuring Changes in the Spatial Distribution of Taxi Supply
with Aerial Orthoimagery

In this section we develop an approach to measuring supply (and, implicitly, the

elasticity 1, s) that does not require us to assume proportionality between pickups and

%We restrict this analysis to the east side of Manhattan due to data acquisition and processing costs for
the sample of aerial imagery that we will describe below.

%Averages of monthly statistics are obtained from the TLC’s aggregated monthly reports at
nyc.gov/html/tlc/html/technology/aggregated_data.shtml, since vehicle identifiers that would allow for
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Table 3.10: Vehicle Densities (per km?). Selected Areas of Interest.

Panel A: Back-of-Envelope proportional allocation Yellow taxi Boro taxi Taxi Total
Hail-exclusion zone
Before Aug 2013 237.3 237.3
Since Aug 2013 232.9 1.0 233.9
-1.8% -1.4%
Boro zone
Before Aug 2013 36.1 36.1
Since Aug 2013 32.5 36.1 68.6
-10.0% 90.1%
Panel B: Aerial counts Cars Black cars Trucks Yellow taxi Borotaxi Total Private FHV
Hail-exclusion zone
Before Aug 2013 2644 108.7 82.0 247.0 684.1  269.8 85.3
Since Aug 2013 2704 1649 67.1 205.4 10.1 717.8  289.6 145.7
9.7%  51.7%™ -182%  -16.8%™ 4.9% 7.3% 70.8%
Boro zone
Before Aug 2013 286.9 126.0 65.1 61.8 539.8  314.5 98.4
Since Aug 2013 309.8 160.0 54.0 58.2 36.0 6179  346.6 123.2
8.0% 27.0%" -171%  -5.8% 14.5% 10.2% 25.2%
Midtown
Before Aug 2013 370.3 153.5 86.1 530.7 1140.7 4114 112.5
Since Aug 2013 4049 3418 79.3 468.2 7.6 1301.8 383.5 363.3
9.3% 122.7%™ -7.9% -11.8%" 14.1%  -6.8% 222.9%

Note: “Hail-exclusion” and “boro” zones in both panels designate the area of interest in northeastern
Manbhattan, all areas described in 3.8.2. Rows with percentage changes in Panel B are labeled with stars
(*p<0.1,”p <.05 " p < 0.01) for a two-sided difference in means test for the vehicle density (in levels)
between the period before August 2013 (11 scenes) and after (15 scenes). Almost all scenes were captured
around noon due to favorable lighting conditions, and scenes include both weekday and weekend dates
(see 3.8.2 for details). For each zone, period and vehicle type we estimate a weekend factor and re-weight
weekend densities accordingly. Growth rates between the averages of vehicle densities that are weighted
or unweighted in this manner are comparable, but unweighted densities are on average 14.3% lower due
to lower counts in the weekend sample.
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supply. We seek to avoid this assumption because the ratio of pickups to supply may well
change under a large and localized supply shock, i.e. the otherwise unobserved event that
allows us to identify the effect of taxis on traffic speed.

Our approach is to directly observe changes in supply by constructing a new dataset
of taxi and other vehicle locations over space and time. We acquire aerial orthoimagery
for northeastern Manhattan captured over 29 dates, 11 before and 18 after August 2013.
We manually digitize, i.e. tag, the observed location of 131,921 vehicles in this imagery.%
Figure 3.5 shows the densities of taxi locations on the north-east side of Manhattan before
and after the boro program.

Aerial imagery reveals how the supply of taxis reallocated around the hail-exclusion
boundary following the introduction of the boro program: yellow taxi density decreased
slightly throughout most of the kilometer south of the hail-exclusion boundary. At the
boundary itself there has been a spike in supply from boro taxis, but this is almost exactly
offset by a retrenchment from yellow taxis. The density of yellow taxis has remained
largely unchanged north of the boundary, while the additional supply of boro taxis has
led to increases in the taxi density from both types of taxi to average 64.6% over the

two kilometers north of the boundary (and ranging from 0.0 to 291.5% growth). We

Aerial

calculate a distribution of heterogeneous elasticity estimates 1.’

(b) using the bin-level
reduced form changes in speed in the numerator and changes in vehicle densities in the
denominator. Since our estimates of changes in speed come from a difference-in-difference
specification, we analogously define the denominator of the congestion elasticity term for

bin b as (log dvp —log di ) — (log dp hez — 10§ di nez) Where t and ¢’ indicate the average

the computation of daily or hourly vehicle utilization are not available for boro taxis or for yellow taxis after
2013. The value of 18 hours in the denominator for vehicle utilization reflects the fact that the modal yellow
taxi medallion was employed in two shifts of 9 hours each in 2013. Boro taxis are used less hours in a day
then yellow taxis, so adjustment by an hourly utilization rate results in a lower effective supply of boro rela-
tive to yellow taxis, given the same number of outstanding medallions. The choice of 18 hours is somewhat
arbitrary and affects the levels of vehicle densities, but not rates of change or elasticity factors.

%In our analysis, however, we only employ 26 scenes through June 2016, because the TLC has anonymized
geographic coordinates since the second half of 2016. Sources and methods are detailed in 3.8.2. We employ
all the aerial orthoimagery available for New York City from all known sources (public or commercial) but
one, the exception being a second commercial vendor. Examples of imagery and tagging are displayed in
Figures 3.7a and 3.7b. We evaluated and disregarded satellite imagery of the highest resolution available
(Digital Globe WV2 and WV3, Airbus Pleiades, Kompsat-3), which is unsuitable for vehicle roadbed counts
due to resolution and visual obstruction from buildings. See Donaldson and Storeygard (2016) for a
discussion of satellite imagery in economics research.

%We have overloaded the term “density” here, in the sense that the plotted curves are kernel density
estimates of observed vehicle locations along the centerlines of Manhattan’s north-south avenues, but we
rescale the density estimates so that the y-axis indicates the density (in vehicles per km?) that any segment
length over the x-axis would mean-integrate to over the width of our area of interest, which is between 1st
and 5th Avenues. Rescaling allows us to compare changes in vehicle density along a north-south axis before
and after the introduction of the boro program.
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of densities over images before and after the boro program’s introduction, and the second
difference is in the logs of the densities provided in the hail-exclusion zone rows of Table
3.10, Panel B. Note that we compute the denominator of congestion elasticity estimates
from changes in taxi counts, and not changes in counts for total vehicles on the road.
Estimates of bin-specific speed changes are a reduced form of the net impact from both
an increased taxi supply and any countervailing substitution, while any local substitution
behavior toward private vehicles would partially offset the change that we measure in taxi
counts, leading us to overstate the net change in vehicles on the road and understate the
congestion elasticity from net changes in vehicles on the road. Our congestion elasticity
estimates should therefore be interpreted as a reduced form that includes the adaptation
in private driving behavior that took place in the setting of boro taxi deregulation, and
therefore understates the structural congestion elasticity of taxi supply that would obtain
under a counterfactual in which private car use remains constant.®® In Section 3.6 below
we describe a methodology to attribute non-taxi car counts to private vs. for-hire-vehicles.
Applying this methodology to compute the last two columns of Table 3.10.B we do not
find increased substitution of taxis for private cars in the boro zone, but we do find that
the boro zone has seen relatively less growth in for-hire-vehicles.

In Figure 3.6 we plot in orange the set of heterogeneous congestion elasticities against
baseline levels of taxi pickups prior to the boro program (along with a local polynomial
regression and a bootstrapped 95% confidence interval). The gap between the congestion
elasticity curve estimated from aerial imagery and the back-of-the-envelope curve arises
precisely due to the variation in the pickup-to-supply elasticity that aerial imagery is
intended to control for: the ratio of the growth in pickups relative to the growth in
supply has been larger in areas that were previously less well served with taxi supply,
i.e. had lower baseline taxi density. The narrowing gap at higher levels of density can
be explained if — as we would expect — the match efficiency between taxis and potential
passengers increases with density. Accordingly, the back-of-the-envelope estimate derived
from the number of pickups (i.e. matches) does a better job of approximating changes in
supply at higher densities.

