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Chapter I. Introduction 
 
 

Lung cancer is the leading cause of cancer death and the second most diagnosed cancer in both men and 
women in the United States and cigarette smoking is the number one cause of lung cancer (Centers for Disease 
Control and Prevention,2019). The National Lung Screen Trial(NLST) with chest screening of current and former 
smokers is the largest randomized study of lung cancer screening of high-risk population (Gatsonis et al. ,2011). 
68996 CT images from 25183 subjects can be downloaded from NLST study and 626 patients were diagnosed 
within one year from latest biopsy. Many Computer Aided Diagnosis(CAD) systems are developed in recent years 
to detect lung cancer at early stage (Donahue et al., 2015; Gao et al.,2019; Hua et al., 2015; Liao et al.,2019; 
Santeramo et al., 2018; Xu et al.,2019). For Computer Tomography(CT) scans, several types of deep learning 
architectures are introduced and proven to be best method for medical imaging (Tekade & Rajeswari, 2018). In 
this project, a deep learning based pipeline is applied on data from the NLST study and approaches to deal with 
imbalanced data is discussed. 
 

1. Related Works on Lung Cancer Detection 
	
  
A major goal of CAD is to automatically classify malignant/benign nature of tumors based on image features 

and traditional CAD scheme usually includes a number image processing tasks followed with a classification and 
the performance depends heavily on the results of image processing tasks. In recent years, a variety of deep 
learning based techniques are developed to explore high level features from training images.  

 
Conventional CAD scheme requires image processing and pattern recognition steps to extract quantitative 

features from nodules (Hua et al., 2015). Farag et al. (2011) applied geometric feature descriptors to extract 
features form nodule candidates and provided 2% enhancement of in specificity compared with classification 
based on normalized cross-correlation. Lin et al. (2013) attempted the technique of fractal analysis based on 
fractional Brownian motion model to extract feature vectors and the approach outperforms previous approaches 
based on change on CT attenuation value. 

 
A number of current methods for the task of nodule classification are based on convolutional neural networks 

(CNN). For example, Hua et al. (2015) introduced a deep belief network(DBF) (Hinton, Osindero & Teh, 2006) 
and a convolutional neural network(CNN) (Krizhevsky, Sutskever, & Hinton, 2012) for nodule classification in 
CT images and suggested deep learning methods have better performance and promise than conventional CAD 
scheme. Two-dimensional region of interest(ROI) of pulmonary nodule depicted in a two-dimensional CT slice is 
served as input data and features are extracted without computing actual morphology and texture features. This 
method outperforms conventional hand-crafted feature computing frameworks (Hua et al., 2015). 

 
The problem of cancer detection in whole scan is often divided into 2 steps, nodule detection and cancer 

classification. Liao et al. (2019) proposed a pipeline using 3D deep neural network that detects suspicious nodules 
and evaluates the whole lung malignancy. The lung is first segmented from other tissues. Then, a 3D region 
proposal network(RPN) (Ren et al., 2015) using modified U-net (Ronneberger, Fischer, & Brox, 2015) as 
backbone model is applied to detect all suspicious nodules in the lung. The nodules are scored and their cancer 
probabilities are combined with the leaky noise-or model to get an overall cancer probability for this scan (Liao 
et al. ,2019). The model won the first place in the Data Science Bowl 2017 competition with the training and 
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testing area under the ROC curves(AUC) of 0.90 and 0.87 on the Lung Nodule Analysis 2016 dataset (LUNA) 
and the training set of Data Science Bowl 2017 (DSB). 
 

2. Related Works on Lung Cancer Detection Based on Serial Scans 
 
In practice, time series of CT scans are often analyzed and methods that incorporate serial imaging data are 

developed. Recurrent neural networks(RNN) is a state of art deep learning method for video and natural language 
processing as the network incorporate longitudinal data (Donahue et al., 2015). Xu et al. (2019) evaluated RNN 
in analyzing time series of images. The model they proposed is used transfer learning of CNN with RNN and the 
results demonstrated that deep learning can integrate imaging scans at multiple time points to improve clinical 
outcome predictions (Xue et al., 2019). 

 
Long Short-Term Memory(LSTM) (Hochreiter & Schmidhuber, 1997) is a popular variation of RNNs and a 

variety of LSTM based methods are proposed for the task of classifying longitudinal CT scans. However, 
traditional LSTMs are usually applied on data with regular time gaps between observations (Hochreiter & 
Schmidhuber, 1997) and in the case of medical exams, scans are collected at times of clinic need. As a result, the 
scans may not be equally spaced in time and number of scans for each subject could vary greatly (Santeramo et 
al., 2018). Santeramo et al. (2018) modified LSTM architecture to take time interval between consecutive scans 
into consideration and the time modulated LSTM improved classification performance on both real-world and 
simulated 2-D chest x-ray data.  

 
Gao et al. (2019) took global temporal variation into consideration for the reason that the last scan is typically 

the most informative in lung cancer detection and proposed Distanced LSTM, a new Temporal Emphasis 
Model(TEM) to model the global time interval between previous time points to the last scan as a global 
multiplicative function to input gate and forget gate (Gao et al., 2019). The DLSTM method is trained in a 
lightweight post-processing manner for the features extracted from Liao et al. (2019) on a subset of NLST data 
and clinical data. The model is proven to outperform CNN based methods, traditional LSTM and time modulated 
LSTMs.  
 

3. Introduction to NLST 
 
The National Lung Screening Trial(NLST) is a randomized multicenter study comparing low-dose helical 

computed tomography (CT) with chest radiography in the screening of older current and former heavy smokers 
for early detection of lung cancer. Each NLST participant was randomized to undergo a baseline and two annual 
screenings by using either low-dose CT or chest radiography (Gatsonis, 2011). 68996 CT scans from 25183 
subjects can be downloaded from NLST study and 626 patients were diagnosed within one year of latest biopsy. 
 

4. Approaches for Imbalanced Data 
 
In NLST data set, only about 2.5% patients belong to the positive class and the rest are negative, which is a 

highly skewed data set. The class imbalance problem occurs in a large of domains including diagnostic problems 
while cancer cases are usually fairly rare compared with normal cases. The skewed data distribution could 
influence the modelling of rare events (Sun et al.,2009). However, degree of class imbalance is not the only factor 
influencing the performance. Apart from class distribution, the problem also depends on complexity of concept 
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represented by the data, the size of the training set and the type of classifier (Japkowicz & Stephen, 2002). 
Experiments were decided by Japkowicz & Stephen (2002) using three types of machine learning classifiers and 
they suggest that assuming in a large enough data set, the imbalance problem may not be an obstacle. As the size 
of NLST is quite large, this project uses subsets of different sizes as training data to explore the problem that to 
which extent class imbalances are damaging for classification in NLST data with the proposed classification 
pipeline. 

 
Common solutions for this problem includes data level approaches like resampling data, algorithm-level 

approaches, cost-sensitive learning and boosting approaches (Sun et al.,2009). The resampling approach is often 
used in dealing with the problem and it contains oversampling the minority class and eliminating data from 
majority class. However, the optimal class distribution in each resampled batch might not be 1:1 (Weiss et al., 
2003). As the goal of the project is to overcome data imbalance and use as much data as possible, downsizing 
majority data is not considered. Weighting the loss function would make sure that the modified distribution id 
biased towards the costly classes (Sun et al.,2009). As the minority class is of more importance, giving it more 
weight should decrease misclassification for this class. 

 
In this experiment, oversampling the minority class and weighting the loss function are used for this problem. 
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Chapter II. Method 
 

 
1. Data 

 

Data from NLST study, consisting of 68996 CT images from 25183 subjects are used in this project, each 
patient was screened 1 to 3 times in year 1999, 2000 and 2001. CT images from 6335 of these patients have 
received confirmed biopsy results of cancer diagnosis or not cancer, of which 1060 patients was confirmed with 
cancer, and 626 of cancer patients were diagnosed within one year of latest biopsy. Theses scans with biopsy 
results are recommended by the study. Official result of screening exam after comparing with prior screening 
images was provided for each patient with or without biopsy. One of the following 6 labels results given to each 
patient (National Cancer Institute, 2014).  