Employing our preferred aerial-imagery measures of supply, we find that the conges-
tion elasticity of taxi supply averages 0.2 and is at 0.3 at the 90th percentile of the curve,

3We are unable to estimate a congestion curve for total car counts because some intervals slowed down
yet show infinitesimal changes in total car counts, leading to a high variance in elasticity estimates: 10%
of the area north of the boundary saw a change of less than 1% in total car counts, whereas the smallest
bin-level change in taxi supply is a 12.8% increase. The ratio of the reduced-form impact estimate (an
8.0 percentage point slow down) to the differences in log total vehicle densities (an 8.7 percentage point
difference-in-difference growth in total vehicle density, most of which is driven by growth in boro taxis)
yields an average travel time to vehicle density elasticity of 0.91.
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as the curve increases with density and is somewhat convex. We highlight our conges-
tion elasticity estimates at the 90th percentile of baseline taxi pickups because areas with
higher taxi activity in our sample are the most comparable to average levels of taxi activity

in midtown Manhattan.

3.6 Application: the Role of Ridehail in the Slowdown of NYC Traffic

In this section we apply our estimates of the congestion elasticity of taxi supply to ex-
plain the substantial slowdown of New York City since 2013. First, we provide descriptive
evidence on the depth, timing and extent of the traffic slowdown throughout the city’s
streets and highways since 2013. Next, we discuss the two existing studies that evaluate
the effect of ridehail on traffic congestion in the city, and we complement our assessment
of these studies with evidence on traffic speed and vehicle use. We then answer a simple
accounting question: given our estimates for the congestion elasticity of taxi supply, could
the city’s slowdown be accounted for by the additional supply of for-hire vehicles that
was enabled by ridehail applications (e.g. Uber, Lyft, Via, Juno and Gett)? To answer this
question, we employ aerial imagery counts to estimate the growth in the supply of for-
hire vehicles within an area of midtown Manhattan, as well as measure substitution from
private vehicles. We find that most of the observed slowdown in midtown Manhattan can
be explained by growth in the supply of for-hire vehicles.*

Figure 3.1 shows that the travel time of the median yellow taxi trip has increased
substantially since 2013: after remaining flat at an average 5.1 minutes per mile from
June 2009 to June 2013, from 2013 onward the median travel time started to rise and has
exceeded 6 minutes per mile since the second half of 2016.4 Median or average travel time
over millions of monthly trips could be subject to selection from changing patterns in the
use of taxis: congestion could possibly remain constant while passengers choose to take

#To our knowledge, our study is the first to quantify growth in the supply of vehicles on the road due
to ridehail, and to provided direct (i.e. non-survey) evidence on substitution from private vehicles. Uber
has provided academics with data for the purposes of studying the value of the platform to consumers and
workers, e.g. Cramer and Krueger (2016), Cohen et al. (2016), Hall and Krueger (2016), Angrist, Caldwell,
and Hall (2017), Chen et al. (2017), Castillo, Knoepfle, and Weyl (2017) and Hall, Horton, and Knoepfle
(2017). In particular, Castillo, Knoepfle, and Weyl (2017) illustrate how dynamic pricing can allow for
increased density of Uber vehicles, increasing Uber’s efficiency by reducing travel to (and time to) pickup.
The paper does not address the impact of Uber on road use or speed. To date, Uber has not provided access
to data for the study of congestion externalities or the degree to which ridehail complements or substitutes
transit or the use of private vehicles. Outside of a data agreement, Ge et al. (2016) find evidence of racial
discrimination on the platform.

4The same pattern shows up in survey responses from the US Census’ American Community Survey
(ACS). Manhattan residents reported that travel time to work by car remained approximately constant
between 2009 and 2013, but increased by 2.75 minutes (7.6%) from 2013 to 2016.
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taxis on more congested roads, driving up the median travel time.

To condition on possible changes in travel patterns over space, the plots in Figure
3.8.(a)-(c) show time series for selected percentiles of taxi travel time per mile during the
month of June, with each line tracking a percentile for a particular “taxi-zone” pair within
midtown Manhattan.# Percentiles of the travel time across most origin-destination pairs
remained flat until June 2013 and have increased thereafter. Figure 3.8.(d) summarizes the
variation between June 2013 and June 2016: across 342 origin-destination cell-pairs within
midtown Manhattan every percentile has shifted upward on average; the median and
10th percentile of travel time increased in 98.9% of all pairs, whereas the 90th percentile
increased in 95.3% of pairs. The median travel time has increased by 15.2% on average
across all origin-destination cell pairs in midtown. We describe congestion in midtown
for the purposes of our accounting exercise but while midtown slowed down by more
than average, it is not unusual: extending the previous comparisons to all taxi-zone pairs
with more than 5 trips in both June 2013 and June 2016, we find that the median taxi trip
slowed down by more than it did on average in midtown across 34.4% of the cell-pairs
in the city. Figure 3.9 reports on speed changes using a data source that is novel to our
paper: pair-linked event data from a network of EZ-pass sensors throughout highways
and expressways in the city. There is a gap in the data around 2014, but there has been an
evident slowdown since 2013 throughout the entire distribution of highway speeds (fig.
a), throughout the day (b), and throughout the city’s network of highways (contrasting (c)
and (d)).®

The fact that the speed of traffic in New York City has declined substantially in recent
years has been reported previously in the media and through aggregate statistics in city
transportation reports.# However, there is no prior academic research on the timing and
scale of the slowdown, or credible empirical evidence on its causes. In January 2016 the
Office of the Mayor issued the ad-hoc “For-Hire-Vehicle Transportation Study” (NYC (2016)),
which concluded that “reductions in vehicular speeds are driven primarily by increased freight

movement, construction activity, and population growth. (...) E-dispatch (...) did not drive

#2“Taxi-zones” are polygonal cells defined by the Taxi and Limousine Commission, and are the finest
spatial unit at which trip origination data is provided by ridehail apps. From July 2016 onward the TLC
has also started anonymizing individual taxi trip records to the taxi-zone level. There are 19 taxi-zones in
midtown Manhattan and 263 in all of the city.

“While the NYC Department of Transportation exposes the data to the internet as a real-time feed (see
Data 3.8.1), the DOT has claimed in correspondence with us not to have archived it. We have archived
the data since 2015, and data from three months including June 2013 was kindly made available by Prof.
Tomonari Masada of Nagasaki University, who archived it for unrelated research.

#“Examples include Fitzsimmons and Hu (2017) and Aaron (2015). NYC-DOT (2016) reports a 12%
slowdown between 2010 and 2015 in the annual average of taxi trip speed in Manhattan below 60th Street,
and a 20% slowdown in a “Midtown Core” area.

127



the recent increase in congestion in the CBD.” The report fails to meet modern standards for
identification and there is evidence that it was produced under strong industry lobbying.*
A second report (Schaller (2017)) cautions that vehicle miles traveled in the city are on the
rise due toridehail.# As corroborating evidence, we estimate time series for VMTs per day,
making explicit methodological decisions to address censoring in the data but remaining
agnostic on the distribution of VMTs between traditional car services and ridehail (see
3.8.5). We plot time series for estimated VMTs in Figures 3.10d and 3.10e. We find that
the sum of taxi (yellow plus boro) and FHV miles increased by 886 million miles (34.6%)
between 2013 and 2016. Our results are broadly consistent with Schaller (2017), although
that report may understate growth in miles through 2016 as well as ridehail’s impact
through 2015.#

In addition to documenting the extent and timing of speed changes and vehicle use
through data from taxi meters, EZ-pass and odometer inspections, our contribution to the
study of the causes of New York City’s slowdown consists of i) measuring the growth in
the supply of for-hire vehicles on the road, and ii) applying our estimate of the marginal
congestion of taxi supply to evaluate whether increases in vehicle supply are consistent

$During the summer of 2015, NYC Mayor Bill de Blasio suggested capping growth in for-hire vehicles.
In the words of former Uber lobbyist Bradley Tusk, “we were able to, through a really aggressive campaign, beat
back completely (...) some limitations on Uber’s growth. (...) We ran $4 million in TV spots. We did radio ads. We
did direct mail. We had digital ads. We mobilized our customers (...) We had five different lobbying firms. We worked
every single editorial board in the city. We worked the columnists and the pundits. It was just an all-in, 24-hour-
a-day campaign” (quoted from Mehta (2016)). The claim that ridehail did not cause congestion is made by
incorrectly equating trip counts to vehicle supply: “increases in e-dispatch trips are largely substituting for yellow
taxi trips in the CBD. Because these e-dispatch trips are substitutions and not new trips, they are not increasing VMT
(Vehicle Miles Traveled).” Congestion is attributed to construction and pedestrians by appealing to correlation
with city-wide growth rates in these activities since 2009, a baseline year affected by economic recession.

#Using odometer inspection data from for-hire vehicles and taxis, and under some explicit assumptions
on private car use and substitution, Schaller (2017) estimates that ridehail led to an additional 600 million
vehicle-miles traveled in 2016 relative to 2013, a 27.1% growth over yellow taxi and FHV miles in 2013.
Schaller’s analysis requires unstated assumptions to handle the fact that vehicle mileages are censored at
the last available inspection date, and to allocate flows of miles at the VIN level to stocks of ridehail vs.
traditional car services.

#Following an initial freedom-of-information request we found that the odometer data that was provided
to Schaller contained gaps. Consultation with the TLC allowed us to obtain additional inspection data.
More substantively, Schaller deducts the decline in yellow taxi VMTs from his gross estimate of ridehail
VMTs, under the assumption that all losses in taxi miles were substitution and not additional miles created
by ridehail. However, the report does not track VMTs by boro taxis, which as Figure 3.10d shows more than
offset the declines in yellow taxi VMTs though the first half of 2016. Since Schaller (2017) implicitly assumes
no substitution from yellow to boro taxis, any degree of actual substitution would imply that the estimate
of ridehail’s growth is biased downward. The report also claims to be consistent with the finding in NYC
(2016) that ridehail was not a major source of congestion through the first half of 2015. Unlike the rest of the
report, however, this claim is based on growth in trip counts rather than VMTs. Analyzing VMTs for the
same period as NYC (2016), we find that VMTs from yellow taxis plus FHVs increased 8.4% between June
2013 and June 2015, and by a further 17.8% between June 2015 and June 2016 (15.0% and 24.0%, respectively,
if VMTs from boro taxis are included).
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with the observed slowdown.

There are challenges to the use of aerial imagery to count supply on the road. Due
to the cost of digitizing the imagery we restrict our analysis to an area on the east side
of midtown Manhattan, delimited by 1st and 6th avenues and by 38th and 57th streets.
We must also rely on a small sample of historical images captured before and after the
introduction of ridehail. As in Section 3.5.2, we compare periods before and after August
2013: comparisons between these two periods are differences in means over a sample of
26 images, 11 before and 15 after August 2013 (details in 3.8.2). A further methodological
challenge is that aerial images do not reveal whether observed cars are private or for-hire
vehicles. We address this shortfall in the data by counting (in addition to taxis and trucks)
the cars that have a black exterior color separately from cars of any color other than black.
Counting by color was motivated by a prior that black is the most popular color among
for-hire vehicles in New York City, as well as a growth in the share of black cars over
successive aerial images that is evident to the naked eye. We then obtained current and
historical snapshots of the vehicle registration data for every vehicle in the state from
the New York Department of Motor Vehicles. The data contains exterior paint color and
county of registration for almost all vehicle identification numbers (VINs). We calculate
the share of vehicles with a black exterior paint color among those with an active NY state
registration and registered as for-hire vehicles with the Taxi and Limousine Commission
(ocf’F). Equivalently, we calculate ozf’P for private cars (i.e. non-TLC registered) in NYC.
Black-paint shares averaged 20.9% for private cars and 73.0% for FHVs in our period.*
For each image we obtain a pair (cf’ , cl’.lb ) of car counts by color. If we are willing to assume
that the paint color shares of cars counted in our midtown area of interest are proportional
to color shares in the vehicle registration data for New York City, then we can derive an

estimate of the otherwise unobserved counts for private and for-hire vehicles (?f ,’Ef ) in
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for each image.
Average vehicle densities per km? were reported earlier in Table 3.10, Panel B, but we
refer now to counts for midtown Manhattan. We find that the number of vehicles per

“Vehicle counts likely include commuters from outside the city. We cannot trace the origin of the
vehicles in our midtown counts to neighboring states and counties, and lack vehicle registrations by color
for neighboring states. However, black-paint shares for private vehicles barely change (average 19.2%) if we
include registrations from neighboring Nassau and Westchester counties in NY state.
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km? increased by 14.1% from the 11 images prior to the 15 images after August 2013.
We underscore that due to the small size of our sample and the variance over images, the
estimates are imprecise: although 14.1% growth is an economically significant magnitude,
it is not statistically significant. We do find a statistically significant 11.8% decline in the
number of yellow taxis. We also find a 42.5% increase in the number of cars, which breaks
down into a 122.7% increase in black cars and a 9.3% increase in non-black cars. Using the
share of car colors in the general population of NYC vehicles, we estimate that private cars
on the road decreased by 6.8%, whereas the density of FHVs increased by 222.9%. The
increase in FHVs from 112.5 to 363.3 per km? more than offset the drop in 62.5 observed
taxis per km?: the sum of taxis plus FHVs on the road in midtown has increased 30.5% in
the average of aerial images observed over the past three years, relative to the four years
earlier.

In Section 3.5 we non-parametrically estimated a congestion elasticity curve for taxi
supply that increased in baseline taxi activity. A purpose for estimating a curve rather
than an average was to extrapolate from the northeast of Manhattan to the denser midtown
area: we select an estimated elasticity of 0.304, which corresponds to the 90th percentile of
baseline taxi activity. At this value, the observed 30.5% increase in taxi plus FHV density
can account for a 9.3% slowdown in traffic in midtown Manhattan. Taking the median
change in speed across midtown taxi zones from June 2013 to June 2016 (a 15.2% median
slowdown) as a representative value, we find that the growth in the supply of vehicles
on the road that was caused by ridehail can explain 61.8% of the traffic slowdown in
midtown.#

Our application does not establish a causal effect from ridehail on traffic speed. How-
ever, it is reasonable to find (given our causal estimates of the congestion elasticity of
supply) that the largest change to road transportation in New York City over the past
three years can account for most of the observed slowdown. Our count (and other) data
also shed light on some of the alternative causes that have been suggested for the slow-
down. We cannot measure the use of the road by couriers and delivery services but, as
elsewhere in the city, we find that truck counts have decreased. We count 7.6 boro taxis
per km? after August 2013, which relative to a total count of 1301.8 vehicles suggests that
boro taxis” impact on midtown congestion has been negligible. We do not adjust our

estimate of the change in vehicle supply for changes in private car use, since adaptation

“We have made some conservative data decisions to arrive at this headline result: our estimates employ
average speed measurements as the outcome variable (vs. B-spline projections) and do not adjust for spatial
spillovers, both of which would result in higher congestion elasticity estimates. Congestion impact estimates
using speed measurement only at the times that correspond to the capture times for the aerial imagery do
not significantly affect results (see Table 3.15).
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in private use is part of the reduced form impact in our congestion elasticity estimates.
However, our aerial counts find evidence of modest substitution. Our estimates of this
substitution are not statistically significant, although we emphasize that this is due to
our small sample, rather than an insignificant economic magnitude.> Bike lanes are also
unlikely to play any role in the traffic slowdown within the area of our application in
midtown: the area has 46.1 km of roads and 6.9 km of bike lanes, but almost all these
bike lanes were already in place by June 2013. The only bike lane expansion over the next
three years was the conversion of 489 meters along 1st Avenue from shared to protected
bike lanes. This expansion implies a 1.1% change in road exposure (absent a correction for
spatial spillovers) to a differential slowdown of which our best estimate is 1.6 percentage
points, as reported in Table 3.8. The Citibike bikeshare system was also already in place
in midtown by June 2013.