 
1= Negative screen, no significant abnormalities 
2 = Negative screen, minor abnormalities not suspicious for lung cancer 
3 = Negative screen, significant abnormalities not suspicious for lung cancer 
4 = Positive, Change Unspecified, nodule(s) >= 4 mm or enlarging nodule(s), mass(es), other non-specific 

abnormalities suspicious for lung cancer 
5 = Positive, No Significant Change, stable abnormalities potentially related to lung cancer, no significant 

change since prior screening exam 
6 = Positive, other 
 
In previous studies, label 1 for cancer and 0 for not cancer were assigned to only images of patients going 

through biopsy to assure image quality. In this experiment, in addition to scans from patients with biopsy results, 
images from 6135 patients without biopsy results but received screening result ‘1= Negative screen, no significant 
abnormalities’ were also assigned label 0. Labels given by biopsy diagnosis are referred as ‘hard labels’ and other 
labels given only with screening results were ‘soft labels’.  

 
With only 10.6% of patients with hard labels and 5.2% of all data used has label 1, the NLST data is quite 

large but imbalanced. 7 different subsets of the data with increasing size of training sample and degree of class 
imbalance were used to investigate the effect negative samples have. 

 
Subset 1(626 patients): 
Images of all 626 positive patients were used and 626 patients with biopsy result of not cancer (later referred 

as negative data part A) were randomly selected so that number of positive and negative samples were equal. The 
data were then randomly divided into 5 folds. For each trial, 1 of the 5 folds were used as test set, 1 as validation 
set and rest 3 folds as training sets. Models with best performance on the validation set were used on the test set 
so that test data were not involved in any process of training. After 5 trials, average test AUC is recorded. 

 
Subset 2(2383 patients): 
For the rest of data were also used in this project but as training data only. Apart from 626 negative patients 

selected in subset 1, other 4642 patients with biopsy diagnosis of not cancer (later referred as negative data part 
B) were randomly divided into four groups of approximately 1/4 of data so that 1/4, 1/2 and all of them can be 
added to training data for subset 2,3, and 4. For subset 2, one of the four groups, approximately 1/4 of these 4642 
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patients were added but these new data were used only in training. Data in subset 1 were divided into 5 folds the 
same way. For each trial, apart from 3 folds of subset 1, the 1/4 of negative data part B were added to the training 
set. Test and validation sets were same as subset 1 to keep same test data to compare. 

 
Subset 3(3505 patients): 
Similar to subset 2 except 2 groups, half of negative data part B were added to training set apart from 3 folds 

of data in subset 1. 
 
Subset 4(5895 patients): 
Similar to subset 2 and 3 but all negative data part B were added to training. 
 
Subset 5(7485 patients): 
For subsets 5,6 and 7, 6145 patients with only negative screening results and no abnormalities (negative data 

part C) were used. Similar to part B, these negative data were also separated into 4 groups and added to training 
set. In subset 5, all of negative data part B and 1/4 of negative data part C were added to 3 folds of subset 1 as 
training set for each fold. 

 
Subset 6(9014 patients): 
Similar to subset 5, 3 folds of subset 1, all of negative data part B and half of part C were used as training set 

for each trial. 
 
Subset 7(12029 patients): 
All negative data in part B and part C were added in training. 
 

2. Data Quality Assurance 
 
All data downloaded from the websites are in Digital Imaging and Communication in Medicine(DICOM) 

format and a quality assurance (QA) program is run to remove problematic images with missing slices like figure 
2 before converting them to NIFTI format. The first step of QA is to read DICOM header to check if instance 
number matches number of DICOMs. If number of DICOMs is smaller than number of instance number read in 
the header, missing slices exist. The next step is to check if slice distance, as missing slice may cause difference 
in slice distance even if instance number and DICOM number matches. Moreover, images with less than 20 slices 
were also removed (Gao,2019). Images passed QA were then converted into NIFTI format. 
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Figure 1 CT image in NLST data set with missing Slices 

	
  
	
  

In the NLST data set, instead of missing slices, some images have problems of duplicate slices. These 
duplicate slices are removed when converting the scan to NIFTI and after visually checking, these scans with 
duplicate slices were kept. 