It is also worth noting that the slowdown in highways and expressways that we
document using EZ-pass data is inconsistent with some of the suggested alternative ex-
planations for congestion. Bike lanes, cycling and pedestrians are almost surely unrelated
to slower highways. Although courier and delivery services may have led to increased
highway use, their impact would be relative to baseline utilization for delivery to brick-
and-mortar stores. The channel that NYC (2016) suggests for the impact of delivery
services, double-parking, is not relevant on highways either. We have not undertaken a
study of highway construction projects in New York City, but the widespread spatial dis-
tribution of the highway slowdown seen from Figure 3.9¢ to 3.9d suggests that individual
construction projects are an unlikely source. On the other hand, we cannot rule out that
increases in traffic due to boro taxis, which are a negligible cause of congestion in midtown
Manhattan, may have contributed to highway congestion in the outer boroughs.

S0There is almost no prior research on substitution patterns between ridehail and other modes. Our
results are consistent with an internet survey of ridehail users in seven cities conducted by Clewlow and
Mishra (2017), who report that “49% to 61% of ride-hailing trips would have not been made at all, or by
walking, biking, or transit.”
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Figure 3.5: Densities of Taxis Located from Overhead Aerial Imagery
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Note: We plot the densities of the distance between taxis on the road, as located over the area of interest
in aerial imagery scenes, and the hail-exclusion boundary. Our area of interest is 4.4 square kilometers
(1087 acres) on the east side of northern Manhattan, delimited by 1st Ave and 5th Ave and between
East 82nd Street and East 125th Street. We count an average 522.7 yellow taxis per scene (or 118.9 per
km?) over 11 scenes prior to the boro taxi program, and plot the density of the locations of these taxis
with a dashed yellow line. Following the launch of the boro program we count an average 440.5 yellow
taxis and 112.1 boro taxis per scene over 15 scenes through June 2016 (125.6 taxis per km?). We plot the
density of the locations of these taxis with solid yellow and green lines. All kernel density estimates
are rescaled so that they would integrate to the average number of vehicles per km? over 1000 meters on
the horizontal axis. In this manner, the vertical axis represents a local vehicle “density” (i.e., in terms
of vehicles per km?). We plot the sum of the densities for both types of taxis in the post period with a
solid grey line to facilitate before-after comparison. All densities are estimated with upper and lower
bounds computed by renormalization, and congestion elasticity estimates employ only the range from
1km south to 2 km north of the boundary. Details on aerial imagery are in 3.8.2.
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Figure 3.6: Congestion Elasticity Curves
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Note: Elasticity estimates and curve are in blue for the “back-of-the-envelope” method and in orange for
aerial count data. Points represent individual elasticity estimates per 10 meter bin in the east Manhattan
boro-zone, placed on the vertical axis, and are sorted on the horizontal axis by the log of average taxi
pickups from January 2009 to August 2013. Solid lines are local polynomials for the conditional mean
of elasticity on average pickups. Confidence intervals are estimated pointwise, as the 97.5% and
2.5% percentile envelopes from 1000 bootstrapped samples of the local polynomial conditional mean
function. Bandwidth for estimation and for every bootstrap sample is selected automatically by a
default rule-of-thumb method for the asymptotically optimal constant bandwidth.
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3.7 Conclusions

In this paper we evaluate the congestion cost of a particular taxi deregulation episode
in New York City. We also quantify a long-run traffic congestion externality that was
previously unmeasured and yet is of first order importance to the regulation of car-based
transportation providers in the city. Additionally, we document that there has been a
substantial slowdown in NYC'’s traffic since 2013, and find that the increase in supply due
to ridehail can account for most of this slowdown. This is an important result both for
New York City and for other cities throughout the world that are assessing the costs and
benefits of ridehail and evaluating strategies for its effective regulation.

To execute this study we collect and analyze a large number of sources of urban data, of
which some are “big”, some have not been collected or analyzed previously, and some are
entirely new. The City of New York is a leading example in the practice of making urban
data publicly available. However, these efforts are at an early stage: standards have not
fully developed, and are often geared toward mobile application developers rather than
researchers. Some data remains siloed, and some valuable data is lost when it is deemed
ephemeral by internal government users and is not archived. Additionally, changes in
technology have led to private firms generating and owning data on their utilization of
public goods and congestible resources. Regulators may want to develop frameworks
so that businesses that are built on the use of public infrastructure report data on this
use. The availability of urban data will increase in the near future, along with the use of
internet-connected devices and other urban sensors. The use of methods from empirical
economics in the analysis of such data can be expected to increase, motivated by changes
to the economic activities that take place within cities (in transportation, these may include
ridehail, bike lanes, bikeshare, dynamic tolling and autonomous vehicles). In the future,
in-vehicle GPS may allow for first-best remedies such as road-specific congestion pricing

— as long as regulators can quantify and price the relevant externalities.
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3.8 Appendix

3.8.1 Data Sources

Taxi trips. Taxi trip records are from the New York City Taxi and Limousine Commission’s
Taxicab Passenger Enhancements Project (TPEP) and Street Hail Livery (SHL) Passenger
Enhancements Project (LPEP). The paper uses trip records from 2009 through the first half
of 2016, obtained from multiple FOIL requests by the authors and as of September 2015
available for direct download from the NYC TLC'’s website at: nyc.gov/html/tlc/html/
about/trip_record_data.shtml. As of the second half of 2016 the TLC has started remov-
ing trip endoint coordinates from their data releases, which precludes the street speed
reconstruction methods developed in this paper. Data from ridehail and other for-hire
vehicle providers was also obtained by FOIL prior to September 2015, and records with

the time and “taxi-zone” of pickup are available from 2015 onwards at the TLC website.

311 complaints. Data from reports to New York City’s 311 complaint hotline are available
atwwwl.nyc.gov/311/our-data.page. Eachrecord contains the date, location coordinates,
and a category classification for the complaint. This paper utilizes all 311 records in
northern Manhattan for categories that may be related to the flow of traffic. We count
the number of complaints per month and segment of road that fall under the following
categories: “Blocked Driveway - No Access," “Blocked Driveway - Partial Access," Street
Condition - Blocked - Construction," “Street Condition - Failed Street Repair," “Street
Condition - Pothole," and “Street Condition - Rough, Pitted or Cracked Roads."

Bike lane maps. The New York City Department of Transportation provides a shapefile
for all bike lanes, including the date of installation or modification, at www.nyc.gov/
html/dot/html/ about/datafeeds.shtml#bikes. All changes in bike lanes (either new
construction or modification) from 2009 through the first half of 2016 are matched to
street segments. The various types of bike lane changes in the data include bike-friendly
parking, protected paths, signed routes, and standard bike lanes.

Citibike system. Bike trip data is from the Citibike system data page at citibikenyc.com/
system-data. Data on location and availability of bike stations was archived from the
Citibike live station feed, available at citibikenyc.com/stations/json as well as the system
data web page.

Potholes. Street Pothole Work order data is available at www.nyc.gov/html/dot/html

/about/datafeeds.shtml#construction. This dataset contains the reported date and closed
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date of pothole work orders, identified at the level of street sections between intersections,
from 2010 through 2016. Each order may refer to more than one pothole.

EZ-pass traffic speed. Data for traffic sensors in New York City is made available as a
real-time feed by the NYC Department of Transportation. A link to the real time feed
is available at nyc.gov/html/dot/html/about/datafeeds.shtml#realtime. The NYC-DOT
has claimed in private correspondence not to archive the output of this feed. From May
27,2013 to August 20, 2013 the feed was continuously archived and kindly made available
by Prof. Tomonari Masada of Nagasaki University. Data from April 2015 through August
2015 (and beyond) was continuously archived by fetaNYC, a civic technology non-profit,
and is available at data.beta.nyc/dataset/nyc-real-time-traffic-speed-data-feed-archived.
Data from August 2015 onward was also continuously archived by the authors. Additional
snapshots of the data were obtained from archive.org at 11 arbitrary times and dates in
2014 and prior to 2013.

New York State vehicle registrations. Obtained from current and previous archived
snapshots of the NY State Department of Motor Vehicles database for Vehicle, Snowmobile
and Boat registrations, available at data.ny.gov. Data contains county, zipcode, car brand
and body type, model year, exterior color and VIN for every vehicle registered in the state
of New York.

Taxi and For-hire-vehicle inspection data. Obtained by FOIL from the Taxi and Limou-
sine Commission’s Vehicle Inspection Program. Data contains odometer readings and
inspection dates for yellow taxis (performed quarterly), boro taxis (biannually) and for-

hire vehicles (biennially).

3.8.2 Aerial Imagery Data

We digitize high-resolution, natural color aerial orthoimagery captured over New York
City between 2010 and 2017. Our sample of 29 scenes comes from state and federal govern-
ment sources (US Dept. of Agriculture, the New York City government), online services
(Google, ESRI, Bing), and a commercial vendor (NearMap Ltd.). We have excluded a
second commercial vendor (Eagle View Technologies, Inc.) due to licensing cost. Unless
otherwise noted below, the nominal resolution for imagery is 15 cm or better. Figure 3.7

illustrates this variation in resolution. The sources are:

e 3 scenes from National Agriculture Imagery Program of the US Department of Agri-

culture (see fsa.usda.gov/programs-and-services /aerial- photography/imagery-
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programs/naip-imagery for sources). July 10, 2011 (nominal 1Im resolution). June
22,2013 (nominal 1m resolution). May 22, 2015 (nominal 50cm resolution).

e 4 scenes from NY State Digital Orthoimagery Program, distributed by NYC govern-

ment at maps.nyc.gov/tiles.

e 11 scenes from Google aerial imagery, obtained through the Google Earth Pro desk-
top application.

e 1 scene from Bing Maps Aerial Imagery layer.

e 1 scene from ESRI World Imagery layer. Resolution is unknown, but is provided at
approximately 30 cm.

e 9 scenes from Nearmap Ltd. (© 2017).

On every image we digitize vehicle locations in two areas of interest: i) an area in
the northeast of Manhattan that includes parts of the Upper East Side and East Harlem
neighborhoods, delimited between 1st and 5th avenues and between East 79th and East
128th streets, and ii) an area in the eastern Midtown district, delimited between 1st and 6th
avenues and between 38th and 57th streets (we select the same area as Zhan et al. (2013),
which includes the densest zone in midtown Manhattan). We manually tag five classes
of vehicles: yellow taxis, green taxis, black cars, cars of any color other than black and
trucks, excluding city buses. Yellow and green taxis are tagged anywhere on the roadbed,
whether parked or in apparent motion. Cars and trucks are tagged only on traffic lanes.
We exclude taxis on parking lots off the roadbed.

A fraction of our aerial images are subject to some degree of road occlusion, i.e. portions
of the roadbed are obstructed from view by tall buildings due to the angle at which the
camera captured the aerial photography. We impute observations that are missing due to

visual occlusion with the following procedure:

1. For any aerial scene i we start with the set of all observed and digitized vehicle
locations L;. We refer to any aerial scene with some occlusion as a recipient image,
and any scene with no occlusions as a donor image. We separately process the images
that were captured in the period before or after August 2013. For donors, we refer

to the sets of these images as Dy, and D,, respectively.

2. For every recipient, we digitize a layer of polygons over every occluded road surface,
and refer to the set of these areas as O,.
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Figure 3.7: Aerial Imagery Examples. Madison Ave and East 96th Street

(a) Source: National Agricultural Imagery Program. July 10, 2011. Time estimated as 12.30
pm.

m
(b) Source: Nearmap Ltd. (© 2017). April 12, 2015, within 5 minutes of 2.57 pm.
R - - R 7P b
- 7 / v/ .

Note: the example areas displayed have an area of 0.7 acres, and are intended to illustrate variation
in image resolution (1 meter vs. 15 cm). Our area of interest consists of 1087 acres (1.7 square miles)
on the east side of northern Manhattan, delimited by 1st Ave and 5th Ave and between East 82nd
Street and East 125th Street. Circle icons on the aerial imagery indicate vehicles labeled as taxis
(yellow), boro taxis (green), cars (cyan) or black cars (magenta).
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3. For every donor d, and for every recipient r that is in the same period t = {b,a} as
d, we partition L, into Ijg, the set of vehicle locations that would be counterfactually
occluded under the occlusion layer O,, and L~d"’, the set of vehicles that would remain

visible under the counterfactual occlusion layer O, .

4. For every recipientr in period t = {b, a}, we assemble a donor pool of every observed

but counterfactually occluded vehicle location P, = (e, L~Z.

5. We define the augmented vehicle location set L] = L, U P,, where to each element

in L, we attach a weight of 1, and to each element in P, from donor d we assign the
scalar weight wa, = (1/(IDt]) [IL,|/(ILal = IL1])].

The first factor in the weight w4, simply averages over the set of donors. The second
maintains proportionality between vehicle counts in the image areas that are mutually
observed in the recipient and each donor image. For example, if donor d contains half as
many vehicles as a recipient 7 in the area that is mutually observable in both images, any
vehicle locations donated from d to r will be weighted by 1/2, and further re-weighted in
proportion to the number of donor images. We apply the above procedure separately for
each area of interest and vehicle type.

Buildings in area (i) are relatively low and imputations have little impact on counts and
densities: although 16 of 29 images contain some imputations, imputations only increase
the total vehicle count in this area by 1.1% and additions to the sample are only substantial
in four images: the five largest percentage increases in weighted vehicle count are 11.3%,
10.1%, 7.8%, 7.8% and 1.2%. Area (ii) in midtown Manhattan is dense with skyscrapers, so
even small deviations from a perpendicular angle in aerial photography can result in road
occlusion. The imputation procedure described above increases the total vehicle count by
6.1% in this area, with imputed vehicles added to 22 scenes. The vehicle count is increased
by more than 10% in 8 scenes, and between 10 and 1% in a further 9 scenes. Details on
raw, imputed and total counts for both areas are provided in Tables 3.11 and 3.12 below.
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Table 3.11: Aerial Imagery Sources and Counts. Upper East Side and East Harlem