 
The QA process was run on all 68996 DICOMs downloaded including those not used for following 

experiments and 1073 images were removed because of missing slice or uneven slice distance. For patients with 
biopsy results, images failing QA were visually checked and Table 1 shows count for images failing QA. 

 
 

Table 1 Count for images failing QA for patients with biopsy results 
  Cancer Non-cancer 
Total # Images 2285 13836 

Missing Slices 16 29 
Less than 20 Slices 12 22 
Slice Distance Problem 33 77 
Total # with Problems 61 128 

 
 

3. Preprocessing 
 
After converting images, the preprocessing steps proposed by Liao et al.(2019) were used to segment lung 

out of other tissues. Figure 3 shows the steps for preprocessing.  
 
The images in NLST data set are already in Hounsfield Unit (HU) and the first step is to extract a mask slice 

by slice. For each 2D image, a Gaussian filter is applied then binarized at -600 threshold. Then small and eccentric 
2D connected components were removed and then 3D connected components at the center position were kept. 



	
  7 

Convex hull of the mask was then computed to capture nodules attached to the outer wall of the lung. The masks 
were then separated into left and right lungs by eroding iteratively until broken into two components with similar 
volumes. Finally, images were clipped within [-1200,600] converted from HU to UINT8. Components outside the 
masks were filled with intensity 170 (Liao et al.,2019). Figure 2 and 3 shows the tri-planar view of a scan before 
and after pre-processing.  

 
 

  

Figure 2 Tri-planar view of a scan before preprocessing 
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Figure 3 Tri-planar view of the same scan after preprocessing 

 
 
All data downloaded and passing QA process were processed but the preprocessing steps do not run 

successfully on all images. Two more quality problems on some NLST data were detected in preprocess step. The 
first problem is some of the images contain 2 volumes like figure 4. The second problem is that a few images are 
not in HU shown in figure 5. 61 of 16054 images from patients with biopsy cannot be preprocessed and these 
images were removed. 

 
 
 
 

 

Figure 4 NLST image with 2 volumes 
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Figure 5 Preview and histogram of a Scan not in HU 

	
  
	
  

4. Kaggle Method 
 
The cancer detection pipeline proposed by Liao et al. (2019) which won Kaggle DSB2017 challenge (referred 

as Kaggle method) were used on all preprocessed data. The pipeline consists of 2 steps, detection and classification. 
 
First, a 3D CNN is built to detect suspicious nodules and predict bounding boxes. 3D small patches of size 

128x128x128x1 are extracted from the scans and input to the next work and patches going beyond the range of 
lung scans is padded with value 170. The structure of detector network with a U-Net backbone to compare multi-
scale information and an RPN output layer to generate proposals. Output nodule proposals includes coordinate of 
center of proposal, radius and confidence score of the proposal (Liao et al., 2019). 
 

After detection nodules, five proposals with highest confidence scores are picked and the network in 
detection is reused for classification. Five 64D features were extracted from a fully connected layer to get cancer 
probability for each proposal. The probabilities for each proposal were integrated to get a final score for the scan 
(Liao et al., 2019).  

 
The Kaggle pipeline was applied on all data downloaded without being removed in previous steps. 
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5. Distance-LSTM Method 
 
As the Kaggle pipeline makes prediction on scan level, the DLSTM method proposed by Gao et al. (2019) 

is used to predict longitudinal scans like in NLST data. The method models the global time interval between 
previous time points to last scan as a global multiplicative function to input gate and forget gate (Gao et al., 2019).  

 
In the experiments, the DLSTM network is trained as a post prepossessing network for features extracted 

from the Kaggle method (Liao et al.,2019). Five proposals with highest risks were selected with the pre-trained 
Kaggle model and a 64D feature was extracted for each proposal. For each scan, a 5x64 feature is extracted and 
fed into the DLSTM network. Learning rate is set to 0.01 initially and decreased at 50th, 70th and 80th epoch. The 
maximum training epoch is 100 (Gao et al.,2019). 

 
The DLSTM network was trained on all 7 subsets of data to explore what would happen if more negative 

data is fed into the model. 
 

6. Imbalanced Data 
 
Adjustments were made on the pipeline to deal with the problem of data imbalance. As the minority class is 

of more importance in this case, adjustments were made in data domain and cost space to overcome the 
consequences of data imbalance. 