Date Source Raw count Imputed  Total Time of day
6/15/2010 NYC Ortho 2,819 2,819.0 10:30 am
6/17/2010 Google Earth 2,314 181.2 2,495.2 10:15 am
3/26/2011 ESRI Aerial 1,649 25 1,651.5 12:30 pm
6/2/2011 Google Earth 3,279 3,279.0 11:45 am
7/10/2011 NAIP 1,920 3.7 1,923.7 12:30 pm
3/10/2012 Google Earth 1,708 1,708.0 11:30 am
6/15/2012 t0 6/20/2012 NYC Ortho 3,271 3,271.0 11:15 am
8/6/2012 Google Earth 2,786 2,786.0 9:30 am
11/5/2012 Google Earth 2,423 2744 2,697.4 10:30 am
5/26/2013 Google Earth 1,257 1,257.0 11:00 am
6/22/2013 NAIP 1,297 100.6 1,397.6 8:30 am
6/1/2014 NYC Ortho 2,160 271 2,187.1 11:00 am
6/19/2014 Google Earth 3,120 11.8 3,131.8 12:30 pm
7/6/2014 to 8/10/2014 Bing Aerial 2,657 2,657.0 9:15 am
9/15/2014 Nearmap 2,893 2,893.0 9:40 am to 10:08 am
10/11/2014 Google Earth 1,150 116.4 1,266.4 10:45 am
4/12/2015 Nearmap 2,686 39 2,6899 2:44 pm to 3:11 pm
5/22/2015 NAIP 2,770 23 27723 9:45 am
6/22/2015 Nearmap 3,016 3,016.0 10:15 am to 10:47 am
9/6/2015 Google Earth 1,223 0.2 1,223.2 11:30 am
9/6/2015 Nearmap 1,884 1,884.0 1:01 pm to 1:30 pm
10/26/2015 Nearmap 2,574 2,574.0 11:35am to 12:03 pm
3/26/2016 to 4/5/2016 NYC Ortho 3,750 3,750.0 12:45 pm
4/16/2016 Nearmap 2,534 143 2,548.3 11:31 am to 12:09 pm
6/24/2016 Google Earth 2,123 0.3 2,123.3 11:30 am
6/25/2016 Google Earth 1,617 14 1,184 11:30 am
7/16/2016 Nearmap 1,876 1,876.0 11:11 am to 11:37 am
10/15/2016 Nearmap 2,667 70 2,674.0 11:34 am to 11:58 am
4/9/2017 Nearmap 2,632 3.8 2,635.8 1:05 pm to 1:27 pm

Note: Capture dates are provided in metadata for all sources, except two NYC scenes for which a date
range is provided, and the Bing Aerial layer which was captured between July 6 and August 10, 2014
according to imagery service API metadata. Time-of-day of image capture is provided in a precise
range by Nearmap. For other sources, the time-of-day is estimated by using the shade of the Columbus
Circle monument as a sundial (calendar-adjusted). Building shadows in area of interest are consistent
with monument shadows. Nearmap metadata and imagery validates our sundial method to within

half-hour accuracy.
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Table 3.12: Aerial Imagery Sources and Counts. Midtown

Date Source Raw count Imputed Total Time of day
6/15/2010 NYC Ortho 3,162 3,162.0 10:30 am
6/17/2010 Google Earth 1,815 463.8 2,278.8 10:15 am
3/26/2011 ESRI Aerial 1,032 556.2 1,588.2 12:30 pm
6/2/2011 Google Earth 2,886 17.3  2,903.3 11:45 am
7/10/2011 NAIP 1,930 1,930.0 12:30 pm
3/10/2012 Google Earth 1,589 74 1,596.4 11:30 am
6/15/2012 t0 6/20/2012 NYC Ortho 3,590 3,590.0 11:15 am
8/6/2012 Google Earth 3,150 65.6 3,215.6 9:30 am
11/5/2012 Google Earth 1,430 701.2 2,131.2 10:30 am
5/26/2013 Google Earth 1,110 109 1,120.9 11:00 am
6/22/2013 NAIP 828 296.1 1,124.1 8:30 am
6/1/2014 NYC Ortho 1,929 194.0 2,123.0 11:00 am
6/19/2014 Google Earth 2,497 21.2 25182 12:30 pm
7/6/2014 to 8/10/2014 Bing Aerial 2,167 2,167.0 9:15 am
9/15/2014 Nearmap 3,557 3,557.0 8:34 am to 10:09 am
10/11/2014 Google Earth 1,017 2221 1,239.1 10:45 am
4/12/2015 Nearmap 2,361 553 24113 3:11 pm to 3:30 pm
5/22/2015 NAIP 2,817 303.3 3,120.3 9:45 am
6/22/2015 Nearmap 3,137 3,137.0 10:10 am to 10:38 am
9/6/2015 Google Earth 987 14.3 1,001.3 11:30 am
9/6/2015 Nearmap 1,989 1749 2,163.9 12:43 pm to 1:01 pm
10/26/2015 Nearmap 2,229 948 2,323.8 11:15am to 11:34 am
3/26/2016 to 4/5/2016 NYC Ortho 3,867 3,867.0 12:45 pm
4/16/2016 Nearmap 1,965 114.8 2,079.8 12:00 to 12:18 pm
6/24/2016 Google Earth 2,270 109.9 2,379.9 11:30 am
6/25/2016 Google Earth 2,132 221.6 2,353.6 11:30 am
7/16/2016 Nearmap 1,879 50.5 1,929.5 11:04 am to 11:36 am
10/15/2016 Nearmap 2,437 111.1 2,548.1 11:18 am to 11:26 am
4/9/2017 Nearmap 2,107 825 2,189.5  12:56 pm to 1:04 pm
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3.8.3 Evidence of the Slowdown in New York City Streets and Highways

Figure 3.8: Travel Times (percentiles of minutes per mile) for Origin-Destination Pairs in
Midtown Manhattan, Month of June 2009 to 2016

(a) Medians, 342 pairs between 19 midtown
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Note: All figures are constructed from raw coordinates on TPEP trip data matched to “taxi zones,” during
the month of June from 2009 to 2016. The measures plotted are quantiles of the minutes per mile on the taxi
meter. “Taxi zones” are a neighborhood-level unit of spatial aggregation defined by the TLC and at which
for-hire-vehicle bases (e.g. livery, ridehail) are required to report trip originations. Midtown Manhattan
between 14th and 59th streets contains 19 taxi zones. Densities in Figure 3.8d are weighted by trips in June
2013.
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Figure 3.9: Historical Speeds, Archived from Live EZ-Pass Traffic Sensor Feeds

(b) Median speed, by hour and across links, se-
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Note: Speeds are obtained from archived feeds of live sensor data from the NY State EZ-Pass traffic
monitoring system. Sources are described in 3.8.1. Fig. (a) plots the time series for deciles of all EZ-pass
traffic sensor speed measurements (10th to 90th percentile, in miles per hour) and across all links in a given
month (subselections of this data, such as weekdays during daytime, display similar patterns). Percentiles
are plotted as lines from May 2013 through August 2013 and from April 2015 onwards, which are the months
for which continuously archived data is available. Black circles plot the median speed across links for single
snapshots of the data that were archived by archive.org, for nine additional months in which some of this
data is available. Fig. (b) plots median speeds across links per hour for the month of June in 2013, 2015 and
2016. Figures (c) and (d) map the median speeds at the link level for June 2013 and June 2016, respectively.
On both maps the speed levels are displayed on a color ramp that corresponds approximately to deciles of
the speed distribution in June 2013, as plotted in the time series shown in fig. (a). The network of road
segments linked through EZ-pass sensors has extended over time, the maps in figures (c) and (d) plot the
115 segments that were active in June 2013 and June 2016. Links contain overlapping segments, which are
shown by means of transparencies.
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Figure 3.10: Vehicle Miles Traveled (VMTs) by Vehicle Class, Estimated from Odometer
Data

Note: methodology is described in 3.8.5. In . .
particular, note thg’gf plotted bounds arise from (a) Avg. miles per day per VIN and class inter-
limiting methodological assumptions, and are polated from odometer readings

not confidence intervals. Figure (a) plots the
daily average of interpolated miles per day per
VIN for each class of vehicles, with orange
for taxis, green for boro taxis and purple for
all for-hire vehicles. Miles per day per VIN
require two odometer inspections around the
interpolation date. Figures (b)-(c) plot the es-
timated stock of registered vehicles per day,
and figures (d)-(e) plot an estimate of vehicle-
miles traveled per day, i.e. the product of the
vehicle stock times the daily average flow of
miles per day per VIN for each class. In fig-
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3.8.4 GPS Data Validation

This paper employs geographic coordinates of taxi pickups and drop-offs recorded
by GPS units onboard taxis (TPEP units) to construct historical speed measures and to
track the location of taxi activity. In this appendix, we evaluate the robustness of our
identification strategy (in particular, our reduced form estimates) to measurement error
in these geographic coordinates. Although there is no obvious direction of bias, GPS
accuracy in our area and period of study was subject to spatial and time trends that could,
in principle, act as a confounder.