 
The first approach is oversampling positive class. The class torch.utils.data.WeightedRandomSampler in 

Pytorch (Paszke et al., 2019) is used to load data so that each batch contains approximately same number of 
positive and negative patients. The class distribution in each batch is not tuned to save time and resource, and to 
compare the results for each dataset fairly.  

 
The second approach is giving weights to the loss function. Binary cross entropy is loss is used in the original 

D-LSTM network. The loss for each class is multiplied by a weight argument and the losses are averaged across 
observations for each mini batch (Paszke et al., 2019).  

 
To achieve best performance, the weight argument request tuning for each data set. For the same reason as 

in oversampling, I kept the weight for each class proportional to 1/class size so that more weight is given to the 
minority class. 

 
McNemar’s Test (McNemar,1947) is used to evaluate if the models are significantly different because all 

models used the same test sets at decision threshold of 0.5. For each model, area under ROC curve(AUC), true 
positive rate (TP/(TP+FN), the percentage of positive cases correctly classified as belonging to the positive class), 
false positive rate(FP/(FP+TN), the percentage of negative cases misclassified as belonging to positive class), true 
negative rate (TN/(FP+TN), the percentage of negative cases correctly classified as belonging to the negative 
class), false negative rate (FN/(TP+FN), the percentage of positive cases misclassified as belonging to the negative 
class) for test set at decision threshold 0.5 are recorded. 
 

Figure 6 below summarizes the entire pipeline. 
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Figure 6 Flowchart of process for the pipeline 
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Chapter III. Results 
 
 

1. Kaggle Pipeline 
 
The Kaggle Pipeline (Liao et al.,2019) is run on all data passing QA and a score (referred as Kaggle score) 

is given to each image. Histograms of the Kaggle scores were drawn for both patients with or without biopsy. 
Figure 7 shows the histograms for patients with biopsy results and Figure 8 shows histograms for patients without 
biopsy results of different screening results. For a patient with multiple scans, the score of only the latest scan is 
recorded. 

 
 

 

Figure 7 Kaggle score histogram for patients with biopsy results 
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Figure 8 Kaggle score histogram for patients without biopsy results 

	
  
	
  

2. Statistical Analysis of the Pipeline 
 
McNemar’s Test (McNemar,1947) is conducted between two classifiers too test again the null hypothesis 

that None of the two models performs better than the other. Thus, the alternative hypothesis is that the 
performances of the two models are not equal. Models trained with the same data with different approaches and 
models trained with the same approach on different data sets are compared. Table 2 to Table 4 showed the range 
of p-values for these tests. 

 
 
Table 2 Results of McNemar’s Tests on models trained with same data on using different approaches 

**: p < 0.01;  
*: 0.01 <= p < 0.05;  
NS: P>= 0.05 
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Table 3 Results of McNemar’s Tests on models trained with different training data on original D-LSTM setting 
**: p < 0.01;  
*: 0.01 <= p < 0.05;  
NS: P>= 0.05 

 
 
 

Table 4 Results of McNemar’s Tests on models trained with different training data trained by resampling data 
**: p < 0.01;  
*: 0.01 <= p < 0.05;  
NS: P>= 0.05 

 
 
 

Table 5 Results of McNemar’s Tests on models trained with different training data trained with weighted loss 
**: p < 0.01;  
*: 0.01 <= p < 0.05;  
NS: P>= 0.05 

 
 

 
3. DLSTM Pipeline on Imbalance Data 

 
The original DLSTM method without resampling or weighting loss, original approach with only resampling 

data, original approach with only weighted loss were used on each of the 7 subsets of data. Not only the AUC is 
calculated, other 4 metrics, true positive rate(TPR), false positive rate(FPR), true negative rate(TNR), false 
negative rate are recorded(FNR). 

 
 



	
  15 

 

Figure 9 Testing AUC for DLSTM pipeline. 
	