The accuracy of navigation satellite systems depends on the number of signal-emitting
satellites within line-of-sight of the receiver, and tall buildings may create “urban canyons”
that reduce the number of satellites in view. In northern Manhattan the height and
density of buildings increases in the downtown direction. Since the height of buildings
surrounding a road segment rarely changes, GPS accuracy could be a time-invariant
attribute of road segments that can be controlled for with road segment fixed effects
(i.e. run-bin f.e. in the notation used in the paper). However, the number of “GPS
satellites” that at any given moment are directly overhead and available to receivers in
New York City has increased substantially in the past decade with the deployment of
satellite systems from Russia, the European Union and China.> If trends in GPS satellite
availability have a differential impact on coordinate accuracy that depends on the heights
of surrounding buildings, GPS accuracy could follow differential trends across the boro
and “hail-exclusion” zones.

We employ two measures of potential satellite obstruction throughout northern Man-
hattan, illustrated in Figure 3.11: the average number of floors of the buildings that overlap
a road segment in the area of interest (floor numbers are color-coded in blue), and a mea-
surement of sky-view factor (SVF), which is the share of sky in a hemispherical field of
vision from the ground. We employ SVF measures from Liang et al. (2017), which were
computed from Google Street View imagery at the midpoint of every city block in Man-
hattan. Figure 3.11 illustrates that building height (and sky-view-factor) are correlated
with latitude in northern Manhattan.>? Table 3.13 estimates the baseline reduced form

result from Table 3.5, Col. 2 while including controls for trends in GPS accuracy. Col. 1

S1GPS is a name that is specific to the United States government’s global navigation satellite system,
which was fully deployed to its current constellation size (32 satellites) and coverage level prior to 2009. The
satellite constellations of Russia (GLONASS), the EU (Galileo) and China (BeiDou2) have been expanded
between January 2009 and June 2016, with net gains of 7, 9 and 19 satellites respectively. The satellites of
these systems emit signals that are available to consumer “GPS” units, and the expansion has allowed for
significant accuracy improvements worldwide.

%2Park Avenue is an exception, as it is separated by elevated tracks north of East 101st Street.
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includes the average number of completed floors for the buildings with a footprint that
overlaps each 10 meter segment (i.e. bin) on every avenue. This control has no impact
on the coefficient of interest, which is not surprising since it contains almost no variation
over time and all of its cross-sectional variation was previously absorbed by run-bin fixed
effects. Col 2. interacts quartiles of the previous measure with linear trends, to allow
for arbitrary differential linear trends over ranges of building heights. Col. 3 interacts
linear trends with quartiles of street-view-factors, where values for bins in which Liang
et al. (2017) did not calculate a factor are interpolated from neighboring measures: the
estimated coefficient barely changes. Results from Cols. 2 and 3 suggest that any dif-
ferential trends in GPS accuracy by level of urban density did not have an impact on the
measurement of street-speed that correlates in space and time with the roll-out of the boro
program.

We next employ a direct measure of taxi GPS accuracy: we filter all the taxi pickup
or drop-off coordinates in our area of interest through the building footprints in the area.
Although coordinates may be in error even if recorded at a street curb, one type of error
that we can measure over space and time is the share of trip endpoints that were placed
by the taxi’s GPS unit within the walls of an existing structure. Using this definition of
GPS accuracy we do find that accuracy evolved differently over the treatment and control
zones: 8.8% of trip endpoints in the hail-exclusion zone, and 5.4% in the boro zone were
located within a building footprint in the 56 months leading up to August 2013, whereas
fail rates declined to 7.2% and 2.6%, respectively, in the 34 months from September 2013
onward. Apparently, the deployment of additional satellites has had a larger effect on the
accuracy of GPS fixes at an intermediate rather than at the higher end of urban density.
Columns 4 and 5 include levels and logs of this GPS failure rate. Once again, our baseline
estimate of the impact of the boro program is not sensitive to the inclusion of this control
for GPS accuracy.
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Figure 3.11: Building Footprints, Number of Floors and Sky-View Factors

Legend

SVF Measure
0.00-0.21
0.21-0.42
0.42 - 0.63
0.63 - 0.84

Number of Floors
0.0-4.0
4.0-10.0

B 10.0-23.0

Hl 23.0-46.0

Note: Sky-view factor (SVF) is the share of the vertical field of vision that is composed of sky.
SVF measures were computed by Liang et al. (2017) from Google Street View imagery. Building
footprints and number of floors are from data.cityofnewyork.us/Housing-Development/Building-
Footprints/nqwf-w8eh.
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Table 3.13: Robustness of Reduced Form Impact to Measurement Error in GPS Units

) @) €) (4) ©)
Logavg. s/m Logavg.s/m Logavg. s/m Logavg. s/m Logavg. s/m
BZ x Roll-out 0.081 0.081 0.078 0.081 0.081
(0.004) (0.004) (0.004) (0.004) (0.004)
Avg. number of floors 0.000
(0.000)
Avg. num. floors: Y
quartiles X linear trends
Sky view factor: Y
quartiles X linear trends
GPS fail rate 0.008
(0.002)
Log GPS fail rate 0.000
(0.000)
Standard controls Y Y Y Y Y
Run-bin X Run-my FE Y Y Y Y Y
Observations 406260 406260 402750 406260 406260
R? 0.97 0.97 0.97 0.97 0.97
R2-within 0.15 0.15 0.15 0.15 0.15

Note: Unless otherwise specified, robust standard errors are two-way clustered at the level of runx bin and
runX month. In Col. 3, street-view-factors are interpolated from neighboring measures for bins without
data from Liang et al. (2017), and 39 bins are dropped from the sample due to lack of data for interpolation.
The estimated coefficient on the subsample of 1,098 bins for which SVFs are available is almost unchanged.
Cols. 2 and 3 include interactions of GPS accuracy determinants with linear trends; interactions with the
post dummy or the Boro roll-out trend also have no effect on the coefficient of interest.
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3.8.5 Method for Estimating Vehicle Miles Traveled from Odometer

Inspection Data

In this appendix we explain our methodology for calculating the total number of
vehicle-miles traveled (VMTs) per day for each of the following classes of vehicles: yellow
taxis, boro taxis and for-hire vehicles (FHVs), the latter a class that includes traditional
black cars and other car services as well as, more recently, ridehail providers. We em-
ploy odometer readings per vehicle identification number (VIN) from 2010 through 2016,
measured at regular inspections required by the Vehicle Inspection Program of New York
City’s Taxi and Limousine Commission and obtained through freedom-of-information
requests.

Vehicles in each class are required to undergo regular inspections: within 3 months
for yellow taxis, 6 months for boro taxis and 2 years for FHVs. The empirical challenge
to estimating time series of VMTs from regular odometer inspections is that the data is
naturally censored. Vehicles require an inspection to enter car service, but may exit car
service at any point after an inspection, and this exit will not be observed until the vehicle
fails to show up for an inspection within the required window. To address this missing
data problem, we separately estimate daily flows of VMTs from the daily stock of vehicles
on the road. Estimating average mile flows conditional on the set of vehicles that are
confirmed survivors (i.e. are between inspections) is straightforward: we interpolate the
odometer readings for each survivor to obtain daily flows, and average these daily flows
over all survivors.