  
	
  

The x axis shows the number of patients in used to train the model. The y axis is the average test AUC for 
all five folds. The blue curve represents the AUC for the models trained without any approaches to deal with 
data imbalance. The orange curve shows the AUC for models trained by resampling training data with 
replacement. The green curve shows the AUC for models trained with weighted loss. 
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Figure 10 TPR for DLSTM pipeline 

 
 

 
Figure 11 FPR for DLSTM pipeline 
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Figure 12 TNR for DLSTM pipeline 

 
 

 
Figure 13 FNR for DLSTM Pipeline 
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Figure 9 to 13 shows the 4 confusion matrix metrics for the data set at decision threshold 0.5. The x axis is 
number of patients in used to train the model. The y axis is the average test metric for all five folds. The blue 
curve represents the metric for the models trained without any approaches to deal with data imbalance. The 
orange curve shows the metric for models trained by resampling training data with replacement. The green 
curve shows the metric for models trained with weighted loss. 
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Chapter IV. Discussion 
 
 

1. Imbalanced Data 
 
From Table 3, it is clear that adding more data to classifier makes a great difference in model performance. 

Table 4 and 5 show that approaches of resampling data and weighting the loss would eliminate most of the 
differences between models trained with different degrees of class imbalance. In table 2, both approaches would 
make the model performs significantly different from the original DLSTM model but the difference between two 
approaches are not great. 

 
As we can see from the figures above, AUC first increased when adding negative data part B but decreased 

after adding negative data part C and none of the approaches supposed to overcome the consequences of imbalance 
seem to worsen the condition. From left to right on x-axis, the size of training data increases, which should benefit 
the classifier, but the degree of imbalance class distribution also increases which is supposed to damage the result. 
One of the reason for the curve to look like that is 5894 patients is the threshold that adding more negative data is 
beneficial the classifier, where large data could overcome the damage caused by imbalance.  

 
The conclusion above is based on the assumption that the data quality of part C is as good as part A and B. 

However, this is not guaranteed because data in part C did not go through biopsy. 
 
A reason that neither of the approaches seem to might be that the metric AUC did not reflect the change made 

by the approaches. To figure out whether the approaches worked, true positive rate, true negative rate, false 
positive rate and false negative rate at decision threshold 0.5 were looked at. As is seen in these curves, the two 
techniques have similar results of lowering false negative rate and keeping true positive rate from dropping. The 
results show that these two approaches did reduce the consequences of adding more negative sample.  

 
However, these approaches have limitations. Both approaches introduced additional computational costs and 

oversampling positive class would be overwhelming in cases of very large scale training data. Tuning class 
distribution in each batch and weight in the loss are required if a better performance is looked at. 

 
2. AUC as a Classification Metric 

 
The ROC curve is the curve that plots the true positive rates against the false positive rate as decision 

threshold varies. It is a widely used way to visualize the classifier’s performance to select an operation point or 
decision threshold. The area under the ROC curve is a feature of the curve and is a widely-used metric in machine 
learning domain because of advantages like decision threshold independent; and it is invariant to a priori class 
probabilities (Bradley,1996). However, when dealing with highly skewed data, AUC does not provide all 
information，as it is hard for the ROC curve to capture the effect large number of negative examples has on the 
algorithm’s performance.  

 
Weiss et al. (2003) conducted researches to explore relationship between class distribution on training set 

and indicates that AUC preformed relatively better on a relatively balanced training set but the optimal class 
distribution for AUC is not necessarily 1:1 and hard to determine (Sun et al.,2009). So the reason that subset 4 
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has highest AUC might be that the class distribution in this subset is closest to the optimal class distribution for 
this classifier. 
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Chapter V. Conclusion 
 

 
In this thesis, we proposed a deep learning pipeline with approaches to deal with class imbalance in the NLST 

data set. CT scans from NLST data set are downloaded and quality assured (Gao, 2019) before applying a pre-
processing procedure (Liao et al., 2019) to segment the lung. The Kaggle method (Liao et al.,2019) is used to 
extract features on the scan level and the D-LSTM method (Gao et al., 2019) predicts the cancer score for each 
patient.  The pipeline is applied on 7 subsets of the data set with different degrees of imbalance in class 
distribution and the performance of the pipeline reduces as more than 5268 patients with negative class used in 
training. Two approaches, resampling data and weighting the loss are applied to address the problem of 
imbalanced class distribution in the data set. Though the effect of these approaches is hard to observe in AUC, the 
confusion matrix shows the influence.  
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