Accounting for censoring is more involved. We cannot estimate the timing of exit
because we do not observe exit dates on any part of our sample; we only observe whether
vehicles fail to show within the re-inspection window. Additionally, censoring interacts
with the end date of our inspection sample (December 31, 2016) to create a period of
uncertain exit. We use FHVs as an example hereafter but employ the same approach for
each class of vehicles: whereas we can be certain that a VIN that was last seen prior to
December 31, 2014 has exited FHV service some time over the following two years, any
VIN that was last observed from January 1, 2015 onwards may have exited or may still be
in service as of December 31, 2016.

Using the subsample of VIN-inspection dates for which a subsequent re-inspection
or exit has occurred with certainty, we estimate the 2-year survival rate for each interval
of 50,000 miles on the odometer (through 400K miles, all higher mileages are binned
together). We then compute the stock of vehicles on the road as of date ¢ as the sum of
confirmed survivors (i.e. the VIN is re-inspected after t) plus an estimate of expected
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survivors, which consist of expected confirmed exiters (since exit date is not identified,
we assume it is equiprobable over the inspection window) and expected uncertain exiters
(we assume the constant hazard rate that accumulates to the estimated 2-year survival
rate). We then compute our baseline daily VMT estimates as the product of daily average
VMT flows per VIN and the expected stock of active VINSs.

Out of necessity, our approach makes two strong assumptions: equiprobable daily exit
rates for confirmed exiters and constant hazard rates for uncertain exiters. As bounds
on the previous approach, we consider two alternative assumptions: we obtain an upper
bound by assuming that all vehicles survive until we observe them to miss a re-inspection
date, and a lower bound by assuming exit immediately after the last inspection. Note that
the lower bound approach mechanically drives down the stock of estimated cars during
the uncertain exit window, all the way down to zero on Jan 1, 2017.

Our estimate of daily VMT flows per vehicle, as well as baseline and bound estimates
for stocks and total VMT flows are plotted in Figure 3.10. Note that shorter re-inspection
windows for yellow taxis result in tighter estimates and shorter uncertain exit periods. We
start our plots on January 1, 2012 since a symmetric source of uncertainty over entry occurs
at the start of our sample period. We do not allocate FHVs miles between ridehail and
traditional car services. We do not believe that this is possible without de-anonymized,
VIN level data from ridehail providers because vehicles affiliated to traditional car service
bases are supplied on ridehail platforms. Throughout our application we employ the sum

of both modes as the unit of analysis.
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3.8.6 Additional Figures and Tables

Table 3.14: Wald Estimates of the Congestion Elasticity of Taxi Pickups. Spline Speeds

1) &) ) 4) ) (6)
Log Bsp. s/m Log Bsp. s/m Log Bsp. s/m Log Bsp. s/m Log Bsp. s/m Log Bsp. s/m

(OLS) (2SLS) (OLS) (2SLS) (OLS) (2SLS)
Log pickups -0.006 0.132 -0.005 0.188 0.002 0.038
(0.006) (0.027) (0.007) (0.038) (0.007) (0.023)
Bikelane -0.071 -0.106 -0.183 -0.271 0.122 0.125
(0.052) (0.056) (0.077) (0.087) (0.041) (0.041)
Citibike 0.062 0.115 0.080 0.156 0.036 0.049
(0.035) (0.039) (0.049) (0.055) (0.016) (0.020)
311 complaints 0.003 0.002 0.004 0.003 0.001 0.001
(0.003) (0.003) (0.005) (0.005) (0.002) (0.002)
Potholes -0.005 -0.007 -0.033 -0.037 0.023 0.023
(0.009) (0.010) (0.017) (0.018) (0.007) (0.007)
Run-bin and Run-m-y FE Y Y Y Y Y Y
Sample All All East side East side West side West side
Observations 406260 406260 216000 216000 190260 190260
R? 0.64 0.63 0.54 0.53 0.74 0.74

Note: Unless otherwise specified, robust standard errors are two-way clustered at the level of runx bin
and runx month. Weak instrument tests are not reported, but the lowest F-stat in the table (for column
9, the West side, Bspline specification) is 35,315. About 1.16% of the 10-meter avenue segments had no
taxi pickups within a particular month: we set the dependent variable at log(pickups + 0.1).
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Table 3.15: Program Impact Coefficient by Time Slice

24 hrs. 6am-8pm 6am-10am 10am-2pm 2pm-4pm 4pm-8pm Spm-1lpm 1lpm-6am

Full week coef. 0.081 0.080 0.067 0.091 0.052 0.094 0.079 0.080
Std. err. (0.004) (0.004) (0.006) (0.006) (0.006) (0.005) (0.005) (0.007)
Avg. trips per run-month-bin 1824.4 13914 286.2 398.2 230.1 477.0 236.4 196.6
Weekday coef. 0.077 0.074 0.061 0.081 0.043 0.097 0.076 0.065
Std. err. (0.005) (0.005) (0.007) (0.006) (0.007) (0.005) (0.006) (0.007)
Avg. trips per run-month-bin 1306.3 1019.5 225.8 268.8 167.9 357.0 171.0 133.5
Weekend coef. 0.071 0.068 0.045 0.072 0.061 0.073 0.091 0.104
Std. err. (0.005) (0.005) (0.007) (0.006) (0.008) (0.007) (0.008) (0.008)
Avg. trips per run-month-bin 518.2 371.9 60.4 129.3 62.2 120.1 65.4 120.0

Note: This table reports variations on the the baseline program impact regression (i.e. Column 2 of Table
3.6) in which the average second-per-meter outcome measure is computed under alternative time slices of
the within-run trip data sample. The table is ordered in rows for day-of-week and columns for time-of-day
slices, and the top left cell is the same specification as Table 3.6, Col. 2. Each cell reports estimated
coefficient and standard errors for the boro-zone times roll-out interaction, as well as the average number
of trips used in computation of the average travel time for each run, month and 10 meter bin.
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Figure 3.12: Spatial Distribution of Yellow Medallion Taxi Pickups. June 2013.

(avg: 98,103 ; max:150,405)
(avg: 69,470 ; max: 80,217)
(avg: 58,724 ; max: 62,124)
(avg: 52,259 ; max: 55,382)
(avg: 46,143 ; max: 48,525)
(avg: 39,352 ; max: 43,031)

(avg: 32,983 ; max: 35,849)

(avg: 26,678 ; max: 30,670)
(avg: 16,346 ; max: 23,028)

(avg: 258 ; max: 10,556)

Note: Raw taxi records (TPEP data, described in 3.8.1) for all pickups within New York City during
June 2013, binned into 12,004 hexagonal cells (each with an area of 0.081 sq. km, or 19.8 acres). Every
color shade accounts for approximately one tenth (1.4 million) of all taxi pickups. For example,
the 14 hexagonal cells in purple accounted for 9.73% of all pickups in June 2013, with an average
98,103 pickups per cell, a volume of pickups that is equal to that of the area shaded in red (average
258 pickups per cell) and white (no pickups). Numbers on the color bar indicate the average and
maximum number of pickups over the cells in a given color.
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Figure 3.13: Traffic Speeds and Taxi Pickups

- 1 (6.1 mph)

_16 (11.1 mph)

Log seconds per meter

_22 (27.3 mph)

I I I I I
-1 04p.u) 1 2.7 p.u) 3 (20 p.u) 5 (148 p.u.) 7 (1097 p.u.)

Log taxi pickups

Note: Sample from Table 3.9, Cols. 1-3. Treatment status and period is indicated by color and
shade, according to the following scheme: bins in the treatment “boro” zone are green, control are
orange; pre period in a light shade and post period in a dark shade. Each point is the average for
both variables of 10 contiguous bins on a given run and month. Axes are in log travel time and log
pickups, but absolute values for speed and pickups are included for convenience.
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